FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Burrell, KH Burgos, JMM AF Burrell, K. H. Burgos, J. M. Munoz TI Kinetic theory for charge-exchange spectroscopy: Effects of magnetic and electric fields on the distribution function after charge-exchange SO PHYSICS OF PLASMAS LA English DT Article ID POLOIDAL ROTATION; EXCITATION; TOKAMAKS AB In plasmas equipped with neutral beam injection, excitation of atomic spectral lines via charge-exchange with neutral atoms is the basis of one of the standard plasma diagnostic techniques for ion density, temperature, and velocity. In order to properly interpret the spectroscopic results, one must consider the effects of the energy dependence of the charge-exchange cross-section as well as the motion of the ion after charge-exchange during the period when it is still in the excited state. This motion is affected by the electric and magnetic fields in the plasma. The present paper gives results for the velocity distribution function of the excited state ions and considers in detail the cross-section and ion motion effects on the post charge-exchange velocity. The expression for this velocity in terms of the charge-exchange cross-section and the pre charge-exchange velocity allows that latter velocity to be determined. The present paper is the first to consider the effect of the electric as well as the magnetic field and demonstrates that electric field and diamagnetic terms appear in the expression for the inferred velocity. The present formulation also leads to a novel technique for assessing the effect of the energy dependence of the charge-exchange cross-section on the inferred ion temperature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736732] C1 [Burrell, K. H.] Gen Atom Co, San Diego, CA 92121 USA. [Burgos, J. M. Munoz] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. RP Burrell, KH (reprint author), Gen Atom Co, San Diego, CA 92121 USA. EM burrell@fusion.gat.com; munozj@fusion.gat.com FU U.S. Department of Energy [DE-FC02-04ER54698, DE-AC05-06OR23100] FX This work was supported by the U.S. Department of Energy under DE-FC02-04ER54698 and DE-AC05-06OR23100. We thank the referee for suggestions which significantly improved this paper. NR 16 TC 4 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072507 DI 10.1063/1.4736732 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800054 ER PT J AU Cai, HS Fu, GY AF Cai, Huishan Fu, Guoyong TI Hybrid simulation of energetic particle effects on tearing modes in tokamak plasmas SO PHYSICS OF PLASMAS LA English DT Article ID INTERNAL KINK; STABILIZATION; SUPPRESSION; IONS AB The effects of energetic ions on stability of tearing mode are investigated by global kinetic/MHD hybrid simulations in a low beta tokamak plasma. The kinetic effects of counter circulating energetic ions from the non-adiabatic response are found to be strongly destabilizing while the effects from the adiabatic response are stabilizing. The net effect with both adiabatic and non-adiabatic contributions is destabilizing. On the other hand, the kinetic effects of co-circulating energetic ions from the non-adiabatic response are calculated to be weakly stabilizing while the corresponding adiabatic contribution is destabilizing for small energetic ion beta. The net effect is weakly stabilizing. The dependence of kinetic effects on energetic ion beta, gyroradius, and speed is studied systematically and the results agree in large part with the previous analytic results for the kinetic effects of circulating particles. For trapped energetic ions, their effects on tearing mode stability are dominated by the adiabatic response due to large banana orbit width and strong poloidal variation of particle pressure. The net effect of trapped energetic particles on tearing modes is much more destabilizing as compared to that of counter circulating particles at the same beta value. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736956] C1 [Cai, Huishan] Univ Sci & Technol China, Dept Modern Phys, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China. [Fu, Guoyong] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Cai, HS (reprint author), Univ Sci & Technol China, Dept Modern Phys, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China. EM hscai@mail.ustc.edu.cn; fu@pppl.gov FU US Department of Energy [DE-AC02-76CH03073]; National Science Foundation of China; National Basic Research Program of China; National Magnetic Confinement Fusion Science Program [10905056, 11075161, 2008CB717808, 2009GB105001, 2010GB106005] FX This work is supported by the US Department of Energy under DE-AC02-76CH03073 and supported by National Science Foundation of China, National Basic Research Program of China and National Magnetic Confinement Fusion Science Program under Grant Nos. 10905056, 11075161, 2008CB717808, 2009GB105001, and 2010GB106005. NR 18 TC 18 Z9 18 U1 6 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072506 DI 10.1063/1.4736956 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800053 ER PT J AU Frias, W Smolyakov, AI Kaganovich, ID Raitses, Y AF Frias, Winston Smolyakov, Andrei I. Kaganovich, Igor D. Raitses, Yevgeny TI Long wavelength gradient drift instability in Hall plasma devices. I. Fluid theory SO PHYSICS OF PLASMAS LA English DT Article ID BEAM-CYCLOTRON INSTABILITY; MAGNETIC-FIELD; TEMPERATURE-GRADIENT; IONIZED PLASMA; THRUSTERS; TRANSPORT; OSCILLATIONS; TURBULENCE; DISCHARGE; DRIVEN AB The problem of long wavelength instabilities in Hall thruster plasmas is revisited. A fluid model of the instabilities driven by the E-0 x B drift in plasmas with gradients of density, electron temperature, and magnetic field is proposed. It is shown that full account of compressibility of the electron flow in inhomogeneous magnetic field leads to quantitative modifications of earlier obtained instability criteria and characteristics of unstable modes. Modification of the stability criteria due to finite temperature fluctuations is investigated. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736997] C1 [Frias, Winston; Smolyakov, Andrei I.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Kaganovich, Igor D.; Raitses, Yevgeny] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Frias, W (reprint author), Univ Saskatchewan, Dept Phys & Engn Phys, 116 Sci Pl, Saskatoon, SK S7N 5E2, Canada. EM wpf274@mail.usask.ca NR 45 TC 19 Z9 19 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072112 DI 10.1063/1.4736997 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800015 ER PT J AU Hager, JD Smalyuk, VA Hu, SX Knauer, JP Meyerhofer, DD Sangster, TC AF Hager, J. D. Smalyuk, V. A. Hu, S. X. Knauer, J. P. Meyerhofer, D. D. Sangster, T. C. TI Study of Rayleigh-Taylor growth in directly driven cryogenic-deuterium targets SO PHYSICS OF PLASMAS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITY; NATIONAL IGNITION FACILITY; OMEGA LASER SYSTEM; PLANAR TARGETS; SINGLE-MODE; IMPLOSIONS; RATES; NOVA; MODULATIONS; DISPERSION AB Direct-drive, Rayleigh Taylor growth experiments in liquid deuterium (D-2) were performed on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)1 using planar cryogenic targets at a laser intensity of similar to 4 x 10(14) W/cm(2). These are the first Rayleigh Taylor measurements in deuterium at conditions relevant to inertial confinement fusion using a mass preimposed initial modulation. The measured modulation optical depths are in agreement with the 2D hydrodynamics code DRACO using flux-limited local thermal transport, providing an important step in the experimental validation of simulations for direct-drive ignition. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739061] C1 [Hager, J. D.; Hu, S. X.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Smalyuk, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Hager, JD (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. FU U.S. DOE Office of Inertial Confinement Fusion [DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority; DOE FX This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. NR 50 TC 2 Z9 2 U1 3 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072707 DI 10.1063/1.4739061 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800074 ER PT J AU Henestroza, E Logan, BG AF Henestroza, Enrique Logan, B. Grant TI Progress towards a high-gain and robust target design for heavy ion fusion SO PHYSICS OF PLASMAS LA English DT Article AB Recently [E. Henestroza et al., Phys. Plasmas 18, 032702 (2011)], a new inertial-fusion target configuration, the X-target, using one-sided axial illumination has been explored. This class of target uses annular and solid-profile heavy ion beams to compress and ignite deuterium-tritium (DT) fuel that fills the interior of metal cases that have side-view cross sections in the shape of an "X." X-targets using all-DT-filled metal cases imploded by three annular ion beams resulted in fuel densities of similar to 50 g/cm(3) at peak compression, and fusion gains of similar to 50, comparable to heavy ion driven hohlraum targets [D. A. Callahan-Miller and M. Tabak, Phys. Plasmas 7, 2083 (2000)]. This paper discusses updated X-target configurations that incorporate inside the case a propellant (plastic) and a pusher (aluminum) surrounding the DT fuel. The updated configurations are capable of assembling higher fuel areal densities similar to g/cm(2) using two annular beams to implode the target to peak DT densities similar to 100 g/cm(3), followed by a fast-ignition solid ion beam which heats the high-density fuel to thermonuclear temperatures in similar to 200 ps to start the burn propagation, obtaining gains of similar to 300. These targets have been modeled using the radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] in two- and three- dimensions to study the properties of the implosion as well as the ignition and burn propagation phases. At typical Eulerian mesh resolutions of a few microns, the aluminum-DT interface shows negligible Rayleigh-Taylor (RT) and Richtmyer-Meshkov instability growth; also, the shear flow of the DT fuel as it slides along the metal X-target walls, which drives the RT and Kelvin Helmholtz instabilities, does not have a major effect on the burning rate. An analytic estimate of the RT instability process at the Al-DT interface shows that the aluminum spikes generated during the pusher deceleration phase would not reach the ignition zone in time to affect the burning process. Also, preliminary HYDRA calculations, using a higher resolution mesh to study the shear flow of the DT fuel along the X-target walls, indicate that metal-mixed fuel produced near the walls would not be transferred to the DT ignition zone (at maximum rho R) located at the vertex of the X-target. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737587] C1 [Henestroza, Enrique; Logan, B. Grant] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Henestroza, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU U.S. Department of Energy by the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX B. G. Logan gratefully acknowledges useful discussions with Robert Tipton on his results of numerical simulations of the X-target. We are very grateful to the anonymous reviewer for comments that improved the quality of this manuscript. This work was performed under the support of the U.S. Department of Energy by the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 10 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072706 DI 10.1063/1.4737587 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800073 ER PT J AU Koh, S Chang, CS Ku, S Menard, JE Weitzner, H Choe, W AF Koh, S. Chang, C. S. Ku, S. Menard, J. E. Weitzner, H. Choe, W. TI Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry SO PHYSICS OF PLASMAS LA English DT Article ID GENERAL AXISYMMETRICAL EQUILIBRIA; FINITE-ASPECT-RATIO; NEOCLASSICAL TRANSPORT; ARBITRARY COLLISIONALITY; PARTICLE SIMULATION; MODES; COEFFICIENTS; VARIABLES; SYSTEMS; REGIME AB The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. A drift-kinetic particle code XGCO, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirms that the existing analytic expressions [represented by O. Sauter eral., Phys. Plasmas 6, 2834 (1999)] are still valid in this unconventional region, except in a thin radial layer in contact with the magnetic separatrix. The agreement arises from the dominance of the electron contribution to the bootstrap current compared with ion contribution and from a reasonable separation of the trapped-passing dynamics without a strong collisional mixing. However, when the pedestal electrons are in plateau-collisional regime, there is significant deviation of numerical results from the existing analytic formulas, mainly due to large effective collisionality of the passing and the boundary layer trapped particles in edge region. In a conventional aspect ratio tokamak, the edge bootstrap current from kinetic simulation can be significantly less than that from the Sauter formula if the electron collisionality is high. On the other hand, when the aspect ratio is close to unity, the collisional edge bootstrap current can be significantly greater than that from the Sauter formula. Rapid toroidal rotation of the magnetic field lines at the high field side of a tight aspect-ratio tokamak is believed to be the cause of the different behavior. A new analytic fitting formula, as a simple modification to the Sauter formula, is obtained to bring the analytic expression to a better agreement with the edge kinetic simulation results. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736953] C1 [Koh, S.; Choe, W.] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Chang, C. S.; Ku, S.; Menard, J. E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Weitzner, H.] NYU, Courant Inst Math Sci, New York, NY 10012 USA. RP Koh, S (reprint author), Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. RI Ku, Seung-Hoe/D-2315-2009; Choe, Wonho/C-1556-2011; OI Ku, Seung-Hoe/0000-0002-9964-1208; Menard, Jonathan/0000-0003-1292-3286 FU National R&D Program through National Research Foundation of Korea (NRF) [2011-0018728]; SciDAC [DE-FG02-06ER54845]; US DOE Office of Fusion Energy Science [DE-FG02-86ER53223]; [DE-AC02-09CH11466] FX This research has been funded by National R&D Program through the National Research Foundation of Korea (NRF), 2011-0018728, by SciDAC grants jointly between the US DOE Office of Fusion Energy Science and the Office of Advanced Scientific Computing Research under DE-FG02-06ER54845, by a grant from the US DOE Office of Fusion Energy Science under DE-FG02-86ER53223, and by a contract under DE-AC02-09CH11466. High performance computing time on Hopper at NERSC was made possible through NISE and ERCAP awards by US DOE. NR 46 TC 19 Z9 19 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072505 DI 10.1063/1.4736953 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800052 ER PT J AU Le, A Karimabadi, H Egedal, J Roytershteyn, V Daughton, W AF Le, A. Karimabadi, H. Egedal, J. Roytershteyn, V. Daughton, W. TI Electron energization during magnetic island coalescence SO PHYSICS OF PLASMAS LA English DT Article ID CORONAL MASS EJECTION; RECONNECTION; LOOP AB Radio emission from colliding coronal mass ejection flux ropes in the interplanetary medium suggested the local generation of superthermal electrons. Inspired by those observations, a fully kinetic particle-in-cell simulation of magnetic island coalescence models the magnetic reconnection between islands as a source of energetic electrons. When the islands merge, stored magnetic energy is converted into electron kinetic energy. The simulation demonstrates that a mechanism for electron energization originally applied to open field line reconnection geometries also operates near the reconnection site of merging magnetic islands. The electron heating is highly anisotropic, and it results mainly from an electric field surrounding the reconnection site that accelerates electrons parallel to the magnetic field. A detailed theory predicts the maximum electron energies and how they depend on the plasma parameters. In addition, the global motion of the magnetic islands launches low-frequency waves in the surrounding plasma, which induce large-amplitude, anisotropic fluctuations in the electron temperature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739244] C1 [Le, A.; Egedal, J.] MIT, Cambridge, MA 02139 USA. [Karimabadi, H.; Roytershteyn, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Le, A (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Daughton, William/L-9661-2013; OI Roytershteyn, Vadim/0000-0003-1745-7587 FU NASA at MIT [NNX10AL11G]; NSF [ATM0802380, OCI 0904734]; NASA Heliophysics Theory Program; LDRD program at Los Alamos FX Authors acknowledge support through NASA Grant NNX10AL11G at MIT as well as NSF Grant Nos. ATM0802380 and OCI 0904734, NASA Heliophysics Theory Program, and the LDRD program at Los Alamos. Simulations were performed on Kraken provided by the NSF at NICS and on Pleiades provided by NASA's HEC Program. NR 22 TC 9 Z9 9 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072120 DI 10.1063/1.4739244 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800023 ER PT J AU Logan, NC Davidson, RC AF Logan, Nikolas C. Davidson, Ronald C. TI Thermodynamic bounds on nonlinear electrostatic perturbations in intense charged particle beams SO PHYSICS OF PLASMAS LA English DT Article ID DELTA-F SIMULATION; LARGE TEMPERATURE ANISOTROPY; MAGNETIC-FIELD; PLASMAS AB This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (T-parallel to/T-perpendicular to < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry, and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737180] C1 [Logan, Nikolas C.; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Logan, NC (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-76CH03073]; Princeton Plasma Physics Laboratory; Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF); American Recovery and Reinvestment Act [DE-AC05-06OR23100] FX This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH03073 with Princeton Plasma Physics Laboratory, and in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Contract No. DE-AC05-06OR23100. NR 25 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 073113 DI 10.1063/1.4737180 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800099 ER PT J AU Martin, MR Lemke, RW McBride, RD Davis, JP Dolan, DH Knudson, MD Cochrane, KR Sinars, DB Smith, IC Savage, M Stygar, WA Killebrew, K Flicker, DG Herrmann, MC AF Martin, M. R. Lemke, R. W. McBride, R. D. Davis, J. P. Dolan, D. H. Knudson, M. D. Cochrane, K. R. Sinars, D. B. Smith, I. C. Savage, M. Stygar, W. A. Killebrew, K. Flicker, D. G. Herrmann, M. C. TI Solid liner implosions on Z for producing multi-megabar, shockless compressions (vol 19, 056310, 2012) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Martin, M. R.; Lemke, R. W.; McBride, R. D.; Davis, J. P.; Dolan, D. H.; Knudson, M. D.; Sinars, D. B.; Smith, I. C.; Savage, M.; Stygar, W. A.; Flicker, D. G.; Herrmann, M. C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cochrane, K. R.] Raytheon Ktech, Albuquerque, NM 87123 USA. [Killebrew, K.] Gen Atom Co, San Diego, CA 92121 USA. RP Martin, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 1 TC 0 Z9 0 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 079901 DI 10.1063/1.4718942 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800139 ER PT J AU Meier, ET Shumlak, U AF Meier, E. T. Shumlak, U. TI A general nonlinear fluid model for reacting plasma-neutral mixtures SO PHYSICS OF PLASMAS LA English DT Article ID LOCAL INTERSTELLAR-MEDIUM; SOLAR-WIND; B2-EIRENE AB A generalized, computationally tractable fluid model for capturing the effects of neutral particles in plasmas is derived. The model derivation begins with Boltzmann equations for singly charged ions, electrons, and a single neutral species. Electron-impact ionization, radiative recombination, and resonant charge exchange reactions are included. Moments of the reaction collision terms are detailed. Moments of the Boltzmann equations for electron, ion, and neutral species are combined to yield a two-component plasma-neutral fluid model. Separate density, momentum, and energy equations, each including reaction transfer terms, are produced for the plasma and neutral equations. The required closures for the plasma-neutral model are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736975] C1 [Meier, E. T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Shumlak, U.] Univ Washington, Plasma Sci & Innovat Ctr, Seattle, WA 98195 USA. RP Meier, ET (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM meier23@llnl.gov OI Shumlak, Uri/0000-0002-2918-5446 FU U.S. Department of Energy by the University of Washington [DE-FC02-05ER54811]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work has been performed under the auspices of the U.S. Department of Energy by the University of Washington under Contract DE-FC02-05ER54811 and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 32 TC 26 Z9 26 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072508 DI 10.1063/1.4736975 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800055 ER PT J AU Miles, AR Chung, HK Heeter, R Hsing, W Koch, JA Park, HS Robey, HF Scott, HA Tommasini, R Frenje, J Li, CK Petrasso, R Glebov, V Lee, RW AF Miles, A. R. Chung, H. -K. Heeter, R. Hsing, W. Koch, J. A. Park, H. -S. Robey, H. F. Scott, H. A. Tommasini, R. Frenje, J. Li, C. K. Petrasso, R. Glebov, V. Lee, R. W. TI Numerical simulation of thin-shell direct drive DHe3-filled capsules fielded at OMEGA SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL-IGNITION-FACILITY; CONFINEMENT FUSION-TARGETS; DENSITY-RADIUS PRODUCT; D-T; PERFORMANCE; SYSTEM AB Thin-shell deuterium-helium-3 (DHe3) filled glass capsules on the Omega laser provide a fast-implosion experimental platform for developing separate time-resolved measurements of ion, electron, and radiation temperatures in nonequilibrium plasmas. Dynamically significant non-local thermodynamic equilibrium (NLTE) conditions are created by the addition of xenon dopant to the DHe3 gas fill, in quantities sufficient to have an impact on yields, compression, and cooling rates. The high-Z dopant dramatically increases the radiative cooling rate in the plasma, allowing it to collapse in compressions that can be an order of magnitude higher than in undoped capsules. A baseline LASNEX simulation model using detailed configuration accounting NLTE atomic physics shows very good agreement with the data for doped as well as undoped capsules, while other models either underpredict or overpredict the radiative cooling enhancement. The baseline model captures the behavior of the capsule when the D:He-3 ratio is varied well away from equimolar, suggesting no yield anomaly with either nearly pure deuterium or He-3 fills. Variation of the electron-ion coupling in the baseline simulation model shows agreement with the data for a coupling multiplier that is within 20% of unity. Reliably inferring electron-ion coupling strength from the data is complicated by uncertainties in the hydrodynamic mix and other parameters, but many of these can be mitigated in follow-on experiments at the National Ignition Facility. (C) 2012 American Institute of Physics. [http://dx.doi.org/ I 0.1063/1.4737052] C1 [Miles, A. R.; Chung, H. -K.; Heeter, R.; Hsing, W.; Koch, J. A.; Park, H. -S.; Robey, H. F.; Scott, H. A.; Tommasini, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Frenje, J.; Li, C. K.; Petrasso, R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Glebov, V.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Lee, R. W.] SLAC Linear Coherent Light Source, Menlo Pk, CA 94025 USA. RP Miles, AR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Tommasini, Riccardo/A-8214-2009 OI Tommasini, Riccardo/0000-0002-1070-3565 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48]; [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 31 TC 4 Z9 4 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072702 DI 10.1063/1.4737052 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800069 ER PT J AU Mordijck, S Doyle, EJ McKee, GR Moyer, RA Rhodes, TL Zeng, L Commaux, N Fenstermacher, ME Gentle, KW Reimerdes, H Schmitz, O Solomon, WM Staebler, GM Wang, G AF Mordijck, S. Doyle, E. J. McKee, G. R. Moyer, R. A. Rhodes, T. L. Zeng, L. Commaux, N. Fenstermacher, M. E. Gentle, K. W. Reimerdes, H. Schmitz, O. Solomon, W. M. Staebler, G. M. Wang, G. TI Changes in particle transport as a result of resonant magnetic perturbations in DIII-D (vol 19, 056503, 2012) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Mordijck, S.] Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23187 USA. [Doyle, E. J.; Rhodes, T. L.; Zeng, L.; Wang, G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [McKee, G. R.] Univ Wisconsin, Dept Engn, Madison, WI 53706 USA. [Moyer, R. A.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Commaux, N.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gentle, K. W.] Univ Texas Austin, Fus Res Ctr, Austin, TX 78712 USA. [Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. [Schmitz, O.] Forschungszentrum Julich, Inst Energieforsch Plasmaphys, Assoc EURATOM FZJ, D-52425 Julich, Germany. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Staebler, G. M.] Gen Atom Co, San Diego, CA 92186 USA. RP Mordijck, S (reprint author), Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23187 USA. EM mordijck@cs.wm.edu NR 1 TC 0 Z9 0 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 079903 DI 10.1063/1.4740229 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800141 ER PT J AU Pigarov, AY Krasheninnikov, SI Rognlien, TD AF Pigarov, A. Yu. Krasheninnikov, S. I. Rognlien, T. D. TI Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs SO PHYSICS OF PLASMAS LA English DT Article ID SCRAPE-OFF-LAYER; CROSS-FIELD TRANSPORT; ALCATOR C-MOD; DIII-D; ASDEX-UPGRADE; DIVERTOR PLASMA; FLUID CODE; TOKAMAK; SIMULATION; TURBULENCE AB The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (similar to 0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (similar to 10(-4) s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739464] C1 [Pigarov, A. Yu.; Krasheninnikov, S. I.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Rognlien, T. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Pigarov, AY (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. FU U.S. Department of Energy at UCSD [DE-FG02-08ER54989]; U.S. Department of Energy at LLNL [DE-AC52-07NA27344] FX This work was supported by the U.S. Department of Energy Research Grant DE-FG02-08ER54989 at UCSD and Contract DE-AC52-07NA27344 at LLNL. NR 36 TC 6 Z9 6 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072516 DI 10.1063/1.4739464 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800063 ER PT J AU Ryutov, DD Kugland, NL Park, HS Plechaty, C Remington, BA Ross, JS AF Ryutov, D. D. Kugland, N. L. Park, H-S Plechaty, C. Remington, B. A. Ross, J. S. TI Intra-jet shocks in two counter-streaming, weakly collisional plasma jets SO PHYSICS OF PLASMAS LA English DT Article AB Counterstreaming laser-generated plasma jets can serve as a test-bed for the studies of a variety of astrophysical phenomena, including collisionless shock waves. In the latter problem, the jet's parameters have to be chosen in such a way as to make the collisions between the particles of one jet with the particles of the other jet very rare. This can be achieved by making the jet velocities high and the Coulomb cross-sections correspondingly low. On the other hand, the intra-jet collisions for high-Mach-number jets can still be very frequent, as they are determined by the much lower thermal velocities of the particles of each jet. This paper describes some peculiar properties of intra-jet hydrodynamics in such a setting: the steepening of smooth perturbations and shock formation affected by the presence of the "stiff" opposite flow; the role of a rapid electron heating in shock formation; ion heating by the intrajet shock. The latter effect can cause rapid ion heating which is consistent with recent counterstreaming jet experiments by Ross et al. [Phys. Plasmas 19, 056501 (2012)]. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736973] C1 [Ryutov, D. D.; Kugland, N. L.; Park, H-S; Plechaty, C.; Remington, B. A.; Ross, J. S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU LLNL [DE-AC52-07NA27344] FX The authors are grateful to W. J. Rozmus for helpful discussion. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344. NR 13 TC 10 Z9 10 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 074501 DI 10.1063/1.4736973 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800137 ER PT J AU Schaeffer, DB Everson, ET Winske, D Constantin, CG Bondarenko, AS Morton, LA Flippo, KA Montgomery, DS Gaillard, SA Niemann, C AF Schaeffer, D. B. Everson, E. T. Winske, D. Constantin, C. G. Bondarenko, A. S. Morton, L. A. Flippo, K. A. Montgomery, D. S. Gaillard, S. A. Niemann, C. TI Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA; ASTROPHYSICS; EXPANSION; WAVES AB We present experiments on the Trident laser facility at Los Alamos National Laboratory which demonstrate key elements in the production of laser-driven, magnetized, laboratory-scaled astrophysical collisionless shocks. These include the creation of a novel magnetic piston to couple laser energy to a background plasma and the generation of a collisionless shock precursor. We also observe evidence of decoupling between a laser-driven fast ion population and a background plasma, in contrast to the coupling of laser-ablated slow ions with background ions through the magnetic piston. 2D hybrid simulations further support these developments and show the coupling of the slow to ambient ions, the formation of a magnetic and density compression pulses consistent with a collisionless shock, and the decoupling of the fast ions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736846] C1 [Schaeffer, D. B.; Everson, E. T.; Constantin, C. G.; Bondarenko, A. S.; Morton, L. A.; Niemann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Winske, D.; Flippo, K. A.; Montgomery, D. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gaillard, S. A.] Forschungszentrum Dresden Rossendolf, Dresden, Germany. RP Schaeffer, DB (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM dschaeffer@physics.ucla.edu RI Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 FU DOE OFES [DE-FG02-06ER54906]; DTRA [HDTRA1-12-1-0024] FX We would like to thank the staff of the Trident laser facility, R. P. Johnson, T. Shimada, and S. A. Letzring for their help in carrying out these experiments and S. E. Clark for his help with the simulations. This work was supported by the DOE OFES under Contract No. DE-FG02-06ER54906 and by DTRA under Contract No. HDTRA1-12-1-0024. NR 25 TC 17 Z9 17 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 070702 DI 10.1063/1.4736846 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800002 ER PT J AU Strozzi, DJ Tabak, M Larson, DJ Divol, L Kemp, AJ Bellei, C Marinak, MM Key, MH AF Strozzi, D. J. Tabak, M. Larson, D. J. Divol, L. Kemp, A. J. Bellei, C. Marinak, M. M. Key, M. H. TI Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields SO PHYSICS OF PLASMAS LA English DT Article ID LASER FUSION IGNITION; PLASMA SIMULATION; CONDUCTIVITY; TARGETS; PULSES AB Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell (PIC) code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum and a divergent angle spectrum (average velocity-space polar angle of 52 degrees). Transport simulations with the PIC-based divergence do not ignite for >1 MJ of fast-electron energy, for a modest (70 mu m) standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields similar to 50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields will likely be more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739294] C1 [Strozzi, D. J.; Tabak, M.; Larson, D. J.; Divol, L.; Kemp, A. J.; Bellei, C.; Marinak, M. M.; Key, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Strozzi, DJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. OI Larson, David/0000-0003-0814-8555; Strozzi, David/0000-0001-8814-3791 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LDRD [11-SI-002] FX It is a pleasure to thank A. A. Solodov, J. R. Davies, B. I. Cohen, H. D. Shay, and P. K. Patel for fruitful discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and partially supported by LDRD 11-SI-002. NR 59 TC 48 Z9 48 U1 1 U2 27 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072711 DI 10.1063/1.4739294 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800078 ER PT J AU Winske, D Daughton, W AF Winske, D. Daughton, W. TI Generation of lower hybrid and whistler waves by an ion velocity ring distribution SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC-FIELD; SOLAR-FLARES; INSTABILITIES; PLASMA; ACCELERATION; SIMULATION; RESONANCE; PROPAGATION AB Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant (similar to 15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small (<10(-4)). The results are compared with relevant linear and nonlinear theory. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736983] C1 [Winske, D.; Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Winske, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM winske@lanl.gov RI Daughton, William/L-9661-2013 FU DREAM FX The authors acknowledge useful discussions with and comments from Dr. Leonid Rudakov, Dr. Gurudas Ganguli, and Dr. Manish Mithaiwala at the Naval Research Laboratory. This research was conducted as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project at Los Alamos National Laboratory. The authors are grateful to the sponsors of DREAM for financial and technical support. Allocations for computer time on the Los Alamos Institutional Computing resources and at the National Institute of Computational Sciences for time on the Kraken machine are also gratefully acknowledged. NR 38 TC 7 Z9 7 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2012 VL 19 IS 7 AR 072109 DI 10.1063/1.4736983 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 987MY UT WOS:000307422800012 ER PT J AU Ni, K Pottie, G AF Ni, Kevin Pottie, Greg TI Sensor Network Data Fault Detection with Maximum A Posteriori Selection and Bayesian Modeling SO ACM TRANSACTIONS ON SENSOR NETWORKS LA English DT Article DE Reliability; Design; Data integrity; fault; sensor network; fault detection; hierarchical bayesian space-time modeling AB Current sensor networks experience many faults that hamper the ability of scientists to draw significant inferences. We develop a method to systematically identify when these faults occur so that proper corrective action can be taken. We propose an adaptable modular framework that can utilize different modeling methods and approaches to identifying trustworthy sensors. We focus on using hierarchical Bayesian space-time (HBST) modeling to model the phenomenon of interest, and use maximum a posteriors selection to identify a set of trustworthy sensors. Compared to an analogous linear autoregressive system, we achieve excellent fault detection when the HBST model accurately represents the phenomenon. C1 [Ni, Kevin] Lawrence Livermore Natl Lab, Livermore, CA USA. [Pottie, Greg] Univ Calif Los Angeles, Los Angeles, CA USA. RP Ni, K (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM kevinni@ucla.edu FU National Science Foundation [CNS-0520006]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This material is based upon work supported by the National Science Foundation under award CNS-0520006. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.; This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. (Document LLNL-JRNL-432606.) NR 37 TC 7 Z9 7 U1 1 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1550-4859 EI 1550-4867 J9 ACM T SENSOR NETWORK JI ACM Trans. Sens. Netw. PD JUL PY 2012 VL 8 IS 3 AR 23 DI 10.1145/2240092.2240097 PG 21 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 990CE UT WOS:000307607800005 ER PT J AU Lee, S Bitter, M Hill, K AF Lee, Sanggon Bitter, M. Hill, K. TI Behaviors of ion and electron temperatures on EAST with lower hybrid current drive and lithium wall coating SO ACTA PHYSICA SINICA LA Chinese DT Article DE temperature profile; low recycling; lithium wall coating ID HT-7 TOKAMAK; CRYSTAL SPECTROMETERS; PLASMA-CONFINEMENT; TRANSPORT; DISCHARGES; LIMITS AB It is observed that the profiles of ion and electron temperatures become broader within a region of r/a <= 0.6 on experimental advanced superconducting tokamak with high-power lower hybrid wave heating and lithium wall coating. It is found that the above phenomena are related to the low recycling at the first wall as a result of the lithium wall coating. The lithium wall coating affects the plasma particles coming from the plasma boundary to the first wall, thereby causing a reduction in recycling. The low recycling causes the temperature profiles to change. It is also found that the electron and ion temperatures approach to each other as a result of high collision rate between electrons and ions when the plasma density increases. C1 [Lee, Sanggon] Natl Fus Res Inst, Taejon 305333, South Korea. [Bitter, M.; Hill, K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lee, S (reprint author), Natl Fus Res Inst, 52 Eoeun Dong, Taejon 305333, South Korea. EM blu@ipp.ac.cn FU National Natural Science Foundation of China [10975155, 11175208, 10990212]; National Magnetic Confinement Fusion Science Program of China [2012GB101000, 2011GB101000, 2011GB107000] FX Project supported by the National Natural Science Foundation of China (Grant Nos. 10975155, 11175208, 10990212), and National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2012GB101000, 2011GB101000, 2011GB107000). NR 27 TC 0 Z9 0 U1 2 U2 7 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1000-3290 J9 ACTA PHYS SIN-CH ED JI Acta Phys. Sin. PD JUL PY 2012 VL 61 IS 14 AR 145203 PG 6 WC Physics, Multidisciplinary SC Physics GA 987MZ UT WOS:000307422900042 ER PT J AU Konda, NVSNM Shah, N Brandon, NP AF Konda, N. V. S. N. Murthy Shah, Nilay Brandon, Nigel P. TI Dutch hydrogen economy: evolution of optimal supply infrastructure and evaluation of key influencing elements SO ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING LA English DT Article DE hydrogen infrastructure design; optimization; spatio-temporal techno-economic analysis; hydrogen production technologies; carbon capture and storage ID COMMERCIALLY READY TECHNOLOGY; GERMAN ENERGY SYSTEM; DEMAND UNCERTAINTY; OPTIMIZATION; ELECTRICITY; DESIGN; FUTURE; CHAIN; COAL; CO2 AB Possible pathways for the evolution of hydrogen (H2) supply infrastructure in The Netherlands are explored and then, from a broader perspective, important factors that can play pivotal role in the evolution, and success, of Dutch H2 economy are analysed. First, an optimization framework (based on comprehensive spatio-temporal techno-economic analysis) is used to map out optimal transition pathways if H2 were to be introduced in the Dutch transport sector. It is observed that a centralized supply network (with production facilities based on the Rotterdam area and H2 is trucked to other regions) will be necessary, in the base-case scenario with 25% market penetration of fuel cell vehicles by 2050. Second, a critical quantitative and qualitative assessment is carried out to understand when do (or can) other production technologies become economically competitive with steam methane reforming (SMR), to produce H2. For instance, in the case of coal gasification (CG), for a medium size plant (similar to 150 tpd), coal ($ /MMBtu) needs to be about 7$ cheaper than natural gas ($ /MMBtu) for CG, at its current state of the technology, to be economically competitive with SMR. Third, since the evolution and eventually the success of fossil-based H2 economy, especially during the transition period, may partly depend on the prospects for the carbon capture and storage (CCS), a qualitative assessment of the Dutch CCS potential and current activities is carried out. (Disclaimer: Results/comments are the authors' and do not necessarily represent the views of the associated organizations/institutions) Copyright (c) 2011 Curtin University of Technology and John Wiley & Sons, Ltd. C1 [Konda, N. V. S. N. Murthy; Shah, Nilay] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, Ctr Proc Syst Engn, London SW7 2AZ, England. [Konda, N. V. S. N. Murthy] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Brandon, Nigel P.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. RP Konda, NVSNM (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, Ctr Proc Syst Engn, London SW7 2AZ, England. EM murthy.konda@imperial.ac.uk RI Shah, Nilay/E-4925-2015 OI Shah, Nilay/0000-0002-8906-6844 FU Shell FX The authors would like to thank Shell for their financial support for this work. This article benefited from the views of Gert Jan Kramer (Shell, The Netherlands), Alexandra Anghel (Shell, The Netherlands), David Hart (E4tech, UK) and Marcel Weeda (ECN, The Netherlands). NR 51 TC 2 Z9 2 U1 1 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-2135 J9 ASIA-PAC J CHEM ENG JI Asia-Pac. J. Chem. Eng. PD JUL-AUG PY 2012 VL 7 IS 4 BP 534 EP 546 DI 10.1002/apj.604 PG 13 WC Engineering, Chemical SC Engineering GA 984TZ UT WOS:000307216300007 ER PT J AU Foster, JA Bunge, J Gilbert, JA Moore, JH AF Foster, James A. Bunge, John Gilbert, Jack A. Moore, Jason H. TI Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life SO BRIEFINGS IN BIOINFORMATICS LA English DT Article DE microbial ecology; biodiversity; metagenomics; next generation sequencing; microbiome; visual analytics ID FUNCTIONAL-ANALYSIS; METAGENOMICS; ABUNDANCE; QUALITY; COMMUNITIES; DIVERSITY; EVOLUTION; PATTERNS; RESOURCE; TAXONOMY AB This article reviews recent advances in 'microbiome studies': molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians will find this a helpful springboard for new collaborations with microbiologists. C1 [Foster, James A.] Univ Idaho, Dept Biol Sci, Inst Bioinformat & Evolutionary Studies, Moscow, ID 83844 USA. [Bunge, John] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA. [Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Moore, Jason H.] Dartmouth Coll, Inst Quantitat Biomed Sci, Hanover, NH 03755 USA. RP Foster, JA (reprint author), Univ Idaho, Dept Biol Sci, Inst Bioinformat & Evolutionary Studies, Moscow, ID 83844 USA. EM foster@uidaho.edu OI Foster, James/0000-0002-6770-6521 FU NIH COBRE [P20RR16448]; NIH INBRE [P20RR016454]; NSF STC 'BEACON Center for the Study of Evolution in Action' NSF STC [DBI-0939454]; National Science Foundation [DEB-08-16638]; U.S. Department of Energy [DE-AC02-06CH11357]; NIH [LM009012, LM010098, AI59694]; Cornell University; National Science Foundation FX NIH COBRE (grant P20RR16448 to J.A.F., partial); NIH INBRE (grant P20RR016454 to J.A.F., partial); NSF STC 'BEACON Center for the Study of Evolution in Action' NSF STC (DBI-0939454 to J.A.F., partial); National Science Foundation (grant DEB-08-16638 to J.B., partial); U.S. Department of Energy (Contract DE-AC02-06CH11357 to J.A.G., partial) and NIH (grants LM009012, LM010098 and AI59694 to J.H.M., partial). This research was conducted using the resources of the Cornell Center for Advanced Computing, which receives funding from Cornell University, the National Science Foundation, and other leading public agencies, foundations, and corporations. NR 69 TC 15 Z9 15 U1 0 U2 38 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1467-5463 J9 BRIEF BIOINFORM JI Brief. Bioinform. PD JUL PY 2012 VL 13 IS 4 SI SI BP 420 EP 429 DI 10.1093/bib/bbr080 PG 10 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 980WN UT WOS:000306925000004 PM 22308073 ER PT J AU Crepeau, J Siahpush, AS AF Crepeau, John Siahpush, Ali S. TI Solid-liquid phase change driven by internal heat generation SO COMPTES RENDUS MECANIQUE LA English DT Article DE Stefan Problem; Internal heat generation; Scale analysis ID HORIZONTAL LAYERS; CONVECTION; SOLIDIFICATION; CONDUCTION AB This article presents results of solid-liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Crepeau, John] Univ Idaho, Dept Mech Engn, Moscow, ID 83844 USA. [Siahpush, Ali S.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Crepeau, J (reprint author), Univ Idaho, Dept Mech Engn, POB 440902, Moscow, ID 83844 USA. EM crepeau@uidaho.edu; ali.siahpush@inl.gov RI Crepeau, John/F-2599-2016 OI Crepeau, John/0000-0001-7277-1347 NR 21 TC 4 Z9 4 U1 1 U2 7 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0721 J9 CR MECANIQUE JI C. R. Mec. PD JUL PY 2012 VL 340 IS 7 BP 471 EP 476 DI 10.1016/j.crme.2012.03.004 PG 6 WC Mechanics SC Mechanics GA 992SM UT WOS:000307800000003 ER PT J AU Huang, K Chen, WQ Rice, TM Zhang, FC AF Huang, Kun Chen, Wei-Qiang Rice, T. M. Zhang, F. C. TI Enhanced Josephson tunneling between high-temperature superconductors through a normal pseudogap underdoped cuprate with a finite-energy cooperon SO EPL LA English DT Article ID LUTTINGER-LIQUID; BI2SR2CACU2O8+DELTA; PAIRS AB The Josephson coupling between optimally cuprate superconductors separated by a spacer with a finite-energy cooperon excitation, which contributes to the Josephson coupling strength, is examined. For an underdoped-cuprate barrier in its normal state, the YRZ model gives a good description of the temperature-dependent enhanced Josephson coupling. A detailed examination of the origin of the enhancement shows a significant contribution from the cooperon excitation which is comparable to that from nodal quasiparticles. Copyright (C) EPLA, 2012 C1 [Huang, Kun; Chen, Wei-Qiang; Rice, T. M.; Zhang, F. C.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Huang, Kun; Chen, Wei-Qiang; Rice, T. M.; Zhang, F. C.] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Chen, Wei-Qiang] S Univ Sci & Technol China, Dept Phys, Shenzhen, Guangdong, Peoples R China. [Rice, T. M.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Rice, T. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Huang, K (reprint author), Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. EM kunhuang09@gmail.com RI CHEN, Weiqiang/D-3058-2009 FU Hong Kong RGC GRF [HKU706507, HKU701010]; National Natural Science Foundation of China [10804125]; Swiss Nationalfond; MANEP network FX We are grateful to C. BERNHARD, R. KONIK and A. TSVELIK for helpful discussions. We acknowledge financial support in part from Hong Kong RGC GRF grants HKU706507, HKU701010, the National Natural Science Foundation of China 10804125, and also from the Swiss Nationalfond and MANEP network. NR 34 TC 2 Z9 2 U1 1 U2 10 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2012 VL 99 IS 2 AR 24002 DI 10.1209/0295-5075/99/24002 PG 5 WC Physics, Multidisciplinary SC Physics GA 992WQ UT WOS:000307811300006 ER PT J AU Uhoya, W Tsoi, G Vohra, Y Wolanyk, N Rao, SM Wu, MK Weir, S AF Uhoya, Walter Tsoi, Georgiy Vohra, Yogesh Wolanyk, Nathaniel Rao, Sistla Muralidhara Wu, Maw-Kuen Weir, Samuel TI Simultaneous measurement of pressure evolution of crystal structure and superconductivity in FeSe0.92 using designer diamonds SO EPL LA English DT Article ID TEMPERATURE; PHASE; METAL AB Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type alpha-FeSe0.92 compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. At ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T-C) increases rapidly with pressure reaching a maximum of similar to 28 K at similar to 6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-ray diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the alpha-FeSe0.92. Upon increasing pressure at 10 K near T-C, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T-C is maximum. Copyright (C) EPLA, 2012 C1 [Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. [Wolanyk, Nathaniel] Illinois Wesleyan Univ, Bloomington, IL 61702 USA. [Rao, Sistla Muralidhara; Wu, Maw-Kuen] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Weir, Samuel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Uhoya, W (reprint author), Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. EM uhoya@uab.edu RI Weir, Samuel/H-5046-2012; Uhoya, Walter/D-5476-2014 OI Uhoya, Walter/0000-0002-3197-7629 FU National Science Foundation (NSF) Research Experiences for Undergraduates (REU)-site [NSF-DMR-1058974]; Carnegie/Department of Energy (DOE) Alliance Center (CDAC) [DE-FC52-08NA28554] FX NW acknowledges support from the National Science Foundation (NSF) Research Experiences for Undergraduates (REU)-site under grant No. NSF-DMR-1058974 awarded to UAB. WU acknowledges support from the Carnegie/Department of Energy (DOE) Alliance Center (CDAC) under grant No. DE-FC52-08NA28554. Portions of this work were performed in a synchrotron facility at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. NR 22 TC 8 Z9 8 U1 1 U2 14 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2012 VL 99 IS 2 AR 26002 DI 10.1209/0295-5075/99/26002 PG 6 WC Physics, Multidisciplinary SC Physics GA 992WQ UT WOS:000307811300011 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TP Akimoto, G Akimov, AV Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Amorim, A Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, AK Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodet, E Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocca, C Ciocio, A Cirilli, M Cirkovic, P Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Cogan, JG Coggeshall, J Cogneras, E Colas, J Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lorenzi, F de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebke, J Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Ceich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonzalez, S de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guida, A Guindon, S Gul, U Guler, H Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Haller, J Hamacher, K Hamal, P Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horn, C Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jana, DK Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keeler, R Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalilzada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollefrath, M Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Kreiss, S Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruth, A Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahboubi, K Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS de Andrade, LM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Martens, FK Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Kee, SP Mc-Carn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Monk, J Monnier, E Berlingen, JM Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinto, B Pizio, C Plamondon, M Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polesello, G Policicchio, A Polini, A Poll, J Pollard, CS Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radloff, P Radora, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruehr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryan, P Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schneider, B Schnoor, U Schoning, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Stroehmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Viegas, FJTA Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K Wheeler-Ellis, SJ White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Young, CJ Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amorim, A. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, A. K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J-B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodet, E. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocca, C. Ciocio, A. Cirilli, M. Cirkovic, P. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lorenzi, F. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Ceich-Gimbel, Ch Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J-F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guida, A. Guindon, S. Gul, U. Guler, H. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Haller, J. Hamacher, K. Hamal, P. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horn, C. Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S-C. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jana, D. K. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalilzada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E-E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollefrath, M. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Kreiss, S. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manhaes de Andrade Filho, L. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Martens, F. K. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Kee, S. P. Mc-Carn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Monk, J. Monnier, E. Berlingen, J. Montejo Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu Neep, T. J. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A-E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Olivares Pino, S. A. Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Garzon, G. Otero Y. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinto, B. Pizio, C. Plamondon, M. Pleier, M. -A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polesello, G. Policicchio, A. Polini, A. Poll, J. Pollard, C. S. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radloff, P. Radora, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Martinez, V. Sanchez Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schneider, B. Schnoor, U. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H-C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph Schwanenberger, C. Schwartzman, A. Schwemling, Ph Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smirnov, S. Yu Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J-W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valero, A. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI A search for t (t)over-bar resonances with the ATLAS detector in 2.05 fb(-1) of proton-proton collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID PRODUCTION CROSS-SECTION; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; PP COLLISIONS; T(T)OVER-BAR; JETS; LHC AB A search for top quark pair resonances in final states containing at least one electron or muon has been performed with the ATLAS experiment at the CERN Large Hadron Collider. The search uses a data sample corresponding to an integrated luminosity of 2.05 fb(-1), which was recorded in 2011 at a proton-proton centre-of-mass energy of 7 TeV. No evidence for a resonance is found and limits are set on the production cross-section times branching ratio to t (t) over bar for narrow and wide resonances. For narrow Z' bosons, the observed 95 % Bayesian credibility level limits range from 9.3 pb to 0.95 pb for masses in the range of m(Z') = 500 GeV to m(Z') = 1300 GeV. The corresponding excluded mass region for a leptophobic topcolour Z' boson (Kaluza-Klein gluon excitation in the Randall-Sundrum model) is m(Z') < 880 GeV (m(gKK) < 1130 GeV). C1 [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Demirkoz, B.; Ernst, J.; Mandrysch, R.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Fellmann, D.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalilzada, F.; Konoplich, R.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj; Simic, Lj] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S-C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Garvey, J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Radora, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Ceich-Gimbel, Ch; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A-E.; Poghosyan, T.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J-W.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Love, J.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Manhaes de Andrade Filho, L.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Garzon, G. Otero Y.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Baak, M. A.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lamanna, M.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Meyer, T. C.; Michal, S.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Shimizu, S.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Olivares Pino, S. A.; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Feng, C.; Ge, P.; He, M.; Li, H.; Meng, Z.; Miao, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] CNRS IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Pollard, C. S.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] INFN Lab Nazl Frascati, Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Tbilisi State Univ, E Andronikashvili Inst Phys, GE-380086 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E-E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H-C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS IN2P3, Paris, France. [Akesson, T. P.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Lane, J. L.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Mandrysch, R.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Broggi, F.; Cavalli, D.; Costa, G.; Favareto, A.; Giugni, D.; Meloni, F.; Meroni, C.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Tartarelli, G. F.; Troncon, C.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Guler, H.; Leroy, C.; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu; Smirnov, Y.; Soldatov, E. Yu; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bronner, J.; Capriotti, D.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Farrington, S. M.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Bawa, H. S.; Botterill, D.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; El Kacimi, M.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Mansoulie, B.; Meyer, J-P.; Mijovic, L.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schune, Ph; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay, Inst Rech Lois Fondament Univers, DSM IRFU, F-91191 Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Rothberg, J.; Verducci, M.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Ohm, C. C.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Ohm, C. C.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Harpaz, S. Behar; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.; Zhang, X.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Deng, J.; Farrell, S.; Eschrich, I. Gough; Hawkins, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Okawa, H.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; Mc-Carn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becker, A. K.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Kaplan, B.; Lee, L.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Amorim, A.; Gomes, A.; Maio, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Hernandez, A. M. Castaneda] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. Louisiana Tech Univ, Ruston, LA 71270 USA. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC Fac Ciencias & Tecnol, Caparica, Portugal. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Perez, K.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Monzani, Simone/D-6328-2017; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Gladilin, Leonid/B-5226-2011; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Kepka, Oldrich/G-6375-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Ventura, Andrea/A-9544-2015; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Jakoubek, Tomas/G-8644-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Smirnov, Sergei/F-1014-2011; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wemans, Andre/A-6738-2012; Fazio, Salvatore /G-5156-2010; Fabbri, Laura/H-3442-2012; valente, paolo/A-6640-2010; Takai, Helio/C-3301-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; de Groot, Nicolo/A-2675-2009; Orlov, Ilya/E-6611-2012; Petrucci, Fabrizio/G-8348-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; Moorhead, Gareth/B-6634-2009; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Alexa, Calin/F-6345-2010; Andreazza, Attilio/E-5642-2011; Cirkovic, Predrag/G-8059-2012; Rotaru, Marina/A-3097-2011; Wolter, Marcin/A-7412-2012; Kramarenko, Victor/E-1781-2012; Ferrando, James/A-9192-2012; Doyle, Anthony/C-5889-2009; Gutierrez, Phillip/C-1161-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; Passaggio, Stefano/B-6843-2013; messina, andrea/C-2753-2013 OI Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Gladilin, Leonid/0000-0001-9422-8636; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Villaplana Perez, Miguel/0000-0002-0048-4602; Ventura, Andrea/0000-0002-3368-3413; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Villa, Mauro/0000-0002-9181-8048; Smirnov, Sergei/0000-0002-6778-073X; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; valente, paolo/0000-0002-5413-0068; Takai, Helio/0000-0001-9253-8307; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Orlov, Ilya/0000-0003-4073-0326; Petrucci, Fabrizio/0000-0002-5278-2206; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; Moorhead, Gareth/0000-0002-9299-9549; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Andreazza, Attilio/0000-0001-5161-5759; Cirkovic, Predrag/0000-0002-5865-1952; Rotaru, Marina/0000-0003-3303-5683; Ferrando, James/0000-0002-1007-7816; Doyle, Anthony/0000-0001-6322-6195; Cascella, Michele/0000-0003-2091-2501; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America; Canton of Geneva, Switzerland FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 64 TC 7 Z9 7 U1 4 U2 82 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2012 VL 72 IS 7 AR 2083 DI 10.1140/epjc/s10052-012-2083-1 PG 23 WC Physics, Particles & Fields SC Physics GA 985LZ UT WOS:000307269400029 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acerbia, E Acharyaa, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TP Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandriaa, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Gonzalez, BA Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Aubert, B Auge, E Augsten, K Aurousseaua, M Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncellia, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendel, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovica, I Borri, M Borroni, S Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Budaa, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Urban, SC Caforio, D Cakira, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Caminada, LM Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocca, C Ciocio, A Cirilli, M Citterio, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Colas, J Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F De Lotto, B de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Do ValleWemans, A Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Doxiadis, AD Doyle, AT Drasal, Z Dressnandt, N Driouichi, C Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudioa, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JCPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goryachev, VN Gosdzik, B Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Haller, J Hamacher, K Hamal, P Hamer, M Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karagoz, M Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keeler, R Kehoe, R Keil, M Kekelidze, GD Keller, JS Kennedy, J Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomicha, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaeki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruth, A Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Levitski, MS Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS de Andrade, LM Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maurer, J Maxfield, SJ May, EN Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjoernmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morin, J Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Mueller, TA Muller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Neep, TJ Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Okada, S Okawa, H Okumura, Y Okuyama, T Olariu, A Olcese, M Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pizio, C Plamondon, M Pleier, MA Pleskach, AV Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, J Price, LE Price, MJ Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romano, M Romanov, VM Romeo, G Adam, ER Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumiantsev, V Rumyantsev, L Runge, K Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrania, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuler, G Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simica, L Simion, S Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjoelin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smart, BH Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stevenson, K Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tanasijczuk, AJ Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Viegas, FJTA Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Usai, G Uslenghia, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E Van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vanadia, M Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, GJ Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Wang, T Warburton, A Ward, CP Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendland, D Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xella, S Xiao, M Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Young, CJ Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acerbia, E. Acharyaa, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandriaa, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Aubert, B. Auge, E. Augsten, K. Aurousseaua, M. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncellia, A. Barone, G. Barr, A. J. Barreiro, F. Barreiro Guimaraes da Costa, J. Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendel, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovica, I. Borri, M. Borroni, S. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Budaa, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Urban, S. Cabrera Caforio, D. Cakira, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Caminada, L. M. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. De Lotto, B. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dean, S. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do ValleWemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Dressnandt, N. Driouichi, C. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudioa, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. de la Hoz, S. Gonzlez Parra, G. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goryachev, V. N. Gosdzik, B. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Haller, J. Hamacher, K. Hamal, P. Hamer, M. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Hostachy, J. -Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Rozas, A. Juste Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karagoz, M. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kennedy, J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomicha, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J. -R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. de Andrade Filho, L. Manhaes Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maurer, J. Maxfield, S. J. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Minano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morin, J. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu Neep, T. J. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nguyen Thi Hong, V. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olcese, M. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pizio, C. Plamondon, M. Pleier, M. -A. Pleskach, A. V. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, J. Price, L. E. Price, M. J. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romano, M. Romanov, V. M. Romeo, G. Adam, E. Romero Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumiantsev, V. Rumyantsev, L. Runge, K. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrania, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Martinez, V. Sanchez Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuler, G. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph Schwanenberger, C. Schwartzman, A. Schwemling, Ph Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simica, Lj Simion, S. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smart, B. H. Smirnov, S. Yu Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Usai, G. Uslenghia, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. Van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vanadia, M. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, G. J. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendland, D. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smitt, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of tau polarization in W -> tau nu decays with the ATLAS detector in pp collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID MODEL HIGGS-BOSON; PAIR PRODUCTION; LIBRARY TAUOLA; CROSS-SECTION; LHC; PHYSICS AB In this paper, a measurement of tau polarization in W -> tau nu decays is presented. It is measured from the energies of the decay products in hadronic tau decays with a single final state charged particle. The data, corresponding to an integrated luminosity of 24 pb(-1), were collected by the ATLAS experiment at the Large Hadron Collider in 2010. The measured value of the tau polarization is P-tau = -1.06 +/- 0.04 (stat)(-0.07)(+0.05) (syst), in agreement with the Standard Model prediction, and is consistent with a physically allowed 95 % CL interval [-1,-0.91]. Measurements of tau polarization have not previously been made at hadron colliders. C1 [Alam, M. S.; Dhullipudi, R.; Ernst, J.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakira, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Abdesselam, A.; Ahmad, A.; Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Fernando, W.; Goshaw, A. T.; Guarino, V. J.; Hill, D.; Hill, N.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Apolle, R.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovica, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj; Simica, Lj] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bouhova-Thacker, E. V.; Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Baroncellia, A.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Boumediene, D.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Bindi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Hazen, E.; Love, J.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Abdesselam, A.; Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Kirsch, L. E.; Pomeroy, D.; Sciolla, G.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Da Silva, P. V. M.; Maidantchik, C.; de Andrade Filho, L. Manhaes; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Aloisio, A.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Budaa, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Abdesselam, A.; Gillberg, D.; Koffas, T.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Jonsson, O.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Kotamaeki, M. J.; Lamanna, M.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; Van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Pino, S. A. Olivares; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yao, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN, Grp Coll Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75230 USA. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Qin, Z.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Qin, Z.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys IV, Dortmund, Germany. [Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Abdesselam, A.; Ahmad, A.; Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Abdesselam, A.; Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Annovi, A.; Barber, T.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Parodi, A. Ferretto] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Barberis, D.; Caso, C.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Abdesselam, A.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, E Andronikashvili Inst Phys, GE-380086 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Buttar, C. M.; Collins-Tooth, C.; Doyle, A. T.; Gemmell, A.; Moraes, A.; Robson, A.; Thompson, A. S.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Pashapour, S.; Quadt, A.; Roe, A.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Joseph Fourier, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, CNRS, IN2P3, Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Barreiro Guimaraes da Costa, J.; Belloni, A.; Brandenburg, G. W.; Catastini, P.; Conti, G.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomicha, A.; Kluge, E. -E.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Heidelberg, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Abdesselam, A.; Ahmad, A.; Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Bogdanchikov, A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ishikawa, A.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Hesketh, G. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Akesson, T. P.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; van Eldik, N.; Varol, T.; Ventura, D.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbia, E.; Alessandriaa, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Acerbia, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Rumiantsev, V.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu; Smirnov, Y.; Soldatov, E.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Bronner, J.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst Phys, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Buszello, C. P.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hall, D.; Howell, D. F.; Huffman, T. B.; Issever, C.; Jones, G.; Karagoz, M.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudioa, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghia, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghia, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lester, C. M.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Do ValleWemans, A.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pasztor, G.; Perez, K.; Pina, J.; Pinto, B.; Richter-Was, E.; Ruan, X.; Santos, H.; Saraiva, J. G.; Silva, J.; Toth, J.; Tsionou, D.; Veloso, F.; Vickey, T.; Wang, H.; Wolters, H.; Wu, Y.; Zhang, D.] Lab Instrumentacao Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Gorelov, I.; Smitt, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrania, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rossi, E.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncellia, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Techn Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Mal, P.; Mansoulie, B.; Meyer, J. -P.; Morange, N.; Mountricha, E.; Nguyen Thi Hong, V.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fdn Univers, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Mockett, P.; Rothberg, J.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseaua, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Milstead, D. A.; Moa, T.; Ohm, C. C.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Milstead, D. A.; Moa, T.; Ohm, C. C.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Harpaz, S. Behar; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Anisenkov, A.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Beauchemin, P. H.; Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bondioli, M.; Deng, J.; Farrell, S.; Eschrich, I. Gough; Hawkins, D.; Lankford, A. J.; Nelson, A.; Okawa, H.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharyaa, B. S.; Alhroob, M.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] INFN, Grp Coll Udine, Udine, Italy. [Acharyaa, B. S.; Asman, B.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Anisenkov, A.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Martinez, V. Sanchez; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Abdesselam, A.; Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Kootz, A.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Wang, G. J.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. Louisiana Tech Univ, Ruston, LA 71270 USA. [Dobson, E.] UCL, Dept Phys & Astron, London, England. [Guler, H.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Experimentalphys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, H.; Meng, Z.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), SUNY Albany, Albany, NY 12222 USA. RI Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; Moorhead, Gareth/B-6634-2009; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Ishikawa, Akimasa/G-6916-2012; Moraes, Arthur/F-6478-2010; Smirnov, Sergei/F-1014-2011; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Wolter, Marcin/A-7412-2012; Kramarenko, Victor/E-1781-2012; Ferrando, James/A-9192-2012; Doyle, Anthony/C-5889-2009; Gutierrez, Phillip/C-1161-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; Passaggio, Stefano/B-6843-2013; messina, andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Petrucci, Fabrizio/G-8348-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Rotaru, Marina/A-3097-2011; Fazio, Salvatore /G-5156-2010; Fabbri, Laura/H-3442-2012; valente, paolo/A-6640-2010; Takai, Helio/C-3301-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Alexa, Calin/F-6345-2010; Andreazza, Attilio/E-5642-2011; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Monzani, Simone/D-6328-2017; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Riu, Imma/L-7385-2014; Ferrer, Antonio/H-2942-2015; Mir, Lluisa-Maria/G-7212-2015; Cavalli-Sforza, Matteo/H-7102-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Gladilin, Leonid/B-5226-2011; Joergensen, Morten/E-6847-2015; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Kepka, Oldrich/G-6375-2014 OI Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; Moorhead, Gareth/0000-0002-9299-9549; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Smirnov, Sergei/0000-0002-6778-073X; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Ferrando, James/0000-0002-1007-7816; Doyle, Anthony/0000-0001-6322-6195; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Petrucci, Fabrizio/0000-0002-5278-2206; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Rotaru, Marina/0000-0003-3303-5683; Fabbri, Laura/0000-0002-4002-8353; valente, paolo/0000-0002-5413-0068; Takai, Helio/0000-0001-9253-8307; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Mir, Lluisa-Maria/0000-0002-4276-715X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Gladilin, Leonid/0000-0001-9422-8636; Joergensen, Morten/0000-0002-6790-9361; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFNI, taly; MEXT, Japan; JSPS, Japan; CNRST, Netherlands; Morocco, Netherlands; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFNI, taly; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 34 TC 5 Z9 5 U1 4 U2 79 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2012 VL 72 IS 7 AR 2062 DI 10.1140/epjc/s10052-012-2062-6 PG 21 WC Physics, Particles & Fields SC Physics GA 985LZ UT WOS:000307269400009 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedrab, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Gonzalez, BA Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Caminada, LM Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Colas, J Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dueren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferenceib, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Haller, J Hamacher, K Hamal, P Hamer, M Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, AD Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ippolito, V Quiles, AI Isaksson, C Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jhaa, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keeler, R Kehoe, R Keil, M Kekelidze, GD Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koeneke, K Koenig, AC Koenig, S Koepke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsoua, I Koll, J Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaeki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruth, A Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, S Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS de Andrade, LM Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maurer, J Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morin, J Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinicb, M Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Neep, TJ Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olariu, A Olcese, M Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, A Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Plamondon, M Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, J Price, LE Price, MJ Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romano, M Romanov, VM Romeo, G Adam, ER Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumiantsev, V Rumyantsev, L Runge, K Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrania, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraivaa, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuler, G Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Scott, WG Searcy, J Sedov, G Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smart, BH Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stevenson, K Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tanasijczuk, AJ Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarellia, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Viegas, FJT Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vanadia, M Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendland, D Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xella, S Xiao, M Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedrab, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Caminada, L. M. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferenceib, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Parra, G. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Haller, J. Hamacher, K. Hamal, P. Hamer, M. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jhaa, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsoua, I. Koll, J. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. de Andrade Filho, L. Manhaes Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maurer, J. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morin, J. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinicb, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu Neep, T. J. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olcese, M. Olchevski, A. G. Olivares Pino, S. A. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, A. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Plamondon, M. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, J. Price, L. E. Price, M. J. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romano, M. Romanov, V. M. Romeo, G. Romero Adam, E. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumiantsev, V. Rumyantsev, L. Runge, K. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrania, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraivaa, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuler, G. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph Schwanenberger, C. Schwartzman, A. Schwemling, Ph Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smart, B. H. Smirnov, S. Yu Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarellia, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tipton, P. Viegas, F. J. TiqueAires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vanadia, M. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendland, D. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for heavy neutrinos and right-handed W bosons in events with two leptons and jets in pp collisions at root s=7 TeV with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID LEFT-RIGHT SYMMETRY; MAJORANA NEUTRINOS; PARITY; MASS; OSCILLATIONS; VIOLATION; ENERGIES; LEP AB This letter reports on a search for hypothetical heavy neutrinos, N, and right-handed gauge bosons, W-R, in events with high transverse momentum objects which include two reconstructed leptons and at least one hadronic jet. The results were obtained from data corresponding to an integrated luminosity of 2.1 fb(-1) collected in proton-proton collisions at root s = 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. No excess above the Standard Model background expectation is observed. Excluded mass regions for Majorana and Dirac neutrinos are presented using two approaches for interactions that violate lepton and lepton-flavor numbers. One approach uses an effective operator framework, the other approach is guided by the Left-Right Symmetric Model. The results described in this letter represent the most stringent limits to date on the masses of heavy neutrinos and W-R bosons obtained in direct searches. C1 [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Dhullipudi, R.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Le Menedeu, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinicb, M.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jhaa, M. K.; Massa, I.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Hazen, E.; Love, J.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Torres, R. Coura; Da Silva, P. V. M.; Maidantchik, C.; de Andrade Filho, L. Manhaes; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.] Fed Univ Juiz Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Caramarcu, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Jonsson, O.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Kotamaeki, M. J.; Lamanna, M.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Palestini, S.; Pauly, T.; Pengo, R.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. TiqueAires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Olivares Pino, S. A.; Panes, B.; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Li, H.; Meng, Z.; Miao, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Ist Nazl Fis Nucl, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Qin, Z.; Rubinskiy, I.; Sedov, G.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Qin, Z.; Rubinskiy, I.; Sedov, G.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Lesser, J.; Martin, V. J.; O'Brien, B. J.; Selbach, K. E.; Smart, B. H.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Passaggio, S.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Tbilisi State Univ, E Andronikashvili Inst Phys, GE-380086 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Kasieczka, G.; Narayan, R.; Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Krumnack, N.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Pozdnyakov, V.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Lundberg, B.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, London, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Hesketh, G. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Klinger, J. A.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsoua, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Tartarellia, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Guler, H.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu; Smirnov, Y.; Soldatov, E.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Bronner, J.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, A.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, A.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hall, D.; Hawes, B. M.; Howell, D. F.; Huffman, T. B.; Issever, C.; Jones, G.; Karagoz, M.; King, R. S. B.; Kogan, L. A.; Korn, A.; Kundu, N.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; Zinonos, Z.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraivaa, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedrab, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedrab, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Petrucci, F.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrania, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rossi, E.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Ruggieri, F.; Stanescu, C.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Fac Sci Ain Chock, Resau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Lphea Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Mal, P.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay, Commissariat Energie Atom, DSM IRFU, Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Duxfield, R.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Mockett, P.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferenceib, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Harpaz, S. Behar; Ben Ami, S.; Hershenhorn, A. D.; Kajomovitz, E.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Beauchemin, P. H.; Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bondioli, M.; Ciobotaru, M. D.; Deng, J.; Eschrich, I. Gough; Hawkins, D.; Lankford, A. J.; Nelson, A.; Okawa, H.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Cortes-Gonzalez, A.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Coccaro, A.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, IN2P3, Domaine Sci Doua, Ctr Calcul, Villeurbanne, France. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Dobson, E.] UCL, Dept Phys & Astron, London, England. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. Univ Nova Lisboa, Dep Fis, Caparica, Portugal. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Kepka, Oldrich/G-6375-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; Martinez, Mario /I-3549-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Petrucci, Fabrizio/G-8348-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Ishikawa, Akimasa/G-6916-2012; Moraes, Arthur/F-6478-2010; Smirnov, Sergei/F-1014-2011; Conde Muino, Patricia/F-7696-2011; Wolter, Marcin/A-7412-2012; Kramarenko, Victor/E-1781-2012; Ferrando, James/A-9192-2012; Wemans, Andre/A-6738-2012; Doyle, Anthony/C-5889-2009; Gutierrez, Phillip/C-1161-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; Passaggio, Stefano/B-6843-2013; messina, andrea/C-2753-2013; de Groot, Nicolo/A-2675-2009; Moorhead, Gareth/B-6634-2009; Orlov, Ilya/E-6611-2012; Rotaru, Marina/A-3097-2011; Fazio, Salvatore /G-5156-2010; Fabbri, Laura/H-3442-2012; valente, paolo/A-6640-2010; Takai, Helio/C-3301-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Alexa, Calin/F-6345-2010; Andreazza, Attilio/E-5642-2011; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Gladilin, Leonid/B-5226-2011; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015 OI De Lotto, Barbara/0000-0003-3624-4480; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Villaplana Perez, Miguel/0000-0002-0048-4602; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Petrucci, Fabrizio/0000-0002-5278-2206; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Smirnov, Sergei/0000-0002-6778-073X; Conde Muino, Patricia/0000-0002-9187-7478; Ferrando, James/0000-0002-1007-7816; Wemans, Andre/0000-0002-9669-9500; Doyle, Anthony/0000-0001-6322-6195; Cascella, Michele/0000-0003-2091-2501; Moorhead, Gareth/0000-0002-9299-9549; Orlov, Ilya/0000-0003-4073-0326; Rotaru, Marina/0000-0003-3303-5683; Fabbri, Laura/0000-0002-4002-8353; valente, paolo/0000-0002-5413-0068; Takai, Helio/0000-0001-9253-8307; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Gladilin, Leonid/0000-0001-9422-8636; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIEN-CIAS, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC, European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE, States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 55 TC 42 Z9 43 U1 5 U2 80 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2012 VL 72 IS 7 AR 2056 DI 10.1140/epjc/s10052-012-2056-4 PG 22 WC Physics, Particles & Fields SC Physics GA 985LZ UT WOS:000307269400004 ER PT J AU Harris, RM Jain, S AF Harris, Robert M. Jain, Supriya TI Cross sections for leptophobic topcolor Z ' decaying to top-antitop SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article AB We present numerical calculations of the production cross section of a heavy Z' resonance in hadron-hadron collisions with subsequent decay into top-antitop pairs. In particular, we consider the leptophobic topcolor Z' discussed under Model IV of hep-ph/9911288, which has predicted cross sections large enough to be experimentally accessible at the Fermilab Tevatron and the Large Hadron Collider at CERN. This article presents an updated calculation valid for the Tevatron and all proposed LHC collision energies. Cross sections are presented for various Z' widths, in p (p) over bar collisions at root s = 2 TeV, and in pp collisions at root s = 7, 8, 10 and 14 TeV. C1 [Harris, Robert M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Jain, Supriya] SUNY Buffalo, Buffalo, NY 14260 USA. RP Harris, RM (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM rharris@fnal.gov; sjain@fnal.gov NR 11 TC 19 Z9 19 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2012 VL 72 IS 7 AR 2072 DI 10.1140/epjc/s10052-012-2072-4 PG 5 WC Physics, Particles & Fields SC Physics GA 985LZ UT WOS:000307269400019 ER PT J AU Deshpande, A White, PS AF Deshpande, Alina White, Paul Scott TI Multiplexed nucleic acid-based assays for molecular diagnostics of human disease SO EXPERT REVIEW OF MOLECULAR DIAGNOSTICS LA English DT Review DE cancer; genetic disease; molecular diagnostics; multiplex assays; nucleic acid assay; pathogen detection; SNPs ID REAL-TIME PCR; DEPENDENT PROBE AMPLIFICATION; SEQUENCE-BASED AMPLIFICATION; CHAIN-REACTION ASSAY; RAPID DETECTION; HYBRIDIZATION ASSAY; CANCER-PATIENTS; MICROARRAY; RNA; QUANTIFICATION AB In recent years, there has been an explosion of molecular tests developed to diagnose human disease, including tests to detect disease-causing pathogens, human genetic or protein markers indicative of disease (e. g., cancer and autoimmune disease), and genetic markers for predisposition to disease. Significant features of nucleic acid-based tests include high sensitivity and specificity, and the ability to multiplex or interrogate more than one marker simultaneously in each sample. Multiplex assays provide cost and information content advantages, and therefore allow for higher confidence results than singleplex assays. This article reviews the current state of the art in multiplexed nucleic acid-based techniques used for diagnosis of human disease and provides a glimpse of promising techniques for the future. C1 [Deshpande, Alina] Los Alamos Natl Lab, Decis Applicat Div, Los Alamos, NM 87545 USA. [White, Paul Scott] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Deshpande, A (reprint author), Los Alamos Natl Lab, Decis Applicat Div, Mail Stop C936, Los Alamos, NM 87545 USA. EM deshpande_a@lanl.gov NR 51 TC 15 Z9 15 U1 2 U2 39 PU EXPERT REVIEWS PI LONDON PA UNITEC HOUSE, 3RD FL, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON N3 1QB, ENGLAND SN 1473-7159 J9 EXPERT REV MOL DIAGN JI Expert Rev. Mol. Diagn. PD JUL PY 2012 VL 12 IS 6 BP 645 EP 659 DI 10.1586/ERM.12.60 PG 15 WC Pathology SC Pathology GA 994MW UT WOS:000307935900015 PM 22845484 ER PT J AU DeChant, LJ AF DeChant, Lawrence J. TI Effect of Freestream Velocity Disturbances on Hypersonic Vehicles SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID TRANSITION; FLUCTUATIONS; WAVE AB The behavior of the pressure disturbance field on bodies experiencing an external disturbance in high-speed flight is of considerable interest because it is the surface pressure fluctuation field that applies much of the potential for structural/vibratory loading. Considered here is a quasi-steady method for a vehicle responding to a velocity field disturbance in near proximity to a high-speed vehicle. The quasi-static assumption implies that the structural surface does not need to deform to induce the associated loading, as would be the case in traditional hypersonic panel flutter problems. The effect of hypersonic shock and supersonic postshock environment is explicitly treated in this analysis. Pressure fluctuation fields as derived by this two-step process are compared to direct perturbation of the mean pressure coefficient via the dynamic pressure. Preliminary studies suggest that the simpler mean flow pressure coefficient/dynamic pressure perturbation as compared to the postshock environment method may overpredict the loading pressure by a factor of two for sharp-edged cones and as much as four for blunt (bluntness ratio = 5-10%) sphere cones. Predictions from both methods lie within the velocimetry bounds for available experimental data, so it is not possible to select between based on data. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP DeChant, LJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ljdecha@sandia.gov NR 28 TC 0 Z9 0 U1 1 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD JUL-AUG PY 2012 VL 49 IS 4 BP 751 EP 756 DI 10.2514/1.A32113 PG 6 WC Engineering, Aerospace SC Engineering GA 986SX UT WOS:000307367000021 ER PT J AU Im, MY Fischer, P Yamada, K Sato, T Kasai, S Nakatani, Y Ono, T AF Im, Mi-Young Fischer, Peter Yamada, Keisuke Sato, Tomonori Kasai, Shinya Nakatani, Yoshinobu Ono, Teruo TI Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk SO NATURE COMMUNICATIONS LA English DT Article ID CORE; DRIVEN; DISKS; FIELD AB The magnetic vortex in nanopatterned elements is currently attracting enormous interest. A priori, one would assume that the formation of magnetic vortex states should exhibit a perfect symmetry, because the magnetic vortex has four degenerate states. Here we show the first direct observation of an asymmetric phenomenon in the formation process of vortex states in a permalloy nanodisk using high-resolution full-field magnetic transmission soft X-ray microscopy. Micromagnetic simulations confirm that the intrinsic Dzyaloshinskii-Moriya interaction, which arises from the spin-orbit coupling due to the lack of inversion symmetry near the disk surface, as well as surface-related extrinsic factors, is decisive for the asymmetric formation of vortex states. C1 [Im, Mi-Young; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Yamada, Keisuke; Ono, Teruo] Kyoto Univ, Inst Chem Res, Uji 6110011, Japan. [Sato, Tomonori; Nakatani, Yoshinobu] Univ Electrocommun, Grad Sch Informat & Engn, Chofu, Tokyo 1828585, Japan. [Kasai, Shinya] Natl Inst Mat Sci, Magnet Mat Ctr, Spintron Grp, Tsukuba, Ibaraki 3050047, Japan. RP Im, MY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. EM mim@lbl.gov RI MSD, Nanomag/F-6438-2012; Fischer, Peter/A-3020-2010; Yamada, Keisuke/O-2385-2013 OI Fischer, Peter/0000-0002-9824-9343; FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Japan Society for the Promotion of Science; Institute for Chemical Research, Kyoto University FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and partly supported by a Grant-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science and the Collaborative Research Program of Institute for Chemical Research, Kyoto University. NR 26 TC 51 Z9 51 U1 3 U2 52 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2012 VL 3 AR 983 DI 10.1038/ncomms1978 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 981UA UT WOS:000306995000055 PM 22864576 ER PT J AU Lerman, JA Hyduke, DR Latif, H Portnoy, VA Lewis, NE Orth, JD Schrimpe-Rutledge, AC Smith, RD Adkins, JN Zengler, K Palsson, BO AF Lerman, Joshua A. Hyduke, Daniel R. Latif, Haythem Portnoy, Vasiliy A. Lewis, Nathan E. Orth, Jeffrey D. Schrimpe-Rutledge, Alexandra C. Smith, Richard D. Adkins, Joshua N. Zengler, Karsten Palsson, Bernhard O. TI In silico method for modelling metabolism and gene product expression at genome scale SO NATURE COMMUNICATIONS LA English DT Article ID ESCHERICHIA-COLI; THERMOTOGA-MARITIMA; DNA MICROARRAY; BACILLUS-SUBTILIS; PROTEIN-SYNTHESIS; RIBOSOMAL-RNA; OMIC DATA; GROWTH; NETWORK; TRANSCRIPTION AB Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome and transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism. C1 [Lerman, Joshua A.; Hyduke, Daniel R.; Latif, Haythem; Portnoy, Vasiliy A.; Lewis, Nathan E.; Orth, Jeffrey D.; Zengler, Karsten; Palsson, Bernhard O.] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA. [Schrimpe-Rutledge, Alexandra C.; Smith, Richard D.; Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Palsson, BO (reprint author), Univ Calif San Diego, Dept Bioengn, PFBH Room 419,9500 Gliman Dr, La Jolla, CA 92093 USA. EM palsson@ucsd.edu RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; OI Smith, Richard/0000-0002-2381-2349; Lerman, Joshua/0000-0003-0377-2674; Adkins, Joshua/0000-0003-0399-0700; Lewis, Nathan/0000-0001-7700-3654; Zengler, Karsten/0000-0002-8062-3296 FU US National Institute of Allergy and Infectious Diseases; US Department of Health and Human Services [Y1-AI-8401-01]; DOE [DE-FG02-09ER25917, DE-FG02-08ER64686]; San Diego Center for Systems Biology; NIH/NIGMS [GM085764] FX We thank Jan Schellenberger, Daniel Espinoza, Bill Cook and Michael Saunders for invigorating discussions on solving stiff LPs. Heather Mottaz-Brewer for assistance in proteome sample processing. This work was supported in part by the US National Institute of Allergy and Infectious Diseases and the US Department of Health and Human Services through interagency agreement Y1-AI-8401-01, DOE Awards DE-FG02-09ER25917 and DE-FG02-08ER64686. Proteomic analyses were performed in the Environmental Molecular Sciences Laboratory, a US DOE BER national scientific user facility at Pacific Northwest National Laboratory. D. R. H. is supported in part by a Seed Award from the San Diego Center for Systems Biology funded by NIH/NIGMS (GM085764). NR 59 TC 73 Z9 74 U1 2 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2012 VL 3 AR 929 DI 10.1038/ncomms1928 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 981UA UT WOS:000306995000001 PM 22760628 ER PT J AU Sun, YG Ren, Y Liu, YZ Wen, JG Okasinski, JS Miller, DJ AF Sun, Yugang Ren, Yang Liu, Yuzi Wen, Jianguo Okasinski, John S. Miller, Dean J. TI Ambient-stable tetragonal phase in silver nanostructures SO NATURE COMMUNICATIONS LA English DT Article ID MAXIMUM STRENGTH; NANOWIRES; NANOPARTICLES; NANOCRYSTALS; DEFORMATION; COPPER; TRANSITION; NANORODS; METALS; GROWTH AB Crystallization of noble metal atoms usually leads to the highly symmetric face-centred cubic phase that represents the thermodynamically stable structure. Introducing defective microstructures into a metal crystal lattice may induce distortions to form non-face-centered cubic phases when the lateral dimensions of objects decrease down to nanometre scale. However, stable non-face-centered cubic phases have not been reported in noble metal nanoparticles. Here we report that a stable body-centred tetragonal phase is observed in silver nanoparticles with fivefold twinning even at ambient conditions. The body-centered tetragonal phase originates from the distortion of cubic silver lattices due to internal strains in the twinned nanoparticles. The lattice distortion in the centre of such a nanoparticle is larger than that in the surfaces, indicating that the nanoparticle is composed of a highly strained core encapsulated in a less-strained sheath that helps stabilize the strained core. C1 [Sun, Yugang; Liu, Yuzi] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Ren, Yang; Okasinski, John S.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Div Mat Sci, Electron Microscopy Ctr, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010; Liu, Yuzi/C-6849-2011 OI Sun, Yugang /0000-0001-6351-6977; FU Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under contract No. DE-AC02-06CH11357. Use of Advanced Photon Source and Electron Microscopy Center for Materials Research at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 34 TC 42 Z9 42 U1 2 U2 77 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2012 VL 3 AR 971 DI 10.1038/ncomms1963 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 981UA UT WOS:000306995000043 PM 22828631 ER PT J AU Zhang, S Zhou, JF Park, YS Rho, J Singh, R Nam, S Azad, AK Chen, HT Yin, XB Taylor, AJ Zhang, X AF Zhang, Shuang Zhou, Jiangfeng Park, Yong-Shik Rho, Junsuk Singh, Ranjan Nam, Sunghyun Azad, Abul K. Chen, Hou-Tong Yin, Xiaobo Taylor, Antoinette J. Zhang, Xiang TI Photoinduced handedness switching in terahertz chiral metamolecules SO NATURE COMMUNICATIONS LA English DT Article ID MOLECULAR CHIRALITY; METAMATERIALS; LIGHT; MEMORY AB Switching the handedness, or the chirality, of a molecule is of great importance in chemistry and biology, as molecules of different handedness exhibit dramatically different physiological properties and pharmacological effects. Here we experimentally demonstrate handedness switching in metamaterials, a new class of custom-designed composites with deep subwavelength building blocks, in response to external optical stimuli. The metamolecule monolayer flips the ellipticity and rotates the polarization angle of light in excess of 10 degrees under optical excitation, a much stronger electromagnetic effect than that of naturally available molecules. Furthermore, the experimentally demonstrated optical switching effect does not require a structural reconfiguration, which is typically involved in molecular chirality switching and is inherently slow. The handedness switching in chiral metamolecules allows electromagnetic control of the polarization of light and will find important applications in manipulation of terahertz waves, such as dynamically tunable terahertz circular polarizers and polarization modulators for terahertz radiations. C1 [Zhang, Shuang; Park, Yong-Shik; Rho, Junsuk; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Shuang] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Zhou, Jiangfeng; Singh, Ranjan; Nam, Sunghyun; Azad, Abul K.; Chen, Hou-Tong; Taylor, Antoinette J.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, S (reprint author), Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, 5130 Etcheverry Hall, Berkeley, CA 94720 USA. EM s.zhang@bham.ac.uk; ttaylor@lanl.gov; xiang@berkeley.edu RI Singh, Ranjan/B-4091-2010; zhang, shuang/G-5224-2011; Zhou, Jiangfeng/D-4292-2009; Chen, Hou-Tong/C-6860-2009; Yin, Xiaobo/A-4142-2011; Zhang, Xiang/F-6905-2011 OI Singh, Ranjan/0000-0001-8068-7428; Zhou, Jiangfeng/0000-0002-6958-3342; Azad, Abul/0000-0002-7784-7432; Chen, Hou-Tong/0000-0003-2014-7571; FU US Department of Energy through Materials Sciences Division of Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231]; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396]; LANL/LDRD program; Samsung Scholarship Foundation, Republic of Korea FX We acknowledge the financial support by the US Department of Energy under contract no. DE-AC02-05CH11231 through Materials Sciences Division of Lawrence Berkeley National Laboratory (LBNL). This work was performed, in part, at the Centre for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. We also acknowledge partial support from LANL/LDRD program. The numerical simulation was, in part, supported by the Engineering and Physical Sciences Research Council of the United Kingdom. J.R. acknowledges a fellowship from the Samsung Scholarship Foundation, Republic of Korea. NR 26 TC 137 Z9 140 U1 11 U2 112 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2012 VL 3 AR 942 DI 10.1038/ncomms1908 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 981UA UT WOS:000306995000014 PM 22781755 ER PT J AU Zhou, XB Liu, GD Yamato, K Shen, Y Cheng, RX Wei, XX Bai, WL Gao, Y Li, H Liu, Y Liu, FT Czajkowsky, DM Wang, JF Dabney, MJ Cai, ZH Hu, J Bright, FV He, L Zeng, XC Shao, ZF Gong, B AF Zhou, Xibin Liu, Guande Yamato, Kazuhiro Shen, Yi Cheng, Ruixian Wei, Xiaoxi Bai, Wanli Gao, Yi Li, Hui Liu, Yi Liu, Futao Czajkowsky, Daniel M. Wang, Jingfang Dabney, Michael J. Cai, Zhonghou Hu, Jun Bright, Frank V. He, Lan Zeng, Xiao Cheng Shao, Zhifeng Gong, Bing TI Self-assembling subnanometer pores with unusual mass-transport properties SO NATURE COMMUNICATIONS LA English DT Article ID SHAPE-PERSISTENT MACROCYCLES; CARBON NANOTUBES; ORGANIC NANOTUBES; LIPID-BILAYERS; ION-CHANNEL; SUPRAMOLECULAR CHEMISTRY; DENDRITIC DIPEPTIDES; TRANSMEMBRANE PORES; WATER CHANNELS; PROTEIN AB A long-standing aim in molecular self-assembly is the development of synthetic nanopores capable of mimicking the mass-transport characteristics of biological channels and pores. Here we report a strategy for enforcing the nanotubular assembly of rigid macrocycles in both the solid state and solution based on the interplay of multiple hydrogen-bonding and aromatic pi-pi stacking interactions. The resultant nanotubes have modifiable surfaces and inner pores of a uniform diameter defined by the constituent macrocycles. The self-assembling hydrophobic nanopores can mediate not only highly selective transmembrane ion transport, unprecedented for a synthetic nanopore, but also highly efficient transmembrane water permeability. These results establish a solid foundation for developing synthetically accessible, robust nanostructured systems with broad applications such as reconstituted mimicry of defined functions solely achieved by biological nanostructures, molecular sensing, and the fabrication of porous materials required for water purification and molecular separations. C1 [Zhou, Xibin; Cheng, Ruixian; Bai, Wanli; Liu, Yi; Liu, Futao; He, Lan; Gong, Bing] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. [Liu, Guande; Wang, Jingfang; Shao, Zhifeng] Shanghai Jiao Tong Univ, Key Lab Syst Biomed, Minist Educ, Shanghai 200240, Peoples R China. [Yamato, Kazuhiro; Wei, Xiaoxi; Dabney, Michael J.; Bright, Frank V.; Gong, Bing] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Shen, Yi; Gao, Yi; Czajkowsky, Daniel M.; Hu, Jun] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Gao, Yi; Li, Hui; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Cai, Zhonghou] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Gong, B (reprint author), Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. EM zfshao@sjtu.edu.cn; bgong@buffalo.edu RI Gao, Yi/A-8888-2009; Shen, Yi/C-6332-2013; Shao, Zhifeng/B-6075-2013; Yamato, Kazuhiro/G-4213-2013; OI Gao, Yi/0000-0001-6015-5694; Yamato, Kazuhiro/0000-0001-9592-0739; Bright, Frank/0000-0002-1500-5969 FU NSFC [91027020, 21072021]; MOST [2007CB936000, 2010CB529205]; RFDP [20070027038]; KNDCDP [2009ZX09502008]; STCSM [1052nm07700, 10PJ1405100]; K. C. Wong Foundation; Changjiang Scholar Program; Beijing Municipal Commission of Education; FRFCU [2009SC-1]; US NSF [CBET-1036171, CBET-1066947] FX This work was supported by NSFC (91027020, 21072021), MOST (2007CB936000, 2010CB529205), RFDP (20070027038), KNDCDP (2009ZX09502008), STCSM (1052nm07700, 10PJ1405100), K. C. Wong Foundation (H. K.), the Changjiang Scholar Program, Beijing Municipal Commission of Education and FRFCU (2009SC-1), and US NSF (CBET-1036171 and CBET-1066947). Use of the Advanced Photon Source was supported by US DOE (DE-AC02-06CH11357). D. M. C. is a CAS Fellow (2009YA1-1). We thank Dr. Y. H. Xu and Mr J. X. Qu for technical assistance. NR 55 TC 53 Z9 54 U1 12 U2 174 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2012 VL 3 AR 949 DI 10.1038/ncomms1949 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 981UA UT WOS:000306995000021 PM 22805556 ER PT J AU Acquaah-Mensah, GK Malhotra, D Vulimiri, M McDermott, JE Biswal, S AF Acquaah-Mensah, George K. Malhotra, Deepti Vulimiri, Madhulika McDermott, Jason E. Biswal, Shyam TI Suppressed Expression of T-Box Transcription Factors Is Involved in Senescence in Chronic Obstructive Pulmonary Disease SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID BREAST-CANCER CELLS; CIGARETTE-SMOKE; CELLULAR SENESCENCE; OXIDATIVE STRESS; GENE-EXPRESSION; BETA-CATENIN; TUMOR SUPPRESSION; LUNG-CANCER; FACTOR TBX2; IN-VIVO AB Chronic obstructive pulmonary disease (COPD) is a major global health problem. The etiology of COPD has been associated with apoptosis, oxidative stress, and inflammation. However, understanding of the molecular interactions that modulate COPD pathogenesis remains only partly resolved. We conducted an exploratory study on COPD etiology to identify the key molecular participants. We used information-theoretic algorithms including Context Likelihood of Relatedness (CLR), Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Inferelator. We captured direct functional associations among genes, given a compendium of gene expression profiles of human lung epithelial cells. A set of genes differentially expressed in COPD, as reported in a previous study were superposed with the resulting transcriptional regulatory networks. After factoring in the properties of the networks, an established COPD susceptibility locus and domain-domain interactions involving protein products of genes in the generated networks, several molecular candidates were predicted to be involved in the etiology of COPD. These include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK, HSPD1, PITX2, and PML. Furthermore, T-box (TBX) genes and cyclin-dependent kinase inhibitor 2A (CDKN2A), which are in a direct transcriptional regulatory relationship, emerged as preeminent participants in the etiology of COPD by means of senescence. Contrary to observations in neoplasms, our study reveals that the expression of genes and proteins in the lung samples from patients with COPD indicate an increased tendency towards cellular senescence. The expression of the anti-senescence mediators TBX transcription factors, chromatin modifiers histone deacetylases, and sirtuins was suppressed; while the expression of TBX-regulated cellular senescence markers such as CDKN2A, CDKN1A, and CAV1 was elevated in the peripheral lung tissue samples from patients with COPD. The critical balance between senescence and anti-senescence factors is disrupted towards senescence in COPD lungs. C1 [Acquaah-Mensah, George K.] Massachusetts Coll Pharm & Hlth Sci, Dept Pharmaceut Sci, Worcester, MA USA. [Malhotra, Deepti; Vulimiri, Madhulika; Biswal, Shyam] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Environm Hlth Sci, Baltimore, MD USA. [Malhotra, Deepti] NHGRI, Genet Dis Res Branch, NIH, Bethesda, MD 20892 USA. [Vulimiri, Madhulika] Univ N Carolina Chapel Hill, Raleigh, NC USA. [McDermott, Jason E.] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. RP Acquaah-Mensah, GK (reprint author), Massachusetts Coll Pharm & Hlth Sci, Dept Pharmaceut Sci, Worcester, MA USA. EM george.acquaah-mensah@mcphs.edu OI Acquaah-Mensah, George/0000-0003-3984-8327; McDermott, Jason/0000-0003-2961-2572 FU Flight Attendant Medical Research Institute; National Heart, Lung, and Blood Institute Specialized Centers of Clinically Oriented Research [P50HL084945]; National Institute on Environmental Health Sciences [P50ES015903]; Massachusetts College of Pharmacy and Health Sciences; U.S. Department of Energy [DE-AC06-76RL01830] FX This work has been funded by the Flight Attendant Medical Research Institute, the National Heart, Lung, and Blood Institute Specialized Centers of Clinically Oriented Research grant P50HL084945, the National Institute on Environmental Health Sciences grants P50ES015903, and resources of the Massachusetts College of Pharmacy and Health Sciences. It has also been supported by the Signature Discovery Initiative under the Laboratory Directed Research and Development program at the Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RL01830. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 148 TC 9 Z9 10 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2012 VL 8 IS 7 AR e1002597 DI 10.1371/journal.pcbi.1002597 PG 15 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 979TH UT WOS:000306842200021 PM 22829758 ER PT J AU Mauduit, JC Lacy, M Farrah, D Surace, JA Jarvis, M Oliver, S Maraston, C Vaccari, M Marchetti, L Zeimann, G Gonzales-Solares, EA Pforr, J Petric, AO Henriques, B Thomas, PA Afonso, J Rettura, A Wilson, G Falder, JT Geach, JE Huynh, M Norris, RP Seymour, N Richards, GT Stanford, SA Alexander, DM Becker, RH Best, PN Bizzocchi, L Bonfield, D Castro, N Cava, A Chapman, S Christopher, N Clements, DL Covone, G Dubois, N Dunlop, JS Dyke, E Edge, A Ferguson, HC Foucaud, S Franceschini, A Gal, RR Grant, JK Grossi, M Hatziminaoglou, E Hickey, S Hodge, JA Huang, JS Ivison, RJ Kim, M LeFevre, O Lehnert, M Lonsdale, CJ Lubin, LM McLure, RJ Messias, H Martinez-Sansigre, A Mortier, AMJ Nielsen, DM Ouchi, M Parish, G Perez-Fournon, I Pierre, M Rawlings, S Readhead, A Ridgway, SE Rigopoulou, D Romer, AK Rosebloom, IG Rottgering, HJA Rowan-Robinson, M Sajina, A Simpson, CJ Smail, I Squires, GK Stevens, JA Taylor, R Trichas, M Urrutia, T van Kampen, E Verma, A Xu, CK AF Mauduit, J. -C. Lacy, M. Farrah, D. Surace, J. A. Jarvis, M. Oliver, S. Maraston, C. Vaccari, M. Marchetti, L. Zeimann, G. Gonzales-Solares, E. A. Pforr, J. Petric, A. O. Henriques, B. Thomas, P. A. Afonso, J. Rettura, A. Wilson, G. Falder, J. T. Geach, J. E. Huynh, M. Norris, R. P. Seymour, N. Richards, G. T. Stanford, S. A. Alexander, D. M. Becker, R. H. Best, P. N. Bizzocchi, L. Bonfield, D. Castro, N. Cava, A. Chapman, S. Christopher, N. Clements, D. L. Covone, G. Dubois, N. Dunlop, J. S. Dyke, E. Edge, A. Ferguson, H. C. Foucaud, S. Franceschini, A. Gal, R. R. Grant, J. K. Grossi, M. Hatziminaoglou, E. Hickey, S. Hodge, J. A. Huang, J. -S. Ivison, R. J. Kim, M. LeFevre, O. Lehnert, M. Lonsdale, C. J. Lubin, L. M. McLure, R. J. Messias, H. Martinez-Sansigre, A. Mortier, A. M. J. Nielsen, D. M. Ouchi, M. Parish, G. Perez-Fournon, I. Pierre, M. Rawlings, S. Readhead, A. Ridgway, S. E. Rigopoulou, D. Romer, A. K. Rosebloom, I. G. Rottgering, H. J. A. Rowan-Robinson, M. Sajina, A. Simpson, C. J. Smail, I. Squires, G. K. Stevens, J. A. Taylor, R. Trichas, M. Urrutia, T. van Kampen, E. Verma, A. Xu, C. K. TI The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Definition and Goals SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID DEEP FIELD-SOUTH; ACTIVE GALACTIC NUCLEI; X-RAY SOURCES; GALAXY LUMINOSITY FUNCTION; METREWAVE RADIO TELESCOPE; DIGITAL SKY SURVEY; PHOTOMETRIC REDSHIFTS; MASSIVE GALAXIES; SPACE-TELESCOPE; LOCKMAN HOLE AB We present the Spitzer Extragalactic Representative Volume Survey (SERVS), an 18 deg(2) medium-deep survey at 3.6 and 4.5 mu m with the postcryogenic Spitzer Space Telescope to approximate to 2 mu Jy (AB = 23.1) depth of five highly observed astronomical fields (ELAIS-N1, ELAIS-S1, Lockman Hole, Chandra Deep Field South, and XMM-LSS). SERVSis designed to enable the study of galaxy evolution as a function of environment from z similar to 5 to the present day and is the first extragalactic survey that is both large enough and deep enough to put rare objects such as luminous quasars and galaxy clusters at z greater than or similar to 1 into their cosmological context. SERVS is designed to overlap with several key surveys at optical, near-through far-infrared, submillimeter, and radio wavelengths to provide an unprecedented view of the formation and evolution of massive galaxies. In this article, we discuss the SERVS survey design, the data processing flow from image reduction and mosaicking to catalogs, and coverage of ancillary data from other surveys in the SERVS fields. We also highlight a variety of early science results from the survey. C1 [Mauduit, J. -C.; Surace, J. A.; Petric, A. O.; Kim, M.; Lonsdale, C. J.; Squires, G. K.; Xu, C. K.] CALTECH, Spitzer Sci Ctr, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Lacy, M.; Henriques, B.; Thomas, P. A.; Romer, A. K.; Rosebloom, I. G.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Farrah, D.; Oliver, S.; Dubois, N.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Jarvis, M.; Falder, J. T.; Bonfield, D.; Dyke, E.; Hickey, S.; Parish, G.; Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Maraston, C.; Pforr, J.; Martinez-Sansigre, A.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Vaccari, M.; Marchetti, L.; Franceschini, A.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Vaccari, M.] Univ Western Cape, Dept Phys, Astrophys Grp, ZA-7535 Cape Town, South Africa. [Zeimann, G.; Stanford, S. A.; Becker, R. H.; Lubin, L. M.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Gonzales-Solares, E. A.; Chapman, S.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Pforr, J.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Afonso, J.; Bizzocchi, L.; Grossi, M.; Messias, H.] Univ Lisbon, Fac Ciencias, Observ Astron Lisboa, P-1349018 Lisbon, Portugal. [Afonso, J.; Bizzocchi, L.; Grossi, M.; Messias, H.] Univ Lisbon, Ctr Astron & Astrofis, P-1349018 Lisbon, Portugal. [Rettura, A.; Wilson, G.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Geach, J. E.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Huynh, M.] Univ Western Australia, Int Ctr Radio Astron Res, Crawley, WA 6009, Australia. [Norris, R. P.; Seymour, N.] Commonwealth Sci & Ind Res Org, Astron & Space Sci, Epping, NSW 1710, Australia. [Richards, G. T.] Drexel Univ, Dept Phys, Philadelphia, PA 19014 USA. [Stanford, S. A.; Becker, R. H.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Best, P. N.; Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Mortier, A. M. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Castro, N.; Cava, A.; Perez-Fournon, I.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Christopher, N.; Martinez-Sansigre, A.; Rawlings, S.; Rigopoulou, D.; Verma, A.] Oxford Astrophys, Oxford OX1 3RH, England. [Clements, D. L.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2BW, England. [Covone, G.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Covone, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Edge, A.; Smail, I.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Ferguson, H. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Foucaud, S.] Natl Taiwan Normal Univ, Dept Earth Sci, Taipei 11677, Taiwan. [Gal, R. R.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Grant, J. K.; Taylor, R.; van Kampen, E.] Univ Calgary, Inst Space Imaging Sci, Calgary, AB T2N 1N4, Canada. [Hatziminaoglou, E.] European So Observ, D-85748 Garching, Germany. [Hodge, J. A.; Huang, J. -S.] Max Planck Inst Astron, D-69177 Heidelberg, Germany. [LeFevre, O.] Lab Astrophys Marseille, F-13376 Marseille 12, France. [Lehnert, M.] Observ Paris, UMR8111, Lab Etud Galaxies Etoiles Phys & Instrumentat GEP, F-92195 Meudon, France. [Nielsen, D. M.] Univ Wisconsin, Dept Astron, Madison, WI 53711 USA. [Ouchi, M.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Pierre, M.] CEA, F-91191 Gif Sur Yvette, France. [Readhead, A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Ridgway, S. E.] Cerro Tololo Interamer Observ, La Serena, Chile. [Rottgering, H. J. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Sajina, A.] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Simpson, C. J.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Urrutia, T.] Leibniz Inst Astrophys, D-14482 Potsdam, Germany. RP Mauduit, JC (reprint author), CALTECH, Spitzer Sci Ctr, Infrared Proc & Anal Ctr, Mail Code 220-6, Pasadena, CA 91125 USA. RI Oliver, Seb/A-2479-2013; Smail, Ian/M-5161-2013; Norris, Ray/A-1316-2008; Pforr, Janine/J-3967-2015; Afonso, Jose/B-5185-2013; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; Covone, Giovanni/J-6040-2012 OI Thomas, Peter/0000-0001-6888-6483; Grossi, Marco/0000-0003-4675-3246; Edge, Alastair/0000-0002-3398-6916; Seymour, Nicholas/0000-0003-3506-5536; Henriques, Bruno/0000-0002-1392-489X; Alexander, David/0000-0002-5896-6313; Marchetti, Lucia/0000-0003-3948-7621; Oliver, Seb/0000-0001-7862-1032; Smail, Ian/0000-0003-3037-257X; Norris, Ray/0000-0002-4597-1906; Pforr, Janine/0000-0002-3414-8391; Afonso, Jose/0000-0002-9149-2973; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Banfield, Julie/0000-0003-4417-5374; Bizzocchi, Luca/0000-0002-9953-8593; Covone, Giovanni/0000-0002-2553-096X FU NASA; NASA through JPL/Caltech; Science and Technology Foundation (FCT, Portugal) [PTDC/FIS/100170/2008, SFRH/BD/31338/2006, SFRH/BPD/62966/2009]; NSF grant [AST-0909198]; University of Massachusetts; Infrared Processing and Analysis Center/California Institute of Technology; National Aeronautics and Space Administration; National Science Foundation FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. J.A., H.M., M.G., and L.B. gratefully acknowledge support from the Science and Technology Foundation (FCT, Portugal) through the research grant PTDC/FIS/100170/2008 and the Fellowships SFRH/BD/31338/2006 (H.M.) and SFRH/BPD/62966/2009 (L.B.). G.W. gratefully acknowledges support from NSF grant AST-0909198. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 87 TC 40 Z9 40 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUL PY 2012 VL 124 IS 917 BP 714 EP 736 DI 10.1086/666945 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 990OT UT WOS:000307641100006 ER PT J AU Alonso-Mori, R Kern, J Sokaras, D Weng, TC Nordlund, D Tran, R Montanez, P Delor, J Yachandra, VK Yano, J Bergmann, U AF Alonso-Mori, Roberto Kern, Jan Sokaras, Dimosthenis Weng, Tsu-Chien Nordlund, Dennis Tran, Rosalie Montanez, Paul Delor, James Yachandra, Vittal K. Yano, Junko Bergmann, Uwe TI A multi-crystal wavelength dispersive x-ray spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID EMISSION-SPECTROSCOPY; RAMAN-SPECTROSCOPY; PHOTOSYSTEM-II; FLUORESCENCE SPECTROSCOPY; ELECTRONIC-STRUCTURE; ENERGY-RESOLUTION; OXIDATION-STATES; SCATTERING; ABSORPTION; COMPLEXES AB A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737630] C1 [Alonso-Mori, Roberto; Kern, Jan; Montanez, Paul; Delor, James; Bergmann, Uwe] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Kern, Jan; Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. RP Alonso-Mori, R (reprint author), SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. RI alonso-mori, roberto/G-2638-2013; Kern, Jan/G-2586-2013; Sokaras, Dimosthenis/G-6037-2010; Nordlund, Dennis/A-8902-2008 OI alonso-mori, roberto/0000-0002-5357-0934; Kern, Jan/0000-0002-7272-1603; Sokaras, Dimosthenis/0000-0001-8117-1933; Nordlund, Dennis/0000-0001-9524-6908 FU National Institutes of Health (NIH) [GM 55302]; National Institute of General Medical Sciences (NEGMS) [P41GM103393]; National Center for Research Resources (NCRR) [P41RR001209]; National Science Foundation (NSF) [CHE-0809324]; Alexander von Humboldt Foundation; AMOS within the Chemical Sciences division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE); Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences (CSGB) of the DOE [DE-AC02-05CH11231] FX This research was carried out at the LCLS and SSRL, Directorates of SLAC National Accelerator Laboratory and Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Financial support from the National Institutes of Health (NIH), National Institute of General Medical Sciences (NEGMS) (including P41GM103393) and the National Center for Research Resources (NCRR) (P41RR001209) (K. O. Hodgson; B. Hedman) is greatly acknowledged. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS, NCRR or NTH. This work was also supported by the National Science Foundation (NSF) under Contract No. CHE-0809324 (A. Nilsson), the Alexander von Humboldt Foundation (J.K.) and by the AMOS program within the Chemical Sciences division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE) (K. Gaffney). Support by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences (CSGB) of the DOE under Contract No. DE-AC02-05CH11231 (J.Y. and V.K.Y.) for x-ray spectroscopy instrumentation development, NIH Grant No. GM 55302 (V.K.Y), for Mn inorganic chemistry is acknowledged. In addition, we thank P. Glatzel, M. Kavcic, G. Vanko, and H. Hayashi for the discussions on the advantages and disadvantages of the different geometries. B. Plummer and M. Beardsley for photographic work. N. Kelez for efforts in the technical design and development of the project. M. Latimer, V. Borzenets, A. Garachtchenko, and the SSRL support group for the help with the test and commissioning beamtimes at SSRL beamlines 9-3, 10-2, 9-1, and 6-2, and P. Zwart, S. Morton, and B. Lassalle for help with commissioning beamtimes at ALS beamline 5.0.2. NR 55 TC 41 Z9 41 U1 6 U2 71 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073114 DI 10.1063/1.4737630 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900015 PM 22852678 ER PT J AU Choi, JS Kim, JS Byun, IS Lee, DH Hwang, IR Park, BH Choi, T Park, JY Salmeron, M AF Choi, Jin Sik Kim, Jin-Soo Byun, Ik-Su Lee, Duk Hyun Hwang, In Rok Park, Bae Ho Choi, Taekjib Park, Jeong Young Salmeron, Miquel TI Facile characterization of ripple domains on exfoliated graphene SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FRICTION-ANISOTROPY; MONOLAYER; MICROSCOPY; CORRUGATION; FILMS AB Ripples in graphene monolayers deposited on SiO2/Si wafer substrates were recently shown to give rise to friction anisotropy. High friction appears when the AFM tip slides in a direction perpendicular to the ripple crests and low friction when parallel. The direction of the ripple crest is, however, hard to determine as it is not visible in topographic images and requires elaborate measurements of friction as a function of angle. Here we report a simple method to characterize ripple crests by measuring the cantilever torsion signal while scanning in the non-conventional longitudinal direction (i.e., along the cantilever axis, as opposed to the usual friction measurement). The longitudinal torsion signal provides a much clearer ripple domain contrast than the conventional friction signal, while both signals show respective rotation angle dependences that can be explained using the torsion component of the normal reaction force exerted by the graphene ripples. We can also determine the ripple direction by comparing the contrast in torsion images obtained in longitudinal and lateral scans without sample rotation or complicated normalization. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737428] C1 [Choi, Jin Sik; Kim, Jin-Soo; Byun, Ik-Su; Lee, Duk Hyun; Hwang, In Rok; Park, Bae Ho] Konkuk Univ, Dept Phys, Div Quantum Phases & Devices, Seoul 143701, South Korea. [Choi, Taekjib] Sejong Univ, Fac Nanotechnol & Adv Mat Engn, HMC, Seoul 143747, South Korea. [Choi, Taekjib] Sejong Univ, Fac Nanotechnol & Adv Mat Engn, INAME, Seoul 143747, South Korea. [Park, Jeong Young] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil, NanoCentury KI, Taejon 305701, South Korea. [Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Park, BH (reprint author), Konkuk Univ, Dept Phys, Div Quantum Phases & Devices, Seoul 143701, South Korea. EM baehpark@konkuk.ac.kr; jeongypark@kaist.ac.kr RI Choi, Taekjib/H-8791-2012; Park, Bae Ho/D-4840-2011 OI Choi, Taekjib/0000-0001-6912-3322; FU National Research Laboratory (NRL) Program [2008-0060004]; World Class University (WCU) Program [R31-2008-000-10057-0, R-31-2008-000-10055-0]; Nano-Material Technology Development Program [2011-0030228]; Quantum Metamaterials Research Center through the NRF [R11-2008-053-03002-0]; Korea government Ministry of Education, Science and Technology (MEST); Seoul RBD Program [WR090671]; SRC Centre for Topological Matter through the National Research Foundation (NRF) of Korea [2011-0030787]; Ministry of Education, Science and Technology (MEST) of Korea; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC02-05CH11231]; [KRF-2010-0005390] FX This work was supported by National Research Laboratory (NRL) Program (Grant No. 2008-0060004), World Class University (WCU) Program (Grant No. R31-2008-000-10057-0), Nano-Material Technology Development Program (Grant No. 2011-0030228), and Quantum Metamaterials Research Center (Grant No. R11-2008-053-03002-0) through the NRF funded by the Korea government Ministry of Education, Science and Technology (MEST), and Seoul R&BD Program (Grant No. WR090671). J.Y.P. acknowledges support by WCU (World Class University) program (R-31-2008-000-10055-0), KRF-2010-0005390, and SRC Centre for Topological Matter (Grant No. 2011-0030787) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) of Korea. M.S. was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 8 Z9 8 U1 3 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073905 DI 10.1063/1.4737428 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900039 PM 22852702 ER PT J AU Dobbs, MA Lueker, M Aird, KA Bender, AN Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Clarke, J Crawford, TM Crites, AT Flanigan, DI de Haan, T George, EM Halverson, NW Holzapfel, WL Hrubes, JD Johnson, BR Joseph, J Keisler, R Kennedy, J Kermish, Z Lanting, TM Lee, AT Leitch, EM Luong-Van, D McMahon, JJ Mehl, J Meyer, SS Montroy, TE Padin, S Plagge, T Pryke, C Richards, PL Ruh, JE Schaffer, KK Schwan, D Shirokoff, E Spieler, HG Staniszewski, Z Stark, AA Vanderlinde, K Vieira, JD Vu, C Westbrook, B Williamson, R AF Dobbs, M. A. Lueker, M. Aird, K. A. Bender, A. N. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. -M. Clarke, J. Crawford, T. M. Crites, A. T. Flanigan, D. I. de Haan, T. George, E. M. Halverson, N. W. Holzapfel, W. L. Hrubes, J. D. Johnson, B. R. Joseph, J. Keisler, R. Kennedy, J. Kermish, Z. Lanting, T. M. Lee, A. T. Leitch, E. M. Luong-Van, D. McMahon, J. J. Mehl, J. Meyer, S. S. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Richards, P. L. Ruh, J. E. Schaffer, K. K. Schwan, D. Shirokoff, E. Spieler, H. G. Staniszewski, Z. Stark, A. A. Vanderlinde, K. Vieira, J. D. Vu, C. Westbrook, B. Williamson, R. TI Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SOUTH-POLE TELESCOPE; TRANSITION-EDGE SENSORS; X-RAY MICROCALORIMETERS; APEX-SZ; GALAXY CLUSTERS; ELECTROTHERMAL FEEDBACK; SQUID MULTIPLEXERS; CMB POLARIZATION; POWER SPECTRUM; MILLIMETER AB A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique similar to MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737629] C1 [Dobbs, M. A.; de Haan, T.; Kennedy, J.; Lanting, T. M.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Lueker, M.; Clarke, J.; Flanigan, D. I.; George, E. M.; Holzapfel, W. L.; Johnson, B. R.; Kermish, Z.; Lee, A. T.; Richards, P. L.; Schwan, D.; Shirokoff, E.; Westbrook, B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Shirokoff, E.; Staniszewski, Z.; Vieira, J. D.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Bender, A. N.; Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Bender, A. N.; Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Keisler, R.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Schaffer, K. K.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Meyer, S. S.; Padin, S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Cho, H. -M.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Clarke, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Johnson, B. R.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Joseph, J.; Vu, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Lanting, T. M.] D Wave Syst, Burnaby, BC V5C 6G9, Canada. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Montroy, T. E.; Ruh, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruh, J. E.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Pryke, C.] Univ Minnesota Twin Cities, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Dobbs, MA (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518 FU National Science Foundation (NSF) funds APEX-SZ [AST-0138348, AST-0709497]; South Pole Telescope [ANT-0638937, ANT-0130612]; U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Natural Sciences and Engineering Research Council of Canada; Canadian Institute for Advanced Research; Canadian Foundation for Innovation; Canada Research Chairs program; Sloan Fellowship FX The National Science Foundation (NSF) funds APEX-SZ through Grant Nos. AST-0138348 and AST-0709497 and the South Pole Telescope through Grant Nos. ANT-0638937 and ANT-0130612. Work at LBNL is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. The McGill team acknowledges funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and the Canadian Foundation for Innovation. M.D. acknowledges support from the Canada Research Chairs program and a Sloan Fellowship. NR 75 TC 39 Z9 39 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073113 DI 10.1063/1.4737629 PG 24 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900014 PM 22852677 ER PT J AU Fratanduono, DE Smith, RF Boehly, TR Eggert, JH Braun, DG Collins, GW AF Fratanduono, D. E. Smith, R. F. Boehly, T. R. Eggert, J. H. Braun, D. G. Collins, G. W. TI Plasma-accelerated flyer-plates for equation of state studies SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID LASER; FACILITY AB We report on a new technique to accelerate flyer-plates to high velocities (similar to 5 km/s). In this work, a strong shock is created through direct laser ablation of a thin polyimide foil. Subsequent shock breakout of that foil results in the generation of a plasma characterized by a smoothly increasing density gradient and a strong forward momentum. Stagnation of this plasma onto an aluminum foil and the resultant momentum transfer accelerates a thin aluminum flyer-plate. The aluminum flyer-plate is then accelerated to a peak velocity of similar to 5 km/s before impact with a transparent lithium fluoride (LiF) window. Simulations of the stagnating plasma ramp compression and wave reverberations within the flyer-plate suggest that the temperature at the flyer-plate impact surface is elevated by less than 50 degrees C. Optical velocimetry is used to measure the flyer-plate velocity and impact conditions enabling the shocked refractive index of LiF to be determined. The results presented here are in agreement with conventional flyer-plate measurements validating the use of plasma-accelerated flyer-plates for equation of state and impact studies. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732823] C1 [Fratanduono, D. E.; Smith, R. F.; Eggert, J. H.; Braun, D. G.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boehly, T. R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Fratanduono, DE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 29 TC 6 Z9 6 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073504 DI 10.1063/1.4732823 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900029 PM 22852692 ER PT J AU Henderson, K Harper, R Funsten, H MacDonald, E AF Henderson, Kevin Harper, Ron Funsten, Herb MacDonald, Elizabeth TI Ultraviolet stimulated electron source for use with low energy plasma instrument calibration SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID WORK FUNCTION; ALUMINUM; WATER; DETECTORS; OXYGEN AB We have developed and demonstrated a versatile, compact electron source that can produce a mono-energetic electron beam up to 50 mm in diameter from 0.1 to 30 keV with an energy spread of <10 eV. By illuminating a metal cathode plate with a single near ultraviolet light emitting diode, a spatially uniform electron beam with 15% variation over 1 cm(2) can be generated. A uniform electric field in front of the cathode surface accelerates the electrons into a beam with an angular divergence of <1 degrees at 1 keV. The beam intensity can be controlled from 10 to 10(9) electrons cm(-2) s(-1). (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732810] C1 [Henderson, Kevin; Harper, Ron; Funsten, Herb; MacDonald, Elizabeth] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Henderson, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kch@lanl.gov RI Funsten, Herbert/A-5702-2015 OI Funsten, Herbert/0000-0002-6817-1039 FU Los Alamos National Laboratory (Department of Energy) [LA-UR 11-04716]; National Aeronautics and Space Administration (NASA) (RBSP Mission) FX Work supported by Los Alamos National Laboratory (Department of Energy; LA-UR 11-04716) and National Aeronautics and Space Administration (NASA) (RBSP Mission). NR 17 TC 1 Z9 1 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073308 DI 10.1063/1.4732810 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900023 PM 22852686 ER PT J AU Holley, AT Broussard, LJ Davis, JL Hickerson, K Ito, TM Liu, CY Lyles, JTM Makela, M Mammei, RR Mendenhall, MP Morris, CL Mortensen, R Pattie, RW Rios, R Saunders, A Young, AR AF Holley, A. T. Broussard, L. J. Davis, J. L. Hickerson, K. Ito, T. M. Liu, C. -Y. Lyles, J. T. M. Makela, M. Mammei, R. R. Mendenhall, M. P. Morris, C. L. Mortensen, R. Pattie, R. W. Rios, R. Saunders, A. Young, A. R. TI A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID BIRD-CAGE RESONATOR; COLD NEUTRONS; TRANSMISSION; EFFICIENT; DESIGNS; COIL; NMR AB The UCNA collaboration is making a precision measurement of the beta asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be (epsilon) over bar = 0.9985(4). (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732822] C1 [Holley, A. T.; Pattie, R. W.; Young, A. R.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Broussard, L. J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Davis, J. L.; Ito, T. M.; Lyles, J. T. M.; Makela, M.; Morris, C. L.; Mortensen, R.; Saunders, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hickerson, K.; Mendenhall, M. P.] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Liu, C. -Y.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Mammei, R. R.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Rios, R.] Idaho State Univ, Dept Phys, Pocatello, ID 83209 USA. RP Holley, AT (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. OI Broussard, Leah/0000-0001-9182-2808; Makela, Mark/0000-0003-0592-3683; Morris, Christopher/0000-0003-2141-0255; Ito, Takeyasu/0000-0003-3494-6796 FU National Science Foundation [NSF-0700491, NSF-0100689, NSF-0354970, NSF-0653222] FX We are indebted to the wonderful machinists in the NCSU PAMS machine shop as well as to Scott Currie and Henning Back. This work was supported in part by the National Science Foundation (NSF-0700491, NSF-0100689, NSF-0354970, NSF-0653222). NR 30 TC 6 Z9 6 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073505 DI 10.1063/1.4732822 PG 17 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900030 PM 22852693 ER PT J AU Knapp, PF Hansen, SB Pikuz, SA Shelkovenko, TA Hammer, DA AF Knapp, P. F. Hansen, S. B. Pikuz, S. A. Shelkovenko, T. A. Hammer, D. A. TI Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID GENETIC ALGORITHMS; SPECTROSCOPY; MODELS AB We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of +/- 14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 mu m spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within +/- 25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731664] C1 [Knapp, P. F.; Hansen, S. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.] Cornell Univ, Plasma Studies Lab, Ithaca, NY 14853 USA. RP Knapp, PF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Pikuz, Sergey/M-8231-2015; Shelkovenko, Tatiana/M-8254-2015 FU National Nuclear Security Administration (NNSA) Stewardship Science Academic Alliances program under (U.S.) Department of Energy (DOE) [DE-FC03-02NA00057]; National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed at Cornell University and was sponsored by the National Nuclear Security Administration (NNSA) Stewardship Science Academic Alliances program under (U.S.) Department of Energy (DOE) agreement DE-FC03-02NA00057. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the National Nuclear Security Administration under DE-AC04-94AL85000. NR 24 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073502 DI 10.1063/1.4731664 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900027 PM 22852690 ER PT J AU Luo, SN Jensen, BJ Hooks, DE Fezzaa, K Ramos, KJ Yeager, JD Kwiatkowski, K Shimada, T AF Luo, S. N. Jensen, B. J. Hooks, D. E. Fezzaa, K. Ramos, K. J. Yeager, J. D. Kwiatkowski, K. Shimada, T. TI Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON-RADIATION; LASER AB The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (similar to 2 mu m) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733704] C1 [Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fezzaa, K.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Luo, SN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sluo@lanl.gov RI Luo, Sheng-Nian /D-2257-2010; OI Luo, Sheng-Nian /0000-0002-7538-0541; Yeager, John/0000-0002-3121-6053 FU LANL's LDRD program [LDRD-20110585ER]; LANL's MaRIE program; LANL's Science Campaign program; U.S. Department of Energy (DOE) [DE-AC52-06NA25396, DE-AC02-06CH11357] FX We appreciate professional help from J. Esparza, C. Owens, T. Pierce (LANL), A. Deny, and B. Glagola (ANL) in various stages of our experiments. We have benefited from valuable discussions with C. Barnes, W. Buttler, F. Cherne, G. Dimonte, D. Fulton, D. Funk, S. Greenfield, R. Martineau, D. Montgomery, C. Morris, R. Olson, D. Oro, R. Saavedra, J. Sarrao, D. Stahl, R. Valdiviez, Z. Wang (LANL), R. Hemley, G. Shen, Y. Xiao (HPCAT), J. Wang (APS), O. Tschauner (UNLV), and S. Gruner (Cornell). D. Dattelbaum is thanked for supplying the microlattice sample, and D. A. Fredenburg, for his contribution in the glass beads experiments. This work was partly supported by LANL's LDRD (LDRD-20110585ER), MaRIE and Science Campaign programs. LANL is operated by Los Alamos National Security, LLC for the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396. Use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 44 TC 39 Z9 40 U1 7 U2 52 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073903 DI 10.1063/1.4733704 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900037 PM 22852700 ER PT J AU Pace, DC Granetz, RS Vieira, R Bader, A Bosco, J Darrow, DS Fiore, C Irby, J Parker, RR Parkin, W Reinke, ML Terry, JL Wolfe, SM Wukitch, SJ Zweben, SJ AF Pace, D. C. Granetz, R. S. Vieira, R. Bader, A. Bosco, J. Darrow, D. S. Fiore, C. Irby, J. Parker, R. R. Parkin, W. Reinke, M. L. Terry, J. L. Wolfe, S. M. Wukitch, S. J. Zweben, S. J. TI Energetic ion loss detector on the Alcator C-Mod tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FUSION PRODUCTS; SYSTEM; DIAGNOSTICS; PROBE; TFTR AB A scintillator-based energetic ion loss detector has been successfully commissioned on the Alcator C-Mod tokamak. This probe is located just below the outer midplane, where it captures ions of energies up to 2 MeV resulting from ion cyclotron resonance heating. After passing through a collimating aperture, ions impact different regions of the scintillator according to their gyroradius (energy) and pitch angle. The probe geometry and installation location are determined based on modeling of expected lost ions. The resulting probe is compact and resembles a standard plasma facing tile. Four separate fiber optic cables view different regions of the scintillator to provide phase space resolution. Evolving loss levels are measured during ion cyclotron resonance heating, including variation dependent upon individual antennae. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731655] C1 [Pace, D. C.; Reinke, M. L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Granetz, R. S.; Vieira, R.; Bader, A.; Bosco, J.; Fiore, C.; Irby, J.; Parker, R. R.; Parkin, W.; Terry, J. L.; Wolfe, S. M.; Wukitch, S. J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Darrow, D. S.; Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Pace, DC (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM pacedc@fusion.gat.com FU US Department of Energy [DE-FC02-99ER54512, DE-ACO2-09CH11466, DE-FC02-04ER54698] FX The commissioning of this challenging new diagnostic was made possible by the expertise of the Alcator C-Mod Team. The authors would additionally like to thank S. Pierson, D. Coronado, T. Toland, and R. Murray for their assistance in commissioning the FILD, and Lightscape Materials, Inc. and FiberTech-RoMack for their efforts to develop and implement solutions for our unique needs within the time constraints of a tokamak vent period. We are grateful to R. K. Fisher and M. Garcia-Munoz for helpful discussions, and to E. S. Marmar and I. H. Hutchinson for thoughtful encouragement. This work supported by US Department of Energy Agreements DE-FC02-99ER54512, DE-ACO2-09CH11466, and DE-FC02-04ER54698 and by appointments to the (U.S.) Department of Energy (U.S. DOE) Fusion Energy Postdoctoral Research Program administered by ORISE. NR 51 TC 9 Z9 9 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073501 DI 10.1063/1.4731655 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900026 PM 22852689 ER PT J AU Rosenberg, RA Zohar, S Keavney, D Divan, R Rosenmann, D Mascarenhas, A Steiner, MA AF Rosenberg, R. A. Zohar, S. Keavney, D. Divan, R. Rosenmann, D. Mascarenhas, A. Steiner, M. A. TI Elemental and magnetic sensitive imaging using x-ray excited luminescence microscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID OPTICAL LUMINESCENCE; SPECTROSCOPY AB We demonstrate the potential of x-ray excited luminescence microscopy for full-field elemental and magnetic sensitive imaging using a commercially available optical microscope, mounted on preexisting synchrotron radiation (SR) beamline end stations. The principal components of the instrument will be described. Bench top measurements indicate that a resolution of 1 mu m or better is possible; this value was degraded in practice due to vibrations and/or drift in the end station and associated manipulator. X-ray energy dependent measurements performed on model solar cell materials and lithographically patterned magnetic thin film structures reveal clear elemental and magnetic signatures. The merits of the apparatus will be discussed in terms of conventional SR imaging techniques. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730335] C1 [Rosenberg, R. A.; Zohar, S.; Keavney, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Divan, R.; Rosenmann, D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Mascarenhas, A.; Steiner, M. A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Rosenberg, RA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Rosenberg, Richard/K-3442-2012 FU U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy, Energy Efficiency and Renewable Energy, Solid State Lighting Program FX We would like to thank Dr. Kirstin Alberi for experimental assistance. This work was performed at the Center for Nanoscale Materials and the Advanced Photon Source. It was supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences (Contract No. DE-AC02-06CH11357) and by the Department of Energy, Energy Efficiency and Renewable Energy, Solid State Lighting Program. NR 19 TC 6 Z9 6 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 073701 DI 10.1063/1.4730335 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900032 PM 22852695 ER PT J AU Tong, X Jiang, CY Lauter, V Ambaye, H Brown, D Crow, L Gentile, TR Goyette, R Lee, WT Parizzi, A Robertson, JL AF Tong, X. Jiang, C. Y. Lauter, V. Ambaye, H. Brown, D. Crow, L. Gentile, T. R. Goyette, R. Lee, W. T. Parizzi, A. Robertson, J. L. TI In situ polarized He-3 system for the Magnetism Reflectometer at the Spallation Neutron Source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SPIN FILTER; SCATTERING; ANGLE; BEAM; FILM AB We report on the in situ polarized He-3 neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a He-3 polarization of 76% +/- 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the He-3 system is 98% for the neutron wavelength band of 2-5 angstrom. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 angstrom. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the He-3 cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously. [http://dx.doi.org/10.1063/1.4731261] C1 [Tong, X.; Jiang, C. Y.; Brown, D.; Crow, L.; Robertson, J. L.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. [Lauter, V.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Ambaye, H.; Goyette, R.; Parizzi, A.] Oak Ridge Natl Lab, Res Accelerator Div, Oak Ridge, TN 37831 USA. [Gentile, T. R.] NIST, Gaithersburg, MD 20899 USA. [Lee, W. T.] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia. RP Tong, X (reprint author), Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. EM tongx@ornl.gov RI Ambaye, Haile/D-1503-2016; tong, Xin/C-4853-2012; OI Ambaye, Haile/0000-0002-8122-9952; tong, Xin/0000-0001-6105-5345; Jiang, Chenyang/0000-0002-6321-3164 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The contributions of T. R. Gentile to the analysis and documentation of this work were supported in part by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 25 TC 8 Z9 8 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2012 VL 83 IS 7 AR 075101 DI 10.1063/1.4731261 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988YR UT WOS:000307527900055 PM 22852718 ER PT J AU Aghanim, N Collaboration, P Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Bernard, JP Bersanelli, M Bohringer, H Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Brown, ML Burigana, C Butler, RC Cabella, P Cardoso, JF Carvalho, P Catalano, A Cayon, L Chamballu, A Chary, RR Chiang, LY Chon, G Christensen, PR Clements, DL Colafrancesco, S Colombi, S Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Fosalba, P Frailis, M Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Gonzalez-Nuevo, J Gonzalez-Riestra, R Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hempel, A Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hornstrup, A Huffenberger, KM Hurier, G Jagemann, T Jasche, J Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Knox, L Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leach, S Leonardi, R Liddle, A Lilje, PB Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Mann, R Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Naselsky, P Natoli, P Norgaard-Nielsen, HU Noviello, F Osborne, S Pasian, F Patanchon, G Perdereau, O Perrotta, F Piacentini, F Pierpaoli, E Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Schaefer, BM Scott, D Smoot, GF Starck, JL Stivoli, F Sunyaev, R Sutton, D Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wandelt, BD Weller, J White, SDM Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Collaboration, Planck Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Bernard, J. -P. Bersanelli, M. Boehringer, H. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Burigana, C. Butler, R. C. Cabella, P. Cardoso, J. -F. Carvalho, P. Catalano, A. Cayon, L. Chamballu, A. Chary, R. -R. Chiang, L. -Y. Chon, G. Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Coulais, A. Crill, B. P. Cuttaia, F. da Silva, A. Dahle, H. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Fosalba, P. Frailis, M. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gonzalez-Nuevo, J. Gonzalez-Riestra, R. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hempel, A. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hornstrup, A. Huffenberger, K. M. Hurier, G. Jagemann, T. Jasche, J. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leach, S. Leonardi, R. Liddle, A. Lilje, P. B. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Mann, R. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Osborne, S. Pasian, F. Patanchon, G. Perdereau, O. Perrotta, F. Piacentini, F. Pierpaoli, E. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Schaefer, B. M. Scott, D. Smoot, G. F. Starck, J. -L. Stivoli, F. Sunyaev, R. Sutton, D. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Weller, J. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. TI Planck intermediate results I. Further validation of new Planck clusters with XMM-Newton SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; cosmic background radiation; X-rays: galaxies: clusters ID SOUTH-POLE TELESCOPE; RAY GALAXY CLUSTERS; REPRESENTATIVE SAMPLE; SCALING RELATIONS; REXCESS; SKY; EXTRACTION; PROFILES; CATALOG; MAPS AB We present further results from the ongoing XMM-Newton validation follow-up of Planck cluster candidates, detailing X-ray observations of eleven candidates detected at a signal-to-noise ratio of 4.5 < S/N < 5.3 in the same 10-month survey maps used in the construction of the Early SZ sample. The sample was selected in order to test internal SZ quality flags, and the pertinence of these flags is discussed in light of the validation results. Ten of the candidates are found to be bona fide clusters lying below the RASS flux limit. Redshift estimates are available for all confirmed systems via X-ray Fe-line spectroscopy. They lie in the redshift range 0.19 < z < 0.94, demonstrating Planck's capability to detect clusters up to high z. The X-ray properties of the new clusters appear to be similar to previous new detections by Planck at lower z and higher SZ flux: the majority are X-ray underluminous for their mass, estimated using Y-X as mass proxy, and many have a disturbed morphology. We find tentative indication for Malmquist bias in the Y-SZ-Y-X relation, with a turnover at Y-SZ similar to 4 x 10 (4) arcmin(2). We present additional new optical redshift determinations with ENO and ESO telescopes of candidates previously confirmed with XMM-Newton. The X-ray and optical redshifts for a total of 20 clusters are found to be in excellent agreement. We also show that useful lower limits can be put on cluster redshifts using X-ray data only via the use of the Y-X vs. Y-SZ and X-ray flux F-X vs. Y-SZ relations. C1 [Arnaud, M.; Democles, J.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA Saclay, Lab AIM,IRFU Serv Astrophys,CEA DSM, F-91191 Gif Sur Yvette, France. [Bartlett, J. G.; Cardoso, J. -F.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Patanchon, G.; Remazeilles, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Irfu,Observ Paris, Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Jasche, J.] Argelander Inst Astron, D-53121 Bonn, Germany. [Ashdown, M.; Carvalho, P.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Keskitalo, R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Marleau, F.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartmento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] ESAC, European Space Agcy, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Sez Roma 1, INFN, I-00185 Rome, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Lab Rech Informat, F-91405 Orsay, France. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, IPAG Inst Planetol & Astrophys Grenoble, CNRS INSU, UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Fromenteau, S.; Lagache, G.; Miville-Deschenes, M. -A.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Moneti, A.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Fosalba, P.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Crill, B. P.; Dore, O.; Gorski, K. M.; Keskitalo, R.; Lawrence, C. R.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Brown, M. L.; Davis, R. J.; Noviello, F.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Benabed, K.; Bouchet, F. R.; Wandelt, B. D.] UPMC Univ Paris 06, UMR7095, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.; Weller, J.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Eriksen, H. K.; Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Arnaud, M (reprint author), Univ Paris Diderot, CNRS, CEA Saclay, Lab AIM,IRFU Serv Astrophys,CEA DSM, Bat 709, F-91191 Gif Sur Yvette, France. EM monique.arnaud@cea.fr RI Butler, Reginald/N-4647-2015; Remazeilles, Mathieu/N-1793-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Mazzotta, Pasquale/B-1225-2016; Martinez-Gonzalez, Enrique/E-9534-2015; Gregorio, Anna/J-1632-2012; Da Silva, Antonio/A-2693-2010; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; OI Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Valenziano, Luca/0000-0002-1170-0104; Morgante, Gianluca/0000-0001-9234-7412; Matarrese, Sabino/0000-0002-2573-1243; Lopez-Caniego, Marcos/0000-0003-1016-9283; Weller, Jochen/0000-0002-8282-2010; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; Forni, Olivier/0000-0001-6772-9689; Remazeilles, Mathieu/0000-0001-9126-6266; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748; de Bernardis, Paolo/0000-0001-6547-6446; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Galeotta, Samuele/0000-0002-3748-5115; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Da Silva, Antonio/0000-0002-6385-1609; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; De Zotti, Gianfranco/0000-0003-2868-2595 FU ESA Member States; USA (NASA); MPG [086.A-9001, 087.A-9003]; ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX The Planck Collaboration thanks Norbert Schartel for his support of the validation process and for granting discretionary time for the observation of Planck cluster candidates. The present work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA), on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofsica de Canarias in the Spanish Observatorio del Teide and on observations collected using the ESO/MPG 2.2 m telescope on La Silla under MPG programs 086.A-9001 and 087.A-9003. This research has made use of the following databases: SIMBAD, operated at the CDS, Strasbourg, France; the NED database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; BAX, which is operated by the Laboratoire d'Astrophysique de Tarbes-Toulouse (LATT), under contract with the Centre National d'Etudes Spatiales (CNES); and the SZ repository operated by IAS Data and Operation centre (IDOC) under contract with CNES. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck_Collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). NR 41 TC 28 Z9 28 U1 2 U2 32 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2012 VL 543 AR A102 DI 10.1051/0004-6361/201118731 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 976PQ UT WOS:000306597200102 ER PT J AU Schartman, E Ji, HT Burin, MJ Goodman, J AF Schartman, E. Ji, Hantao Burin, M. J. Goodman, J. TI Stability of quasi-Keplerian shear flow in a laboratory experiment SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion, accretion disks; hydrodynamics; instabilities; turbulence ID TAYLOR-COUETTE FLOW; ACCRETION DISKS; MAGNETOROTATIONAL-INSTABILITY; ROTATING CYLINDERS; HYDRODYNAMIC TURBULENCE; PROTOPLANETARY DISKS; TRANSIENT GROWTH; PART 1; TRANSPORT; TRANSITION AB Context. Subcritical transition to turbulence has been proposed as a source of turbulent viscosity required for the associated angular momentum transport for fast accretion in Keplerian disks. Previously cited laboratory experiments in supporting this hypothesis were performed either in a different type of flow than Keplerian or without quantitative measurements of angular momentum transport and mean flow profile, and all of them appear to suffer from Ekman effects, secondary flows induced by nonoptimal axial boundary conditions. Such Ekman effects are expected to be absent from astronomical disks, which probably have stress-free vertical boundaries unless strongly magnetized. Aims. To quantify angular momentum transport due to subcritical hydrodynamic turbulence, if exists, in a quasi-Keplerian flow with minimized Ekman effects. Methods. We perform a local measurement of the azimuthal-radial component of the Reynolds stress tensor in a novel laboratory apparatus where Ekman effects are minimized by flexible control of axial boundary conditions. Results. We find significant Ekman effects on angular momentum transport due to nonoptimal axial boundary conditions in quasi-Keplerian flows. With the optimal control of Ekman effects, no statistically meaningful angular momentum transport is detected in such flows at Reynolds number up to two millions. Conclusions. Either a subcritical transition does not occur, or, if a subcritical transition does occur, the associated radial transport of angular momentum in optimized quasi-Keplerian laboratory flows is too small to directly support the hypothesis that subcritical hydrodynamic turbulence is responsible for accretion in astrophysical disks. Possible limitations in applying laboratory results to astrophysical disks due to experimental geometry are discussed. C1 [Schartman, E.; Ji, Hantao] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burin, M. J.; Goodman, J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Schartman, E (reprint author), Nova Photon Inc, Princeton, NJ USA. EM hji@pppl.gov FU US Department of Energy's Office of Sciences - Fusion Energy Sciences Program [DE-AC02-09CH11466]; US National Science Foundation [AST-0607472, PHY-0821899]; US National Aeronautics and Space Administration (NASA) [APRA08-0066, ATP06-35] FX We acknowledge the support from the US Department of Energy's Office of Sciences - Fusion Energy Sciences Program through the contract number DE-AC02-09CH11466, the support from the US National Science Foundation under grant numbers AST-0607472 and PHY-0821899, and the support from the US National Aeronautics and Space Administration (NASA) under grant numbers APRA08-0066 and ATP06-35. We also appreciate comments and suggestions by referees. NR 63 TC 22 Z9 22 U1 0 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2012 VL 543 AR A94 DI 10.1051/0004-6361/201016252 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 976PQ UT WOS:000306597200094 ER PT J AU Deccio, C AF Deccio, Casey TI Maintenance, mishaps and mending in deployments of the domain name system security extensions (DNSSEC) SO INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURE PROTECTION LA English DT Article DE Domain name system (DNS); Domain name system security extensions (DNSSEC); Misconfiguration AB The Domain Name System Security Extensions (DNSSEC) add an element of authentication to the DNS, which is a foundational component of the Internet. However, the maintenance of a DNSSEC deployment is more complex than that of its insecure counterpart. This paper discusses some specific misconfigurations that impact DNSSEC deployments, analyzes their prevalence via an extended survey of production DNS zones implementing DNSSEC, and assesses the maintenance and corrective actions. Our survey indicated that more than one-half of the zones analyzed were affected by misconfigurations. Also, the survey revealed a significant number of repeat occurrences and average correction times of up to two weeks. This paper summarizes the survey findings and suggests approaches for improving the quality of DNS SEC deployments. (C) 2012 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Informat & Syst Assessments Dept, Livermore, CA 94551 USA. RP Deccio, C (reprint author), Sandia Natl Labs, Informat & Syst Assessments Dept, POB 969, Livermore, CA 94551 USA. EM ctdecci@sandia.gov NR 15 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1874-5482 EI 2212-2087 J9 INT J CRIT INFR PROT JI Int. J. Crit. Infrastruct. Prot. PD JUL PY 2012 VL 5 IS 2 BP 98 EP 103 DI 10.1016/j.ijcip.2012.05.002 PG 6 WC Computer Science, Information Systems; Engineering, Multidisciplinary SC Computer Science; Engineering GA 982YN UT WOS:000307081800007 ER PT J AU Eremin, V Verbitskaya, E Eremin, I Tuboltsev, Y Fadeeva, N Egorov, N Golubkov, S Chen, W Li, Z AF Eremin, V. Verbitskaya, E. Eremin, I. Tuboltsev, Yu. Fadeeva, N. Egorov, N. Golubkov, S. Chen, W. Li, Z. TI Spectra distortion by the interstrip gap in spectroscopic silicon strip detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 9th International Conference on Position Sensitive Detectors CY SEP 12-16, 2011 CL Aberystwyth, WALES DE Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Particle tracking detectors (Solid-state detectors) AB The NUSTAR experiments to be carried out as the part of the FAIR program (Facility for Antiproton and Ion Research) now under development in GSI, Germany, require unique spectrometers for heavy ions, for an energy range between a hundred keV up to hundreds of MeV. These spectrometers are constructed on the basis of silicon double sided detectors capable of providing simultaneously the energy spectrum of the particles and the position of hit points. The double sided Si strip detectors for high resolution ion spectroscopy and tracking were developed by the PTI-RIMST consortium. Reduced sized detectors were studied with alpha-particles from a Pu-238 source to define the spectral response of their p(+) side. The energy resolution was measured and found to be the highest, 9.6 keV, in the p(+) strips area. The energy spectrum for the particles hit at the interstrip gap was shown to be much broader and have a maximum at the low energy edges. In this study the alpha-particle spectra were measured on the p(+) side of strip detector and their shape was found to depend on the p(+) strip structure and potential distribution under the strip and in the interstrip gap, where the surface is passivated by SiO2 layer. Therefore, the 2D potential distribution in the interstrip gap was simulated and interpreted through the effective entrance window for alpha-particles. The calculated spectrum of a detector from alpha-particle source has a shape specific to the experimental detector spectral response, i.e., the peak at low energies. These findings are to be taken into account in the analysis of short range particle spectra and may well contribute to further development of spectroscopic single sided and double sided Si strip detectors to be used in investigations in nuclear physics. C1 [Eremin, V.; Verbitskaya, E.; Eremin, I.; Tuboltsev, Yu.; Fadeeva, N.] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Egorov, N.; Golubkov, S.] Res Inst Mat Sci & Technol, Moscow 124460, Russia. [Chen, W.; Li, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Eremin, V (reprint author), Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. EM vladimir.eremin@cern.ch RI Verbitskaya, Elena/D-1521-2014; Fadeeva, Nadezda/D-1595-2014 NR 10 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2012 VL 7 AR C07002 DI 10.1088/1748-0221/7/07/C07002 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 982WQ UT WOS:000307076500028 ER PT J AU Chen, CW Ren, F Chi, GC Hung, SC Huang, YP Kim, J Kravchenko, I Pearton, SJ AF Chen, Chung Wei Ren, F. Chi, Gou-Chung Hung, S. C. Huang, Y. P. Kim, Jihyun Kravchenko, Ivan Pearton, Stephen J. TI Effects of semiconductor processing chemicals on conductivity of graphene SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID BILAYER GRAPHENE; TUNABLE BANDGAP; LAYER GRAPHENE; LARGE-AREA; FILMS; OXIDE; TRANSPARENT; MOLECULES; SIO2 AB Graphene layers on SiO2/Si substrates were exposed to chemicals or gases commonly used in semiconductor fabrication processes, including solvents (isopropanol, acetone), acids, bases (ammonium hydroxide), UV ozone, H2O, and O-2 plasmas. The recovery of the initial graphene properties after these exposures was monitored by measuring both the layer resistance and Raman 2D peak position as a function of time in air or vacuum. Solvents and UV ozone were found to have the least affect, while oxygen plasma exposure caused an increase of resistance of more than 3 orders of magnitude. Recovery is accelerated under vacuum but changes can persist for more than 5 h. Careful design of fabrication schemes involving graphene is necessary to minimize these interactions with common processing chemicals. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4732517] C1 [Chen, Chung Wei; Ren, F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Chi, Gou-Chung] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan. [Hung, S. C.] Natl Cent Univ, Ctr Opt Sci, Jhongli 320, Taiwan. [Huang, Y. P.; Pearton, Stephen J.] Natl Cent Univ, Dept Phys, Jhongli 320, Taiwan. [Kim, Jihyun] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea. [Kravchenko, Ivan] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Pearton, Stephen J.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. RP Chen, CW (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM spear@mse.ufl.edu RI Kim, Jihyun/F-6940-2013; Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU National Science Council of Taiwan [NSC 100-2112-M-009-018]; NSF; Oak Ridge National Laboratory by Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the National Science Council of Taiwan under Grant No. NSC 100-2112-M-009-018 and by NSF (J. M. Zavada). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 24 TC 2 Z9 2 U1 2 U2 17 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2012 VL 30 IS 4 AR 040602 DI 10.1116/1.4732517 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 978NT UT WOS:000306750700013 ER PT J AU Choi, S Lefevre, C Roulland, F Meny, C Viart, N To, B Shafer, DE Shin, R Lee, J Jo, W AF Choi, Sukgeun Lefevre, Christophe Roulland, Francois Meny, Christian Viart, Nathalie To, Bobby Shafer, Devyn E. Shin, Ranhee Lee, Jihye Jo, William TI Optical transitions in magnetoelectric Ga0.6Fe1.4O3 from 0.73 to 6.45 eV SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID THIN-FILMS; FERROELECTRIC BIFEO3; GAFEO3 AB The optical properties of polycrystalline Ga0.6Fe1.4O3 bulk are determined by spectroscopic ellipsometry from 0.73 to 6.45 eV. Complex dielectric function epsilon = epsilon(1) + i epsilon(2) spectra are obtained from the multilayer analysis. The ellipsometric data exhibit numerous optical structures, and the transition energies are accurately obtained by analyzing the second-energy derivatives of the data. The origins of the optical structures are explained in terms of Fe3+ ligand field transitions and ligand-to-metal charge transfer transitions. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4721649] C1 [Shin, Ranhee; Lee, Jihye; Jo, William] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Choi, Sukgeun; To, Bobby; Shafer, Devyn E.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Lefevre, Christophe; Roulland, Francois; Meny, Christian; Viart, Nathalie] UMR 7504 ULP CNRS, Inst Phys & Chem Mat Strasbourg, F-67034 Strasbourg 2, France. RP Jo, W (reprint author), Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. EM wmjo@ewha.ac.kr RI Choi, Sukgeun/J-2345-2014; OI Lefevre, Christophe/0000-0002-2962-3426; Viart, Nathalie/0000-0002-7851-017X FU Leading Foreign Research Institute Recruitment Program through National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology (MEST) [2011-00267]; U.S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (2011-00267). The work done at National Renewable Energy Laboratory (NREL) is supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 28 TC 6 Z9 6 U1 2 U2 13 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2012 VL 30 IS 4 AR 041204 DI 10.1116/1.4721649 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 978NT UT WOS:000306750700020 ER PT J AU Hung, ST Chang, CJ Chen, CC Lo, CF Ren, F Pearton, SJ Kravchenko, II AF Hung, Shao-Tsu Chang, Chi-Jung Chen, Chin Ching Lo, Chien Fong Ren, Fan Pearton, Stephen J. Kravchenko, Ivan I. TI SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID GAS SENSORS; GRAIN-GROWTH; FILM; NANORODS; ROUTE; ZNO AB Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 degrees C. The grain growth kinetics of the SnO2 nanomaterials, together with the O-2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 degrees C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4736974] C1 [Hung, Shao-Tsu; Chang, Chi-Jung] Feng Chia Univ, Dept Chem Engn, Taichung 40724, Taiwan. [Chen, Chin Ching; Lo, Chien Fong; Ren, Fan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Pearton, Stephen J.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Chang, CJ (reprint author), Feng Chia Univ, Dept Chem Engn, Taichung 40724, Taiwan. EM changcj@fcu.edu.tw RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU Office of Naval Research (ONR) [00075094]; NSF; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Council (NSC) of Taiwan [NSC 100-2628-E-035-003] FX The work at UF was partially supported by the Office of Naval Research (ONR) under Contract No. 00075094 monitored by Chagaan Baatar and NSF (J. M. Zavada). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The work at FCU was supported by the National Science Council (NSC) of Taiwan under Contract No. NSC 100-2628-E-035-003. The authors are also thankful for the assistance from the Precision Instrument Support Center of Feng Chia University. NR 19 TC 2 Z9 2 U1 1 U2 20 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2012 VL 30 IS 4 AR 041214 DI 10.1116/1.4736974 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 978NT UT WOS:000306750700030 ER PT J AU Lo, CF Liu, L Ren, F Pearton, SJ Gila, BP Kim, HY Kim, J Laboutin, O Cao, Y Johnson, JW Kravchenko, II AF Lo, Chien-Fong Liu, Lu Ren, Fan Pearton, Stephen J. Gila, Brent P. Kim, Hong-Yeol Kim, Jihyun Laboutin, Oleg Cao, Yu Johnson, Jerry W. Kravchenko, Ivan I. TI Proton irradiation energy dependence of dc and rf characteristics on InAlN/GaN high electron mobility transistors SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID FIELD-EFFECT TRANSISTORS; ALGAN/GAN; PERFORMANCE; HEMTS; DEVICES; GAN AB The effects of proton irradiation energy on dc and rf characteristics of InAlN/GaN high electron mobility transistors (HEMTs) were investigated. A fixed proton dose of 5 x 10(15) cm(-2) with 5, 10, and 15 MeV irradiation energies was used in this study. For the dc characteristics, degradation was observed for sheet resistance, transfer resistance, contact resistivity, saturation drain current, maximum transconductance, reverse-bias gate leakage current, and sub-threshold drain leakage current for all the irradiated HEMTs; however, the degree of the degradation was decreased as the irradiation energy increased. Similar trends were obtained for the rf performance of the devices, with similar to 10% degradation of the unity gain cut-off frequency (f(T)) and maximum oscillation frequency (f(max)) for the HEMTs irradiated with 15 MeV protons but 30% for 5 MeV proton irradiation. The carrier removal rate was in the range 0.66-1.24 cm(-1) over the range of proton energies investigated. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4729285] C1 [Lo, Chien-Fong; Liu, Lu; Ren, Fan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Pearton, Stephen J.; Gila, Brent P.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kim, Hong-Yeol; Kim, Jihyun] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea. [Laboutin, Oleg; Cao, Yu; Johnson, Jerry W.] Kopin Corp, Taunton, MA 02780 USA. [Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Ren, F (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM fren@che.ufl.edu RI Cao, Yu/E-4990-2011; Kim, Jihyun/F-6940-2013; LIU, LU/H-2307-2013; Kravchenko, Ivan/K-3022-2015 OI LIU, LU/0000-0001-7256-3775; Kravchenko, Ivan/0000-0003-4999-5822 FU AFOSR MURI; HDTRA under U.S. DOD HDTRA [1-11-1-0020]; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy FX The work performed at UF is supported by an AFOSR MURI monitored by James Huang and by HDTRA (Don Silversmith) under contract U.S. DOD HDTRA Grant No. 1-11-1-0020. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 34 TC 6 Z9 6 U1 0 U2 16 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2012 VL 30 IS 4 AR 041206 DI 10.1116/1.4729285 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 978NT UT WOS:000306750700022 ER PT J AU Rajachidambaram, MS Varga, T Kovarik, L Sanghavi, R Shutthanandan, V Thevuthasan, S Han, SY Chang, CH Herman, GS AF Rajachidambaram, Meena S. Varga, Tamas Kovarik, Libor Sanghavi, Rahul Shutthanandan, Vaithiyalingam Thevuthasan, Suntharampillai Han, Seung-Yeol Chang, Chih-Hung Herman, Gregory S. TI Formation of zinc oxide films using submicron zinc particle dispersions SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ZNO THIN-FILMS; SOL-GEL PROCESS; LOW-TEMPERATURE; THERMAL-OXIDATION; OPTICAL-PROPERTIES; HIGH-PERFORMANCE; NANOPARTICLES; TRANSISTORS; NANORODS; NANOSTRUCTURES AB The thermal oxidation of submicron metallic Zn particles was studied as a method to form nanostructured ZnO films. The particles used for this work were characterized by electron microscopy, x ray diffraction, and thermal analysis to evaluate the Zn-ZnO core shell structure, surface morphology, and oxidation characteristics. Significant nanostructural changes were observed for films annealed to 400 degrees C or higher, where nanoflakes, nanoribbons, nanoneedles, and nanorods were formed as a result of stress induced fractures arising in the ZnO outer shell due to differential thermal expansion between the metallic Zn core and the ZnO shell. Mass transport occurs through these defects due to the high vapor pressure for metallic Zn at temperatures above 230 degrees C, whereupon the Zn vapor rapidly oxidizes in air to form the ZnO nanostructures. The Zn particles were also incorporated into zinc indium oxide precursor solutions to form thin film transistor test structures to evaluate the potential of forming nanostructured field effect sensors using simple solution processing. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4731255] C1 [Rajachidambaram, Meena S.; Han, Seung-Yeol; Chang, Chih-Hung; Herman, Gregory S.] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. [Varga, Tamas; Kovarik, Libor; Sanghavi, Rahul; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Herman, GS (reprint author), Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. EM greg.herman@oregonstate.edu RI Han, SeungYeol/I-6114-2012 FU Oregon Nanoscience and Microtechnologies Institute (ONAMI); Department of Energy's Office of Biological and Environmental Research; U.S. DOE [DE-AC05-76RL01830]; PNNL FX The Oregon Nanoscience and Microtechnologies Institute (ONAMI) funded this work. A portion of the work was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL), Richland, WA. PNNL is operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. M.S.R. thanks PNNL for providing an Alternate Sponsored Fellowship. NR 32 TC 2 Z9 2 U1 2 U2 11 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2012 VL 30 IS 4 AR 041805 DI 10.1116/1.4731255 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 978NT UT WOS:000306750700039 ER PT J AU Schultz, BJ Lee, V Price, J Jaye, C Lysaght, PS Fischer, DA Prendergast, D Banerjee, S AF Schultz, Brian J. Lee, Vincent Price, Jimmy Jaye, Cherno Lysaght, Patrick S. Fischer, Daniel A. Prendergast, David Banerjee, Sarbajit TI Near-edge x-ray absorption fine structure spectroscopy studies of charge redistribution at graphene/dielectric interfaces SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID GRAPHENE TRANSISTORS; CARBON NANOTUBES; GRAPHITE; CORRUGATIONS; SCATTERING AB Charge redistribution at graphene/dielectric interfaces is predicated upon the relative positioning of the graphene Fermi level and the charge neutralization level of the dielectric. The authors present an angle-resolved near-edge x-ray absorption fine structure (NEXAFS) spectroscopy investigation of single-layered graphene transferred to 300 nm SiO2/Si with subsequent deposition of ultrathin high-kappa dielectric layers to form graphene/dielectric interfaces. The authors' NEXAFS studies indicate the appearance of a distinct pre-edge absorption for graphene/HfO2 heterostructures (but not for comparable TiO2 and ZrO2 constructs). The hole doping of graphene with substantial redistribution of electron density to the interfacial region is proposed as the origin of the pre-edge feature as electron depletion renders part of the initially occupied density of states accessible for observation via NEXAFS spectroscopy. The spectral assignment is validated by calculating the NEXAFS spectra of electron- and hole-doped graphene using density functional theory. In contrast, a similarly sputtered metallic TiN layer shows substantial covalent interfacial hybridization with graphene. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4726508] C1 [Schultz, Brian J.; Lee, Vincent; Banerjee, Sarbajit] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Price, Jimmy; Lysaght, Patrick S.] SEMATECH, Front End Proc Div, Austin, TX 78741 USA. [Jaye, Cherno; Fischer, Daniel A.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Schultz, BJ (reprint author), SUNY Buffalo, Dept Chem, 459 Nat Sci Complex, Buffalo, NY 14260 USA. EM sb244@buffalo.edu FU National Science Foundation [DMR0847169]; Office of Science, Office of Basic Energy Sciences, of U.S. Department of Energy [DE-AC02-05CH11231] FX This work was primarily supported by the National Science Foundation under DMR0847169. Density functional theory simulations and interpretation of x-ray spectra were performed as a User Project at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 38 TC 7 Z9 7 U1 2 U2 28 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2012 VL 30 IS 4 AR 041205 DI 10.1116/1.4726508 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 978NT UT WOS:000306750700021 ER PT J AU McPherson, DL Blaiyok, KV Masse, WB AF McPherson, Diana L. Blaiyok, Kautchang Vince Masse, W. Bruce TI Lethal Ramming of Sharks by Large Jacks (Carangidae) in the Palau Islands, Micronesia SO PACIFIC SCIENCE LA English DT Article ID BLACKTIP REEF SHARKS; CARCHARHINUS-MELANOPTERUS; CARANX-MELAMPYGUS; PALMYRA ATOLL; PREDATOR-PREY; CORAL-REEF; BEHAVIORS; MECHANICS; PATTERNS; ECOLOGY AB We observed a Giant Trevally (Caranx ignobilis) ramming and mortally injuring a pair of adult Blacktip Reef Sharks (Carcharhinus melanopterus) in the Palau Islands of Micronesia. Such ramming behavior is known to Palauan and Marshallese fishermen for large-sized individuals of several different species of jacks (Carangidae). In addition, we interviewed knowledgeable Palauan subsistence fishermen regarding episodes of ramming that they had witnessed. Our observations suggest that ramming of sharks may be a normal aspect of jack aggressive behavior. These observations expand our knowledge of social behavior between sharks and large jacks. C1 [Masse, W. Bruce] Los Alamos Natl Lab, ENV ES Environm Stewardship Grp, Los Alamos, NM 87545 USA. [McPherson, Diana L.] FIN Photog, Los Alamos, NM 87544 USA. RP Masse, WB (reprint author), Los Alamos Natl Lab, ENV ES Environm Stewardship Grp, Mailstop J978, Los Alamos, NM 87545 USA. EM FINPhotos1@gmail.com; wbmasse@gmail.com FU Environmental Stewardship Group at Los Alamos National Laboratory (LANL); Center for Archaeological Investigations at Southern Illinois University FX Support for this project was provided by the Ecology (now Environmental Stewardship) Group at Los Alamos National Laboratory (LANL). Manuscript accepted 24 October 2011.; An early and incomplete 1984 draft of this article benefited from reviews by Bob Johannes, Jack Randall, and Gene Helfman. Karen Schmidt prepared Figure 1 through the auspices of the Center for Archaeological Investigations at Southern Illinois University. George Gumerman, Brian Butler, Jim Carucci, and especially Dave Snyder provided support and encouragement during that early time period. We thank Gregor M. Cailliet and Philip J. Motta for their more recent suggestions and recommendations for continued study. Gene Helfman provided detailed editorial comment on this article, as did two anonymous reviewers. This article has been assigned LANL technical information release number LA-UR-10-07947. NR 24 TC 1 Z9 1 U1 3 U2 21 PU UNIV HAWAII PRESS PI HONOLULU PA 2840 KOLOWALU ST, HONOLULU, HI 96822 USA SN 0030-8870 J9 PAC SCI JI Pac. Sci. PD JUL PY 2012 VL 66 IS 3 BP 327 EP 333 DI 10.2984/66.3.6 PG 7 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA 983UP UT WOS:000307144500006 ER PT J AU Breckenridge, RP Dakins, M Bunting, S Harbour, JL Lee, RD AF Breckenridge, Robert P. Dakins, Maxine Bunting, Stephen Harbour, Jerry L. Lee, Randy D. TI Using Unmanned Helicopters to Assess Vegetation Cover in Sagebrush Steppe Ecosystems SO RANGELAND ECOLOGY & MANAGEMENT LA English DT Article DE imagery; monitoring; rangelands; SamplePoint; unmanned aerial vehicle ID SAGE-GROUSE; SOUTHEASTERN IDAHO; FIRE; MANAGEMENT; ACCURACY; ECOLOGY AB Evaluating vegetation cover is an important factor in understanding the sustainability of many ecosystems. Remote sensing methods with sufficient accuracy could dramatically alter how biotic resources are monitored on both public and private lands. Idaho National Laboratory (INL), in conjunction with the University of Idaho, evaluated whether unmanned aerial vehicles (UAVs) are sufficiently accurate and more efficient than the point-frame field method for monitoring vegetative cover and bare ground in sagebrush steppe ecosystems. These values are of interest to land managers because typically there are limited natural resource scientists and funding for comprehensive ground evaluations. In this project, unmanned helicopters were used to collect still-frame imagery to determine vegetation cover during June and July 2005. The images were used to estimate percent cover for six vegetative cover classes (shrub, dead shrub, grass, forbs, litter, and bare ground). Field plots used to collect imagery and on-the-ground measurements were located on the INL site west of Idaho Falls, Idaho. Ocular assessments of digital imagery were performed using SamplePoint, and the results were compared with field measurements collected using a point-frame method. The helicopter imagery evaluation showed a high degree of agreement with field cover class values for grass, litter, and bare ground and reasonable agreement for dead shrubs. Shrub cover was often overestimated, and forbs were generally underestimated. The helicopter method took 45% less time than the field method. This study demonstrates that UAV technology provides a viable method for monitoring selective types of cover on rangelands and could save time and resources. C1 [Breckenridge, Robert P.] Idaho Natl Lab, Ecol Sci Dept, Idaho Falls, ID 83415 USA. [Dakins, Maxine] Univ Idaho, Environm Sci Program, Moscow, ID 83844 USA. [Bunting, Stephen] Univ Idaho, Dept Rangeland Ecol & Management, Moscow, ID 83844 USA. [Harbour, Jerry L.] Epsilon Syst Solut Inc, Albuquerque, NM 87106 USA. RP Breckenridge, RP (reprint author), Idaho Natl Lab, Ecol Sci Dept, POB 1625, Idaho Falls, ID 83415 USA. EM Robert.Breckenridge@inl.gov FU Idaho National Laboratory under DOE Idaho Operations Office [DE-AC07-05ID14517] FX Work was supported through Idaho National Laboratory's Laboratory Directed Research & Development Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 44 TC 1 Z9 1 U1 5 U2 65 PU SOC RANGE MANAGEMENT PI LAKEWOOD PA 445 UNION BLVD, STE 230, LAKEWOOD, CO 80228-1259 USA SN 1550-7424 EI 1551-5028 J9 RANGELAND ECOL MANAG JI Rangel. Ecol. Manag. PD JUL PY 2012 VL 65 IS 4 BP 362 EP 370 DI 10.2111/REM-D-10-00031.1 PG 9 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 986UA UT WOS:000307369900005 ER PT J AU Holladay, JE Albrecht, KO AF Holladay, Johnathan E. Albrecht, Karl O. TI Catalysis of Organic Reactions PREFACE SO TOPICS IN CATALYSIS LA English DT Editorial Material C1 [Holladay, Johnathan E.; Albrecht, Karl O.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Holladay, JE (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN P8-60, Richland, WA 99352 USA. EM john.holladay@pnnl.gov; karl.albrecht@pnnl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD JUL PY 2012 VL 55 IS 7-10 BP 419 EP 420 DI 10.1007/s11244-012-9814-2 PG 2 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 976PN UT WOS:000306596900001 ER PT J AU Glezakou, VA Jaffe, JE Rousseau, R Mei, DH Kathmann, SM Albrecht, KO Gray, MJ Gerber, MA AF Glezakou, Vassiliki-Alexandra Jaffe, John E. Rousseau, Roger Mei, Donghai Kathmann, Shawn M. Albrecht, Karl O. Gray, Michel J. Gerber, Mark A. TI The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C-2(+) Oxygenates SO TOPICS IN CATALYSIS LA English DT Article DE Ir-Mn-Rh nanoparticle; Syngas conversion; DFT models ID GENERALIZED GRADIENT APPROXIMATION; FISCHER-TROPSCH SYNTHESIS; SUPPORTED RHODIUM; ATMOSPHERIC-PRESSURE; CARBONYL CLUSTERS; ETHANOL SYNTHESIS; COBALT CATALYSTS; SYNTHESIS GAS; CO; MECHANISM AB Transition metal modified Rh-catalysts can be used for converting syngas (CO + H-2) into C-2 (+) oxygenates. It has been found that Mn has a favorable effect in the selectivity towards oxygenates, while addition of Ir to the binary Rh-Mn catalysts significantly increases the space-time-yield (STY) of C-2 (+) oxygenates, mainly by formyl formation at the early stages of conversion. Quantum mechanical calculations used to investigate the distribution of promoter sites in Rh-rich nanoparticles show that moderately high Mn/Ir ratios result in particles with all 3 metals on the surface, and that Ir atoms act as co-adsorption sinks of CO and H leading to HCO in the initial stages. C1 [Glezakou, Vassiliki-Alexandra; Jaffe, John E.; Rousseau, Roger; Mei, Donghai; Kathmann, Shawn M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Albrecht, Karl O.; Gray, Michel J.; Gerber, Mark A.] Pacific NW Natl Lab, Chem & Biol Proc Div, Richland, WA 99352 USA. RP Glezakou, VA (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM Vanda.Glezakou@pnnl.gov RI Mei, Donghai/A-2115-2012; Rousseau, Roger/C-3703-2014; Mei, Donghai/D-3251-2011 OI Mei, Donghai/0000-0002-0286-4182; FU U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy Biomass Program; DOE [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research at PNNL FX This work was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy Biomass Program. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. A portion of the research was performed using EMSL, a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. NR 29 TC 5 Z9 5 U1 0 U2 46 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD JUL PY 2012 VL 55 IS 7-10 BP 595 EP 600 DI 10.1007/s11244-012-9836-9 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 976PN UT WOS:000306596900028 ER PT J AU Hu, PA Wen, ZZ Wang, LF Tan, PH Xiao, K AF Hu, PingAn Wen, Zhenzhong Wang, Lifeng Tan, Pingheng Xiao, Kai TI Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors SO ACS NANO LA English DT Article DE gallium selenide; nanosheets; photodetectors ID GALLIUM SELENIDE; GRAPHENE; NANOBELTS; NANOWIRE; OXIDE; PHOTOTRANSISTORS; SENSORS; ARRAYS; MOS2 AB Two-dimensional (2D) semiconductor nanomaterials hold great promises for future electronics and optics. In this paper, a 2D nanosheets of ultrathin GaSe has been prepared by using mechanical cleavage and solvent exfoliation method. Single- and few-layer GaSe nanosheets are exfoliated on an SiO2/Si substrate and characterized by atomic force microscopy and Raman spectroscopy. Ultrathin GaSe-based photodetector shows a fast response of 0.02 s, high responsivity of 2.8 AW(-1) and high external quantum efficiency of 1367% at 254 nm, indicating that the two-dimensional nanostructure of GaSe is a new promising material for high performance photodetectors. C1 [Hu, PingAn; Wen, Zhenzhong; Wang, Lifeng] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct, Harbin 150080, Peoples R China. [Tan, Pingheng] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Hu, PA (reprint author), Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct, 2 YiKuang St, Harbin 150080, Peoples R China. EM hupa@hit.edu.cn; xiaok@ornl.gov RI Xiao, Kai/A-7133-2012; TAN, Ping-Heng/D-1137-2009; Hu, Ping'an/C-1289-2013 OI Xiao, Kai/0000-0002-0402-8276; TAN, Ping-Heng/0000-0001-6575-1516; FU NSFC [61172001, 10874177]; special funds for the Major State Basic Research of China [2009CB929301]; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry; Fundamental Research Funds for Central Universities; Chinese Program for New Century Excellent Talents in University; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work is supported by NSFC grants (61172001,10874177), special funds for the Major State Basic Research of China 2009CB929301, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and the Fundamental Research Funds for Central Universities and Chinese Program for New Century Excellent Talents in University. Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 33 TC 214 Z9 214 U1 39 U2 361 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2012 VL 6 IS 7 BP 5988 EP 5994 DI 10.1021/nn300889c PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 977OL UT WOS:000306673800027 PM 22676041 ER PT J AU Yang, Y Mathieu, JM Chattopadhyay, S Miller, JT Wu, TP Shibata, T Guo, WH Alvarez, PJJ AF Yang, Yu Mathieu, Jacques M. Chattopadhyay, Soma Miller, Jeffrey T. Wu, Tianpin Shibata, Tomohiro Guo, Wenhua Alvarez, Pedro J. J. TI Defense Mechanisms of Pseudomonas aeruginosa PAO1 against Quantum Dots and Their Released Heavy Metals SO ACS NANO LA English DT Article DE quantum dots; nanoparticles; gene expression; extracellular nanoparticle biosynthesis; extended X-ray absorption fine structure; Pseudomonas aeruginosa ID CADMIUM-SULFIDE NANOPARTICLES; MULTIDRUG EFFLUX PUMPS; ANTIBIOTIC-RESISTANCE; CONTINUOUS-CULTURE; TRANSCRIPTIONAL RESPONSE; SILVER NANOPARTICLES; GENE-EXPRESSION; TOXICITY; BACTERIA; NANOMATERIALS AB The growing use of quantum dots (QDs) in numerous applications increases the possibility of their release to the environment. Bacteria provide critical ecosystem services, and understanding their response to QDs is important to assess the potential environmental impacts of such releases. Here, we analyze the microbial response to sublethal exposure to commercial QDs, and investigate potential defense and adaptation mechanisms in the model bacterium Pseudomonas aeruginosa PAO1. Both intact and weathered QDs, as well as dissolved metal constituents, up-regulated czcABC metal efflux transporters. Weathered QDs also induced superoxide dismutase gene sodM, which likely served as a defense against oxidative stress. Interestingly, QDs also induced antibiotic resistance (ABR) genes and increased antibiotic minimum inhibitory concentrations by 50 to 100%, which suggests up-regulation of global stress defense mechanisms. Extracellular synthesis of nanoparticles (NPs) was observed after exposure to dissolved Cd(NO3)(2) and SeO2. With extended X-ray absorption fine structure (EXAFS), we discerned biogenic NPs such as CdO, CdS, CdSe, and selenium sulfides. These results show that bacteria can mitigate OD toxicity by turning on energy-dependent heavy-metal ion efflux systems and by mediating the precipitation of dissolved metal ions as less toxic and less bioavailable insoluble NPs. C1 [Yang, Yu; Mathieu, Jacques M.; Alvarez, Pedro J. J.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. [Guo, Wenhua] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Chattopadhyay, Soma; Shibata, Tomohiro] Argonne Natl Lab, Adv Photon Source, MRCAT, Sect 10, Argonne, IL 60439 USA. [Chattopadhyay, Soma; Shibata, Tomohiro] IIT, CSRRI, Chicago, IL 60616 USA. [Chattopadhyay, Soma; Shibata, Tomohiro] IIT, BCPS Dept, Chicago, IL 60616 USA. [Miller, Jeffrey T.; Wu, Tianpin] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Alvarez, PJJ (reprint author), Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. EM alvarez@rice.edu RI ID, MRCAT/G-7586-2011 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Joint US-UK Research Program (by US-EPA and UK-NERC-ESPRC) [RD-834557501-0] FX We thank Dr Alicia Pastor in Michigan State University for TEM thin-section sample preparation and Dr. Vladislav Zryanov for his help with EXAFS sample preparation. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Use of the APS is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. This research was supported by a Joint US-UK Research Program (Grant No. RD-834557501-0 by US-EPA and UK-NERC-ESPRC). NR 62 TC 30 Z9 31 U1 3 U2 97 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2012 VL 6 IS 7 BP 6091 EP 6098 DI 10.1021/nn3011619 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 977OL UT WOS:000306673800039 PM 22632375 ER PT J AU Williams, VO Jeong, NC Prasittichai, C Farha, OK Pellin, MJ Hupp, JT AF Williams, Vennesa O. Jeong, Nak Cheon Prasittichai, Chaiya Farha, Omar K. Pellin, Michael J. Hupp, Joseph T. TI Fast Transporting ZnO-TiO2 Coaxial Photoanodes for Dye-Sensitized Solar Cells Based on ALD-Modified SiO2 Aerogel Frameworks SO ACS NANO LA English DT Article DE dye-sensitized solar cell; atomic layer deposition; zinc oxide; aerogel; ferrocene redox shuttle ID ATOMIC LAYER DEPOSITION; RECOMBINATION DYNAMICS; ELECTRON-TRANSPORT; REDOX ELECTROLYTE; BLOCKING LAYERS; ORGANIC-DYES; TIO2 FILMS; THIN-FILMS; EFFICIENCY; PERFORMANCE AB A doubly coaxial photoanode architecture based on templated SiO2 aerogels was fabricated on transparent conducting oxides for use in dye-sensitized solar cells (DSSCs). These templates were coated with ZnO via atomic layer deposition (ALD) to yield an electronically interconnected, low-density, high-surface-area, semiconductor framework. Addition of a thin conformal layer of a second metal oxide (alumina, zirconia, or titania) via ALD was found to suppress the dissolution of ZnO that otherwise occurs when it is soaked in alcohol solutions containing acidic dyes used for sensitization or in acetonitrile solutions containing a pyridine derivative and the iodide/tri-iodide (I-/I-3(-)) redox shuttle. Electron transport in SiO2-ZnO-TiO2 photoelectrodes was found to be nearly 2 orders of magnitude faster than in SiO2-TiO2 structures, implying that the interior ZnO sheath serves as the primary electron conduit. In contrast, rates of electron interception by the oxidized form of the redox shuttle were observed to decrease when a TiO2 shell was added to SiO2-ZnO, with the decreases becoming more significant as the thickness of the titania shell Increases. These effects lead to improvements in efficiency for DSSCs that utilize I-/I-3(-), but much larger improvements for DSSCs utilizing ferrocene/ferrocenium, a notoriously fast redox shuttle. For the former, overall energy conversion efficiencies maximize at 4d.0%. From a variety of experiments, the primary factor limiting aerogel-based DSSC performance is light loss due to scattering. Nevertheless, variants of the doubly coaxial structure may prove useful in devising DSSCs that can achieve excellent energy conversion efficiencies even with fast redox shuttles. C1 [Williams, Vennesa O.; Jeong, Nak Cheon; Prasittichai, Chaiya; Farha, Omar K.; Pellin, Michael J.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Williams, Vennesa O.; Jeong, Nak Cheon; Prasittichai, Chaiya; Farha, Omar K.; Pellin, Michael J.; Hupp, Joseph T.] Northwestern Univ, Argon NW Solar Energy Res Ctr ANSER, Evanston, IL 60208 USA. [Pellin, Michael J.; Hupp, Joseph T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hupp, Joseph T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Hupp, JT (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM j-hupp@northwestern.edu RI Pellin, Michael/B-5897-2008; Hupp, Joseph/K-8844-2012; Farha, Omar/B-5512-2014; Jeong, Nak Cheon/L-4082-2016 OI Pellin, Michael/0000-0002-8149-9768; Hupp, Joseph/0000-0003-3982-9812; Farha, Omar/0000-0002-9904-9845; Jeong, Nak Cheon/0000-0003-3320-5750 FU NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; ANSER Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; Initiative for Sustainability and Energy at Northwestern (ISEN); Commission of Higher Education, Thailand FX We thank Dr. Stacey Stand ridge (formerly of Northwestern) for obtaining XPS data. We thank Dr. Jeff Elam, Dr. Angel Yanguas-Gil, and Dr. Alex Martinson (Argonne National Laboratory) and Dr. Tina Li (formerly of Northwestern) for helpful discussions. SEM and XPS measurements were performed in the EPIC and KECK-II facilities of the NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois, and Northwestern University. We gratefully acknowledge financial support from the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001059. V.O.W. acknowledges a fellowship from the Initiative for Sustainability and Energy at Northwestern (ISEN), and C.P. acknowledges funding from the Strategic Fellowships for Frontier Research Networks from the Commission of Higher Education, Thailand. NR 57 TC 39 Z9 40 U1 10 U2 201 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2012 VL 6 IS 7 BP 6185 EP 6196 DI 10.1021/nn3015695 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 977OL UT WOS:000306673800049 PM 22721529 ER PT J AU Rauda, IE Buonsanti, R Saldarriaga-Lopez, LC Benjauthrit, K Schelhas, LT Stefik, M Augustyn, V Ko, J Dunn, B Wiesner, U Milliron, DJ Tolbert, SH AF Rauda, Iris E. Buonsanti, Raffaella Saldarriaga-Lopez, Laura C. Benjauthrit, Kanokraj Schelhas, Laura T. Stefik, Morgan Augustyn, Veronica Ko, Jesse Dunn, Bruce Wiesner, Ulrich Milliron, Delia J. Tolbert, Sarah H. TI General Method for the Synthesis of Hierarchical Nanocrystal-Based Mesoporous Materials SO ACS NANO LA English DT Article DE nanocrystals; evaporation-induced self-assembly; microporous; mesoporous; ligand exchange; block copolymer; templated ID SHAPE-CONTROLLED SYNTHESIS; THIN-FILMS; BLOCK-COPOLYMER; LOW-TEMPERATURE; CHARGE STORAGE; COLLOIDAL NANOCRYSTALS; NANOSCALE STRUCTURE; DIBLOCK COPOLYMER; THERMAL-STABILITY; CDSE NANOCRYSTALS AB Block copolymer templating of inorganic materials is a robust method for the production of nanoporous materials. The method is limited, however, by the fact that the molecular inorganic precursors commonly used generally form amorphous porous materials that often cannot be crystallized with retention of porosity. To overcome this issue, here we present a general method for the production of templated mesoporous materials from preformed nanocrystal building blocks. The work takes advantage of recent synthetic advances that allow organic ligands to be stripped off of the surface of nanocrystals to produce soluble, charge-stabilized colloids. Nanocrystals then undergo evaporation-induced co-assembly with amphiphilic diblock copolymers to form a nanostructured inorganic/organic composite. Thermal degradation of the polymer template results in nanocrystal-based mesoporous materials. Here, we show that this method can be applied to nanocrystals with a broad range of compositions and sizes, and that assembly of nanocrystals can be carried out using a broad family of polymer templates. The resultant materials show disordered but homogeneous mesoporosity that can be tuned through the choice of template. The materials also show significant microporosity, formed by the agglomerated nanocrystals, and this porosity can be tuned by the nanocrystal size. We demonstrate through careful selection of the synthetic components that specifically designed nanostructured materials can be constructed. Because of the combination of open and interconnected porosity, high surface area, and compositional tunability, these materials are likely to find uses in a broad range of applications. For example, enhanced charge storage kinetics in nanoporous Mn3O4 is demonstrated here. C1 [Rauda, Iris E.; Saldarriaga-Lopez, Laura C.; Benjauthrit, Kanokraj; Schelhas, Laura T.; Tolbert, Sarah H.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Rauda, Iris E.; Saldarriaga-Lopez, Laura C.; Benjauthrit, Kanokraj; Schelhas, Laura T.; Tolbert, Sarah H.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Buonsanti, Raffaella; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Stefik, Morgan; Wiesner, Ulrich] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Augustyn, Veronica; Ko, Jesse; Dunn, Bruce; Tolbert, Sarah H.] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. RP Tolbert, SH (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM tolbert@chem.ucla.edu RI Milliron, Delia/D-6002-2012; Tolbert, Sarah/L-2321-2016 FU Center for Molecularly Engineered Energy Materials (MEEM), an Energy Frontier Research Center; U.S. Department of Energy (D.O.E.), Office of Science, Office of Basic Energy Sciences [DE-SC0001342, DE-AC02-05CH11231]; DOE; NSF [DMR-1104773] FX This work was primarily supported by the Center for Molecularly Engineered Energy Materials (MEEM), an Energy Frontier Research Center funded by the U.S. Department of Energy (D.O.E.), Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001342 (S.H.T., B.D.). Porosimetry and TEM measurements were supported by UC MRPI award "Next-Generation Supercapacitors" (S.H.T.). D.J.M. was supported by a DOE Early Career Research Program Award, and portions of this project were performed as a user project at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. DOE, both under contract No. DE-AC02-05CH11231. U.W. acknowledges support from the NSF through award DMR-1104773. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. NR 84 TC 48 Z9 48 U1 13 U2 234 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2012 VL 6 IS 7 BP 6386 EP 6399 DI 10.1021/nn302789r PG 14 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 977OL UT WOS:000306673800072 PM 22731824 ER PT J AU Chou, YC Wen, CY Reuter, MC Su, D Stach, EA Ross, FM AF Chou, Yi-Chia Wen, Cheng-Yen Reuter, Mark C. Su, Dong Stach, Eric A. Ross, Frances M. TI Controlling the Growth of Si/Ge Nanowires and Heterojunctions Using Silver-Gold Alloy Catalysts SO ACS NANO LA English DT Article DE nanowire growth; Si/Ge heterojunctions; AgAu alloys; vapor-solid-solid growth; in situ transmission electron microscopy ID LIQUID-SOLID MECHANISM; SILICON NANOWIRES; CRYSTAL GROWTH; LEDGE-FLOW; ABRUPTNESS; KINETICS AB We describe a new catalyst for group IV nanowire heterostructures, based on alloying Ag with Au, that combines the ability to control catalyst phase and nanowire structure with good environmental stability. Compared to other alloy catalysts, we show a higher oxidation resistance of AgAu and more consistent crystal shapes and catalyst/nanowire orientation relationships during growth. We show that AgAu catalysts are also stable against diffusion during growth, making them capable of forming long nanowires with uniform diameters. Furthermore, we demonstrate the growth of compositionally abrupt Si/Ge heterojunctions with good reproducibility and yield, switching individual nanowires between vapor-liquid-solid and vapor-solid-solid growth to optimize growth rates by control of the catalyst state. The stability and properties of AgAu catalysts potentially open up a promising and practical route toward control of group IV heterostructure nanowires. C1 [Chou, Yi-Chia; Wen, Cheng-Yen; Stach, Eric A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Chou, Yi-Chia; Wen, Cheng-Yen; Stach, Eric A.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Reuter, Mark C.; Ross, Frances M.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Su, Dong; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Stach, EA (reprint author), Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. EM estach@bnl.gov; fmross@us.ibm.com RI Su, Dong/A-8233-2013; Stach, Eric/D-8545-2011; Ross, Frances/P-8919-2015; OI Su, Dong/0000-0002-1921-6683; Stach, Eric/0000-0002-3366-2153; Ross, Frances/0000-0003-0838-9770; /0000-0002-7775-2927 FU NSF [DMR-0907483]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors acknowledge financial assistance from the NSF under Grant No. DMR-0907483. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 37 TC 32 Z9 32 U1 3 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2012 VL 6 IS 7 BP 6407 EP 6415 DI 10.1021/nn301978x PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 977OL UT WOS:000306673800074 PM 22708581 ER PT J AU Kilina, S Velizhanin, KA Ivanov, S Prezhdo, OV Tretiak, S AF Kilina, Svetlana Velizhanin, Kirill A. Ivanov, Sergei Prezhdo, Oleg V. Tretiak, Sergei TI Surface Ligands Increase Photoexcitation Relaxation Rates in CdSe Quantum Dots SO ACS NANO LA English DT Article DE excitation relaxation; electron-phonon couplings; phonon-bottleneck; surface effects; nanocrystals ID CARRIER-MULTIPLICATION EFFICIENCY; DENSITY-FUNCTIONAL THEORY; SEMICONDUCTOR NANOCRYSTALS; AB-INITIO; OPTICAL GAIN; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC EXCITATIONS; INTRABAND RELAXATION; PHONON BOTTLENECK; TIME-DOMAIN AB Understanding the pathways of hot exciton relaxation in photoexcited semiconductor nanocrystals, also called quantum dots (QDs), is of paramount importance in multiple energy, electronics and biological applications. An important nonradiative relaxation channel originates from the nonadiabatic (NA) coupling of electronic degrees of freedom to nuclear vibrations, which in QDs depend on the confinement effects and complicated surface chemistry. To elucidate the role of surface ligands in relaxation processes of nanocrystals, we study the dynamics of the NA exciton relaxation in Cd33Se33 semiconductor quantum dots passivated by either trimethylphosphine oxide or methylamine ligands using explicit time-dependent modeling. The large extent of hybridization between electronic states of quantum dot and ligand molecules is found to strongly facilitate exciton relaxation. Our computational results for the ligand contributions to the exciton relaxation and electronic energy-loss in small clusters are further extrapolated to larger quantum dots. C1 [Kilina, Svetlana] N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58108 USA. [Velizhanin, Kirill A.; Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Velizhanin, Kirill A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Ivanov, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MPA Div, Los Alamos, NM 87545 USA. [Prezhdo, Oleg V.] Univ Rochester, Dept Chem, Rochester, NY 14627 USA. RP Kilina, S (reprint author), N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58108 USA. EM skilina@gmail.com; serg@lani.gov RI Tretiak, Sergei/B-5556-2009; Ivanov, Sergei/B-5505-2011; Velizhanin, Kirill/C-4835-2008 OI Tretiak, Sergei/0000-0001-5547-3647; FU Center for Advanced Solar Photophysics, an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES); NDSU Advance FORWARD; NSF [HRD-0811239, CHE-1050405]; ND EPSCoR through NSF [EPS-0814442]; DOE [DE-FG36-08GO88160, DEFG02-05ER15755]; Center for Nonlinear Studies (LANL); U.S. DOE [DE-AC52-06NA25396] FX The authors wish to thank Victor I. Klimov, Andrei Piryatinski, and Dmitri Kilin for fruitful discussions and comments. S.T. and K.A.V. acknowledge support from the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES). S.K. acknowledges financial support from NDSU Advance FORWARD program sponsored by NSF HRD-0811239 and ND EPSCoR through NSF Grant No. EPS-0814442 for providing renovated lab space and DOE Grant No. DE-FG36-08GO88160 dedicated to the solar cell studies. O.V.P. acknowledges financial support of DOE, Grant No. DEFG02-05ER15755, dedicated to the QD studies, and NSF, Grant No. CHE-1050405, supporting methods development. The work has been conducted in part at the Center for Integrated Nanotechnologies at Los Alamos National Laboratory (LANL). We also acknowledge support provided by the Center for Nonlinear Studies (LANL). LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under contract DE-AC52-06NA25396. NR 73 TC 61 Z9 61 U1 5 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2012 VL 6 IS 7 BP 6515 EP 6524 DI 10.1021/nn302371q PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 977OL UT WOS:000306673800086 PM 22742432 ER PT J AU Capdevila, C Miller, MK Chao, J AF Capdevila, C. Miller, M. K. Chao, J. TI Phase separation kinetics in a Fe-Cr-Al alloy SO ACTA MATERIALIA LA English DT Article DE Phase separation; Ferrous alloy; Mechanical alloying; Tomography; Thermoelectric power ID THERMOELECTRIC-POWER MEASUREMENTS; ATOM-PROBE TOMOGRAPHY; MISCIBILITY GAP; ODS ALLOY; PRECIPITATION; STEELS; DECOMPOSITION; TEMPERATURE; NUCLEATION; PARTICLES AB The alpha-alpha' phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000 (TM) steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich alpha' phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the alpha' phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol(-1), obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000 (TM) is a transient coarsening process with overlapping nucleation, growth, and coarsening stages. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Capdevila, C.; Chao, J.] Ctr Nacl Invest Metalurg CENIM CSIC, Materalia Grp, Madrid 28040, Spain. [Miller, M. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Capdevila, C (reprint author), Ctr Nacl Invest Metalurg CENIM CSIC, Materalia Grp, Ave Gregorio Amo 8, Madrid 28040, Spain. EM ccm@cenim.csic.es RI Capdevila, Carlos/B-6970-2015 OI Capdevila, Carlos/0000-0002-1869-4085 FU Spanish Ministerio de Ciencia e Innovacion in the form of a Coordinate Project in the Energy Area of Plan Nacional [ENE2009-13766-C04-01]; ORNL Shared Research Equipment User Facility; Office of Basic Energy Sciences, US Department of Energy FX PM 2000 (TM) is a trademark of Plansee GmbH. LEAP (R) is a registered trademark of Cameca Instruments. C.C. and J.C. acknowledge financial support by the Spanish Ministerio de Ciencia e Innovacion in the form of a Coordinate Project in the Energy Area of Plan Nacional 2009 (ENE2009-13766-C04-01). The research by A.P.T. and M.K.M. was supported by the ORNL Shared Research Equipment User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. NR 43 TC 17 Z9 17 U1 4 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2012 VL 60 IS 12 BP 4673 EP 4684 DI 10.1016/j.actamat.2012.05.022 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 987KG UT WOS:000307415200001 ER PT J AU Vorontsov, VA Kovarik, L Mills, MJ Rae, CMF AF Vorontsov, V. A. Kovarik, L. Mills, M. J. Rae, C. M. F. TI High-resolution electron microscopy of dislocation ribbons in a CMSX-4 superalloy single crystal SO ACTA MATERIALIA LA English DT Article DE STEM; Primary creep; Dislocation dissociation; Shockley partials; Stacking faults ID NI-BASE SUPERALLOYS; 110 SCREW DISLOCATIONS; LI-2 ORDERED ALLOYS; MECHANICAL-BEHAVIOR; FAULT ENERGIES; ELASTIC-MODULI; CORE STRUCTURE; GAMMA-PHASE; CREEP; TEMPERATURE AB High-resolution scanning transmission electron microscopy (STEM) has been used to study the structure of dislocations in single crystal superalloy samples that have been subjected to conditions that favour the primary creep regime. The study has revealed the detailed structure of extended a/2 < 1 1 2 > dislocations as they shear the gamma' precipitates during creep. These dislocations dissociate in a manner that is consistent with predictions made using the phase-field model of dislocations and also suggests the importance of the reordering process during their movement. The shearing done by the a < 1 1 2 > dislocations was also found to distort the gamma/gamma' interface, changing its appearance from linear to a "saw tooth" pattern. Another important observation was the segregation of alloying elements with a high atomic mass to the stacking faults, presumably to reduce their energies during shear. Numerous a/2 < 1 1 0 > dissociated dislocations were also observed in the gamma channels of the superalloy. The high resolution provided by the STEM imaging enables one to study the high-energy faults that are usually difficult to observe in conventional weak-beam TEM, such as complex intrinsic and extrinsic stacking faults in the gamma' and intrinsic stacking faults in the gamma, and to make estimates of their energies. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Vorontsov, V. A.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, Royal Sch Mines, London SW7 2BP, England. [Rae, C. M. F.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Kovarik, L.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Mills, M. J.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. RP Vorontsov, VA (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, Royal Sch Mines, Prince Consort Rd, London SW7 2BP, England. EM vassili.vorontsov@googlemail.com RI Vorontsov, Vassili/A-8837-2010; Mills, Michael/I-6413-2013; Kovarik, Libor/L-7139-2016 OI Vorontsov, Vassili/0000-0002-1958-0602; FU EPSRC [EP/ D047684/1] FX The authors would like to acknowledge funding from the EPSRC under Grant Number EP/ D047684/1 (Alloys by Design) and thank Rolls-Royce plc. for supplying the CMSX-4 single crystals for this study. NR 33 TC 26 Z9 27 U1 4 U2 66 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2012 VL 60 IS 12 BP 4866 EP 4878 DI 10.1016/j.actamat.2012.05.014 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 987KG UT WOS:000307415200020 ER PT J AU Chen-Wiegart, YCK Wang, S Chu, YS Liu, WJ McNulty, I Voorhees, PW Dunand, DC AF Chen-Wiegart, Yu-chen Karen Wang, Steve Chu, Yong S. Liu, Wenjun McNulty, Ian Voorhees, Peter W. Dunand, David C. TI Structural evolution of nanoporous gold during thermal coarsening SO ACTA MATERIALIA LA English DT Article DE Metal foam; Isothermal heat treatments; X-ray computed tomography; Transmission X-ray microscopy; Three-dimensional characterization ID DENDRITIC MICROSTRUCTURES; MORPHOLOGICAL EVOLUTION; SURFACE-CHEMISTRY; METAL; MICROSCOPY; FOAMS; AU; NM; TEMPERATURE; FABRICATION AB The three-dimensional evolution of nanoligaments of nanoporous gold created by Ag-Au dealloying was studied during isothermal coarsening by X-ray nanotomography and microbeam Laue diffraction. The surface normal orientation, curvature and size of the gold nanoligaments were measured as a function of coarsening time (from 2 to 320 mm). The following observations were made at 550, 600 and 650 degrees C. First, the distribution of orientations for the surfaces of the nanoligaments becomes more anisotropic with coarsening time, with an increasing area of the surfaces having a low surface energy, consistent with the growth of facets. Second, the curvature distribution of the nanoligaments (scaled by their size) also evolves during coarsening. The evolution of both surface orientation and scaled surface curvature indicates that coarsening does not occur in a self-similar manner, i.e. the interfacial shape distribution of the gold nanoligaments is not self-similar over time as they coarsen. This is consistent with the ligament size not being described by a classical temporal power law for coarsening systems. All three effects, and in particular the increased prevalence of surfaces with a low surface energy at long coarsening times, may affect the surface functionalities and properties of nanoporous gold in various applications, e.g. as catalysts, sensors and actuators. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Chen-Wiegart, Yu-chen Karen; Voorhees, Peter W.; Dunand, David C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Wang, Steve; Liu, Wenjun; McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chu, Yong S.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Chen-Wiegart, YCK (reprint author), Bldg 725D,75 Brookhaven Ave, Upton, NY 11973 USA. EM ycchen@bnl.gov RI Dunand, David/B-7515-2009; Voorhees, Peter /B-6700-2009; OI Dunand, David/0000-0001-5476-7379 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Brookhaven Science Associates, LLC [DE-AC02-98CH10886] FX We thank Dr R. Harder and Mr A. Deny (both Argonne National Laboratory) for their assistance with the experimental TXM set-up and Ms A. Deymier and Ms A. Singhal (both Northwestern University) for their help with the TXM measurements. We also thank Dr Q. Shen (Brookhaven National Laboratory) for initial guidance with this project and Prof. Y. Hwu of the Academia Sinica for making the TXM instrument available at the Advanced Photon Source. We thank the referee for the suggestion in determining the coarsening mechanism. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Y.K.C.-W. and Y.C. acknowledge support by the Brookhaven Science Associates, LLC under contract no. DE-AC02-98CH10886. NR 56 TC 29 Z9 30 U1 2 U2 63 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2012 VL 60 IS 12 BP 4972 EP 4981 DI 10.1016/j.actamat.2012.05.012 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 987KG UT WOS:000307415200030 ER PT J AU Bruno, G Garlea, VO Muth, J Efremov, AM Watkins, TR Shyam, A AF Bruno, G. Garlea, V. O. Muth, J. Efremov, A. M. Watkins, T. R. Shyam, A. TI Microstrain temperature evolution in beta-eucryptite ceramics: Measurement and model SO ACTA MATERIALIA LA English DT Article DE beta-Eucryptite; Microcracking; Neutron diffraction; Integrity Factor Model; Rietveld refinement ID ALUMINUM TITANATE CERAMICS; SYNCHROTRON X-RAY; THERMAL-EXPANSION; MECHANICAL PROPERTIES; RIETVELD REFINEMENT; POROUS CORDIERITE; SINGLE-CRYSTAL; DIFFRACTION; SIZE; DEPENDENCE AB Mechanisms of microcracking and stress release in beta-eucryptite ceramics were investigated by applying a combination of neutron diffraction (ND), dilatometry and the Integrity Factor Model (IFM). It was observed that the macroscopic thermal expansion of solid samples closely follows the lattice thermal expansion as a function of temperature, and both are dominated by microcracks closing (during heating) and opening (during cooling). Analogous experiments on powders showed that the stresses that manifest peak shift are indeed relieved by comminution, and that the resulting lattice thermal expansion can be considered as unconstrained. By means of Rietveld refinement of the ND data, the evolution with temperature of peak width parameters linked to strain distributions along the basal, pyramidal and axial planes could also be extracted. The peak width parameters S-HKL correlated well with the strains calculated by peak shift and with the model results. Furthermore, while the peak shifts showed that the powders are basically stress free, the SHKL showed a strong evolution of the peak width. Powders carry, therefore, a measurable strain distribution inside the particles, owing to the thermal expansion anisotropy of the crystallites. The IFM allowed this behavior to be rationalized, and the effect of microcracking on thermal expansion to be quantified. Experimental data allowed accurate numerical prediction of microcracking on cooling and of the evolution of microstresses. They also allowed the derivation of the material elastic modulus from bulk thermal expansion curves through the IFM concept. Ultrasound resonance measurements of the elastic modulus strongly support these theoretical predictions. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bruno, G.] Corning Inc, S&T, CMP, Corning, NY 14831 USA. [Garlea, V. O.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Muth, J.; Watkins, T. R.; Shyam, A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Efremov, A. M.] Corning SNG, M&S, CSC, St Petersburg 194021, Russia. RP Bruno, G (reprint author), Corning Inc, S&T, CMP, SP FR06, Corning, NY 14831 USA. EM brunog@corning.com RI Bruno, Giovanni/E-2817-2013; Garlea, Vasile/A-4994-2016; Watkins, Thomas/D-8750-2016 OI Garlea, Vasile/0000-0002-5322-7271; Watkins, Thomas/0000-0002-2646-1329 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program; UT-Battelle, LLC [DE-AC05-00OR22725]; US Department of Energy FX Jim Kiggans (ORNL) is acknowledged for preparing the powder samples. Ducu Stoica and Melanie Kirkham (ORNL), as well as Angela Graefe and Christine Heckle (Corning Incorporated) are acknowledged for helpful suggestions to the manuscript. Research at the High Flux Isotope Reactor was partially sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Research through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.; This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 53 TC 14 Z9 14 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2012 VL 60 IS 12 BP 4982 EP 4996 DI 10.1016/j.actamat.2012.04.033 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 987KG UT WOS:000307415200031 ER PT J AU Wang, P Lerner, AH Taylor, M Baldwin, JK Grubbs, RK Majewski, J Hickmott, DD AF Wang, P. Lerner, A. H. Taylor, M. Baldwin, J. K. Grubbs, R. K. Majewski, J. Hickmott, D. D. TI High-pressure and high-temperature neutron reflectometry cell for solid-fluid interface studies SO EUROPEAN PHYSICAL JOURNAL PLUS LA English DT Article ID SAMPLE CELL; DIFFRACTION; CORROSION; WASTE; WATER AB A new high pressure-temperature (P-T) Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) is described that significantly extends the capabilities of solid/fluid interface investigations up to 200 MPa (similar to 30000 psi) and 200 degrees C. The cell's simple aluminum construction makes it light and easy to operate while thinned neutron windows allow up to 74% neutron transmission. The wide-open neutron window geometry provides a maximum theoretical Q(z) range of 0.31 angstrom(-1). Accurate T and P controls are integrated on the cell's control panel. Built-in powder wells provide the ability to saturate fluids with reactive solids, producing aqueous species and/or decomposing into gaseous phases. The cell is designed for samples up to 50.8 mm in diameter and 10.0 mm in thickness. An experiment investigating the high P-T corrosion behavior of aluminum on LANL's Surface ProfilE Analysis Reflectometer (SPEAR) is presented, demonstrating the functioning and capability of the cell. Finally, outlooks on high P-T NR applications and perspectives on future research are discussed. C1 [Wang, P.; Taylor, M.; Majewski, J.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Lerner, A. H.; Hickmott, D. D.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Baldwin, J. K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Grubbs, R. K.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Wang, P (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, POB 1663, Los Alamos, NM 87545 USA. EM jarek@lanl.gov; dhickmott@lanl.gov RI Lujan Center, LANL/G-4896-2012 FU DOE Office of Basic Energy Sciences; Los Alamos National Laboratory under DOE [DE-AC52-06NA25396]; LANL's Laboratory Directed Research and Development Program FX This work benefited from the use of the Lujan Neutron Scattering Center at LANSCE funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. For Al sample preparation, the authors acknowledge access to LANL's Center for Integrated Nanotechnologies (CINT), a DOE/BES user facility, through an approved user project. Special acknowledgement is extended to the Material Science Electron Microscopy Lab (EML) for supporting SEM characterization. The funding for this research is provided by LANL's Laboratory Directed Research and Development Program. NR 31 TC 1 Z9 1 U1 0 U2 15 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5444 J9 EUR PHYS J PLUS JI Eur. Phys. J. Plus PD JUL PY 2012 VL 127 IS 7 AR 76 DI 10.1140/epjp/i2012-12076-0 PG 15 WC Physics, Multidisciplinary SC Physics GA 987DT UT WOS:000307397400007 ER PT J AU Sheldon, FT Weber, JM Yoo, SM Pan, WD AF Sheldon, Frederick T. Weber, John Mark Yoo, Seong-Moo Pan, W. David TI The Insecurity of Wireless Networks SO IEEE SECURITY & PRIVACY LA English DT Article AB Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. C1 [Sheldon, Frederick T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yoo, Seong-Moo] Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL USA. RP Sheldon, FT (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM sheldon@ieee.org; jark22@hotmail.com; yoos@eng.uah.edu; dwpan@eng.uah.edu OI Sheldon, Frederick/0000-0003-1241-2750 FU US Government (USG) [DE-AC05-00OR22725]; US National Science Foundation [DUE-104394] FX This article was authored by a contractor of the US Government (USG) under contract DE-AC05-00OR22725. Accordingly, the USG retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for USG purposes. US National Science Foundation grant DUE-104394 partially supported this research. NR 22 TC 11 Z9 12 U1 1 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD JUL-AUG PY 2012 VL 10 IS 4 BP 54 EP 61 PG 8 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 986TC UT WOS:000307367500010 ER PT J AU Aradottir, ESP Sonnenthal, EL Bjornsson, G Jonsson, H AF Aradottir, E. S. P. Sonnenthal, E. L. Bjornsson, G. Jonsson, H. TI Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Reactive transport modeling; Inverse parameter calibration; CO2 mineral sequestration; Geologic CO2 storage; CO2-water-basalt interaction ID IRREVERSIBLE REACTIONS; HYDROTHERMAL SYSTEMS; DISSOLUTION RATES; GLASS DISSOLUTION; AQUEOUS SOLUTIONS; WEATHERING RATES; NATURAL-WATERS; KINETICS; PH; PRECIPITATION AB Two and three-dimensional field scale reservoir models of CO2 mineral sequestration in basalts were developed and calibrated against a large set of field data. Resulting principal hydrological properties are lateral and vertical intrinsic permeabilities of 300 and 1700 x 10(-15) m(2), respectively, effective matrix porosity of 8.5% and a 25 m/year estimate for regional groundwater flow velocity. Reactive chemistry was coupled to calibrated models and predictive mass transport and reactive transport simulations carried out for both a 1200-tonnes pilot CO2 injection and a full-scale 400,000-tonnes CO2 injection scenario. Reactive transport simulations of the pilot injection predict 100% CO2 mineral capture within 10 years and cumulative fixation per unit surface area of 5000 tonnes/km(2). Corresponding values for the full-scale scenario are 80% CO2 mineral capture after 100 years and cumulative fixation of 35,000 tonnes/km(2). CO2 sequestration rate is predicted to range between 1200 and 22,000 tonnes/year in both scenarios. The predictive value of mass transport simulations was found to be considerably lower than that of reactive transport simulations. Results from three-dimensional simulations were also in significantly better agreement with field observations than equivalent two-dimensional results. Despite only being indicative, it is concluded from this study that fresh basalts may comprise ideal geological CO2 storage formations. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Aradottir, E. S. P.] Reykjavik Energy, IS-110 Reykjavik, Iceland. [Aradottir, E. S. P.; Jonsson, H.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Sonnenthal, E. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bjornsson, G.] Reykjavik Geothermal, IS-108 Reykjavik, Iceland. RP Aradottir, ESP (reprint author), Reykjavik Energy, Baejarhalsi 1, IS-110 Reykjavik, Iceland. EM edda.sif.aradottir@or.is RI Jonsson, Hannes/G-2267-2013; Sonnenthal, Eric/A-4336-2009 OI Jonsson, Hannes/0000-0001-8285-5421; FU Reykjavik Energy; Geothermal Research Group GEORG [09-01-003, 09-02-001]; University fund of Eimskipafelag Islands FX This work was funded by Reykjavik Energy, Geothermal Research Group GEORG (09-01-003 and 09-02-001) and the University fund of Eimskipafelag Islands. NR 66 TC 39 Z9 39 U1 1 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2012 VL 9 BP 24 EP 40 DI 10.1016/j.ijggc.2012.02.006 PG 17 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 978DO UT WOS:000306721000003 ER PT J AU McGrail, BP Freeman, CJ Brown, CF Sullivan, EC White, SK Reddy, S Garber, RD Tobin, D Gilmartin, JJ Steffensen, EJ AF McGrail, B. P. Freeman, C. J. Brown, C. F. Sullivan, E. C. White, S. K. Reddy, S. Garber, R. D. Tobin, D. Gilmartin, J. J. Steffensen, E. J. TI Overcoming business model uncertainty in a carbon dioxide capture and sequestration project: Case study at the Boise White Paper Mill SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geologic sequestration; Biomass; Negative carbon emissions; CO2 capture; Basalt ID STORAGE; BASALT AB Carbon capture and storage (CCS) is one of a suite of technology options that might play a significant role in reducing greenhouse gas emissions. However, outside of traditional enhanced oil and gas recovery operations with a well established business model, CCS project deployments are struggling with adoption of a federal or international climate policy driver appearing unlikely for the foreseeable future. As part of a feasibility study for an industrial CCS project at the Boise White Paper mill in Washington State, a business model and CCS system design was developed that provided financial surety for the project developers while recognizing that uncertainty in revenue forecasts for CO2 storage would persist for the foreseeable future. Key to the business model was installation of a new 37 MWe biomass-fueled power island at the plant that would replace antiquated boilers and that could still supply the necessary steam to run pulp and paper production operations when capturing CO2 emissions under favorable market conditions for monetizing CO2 storage credits. Under unfavorable market conditions, CO2 capture would be suspended and excess power generated from the plant would reduce external electrical energy purchases required for paper mill operations. The net CO2 reduction for the project versus current operations is 1.0 MMT of CO2 per year with the CCS system online, and 139 ktons per year with the CCS system offline due to reduced natural gas co-firing. So, both operational modes offered a significant net reduction in CO2 emissions. Based on assumptions regarding electricity and natural gas pricing, and CO2 storage revenue generated through an open market mechanism priced at $15 per metric ton CO2, the payback period for the project capturing 0.5 MMT/yr (62% of total CO2 production) was estimated at 6.7 years versus 7.4 years with the CCS system offline. Geologic storage was evaluated in the deep flood basalt formations that dominate the storage capacity in Eastern Washington. Sub-basalt sediments were also examined at the site to provide alternative or supplemental storage capacity in the event that storage in the basalt sequences did not prove technically or economically feasible. (C) 2012 Elsevier Ltd. All rights reserved. C1 [McGrail, B. P.; Freeman, C. J.; Brown, C. F.; Sullivan, E. C.; White, S. K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Reddy, S.; Gilmartin, J. J.] Fluor Corp, Aliso Viejo, CA USA. [Garber, R. D.; Tobin, D.; Steffensen, E. J.] Boise White Paper LLC, Wallula, WA USA. RP McGrail, BP (reprint author), POB 999,MS K6-81, Richland, WA 99352 USA. EM pete.mcgrail@pnnl.gov FU U.S. DOE, Office of Fossil Energy [DE-FE0001992]; Fluor Corporation, Boise, Inc.; Battelle Pacific Northwest Division FX This work was supported by the U.S. DOE, Office of Fossil Energy under Cooperative Agreement DE-FE0001992 and through financial contributions made by Fluor Corporation, Boise, Inc., and Battelle Pacific Northwest Division. The authors wish to thank James Wong at Boise, Inc. and Arnie Smith of Fluor Corporation for their help and support during the project. We also wish to acknowledge Dr. Mike Davis, former Associate Laboratory Director at Pacific Northwest National Laboratory for personally championing Battelle's participation in the ICCS project based on its strategic importance to the region and the nation as a whole. NR 22 TC 8 Z9 8 U1 3 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2012 VL 9 BP 91 EP 102 DI 10.1016/j.ijggc.2012.03.009 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 978DO UT WOS:000306721000009 ER PT J AU Ogretim, E Mulkeen, E Gray, DD Bromhal, GS AF Ogretim, Egemen Mulkeen, Everett Gray, Donald D. Bromhal, Grant S. TI A parametric study of the transport of CO2 in the near-surface SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon dioxide; Vadose zone; Carbon sequestration; Risk analysis; Near surface monitoring ID CARBON SEQUESTRATION SITES; LEAKAGE; DIOXIDE; STORAGE; ZONE; FLUX AB Previous simulations of the behavior of a CO2 plume from a discrete line source near the ground surface have generally assumed that the water-table, soil layering, and land surface were all horizontal. As might be expected, these conditions produce plumes with a high degree of symmetry. The three dimensional TOUGH2 simulations reported here begin to consider several complications: degree of soil heterogeneity, presence of a capillary barrier, water table depth, CO2 leakage rate, sloping topography, and regional groundwater flow (sloping water-table). The results show that the ground surface CO2 flux distribution can be significantly different due to variation in the aforementioned factors, e.g. presence of a capillary barrier. The plume affected by these factors can assume an irregular shape characterized by multiple pathways to the surface. These pathways make the detection of a CO2 leak by soil gas or surface flux measurements conditionally possible at tens of meters away from the initial leak location. Such phenomena should be considered when designing CO2 detection network design. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Ogretim, Egemen; Mulkeen, Everett; Gray, Donald D.] W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. [Ogretim, Egemen; Mulkeen, Everett; Gray, Donald D.; Bromhal, Grant S.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Ogretim, E (reprint author), W Virginia Univ, Dept Civil & Environm Engn, POB 6103, Morgantown, WV 26506 USA. EM egemen.ogretim@mail.wvu.edu FU RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in CO2 capture under the RES contract DE-FE0004000. NR 17 TC 3 Z9 3 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2012 VL 9 BP 294 EP 302 DI 10.1016/j.ijggc.2012.04.007 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 978DO UT WOS:000306721000027 ER PT J AU de Lary, L Loschetter, A Bouc, O Rohmer, J Oldenburg, CM AF de Lary, L. Loschetter, A. Bouc, O. Rohmer, J. Oldenburg, C. M. TI Assessing health impacts of CO2 leakage from a geological storage site into buildings: Role of attenuation in the unsaturated zone and building foundation SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geological storage; Leakage; CO2; Health; Unsaturated zone; Indoor exposure ID CARBON SEQUESTRATION SITES; SUBCRITICAL CONDITIONS; INCLUDING TRANSITIONS; SALINE AQUIFERS; PHASE-CHANGE; GASEOUS CO2; GAS HAZARD; TRANSPORT; MODEL; DIOXIDE AB Geological storage of the greenhouse gas CO2 has the potential to be a widespread and effective option to mitigate climate change. As any industrial activity, CO2 storage may lead to adverse impact on human health and the environment in the case of unexpected leakage from the reservoir. These potential impacts should be considered in a risk assessment process. We present an approach to assess the impacts on human health in case of CO2 leakage emerging in the unsaturated zone under a building. We first focus on the migration of the CO2 in the unsaturated zone and the foundation through numerical simulation with sensitivity analysis. Our results show that the intrusion of CO2 into a building is substantially attenuated by the unsaturated zone and the foundation and may lead only under very specific conditions (very low ventilated parts of buildings, high flow rate and/or building situated very close to a leaking pathway) to hazardous CO2 indoor concentrations. We have then integrated the former results in a global toolbox that provides an efficient and easy-to-use tool for decision support, which enables to assess the impacts on human health of CO2 leakage from the reservoir to a building. (C) 2012 Elsevier Ltd. All rights reserved. C1 [de Lary, L.; Loschetter, A.; Bouc, O.; Rohmer, J.] Bur Rech Geol & Minieres, F-45060 Orleans 2, France. [Oldenburg, C. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP de Lary, L (reprint author), Bur Rech Geol & Minieres, 3 Av C Guillemin,BP36009, F-45060 Orleans 2, France. EM l.delarydelatour@brgm.fr RI Oldenburg, Curtis/L-6219-2013 OI Oldenburg, Curtis/0000-0002-0132-6016 NR 58 TC 14 Z9 14 U1 4 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2012 VL 9 BP 322 EP 333 DI 10.1016/j.ijggc.2012.04.011 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 978DO UT WOS:000306721000030 ER PT J AU Hu, LT Pan, LH Zhang, KN AF Hu, Litang Pan, Lehua Zhang, Keni TI Modeling brine leakage to shallow aquifer through an open wellbore using T2WELL/ECO2N SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 geological storage; Brine leakage; Excess pore pressure (EPP); T2WELL/ECO2N; Equivalent Porous Media; Wellbore flow; Coupled wellbore-reservoir model ID CO2 STORAGE; SALINE AQUIFERS; 2-PHASE FLOW; BASIN; DEPLOYMENT; WELLS; TEXAS AB The efficiency and sustainability of CO2 storage in deep saline formations depends on the integrity of the overlying caprocks. Existing oil and gas wells, which penetrate the formations, are potential leakage pathways. In this paper, T2WELL/ECO2N, a coupled wellbore-reservoir flow simulator of carbon dioxide and brine, is employed to analyze the effects of salinity and excess pore pressure (EPP) on brine leakage from an injection reservoir to a shallow fresh aquifer. The effectiveness of the Equivalent Porous Media (EPM) approach, a widely used approximation of wellbore flow in wellbore-reservoir simulations, is also evaluated. A hypothetical model is built to create test cases with EPP of 0.1 MPa, 0.5 MPa and 1.5 MPa under low-, middle-, and high-salinity. The results show that a quasi-steady-state leakage rate will be quickly established if the EPP caused by CO2 injection is higher than the threshold EPP. However, the brine salinity has an important impact on the brine leakage rate including the threshold EPP below which no leakage occurs. The leakage rate decreases with the increase of the salinity whereas the threshold EPP increases with the increase of the salinity. For the same brine salinity, the quasi-steady-state leakage rate increases with the EPP nonlinearly. The leakage rate calculated by the EPM approach is very sensitive to the equivalent permeability of the wellbore, which however, is not an intrinsic parameter of a given wellbore-aquifer system. Although the EPM approach could reproduce the dynamic leakage rate reasonably well with a fitted permeability, it could over- or underestimates the leakage rate by orders in magnitude for the same system depending on whether the true leakage rate itself is smaller or larger than that of the fitting case due to changes in the salinity and/or the EPP through an abandoned well. The dependence of the equivalent permeability on the flow rate makes the EPM approach not to be a viable method for predicting wellbore leakage except for the cases with very small leakage rates. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Hu, Litang; Zhang, Keni] Beijing Normal Univ, Coll Water Sci, Engn Res Ctr Groundwater Pollut Control & Remedia, Minist Educ, Beijing 100875, Peoples R China. [Pan, Lehua; Zhang, Keni] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, KN (reprint author), Beijing Normal Univ, Coll Water Sci, Engn Res Ctr Groundwater Pollut Control & Remedia, Minist Educ, Beijing 100875, Peoples R China. EM litanghu@bnu.edu.cn; lpan@lbl.gov; keniz@bnu.edu.cn RI Pan, Lehua/G-2439-2015 FU National Nature Science Foundation of China [41072178, 40872159]; Fundamental Research Funds for the Central Universities [105560GK]; CO2 Capture Project (CCP) of the Joint Industry Program (JIP); National Risk Assessment Partnership through the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL); Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231] FX This research is in part supported by the National Nature Science Foundation of China (Grant Nos. 41072178 and 40872159) and the Fundamental Research Funds for the Central Universities (No. 105560GK), by the CO2 Capture Project (CCP) of the Joint Industry Program (JIP), by the National Risk Assessment Partnership through the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. The authors thank four anonymous reviewers and associate editor for their helpful comments and substantial editing that led to a significant improvement in the paper. NR 29 TC 8 Z9 8 U1 2 U2 34 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2012 VL 9 BP 393 EP 401 DI 10.1016/j.ijggc.2012.05.010 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 978DO UT WOS:000306721000036 ER PT J AU Ashworth, P Bradbury, J Wade, S Feenstra, CFJY Greenberg, S Hund, G Mikunda, T AF Ashworth, Peta Bradbury, Judith Wade, Sarah Feenstra, C. F. J. Ynke Greenberg, Sallie Hund, Gretchen Mikunda, Thomas TI What's in store: Lessons from implementing CCS SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Communication; Engagement; Public perceptions; Stakeholders; Carbon capture and storage; CCS ID CARBON-DIOXIDE CAPTURE; PERCEPTIONS; ACCEPTANCE AB Carbon dioxide capture and storage (CCS) has been identified as a key technology for mitigating carbon emissions. However, CCS is still very much at a developmental stage and the full-scale projects required to test the technology have proven difficult to implement, with lack of societal acceptance considered a key contributing factor to this delay. This paper reports on a study that explored practices for effective communication, engagement strategies and activities in the context of five detailed CCS project case studies. The cases studied included Barendrecht, The Netherlands; Carson, USA; FutureGen, USA; ZeroGen, Australia; and the CO2CRC Otway project, Australia. Comparative analysis of these cases identified a series of factors including: the extent to which key government and project team members are aligned; deployment of communications experts as part of the project team from the outset; consideration of the social context; the degree of flexibility in the project; and competition involving community self-selection. The research team designated these "critical success factors" that, when present, seemed to enhance the effectiveness of best practices in engagement and contribute to successful project deployment in some cases. The paper proposes that project developers need to consider ways to maximise these critical factors as part of their project planning and implementation process. It also discusses best practices in stakeholder communication and engagement activities applicable to CCS projects. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Ashworth, Peta; Bradbury, Judith] CSIRO Earth Sci & Resource Engn, Kenmore, Qld 4069, Australia. [Hund, Gretchen] US DOE, Pacific NW Natl Lab, Washington, DC 20585 USA. [Wade, Sarah] AJW Inc, Washington, DC USA. [Greenberg, Sallie] Univ Illinois, Illinois State Geol Survey, Chicago, IL 60680 USA. RP Ashworth, P (reprint author), CSIRO, Sci Soc, POB 883, Kenmore, Qld 4069, Australia. EM peta.ashworth@csiro.au RI Ashworth, Peta/I-6503-2013 OI Ashworth, Peta/0000-0003-4648-7531 FU Global Carbon Capture and Storage Institute FX The research was sponsored by the Global Carbon Capture and Storage Institute. NR 38 TC 26 Z9 26 U1 1 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2012 VL 9 BP 402 EP 409 DI 10.1016/j.ijggc.2012.04.012 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 978DO UT WOS:000306721000037 ER PT J AU Breen, SJ Carrigan, CR LaBrecque, DJ Detwiler, RL AF Breen, Stephen J. Carrigan, Charles R. LaBrecque, Douglas J. Detwiler, Russell L. TI Bench-scale experiments to evaluate electrical resistivity tomography as a monitoring tool for geologic CO2 sequestration SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geophysics; Monitoring; Electrical resistivity; Multiphase flow ID LIGHT TRANSMISSION; OCCAMS INVERSION; VADOSE ZONE; CROSS-HOLE; ERT; SATURATION; RESOLUTION; ALGORITHM; TRANSPORT; GERMANY AB Field-scale studies have shown electrical resistivity tomography (ERT) to be an effective tool for imaging resistivity anomalies and monitoring infiltration events in the near subsurface. ERT also shows potential for monitoring supercritical-CO2 injections, despite deployment challenges in the deep subsurface. We present results from analog bench-scale experiments aimed at evaluating the ability of ERT to quantify the volume and spatial distribution of a resistive fluid injected into a brine-saturated porous medium. Our experiments represent a well-controlled analog for supercritical-CO2 injection into deep brine aquifers. We injected measured volumes of air into translucent chambers filled with quartz sand, lined with electrodes, and saturated with a low resistivity salt solution. Between injections, a CCD camera captured high-resolution images, and an ERT data acquisition system scanned the chamber. Processing of the CCD images using quantitative visualization techniques resulted in high-resolution measurements of the spatial distribution and saturation of the injected gas. Direct comparison to inverted resistivity fields then provided a quantitative measure of the ability of ERT to estimate the total volume of injected gas and its spatial distribution within the chamber. We present results from two experiments designed to represent different injection scenarios: (A) low injection rate and strong capillary barrier and (B) high injection rate and weaker capillary barrier. Results show that ERT provided good estimates of the shape, size and location of the primary plume, but overestimated brine saturation within the plume and did not detect thin pathways of gas from the injection port or within the overlying capillary barrier. ERT measurements also indicated a change in saturation within the primary plume that corresponded with observed leakage through the capillary barrier in (B), demonstrating the potential utility of ERT as a leakage-monitoring tool. Repeated ERT scans during our experiments led to degradation in data quality that corresponded with an increase in measured contact resistance. Decreased data quality over time is clearly a concern for ERT implementation as a long-term monitoring strategy and deserves further study to quantify the responsible mechanisms. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Breen, Stephen J.; Detwiler, Russell L.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Carrigan, Charles R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [LaBrecque, Douglas J.] Multiphase Technol LLC, Sparks, NV 89441 USA. RP Detwiler, RL (reprint author), Univ Calif Irvine, Dept Civil & Environm Engn, 844C Engn Tower, Irvine, CA 92697 USA. EM sbreen@uci.edu; carrigan1@llnl.gov; dlabrecque@mpt3d.com; detwiler@uci.edu RI Detwiler, Russell/C-3228-2008 OI Detwiler, Russell/0000-0002-7693-9271 FU U.S. Department of Energy, Basic Energy Sciences, Geosciences Program [DE-FG02-09ER16003, DE-AC52-07NA27344]; University of California, Irvine Undergraduate Research Opportunities Program FX We thank Scott Fisher at Lawrence Livermore National Laboratory for his assistance in designing and fabricating the experimental sand chamber and setting up and running the experiments. This work was performed with funding from the U.S. Department of Energy, Basic Energy Sciences, Geosciences Program under contracts DE-FG02-09ER16003 (University of California, Irvine) and DE-AC52-07NA27344 (Lawrence Livermore National Laboratory). Stephen Breen was partially supported by a fellowship from the University of California, Irvine Undergraduate Research Opportunities Program. NR 43 TC 16 Z9 16 U1 1 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2012 VL 9 BP 484 EP 494 DI 10.1016/j.ijggc.2012.04.009 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 978DO UT WOS:000306721000044 ER PT J AU Li, HD Deng, ZD Yuan, Y Carlson, TJ AF Li, Huidong Deng, Zhiqun Daniel Yuan, Yong Carlson, Thomas J. TI Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter SO SENSORS LA English DT Article DE miniaturized transmitter; underwater acoustic transmitter; piezoelectric ceramic; PZT; piezoelectric transducer; transducer power consumption; fish tag ID TELEMETRY SYSTEM; LAMB WAVES; TRANSDUCERS; INSTRUMENTATION; TRACKING AB PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters-the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level. C1 [Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, POB 999, Richland, WA 99352 USA. EM huidong.li@pnnl.gov; zhiqun.deng@pnnl.gov; yong.yuan@pnnl.gov; thomas.carlson@pnnl.gov RI Li, Huidong/I-7108-2013; Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Army Corps of Engineers (USACE), Portland District; U.S. Department of Energy [DE-AC05-76RL01830] FX The work described in this article was funded by the U.S. Army Corps of Engineers (USACE), Portland District. Brad Eppard is the technical point of contact for USACE, and we greatly appreciate his involvement and oversight. The authors also wish to thank Mike Langeslay and Bob Johnson of the USACE and Tylor Abel, Andrea Currie, Jayson Martinez, Mitchell Myjak, Matt Taubman, and Mark Weiland of Pacific Northwest National Laboratory for their help with this study. The study was conducted at Pacific Northwest National Laboratory in Richland, Washington, operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 23 TC 7 Z9 7 U1 1 U2 22 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUL PY 2012 VL 12 IS 7 BP 9098 EP 9109 DI 10.3390/s120709098 PG 12 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 979EA UT WOS:000306796500037 PM 23012534 ER PT J AU Chen-Wiegart, YCK Shearing, P Yuan, QX Tkachuk, A Wang, J AF Chen-Wiegart, Yu-chen Karen Shearing, Paul Yuan, Qingxi Tkachuk, Andrei Wang, Jun TI 3D morphological evolution of Li-ion battery negative electrode LiVO2 during oxidation using X-ray nano-tomography SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Transmission X-ray microscopy; Li-ion battery; 3D analysis; Nano-tomography and computed tomography AB Lithium vanadium oxide (LiVO21) holds the potential promise to replace graphite as an anode material in commercial Li-ion batteries as it doubles the volumetric energy density compared to graphite but can still operate at low voltage (similar to 0.1 V vs. Li/Li+). Its degradation mechanism was investigated using a synchrotron X-ray nano-tomography technique to image the LiVO2 in three dimensions (3D). In particular an oxidation effect is discussed by a direct visualization and quantification of the 3D microstructure of the LiVO2 before and after being exposed to the air, which results in the oxidation of the LiVO2. After being exposed to air, an oxidation layer with thickness similar to 120-240 nm was observed at the interface of the LiVO2 particles and the binders/pores. While the total volume of LiVO2 remains relatively constant before and after oxidation, the particle size reduces, which is consistent with crack growth possibly due to the local exothermal oxidation reactions, accompanied by phase transition at an elevated temperature. The findings confirm the air-sensitivity of LiVO2 observed indirectly in the literature. (C) 2012 Elsevier B.V. All rights reserved. C1 [Chen-Wiegart, Yu-chen Karen; Yuan, Qingxi; Wang, Jun] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Shearing, Paul] UCL, Dept Chem Engn, London WC1E 6BT, England. [Tkachuk, Andrei] Xradia Inc, Pleasanton, CA USA. RP Wang, J (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, 75 Brookhaven Ave,Bldg 725D, Upton, NY 11973 USA. EM junwang@bnl.gov FU Royal Academy of Engineering; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank Dr. Stefan Freunberger (St. Andrews University) for providing the LiVO2 samples. We thank Dr. Eric Maire who provided us with the Image) plug-in for tortuosity calculations. P. Shearing acknowledges funding from the Royal Academy of Engineering. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 12 TC 28 Z9 28 U1 11 U2 94 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD JUL PY 2012 VL 21 BP 58 EP 61 DI 10.1016/j.elecom.2012.04.033 PG 4 WC Electrochemistry SC Electrochemistry GA 978EQ UT WOS:000306723800015 ER PT J AU Owen, SJ Staten, ML Shephard, MS AF Owen, Steven J. Staten, Matthew L. Shephard, Mark S. TI Special edition, Trends in unstructured mesh generation VII Preface SO ENGINEERING WITH COMPUTERS LA English DT Editorial Material C1 [Shephard, Mark S.] Rensselaer Polytech Inst, Sci Computat Res Ctr, Troy, NY 12180 USA. [Owen, Steven J.; Staten, Matthew L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shephard, MS (reprint author), Rensselaer Polytech Inst, Sci Computat Res Ctr, Troy, NY 12180 USA. EM sjowen@sandia.gov; mlstate@sandia.gov; shephard@rpi.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD JUL PY 2012 VL 28 IS 3 SI SI BP 209 EP 209 DI 10.1007/s00366-012-0275-9 PG 1 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA 976LX UT WOS:000306587300001 ER PT J AU Quadros, WR Owen, SJ AF Quadros, William Roshan Owen, Steven J. TI Defeaturing CAD models using a geometry-based size field and facet-based reduction operators SO ENGINEERING WITH COMPUTERS LA English DT Article DE Defeaturing; Feature suppression; CAD simplification; Facet reduction ID SIMPLIFICATION; GENERATION; MESHES AB We propose a method to automatically defeature a CAD model by detecting irrelevant features using a geometry-based size field and a method to remove the irrelevant features via facet-based operations on a discrete representation. A discrete B-Rep model is first created by obtaining a faceted representation of the CAD entities. The candidate facet entities are then marked for reduction using a geometry-based size field. This is accomplished by estimating local mesh sizes based on geometric criteria. If the field value at a facet entity goes below a user-specified threshold value then it is identified as an irrelevant feature and is marked for reduction. The reduction of marked facet entities is performed using various facet operators. Care is taken to retain a valid geometry and topology of the discrete model throughout the procedure. The original model is not altered as the defeaturing is performed on a separate discrete model. Associativity between the entities of the discrete model and that of original CAD model is maintained in order to decode the attributes and boundary conditions applied on the original CAD entities onto the mesh via the entities of the discrete model. Example models are presented to illustrate the effectiveness of the proposed approach. C1 [Quadros, William Roshan; Owen, Steven J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Quadros, WR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wrquadr@sandia.gov; sjowen@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 17 TC 4 Z9 4 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD JUL PY 2012 VL 28 IS 3 SI SI BP 211 EP 224 DI 10.1007/s00366-011-0252-8 PG 14 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA 976LX UT WOS:000306587300002 ER PT J AU Kowalski, N Ledoux, F Staten, ML Owen, SJ AF Kowalski, Nicolas Ledoux, Franck Staten, Matthew L. Owen, Steve J. TI Fun sheet matching: towards automatic block decomposition for hexahedral meshes SO ENGINEERING WITH COMPUTERS LA English DT Article DE Hexahedral mesh; Block-structured mesh; Dual mesh; Fundamental mesh; Mesh generation ID GENERATION AB Depending upon the numerical approximation method that may be implemented, hexahedral meshes are frequently preferred to tetrahedral meshes. Because of the layered structure of hexahedral meshes, the automatic generation of hexahedral meshes for arbitrary geometries is still an open problem. This layered structure usually requires topological modifications to propagate globally, thus preventing the general development of meshing algorithms such as Delaunay's algorithm for tetrahedral meshes or the advancing-front algorithm based on local decisions. To automatically produce an acceptable hexahedral mesh, we claim that both global geometric and global topological information must be taken into account in the mesh generation process. In this work, we propose a theoretical classification of the layers or sheets participating in the geometry capture procedure. These sheets are called fundamental, or fun-sheets for short, and make the connection between the global layered structure of hexahedral meshes and the geometric surfaces that are captured during the meshing process. Moreover, we propose a first generation algorithm based on fun-sheets to deal with 3D geometries having 3- and 4-valent vertices. C1 [Kowalski, Nicolas; Ledoux, Franck] CEA, DAM, DIF, F-91297 Arpajon, France. [Staten, Matthew L.; Owen, Steve J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ledoux, F (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM nicolas.kowalski@cea.fr; franck.ledoux@cea.fr; mlstate@sandia.gov; sjowen@sandia.gov FU US Department of Energy, National Nuclear Security Administration; French Commissariat a l'Energie Atomique FX The authors wish to acknowledge the work of Jason Shephard in providing some of the foundational concepts in this work and for his insightful comments over the years in the area of dual-based hexahedral mesh generation. We also wish to acknowledge sponsorship from the high performance computing international collaboration between the US Department of Energy, National Nuclear Security Administration and the French Commissariat a l'Energie Atomique under the direction of Robert Meisner (NNSA) and Jean Gonnard (CEA/DAM). NR 34 TC 4 Z9 6 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD JUL PY 2012 VL 28 IS 3 SI SI BP 241 EP 253 DI 10.1007/s00366-010-0207-5 PG 13 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA 976LX UT WOS:000306587300004 ER PT J AU Kramer, MJ McCallum, RW Anderson, IA Constantinides, S AF Kramer, M. J. McCallum, R. W. Anderson, I. A. Constantinides, S. TI Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators SO JOM LA English DT Article ID MN-AL-C; INTERMETALLIC COMPOUND; RAPID SOLIDIFICATION; ALLOYS; PHASE; FE; ANISOTROPY; NITRIDES; SYSTEM AB With the advent of high-flux density permanent magnets based on rare earth elements such as neodymium (Nd) in the 1980s, permanent magnet-based electric machines had a clear performance and cost advantage over induction machines when weight and size were factors such as in hybrid electric vehicles and wind turbines. However, the advantages of the permanent magnet-based electric machines may be overshadowed by supply constraints and high prices of their key constituents, rare earth elements, which have seen nearly a 10-fold increase in price in the last 5 years and the imposition of export limits by the major producing country, China, since 2010. We outline the challenges, prospects, and pitfalls for several potential alloys that could replace Nd-based permanent magnets with more abundant and less strategically important elements. C1 [Kramer, M. J.; McCallum, R. W.; Anderson, I. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Kramer, M. J.; McCallum, R. W.; Anderson, I. A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Constantinides, S.] Arnold Magnet Technol Corp, Rochester, NY 14625 USA. RP Kramer, MJ (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM mjkramer@ameslab.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under its Vehicle Technologies Program, through the Ames Laboratory. Ames Laboratory [DE-AC02-07CH11358] FX We would like to thank Ralph Skomski, David Sellmyer, and Jeff Shield for their helpful suggestions. This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under its Vehicle Technologies Program, through the Ames Laboratory. Ames Laboratory is operated by Iowa State University under contract DE-AC02-07CH11358. NR 71 TC 86 Z9 87 U1 2 U2 80 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD JUL PY 2012 VL 64 IS 7 BP 752 EP 763 DI 10.1007/s11837-012-0351-z PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 981EZ UT WOS:000306951000004 ER PT J AU Leary, AM Ohodnicki, PR McHenry, ME AF Leary, Alex M. Ohodnicki, Paul R. McHenry, Michael E. TI Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications SO JOM LA English DT Article ID AMORPHOUS POWDER CORES; DC-DC CONVERTER; CRYSTALLIZATION KINETICS; NANOCRYSTALLINE MATERIALS; MULTILEVEL CONVERTERS; NANOCOMPOSITE ALLOYS; METALLIC GLASSES; PRESSURE; TRANSFORMER; ANISOTROPY AB Advanced soft magnetic materials are needed to match high-power density and switching frequencies made possible by advances in wide band-gap semiconductors. Magnetics capable of operating at higher operating frequencies have the potential to greatly reduce the size of megawatt level power electronics. In this article, we examine the role of soft magnetic materials in high-frequency power applications and we discuss current material's limitations and highlight emerging trends in soft magnetic material design for high-frequency and power applications using the materials paradigm of synthesis -> structure -> property -> performance relationships. C1 [Leary, Alex M.; McHenry, Michael E.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Ohodnicki, Paul R.] NETL, Div Chem & Surface Sci, Pittsburgh, PA 15236 USA. RP Leary, AM (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM leary@cmu.edu RI McHenry, Michael/B-8936-2009 FU ARPA-E [DE-AR0000219]; ARL [W911NF-08-2-0024]; agency of the United States Government FX The work of A. M. Leary and M. E. McHenry was supported by ARPA-E Award Number DE-AR0000219 and the ARL through Grant No. W911NF-08-2-0024. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 77 TC 38 Z9 38 U1 5 U2 59 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2012 VL 64 IS 7 BP 772 EP 781 DI 10.1007/s11837-012-0350-0 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 981EZ UT WOS:000306951000006 ER PT J AU Gao, MC AF Gao, Michael C. TI Computational Thermodynamic and Kinetic Modeling of High-Entropy Alloys and Amorphous Alloys SO JOM LA English DT Editorial Material C1 [Gao, Michael C.] Natl Energy Technol Lab, Albany, OR USA. [Gao, Michael C.] URS Corp, Albany, OR USA. RP Gao, MC (reprint author), Natl Energy Technol Lab, Albany, OR USA. EM michael.gao@contr.netl.doe.gov OI Gao, Michael/0000-0002-0515-846X NR 0 TC 3 Z9 3 U1 4 U2 39 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2012 VL 64 IS 7 BP 828 EP 829 DI 10.1007/s11837-012-0363-8 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 981EZ UT WOS:000306951000014 ER PT J AU Sheng, HW Ma, E Kramer, MJ AF Sheng, H. W. Ma, E. Kramer, M. J. TI Relating Dynamic Properties to Atomic Structure in Metallic Glasses SO JOM LA English DT Article ID SHORT-RANGE ORDER; OPEN VOLUME REGIONS; SIMPLE-MODEL GLASS; AMORPHOUS-ALLOYS; SUPERCOOLED LIQUIDS; SPHERE PACKINGS; VITREOUS SILICA; CORRELATION LENGTH; VIBRATIONAL-MODES; ENERGY LANDSCAPE AB Atomic packing in metallic glasses is not completely random but displays various degrees of structural ordering. While it is believed that local structures profoundly affect the properties of glasses, a fundamental understanding of the structure-property relationship has been lacking. In this article, we provide a microscopic picture to uncover the intricate interplay between structural defects and dynamic properties of metallic glasses, from the perspective of computational modeling. Computational methodologies for such realistic modeling are introduced. Exploiting the concept of quasi-equivalent cluster packing, we quantify the structural ordering of a prototype metallic glass during its formation process, with a new focus on geometric measures of subatomic "voids." Atomic sites connected with the voids are found to be crucial in terms of understanding the dynamic, including vibrational and atomic transport, properties. Normal mode analysis is performed to reveal the structural origin of the anomalous boson peak (BP) in the vibration spectrum of the glass, and its correlation with atomic packing cavities. Through transition-state search on the energy landscape of the system, such structural disorder is found to be a facilitating factor for atomic diffusion, with diffusion energy barriers and diffusion pathways significantly varying with the degree of structural relaxation/ordering. The implications of structural defects for the mechanical properties of metallic glasses are also discussed. C1 [Sheng, H. W.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Ma, E.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD USA. [Kramer, M. J.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Sheng, HW (reprint author), George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. EM hsheng@gmu.edu RI Sheng, Howard/B-2033-2013; Ma, En/A-3232-2010 FU US NSF [DMR-0907325]; ONR [N00014-09-1-1025A]; United States Department of Energy (USDOE), Office of Science (OS), Office of Basic Energy Science (BES), under Ames Laboratory [DE-AC02-07CH11358]; US National Science Foundation, Division of Materials Research [NSF-DMR-0904188] FX This work was supported by US NSF under Grant No. DMR-0907325 and ONR under Grant No. N00014-09-1-1025A. The work at Ames Laboratory was supported by the United States Department of Energy (USDOE), Office of Science (OS), Office of Basic Energy Science (BES), under Ames Laboratory Contract No. DE-AC02-07CH11358. E. Ma is supported by the US National Science Foundation, Division of Materials Research, under Contract No. NSF-DMR-0904188. H. W. S. acknowledges the use of the supercomputing system at the Center for Computational Materials Science, Institute for Materials Research, Tohoku University. NR 151 TC 19 Z9 19 U1 3 U2 76 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD JUL PY 2012 VL 64 IS 7 BP 856 EP 881 DI 10.1007/s11837-012-0360-y PG 26 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 981EZ UT WOS:000306951000018 ER PT J AU Alvine, KJ Shutthanandan, V Arey, BW Wang, CM Bennett, WD Pitman, SG AF Alvine, Kyle J. Shutthanandan, Vaithiyalingam Arey, Bruce W. Wang, Chongmin Bennett, Wendy D. Pitman, Stan G. TI Pb nanowire formation on Al/lead zirconate titanate surfaces in high-pressure hydrogen SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FERROELECTRIC CAPACITORS; INDUCED DEGRADATION; CERAMICS; GROWTH; FILMS; LEAD; MICROSCOPE; ELECTRODE; WHISKERS; FRACTURE AB Piezoelectric systems are well known to degrade in hydrogen because of various mechanisms including loss of polarization, Pb migration into the electrode, and surface blistering. Understanding damage mechanisms is crucial for potential high-pressure applications such as injectors for hydrogen-fueled vehicles. In this paper, we report on a previously unreported form of high-pressure hydrogen damage resulting from growth of surface Pb nanowires from an Al electrode on lead zirconate titanate. Wires were observed with roughly 80 nm diameter and with length that varied between 5 and 100 mu m. Microscopy to characterize the nanowires and ion-scattering measurements to quantify concurrent Pb surface migration and hydrogen absorption effects are described. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731721] C1 [Alvine, Kyle J.; Shutthanandan, Vaithiyalingam; Arey, Bruce W.; Wang, Chongmin; Bennett, Wendy D.; Pitman, Stan G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Alvine, KJ (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM kyle.alvine@pnnl.gov FU DOE [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research FX This research was supported under DOE Contract No. DE-AC05-76RL01830. A portion of the research was performed using capabilities in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 36 TC 3 Z9 3 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2012 VL 112 IS 1 AR 013533 DI 10.1063/1.4731721 PG 5 WC Physics, Applied SC Physics GA 975LS UT WOS:000306513400053 ER PT J AU Cao, AJ Qu, JM AF cao, Ajing Qu, Jianmin TI Size dependent thermal conductivity of single-walled carbon nanotubes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; TEMPERATURE-DEPENDENCE; ELECTRONIC-STRUCTURE; HEAT-CONDUCTION; GRAPHENE; SILICON AB In this paper, we report a non-equilibrium molecular dynamics study on the size-dependent thermal conductivity in single-walled carbon nanotubes with lengths up to micrometers at room temperature. It is found that the size-dependent thermal conductivity of single-walled carbon nanotubes can be described by kappa(L, d) approximate to kappa(g)(L)(1 - e(-0.185d/a0)), where L is the tube length, d is the diameter, a(0) = 2.46 angstrom is the graphene lattice constant, and kappa(g)(L) proportional to L-alpha is the thermal conductivity of a graphene of length L. In the above, alpha = 1 for L < l(0), and alpha similar to 0.21 for L > l(0), independent of the tube chirality (zigzag or armchair), where l(0) approximate to 200 nm and 300 nm are the effective phonon mean free path for zigzag and armchair tubes, respectively. Physical interpretations of such geometry dependence are provided in the paper by analyzing the spectral energy density, the dispersion relationship, the phonon density of state, and the power spectrum of phonons. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730908] C1 [cao, Ajing; Qu, Jianmin] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA. [Qu, Jianmin] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. RP Cao, AJ (reprint author), Los Alamos Natl Lab, MST 8, Los Alamos, NM 87544 USA. EM acao@lanl.gov; j-qu@northwestern.edu RI Cao, Ajing/C-5970-2008; Qu, Jianmin/E-3521-2010 FU DARPA [N66001-09-C-2012] FX Computations were performed on the QUEST high performance computing cluster at Northwestern University. The work is supported in part by DARPA through Contract N66001-09-C-2012. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. NR 50 TC 22 Z9 22 U1 1 U2 59 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2012 VL 112 IS 1 AR 013503 DI 10.1063/1.4730908 PG 9 WC Physics, Applied SC Physics GA 975LS UT WOS:000306513400023 ER PT J AU Frantti, J Fujioka, Y Zhang, J Wang, S Vogel, SC Nieminen, RM Asiri, AM Zhao, Y Obaid, AY Mkhalid, IA AF Frantti, J. Fujioka, Y. Zhang, J. Wang, S. Vogel, S. C. Nieminen, R. M. Asiri, A. M. Zhao, Y. Obaid, A. Y. Mkhalid, I. A. TI High-pressure neutron study of the morphotropic lead-zirconate-titanate: Phase transitions in a two-phase system SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RHOMBOHEDRAL PEROVSKITES; CERAMICS; DIFFRACTION; TEXTURE; PBTIO3; DIFFRACTOMETER; BOUNDARY; HIPPO AB The present study was dedicated to the classical piezoelectric, lead-zirconate-titanate ceramic with composition Pb(Zr0.54Ti0.46)O-3 at the Zr-rich side of the morphotropic phase boundary at which two phases co-exists. The pressure-induced changes in the phase fractions were studied by high-pressure neutron powder diffraction technique up to 3GPa and 773 K. The two co-existing phases were rhombohedral R3c and monoclinic Cm at room temperature and R3c and P4mm above 1 GPa and 400 K. The experiments show that pressure favors the R3c phase over the Cm and P4mm phases, whereas at elevated temperatures entropy favours the P4mm phase. At 1 GPa pressure, the transition to the cubic Pm (3) over barm phase occurred at around 600 K. Pressure lowers the Cm -> P4mm transition temperature. The Cm phase was found to continuously transform to the P4mm phase with increasing pressure, which is inline with the usual notion that the hydrostatic pressure favours higher symmetry structures. At the same time, the phase fraction of the R3c phase was increasing, implying discontinuous Cm -> R3c phase transition. This is in clear contrast to the polarization rotation model according to which the Cm would link the tetragonal and rhombohedral phases by being a phase in which the polarization would, more or less continuously, rotate from the tetragonal polarization direction to the rhombohedral direction. Pressure induces large changes in phase fractions contributing to the extrinsic piezoelectricity. The changes are not entirely reversible, as was revealed by noting that after high-pressure experiments the amount of rhombohedral phase was larger than initially, suggesting that on the Zr-rich side of the phase boundary the monoclinic phase is metastable. An important contribution to the intrinsic piezoelectricity was revealed: a large displacement of the B cations (Zr and Ti) with respect to the oxygen anions is induced by pressure. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733570] C1 [Frantti, J.; Fujioka, Y.; Nieminen, R. M.] Aalto Univ, Sch Sci, Dept Appl Phys, FI-00076 Aalto, Finland. [Zhang, J.; Wang, S.; Vogel, S. C.; Zhao, Y.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Asiri, A. M.; Obaid, A. Y.; Mkhalid, I. A.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia. [Asiri, A. M.; Obaid, A. Y.; Mkhalid, I. A.] King Abdulaziz Univ, Ctr Excellence Adv Mat Res, Jeddah 21589, Saudi Arabia. RP Frantti, J (reprint author), Aalto Univ, Sch Sci, Dept Appl Phys, FI-00076 Aalto, Finland. EM johannes.frantti@aalto.fi RI Lujan Center, LANL/G-4896-2012; Nieminen, Risto/I-5573-2012; Obaid, Abdullah/I-7903-2012; Center of Excellence, Advanced Materials R/J-8561-2015; Faculty of, Sciences, KAU/E-7305-2017; OI Nieminen, Risto/0000-0002-1032-2711; Zhang, Jianzhong/0000-0001-5508-1782; Vogel, Sven C./0000-0003-2049-0361; Asiri, Abdullah/0000-0001-7905-3209 FU Center of Excellence for Advanced Materials Research at King Abdulaziz University in Saudi Arabia [T-001/431]; Aalto University; Academy of Finland [207071, 207501, 214131]; U.S. Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX We would like to thank the reviewer for very carefully reading our manuscript and providing numerous constructive suggestions. The research work was supported by the collaboration project between the Center of Excellence for Advanced Materials Research at King Abdulaziz University in Saudi Arabia (Project No. T-001/431) and the Aalto University and the Academy of Finland (Projects 207071, 207501, 214131, and the Center of Excellence Program 2006-2011). This work has benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center, which is funded by the U.S. Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 38 TC 6 Z9 6 U1 5 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2012 VL 112 IS 1 AR 014104 DI 10.1063/1.4733570 PG 7 WC Physics, Applied SC Physics GA 975LS UT WOS:000306513400099 ER PT J AU Habermehl, S Rodriguez, M Simmons, B AF Habermehl, S. Rodriguez, M. Simmons, B. TI Formation of stress-controlled, highly textured, alpha-SiC thin films at 950 degrees C SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SILICON-CARBIDE; MEMS APPLICATIONS; HETEROEPITAXIAL GROWTH; SINGLE-CRYSTAL; LOW-PRESSURE; POLYCRYSTALLINE; POLYTYPES; LPCVD; EPITAXY AB We report the formation of alpha-SiC thin films via low-pressure chemical vapor deposition from mixtures of dichlorosilane and dicholorethylene at 950 degrees C. Pole figure x-ray diffraction (XRD) analysis indicates that the films are composed primarily of highly c-axis out-of-plane textured alpha-SiC polytype mixed with a smaller volume of highly textured beta-SiC(111). Depending upon temperature and source gas ratio, the residual film stress can be tailored from -350 to 200 MPa. Analysis of the x-ray diffraction data indicates that the intrinsic film stress is correlated to the volume ratio of alpha-SiC to beta-SiC. Stress modulation as a manifestation of carbon vacancy formation and polytype mixing is discussed. Furthermore, a kinetic mechanism for low temperature alpha-SiC formation is proposed based upon control of C/Si surface saturation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733967] C1 [Habermehl, S.; Rodriguez, M.; Simmons, B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Habermehl, S (reprint author), Sandia Natl Labs, POB 5800,MS 1084, Albuquerque, NM 87185 USA. FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors wish to thank M. Brumbach for the XPS analysis, the staff of the Microelectronics Development Lab, particularly R. Cordova and M. Loviza for process and test support, and T. Friedmann and S. Lee for enlightening discussions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 56 TC 5 Z9 5 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2012 VL 112 IS 1 AR 013535 DI 10.1063/1.4733967 PG 9 WC Physics, Applied SC Physics GA 975LS UT WOS:000306513400055 ER PT J AU Jensen, BJ Cherne, FJ AF Jensen, B. J. Cherne, F. J. TI Dynamic compression of cerium in the low-pressure gamma-alpha region of the phase diagram SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SHOCK COMPRESSION; UNIVERSAL FEATURES; TRANSITION; EQUATION; STATE; METALS; POINT; IRON; KBAR AB Plate impact experiments were performed to examine the dynamic response of cerium for loading paths that span the well known gamma - alpha phase transition. The anomalous nature of the gamma-phase and the large volume collapse at the gamma - alpha boundary resulted in a ramp-wave followed by a shock jump for shock loading. This structured wave provided a convenient means for locating the phase boundary and determining the volume collapse at the transition. Experiments using a preheat capability were performed to obtain equation-of-state data, to locate and determine the volume compression along the phase boundary, and to determine the location of the critical point. Experimental results show that the ramp-wave peak increased with the initial sample temperature consistent with an increase in the transition stress while the magnitude of the shock jump decreased. The data were analyzed to determine the volume compression along the boundary pointing to a critical point at 1.648 +/- 0.075 GPa. Additional experiments using a shock-release configuration were used to obtain data during release. All data were in good agreement with calculations from a multiphase equation-of-state that treats the gamma and alpha phases as a binary alloy. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732126] C1 [Jensen, B. J.; Cherne, F. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jensen, BJ (reprint author), Los Alamos Natl Lab, WX 9, Los Alamos, NM 87545 USA. EM bjjensen@lanl.gov OI Cherne, Frank/0000-0002-8589-6058 FU LANL FX The work was conducted by Los Alamos National Laboratory operated by Los Alamos National Security, LLC for the U. S. Department of Energy. Chuck Owens (WX-9, LANL) is gratefully acknowledged for assistance with target and projectile fabrication, gun setup, and shot execution. Special thanks to J. Cooley (MST, LANL) for providing the cerium samples used in this work. G. Stevens (National Security Technologies) is thanked for his help with the thermal imaging camera to verify uniformity in sample temperatures. Finally, we are grateful for the continued support and funding for this work by R. Martineau and R. Olson (LANL, Campaign 2) NR 37 TC 3 Z9 3 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2012 VL 112 IS 1 AR 013515 DI 10.1063/1.4732126 PG 7 WC Physics, Applied SC Physics GA 975LS UT WOS:000306513400035 ER PT J AU Spurgeon, SR Sloppy, JD Tao, RZ Klie, RF Lofland, SE Baldwin, JK Misra, A Taheri, ML AF Spurgeon, Steven R. Sloppy, Jennifer D. Tao, Runzhe Klie, Robert F. Lofland, Samuel E. Baldwin, Jon K. Misra, Amit Taheri, Mitra L. TI A study of the effect of iron island morphology and interface oxidation on the magnetic hysteresis of Fe-MgO (001) thin film composites SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; LOSS-SPECTROSCOPY; TUNNEL-JUNCTIONS; SURFACE ANISOTROPY; SINGLE-CRYSTALS; ULTRATHIN FILMS; FE(001) FILMS; GROWTH; MGO(001); MICROSTRUCTURE AB Fe-MgO tunnel junctions have received much attention for their use in hard drive read heads and other spintronic applications. The system is particularly interesting because of its magnetoresistive behavior and the abundance and low cost of its constituent elements. However, many questions remain about how the structure and chemistry of the Fe-MgO interface mediates magnetic behavior. In this study, we report on transmission electron microscopy, electron energy loss spectroscopy, and magnetic characterization of Fe-MgO composite films with various morphologies. We explore relationships between film morphology, intermixing, and the resulting effects on magnetic structure. We find the presence of oxidation at the Fe-MgO interface, with a detrimental impact on the saturation magnetization of the composite. We also observe changes in coercivity and magnetocrystalline anisotropy with film morphology and thickness. These results will inform the design of MgO-based tunnel junctions and improve our understanding of how processing conditions, resulting in morphological and chemical changes such as oxidation, affect magnetization. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730630] C1 [Spurgeon, Steven R.; Sloppy, Jennifer D.; Taheri, Mitra L.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Tao, Runzhe; Klie, Robert F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Lofland, Samuel E.] Rowan Univ, Dept Phys & Astron, Glassboro, NJ 08028 USA. [Baldwin, Jon K.; Misra, Amit] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Taheri, ML (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM mtaheri@coe.drexel.edu RI Sloppy, Jennifer/H-2995-2012; Taheri, Mitra/F-1321-2011; Spurgeon, Steven/A-2914-2013; OI Spurgeon, Steven/0000-0003-1218-839X; Lofland, Samuel/0000-0002-1024-5103 FU National Science Foundation [DGE-0654313, CMMI-1031403, DMR-0846784, DMR-0908779, DMR-0821406]; Office of Naval Research [N00014-1101-0296/12PR02130-02]; National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT); Department of Defense National Defense Science and Engineering Graduate (NDSEG) Fellowship FX The authors gratefully acknowledge support from the National Science Foundation under Grant #DGE-0654313 (M. L. T.), #CMMI-1031403 (M. L. T.), #DMR-0846784 (R. F. K., R. T.), #DMR-0908779 (S. E. L), and #DMR-0821406 (S. E. L.), as well as from the Office of Naval Research under Grant #N00014-1101-0296/12PR02130-02 (M. L. T.). Electron microscopy was conducted in Drexel University's Centralized Research Facilities and at the Research Resources Center at the University of Illinois-Chicago; magnetic measurements were performed in Rowan University's Department of Physics and Astronomy. Author S. R. S. is supported by a National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) and a Department of Defense National Defense Science and Engineering Graduate (NDSEG) Fellowship. NR 55 TC 6 Z9 6 U1 0 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2012 VL 112 IS 1 AR 013905 DI 10.1063/1.4730630 PG 7 WC Physics, Applied SC Physics GA 975LS UT WOS:000306513400080 ER PT J AU Wang, KF Hu, RW Warren, J Petrovic, C AF Wang, Kefeng Hu, Rongwei Warren, John Petrovic, C. TI Enhancement of the thermoelectric properties in doped FeSb2 bulk crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LATTICE THERMAL-CONDUCTIVITY; LOW TEMPERATURES; SINGLE-CRYSTALS; DEGREES K; SCATTERING; ANTIMONY AB Kondo insulator FeSb2 with large Seebeck coefficient would have potential in thermoelectric applications in cryogenic temperature range if it had not been for large thermal conductivity kappa. Here we studied the influence of different chemical substitutions at Fe and Sb site on thermal conductivity and thermoelectric effect in high quality single crystals. At 5% of Te doping at Sb site, thermal conductivity is suppressed from similar to 250 W/Km in undoped sample to about 8 W/Km. However, Cr and Co doping at Fe site suppresses thermal conductivity more slowly than Te doping, and even at 20% Cr/Co doping the thermal conductivity remains similar to 30 W/Km. The analysis of different contributions to phonon scattering indicates that the giant suppression of kappa with Te is due to the enhanced point defect scattering originating from the strain field fluctuations. In contrast, Te-doping has small influence on the correlation effects and then for small Te substitution the large magnitude of the Seebeck coefficient is still preserved, leading to the enhanced thermoelectric figure of merit (ZT similar to 0.05 at similar to 100 K) in Fe(Sb0.9Te0.1)(2). (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731251] C1 [Wang, Kefeng; Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Warren, John] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Wang, KF (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Wang, Kefeng/E-7683-2011; Petrovic, Cedomir/A-8789-2009 OI Wang, Kefeng/0000-0002-8449-9720; Petrovic, Cedomir/0000-0001-6063-1881 FU U.S. DOE [DE-AC02-98CH10886] FX This work was carried out at Brookhaven National Laboratory. Work at Brookhaven is supported by the U.S. DOE under Contract No. DE-AC02-98CH10886. NR 36 TC 11 Z9 11 U1 4 U2 47 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2012 VL 112 IS 1 AR 013703 DI 10.1063/1.4731251 PG 5 WC Physics, Applied SC Physics GA 975LS UT WOS:000306513400060 ER PT J AU Wang, ZG Xie, YL Campbell, LW Gao, F Kerisit, S AF Wang, Zhiguo Xie, YuLong Campbell, Luke W. Gao, Fei Kerisit, Sebastien TI Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GAMMA-RAY INTERACTION; X-RAY; DIELECTRIC-CONSTANT; NON-PROPORTIONALITY; ELASTIC-CONSTANTS; NEUTRON-DIFFRACTION; ENERGY RESOLUTION; CALCIUM-FLUORIDE; BARIUM FLUORIDE; HOLE PAIRS AB A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident gamma-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736088] C1 [Wang, Zhiguo; Gao, Fei; Kerisit, Sebastien] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Xie, YuLong] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Campbell, Luke W.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM zhiguo.wang@pnnl.gov; sebastien.kerisit@pnnl.gov RI Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009; Xie, Yulong/O-9322-2016 OI Xie, Yulong/0000-0001-5579-482X FU National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Engineering of the U.S. Department of Energy (DOE) [NA-22] FX The authors would like to acknowledge Professor A. Akkerman for insightful discussions. This research was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Engineering (NA-22), of the U.S. Department of Energy (DOE). NR 49 TC 18 Z9 18 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2012 VL 112 IS 1 AR 014906 DI 10.1063/1.4736088 PG 10 WC Physics, Applied SC Physics GA 975LS UT WOS:000306513400155 ER PT J AU Zhao, X Philips, L Reece, CE Seo, K Krishnan, M Valderrama, E AF Zhao, X. Philips, L. Reece, C. E. Seo, Kang Krishnan, M. Valderrama, E. TI Response to "Comment on 'Twin symmetry texture of energetically condensed niobium thin films on sapphire substrate'" [J. Appl. Phys. 112, 016101 (2012)] SO JOURNAL OF APPLIED PHYSICS LA English DT Editorial Material ID ENERGY ION-BOMBARDMENT; SUBPLANTATION MODEL; GROWTH; TEMPERATURE; DIAMOND; EPITAXY AB Welander is correct about the misidentified crystal-directions in the top-view sapphire lattice (Fig. 4 [Zhao et al., J. Appl. Phys. 110, 033523 (2011)]). He is also correct about the misorientation of the pole figures in Fig. 4. In Fig. 1 of this response, we have corrected these errors. Perhaps because of these errors, Welander misconstrued our discussion of the Nb crystal growth as claiming a new 3D registry. That was not our intention. Rather, we wished to highlight the role of energetic condensation that drives low-defect crystal growth by a combination of non-equilibrium sub-plantation that disturbs the substrate lattice and thermal annealing that annihilates defects and promotes large-grain crystal growth. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729523] C1 [Zhao, X.; Philips, L.; Reece, C. E.] Jefferson Lab, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Seo, Kang] NSU, Norfolk, VA 23504 USA. [Krishnan, M.; Valderrama, E.] AASC, San Leandro, CA 94577 USA. RP Zhao, X (reprint author), Jefferson Lab, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM xinzhao@jlab.org NR 17 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2012 VL 112 IS 1 AR 016102 DI 10.1063/1.4729523 PG 2 WC Physics, Applied SC Physics GA 975LS UT WOS:000306513400161 ER PT J AU Powell, AJ Parchert, KJ Bustamante, JM Ricken, JB AF Powell, Amy J. Parchert, Kylea J. Bustamante, Joslyn M. Ricken, J. Bryce TI Thermophilic fungi in an aridland ecosystem SO MYCOLOGIA LA English DT Article DE biological soil crust; Chaetomiaceae; Eurotiales; optimal growth temperature; Sordariales; thermophilic fungi ID BIOLOGICAL SOIL CRUSTS; COLORADO PLATEAU; CHIHUAHUAN DESERT; MICROBIAL BIOMASS; MUSHROOM COMPOST; SPEC NOV; DIVERSITY; GROWTH; GRASSLAND; MYCELIOPHTHORA AB We report a comprehensive multi-year study of thermophilic fungi at the Sevilleta National Wildlife Refuge in central New Mexico. Recovery of thermophilic fungi from soils showed seasonal fluctuations, with greater abundance correlating with spring and summer precipitation peaks. In addition to grassland soils, we obtained and characterized isolates from grassland and riparian litter, herbivore dung and biological soil crusts. All strains belonged to either the Eurotiales or Sordariales (Chaetomiaceae). No particular substrate or microhabitat associations were detected. Molecular typing of strains revealed substantial phylogenetic diversity, eight ad hoc phylogroups across the two orders were identified and genetic diversity was present within each phylogroup. Growth tests over a range of temperatures showed substantial variation in maximum growth rates among strains and across phylogroups but consistency within phylogroups. Results demonstrated that 45-50 C represents the optimal temperature for growth of most isolates, with a dramatic decline at 60 C. Most strains grew at 60 C, albeit slowly, whereas none grew at 65 C, providing empirical confirmation that 60 C presents an evolutionary threshold for fungal growth. Our results support the hypothesis that fungal thermophily is an adaptation to transient seasonal and diurnal high temperatures, rather than simply an adaptation to specialized high-temperature environments. We note that the diversity observed among strains and the frequently confused taxonomy within these groups highlight the need for comprehensive biosystematic revision of thermophilic taxa in both orders. C1 [Powell, Amy J.; Parchert, Kylea J.; Ricken, J. Bryce] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Bustamante, Joslyn M.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Powell, AJ (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM ajpowel@sandia.gov OI Hutchinson, Miriam/0000-0003-4077-0184 FU National Science Foundation through the University of New Mexico's Sevilleta Long-Term Ecological Research Program [DEB-0620482]; UNM Sevilleta Field Station [DEB-0934263]; Sustainable Algal Biofuels Consortium (DoE-EERE) [DE-EE0003372]; Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy [DE-AC04-94AL85000] FX We thank Eric Ackerman, Tony Martino and Blake Simmons (of Sandia National Laboratories) for advice and encouragement. Portions of this research were financially, supported by the National Science Foundation through the University of New Mexico's Sevilleta Long-Term Ecological Research Program (DEB-0620482) and by a grant in support of the UNM Sevilleta Field Station (DEB-0934263). Portions also were supported by the Sustainable Algal Biofuels Consortium (DoE-EERE award number DE-EE0003372) and the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corp, a Lockheed Martin Company, for the United States Department of Energy, under contract DE-AC04-94AL85000. NR 49 TC 6 Z9 6 U1 3 U2 36 PU ALLEN PRESS INC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 0027-5514 EI 1557-2536 J9 MYCOLOGIA JI Mycologia PD JUL-AUG PY 2012 VL 104 IS 4 BP 813 EP 825 DI 10.3852/11-298 PG 13 WC Mycology SC Mycology GA 981AQ UT WOS:000306938100003 PM 22505432 ER PT J AU Shaffer, VA Boerma, M Buonanno, M Costes, S Criswell, T Gonon, G Pandey, BN Pinto, M Rockwell, S AF Shaffer, Vered Anzenberg Boerma, Marjan Buonanno, Manuela Costes, Sylvain Criswell, Tracy Gonon, Geraldine Pandey, Badri N. Pinto, Massimo Rockwell, Sara TI Broadcasting in the Airways: The Fifth Anniversary of the Radiation Research Podcast SO RADIATION RESEARCH LA English DT Article AB Shaffer, V. A., Boerma, M., Buonanno, M., Costes, S., Criswell, T., Gonon, G., Pandey, B. N., Pinto, M. and Rockwell, S. Broadcasting in the Airways: the Fifth Anniversary of the Radiation Research Podcast. Radiat. Res. 1178, 99-100 (2012). The Radiation Research Podcast was funded just over five years ago by a few Radiation Research Society members. To date, the volunteers running the podcast have produced and published online, open access, over 70 audio interviews. The program includes monthly interviews with authors of articles, award winners, and other recordings at conferences, such as round table discussions. We here present an overview of the podcast, from its creation to its fifth birthday, to explain how it is working, how the featured interviews are scheduled, and what future directions are taken. So, stay tuned! (C) 2012 by Radiation Research Society C1 [Boerma, Marjan] Univ Arkansas Med Sci, Little Rock, AR 72205 USA. [Buonanno, Manuela] Columbia Univ, Ctr Radiol Res, New York, NY 10032 USA. [Costes, Sylvain] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Criswell, Tracy] Wake Forest Univ, Wake Forest Inst Regenerat Med, Winston Salem, NC 27109 USA. [Gonon, Geraldine] Univ Med & Dent New Jersey, New Jersey Med Sch, Ctr Canc, Newark, NJ 07103 USA. [Gonon, Geraldine] Univ Franche Comte, F-25030 Besancon, France. [Pandey, Badri N.] Bhabha Atom Res Ctr, Radiat Biol & Hlth Sci Div, Bombay 400085, Maharashtra, India. [Pinto, Massimo] ENEA INMRI, Natl Inst Metrol Ionizing Radiat, Rome, Italy. [Rockwell, Sara] Yale Univ, Sch Med, Dept Therapeut Radiol, New Haven, CT 06510 USA. [Rockwell, Sara] Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06510 USA. EM podcast@radres.org RI Pinto, Massimo/B-2817-2008; Costes, Sylvain/D-2522-2013; OI Pinto, Massimo/0000-0002-8122-7084; Costes, Sylvain/0000-0002-8542-2389; buonanno, manuela/0000-0002-3455-3602 NR 4 TC 0 Z9 0 U1 0 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2012 VL 178 IS 1 BP 99 EP 100 DI 10.1667/RR3033.1 PG 2 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 981BN UT WOS:000306940600011 PM 22686863 ER PT J AU Deng, LC Newberg, HJ Liu, C Carlin, JL Beers, TC Chen, L Chen, YQ Christlieb, N Grillmair, CJ Guhathakurta, P Han, ZW Hou, JL Lee, HT Lepine, S Li, J Liu, XW Pan, KK Sellwood, JA Wang, B Wang, HC Yang, F Yanny, B Zhang, HT Zhang, YY Zheng, Z Zhu, Z AF Deng, Li-Cai Newberg, Heidi Jo Liu, Chao Carlin, Jeffrey L. Beers, Timothy C. Chen, Li Chen, Yu-Qin Christlieb, Norbert Grillmair, Carl J. Guhathakurta, Puragra Han, Zhan-Wen Hou, Jin-Liang Lee, Hsu-Tai Lepine, Sebastien Li, Jing Liu, Xiao-Wei Pan, Kai-Ke Sellwood, J. A. Wang, Bo Wang, Hong-Chi Yang, Fan Yanny, Brian Zhang, Hao-Tong Zhang, Yue-Yang Zheng, Zheng Zhu, Zi TI LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) - The survey's science plan SO RESEARCH IN ASTRONOMY AND ASTROPHYSICS LA English DT Article DE techniques: spectroscopic; Galaxy: structure; Galaxy: evolution; Galaxy: kinematics and dynamics; Galaxy: disk; Galaxy: halo; spectroscopy ID DIGITAL SKY SURVEY; TRACING GALAXY FORMATION; MAIN-SEQUENCE STARS; COLD STELLAR STREAM; LOW METAL ABUNDANCE; LOW-MASS STARS; HYPERVELOCITY STARS; MILKY-WAY; CANIS-MAJOR; THICK DISK AB We describe the current plans for a spectroscopic survey of millions of stars in the Milky Way galaxy using the Guo Shou Jing Telescope (GSJT, formerly called the Large sky Area Multi-Object fiber Spectroscopic Telescope - LAMOST). The survey will obtain spectra for 2.5 million stars brighter than r < 19 during dark/grey time, and 5 million stars brighter than r < 17 or J < 16 on nights that are moonlit or have low transparency. The survey will begin in the fall of 2012, and will run for at least four years. The telescope's design constrains the optimal declination range for observations to 10 degrees < delta < 50 degrees, and site conditions lead to an emphasis on stars in the direction of the Galactic anticenter. The survey is divided into three parts with different target selection strategies: disk, anticenter, and spheroid. The resulting dataset will be used to study the merger history of the Milky Way, the substructure and evolution of the disks, the nature of the first generation of stars through identification of the lowest metallicity stars, and star formation through study of open clusters and OB associations. Detailed design of the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey will be completed in summer 2012, after a review of the results of the pilot survey. C1 [Deng, Li-Cai; Liu, Chao; Chen, Yu-Qin; Li, Jing; Yang, Fan; Zhang, Hao-Tong; Zhang, Yue-Yang] Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100012, Peoples R China. [Newberg, Heidi Jo; Carlin, Jeffrey L.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Beers, Timothy C.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Chen, Li; Hou, Jin-Liang] Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China. [Christlieb, Norbert] Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany. [Grillmair, Carl J.] Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Guhathakurta, Puragra] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Han, Zhan-Wen; Wang, Bo] Chinese Acad Sci, Yunnan Astron Observ, Kunming 650011, Peoples R China. [Lee, Hsu-Tai] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Lepine, Sebastien] Amer Museum Nat Hist, New York, NY 10024 USA. [Li, Jing] China W Normal Univ, Sch Phys & Elect Informat, Nanchong 637000, Peoples R China. [Liu, Xiao-Wei] Peking Univ, Dept Astron, Beijing 100871, Peoples R China. [Liu, Xiao-Wei] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Pan, Kai-Ke] Apache Point Observ, Sunspot, NM 88349 USA. [Sellwood, J. A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Wang, Hong-Chi] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Zheng, Zheng] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Zhu, Zi] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210008, Jiangsu, Peoples R China. RP Deng, LC (reprint author), Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100012, Peoples R China. EM licai@bao.ac.cn RI he, shuyi/K-2082-2014; OI Carlin, Jeffrey/0000-0002-3936-9628 FU National Natural Science Foundation of China [10573022, 10973015, 11061120454, 11243003]; US National Science Foundation [AST-09-37523] FX We thank the guest editor of this mini-volume and the referee of this paper, Joss Bland-Hawthorn for helpful comments on the manuscript. This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 10573022, 10973015, 11061120454 and 11243003) and the US National Science Foundation through grant AST-09-37523. NR 135 TC 112 Z9 116 U1 2 U2 27 PU NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES PI BEIJING PA 20A DATUN RD, CHAOYANG, BEIJING, 100012, PEOPLES R CHINA SN 1674-4527 J9 RES ASTRON ASTROPHYS JI Res. Astron. Astrophys. PD JUL PY 2012 VL 12 IS 7 BP 735 EP 754 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 980KR UT WOS:000306892600003 ER PT J AU Carlin, JL Lepine, S Newberg, HJ Deng, LC Beers, TC Chen, YQ Christlieb, N Fu, XT Gao, S Grillmair, CJ Guhathakurta, P Han, ZW Hou, JL Lee, HT Li, J Liu, C Liu, XW Pan, KK Sellwood, JA Wang, HC Yang, F Yanny, B Zhang, YY Zheng, Z Zhu, Z AF Carlin, Jeffrey L. Lepine, Sebastien Newberg, Heidi Jo Deng, Li-Cai Beers, Timothy C. Chen, Yu-Qin Christlieb, Norbert Fu, Xiao-Ting Gao, Shuang Grillmair, Carl J. Guhathakurta, Puragra Han, Zhan-Wen Hou, Jin-Liang Lee, Hsu-Tai Li, Jing Liu, Chao Liu, Xiao-Wei Pan, Kai-Ke Sellwood, J. A. Wang, Hong-Chi Yang, Fan Yanny, Brian Zhang, Yue-Yang Zheng, Zheng Zhu, Zi TI An algorithm for preferential selection of spectroscopic targets in LEGUE SO RESEARCH IN ASTRONOMY AND ASTROPHYSICS LA English DT Article DE surveys: LAMOST; Galaxy: halo; techniques: spectroscopic ID DIGITAL SKY SURVEY; HORIZONTAL-BRANCH STARS; LAMOST PILOT SURVEY; MILKY-WAY; DATA RELEASE; THICK DISK; 1ST DATA; HALO; SDSS; SAGITTARIUS AB We describe a general target selection algorithm that is applicable to any survey in which the number of available candidates is much larger than the number of objects to be observed. This routine aims to achieve a balance between a smoothly-varying, well-understood selection function and the desire to preferentially select certain types of targets. Some target-selection examples are shown that illustrate different possibilities of emphasis functions. Although it is generally applicable, the algorithm was developed specifically for the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou Jing Telescope. In particular, this algorithm was designed for the portion of LEGUE targeting the Galactic halo, in which we attempt to balance a variety of science goals that require stars at fainter magnitudes than can be completely sampled by LAMOST. This algorithm has been implemented for the halo portion of the LAMOST pilot survey, which began in October 2011. C1 [Carlin, Jeffrey L.; Newberg, Heidi Jo] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Lepine, Sebastien] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Lepine, Sebastien] CUNY, New York, NY 10016 USA. [Deng, Li-Cai; Chen, Yu-Qin; Fu, Xiao-Ting; Gao, Shuang; Li, Jing; Liu, Chao; Zhang, Yue-Yang] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Beers, Timothy C.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Christlieb, Norbert] Heidelberg Univ, Ctr Astron, Landessternwarte, D-69117 Heidelberg, Germany. [Grillmair, Carl J.] Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Guhathakurta, Puragra] Univ Calif Santa Cruz, UCO, Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Han, Zhan-Wen] Chinese Acad Sci, Yunnan Astron Observ, Kunming 650011, Peoples R China. [Hou, Jin-Liang] Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China. [Lee, Hsu-Tai] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Liu, Xiao-Wei] Peking Univ, Dept Astron, Beijing 1000875, Peoples R China. [Liu, Xiao-Wei] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 1000875, Peoples R China. [Pan, Kai-Ke] Apache Point Observ, Sunspot, NM 88349 USA. [Sellwood, J. A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Wang, Hong-Chi] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Zheng, Zheng] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Zhu, Zi] Nanjing Univ, Dept Astron, Nanjing 210011, Jiangsu, Peoples R China. RP Carlin, JL (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. EM carlij@rpi.edu RI he, shuyi/K-2082-2014; OI Carlin, Jeffrey/0000-0002-3936-9628 FU US National Science Foundation [AST-09-37523, AST-09-08419]; National Natural Science Foundation of China [10573022, 10973015, 11061120454]; Chinese Academy of Sciences [GJHZ 200812] FX We thank the referee, Sanjib Sharma, for helpful comments on the manuscript. This work was supported by the US National Science Foundation, through grant AST-09-37523, the National Natural Science Foundation of China (Grant Nos. 10573022, 10973015 and 11061120454) and the Chinese Academy of Sciences through grant GJHZ 200812. S. L. is supported by the US National Science Foundation grant AST-09-08419. NR 31 TC 26 Z9 27 U1 0 U2 16 PU NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES PI BEIJING PA 20A DATUN RD, CHAOYANG, BEIJING, 100012, PEOPLES R CHINA SN 1674-4527 J9 RES ASTRON ASTROPHYS JI Res. Astron. Astrophys. PD JUL PY 2012 VL 12 IS 7 BP 755 EP 771 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 980KR UT WOS:000306892600004 ER PT J AU Dror, I Jacov, OM Cortis, A Berkowitz, B AF Dror, Ishai Jacov, Osnat Merom Cortis, Andrea Berkowitz, Brian TI Catalytic Transformation of Persistent Contaminants Using a New Composite Material Based on Nanosized Zero-Valent Iron SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE nZVI; chlorinated organics; groundwater contamination; field experiment; diatomite matrix ID NANOPARTICLES; DEGRADATION; WATER; PARTICLES; REMOVAL; ELECTROCHEMISTRY; ORGANOBENTONITE; REMEDIATION; REDUCTION; MEMBRANE AB A new composite material based on deposition of nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B-12) on a diatomite matrix is presented, for catalytic transformation of organic contaminants in water. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours. A field experiment where contaminated groundwater containing a mixture Of industrial and agricultural persistent pollutants was conducted together with a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions. C1 [Dror, Ishai; Jacov, Osnat Merom; Berkowitz, Brian] Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel. [Cortis, Andrea] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Dror, I (reprint author), Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel. EM ishai.dror@weizmann.ac.il RI BERKOWITZ, BRIAN/K-1497-2012 OI BERKOWITZ, BRIAN/0000-0003-3078-1859 FU European Commission [PITN-GA-2008-212298] FX The authors thank Zeev Schwartz for his substantial contribution to the execution of the field experiemnts. B.B. holds the Sam Zuckerberg Professional Chair in Hydrology. The financial support of the European Commission (contract PITN-GA-2008-212298) is gratefully acknowledged. NR 37 TC 29 Z9 30 U1 6 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL PY 2012 VL 4 IS 7 BP 3416 EP 3423 DI 10.1021/am300402q PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 978EC UT WOS:000306722400012 PM 22680618 ER PT J AU Zhang, XJ Davenport, KW Gu, W Daligault, HE Munk, AC Tashima, H Reitenga, K Green, LD Han, CS AF Zhang, Xiaojing Davenport, Karen W. Gu, Wei Daligault, Hajnalka E. Munk, A. Christine Tashima, Hazuki Reitenga, Krista Green, Lance D. Han, Cliff S. TI Improving genome assemblies by sequencing PCR products with PacBio SO BIOTECHNIQUES LA English DT Article DE Sequencing; hairpin structure; GC rich; PacBio ID NUCLEOTIDE-SEQUENCE; DNA AB Advances in sequencing technologies have dramatically reduced costs in producing high-quality draft genomes. However, there are still many contigs and possible misassembled regions in those draft genomes. Improving the quality of these genomes requires an efficient and economical means to close gaps and resequence some regions. Sequencing pooled gap region PCR products with Pacific Biosciences (PacBio) provides a significantly less expensive means for this need. We have developed a genome improvement pipeline with this strategy after decreasing a loading bias against larger PCR products in the PacBio process. Compared with Sanger technology, this approach is not only cost effective but also can close gaps greater than 2.5 kb in a single round of reactions, and sequence through high GC regions as well as difficult secondary structures such as small hairpin loops. C1 [Zhang, Xiaojing; Davenport, Karen W.; Gu, Wei; Daligault, Hajnalka E.; Munk, A. Christine; Tashima, Hazuki; Reitenga, Krista; Green, Lance D.; Han, Cliff S.] Los Alamos Natl Lab, Genome Sci Grp, Biosci Div, Los Alamos, NM 87545 USA. RP Zhang, XJ (reprint author), Los Alamos Natl Lab, Genome Sci Grp, Biosci Div, Mail Stop 888, Los Alamos, NM 87545 USA. EM xlz@lanl.gov; cliff@lanl.gov FU DOE Joint Genome Institute [W-7405-ENG-36] FX We want to thank Beverly Parson Quintana and Yuliya A. Kunde for supporting this work in PCR and PacBio sequencing process. The work is funded by DOE Joint Genome Institute through contract W-7405-ENG-36. NR 6 TC 18 Z9 22 U1 3 U2 35 PU BIOTECHNIQUES OFFICE PI NEW YORK PA 52 VANDERBILT AVE, NEW YORK, NY 10017 USA SN 0736-6205 J9 BIOTECHNIQUES JI Biotechniques PD JUL PY 2012 VL 53 IS 1 BP 61 EP 62 DI 10.2144/0000113891 PG 2 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 978DL UT WOS:000306720700017 PM 22780321 ER PT J AU Shen, CE Leyffer, S Fletcher, R AF Shen, Chungen Leyffer, Sven Fletcher, Roger TI A nonmonotone filter method for nonlinear optimization SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS LA English DT Article DE Nonlinear optimization; Nonmonotone filter; Global convergence; Local convergence ID GLOBAL CONVERGENCE; CONSTRAINED OPTIMIZATION; LOCAL CONVERGENCE; QP-FREE; ALGORITHM AB We propose a new nonmonotone filter method to promote global and fast local convergence for sequential quadratic programming algorithms. Our method uses two filters: a standard, global g-filter for global convergence, and a local nonmonotone l-filter that allows us to establish fast local convergence. We show how to switch between the two filters efficiently, and we prove global and superlinear local convergence. A special feature of the proposed method is that it does not require second-order correction steps. We present preliminary numerical results comparing our implementation with a classical filter SQP method. C1 [Leyffer, Sven] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Shen, Chungen] Shanghai Finance Univ, Dept Appl Math, Shanghai 201209, Peoples R China. [Fletcher, Roger] Univ Dundee, Dept Math, Dundee, Scotland. RP Leyffer, S (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shenchungen@gmail.com; leyffer@mcs.anl.gov; fletcher@math.dundee.ac.uk FU Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy [DE-AC02-06CH11357]; US Department of Energy [DE-FG02-05ER25694]; National Science Foundation of China [11101281] FX We are grateful to two anonymous referees whose careful reading and insightful comments improved this paper. This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy, under Contract DE-AC02-06CH11357. This work was also supported by the US Department of Energy through the grant DE-FG02-05ER25694. The first author was also supported by the National Science Foundation of China under grant number 11101281. NR 28 TC 16 Z9 17 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0926-6003 J9 COMPUT OPTIM APPL JI Comput. Optim. Appl. PD JUL PY 2012 VL 52 IS 3 BP 583 EP 607 DI 10.1007/s10589-011-9430-2 PG 25 WC Operations Research & Management Science; Mathematics, Applied SC Operations Research & Management Science; Mathematics GA 979RG UT WOS:000306836900001 ER PT J AU Davies, GM Bakker, JD Dettweiler-Robinson, E Dunwiddie, PW Hall, SA Downs, J Evans, J AF Davies, G. M. Bakker, J. D. Dettweiler-Robinson, E. Dunwiddie, P. W. Hall, S. A. Downs, J. Evans, J. TI Trajectories of change in sagebrush steppe vegetation communities in relation to multiple wildfires SO ECOLOGICAL APPLICATIONS LA English DT Article DE Arid Lands Ecology Reserve; Artemisia tridentata; Bromus tectorum; fire effects; Hanford Reach National Monument; herbicide; native seeding; nonmetric multidimensional scaling; PERMANOVA; repeated disturbance; restoration; state and transition model ID BIG SAGEBRUSH; BROMUS-TECTORUM; GREAT-BASIN; TRANSITION MODELS; PRESCRIBED FIRES; RESTORATION; DYNAMICS; ECOSYSTEMS; STATE; SUCCESSION AB Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems, including changes in state. Sagebrush steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering them. Despite these issues, the majority of studies of fire effects in systems dominated by Artemisia tridentata wyomingensis have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-central Washington (USA), was one of the largest contiguous areas of sagebrush steppe habitat in the state until large wildfires burned the majority of it in 2000 and 2007. We analyzed data from permanent vegetation transects established in 1996 and resampled in 2002 and 2009. Our objective was to describe how the fires, and subsequent postfire restoration efforts, affected communities' successional pathways. Plant communities differed in response to repeated fire and restoration; these differences could largely be ascribed to the functional traits of the dominant species. Lowelevation communities, previously dominated by obligate seeders, moved furthest from their initial composition and were dominated by weedy, early-successional species in 2009. Higher-elevation sites with resprouting shrubs, native bunchgrasses, and few invasive species were generally more resilient to the effects of repeated disturbances. Shrub cover has been almost entirely removed from ALE, although there was some recovery where communities were dominated by resprouters. Bromus tectorum dominance was reduced by herbicide application in areas where it was previously abundant, but it increased significantly in untreated areas. Several resprouting species, notably Phlox longifolia and Poa secunda, expanded remarkably following competitive release from shrub canopies and/or abundant B. tectorum. Our results suggest that community dynamics can be understood through a state and transition model with two axes (shrub/grass and native/invasive abundance), although such models also need to account for differences in plant functional traits and disturbance regimes. We use our results to develop a conceptual model that will be validated with further research. C1 [Davies, G. M.; Bakker, J. D.; Dettweiler-Robinson, E.; Dunwiddie, P. W.] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA. [Hall, S. A.] Nature Conservancy, Wenatchee, WA 98801 USA. [Downs, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Evans, J.] Nature Conservancy, Seattle, WA 98101 USA. RP Davies, GM (reprint author), Univ Glasgow, Sch Interdisciplinary Studies, Rutherford McCowan Bldg,Crichton Univ Campus, Dumfries DG1 4ZL, Scotland. EM gwilym.davies@glasgow.ac.uk RI Bakker, Jonathan/I-6960-2013; Dunwiddie, Peter/Q-7709-2016; OI Dunwiddie, Peter/0000-0002-7254-0423; Evans, Jeffrey/0000-0002-5533-7044 FU U.S. Fish and Wildlife Service at the Mid-Columbia National Wildlife Refuge Complex; Joint Fire Science Program [JFSP 08-1-5-20] FX Data used in this study were collected by a number of individuals in addition to the authors. In particular, we thank field assistants Marita Lih, Lorna Emerich, and Elaine Boyd. Mike Marsh provided important help and advice. Significant support for this project was provided by the U.S. Fish and Wildlife Service at the Mid-Columbia National Wildlife Refuge Complex, particularly by Heidi Newsome and Mike Gregg. Funding was provided by the Joint Fire Science Program under Project JFSP 08-1-5-20. NR 62 TC 29 Z9 29 U1 7 U2 100 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1051-0761 EI 1939-5582 J9 ECOL APPL JI Ecol. Appl. PD JUL PY 2012 VL 22 IS 5 BP 1562 EP 1577 PG 16 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 977IL UT WOS:000306650400015 PM 22908714 ER PT J AU Horvat, K Kerkar, P Jones, K Mahajan, D AF Horvat, Kristine Kerkar, Prasad Jones, Keith Mahajan, Devinder TI Kinetics of the Formation and Dissociation of Gas Hydrates from CO2-CH4 Mixtures SO ENERGIES LA English DT Article DE methane hydrate; carbon dioxide hydrate; mixed gas hydrate; carbon sequestration; sodium dodecyl sulfate ID METHANE HYDRATE; CARBON-DIOXIDE; CO2 SEQUESTRATION; TEMPERATURE; NUCLEATION; PRESSURE; STORAGE; LIQUID; WATER; CH4 AB Sequestration of carbon dioxide (CO2) in the form of its hydrates in natural methane (CH4) hydrate reservoirs, via CO2/CH4 exchange, is an attractive pathway that also yields valuable CH4 gas as product. In this paper, we describe a macroscale experiment to form CO2 and CH4-CO2 hydrates, under seafloor-mimic conditions, in a vessel fitted with glass windows that provides visualization of hydrates throughout formation and dissociation processes. Time resolved pressure and temperature data as well as images of hydrates are presented. Quantitative gas conversions with pure CO2, calculated from gas chromatographic measurements yielded values that range from 23 - 59% that correspond to the extent of formed hydrates. In CH4-rich CH4-CO2 mixed gas systems, CH4 hydrates were found to form preferentially. C1 [Horvat, Kristine; Kerkar, Prasad; Jones, Keith; Mahajan, Devinder] SUNY Stony Brook, Dept Mat Sci & Engn, New York, NY 11794 USA. [Mahajan, Devinder] Brookhaven Natl Lab, Sustainable Energy Technol Dept, New York, NY 11973 USA. RP Mahajan, D (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, New York, NY 11794 USA. EM khorvat@ic.sunysb.edu; kerkarpb@gmail.com; jones@bnl.gov; dmahajan@bnl.gov FU Brookhaven National Laboratory (BNL) [DE-AC02-98CH10886]; United States Department of Energy (US DOE) under Office of Science-Summer Undergraduate Laboratory Internship (SULI) program; Department of Education-GAANN program FX This research was conducted at Brookhaven National Laboratory (BNL) under contract No. DE-AC02-98CH10886. KH was supported by the United States Department of Energy (US DOE) under the Office of Science-Summer Undergraduate Laboratory Internship (SULI) program, administered by BNL Office of Education Programs and the Department of Education-GAANN program for the Graduate Fellowship. NR 17 TC 8 Z9 9 U1 4 U2 50 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD JUL PY 2012 VL 5 IS 7 BP 2248 EP 2262 DI 10.3390/en5072248 PG 15 WC Energy & Fuels SC Energy & Fuels GA 978MY UT WOS:000306747300011 ER PT J AU Medina, E Lopez, F Ratner, MA Mujica, V AF Medina, Ernesto Lopez, Floralba Ratner, Mark A. Mujica, Vladimiro TI Chiral molecular films as electron polarizers and polarization modulators SO EPL LA English DT Article ID SCATTERING; DNA AB Recent experiments on electron scattering through molecular films have shown that chiral molecules can be efficient sources of polarized electrons even in the absence of heavy nuclei as source of a strong spin-orbit interaction. We show that self-assembled monolayers (SAMs) of chiral molecules are strong electron polarizers due to the high-density effect of the monolayers and explicitly compute the scattering amplitude off a helical molecular model of carbon atoms. Longitudinal polarization is shown to be the signature of chiral scattering. For elastic scattering, we find that at least double-scattering events must take place for longitudinal polarization to arise. We predict energy windows for strong polarization, determined by the energy dependences of spin-orbit strength and multiple scattering probability. An incoherent mechanism for polarization amplification is proposed, that increases the polarization linearly with the number of helix turns, consistent with recent experiments on DNA SAMs. Copyright (C) EPLA, 2012 C1 [Medina, Ernesto] Inst Venezolano Invest Cient, Ctr Fis, Lab Fis Estadist Sistemas Desordenados, Caracas 1020A, Venezuela. [Lopez, Floralba] Univ Los Andes, Dept Quim, Quimicofis Fluidos & Fenomenos Interfaciales QUIF, Merida 5101, Venezuela. [Ratner, Mark A.; Mujica, Vladimiro] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mujica, Vladimiro] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Mujica, Vladimiro] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Medina, E (reprint author), Inst Venezolano Invest Cient, Ctr Fis, Lab Fis Estadist Sistemas Desordenados, Apartado 21827, Caracas 1020A, Venezuela. EM ernestomed@gmail.com OI Medina, Ernesto/0000-0002-1566-0170 FU IVIC [279]; Chemistry Division of the NSF [CHE-1058896]; NSF [CHE-1124895]; CDCHT-ULA [ADG-C09-95] FX We acknowledge R. NAAMAN, Z. HELMUD, D. BERATAN, A. NITZAN and B. BERCHE for stimulating discussions, and EM thanks IVIC for support under spintronics project 279. MR thanks the Chemistry Division of the NSF, for support under CHE-1058896. VM acknowledges support of NSF through grant CHE-1124895, and FL acknowledges support of CDCHT-ULA through Project No. ADG-C09-95. NR 16 TC 29 Z9 29 U1 0 U2 26 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2012 VL 99 IS 1 AR 17006 DI 10.1209/0295-5075/99/17006 PG 5 WC Physics, Multidisciplinary SC Physics GA 977UG UT WOS:000306689700014 ER PT J AU Zachos, CK AF Zachos, Cosmas K. TI Ternary plots for neutrino mixing visualization SO EPL LA English DT Article AB The visualization advantages of ternary plots are illustrated for the PMNS neutrino mixing matrix. Unitarity constraints are incorporated automatically, in part, since barycentric plots of this type allow three variables with a fixed sum to be plotted as mere points inside an equilateral triangle on a plane. Copyright (C) EPLA, 2012 C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Zachos, CK (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM zachos@anl.gov RI zachos, cosmas/C-4366-2014 OI zachos, cosmas/0000-0003-4379-3875 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Discussions with M. GOODMAN, D. REYNA, Z. DJURCIC, and Y. KEUNG are gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U. S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 8 TC 0 Z9 0 U1 0 U2 2 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2012 VL 99 IS 1 AR 11001 DI 10.1209/0295-5075/99/11001 PG 3 WC Physics, Multidisciplinary SC Physics GA 977UG UT WOS:000306689700001 ER PT J AU Thomson, J Polagye, B Durgesh, V Richmond, MC AF Thomson, Jim Polagye, Brian Durgesh, Vibhav Richmond, Marshall C. TI Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA SO IEEE JOURNAL OF OCEANIC ENGINEERING LA English DT Article DE Acoustic Doppler current profiler (ADCP); acoustic Doppler velocimeter (ADV); marine and hydrokinetic energy; tidal energy; tidal power; turbulence; turbulence intensity ID DOPPLER CURRENT PROFILER; KINETIC-ENERGY; FORM DRAG; FLOW; HEADLAND; PERFORMANCE; DISSIPATION; CHANNEL; ADCP; ADV AB Field measurements of turbulence are presented from two sites in Puget Sound, WA, that are proposed for electrical power generation using tidal current turbines. Time series data from multiple acoustic Doppler instruments are analyzed to obtain statistical measures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the deterministic tidal currents) are typically 10% at the hub heights (i.e., the relevant depth) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the turbulent kinetic energy (TKE) spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of TKE, which is shown to balance with shear production. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics. The results are relevant to estimating the performance and fatigue of tidal turbines. C1 [Thomson, Jim; Polagye, Brian] Univ Washington, NW Natl Marine Renewable Energy Ctr, Seattle, WA 98195 USA. [Durgesh, Vibhav; Richmond, Marshall C.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Thomson, J (reprint author), Univ Washington, NW Natl Marine Renewable Energy Ctr, Seattle, WA 98195 USA. EM jthomson@apl.washington.edu RI Batten, William/D-2390-2010; Richmond, Marshall/D-3915-2013; Thomson, Jim/C-7610-2012 OI Richmond, Marshall/0000-0003-0111-1485; Thomson, Jim/0000-0002-8929-0088 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy-Wind and Water Power Program FX Manuscript received August 26, 2011; revised December 20, 2011; accepted March 14, 2012. Date of publication May 15, 2012; date of current version July 10, 2012. This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy-Wind and Water Power Program. NR 40 TC 47 Z9 47 U1 2 U2 42 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0364-9059 EI 1558-1691 J9 IEEE J OCEANIC ENG JI IEEE J. Ocean. Eng. PD JUL PY 2012 VL 37 IS 3 BP 363 EP 374 DI 10.1109/JOE.2012.2191656 PG 12 WC Engineering, Civil; Engineering, Ocean; Engineering, Electrical & Electronic; Oceanography SC Engineering; Oceanography GA 975OZ UT WOS:000306522000004 ER PT J AU Dutta, D Hafidi, K AF Dutta, Dipangkar Hafidi, Kawtar TI THE SEARCH FOR THE ONSET OF COLOR TRANSPARENCY: A STATUS REPORT SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Review DE Nuclear transparency; QCD in nuclei; small size configurations; factorization; color in nuclei; formation time; electro-production; photo-production ID EXCLUSIVE RHO(0) ELECTROPRODUCTION; VIRTUAL COMPTON-SCATTERING; LARGE MOMENTUM-TRANSFER; NUCLEAR TRANSPARENCY; ELASTIC-SCATTERING; PROTON PROPAGATION; COHERENCE LENGTH; VECTOR-MESONS; DEPENDENCE; QCD AB Color transparency (CT) refers to the vanishing of the hadron-nucleon interaction for hadrons produced inside a nucleus in high momentum exclusive processes. We briefly review the concept behind this unique quantum chromodynamics (QCD) phenomenon, the experimental search for its onset and the recent progress made at intermediate energies. C1 [Dutta, Dipangkar] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Hafidi, Kawtar] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Dutta, D (reprint author), Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. EM d.dutta@msstate.edu; kawtar@anl.gov FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-07ER41528] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under contracts No. DE-AC02-06CH11357 and DE-FG02-07ER41528. NR 75 TC 3 Z9 3 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD JUL PY 2012 VL 21 IS 7 AR 1230004 DI 10.1142/S0218301312300044 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 977UP UT WOS:000306690600001 ER PT J AU Kisslinger, LS Henley, EM Johnson, MB AF Kisslinger, Leonard S. Henley, Ernest M. Johnson, Mikkel B. TI NEUTRINO OSCILLATION IN MATTER AND PARAMETERS s(13), delta(CP) SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Neutrinos; CP-violation; oscillation parameters ID T VIOLATION; DECAY; CP AB We estimate the dependence of nu(mu) to nu(e) conversion on parameters theta(13) and delta(CP) for several experimental facilities studying neutrino oscillations. We use the S-Matrix theory to estimate (nu) over bar (e) disappearance and compare estimates based on an older theory being used to extract theta(13) from the Double Chooz, Daya Bay, and RENO data, to assist in extracting an accurate value for theta(13) from these projects. We use values of theta(13) within known limits, and estimate the dependence of nu(mu) - nu(e) CP violation (CPV) probability on delta(CP) in order to suggest new experiments to measure CPV for neutrinos moving in matter. C1 [Kisslinger, Leonard S.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Henley, Ernest M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Johnson, Mikkel B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kisslinger, LS (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. FU NSF [PHY-00070888]; DOE [W-7405-ENG-36, DE-FG02-97ER41014]; Pittsburgh Foundation FX This work was supported in part by the NSF grant PHY-00070888, in part by the DOE contracts W-7405-ENG-36 and DE-FG02-97ER41014, and in part by a grant from the Pittsburgh Foundation. We thank Professor Ma Wei-Xing IHEP Beijing For information about the Daya Bay project. NR 34 TC 8 Z9 8 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD JUL PY 2012 VL 21 IS 7 AR 1250065 DI 10.1142/S0218301312500656 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 977UP UT WOS:000306690600003 ER PT J AU Mahrooghy, M Anantharaj, VG Younan, NH Aanstoos, J Hsu, KL AF Mahrooghy, Majid Anantharaj, Valentine G. Younan, Nicolas H. Aanstoos, James Hsu, Kuo-Lin TI On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID RAINFALL; SYSTEM AB By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature rain-rate (T-R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm. C1 [Mahrooghy, Majid; Younan, Nicolas H.; Aanstoos, James] Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS 39762 USA. [Mahrooghy, Majid; Younan, Nicolas H.] Mississippi State Univ, Dept Elect Engn, Mississippi State, MS 39762 USA. [Anantharaj, Valentine G.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN USA. [Hsu, Kuo-Lin] Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing Civil & Enviro, Irvine, CA USA. RP Mahrooghy, M (reprint author), Mississippi State Univ, Geosyst Res Inst, Box 9627, Mississippi State, MS 39762 USA. EM mm858@msstate.edu FU NASA Applied Sciences Program [NNS06AA98B]; NOAA Office of Atmospheric Research [NA07OAR4170517]; National Center for Computational Sciences, Oak Ridge National Laboratory FX This research was sponsored by the NASA Applied Sciences Program under Grant NNS06AA98B and the NOAA Office of Atmospheric Research via Grant NA07OAR4170517. We also thank Dr. S. Sorooshian and the PERSIANN group at UC Irvine for the PERSIANN-CCS data and the helpful discussions about their methodology. Dr. Valentine Anantharaj is also supported by the National Center for Computational Sciences, Oak Ridge National Laboratory. NR 17 TC 5 Z9 5 U1 0 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUL PY 2012 VL 29 IS 7 BP 922 EP 932 DI 10.1175/JTECH-D-11-00146.1 PG 11 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 978CH UT WOS:000306717400004 ER PT J AU Halevi, B Peterson, EJ Roy, A DeLariva, A Jeroro, E Gao, F Wang, Y Vohs, JM Kiefer, B Kunkes, E Havecker, M Behrens, M Schlogl, R Datye, AK AF Halevi, Barr Peterson, Eric J. Roy, Aaron DeLariva, Andrew Jeroro, Ese Gao, Feng Wang, Yong Vohs, John M. Kiefer, Boris Kunkes, Edward Haevecker, Michael Behrens, Malte Schloegl, Robert Datye, Abhaya K. TI Catalytic reactivity of face centered cubic PdZn alpha for the steam reforming of methanol SO JOURNAL OF CATALYSIS LA English DT Article DE PdZn; Methanol steam reforming; MSR; Heterogeneous catalysis; Intermetallic; Spray pyrolysis; Model catalyst; Inter-metallic; Aerosol ID CO ADSORPTION; PD(111); SURFACE; OXIDATION; ALLOYS; DECOMPOSITION; SPECTROSCOPY; TEMPERATURE; MOLECULES; PRESSURE AB Addition of Zn to Pd changes its catalytic behavior for steam reforming of methanol. Previous work shows that improved catalytic behavior (high selectivity to CO2) is achieved by the intermetallic, tetragonal L1(0) phase PdZn beta 1, where the Pd:Zn ratio is near 1:1. The Pd-Zn phase diagram shows a number of other phases, but their steady-state reactivity has not been determined due to the difficulty of precisely controlling composition and phase in supported catalysts. Hence, the role of Zn on Pd has generally been studied only on model single crystals where Zn was deposited on Pd(111) with techniques such as TPD and TPR of methanol or CO. The role of small amounts of Zn on the steady-state reactivity of Pd-Zn remains unknown. Therefore, in this work, we have synthesized unsupported powders of phase pure PdZn alpha, a solid solution of Zn in fcc Pd, using a spray pyrolysis technique. The surface composition and chemical state were studied using Ambient Pressure-XPS (AP-XPS) and were found to match the bulk composition and remain so during methanol steam reforming (MSR) (P-tot = 0.25 mbar). Unlike the PdZn beta 11 phase, we find that PdZn alpha is 100% selective to CO during methanol steam reforming with TOF at 250 degrees C of 0.12 s(-1). Steady-state ambient pressure micro-reactor experiments and vacuum TPD of methanol and CO show that the alpha phase behaves much like Pd, but Zn addition to Pd improves TOF since it weakens the Pd-CO bond, eliminating the poisoning of Pd by CO during MSR over Pd. The measured selectivity for fcc PdZn alpha therefore confirms that adding small amounts of Zn to Pd is not enough to modify the selectivity during MSR and that the PdZn beta 1 tetragonal structure is essential for CO2 formation during MSR. (C) 2012 Elsevier Inc. All rights reserved. C1 [Halevi, Barr; Peterson, Eric J.; Roy, Aaron; DeLariva, Andrew; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Halevi, Barr; Peterson, Eric J.; Roy, Aaron; DeLariva, Andrew; Datye, Abhaya K.] Univ New Mexico, Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Jeroro, Ese; Vohs, John M.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. [Gao, Feng; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kiefer, Boris] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Kunkes, Edward; Haevecker, Michael; Behrens, Malte; Schloegl, Robert] Max Planck Gesell, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany. RP Halevi, B (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, MSC01 1120, Albuquerque, NM 87131 USA. EM halevi@unm.edu; datye@unm.edu RI Wang, Yong/C-2344-2013; Behrens, Malte/A-3035-2017 OI Behrens, Malte/0000-0003-3407-5011 FU U.S. Department of Energy [DE-FG02-05ER15712, DE-FG02-08ER46530, DE-FG02-04ER15605]; National Science Foundation [OISE 0730277]; Department of Energy's Office of Biological and Environmental Research FX We gratefully acknowledge funding for this work provided by the U.S. Department of Energy for Grant DE-FG02-05ER15712 and partial funding from Grants DE-FG02-08ER46530 and DE-FG02-04ER15605. Also the National Science Foundation for Grant OISE 0730277, Partnerships for International Research and Education (PIRE). We also gratefully acknowledge computing resources provided by the New Mexico Computing Applications Center (NMCAC) on Encanto. Ambient Pressure-XPS experiments were carried out at BESSY II, Helmholtz-Zentrum Berlin. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We thank Fernando Garzon of Los Alamos National laboratory for access to the micro-XRF. NR 37 TC 28 Z9 29 U1 8 U2 101 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JUL PY 2012 VL 291 BP 44 EP 54 DI 10.1016/j.jcat.2012.04.002 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 978XR UT WOS:000306779600006 ER PT J AU Kandel, K Althaus, SM Peeraphatdit, C Kobayashi, T Trewyn, BG Pruski, M Slowing, II AF Kandel, Kapil Althaus, Stacey M. Peeraphatdit, Chorthip Kobayashi, Takeshi Trewyn, Brian G. Pruski, Marek Slowing, Igor I. TI Substrate inhibition in the heterogeneous catalyzed aldol condensation: A mechanistic study of supported organocatalysts SO JOURNAL OF CATALYSIS LA English DT Article DE Mesoporous silica nanoparticles; Heterogeneous catalysis; Aldol condensation; Substrate inhibition; Cooperative catalysis; Solid-state NMR ID MESOPOROUS SILICA NANOPARTICLES; PHASE BECKMANN REARRANGEMENT; NUCLEAR MAGNETIC-RESONANCE; COOPERATIVE CATALYSIS; HOMOGENEOUS CATALYSIS; AMINE CATALYSTS; GEL SURFACES; SOLID-STATE; C-13 NMR; BASE AB In this study, we demonstrate how materials science can be combined with the established methods of organic chemistry to find mechanistic bottlenecks and redesign heterogeneous catalysts for improved performance. By using solid-state NMR, infrared spectroscopy, surface and kinetic analysis, we prove the existence of a substrate inhibition in the aldol condensation catalyzed by heterogeneous amines. We show that modifying the structure of the supported amines according to the proposed mechanism dramatically enhances the activity of the heterogeneous catalyst. We also provide evidence that the reaction benefits significantly from the surface chemistry of the silica support, which plays the role of a co-catalyst, giving activities up to two orders of magnitude larger than those of homogeneous amines. This study confirms that the optimization of a heterogeneous catalyst depends as much on obtaining organic mechanistic information as it does on controlling the structure of the support. (C) 2012 Elsevier Inc. All rights reserved. C1 [Kandel, Kapil; Althaus, Stacey M.; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Pruski, Marek; Slowing, Igor I.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kandel, Kapil; Althaus, Stacey M.; Peeraphatdit, Chorthip; Trewyn, Brian G.; Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Slowing, II (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM islowing@iastate.edu OI Slowing, Igor/0000-0002-9319-8639 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This research is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 61 TC 26 Z9 26 U1 2 U2 48 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JUL PY 2012 VL 291 BP 63 EP 68 DI 10.1016/j.jcat.2012.04.005 PG 6 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 978XR UT WOS:000306779600008 ER PT J AU Xu, WQ Si, R Senanayake, SD Llorca, J Idriss, H Stacchiola, D Hanson, JC Rodriguez, JA AF Xu, Wenqian Si, Rui Senanayake, Sanjaya D. Llorca, Jordi Idriss, Hicham Stacchiola, Dario Hanson, Jonathan C. Rodriguez, Jose A. TI In situ studies of CeO2-supported Pt, Ru, and Pt-Ru alloy catalysts for the water-gas shift reaction: Active phases and reaction intermediates SO JOURNAL OF CATALYSIS LA English DT Article DE Water-gas shift; Platinum; Ruthenium; Alloy; Cerium oxide; Hydrogen production; Formate; In situ XRD; Operando XANES; DRIFTS-WGSR ID RAY-ABSORPTION SPECTROSCOPY; TEMPERATURE FUEL-CELLS; HYDROGEN-PRODUCTION; CO ADSORPTION; SUPPORTED RUTHENIUM; CARBON-MONOXIDE; GOLD CATALYSTS; NOBLE-METALS; CERIA; MECHANISM AB The activity and structure of three CeO2-based catalysts (Pt-CeO2, Ru-CeO2, and Pt-Ru alloy-CeO2) active for water-gas shift reaction (WGSR) are studied by in situ X-ray diffraction (XRD), operando X-ray absorption near edge spectroscopy (XANES), operando diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS), and high-resolution transmission electron microscopy (HRTEM) in order to understand and thus correlate both bulk and surface dynamics with performance. All systems investigated displayed a high WGS activity. Temperature-resolved XRD (under CO or H-2 environment) indicated an additional expansion of the CeO2 crystal lattice at 100-250 degrees C for the catalysts compared to pure CeO2. This extra lattice expansion is due to additional oxygen removal from CeO2 promoted by the deposited Pt. Ru, or Pt-Ru alloy particles: CO showed an accelerated expansion when compared to that of H-2. DRIFTS spectra revealed the formation of substantial amounts of formates (HCOO-) on Pt-CeO2 during WGSR, while formates on PtRu-CeO2 and Ru-CeO2 were at a much lower level. For all catalysts, formate species totally disappeared by 350 degrees C. The inhibition of formate formation on PtRu-CeO2 points to a modification of the chemical properties of Pt by alloying with Ru. The fact that the inhibition of Pt-bound formate species does not affect the catalytic activity implies that they are probably merely spectators on Pt, or at least not involved in the main reaction pathway. While the Pt-Ru alloy was not more active than Pt-CeO2, the alloyed catalyst did show a reduced generation of methane under WGSR conditions compared to Ru-CeO2. Pt XANES data confirmed the reduction of Pt in both Pt-CeO2 and PtRu-CeO2 with increasing temperature in the WGSR environment. HRTEM showed that the reduced PtRu-CeO2 catalyst was composed of a Pt-Ru alloy with a mean particle size of 2 nm well dispersed over the CeO2 support. Overall, the work indicates that a Pt-Ru alloy supported on CeO2 is an active and selective catalyst for WGSR. (C) 2012 Elsevier Inc. All rights reserved. C1 [Xu, Wenqian; Si, Rui; Senanayake, Sanjaya D.; Stacchiola, Dario; Hanson, Jonathan C.; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Llorca, Jordi] Tech Univ Catalonia, Inst Energy Technol, Barcelona, Spain. [Llorca, Jordi] Tech Univ Catalonia, Ctr Res Nanoengn, Barcelona, Spain. [Idriss, Hicham] Univ Aberdeen, Dept Chem, Aberdeen AB24 3EU, Scotland. [Idriss, Hicham] Riyadh & Thuwal KAUST, CRI, Riyadh, Saudi Arabia. [Idriss, Hicham] SABIC T&I, Riyadh, Saudi Arabia. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Stacchiola, Dario/B-1918-2009; Xu, Wenqian/M-5906-2013; Llorca, Jordi/M-8134-2014; Senanayake, Sanjaya/D-4769-2009; Hanson, jonathan/E-3517-2010 OI Stacchiola, Dario/0000-0001-5494-3205; Llorca, Jordi/0000-0002-7447-9582; Senanayake, Sanjaya/0000-0003-3991-4232; FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-98CH10886]; MICINN [CTQ2009-12520] FX The research carried out at Brookhaven National Laboratory was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DE-AC02-98CH10886 contract). J.L. is grateful to MICINN Project CTQ2009-12520 and to ICREA Academia program. NR 63 TC 59 Z9 59 U1 15 U2 252 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JUL PY 2012 VL 291 BP 117 EP 126 DI 10.1016/j.jcat.2012.04.013 PG 10 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 978XR UT WOS:000306779600015 ER PT J AU Novichkov, PS Brettin, TS Novichkova, ES Dehal, PS Arkin, AP Dubchak, I Rodionov, DA AF Novichkov, Pavel S. Brettin, Thomas S. Novichkova, Elena S. Dehal, Paramvir S. Arkin, Adam P. Dubchak, Inna Rodionov, Dmitry A. TI RegPrecise web services interface: programmatic access to the transcriptional regulatory interactions in bacteria reconstructed by comparative genomics SO NUCLEIC ACIDS RESEARCH LA English DT Article ID CENTRAL CARBON; DATABASE; METABOLISM; NETWORKS; INFERENCE AB Web services application programming interface (API) was developed to provide a programmatic access to the regulatory interactions accumulated in the RegPrecise database (http://regprecise.lbl.gov), a core resource on transcriptional regulation for the microbial domain of the Department of Energy (DOE) Systems Biology Knowledgebase. RegPrecise captures and visualize regulogs, sets of genes controlled by orthologous regulators in several closely related bacterial genomes, that were reconstructed by comparative genomics. The current release of RegPrecise 2.0 includes > 1400 regulogs controlled either by protein transcription factors or by conserved ribonucleic acid regulatory motifs in > 250 genomes from 24 taxonomic groups of bacteria. The reference regulons accumulated in RegPrecise can serve as a basis for automatic annotation of regulatory interactions in newly sequenced genomes. The developed API provides an efficient access to the RegPrecise data by a comprehensive set of 14 web service resources. The RegPrecise web services API is freely accessible at http://regprecise.lbl.gov/RegPrecise/services.jsp with no login requirements. C1 [Novichkov, Pavel S.; Novichkova, Elena S.; Dehal, Paramvir S.; Arkin, Adam P.; Dubchak, Inna] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brettin, Thomas S.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Rodionov, Dmitry A.] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia. [Rodionov, Dmitry A.] Sanford Burnham Med Res Inst, La Jolla, CA 92037 USA. RP Novichkov, PS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM psnovichkov@lbl.org; rodionov@burnham.org RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Rodionov, Dmitry/0000-0002-0939-390X FU Office of Science, Office of Biological and Environmental Research, of the US Department of Energy (DOE) [DE-AC02-05CH11231]; DOE Systems Biology Knowledgebase [DE-SC0004999]; Sanford-Burnham Medical Research Institute; Lawrence Berkeley National Laboratory, as part of Genomic Science Program; DOE [DE-AC02-05CH11231] FX This work was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy (DOE) under contract No. [DE-AC02-05CH11231], as part of the DOE Systems Biology Knowledgebase, and under contract No. [DE-SC0004999] with Sanford-Burnham Medical Research Institute and Lawrence Berkeley National Laboratory, as part of Genomic Science Program. Funding for open access charge: DOE contract No. [DE-AC02-05CH11231]. NR 15 TC 12 Z9 12 U1 2 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL PY 2012 VL 40 IS W1 BP W604 EP W608 DI 10.1093/nar/gks562 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 977NR UT WOS:000306670900099 PM 22700702 ER PT J AU Jenkins, JE Hibbs, MR Alam, TM AF Jenkins, Janelle E. Hibbs, Michael R. Alam, Todd M. TI Identification of Multiple Diffusion Rates in Mixed Solvent Anion Exchange Membranes Using High Resolution MAS NMR SO ACS MACRO LETTERS LA English DT Article ID ANGLE-SPINNING NMR; MAGNETIC-RESONANCE-SPECTROSCOPY; POLYMER ELECTROLYTE MEMBRANES; PROTON-CONDUCTING MEMBRANES; HRMAS NMR; PFG NMR; SELF-DIFFUSION; FUEL-CELLS; WATER; SIMULATION AB High resolution magic angle spinning (HRMAS) H-1 NMR in combination with 2D exchange NOESY and pulsed field gradient (PFG) NMR diffusion experiments have been used to characterize 1 N methanol swollen polymer anion exchange membranes (ARM) presently being developed for alkaline fuel cells. Standard static H-1 NMR experiments on these materials have proven unsuccessful due to severe signal broadening. New experimental methods for increased resolution are needed to determine distinct solvent environments and transport properties. Using HRMAS NMR, resonances from water and methanol in both a free (bulk-like) environment and membrane-associated environment within the AEM were observed. H-1 HRMAS PFG NMR experiments identified different molecular diffusion environments in the solvent, while H-1 2D NOESY exchange NMR experiments confirmed spatial contacts between membrane-associated species and the membrane. These results demonstrate that H-1 HRMAS is an ideal technique for the characterization of individual environments and diffusion rates in polymer membranes with mixed solvent systems. C1 [Jenkins, Janelle E.; Alam, Todd M.] Sandia Natl Labs, Dept Elect & Nanostruct Mat, Albuquerque, NM 87123 USA. [Hibbs, Michael R.] Sandia Natl Labs, Dept Mat Devices & Energy Technol, Albuquerque, NM 87123 USA. RP Jenkins, JE (reprint author), Sandia Natl Labs, Dept Elect & Nanostruct Mat, Albuquerque, NM 87123 USA. EM jejenki@sandia.gov; tmalam@sandia.gov FU Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This project was funded by Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 32 TC 9 Z9 9 U1 4 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD JUL PY 2012 VL 1 IS 7 BP 910 EP 914 DI 10.1021/mz300124j PG 5 WC Polymer Science SC Polymer Science GA 975IH UT WOS:000306503400027 ER PT J AU Bertassoni, LE Orgel, JPR Antipova, O Swain, MV AF Bertassoni, Luiz E. Orgel, Joseph P. R. Antipova, Olga Swain, Michael V. TI The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale SO ACTA BIOMATERIALIA LA English DT Review DE Dentin; Collagen; Bonding; Adhesion; Polymers ID ATOMIC-FORCE MICROSCOPY; ACID-ETCHED DENTIN; TRANSMISSION ELECTRON-MICROSCOPY; COMPOSITE FILLING MATERIALS; SELF-ETCHING ADHESIVES; CROSS-LINKING AGENTS; COLLAGEN IN-SITU; EXTRACELLULAR-MATRIX; BOND STRENGTH; WATER SORPTION AB The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate. Crown Copyright (C) 2012 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved. C1 [Bertassoni, Luiz E.; Swain, Michael V.] Univ Sydney, Fac Dent, Biomat Sci Res Unit, United Dent Hosp, Sydney, NSW 2010, Australia. [Orgel, Joseph P. R.; Antipova, Olga] IIT, Biophys Collaborat Access Team, Ctr Mol Study Condensed Soft Matter,CSRRI, Pritzker Inst Biomed Sci & Engn,Dept Biol Chem &, Chicago, IL 60616 USA. RP Bertassoni, LE (reprint author), Univ Sydney, Fac Dent, Biomat Sci Res Unit, United Dent Hosp, Surry Hills, Sydney, NSW 2010, Australia. EM luiz.bertassoni@sydney.edu.au RI ID, BioCAT/D-2459-2012 FU Australian Research Council [DP120104837]; Australian Dental Research Foundation [46/2009, 36/2010]; National Science Foundation [MCB-0644015 CAREER]; Australian Government; University of Sydney; ADRF FX This research was supported by Australian Research Council (grant DP120104837), the Australian Dental Research Foundation (grants 46/2009 and 36/2010) and the National Science Foundation (grant MCB-0644015 CAREER). L.E.B. also thanks the Australian Government for support in the form of an Endeavour International Postgraduate Research Scholarship, the University of Sydney for an International Postgraduate Award and the ADRF for a Collin Cormie Scholarship. NR 148 TC 38 Z9 40 U1 1 U2 50 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD JUL PY 2012 VL 8 IS 7 BP 2419 EP 2433 DI 10.1016/j.actbio.2012.02.022 PG 15 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 974NK UT WOS:000306442400001 PM 22414619 ER PT J AU Singhal, A Almer, JD Dunand, DC AF Singhal, A. Almer, J. D. Dunand, D. C. TI Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone SO ACTA BIOMATERIALIA LA English DT Article DE Bone; Synchrotron; Load transfer; X-ray diffraction; Compression ID X-RAY-DIFFRACTION; HUMAN CORTICAL BONE; METAL-MATRIX COMPOSITES; SOLID-STATE NMR; ELASTIC PROPERTIES; MECHANICAL-PROPERTIES; SYNCHROTRON-RADIATION; TENDON COLLAGEN; COMPACT-BONE; HUMAN FEMUR AB High-energy synchrotron X-ray diffraction is used to study in situ elastic strains in hydroxyapatite (HAP) for bovine femur cortical bone subjected to uniaxial compressive loading. Load-unload tests at room temperature (27 degrees C) and body temperature (37 degrees C) show that the load transfer to the stiff nanosized HAP platelets from the surrounding compliant protein matrix does not vary significantly (p < 0.05) with temperature. This emphasizes that the stiffness of bone is controlled by the stiffness of the HAP phase, which remains unaffected by this change in temperature. Both the extent of hysteresis and the residual value of internal strains developed in HAP during load-unload cycling from 0 to -100 MPa increase significantly (p < 0.05) with the number of loading cycles, indicative of strain energy dissipation and accumulation of permanent deformation. Monotonic loading tests, conducted at body temperature to determine the spatial variation of properties within the femur, illustrate that the HAP phase carries lower strain (and thus stresses) at the anterio-medial aspect of the femur than at the anterio-lateral aspect. This is correlated to higher HAP volume fractions in the former location (p < 0.05). The Young's modulus of the bone is also found to correlate with the HAP volume fraction and porosity (p < 0.05). Finally, samples with a primarily plexiform microstructure are found to be stiffer than those with a primarily Haversian microstructure (p < 0.05). (C) 2012 Acta Materialia Inc Published by Elsevier Ltd. All rights reserved. C1 [Singhal, A.; Dunand, D. C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Singhal, A (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM AnjaliSinghal2007@u.northwestern.edu RI Dunand, David/B-7515-2009; OI Dunand, David/0000-0001-5476-7379 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank Prof. L Catherine Brinson, Dr. Alix Deymier-Black and Mr. Fang Yuan (NU) for numerous useful discussions throughout this work. Dr. Alix Deymier-Black (NU) and Dr. John Okasinski (APS) are also acknowledged for their help with the experiments at the Advanced Photon Source (APS). This research was performed at station 1-ID of XOR-APS. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 95 TC 11 Z9 11 U1 0 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD JUL PY 2012 VL 8 IS 7 BP 2747 EP 2758 DI 10.1016/j.actbio.2012.03.036 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 974NK UT WOS:000306442400034 PM 22465576 ER PT J AU Pate, SJ Clement, JA McCoy, JAH Lance, SL Mathews, KG AF Pate, Sarah J. Clement, Jason A. McCoy, Joe-Ann H. Lance, Stacey L. Mathews, Katherine G. TI DEVELOPMENT AND CHARACTERIZATION OF MICROSATELLITE MARKERS FOR ACTAEA RACEMOSA (BLACK COHOSH, RANUNCULACEAE) SO AMERICAN JOURNAL OF BOTANY LA English DT Article DE Actaea racemosa; black cohosh; medicinal plant; microsatellites; Ranunculaceae AB Premise of the study: Microsatellite markers were developed in Actaea racemosa to analyze population genetic structure, compare genetic diversity across the species' range, and provide a genetic context for studies of phytochemical variation. Methods and Results: A total of seven polymorphic loci were screened in 60 individuals from 12 localities. The number of alleles per locus ranged from three to six, and observed heterozygosity ranged from 0.133 to 0.900. Most of the loci tested cross-amplified in A. pachypoda, A. podocarpa, and A. rubra, indicating the utility of these markers for the genus. Conclusions: These new loci will provide tools for population genetics studies, including the characterization of genetic variation in A. racemosa and other eastern North American species of Actaea C1 [Pate, Sarah J.; Mathews, Katherine G.] Western Carolina Univ, Dept Biol, Cullowhee, NC 28723 USA. [Clement, Jason A.] Western Carolina Univ, Dept Chem & Phys, Cullowhee, NC 28723 USA. [McCoy, Joe-Ann H.] Bent Creek Germplasm Repository, Asheville, NC 28806 USA. [Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Mathews, KG (reprint author), Western Carolina Univ, Dept Biol, 132 Nat Sci Bldg, Cullowhee, NC 28723 USA. EM kmathews@email.wcu.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU North Carolina Biotechnology Center [2010-MRG-1111]; Department of Energy [DE-FC09-07SR22506] FX This research was supported by a Multidisciplinary Research Grant of the North Carolina Biotechnology Center (2010-MRG-1111) to J.A.C., J.H.M., and K.G.M. Work at the Savannah River Ecology Laboratory was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 12 TC 2 Z9 2 U1 0 U2 2 PU BOTANICAL SOC AMER INC PI ST LOUIS PA PO BOX 299, ST LOUIS, MO 63166-0299 USA SN 0002-9122 J9 AM J BOT JI Am. J. Bot. PD JUL PY 2012 VL 99 IS 7 BP E274 EP E276 DI 10.3732/ajb.1100577 PG 3 WC Plant Sciences SC Plant Sciences GA 975IN UT WOS:000306505000003 PM 22739708 ER PT J AU Sperber, KR Kim, D AF Sperber, Kenneth R. Kim, Daehyun TI Simplified metrics for the identification of the Madden-Julian oscillation in models SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE Madden-Julian oscillation; climate models; metrics ID GENERAL-CIRCULATION MODELS; MJO SIMULATION DIAGNOSTICS; GLOBAL PRECIPITATION; ARAKAWA-SCHUBERT; PART 1; PARAMETERIZATION; VARIABILITY; RESOLUTION; CLIMATE; SPACE AB We propose simplified metrics to evaluate the fidelity with which the MaddenJulian oscillation (MJO) is simulated in climate models. These metrics are based on lag correlation analysis of principal component time series (PCs). The PCs are obtained by projecting simulated 20100 day bandpass filtered daily outgoing longwave radiation onto the two leading empirical orthogonal functions of observed MJO variability. The simplified MJO metrics, the maximum positive correlation and time lag at which it occurs, provide consistent information relative to more complex diagnostics developed by the MaddenJulian Oscillation Working Group (CLIVAR MJOWG) and by Kim et al. Copyright (c) 2012 Royal Meteorological Society C1 [Sperber, Kenneth R.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. [Kim, Daehyun] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA. RP Sperber, KR (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, POB 808,L-103, Livermore, CA 94550 USA. EM sperber1@llnl.gov RI Sperber, Kenneth/H-2333-2012 FU Office of Science (BER) Regional and Global Climate Modeling Program, US Department of Energy through Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA [NNX09AK34G] FX The authors thank the YOTC MJO Task Force (and other invited experts) for their probing questions, insights, critique, and suggestions for validating the simple metrics presented herein. The authors also thank Dr D. E. Waliser, former co-chair of the YOTC MJOTF, for his support and encouragement in the development of the simple metrics and for helpful comments on the revised draft. We thank Dr Matt Wheeler, co-chair of the YOTC MJOTF, for reviewing the submitted and revised versions of this manuscript, and the two anonymous reviewers, whose comments also improved the paper. The MJOTF thanks Dr Peter Gleckler (PCMDI) and the WGNE/WGCM Climate Model Metrics Panel for their solicitation and guidance in developing the MJO metrics. K. R. Sperber was supported by the Office of Science (BER) Regional and Global Climate Modeling Program, US Department of Energy through Lawrence Livermore National Laboratory contract DE-AC52-07NA27344. Daehyun Kim was supported by NASA grant NNX09AK34G. NR 21 TC 15 Z9 15 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD JUL-SEP PY 2012 VL 13 IS 3 BP 187 EP 193 DI 10.1002/asl.378 PG 7 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 977IF UT WOS:000306649400007 ER PT J AU Mao, F Zhang, C Zhang, YW Zhang, FS AF Mao Fei Zhang Chao Zhang Yan-Wen Zhang Feng-Shou TI Collision Energy Dependence of Defect Formation in Graphene SO CHINESE PHYSICS LETTERS LA English DT Article ID CARBON NANOTUBES; DEPOSITION; CLUSTERS; FILMS AB Molecular dynamics simulations are performed using an empirical potential to simulate the collision process of an energetic carbon atom hitting a graphene sheet. According to the different impact locations within the graphene sheet, the incident threshold energies of different defects caused by the collision are determined to be 22 eV for a single vacancy, 36 eV for a divacancy, 60 eV for a Stone-Wales defect, and 65 eV for a hexavacancy. Study of the evolution and stability of the defects formed by these collisions suggests that the single vacancy reconstructs into a pentagon pair and the divacancy transforms into a pentagon-octagon-pentagon configuration. The displacement threshold energy in graphene is investigated by using the dynamical method, and a reasonable value 22.42 eV is clarified by eliminating the heating effect induced by the collision. C1 [Mao Fei; Zhang Chao; Zhang Feng-Shou] Beijing Normal Univ, Coll Nucl Sci & Technol, Minist Educ, Key Lab Beam Technol & Mat Modificat, Beijing 100875, Peoples R China. [Mao Fei; Zhang Chao; Zhang Feng-Shou] Beijing Radiat Ctr, Beijing 100875, Peoples R China. [Zhang Yan-Wen] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhang, FS (reprint author), Beijing Normal Univ, Coll Nucl Sci & Technol, Minist Educ, Key Lab Beam Technol & Mat Modificat, Beijing 100875, Peoples R China. EM fszhang@bnu.edu.cn FU National Natural Science Foundation of China [11025524, 11161130520]; National Basic Research Program of China [2010CB832903] FX Supported by the National Natural Science Foundation of China under Grand Nos 11025524 and 11161130520, and the National Basic Research Program of China under Grant No 2010CB832903. NR 31 TC 9 Z9 9 U1 1 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD JUL PY 2012 VL 29 IS 7 AR 076101 DI 10.1088/0256-307X/29/7/076101 PG 4 WC Physics, Multidisciplinary SC Physics GA 975ZV UT WOS:000306551200051 ER PT J AU Bashir, A Chang, L Cloet, IC El-Bennich, B Liu, YX Roberts, CD Tandy, PC AF Bashir, Adnan Chang Lei Cloet, Ian C. El-Bennich, Bruno Liu Yu-Xin Roberts, Craig D. Tandy, Peter C. TI Collective Perspective on Advances in Dyson-Schwinger Equation QCD SO COMMUNICATIONS IN THEORETICAL PHYSICS LA English DT Article DE confinement; dynamical chiral symmetry breaking; Dyson-Schwinger equations; hadron spectrum; hadron elastic and transition form factors; heavy mesons; in-hadron condensates; parton distribution functions; quark gluon plasma; U-A(1)-problem ID CHIRAL-SYMMETRY-BREAKING; ELECTROMAGNETIC FORM-FACTORS; QUARK BOUND-STATES; JONA-LASINIO MODEL; LARGE N-C; HADRON PHYSICS; QUANTUM CHROMODYNAMICS; FINITE-TEMPERATURE; DECAY CONSTANT; VECTOR-MESONS AB We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations,addressing the following aspects: confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small-to large-Q(2); parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma. C1 [Bashir, Adnan] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico. [Bashir, Adnan; Chang Lei; Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bashir, Adnan; Tandy, Peter C.] Kent State Univ, Dept Phys, Ctr Nucl Res, Kent, OH 44242 USA. [Cloet, Ian C.] Univ Adelaide, CSSM, Adelaide, SA 5005, Australia. [Cloet, Ian C.] Univ Adelaide, CoEPP, Sch Chem & Phys, Adelaide, SA 5005, Australia. [El-Bennich, Bruno] Univ Cruzeiro Sul, Lab Fis Teor & Comp Cient, BR-01506000 Sao Paulo, Brazil. [El-Bennich, Bruno] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil. [Liu Yu-Xin; Roberts, Craig D.] Peking Univ, Dept Phys, Ctr High Energy Phys, Beijing 100871, Peoples R China. [Liu Yu-Xin; Roberts, Craig D.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Liu Yu-Xin] Ctr Theoret Nucl Phys, Natl Lab Heavy Ion Accelerator, Lanzhou 730000, Peoples R China. [Roberts, Craig D.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Roberts, Craig D.] IIT, Dept Phys, Chicago, IL 60616 USA. RP Bashir, A (reprint author), Univ Michoacana, Inst Fis & Matemat, Edificio C-3,Ciudad Univ, Morelia 58040, Michoacan, Mexico. EM yxliu@pku.edu.cn; cdroberts@anl.gov OI Roberts, Craig/0000-0002-2937-1361 FU Kavli Institute for Theoretical Physics China (KITPC), at the Chinese Academy of Sciences; Chinese Academy of Sciences [KJCX2.YW.W10]; Sistema Nacional de Investigadores; CONACyT [46614-F]; University of Adelaide [FL0992247]; Australian Research Council [FL0992247]; Coordinacion de la Investigacion Cientifica (UMSNH) [4.10]; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2009/51296-1, 2010/05772-3]; National Natural Science Foundation of China [10425521, 10675002, 10705002, 10935001, 11075052]; Major State Basic Research Development Program [G2007CB815000]; Forschungszentrum Julich GmbH; U.S. National Science Foundation [PHY-0903991]; CONACyT Mexico-USA FX We are grateful to the organisers for the opportunity to be involved in this well conceived and executed conference on AdS/CFT and Novel Approaches to Hadron and Heavy Ion Physics, for financial support from the Kavli Institute for Theoretical Physics China (KITPC), at the Chinese Academy of Sciences, which enabled our participation and, above all, for the kindness and hospitality of the KITPC staff. We acknowledge valuable input from L. X. Gutierrez-Guerrero, V. Mokeev, M. A. Ivanov, A. Kizilersu, S. X. Qin, J. Rodriguez-Quintero, S. M. Schmidt and D. J. Wilson.; Supported by the Project of Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No. KJCX2.YW.W10; Sistema Nacional de Investigadores; CONACyT grant 46614-F; the University of Adelaide and the Australian Research Council through Grant No. FL0992247; Coordinacion de la Investigacion Cientifica (UMSNH) under Grant 4.10; the U.S. Department of Energy, Office of Nuclear Physics, Grant No. DE-AC02-06CH11357; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, Grant Nos. 2009/51296-1 and 2010/05772-3; the National Natural Science Foundation of China under Grant Nos. 10425521, 10675002, 10705002, 10935001 and 11075052; the Major State Basic Research Development Program, under Grant No. G2007CB815000; Forschungszentrum Julich GmbH; and the U.S. National Science Foundation under Grant No. PHY-0903991, in conjunction with a CONACyT Mexico-USA Collaboration Grant NR 293 TC 118 Z9 118 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0253-6102 EI 1572-9494 J9 COMMUN THEOR PHYS JI Commun. Theor. Phys. PD JUL PY 2012 VL 58 IS 1 BP 79 EP 134 DI 10.1088/0253-6102/58/1/16 PG 56 WC Physics, Multidisciplinary SC Physics GA 976GV UT WOS:000306569800016 ER PT J AU Anderson, K Bhatnagar, G Crosby, D Hatton, G Manfield, P Kuzmicki, A Fenwick, N Pontaza, J Wicks, M Socolofsky, S Brady, C Svedeman, S Sum, AK Koh, C Levine, J Warzinski, RP Shaffer, F AF Anderson, Karl Bhatnagar, Gaurav Crosby, Daniel Hatton, Greg Manfield, Philip Kuzmicki, Adam Fenwick, Nevi Pontaza, Juan Wicks, Moye Socolofsky, Scott Brady, Cole Svedeman, Steve Sum, Amadeu K. Koh, Carolyn Levine, Jonathan Warzinski, Robert P. Shaffer, Franklin TI Hydrates in the Ocean beneath, around, and above Production Equipment SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 1st International Conference on Upstream Engineering and Flow Assurance (ICUEFA) at the Spring Meeting of the American-Institute-of-Chemical-Engineers (AIChE) CY APR 01-05, 2012 CL Houston, TX SP Amer Inst Chem Engineers ID GAS HYDRATE; PLUMES; MODEL AB Hydrates amass beneath and around production equipment and can form in hydrocarbon-seawater jets/plumes. The sources of hydrocarbons in these hydrates are natural seeps or temporary production system leaks. In this paper, some of (i) the formation parameters for these hydrates and (ii) the impacts on normal production operations and hydrocarbon-spill capture systems are discussed. C1 [Anderson, Karl; Bhatnagar, Gaurav; Crosby, Daniel; Hatton, Greg; Manfield, Philip; Kuzmicki, Adam; Fenwick, Nevi; Pontaza, Juan; Wicks, Moye] Shell Int Explorat & Prod Inc, Shell Technol Ctr Amer, Houston, TX 77084 USA. [Socolofsky, Scott] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA. [Brady, Cole; Svedeman, Steve] SW Res Inst, San Antonio, TX 78238 USA. [Sum, Amadeu K.; Koh, Carolyn; Levine, Jonathan] Colorado Sch Mines, Chem & Biol Engn Dept, Golden, CO 80401 USA. [Warzinski, Robert P.; Shaffer, Franklin] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Hatton, G (reprint author), Shell Int Explorat & Prod Inc, Shell Technol Ctr Amer, 3333 Highway 6 South, Houston, TX 77084 USA. EM gregory.hatton@shell.com RI Sum, Amadeu/B-1103-2009 OI Sum, Amadeu/0000-0003-1903-4537 FU Bureau of Safety and Environmental Enforcement; Department of Interior, through Interagency [M11PG00053] FX The authors acknowledge Ron Lynn for his engineering efforts in making the work at the National Energy Technology Laboratory (NETL) possible. The NETL authors also acknowledge support by the Bureau of Safety and Environmental Enforcement, Department of Interior, through Interagency Agreement M11PG00053. NR 15 TC 4 Z9 4 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2012 VL 26 IS 7 BP 4167 EP 4176 DI 10.1021/ef300261z PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 975IE UT WOS:000306503100023 ER PT J AU Castro-Marcano, F Winans, RE Chupas, P Chapman, K Calo, JM Watson, JK Mathews, JP AF Castro-Marcano, Fidel Winans, Randall E. Chupas, Peter Chapman, Karena Calo, Joseph M. Watson, Justin K. Mathews, Jonathan P. TI Fine Structure Evaluation of the Pair Distribution Function with Molecular Models of the Argonne Premium Coals SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 1st International Conference on Upstream Engineering and Flow Assurance (ICUEFA) at the Spring Meeting of the American-Institute-of-Chemical-Engineers (AIChE) CY APR 01-05, 2012 CL Houston, TX SP Amer Inst Chem Engineers ID MONTE-CARLO METHOD; X-RAY-DIFFRACTION; POROUS CARBONS; DIFFERENT RANK; C-13 NMR; SIMULATION; CHAR; COMBUSTION; SCATTERING; ACTIVATION AB The pair distribution function (PDF) is one means of evaluating the atomic spatial arrangements of coals. Analysis of PDF based on X-ray diffraction data provides structural information on turbostratic crystalline parameters that can be utilized to further characterize coal structure. With coalification, expectations are of limited growth in aromatic stacking and a slight growth in the aromatic cluster size over the lignite to medium-volatile bituminous range. The PDF can be also used to construct and validate atomistic representations for carbonaceous materials including coal. Here, the PDF was evaluated with molecular slice models of several Argonne Premium coals (Beulah-Zap, Illinois No. 6, Upper Freeport, Pocahontas No. 3), also a non-Argonne Hon Gai anthracite, and compared to experimental observations. Atomistic representations were generated directly from high-resolution transmission electron microscope (HRTEM) lattice fringe images. The Fringe3D approach populates aromatic moieties matching the distributions of fringe: length, layers per stack, interlayer spacing, and orientations to produce an aromatic slice model of limited depth. Perl scripts incorporated appropriate aliphatic and heteroatom components. This approach creates atomistic representations with greater ease, improved accuracy, and reduced computational expense than other construction approaches. The constructed coal models were partially geometry-optimized to achieve realistic bond lengths but without displacement of coal molecules enabling the distribution of fringe length, stacking, and orientations to be duplicated in 31) modeling space. The resulting coal slice models, devoid of cross-links, captured a distribution of turbostratic crystalline dimensions with an average cluster size of about 1 nm, an average interlayer spacing ranging between 0.37 and 0.39 nm, and an average stacking number of similar to 2-3 in accordance with HRTEM and XRD data for Argonne coals. These structural models were used to predict PDFs and to evaluate the fine detail of the frequency spectra via examination of intermolecular and intramolecular contributions. There was good agreement between predicted and experimental observations. Analysis of the simulated intermolecular PDF contribution showed strong intensities with increasing coal rank in agreement with the growth in the stacking number and stack height observed from low- to high-rank coals. The simulated intramolecular PDF contribution showed shorter peak amplitudes for low-rank coals in comparison to high-rank coals in agreement with the increase in stack width as coal rank increases. To further examine these contributions, lattice models composed of pyrene molecules were also constructed via Fringe 3D and manipulated to directly investigate the effect of aromatic orientation distributions and stacking on the simulated PDF. Peak intensities of simulated intermolecular PDFs at the average interlayer spacing increased with the degree of alignment (phi) according to g(r)(inter)(d002) = 0.0014 phi(2) + 0.0107 phi + 4.2784. This result was consistent with the slight increase in the stacking number observed from low- to high-rank coals with a more dramatic transition for anthracite. C1 [Castro-Marcano, Fidel; Mathews, Jonathan P.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Castro-Marcano, Fidel; Mathews, Jonathan P.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Winans, Randall E.; Chupas, Peter; Chapman, Karena] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Calo, Joseph M.] Brown Univ, Sch Engn, Providence, RI 02912 USA. [Watson, Justin K.] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA. RP Mathews, JP (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. EM jmathews@psu.edu RI Chapman, Karena/G-5424-2012 FU Illinois Clean Coal Institute; Office of Coal Development of the Illinois Department of Commerce and Economic Opportunity; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This project was funded by the Illinois Clean Coal Institute with funds made available through the Office of Coal Development of the Illinois Department of Commerce and Economic Opportunity. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 59 TC 9 Z9 9 U1 2 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2012 VL 26 IS 7 BP 4336 EP 4345 DI 10.1021/ef300364e PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 975IE UT WOS:000306503100041 ER PT J AU Althaus, SM Mao, KM Kennedy, GJ Pruski, M AF Althaus, Stacey M. Mao, Kanmi Kennedy, Gordon J. Pruski, Marek TI Solid-State NMR Studies of Fossil Fuels using One- and Two-Dimensional Methods at High Magnetic Field SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 1st International Conference on Upstream Engineering and Flow Assurance (ICUEFA) at the Spring Meeting of the American-Institute-of-Chemical-Engineers (AIChE) CY APR 01-05, 2012 CL Houston, TX SP Amer Inst Chem Engineers ID ARGONNE PREMIUM COALS; ANGLE-SPINNING NMR; NATURAL ORGANIC-MATTER; C-13 NMR; CROSS-POLARIZATION; CORRELATION SPECTROSCOPY; FAST MAS; PROTON; RESONANCE; AROMATICITY AB We examine the opportunities offered by advancements in solid-state NMR (SSNMR) methods, which increasingly rely on the use of high magnetic fields and fast magic angle spinning (MAS), in the studies of coals and other carbonaceous materials. The sensitivity of one- and two-dimensional experiments tested on several Argonne Premium coal samples is only slightly lower than that of traditional experiments performed at low magnetic fields in large MAS rotors, since higher receptivity per spin and the use of H-1 detection of low-gamma nuclei can make up for most of the signal loss due to the small rotor size. The advantages of modern SSNMR methodology in these studies include improved resolution, simplicity of pulse sequences, and the possibility of using J-coupling during mixing. C1 [Mao, Kanmi; Kennedy, Gordon J.] ExxonMobil Res & Engn Co, Annandale, NJ 08801 USA. [Althaus, Stacey M.; Pruski, Marek] US DOE, Ames Lab, Ames, IA 50011 USA. [Althaus, Stacey M.; Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Kennedy, GJ (reprint author), ExxonMobil Res & Engn Co, 1545 Route 22E, Annandale, NJ 08801 USA. EM gordon.j.kennedy@exxonmobil.com; mpruski@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX At the Ames Laboratory, this research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The authors thank Dr. J. W. Wiench, Dr. T. Kobayashi, and Mr. D. Griffin for experimental assistance and Dr. S. R. Kelemen and Professor D. Michel for providing the Argonne Premium and brown coal samples, respectively. The continued support of ExxonMobil Research and Engineering, in particular Dr. P. A. Stevens, Dr. S. P. Rucker, and Dr. T. Barckholtz, are gratefully acknowledged. NR 39 TC 5 Z9 5 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2012 VL 26 IS 7 BP 4405 EP 4412 DI 10.1021/ef3004637 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 975IE UT WOS:000306503100046 ER PT J AU Zhu, JX Kaneko, TK Mu, HY Bennett, JP Sridhar, S AF Zhu, Jingxi Kaneko, Tetsuya Kenneth Mu, Haoyuan Bennett, James P. Sridhar, Seetharaman TI Effects of Measurement Materials and Oxygen Partial Pressure on the Viscosity of Synthetic Eastern and Western United States Coal Slags SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 1st International Conference on Upstream Engineering and Flow Assurance (ICUEFA) at the Spring Meeting of the American-Institute-of-Chemical-Engineers (AIChE) CY APR 01-05, 2012 CL Houston, TX SP Amer Inst Chem Engineers ID IN-SITU OBSERVATIONS; PARTICLES AB The viscosity of the molten ash (slag) resulting from the mineral constituents in carbon feedstock used in slagging gasifiers is critical for controlling the gasification process. The viscosity of two synthetic slags with compositions resembling the mineral impurities in average eastern and western coal feedstock was examined at temperatures from 1300-1500 degrees C using a rotating bob viscometer. A few combinations of atmospheres and experimental materials were investigated with respect to one another to determine slag viscosity. A CO/CO2 atmosphere (CO/CO2 = 1.8, corresponding to a Po-2 = 10(-8) atm) is required to sustain ferrous ions in FeO-containing slags, an environment that is oxidizing to most metals. Iron oxide in the slag prevents usage of Fe parts. In unpurified Ar, the Fe metal surface oxidizes. Using purified argon prevents iron measurement components from oxidation; however, the metallic surfaces act as nucleation sites for the reduction of the Fe oxide in the slag into metallic Fe. Dissolution of ceramic materials into the slag, including Al2O3 and ZrO2, occurs in both atmospheres. Therefore, evaluating slag properties in the laboratory is challenging. The measured viscosities of two synthetic slags in this study diverged depending upon material selection. This difference is likely attributable to container/spindle-slag interactions. Viscosity measurements of the eastern coal slag using all ceramic parts agreed best with FactSage prediction above 1350 degrees C, with an average activation energy of 271.2 kJ. For western coal slag, the dissolution of container/spindle materials was substantial during the measurement, with precipitation of crystalline phase noted. The experimental viscosity data of the western coal slag agreed best with Kalmanovitch prediction above 1350 degrees C. The activation energy changed dramatically for both data sets of western coal slag, likely indicating the Newtonian-to-non-Newtonian transition. C1 [Zhu, Jingxi; Kaneko, Tetsuya Kenneth; Sridhar, Seetharaman] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Zhu, Jingxi; Kaneko, Tetsuya Kenneth; Mu, Haoyuan; Sridhar, Seetharaman] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Bennett, James P.] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. RP Zhu, JX (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM jingxiz@andrew.cmu.edu OI Zhu, Jingxi/0000-0002-0019-0647 FU National Energy Technology Laboratory's ongoing research in development of coal gasification under the RES Contract [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in development of coal gasification under the RES Contract DE-FE0004000. NR 20 TC 6 Z9 6 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2012 VL 26 IS 7 BP 4465 EP 4474 DI 10.1021/ef300632x PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 975IE UT WOS:000306503100053 ER PT J AU Fu, PC Johnson, SM Settgast, RR Carrigan, CR AF Fu, Pengcheng Johnson, Scott M. Settgast, Randolph R. Carrigan, Charles R. TI Generalized displacement correlation method for estimating stress intensity factors SO ENGINEERING FRACTURE MECHANICS LA English DT Article DE Fracture mechanics; Stress intensity factor; Displacement correlation method; Quarter-point element; Fracture propagation; Fracture interaction ID QUARTER-POINT ELEMENTS; CRACK-TIP ELEMENTS; ELASTIC FRACTURE-MECHANICS; FACTOR COMPUTATION; ISOPARAMETRIC ELEMENTS; EXTRAPOLATION; SIZE AB Conventional displacement-based methods for estimating stress intensity factors require special quarter-point finite elements in the first layer of elements around the fracture tip and substantial near-tip region mesh refinement. This paper presents a generalized form of the displacement correlation method (the GDC method), which can use any linear or quadratic finite element type with homogeneous meshing without local refinement. These two features are critical for modeling dynamic fracture propagation problems where locations of fractures are not known a priori. Because regular finite elements' shape functions do not include the square-root terms, which are required for accurately representing the near-tip displacement field, the GDC method is enriched via a correction multiplier term. This paper develops the formulation of the GDC method and includes a number of numerical examples, especially those consisting of multiple interacting fractures. We find that the proposed method using quadratic elements is accurate for mode-I and mode-II fracturing, including for very coarse meshes. An alternative formulation using linear elements is also demonstrated to be accurate for mode-I fracturing, and acceptable mode-II results for most engineering applications can be obtained with appropriate mesh resolution, which remains considerably less than that required by most other methods for estimating stress intensities. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Fu, Pengcheng; Johnson, Scott M.; Settgast, Randolph R.; Carrigan, Charles R.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Fu, PC (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, 7000 East Ave,L-286, Livermore, CA 94550 USA. EM fu4@llnl.gov OI Fu, Pengcheng/0000-0002-7408-3350 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy; LLNL LDRD [11-SI-006] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The work of Fu and Carrigan in this paper was supported by the Geothermal Technologies Program of the US Department of Energy, and the work of Johnson and Settgast was supported by the LLNL LDRD project "Creating Optimal Fracture Networks" (#11-SI-006). This paper is LLNL report LLNL-JRNL-501931. We also would like to credit the two anonymous reviewers for advice leading to significant quality improvement of the paper. NR 26 TC 7 Z9 7 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-7944 J9 ENG FRACT MECH JI Eng. Fract. Mech. PD JUL PY 2012 VL 88 BP 90 EP 107 DI 10.1016/j.engfracmech.2012.04.010 PG 18 WC Mechanics SC Mechanics GA 975TR UT WOS:000306534900008 ER PT J AU Cancelo, GI Estrada, JC Moroni, GF Treptow, K Zmuda, T Diehl, HT AF Cancelo, Gustavo Indalecio Estrada, Juan Cruz Fernandez Moroni, Guillermo Treptow, Ken Zmuda, Ted Diehl, H. Thomas TI Achieving sub electron noise in CCD systems by means of digital filtering techniques that lower 1/f pixel correlated noise SO EXPERIMENTAL ASTRONOMY LA English DT Article DE CCD; Spectroscopy; Dark matter; Sub electron noise ID CHARGE-COUPLED-DEVICES AB Scientific CCDs designed in thick high resistivity silicon (Si) are excellent detectors for astronomy, high energy and nuclear physics, and instrumentation. Many applications can benefit from CCDs ultra low noise readout systems. The present work shows how sub electron noise CCD images can be achieved using digital signal processing techniques. These techniques allow 0.4 electrons of noise at readout bandwidths of up to 10 Kpixels per second while keeping the full CCD spatial resolution and signal dynamic range. C1 [Cancelo, Gustavo Indalecio; Estrada, Juan Cruz; Treptow, Ken; Zmuda, Ted; Diehl, H. Thomas] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fernandez Moroni, Guillermo] Univ Nacl Sur, Inst Invest Ing Elect IIIE Alfredo C Desages, Dept Ingn Elect, RA-8000 Bahia Blanca, Buenos Aires, Argentina. RP Cancelo, GI (reprint author), Fermilab Natl Accelerator Lab, Kirk Rd & Pine St, Batavia, IL 60510 USA. EM cancelo@fnal.gov; estrada@fnal.gov; fmoroni.guillermo@gmail.com; treptow@fnal.gov; zmuda@fnal.gov; diehl@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy FX FERMILAB-PUB-11-391, Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 17 TC 3 Z9 3 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD JUL PY 2012 VL 34 IS 1 BP 13 EP 29 DI 10.1007/s10686-012-9294-1 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975XO UT WOS:000306545200002 ER PT J AU Moroni, GF Estrada, J Cancelo, G Holland, SE Paolini, EE Diehl, HT AF Fernandez Moroni, Guillermo Estrada, Juan Cancelo, Gustavo Holland, Stephen E. Paolini, Eduardo E. Diehl, H. Thomas TI Sub-electron readout noise in a Skipper CCD fabricated on high resistivity silicon SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Skipper CCD; Sub-electron noise; Floating gate output stage ID NOBEL LECTURE; RESOLUTION AB The readout noise for Charge-Coupled Devices (CCDs) has been the main limitation when using these detectors for measuring small amplitude signals. A scientific CCD fabricated on a high-resistivity silicon substrate utilizing a floating gate amplifier with the capability of multiple sampling of the charge signal is described in this paper. The Skipper CCD architecture and its advantages for low noise applications are discussed. A technique for obtaining sub-electron readout noise levels is presented, and its noise and signal characteristics are derived. We demonstrate that with this procedure a very low readout noise of 0.2e (-aEuro parts per thousand) RMS can be achieved. The contribution of other noise sources (output stage, vertical and horizontal charge transfer inefficiency, and dark current noise) are also considered. The optimum number of samples for achieving the total lowest possible noise level is obtained. This technique is applied to an X-rays experiment using a Fe-55 source. C1 [Fernandez Moroni, Guillermo; Paolini, Eduardo E.] Univ Nacl Sur, Inst Inv Ing Elect IIIE Alfredo C Desages, Dto Ing Elect Comp, RA-8000 Bahia Blanca, Buenos Aires, Argentina. [Fernandez Moroni, Guillermo; Estrada, Juan; Cancelo, Gustavo; Diehl, H. Thomas] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fernandez Moroni, Guillermo] Comis Invest Cient & Tecn CONICET, Buenos Aires, DF, Argentina. [Holland, Stephen E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94729 USA. [Paolini, Eduardo E.] Comis Invest Cient Prov Buenos Aire CIC, Buenos Aires, DF, Argentina. RP Moroni, GF (reprint author), Univ Nacl Sur, Inst Inv Ing Elect IIIE Alfredo C Desages, Dto Ing Elect Comp, Av Alem 1253,B8000CPB, RA-8000 Bahia Blanca, Buenos Aires, Argentina. EM gfmoroni@fnal.gov; estrada@fnal.gov; cancelo@fnal.gov; seholland@lbl.gov; epaolini@uns.edu.ar; diehl@fnal.gov RI Holland, Stephen/H-7890-2013; OI Paolini, Eduardo/0000-0003-1658-8948 NR 21 TC 3 Z9 3 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD JUL PY 2012 VL 34 IS 1 BP 43 EP 64 DI 10.1007/s10686-012-9298-x PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975XO UT WOS:000306545200004 ER PT J AU Kumar, J Brill, ED Mahinthakumar, G Ranjithan, SR AF Kumar, Jitendra Brill, E. Downey Mahinthakumar, G. Ranjithan, S. Ranji TI Contaminant source characterization in water distribution systems using binary signals SO JOURNAL OF HYDROINFORMATICS LA English DT Article DE contaminant warning system; evolutionary algorithms; non-uniqueness; water distribution systems; water quality sensors ID ALGORITHM; NETWORKS; IDENTIFICATION; SENSORS; DESIGN AB This paper presents a simulation optimization-based method for identification of contamination source characteristics in a water distribution system using filtered data from threshold-based binary water quality signals. The effects of quality and quantity of the data on the accuracy of the source identification methodology are investigated. This study also addresses the issue of non-uniqueness in contaminant source identification under various data availability conditions. To establish the robustness and applicability of the methodology, numerous scenarios are investigated for a wide range of contamination incidents associated with two different networks. Results indicate that, even though use of lower resolution sensors lead to more non-unique solutions, the true source location is always included among these solutions. C1 [Kumar, Jitendra] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Brill, E. Downey; Mahinthakumar, G.; Ranjithan, S. Ranji] N Carolina State Univ, Dept Civil Construct & Environm Engn, Raleigh, NC 27695 USA. RP Kumar, J (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, 1 Bethel Valley Rd,POB 2008,MS 6016, Oak Ridge, TN 37831 USA. EM kumarj@ornl.gov RI Kumar, Jitendra/G-8601-2013 OI Kumar, Jitendra/0000-0002-0159-0546 FU National Science Foundation (NSF) under the Dynamic Data Driven Analysis System (DDDAS) program [CMS-0540316]; US Department of Energy [De-AC0500OR22750] FX This work was supported by the National Science Foundation (NSF) under grant no. CMS-0540316 from the Dynamic Data Driven Analysis System (DDDAS) program. This document describes activities performed under contract no, De-AC0500OR22750 between the US Department of Energy and Oak Ridge Associated Universities. All opinions expressed in this report are the authors' and do not necessarily reflect policies and views of the US Department of Energy or the Oak Ridge Institute for Science and Education. NR 24 TC 5 Z9 5 U1 0 U2 11 PU IWA PUBLISHING PI LONDON PA ALLIANCE HOUSE, 12 CAXTON ST, LONDON SW1H0QS, ENGLAND SN 1464-7141 J9 J HYDROINFORM JI J. Hydroinform. PD JUL PY 2012 VL 14 IS 3 BP 585 EP 602 DI 10.2166/hydro.2012.073 PG 18 WC Computer Science, Interdisciplinary Applications; Engineering, Civil; Environmental Sciences; Water Resources SC Computer Science; Engineering; Environmental Sciences & Ecology; Water Resources GA 975TW UT WOS:000306535400004 ER PT J AU Marcus, GH AF Marcus, Gail H. TI Heeding the Lessons of History SO MECHANICAL ENGINEERING LA English DT Article C1 [Marcus, Gail H.] US DOE, OECD Nucl Energy Agcy, Washington, DC 20585 USA. [Marcus, Gail H.] US Nucl Regulatory Commiss, Rockville, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0025-6501 J9 MECH ENG JI Mech. Eng. PD JUL PY 2012 VL 134 IS 7 BP 28 EP 33 PG 6 WC Engineering, Mechanical SC Engineering GA 981RP UT WOS:000306987600028 ER PT J AU Ross, AJ Percival, WJ Sanchez, AG Samushia, L Ho, S Kazin, E Manera, M Reid, B White, M Tojeiro, R McBride, CK Xu, XY Wake, DA Strauss, MA Montesano, F Swanson, MEC Bailey, S Bolton, AS Dorta, AM Eisenstein, DJ Guo, H Hamilton, JC Nichol, RC Padmanabhan, N Prada, F Schlegel, DJ Magana, MV Zehavi, I Blanton, M Bizyaev, D Brewington, H Cuesta, AJ Malanushenko, E Malanushenko, V Oravetz, D Parejko, J Pan, KK Schneider, DP Shelden, A Simmons, A Snedden, S Zhao, GB AF Ross, Ashley J. Percival, Will J. Sanchez, Ariel G. Samushia, Lado Ho, Shirley Kazin, Eyal Manera, Marc Reid, Beth White, Martin Tojeiro, Rita McBride, Cameron K. Xu, Xiaoying Wake, David A. Strauss, Michael A. Montesano, Francesco Swanson, Molly E. C. Bailey, Stephen Bolton, Adam S. Montero Dorta, Antonio Eisenstein, Daniel J. Guo, Hong Hamilton, Jean-Christophe Nichol, Robert C. Padmanabhan, Nikhil Prada, Francisco Schlegel, David J. Magana, Mariana Vargas Zehavi, Idit Blanton, Michael Bizyaev, Dmitry Brewington, Howard Cuesta, Antonio J. Malanushenko, Elena Malanushenko, Viktor Oravetz, Daniel Parejko, John Pan, Kaike Schneider, Donald P. Shelden, Alaina Simmons, Audrey Snedden, Stephanie Zhao, Gong-bo TI The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmology: observations; distance scale; large-scale structure of Universe ID DIGITAL SKY SURVEY; LUMINOUS RED GALAXIES; POWER-SPECTRUM ANALYSIS; SURVEY IMAGING DATA; EARLY DATA RELEASE; LARGE-SCALE BIAS; REDSHIFT SURVEY; COSMOLOGICAL IMPLICATIONS; ACOUSTIC-OSCILLATIONS; ANGULAR MASKS AB We analyse the density field of galaxies observed by the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) included in the SDSS Data Release Nine (DR9). DR9 includes spectroscopic redshifts for over 400 000 galaxies spread over a footprint of 3275 deg2. We identify, characterize and mitigate the impact of sources of systematic uncertainty on large-scale clustering measurements, both for angular moments of the redshift-space correlation function, ?l(s), and the spherically averaged power spectrum, P(k), in order to ensure that robust cosmological constraints will be obtained from these data. A correlation between the projected density of stars and the higher redshift (0.43 < z < 0.7) galaxy sample (the approximately constant stellar mass threshold CMASS sample) due to imaging systematics imparts a systematic error that is larger than the statistical error of the clustering measurements at scales s > 120 h-1 Mpc or k < 0.01 h Mpc-1. We find that these errors can be ameliorated by weighting galaxies based on their surface brightness and the local stellar density. The clustering of CMASS galaxies found in the Northern and Southern Galactic footprints of the survey generally agrees to within 2s. We use mock galaxy catalogues that simulate the CMASS selection function to determine that randomly selecting galaxy redshifts in order to simulate the radial selection function of a random sample imparts the least systematic error on ?l(s) measurements and that this systematic error is negligible for the spherically averaged correlation function, ?0. We find a peak in ?0 at s similar to 200 h-1 Mpc, with a corresponding feature with period similar to 0.03 h Mpc-1 in P(k), and find features at least as strong in 4.8 per cent of the mock galaxy catalogues, concluding this feature is likely to be a consequence of cosmic variance. The methods we recommend for the calculation of clustering measurements using the CMASS sample are adopted in companion papers that locate the position of the baryon acoustic oscillation feature, constrain cosmological models using the full shape of ?0 and measure the rate of structure growth. C1 [Ross, Ashley J.; Percival, Will J.; Samushia, Lado; Manera, Marc; Tojeiro, Rita; Nichol, Robert C.; Zhao, Gong-bo] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Sanchez, Ariel G.; Montesano, Francesco] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Samushia, Lado] Ilia State Univ, Natl Abastumani Astrophys Observ, GE-1060 Tbilisi, Rep of Georgia. [Ho, Shirley; Reid, Beth; White, Martin; Bailey, Stephen; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ho, Shirley] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Kazin, Eyal] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [McBride, Cameron K.; Swanson, Molly E. C.; Eisenstein, Daniel J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Xu, Xiaoying] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Wake, David A.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06511 USA. [Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bolton, Adam S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Montero Dorta, Antonio; Prada, Francisco] Inst Astrofis Andalucia CSIC, E-18080 Granada, Spain. [Guo, Hong; Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Hamilton, Jean-Christophe; Magana, Mariana Vargas] Univ Paris 07, APC, CEA,Observ Paris, CNRS,IN2P3, Paris, France. [Padmanabhan, Nikhil; Cuesta, Antonio J.; Parejko, John] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Prada, Francisco] Campus Int Excellence UAM CSIC, E-28049 Madrid, Spain. [Prada, Francisco; Malanushenko, Viktor] Univ Autonoma Madrid, Inst Fis Teor, CSIC, E-28049 Madrid, Spain. [Blanton, Michael] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina; Simmons, Audrey; Snedden, Stephanie] Apache Point Observ, Sunspot, NM 88349 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Ross, AJ (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth PO1 3FX, Hants, England. EM Ashley.Ross@port.ac.uk RI Ho, Shirley/P-3682-2014; Guo, Hong/J-5797-2015; White, Martin/I-3880-2015; OI Ho, Shirley/0000-0002-1068-160X; Guo, Hong/0000-0003-4936-8247; White, Martin/0000-0001-9912-5070; Cuesta Vazquez, Antonio Jose/0000-0002-4153-9470 FU UK Science and Technology Facilities Council [ST/I001204/1]; Leverhulme Trust; European Research Council; NSF [AST-0707266, AST-0901965]; Alfred P. Sloan Foundation FX AJR is grateful to the UK Science and Technology Facilities Council for financial support through the grant ST/I001204/1. WJP is grateful for support from the UK Science and Technology Facilities Research Council, the Leverhulme Trust and the European Research Council. MAS acknowledges the support of NSF grant AST-0707266. MECS was supported by the NSF under Award No. AST-0901965.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. NR 63 TC 96 Z9 96 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2012 VL 424 IS 1 BP 564 EP 590 DI 10.1111/j.1365-2966.2012.21235.x PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 970OE UT WOS:000306140600048 ER PT J AU Cournoyer, M Wannigman, D Dodge, R AF Cournoyer, Michael Wannigman, David Dodge, Robert TI Wash or dissolve? SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 [Cournoyer, Michael; Wannigman, David; Dodge, Robert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cournoyer, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM mec@lanl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD JUL PY 2012 VL 57 IS 696 BP 24 EP 27 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 976WZ UT WOS:000306619400006 ER PT J AU Illarionov, AY Fantoni, S Pederiva, F Gandolfi, S Schmidt, KE AF Illarionov, A. Yu. Fantoni, S. Pederiva, F. Gandolfi, S. Schmidt, K. E. TI Determination of the finite temperature equation of state of dense matter SO PHYSICS OF ATOMIC NUCLEI LA English DT Article ID NUCLEAR-MATTER AB The equation of state is calculated for temperatures less than 30 MeV and densities less than four times the saturation density of nuclear matter using a combined analysis of Auxiliarly Fields Diffusion Monte Carlo and Fermi Hypernetted Change methods. C1 [Illarionov, A. Yu.; Pederiva, F.] Univ Trent, Dipartimento Fis, Trento, Italy. [Fantoni, S.] SISSA Trieste, Int Sch Adv Studies, Trieste, Italy. [Fantoni, S.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Pederiva, F.] Ist Nazl Fis Nucl, Grp Collegato Trento, Trento, Italy. [Gandolfi, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Schmidt, K. E.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Illarionov, AY (reprint author), Univ Trent, Dipartimento Fis, Trento, Italy. EM illario@science.unitn.it; fantoni@sissa.it; pederiva@science.unitn.it; stefano@lanl.gov; kevin.schmidt@asu.edu OI Gandolfi, Stefano/0000-0002-0430-9035 NR 11 TC 2 Z9 2 U1 0 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD JUL PY 2012 VL 75 IS 7 BP 866 EP 869 DI 10.1134/S1063778812060166 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 975GF UT WOS:000306495500010 ER PT J AU Marjanska, M Teisseyre, TZ Halpern-Manners, NW Zhang, Y Iltis, I Bajaj, V Ugurbil, K Pines, A Henry, PG AF Marjanska, Malgorzata Teisseyre, Thomas Z. Halpern-Manners, Nicholas W. Zhang, Yi Iltis, Isabelle Bajaj, Vikram Ugurbil, Kamil Pines, Alexander Henry, Pierre-Gilles TI Measurement of Arterial Input Function in Hyperpolarized C-13 Studies SO APPLIED MAGNETIC RESONANCE LA English DT Article ID SPECTROSCOPY; METABOLISM; KINETICS AB Recently, hyperpolarized substrates generated through dynamic nuclear polarization have been introduced to study in vivo metabolism. Injection of hyperpolarized [1-C-13] pyruvate, the most widely used substrate, allows detection of time courses of [1-C-13] pyruvate and its metabolic products, such as [1-C-13] lactate and C-13-bicarbonate, in various organs. However, quantitative metabolic modeling of in vivo data to measure specific metabolic rates remains challenging without measuring the input function. In this study, we demonstrate that the input function of [1-C-13] pyruvate can be measured in vivo in the rat carotid artery using an implantable coil. C1 [Marjanska, Malgorzata; Zhang, Yi; Iltis, Isabelle; Ugurbil, Kamil; Henry, Pierre-Gilles] Univ Minnesota, Dept Radiol, Minneapolis, MN 55455 USA. [Marjanska, Malgorzata; Zhang, Yi; Iltis, Isabelle; Ugurbil, Kamil; Henry, Pierre-Gilles] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA. [Teisseyre, Thomas Z.; Halpern-Manners, Nicholas W.; Bajaj, Vikram; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Teisseyre, Thomas Z.] UCSF, Joint Grad Grp Bioengn, San Francisco, CA USA. [Teisseyre, Thomas Z.] Univ Calif Berkeley, San Francisco, CA USA. [Halpern-Manners, Nicholas W.; Bajaj, Vikram; Pines, Alexander] EO Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Marjanska, M (reprint author), Univ Minnesota, Dept Radiol, 2021 6th St SE, Minneapolis, MN 55455 USA. EM gosia@cmrr.umn.edu FU National Institutes of Health [R01 NS38672, P41 RR008079, P41 EB015894]; W.M. Keck Foundation; Office of Science, Office of Basis Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; Office of the Vice President for Research; Medical School; College of Biological Science; NSF; Minnesota Medical Foundation FX We thank Manda Vollmers and Emily Colonna, and William Manders from Oxford Instruments Biotools for technical support. The authors thank Dr. Josef Granwehr for helpful discussions. This work was supported by the National Institutes of Health: R01 NS38672, P41 RR008079, P41 EB015894, and the W.M. Keck Foundation and by the Director, Office of Science, Office of Basis Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding for NMR instrumentation was provided by the Office of the Vice President for Research, the Medical School, the College of Biological Science, NIH, NSF, and the Minnesota Medical Foundation. NR 16 TC 4 Z9 4 U1 0 U2 2 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0937-9347 J9 APPL MAGN RESON JI Appl. Magn. Reson. PD JUL PY 2012 VL 43 IS 1-2 BP 289 EP 297 DI 10.1007/s00723-012-0348-3 PG 9 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 974GT UT WOS:000306421200024 ER PT J AU Xu, P Xu, TF Shen, PY AF Xu, Peng Xu, Tengfang Shen, Pengyuan TI Advancing evaporative rooftop packaged air conditioning: A new design and performance model development SO APPLIED THERMAL ENGINEERING LA English DT Article DE Evaporative cooling; Rooftop units; HVAC models ID EQUIPMENT AB This paper presents a technological advancement in evaporative cooling rooftop air conditioning comprising a uniquely designed evaporative water cooler that includes a multi-stage hydronic unit and high thermal performance. In the new design, the water cooler is a counterflow air-to-air heat exchanger in which ambient air is pre-cooled in a dry path on one side of a heat transfer surface by water flowing on the other side of the surface. The water is then cooled by evaporation in a wet path by a secondary air stream flowing through the heat exchanger on the same side as the water but in the opposite direction. Outside air is cooled in the dry passages and then enters the wet passages at a lower wet bulb temperature than that of the outdoor air, potentially producing a lower sump water temperature compared to those produced by traditional evaporative condensers. We also developed a computer model to simulate the performance of the rooftop packaged unit. The model is based upon the Simulation Problem Analysis and Research Kernel (SPARK) simulation program and can be used to optimize component sizes and to perform an economic analysis. In addition, the model can be used for fault detection and diagnosis during operation. The simulation model was calibrated with experimental data obtained from the study and was then used for optimal sizing and performance tracking. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Xu, Peng; Shen, Pengyuan] Tongji Univ, Coll Mech Engn, Shanghai 200092, Peoples R China. [Xu, Tengfang] Lawrence Berkeley Natl Lab, Int Energy Studies Grp, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Xu, P (reprint author), Tongji Univ, Coll Mech Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China. EM xupeng@tongji.edu.cn NR 12 TC 3 Z9 3 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-4311 J9 APPL THERM ENG JI Appl. Therm. Eng. PD JUL PY 2012 VL 40 BP 8 EP 17 DI 10.1016/j.applthermaleng.2012.01.045 PG 10 WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics SC Thermodynamics; Energy & Fuels; Engineering; Mechanics GA 973SN UT WOS:000306380200002 ER PT J AU Younk, P Risse, M AF Younk, Patrick Risse, Markus TI Sensitivity of the correlation between the depth of shower maximum and the muon shower size to the cosmic ray composition SO ASTROPARTICLE PHYSICS LA English DT Article DE Ultra high energy cosmic rays; Extensive air showers; Cosmic ray composition ID HYBRID SIMULATION; DETECTOR; ENERGIES AB The composition of ultra-high energy cosmic rays is an important issue in astroparticle physics research, and additional experimental results are required for further progress. Here we investigate what can be learned from the statistical correlation factor r between the depth of shower maximum and the muon shower size, when these observables are measured simultaneously for a set of air showers. The correlation factor r contains the lowest-order moment of a two-dimensional distribution taking both observables into account, and it is independent of systematic uncertainties of the absolute scales of the two observables. We find that, assuming realistic measurement uncertainties, the value of r can provide a measure of the spread of masses in the primary beam. Particularly, one can differentiate between a well-mixed composition (i.e., a beam that contains large fractions of both light and heavy primaries) and a relatively pure composition (i.e., a beam that contains species all of a similar mass). The number of events required for a statistically significant differentiation is similar to 200. This differentiation, though diluted, is maintained to a significant extent in the presence of uncertainties in the phenomenology of high energy hadronic interactions. Testing whether the beam is pure or well-mixed is well motivated by recent measurements of the depth of shower maximum. (C) 2012 Elsevier B.V. All rights reserved. C1 [Younk, Patrick] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Younk, Patrick; Risse, Markus] Univ Siegen, D-57068 Siegen, Germany. [Younk, Patrick] Colorado State Univ, Ft Collins, CO 80523 USA. RP Younk, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM pwyounk@gmail.com FU German Federal Ministry of Education and Research [BMBF 05A08PS1]; Alexander von Humboldt Foundation; National Science Foundation [PHY-0838088]; U.S. Department of Energy through the LANL/LDRD Program; Michigan Space Grant Consortium FX We wish to thank our fellow Pierre Auger collaborators and the members of our research group at the University of Siegen. The work has been supported by the German Federal Ministry of Education and Research (BMBF 05A08PS1). P.Y. gratefully acknowledges the support of the Alexander von Humboldt Foundation, the National Science Foundation (award number PHY-0838088), the U.S. Department of Energy through the LANL/LDRD Program, and the Michigan Space Grant Consortium. NR 23 TC 4 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD JUL PY 2012 VL 35 IS 12 BP 807 EP 812 DI 10.1016/j.astropartphys.2012.03.001 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 963CX UT WOS:000305598800007 ER PT J AU Beeman, JW Bellini, F Capelli, S Cardani, L Casali, N Dafinei, I Di Domizio, S Ferroni, F Galashov, EN Gironi, L Orio, F Pattavina, L Pessina, G Piperno, G Pirro, S Shlegel, VN Vasilyev, YV Tomei, C Vignati, M AF Beeman, J. W. Bellini, F. Capelli, S. Cardani, L. Casali, N. Dafinei, I. Di Domizio, S. Ferroni, F. Galashov, E. N. Gironi, L. Orio, F. Pattavina, L. Pessina, G. Piperno, G. Pirro, S. Shlegel, V. N. Vasilyev, Ya. V. Tomei, C. Vignati, M. TI ZnMoO4: A promising bolometer for neutrinoless double beta decay searches SO ASTROPARTICLE PHYSICS LA English DT Article DE Double beta decay; Bolometers; ZnMoO4 ID DETECTORS; CUORICINO; SIGNALS; MO-100 AB We investigate the performances of two ZnMoO4 scintillating crystals operated as bolometers, in view of a next generation experiment to search the neutrinoless double beta decay of Mo-100. We present the results of the alpha vs beta/gamma discrimination, obtained through the scintillation light as well as through the study of the shape of the thermal signal alone. The separation obtained at the 2615 key line of (TI)-T-208 is 8 sigma, using the heat-light scatter plot, while it exceeds 20 sigma using the shape of the thermal pulse alone. The achieved FWHM energy resolution ranges from 2.4 key (at 238 key) to 5.7 keV (at 2615 key). The internal radioactive contaminations of the ZnMoO4 crystals were evaluated through a 407 h background measurement. The obtained limit is < 32 mu Bq/kg for Th-228 and Ra-226. These values were used for a Monte Carlo simulation aimed at evaluating the achievable background level of a possible, future array of enriched (ZnMoO4)-Mo-100 crystals. (C) 2012 Elsevier B.V. All rights reserved. C1 [Capelli, S.; Gironi, L.; Pattavina, L.; Pessina, G.; Pirro, S.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bellini, F.; Cardani, L.; Dafinei, I.; Ferroni, F.; Orio, F.; Piperno, G.; Tomei, C.; Vignati, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Bellini, F.; Cardani, L.; Ferroni, F.; Piperno, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Capelli, S.; Gironi, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Casali, N.] Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. [Di Domizio, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Di Domizio, S.] Univ Genoa, Dipartimento Fis, I-16126 Genoa, Italy. [Shlegel, V. N.; Vasilyev, Ya. V.] SB RAS, Nikolaev Inst Inorgan Chem, Novosibirsk 630090, Russia. RP Pirro, S (reprint author), Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. EM Stefano.Pirro@mib.infn.it RI Bellini, Fabio/D-1055-2009; Di Domizio, Sergio/L-6378-2014; Pattavina, Luca/I-7498-2015; Vignati, Marco/H-1684-2013; Gironi, Luca/P-2860-2016; capelli, silvia/G-5168-2012; Casali, Nicola/C-9475-2017 OI Pessina, Gianluigi Ezio/0000-0003-3700-9757; Bellini, Fabio/0000-0002-2936-660X; Di Domizio, Sergio/0000-0003-2863-5895; Pattavina, Luca/0000-0003-4192-849X; Vignati, Marco/0000-0002-8945-1128; Gironi, Luca/0000-0003-2019-0967; capelli, silvia/0000-0002-0300-2752; Casali, Nicola/0000-0003-3669-8247 FU European Research Council under the European Union's Seventh Framework Programme [247115] FX This work was made in the frame of the LUCIFER experiment, funded by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 247115. Thanks are due to E. Tatananni, A. Rotilio, A. Corsi, B. Romualdi and F. De Amicis for continuous and constructive help in the overall set-up construction. NR 46 TC 32 Z9 32 U1 5 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD JUL PY 2012 VL 35 IS 12 BP 813 EP 820 DI 10.1016/j.astropartphys.2012.02.013 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 963CX UT WOS:000305598800008 ER PT J AU Alessandria, F Andreotti, E Ardito, R Arnaboldi, C Avignone, FT Balata, M Bandac, I Banks, TI Bari, G Beeman, J Bellini, F Bersani, A Biassoni, M Bloxham, T Brofferio, C Bryant, A Bucci, C Cai, XZ Canonica, L Capelli, S Carbone, L Cardani, L Carrettoni, M Chott, N Clemenza, M Cosmelli, C Cremonesi, O Creswick, RJ Dafinei, I Dally, A De Biasi, A Decowski, MP Deninno, MM de Waard, A Di Domizio, S Ejzak, L Faccini, R Fang, DQ Farach, HA Ferri, E Ferroni, F Fiorini, E Foggetta, L Freedman, SJ Frossati, G Giachero, A Gironi, L Giuliani, A Gorla, P Gotti, C Guardincerri, E Gutierrez, TD Haller, EE Han, K Heeger, KM Huang, HZ Ichimura, K Kadel, R Kazkaz, K Keppel, G Kogler, L Kolomensky, YG Kraft, S Lenz, D Li, YL Liu, X Longo, E Ma, YG Maiano, C Maier, G Martinez, C Martinez, M Maruyama, RH Moggi, N Morganti, S Newman, S Nisi, S Nones, C Norman, EB Nucciotti, A Orio, F Orlandi, D Ouellet, JL Pallavicini, M Palmieri, V Pattavina, L Pavan, M Pedretti, M Pessina, G Pirro, S Previtali, E Rampazzo, V Rimondi, F Rosenfeld, C Rusconi, C Salvioni, C Sangiorgio, S Schaeffer, D Scielzo, ND Sisti, M Smith, AR Stivanello, F Taffarello, L Terenziani, G Tian, WD Tomei, C Trentalange, S Ventura, G Vignati, M Wang, BS Wang, HW Whitten, CA Wise, T Woodcraft, A Xu, N Zanotti, L Zarra, C Zhu, BX Zucchelli, S AF Alessandria, F. Andreotti, E. Ardito, R. Arnaboldi, C. Avignone, F. T., III Balata, M. Bandac, I. Banks, T. I. Bari, G. Beeman, J. Bellini, F. Bersani, A. Biassoni, M. Bloxham, T. Brofferio, C. Bryant, A. Bucci, C. Cai, X. Z. Canonica, L. Capelli, S. Carbone, L. Cardani, L. Carrettoni, M. Chott, N. Clemenza, M. Cosmelli, C. Cremonesi, O. Creswick, R. J. Dafinei, I. Dally, A. De Biasi, A. Decowski, M. P. Deninno, M. M. de Waard, A. Di Domizio, S. Ejzak, L. Faccini, R. Fang, D. Q. Farach, H. A. Ferri, E. Ferroni, F. Fiorini, E. Foggetta, L. Freedman, S. J. Frossati, G. Giachero, A. Gironi, L. Giuliani, A. Gorla, P. Gotti, C. Guardincerri, E. Gutierrez, T. D. Haller, E. E. Han, K. Heeger, K. M. Huang, H. Z. Ichimura, K. Kadel, R. Kazkaz, K. Keppel, G. Kogler, L. Kolomensky, Yu. G. Kraft, S. Lenz, D. Li, Y. L. Liu, X. Longo, E. Ma, Y. G. Maiano, C. Maier, G. Martinez, C. Martinez, M. Maruyama, R. H. Moggi, N. Morganti, S. Newman, S. Nisi, S. Nones, C. Norman, E. B. Nucciotti, A. Orio, F. Orlandi, D. Ouellet, J. L. Pallavicini, M. Palmieri, V. Pattavina, L. Pavan, M. Pedretti, M. Pessina, G. Pirro, S. Previtali, E. Rampazzo, V. Rimondi, F. Rosenfeld, C. Rusconi, C. Salvioni, C. Sangiorgio, S. Schaeffer, D. Scielzo, N. D. Sisti, M. Smith, A. R. Stivanello, F. Taffarello, L. Terenziani, G. Tian, W. D. Tomei, C. Trentalange, S. Ventura, G. Vignati, M. Wang, B. S. Wang, H. W. Whitten, C. A., Jr. Wise, T. Woodcraft, A. Xu, N. Zanotti, L. Zarra, C. Zhu, B. X. Zucchelli, S. TI CUORE crystal validation runs: Results on radioactive contamination and extrapolation to CUORE background SO ASTROPARTICLE PHYSICS LA English DT Article DE Double beta decay; Tellurium dioxide; Radioactive contamination ID DETECTORS AB The CUORE Crystal Validation Runs (CCVRs) have been carried out since the end of 2008 at the Gran Sasso National Laboratories, in order to test the performance and the radiopurity of the TeO2 crystals produced at SICCAS (Shanghai Institute of Ceramics, Chinese Academy of Sciences) for the CUORE experiment. In this work the results of the first 5 validation runs are presented. Results have been obtained for bulk contaminations and surface contaminations from several nuclides. An extrapolation to the CUORE background has been performed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Canonica, L.; Di Domizio, S.; Pallavicini, M.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Alessandria, F.; Cardani, L.; Rimondi, F.] Ist Nazl Fis Nucl, Sez Milano, I-20123 Milan, Italy. [Andreotti, E.; Foggetta, L.; Nones, C.; Salvioni, C.] Univ Insubria, Dipartimento Fis & Matemat, I-22100 Como, Italy. [Andreotti, E.; Biassoni, M.; Brofferio, C.; Capelli, S.; Carbone, L.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Ferri, E.; Fiorini, E.; Foggetta, L.; Giachero, A.; Gironi, L.; Gotti, C.; Kraft, S.; Maiano, C.; Martinez, M.; Nones, C.; Nucciotti, A.; Pattavina, L.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Rimondi, F.; Rusconi, C.; Salvioni, C.; Schaeffer, D.; Sisti, M.; Zanotti, L.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Ardito, R.; Maier, G.] Politecn Milan, Dipartirnento Ingn Strutturale, I-20133 Milan, Italy. [Arnaboldi, C.; Biassoni, M.; Brofferio, C.; Capelli, S.; Carrettoni, M.; Clemenza, M.; Ferri, E.; Freedman, S. J.; Gironi, L.; Gotti, C.; Kraft, S.; Maiano, C.; Nucciotti, A.; Pavan, M.; Schaeffer, D.; Sisti, M.; Zanotti, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Avignone, F. T., III; Bandac, I.; Chott, N.; Creswick, R. J.; Farach, H. A.; Martinez, C.; Newman, S.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Balata, M.; Banks, T. I.; Bucci, C.; Guardincerri, E.; Newman, S.; Nisi, S.; Orlandi, D.; Zarra, C.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Laquila, Italy. [Banks, T. I.; Bryant, A.; Decowski, M. P.; Freedman, S. J.; Kogler, L.; Kolomensky, Yu. G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Banks, T. I.; Bloxham, T.; Bryant, A.; Decowski, M. P.; Guardincerri, E.; Han, K.; Ichimura, K.; Kogler, L.; Ouellet, J. L.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Bari, G.; Deninno, M. M.; Moggi, N.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy. [Beeman, J.; Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bellini, F.; Cosmelli, C.; Faccini, R.; Ferroni, F.; Longo, E.; Vignati, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bellini, F.; Cardani, L.; Cosmelli, C.; Dafinei, I.; Faccini, R.; Ferroni, F.; Longo, E.; Morganti, S.; Orio, F.; Tomei, C.; Vignati, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Bersani, A.; Canonica, L.; Di Domizio, S.; Pallavicini, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cai, X. Z.; Fang, D. Q.; Li, Y. L.; Ma, Y. G.; Tian, W. D.; Wang, H. W.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Dally, A.; Ejzak, L.; Heeger, K. M.; Lenz, D.; Maruyama, R. H.; Wise, T.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [De Biasi, A.; Keppel, G.; Palmieri, V.; Rampazzo, V.; Stivanello, F.; Terenziani, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Padova, Italy. [de Waard, A.; Frossati, G.] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Giuliani, A.] Ctr Spectrometrie Nucl & Spectrometrie Masse, F-91405 Orsay, France. [Gorla, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gutierrez, T. D.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Huang, H. Z.; Liu, X.; Trentalange, S.; Whitten, C. A., Jr.; Zhu, B. X.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kadel, R.; Kolomensky, Yu. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Kazkaz, K.; Norman, E. B.; Pedretti, M.; Sangiorgio, S.; Scielzo, N. D.; Wang, B. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Martinez, M.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Norman, E. B.; Wang, B. S.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Zucchelli, S.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy. [Smith, A. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, EH & S Div, Berkeley, CA 94720 USA. [Taffarello, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Ventura, G.] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy. [Ventura, G.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Woodcraft, A.] Univ Edinburgh, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. RP Canonica, L (reprint author), Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy. EM lucia.canonica@ge.infn.it RI Foggetta, Luca/A-4810-2010; Ma, Yu-Gang/M-8122-2013; Han, Ke/D-3697-2017; capelli, silvia/G-5168-2012; Nucciotti, Angelo/I-8888-2012; Bellini, Fabio/D-1055-2009; Bucci, Carlo/A-5438-2010; Martinez, Maria/K-4827-2012; Di Domizio, Sergio/L-6378-2014; Ferri, Elena/L-8531-2014; Kolomensky, Yury/I-3510-2015; Pattavina, Luca/I-7498-2015; Sisti, Monica/B-7550-2013; Vignati, Marco/H-1684-2013; Giachero, Andrea/I-1081-2013; Sangiorgio, Samuele/F-4389-2014; Gironi, Luca/P-2860-2016 OI Gotti, Claudio/0000-0003-2501-9608; Pessina, Gianluigi Ezio/0000-0003-3700-9757; Bersani, Andrea/0000-0003-3276-5713; Faccini, Riccardo/0000-0003-2613-5141; Clemenza, Massimiliano/0000-0002-8064-8936; pavan, maura/0000-0002-9723-7834; Foggetta, Luca/0000-0002-6389-1280; Ma, Yu-Gang/0000-0002-0233-9900; Han, Ke/0000-0002-1609-7367; Keppel, Giorgio/0000-0003-4579-3342; Longo, Egidio/0000-0001-6238-6787; Canonica, Lucia/0000-0001-8734-206X; Gutierrez, Thomas/0000-0002-0330-6414; capelli, silvia/0000-0002-0300-2752; ARDITO, RAFFAELE/0000-0002-4271-9190; Nucciotti, Angelo/0000-0002-8458-1556; Bellini, Fabio/0000-0002-2936-660X; Martinez, Maria/0000-0002-9043-4691; Di Domizio, Sergio/0000-0003-2863-5895; Ferri, Elena/0000-0003-1425-3669; Kolomensky, Yury/0000-0001-8496-9975; Pattavina, Luca/0000-0003-4192-849X; Sisti, Monica/0000-0003-2517-1909; Vignati, Marco/0000-0002-8945-1128; Giachero, Andrea/0000-0003-0493-695X; Sangiorgio, Samuele/0000-0002-4792-7802; Gironi, Luca/0000-0003-2019-0967 FU Istituto Nazionale di Fisica Nucleare (INFN); Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC52-07NA 27344]; DOE Office of Nuclear Physics [DE-FG02-08ER41551, DEFG03-00ER41138]; National Science Foundation [NSF-PHY-0605119, NSF-PHY-0500 337, NSF-PHY-0855314, NSF-PHY-0902171]; Alfred P. Sloan Foundation; University of Wisconsin Foundation FX The CUORE Collaboration thanks the Directors and Staff of the Laboratori Nazionali del Gran Sasso and the technical staffs of our Laboratories. In particular, we would like to thank G. Ceruti, R. Gaigher, R. Mazza, M. Perego, A. Corsi, F. De Amicis, B. Romualdi, L Tatananni and A. Rotilio for their contributions to the experiment. This work was supported by the Istituto Nazionale di Fisica Nucleare (INFN); the Director, Office of Science, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-AC52-07NA 27344; the DOE Office of Nuclear Physics under Contract Nos. DE-FG02-08ER41551 and DEFG03-00ER41138; the National Science Foundation under Grant Nos. NSF-PHY-0605119, NSF-PHY-0500 337, NSF-PHY-0855314, and NSF-PHY-0902171; the Alfred P. Sloan Foundation; and the University of Wisconsin Foundation. NR 12 TC 37 Z9 37 U1 7 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD JUL PY 2012 VL 35 IS 12 BP 839 EP 849 DI 10.1016/j.astropartphys.2012.02.008 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 963CX UT WOS:000305598800011 ER PT J AU Barlett, M Moon, HS Peacock, AA Hedrick, DB Williams, KH Long, PE Lovley, D Jaffe, PR AF Barlett, Melissa Moon, Hee Sun Peacock, Aaron A. Hedrick, David B. Williams, Kenneth H. Long, Philip E. Lovley, Derek Jaffe, Peter R. TI Uranium reduction and microbial community development in response to stimulation with different electron donors SO BIODEGRADATION LA English DT Article DE Subsurface; Uranium reduction; Electron donors; Microbial community structure ID DISSIMILATORY METAL REDUCTION; SULFATE-REDUCING BACTERIA; IN-SITU BIOREDUCTION; CONTAMINATED AQUIFER; SUBSURFACE SEDIMENT; U(VI) REDUCTION; EDIBLE OIL; BIOREMEDIATION; FE(III); GROUNDWATER AB Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater. C1 [Moon, Hee Sun; Jaffe, Peter R.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Barlett, Melissa; Lovley, Derek] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Peacock, Aaron A.; Hedrick, David B.] Haley & Aldrich Inc, Oak Ridge, TN 37830 USA. [Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jaffe, PR (reprint author), Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. EM jaffe@princeton.edu RI Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014 OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155 FU Environmental Remediation Sciences Program (ERSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE), Pacific Northwest National Laboratory [51882]; School of Earth and Environmental Sciences, Seoul National University FX This research was funded by the Environmental Remediation Sciences Program (ERSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE), Pacific Northwest National Laboratory Project 51882 "The Rifle, Colorado Integrated Field Research Challenge Site (IFRC)''. Additional financial support for Dr. Moon was provided by Brain Korea 21 Project through the School of Earth and Environmental Sciences, Seoul National University in 2011. NR 59 TC 12 Z9 12 U1 4 U2 45 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0923-9820 J9 BIODEGRADATION JI Biodegradation PD JUL PY 2012 VL 23 IS 4 BP 535 EP 546 DI 10.1007/s10532-011-9531-8 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 969NO UT WOS:000306062600005 PM 22270689 ER PT J AU Littlepage, LE Adler, AS Kouros-Mehr, H Huang, GQ Chou, J Krig, SR Griffith, OL Korkola, JE Qu, K Lawson, DA Xue, Q Sternlicht, MD Dijkgraaf, GJP Yaswen, P Rugo, HS Sweeney, CA Collins, CC Gray, JW Chang, HY Werb, Z AF Littlepage, Laurie E. Adler, Adam S. Kouros-Mehr, Hosein Huang, Guiqing Chou, Jonathan Krig, Sheryl R. Griffith, Obi L. Korkola, James E. Qu, Kun Lawson, Devon A. Xue, Qing Sternlicht, Mark D. Dijkgraaf, Gerrit J. P. Yaswen, Paul Rugo, Hope S. Sweeney, Colleen A. Collins, Colin C. Gray, Joe W. Chang, Howard Y. Werb, Zena TI The Transcription Factor ZNF217 Is a Prognostic Biomarker and Therapeutic Target during Breast Cancer Progression SO CANCER DISCOVERY LA English DT Article ID TRICYCLIC NUCLEOSIDE PHOSPHATE; STEM-CELLS; SIGNALING PATHWAYS; ANTITUMOR-ACTIVITY; REPRESSOR COMPLEX; ONCOGENE ZNF217; IN-VIVO; AKT; GENES; CHEMOTHERAPY AB The transcription factor ZNF217 is a candidate oncogene in the amplicon on chromosome 20q13 that occurs in 20% to 30% of primary human breast cancers and that correlates with poor prognosis. We show that Znf217 overexpression drives aberrant differentiation and signaling events, promotes increased self-renewal capacity, mesenchymal marker expression, motility, and metastasis, and represses an adult tissue stem cell gene signature downregulated in cancers. By in silico screening, we identified candidate therapeutics that at low concentrations inhibit growth of cancer cells expressing high ZNF217. We show that the nucleoside analogue triciribine inhibits ZNF217-induced tumor growth and chemotherapy resistance and inhibits signaling events [ e. g., phospho-AKT, phospho-mitogen-activated protein kinase (MAPK)] in vivo. Our data suggest that ZNF217 is a biomarker of poor prognosis and a therapeutic target in patients with breast cancer and that triciribine may be part of a personalized treatment strategy in patients overexpressing ZNF217. Because ZNF217 is amplified in numerous cancers, these results have implications for other cancers. SIGNIFICANCE: This study finds that ZNF217 is a poor prognostic indicator and therapeutic target in patients with breast cancer and may be a strong biomarker of triciribine treatment efficacy in patients. Because previous clinical trials for triciribine did not include biomarkers of treatment efficacy, this study provides a rationale for revisiting triciribine in the clinical setting as a therapy for patients with breast cancer who overexpress ZNF217. Cancer Discov; 2(7); 638-51. (C) 2012 AACR. C1 [Littlepage, Laurie E.; Kouros-Mehr, Hosein; Huang, Guiqing; Chou, Jonathan; Lawson, Devon A.; Xue, Qing; Sternlicht, Mark D.; Dijkgraaf, Gerrit J. P.; Werb, Zena] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. [Littlepage, Laurie E.; Huang, Guiqing; Chou, Jonathan; Lawson, Devon A.; Sternlicht, Mark D.; Rugo, Hope S.; Collins, Colin C.; Gray, Joe W.; Werb, Zena] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USA. [Adler, Adam S.; Qu, Kun; Chang, Howard Y.] Stanford Univ, Sch Med, Program Epithelial Biol, Stanford, CA 94305 USA. [Krig, Sheryl R.; Sweeney, Colleen A.] Univ Calif Davis, Ctr Canc, Div Basic Sci, Sacramento, CA USA. [Griffith, Obi L.; Korkola, James E.; Yaswen, Paul; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Chang, Howard Y.] Howard Hughes Med Inst, Chevy Chase, MD USA. RP Werb, Z (reprint author), Univ Calif San Francisco, Dept Anat, Box 0452,513 Parnassus Ave, San Francisco, CA 94143 USA. EM zena.werb@ucsf.edu RI Qu, Kun/G-3359-2012 FU GlaxoSmithKline; Pfizer; Susan G. Komen; NIH [CA129523, CA129523-02S1, CA058207, ES019458]; Stand Up To Cancer Dream Team Translational Cancer Research Grant; Program of the Entertainment Industry Foundation [SU2C-AACR-DT0409]; American Cancer Society Postdoctoral fellowship; Ruth L. Kirschstein National Research Service award [CA103534]; Canadian Institutes of Health Research Postdoctoral fellowship; Bay Area Breast Specialized Programs of Research Excellence [CA058207] FX J.W. Gray has a Commercial Research Grant from GlaxoSmithKline, Pfizer and Susan G. Komen and is a consultant/advisory board member for New Leaf Ventures, Agendia, and KromaTiD. No potential conflicts of interests were disclosed by the other authors.; This work was supported by grants from the NIH (CA129523 and CA129523-02S1 to Z. Werb, CA058207 to J.W. Gray and Z. Werb, and ES019458 to Z. Werb and P. Yaswen), a Stand Up To Cancer Dream Team Translational Cancer Research Grant, a Program of the Entertainment Industry Foundation [SU2C-AACR-DT0409 (to Z. Werb and J.W. Gray)], an American Cancer Society Postdoctoral fellowship and a Ruth L. Kirschstein National Research Service award CA103534 (to L.E. Littlepage), a Canadian Institutes of Health Research Postdoctoral fellowship (to O.L. Griffith), and a Career Development Award from Bay Area Breast Specialized Programs of Research Excellence CA058207 (to M. D. Sternlicht). NR 45 TC 21 Z9 23 U1 2 U2 9 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 2159-8274 J9 CANCER DISCOV JI Cancer Discov. PD JUL PY 2012 VL 2 IS 7 BP 638 EP 651 DI 10.1158/2159-8290.CD-12-0093 PG 14 WC Oncology SC Oncology GA 973NC UT WOS:000306365800042 PM 22728437 ER PT J AU Wang, WH Hull, JF Muckerman, JT Fujita, E Hirose, T Himeda, Y AF Wang, Wan-Hui Hull, Jonathan F. Muckerman, James T. Fujita, Etsuko Hirose, Takuji Himeda, Yuichiro TI Highly Efficient D-2 Generation by Dehydrogenation of Formic Acid in D2O through H+/D+ Exchange on an Iridium Catalyst: Application to the Synthesis of Deuterated Compounds by Transfer Deuterogenation SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE deuterium; isotopic exchange; iridium; reaction mechanism; synthetic methods; umpolung ID HYDROGEN ISOTOPE-EXCHANGE; TRACE REDUCTION DETECTOR; H/D EXCHANGE; CARBON-DIOXIDE; REGIOSELECTIVE DEUTERATION; RHODIUM COMPLEXES; RUTHENIUM COMPLEX; BASE-EQUILIBRIUM; WATER SOLUBILITY; AQUEOUS-SOLUTION AB Deuterated compounds have received increasing attention in both academia and industrial fields. However, preparations of these compounds are limited for both economic and practical reasons. Herein, convenient generation of deuterium gas (D2) and the preparation of deuterated compounds on a laboratory scale are demonstrated by using a half-sandwich iridium complex with 4,4'-dihydroxy-2,2'-bipyridine. The umpolung (i.e., reversal of polarity) of a hydrogen atom of water was achieved in consecutive reactions, that is, a cationic H+/D+ exchange reaction and anionic hydride or deuteride transfer, under mild conditions. Selective D2 evolution (purity up to 89?%) was achieved by using HCO2H as an electron source and D2O as a deuterium source; a rhodium analogue provided HD gas (98?%) under similar conditions. Furthermore, pressurized D2 (98?%) without CO gas was generated by using DCO2D in D2O in a glass autoclave. Transfer deuterogenation of ketones gave a-deuterated alcohols with almost quantitative yields and high deuterium content by using HCO2H in D2O. Mechanistic studies show that the H+/D+ exchange reaction in the iridium hydride complex was much faster than beta-elimination and hydride (deuteride) transfer. C1 [Wang, Wan-Hui; Himeda, Yuichiro] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. [Hull, Jonathan F.; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hirose, Takuji] Saitama Univ, Sakura Ku, Saitama 3388570, Japan. RP Himeda, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Tsukuba Cent 5-2,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan. EM himeda.y@aist.go.jp RI Muckerman, James/D-8752-2013; Fujita, Etsuko/D-8814-2013; Himeda, Yuichiro/E-8613-2014; Wang, Wan-Hui/J-8773-2012 OI Wang, Wan-Hui/0000-0002-5943-4589 FU Japanese Ministry of Economy, Trade, and Industry; U.S. Department of Energy [DE-AC02-98CH10884]; Office of Basic Energy Sciences; BNL Goldhaber Distinguished Fellowship FX We thank the Japanese Ministry of Economy, Trade, and Industry for providing financial support. The research at Brookhaven National Laboratory was carried out under contract DE-AC02-98CH10884 with the U.S. Department of Energy and supported by the Office of Basic Energy Sciences. J. F. H. gratefully acknowledges a BNL Goldhaber Distinguished Fellowship. NR 58 TC 25 Z9 25 U1 3 U2 71 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUL PY 2012 VL 18 IS 30 BP 9397 EP 9404 DI 10.1002/chem.201200576 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 974AW UT WOS:000306403200033 PM 22718518 ER PT J AU McGill, RK Hughes, D Alicea, S Way, N AF McGill, Rebecca Kang Hughes, Diane Alicea, Stacey Way, Niobe TI Academic Adjustment Across Middle School: The Role of Public Regard and Parenting SO DEVELOPMENTAL PSYCHOLOGY LA English DT Article DE ethnic minority; racial/ethnic socialization; academic involvement; trajectories; middle school ID AFRICAN-AMERICAN ADOLESCENTS; ETHNIC-RACIAL SOCIALIZATION; COLLECTIVE SELF-ESTEEM; MULTIDIMENSIONAL INVENTORY; BLACK IDENTITY; DISCRIMINATION EXPERIENCES; REJECTION SENSITIVITY; PROTECTIVE FACTORS; YOUNG ADOLESCENTS; STEREOTYPE THREAT AB In the current longitudinal study, we examined associations between Black and Latino youths' perceptions of the public's opinion of their racial/ethnic group (i.e., public regard) and changes in academic adjustment outcomes across middle school. We also tested combinations of racial/ethnic socialization and parent involvement in academic activities as moderators of this association. We used a 2nd-order latent trajectory model to test changes in academic adjustment outcomes in a sample of 345 Black and Latino urban youth across 6th, 7th, and 8th grades (51% female). Results revealed a significant average linear decline in academic adjustment from 6th to 8th grade, as well as significant variation around this decline. We found that parenting moderated the association between public regard and the latent trajectory of academic adjustment. Specifically, for youth who reported high racial/ethnic socialization and low parent academic involvement, lower public regard predicted lower academic adjustment in 6th grade. For youth who reported both low racial/ethnic socialization and low parent academic involvement, lower public regard predicted a steeper decline in academic adjustment over time. Finally, among youth who reported high racial/ethnic socialization and high parent academic involvement, public regard was not associated with either the intercept or the slope of academic adjustment. Thus, the combination of high racial/ethnic socialization and parent academic involvement may protect youths' academic motivation and performance from the negative effects of believing the public has low opinions of one's racial/ethnic group. Implications for protecting Black and Latino youths' academic outcomes from decline during middle school are discussed. C1 [McGill, Rebecca Kang; Hughes, Diane; Alicea, Stacey; Way, Niobe] NYU, Dept Appl Psychol, New York, NY 10003 USA. RP McGill, RK (reprint author), US DOE, Inst Sci Educ, Washington, DC 20202 USA. EM rebecca.kang.mcgill@gmail.com NR 95 TC 11 Z9 11 U1 1 U2 17 PU AMER PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA SN 0012-1649 EI 1939-0599 J9 DEV PSYCHOL JI Dev. Psychol. PD JUL PY 2012 VL 48 IS 4 BP 1003 EP 1018 DI 10.1037/a0026006 PG 16 WC Psychology, Developmental SC Psychology GA 969YH UT WOS:000306094800008 PM 22040313 ER PT J AU Pappacena, KE Timofeeva, EV Routbort, JL Singh, D AF Pappacena, Kristen E. Timofeeva, Elena V. Routbort, Jules L. Singh, Dileep TI Reaction Joining of Aluminum-Doped Lanthanum Strontium Manganese Oxide to Yttria-Stabilized Tetragonal Zirconia for Gas Sensor Applications SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID CATHODE MATERIALS; SR; SYSTEM AB Aluminum-doped lanthanum strontium manganese oxide (LSAM) has been investigated as an electrically conductive ceramic material. LSAM formulations with varying amounts of aluminum were synthesized using standard ceramic processing followed by pressure-less sintering in air. Electrical conductivity of LSAM was measured as a function of aluminum content and temperature. Optimum LSAM formulations were joined to yttria-stabilized tetragonal zirconia (YTZP) using a high-temperature deformation process. Electron microscopy, X-ray diffraction, and Raman spectroscopy were used to evaluate the joint interface. Joining was attributed to the formation of a reaction layer of strontium zirconate. Joining of LSAM to oxygen-ion conducting YTZP has implications in using this approach as interconnect for variety of high-temperature applications, including fuel cells and gas sensors. C1 [Pappacena, Kristen E.; Timofeeva, Elena V.; Routbort, Jules L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Singh, Dileep] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Pappacena, KE (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dsingh@anl.gov RI Timofeeva, Elena/E-6391-2010; OI Timofeeva, Elena V./0000-0001-7839-2727 FU U.S. Department of Energy [DE-AC02-06CH11357]; Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-06CH11357] FX The submitted manuscript has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; Raman Microscopy and SEM were conducted at the Center for Nanoscale Materials and at the Electron Microscopy Center, respectively, at Argonne National Laboratory. This work was sponsored by the Office of Vehicle Technologies of the U.S. Department of Energy under contract number DE-AC02-06CH11357. NR 14 TC 1 Z9 1 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD JUL-AUG PY 2012 VL 9 IS 4 BP 725 EP 732 DI 10.1111/j.1744-7402.2012.02773.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 972VV UT WOS:000306310100007 ER PT J AU Ferraris, M Salvo, M Rizzo, S Casalegno, V Han, SH Ventrella, A Hinoki, T Katoh, Y AF Ferraris, Monica Salvo, Milena Rizzo, Stefano Casalegno, Valentina Han, Shaohua Ventrella, Andrea Hinoki, Tatsuya Katoh, Yutai TI Torsional Shear Strength of Silicon Carbide Components Pressurelessly Joined by a Glass-Ceramic SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID ENERGY APPLICATIONS; SIC/SIC COMPOSITES; BONDED JOINTS AB Silicon carbide (SiC) samples have been joined by a pressureless slurry based method. The CaOAl2O3 (CA) glass-ceramic joining material has been characterized in term of crystalline phases and thermal and mechanical properties. A torsion test based on miniaturized hourglass shaped specimens has been used as pure shear strength test method for joined ceramic samples. Torsion results are compared to those obtained by a single lap offset (SLO) test in compression on the same joined materials. Pure shear strength of 104 +/- 25 MPa has been measured by torsion test, whereas single lap offset gave 36 +/- 8 MPa. C1 [Ferraris, Monica; Salvo, Milena; Rizzo, Stefano; Casalegno, Valentina; Han, Shaohua; Ventrella, Andrea] Politecn Torino, Inst Mat Phys & Engn, Dept Appl Sci & Technol, I-10129 Turin, Italy. [Hinoki, Tatsuya] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan. [Katoh, Yutai] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ferraris, M (reprint author), Politecn Torino, Inst Mat Phys & Engn, Dept Appl Sci & Technol, Corso Duca Abruzzi 24, I-10129 Turin, Italy. EM monica.ferraris@polito.it FU FEMAS Integrated Project; Bilateral Project Japan-Italy; Italian Foreign Ministry (Progetti di Grande Rilevanza Nazionale); US-Japan TITAN FX These results are part of an international project involving ORNL (USA), Kyoto University (Japan) and Politecnico di Torino (Italy). The aim of the collaboration is to design and test reliable, low activation/transmutation materials as joining material for SiC and SiC/SiC, and to find a test suitable to measure the shear strength of joined SiC and SiC/SiC before and after neutron irradiation. This work was supported in part by the FEMAS Integrated Project, by the Bilateral Project Japan-Italy funded by the Italian Foreign Ministry (Progetti di Grande Rilevanza Nazionale), and US-Japan TITAN fusion blanket engineering and materials collaboration program. The authors acknowledge Mr. Kazuoki Toyoshima for torsion tests. NR 24 TC 12 Z9 13 U1 2 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD JUL-AUG PY 2012 VL 9 IS 4 BP 786 EP 794 DI 10.1111/j.1744-7402.2012.02775.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 972VV UT WOS:000306310100014 ER PT J AU Martin, E Pavia, F Ventrella, A Avalle, M Ferraris, M Lara-Curzio, E AF Martin, Eric Pavia, Fabio Ventrella, Andrea Avalle, Massimiliano Ferraris, Monica Lara-Curzio, Edgar TI A Brazilian Disk Test for the Evaluation of the Shear Strength of Epoxy-Joined Ceramics SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID NUMERICAL-ANALYSIS; SILICON-CARBIDE; COMPOSITES; ADHESIVE; DESIGN AB Brazilian disk test is here analyzed as a test method to determine the strength of joined ceramics. The test specimen consisted of two silicon carbide half-disks diametrically bonded with a brittle adhesive (Araldite AV119 (TM)). Several tests were performed with different angles of the adhesive layer with respect to the diametral line of loading. An elastic finite element analysis is used to determine the maximum shear stress and the normal compressive stress within the joint. Assuming a failure criterion based on a shear stress condition, this procedure allows evaluating the shear strength of the epoxy adhesive. C1 [Martin, Eric] Univ Bordeaux, Lab Composites Thermostruct, CNRS UMR 5801, F-33600 Pessac, France. [Pavia, Fabio; Ventrella, Andrea; Avalle, Massimiliano; Ferraris, Monica] Politecn Torino, I-10129 Turin, Italy. [Lara-Curzio, Edgar] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Martin, E (reprint author), Univ Bordeaux, Lab Composites Thermostruct, CNRS UMR 5801, 3 Allee Boetie, F-33600 Pessac, France. EM martin@lcts.u-bordeaux1.fr OI Avalle, Massimiliano/0000-0002-1599-8219 NR 23 TC 4 Z9 4 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD JUL-AUG PY 2012 VL 9 IS 4 BP 808 EP 815 DI 10.1111/j.1744-7402.2012.02792.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 972VV UT WOS:000306310100016 ER PT J AU Marino, E Dupuy, JL Pimont, F Guijarro, M Hernando, C Linn, R AF Marino, Eva Dupuy, Jean-Luc Pimont, Francois Guijarro, Mercedes Hernando, Carmen Linn, Rodman TI Fuel bulk density and fuel moisture content effects on fire rate of spread: a comparison between FIRETEC model predictions and experimental results in shrub fuels SO JOURNAL OF FIRE SCIENCES LA English DT Article DE rate of spread; simulation; wind tunnel; shrubland; moisture content; bulk density ID WIND-AIDED FIRESPREAD; EMPIRICAL-MODELS; BEHAVIOR; ELEMENTS; ARRAYS; TUNNEL AB Fuel bulk density and fuel moisture content effects on fire rate of spread were assessed in shrub fuels, comparing experimental data observed in outdoor wind tunnel burns and predictions from the physically-based model FIRETEC. Statistical models for the combined effects of bulk density and fuel moisture content were fitted to both the experimental and the simulated rate of spread values using non-linear regression techniques. Results confirmed a significant decreasing effect of bulk density on rate of spread in a power law in both laboratory burns and simulations. However, experimental data showed a lesser effect than simulations, suggesting a difference in the effective drag. Fuel moisture content effect was highly consistent, showing a similar exponential relationship with rate of spread in laboratory and in simulations. FIRETEC simulations showed similar orders of magnitude with predictions of two field-based empirical models, finding a significant correlation between rate of spread values. The study confirms the efficacy of the combined approach through experimental data and simulations to study fire behaviour. C1 [Dupuy, Jean-Luc] INRA, Unite Ecol Forets Mediterraneennes, UR629, F-84914 Avignon 9, France. [Marino, Eva; Guijarro, Mercedes; Hernando, Carmen] Inst Nacl Invest & Tecnol Agr & Alimentaria INIA, Ctr Invest Forestal CIFOR, Lab Incendios Forestales, Madrid, Spain. [Linn, Rodman] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Dupuy, JL (reprint author), INRA, Unite Ecol Forets Mediterraneennes, UR629, Site Agroparc, F-84914 Avignon 9, France. EM dupuy@avignon.inra.fr RI Guijarro, Mercedes/G-8904-2013 OI Guijarro, Mercedes/0000-0001-6460-9171 FU National Institute for Agricultural Research (INIA) from the Spanish Ministry of Science and Innovation; European Commission [FIRE PARADOX FP6-018505] FX Participation of Eva Marino in this research was possible through a PhD scholarship funded by National Institute for Agricultural Research (INIA) from the Spanish Ministry of Science and Innovation. The work carried out in this article was partially supported by the European Commission (Integrated Project FIRE PARADOX FP6-018505). NR 33 TC 14 Z9 14 U1 0 U2 17 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0734-9041 J9 J FIRE SCI JI J. Fire Sci. PD JUL PY 2012 VL 30 IS 4 BP 277 EP 299 DI 10.1177/0734904111434286 PG 23 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 966LF UT WOS:000305838400001 ER PT J AU Fernandez, JLA Adolphsen, C Akay, AN Aksakal, H Albacete, JL Alekhin, S Allport, P Andreev, V Appleby, RB Arikan, E Armesto, N Azuelos, G Bai, M Barber, D Bartels, J Behnke, O Behr, J Belyaev, AS Ben-Zvi, I Bernard, N Bertolucci, S Bettoni, S Biswal, S Blumlein, J Bottcher, H Bogacz, A Bracco, C Brandt, G Braun, H Brodsky, S Bruning, O Bulyak, E Buniatyan, A Burkhardt, H Cakir, IT Cakir, O Calaga, R Cetinkaya, V Ciapala, E Ciftci, R Ciftci, AK Cole, BA Collins, JC Dadoun, O Dainton, J De Roeck, A d'Enterria, D Dudarev, A Eide, A Enberg, R Eroglu, E Eskola, KJ Favart, L Fitterer, M Forte, S Gaddi, A Gambino, P Morales, HG Gehrmann, T Gladkikh, P Glasman, C Godbole, R Goddard, B Greenshaw, T Guffanti, A Guzey, V Gwenlan, C Han, T Hao, Y Haug, F Herr, W Herve, A Holzer, BJ Ishitsuka, M Jacquet, M Jeanneret, B Jimenez, JM Jowett, JM Jung, H Karadeniz, H Kayran, D Kilic, A Kimura, K Klein, M Klein, U Kluge, T Kocak, F Korostelev, M Kosmicki, A Kostka, P Kowalski, H Kramer, G Kuchler, D Kuze, M Lappi, T Laycock, P Levichev, E Levonian, S Litvinenko, VN Lombardi, A Maeda, J Marquet, C Mellado, B Mess, KH Milanese, A Moch, S Morozov, II Muttoni, Y Myers, S Nandi, S Nergiz, Z Newman, PR Omori, T Osborne, J Paoloni, E Papaphilippou, Y Pascaud, C Paukkunen, H Perez, E Pieloni, T Pilicer, E Pire, B Placakyte, R Polini, A Ptitsyn, V Pupkov, Y Radescu, V Raychaudhuri, S Rinolfi, L Rohini, R Rojo, J Russenschuck, S Sahin, M Salgado, CA Sampei, K Sassot, R Sauvan, E Schneekloth, U Schorner-Sadenius, T Schulte, D Senol, A Seryi, A Sievers, P Skrinsky, AN Smith, W Spiesberger, H Stasto, AM Strikman, M Sullivan, M Sultansoy, S Sun, YP Surrow, B Szymanowski, L Taels, P Tapan, I Tasci, T Tassi, E Ten Kate, H Terron, J Thiesen, H Thompson, L Tokushuku, K Garcia, RT Tommasini, D Trbojevic, D Tsoupas, N Tuckmantel, J Turkoz, S Trinh, TN Tywoniuk, K Unel, G Urakawa, J VanMechelen, P Variola, A Veness, R Vivoli, A Vobly, P Wagner, J Wallny, R Wallon, S Watt, G Weiss, C Wiedemann, UA Wienands, U Willeke, F Xiao, BW Yakimenko, V Zarnecki, AF Zhang, Z Zimmermann, F Zlebcik, R Zomer, F AF Fernandez, J. L. Abelleira Adolphsen, C. Akay, A. N. Aksakal, H. Albacete, J. L. Alekhin, S. Allport, P. Andreev, V. Appleby, R. B. Arikan, E. Armesto, N. Azuelos, G. Bai, M. Barber, D. Bartels, J. Behnke, O. Behr, J. Belyaev, A. S. Ben-Zvi, I. Bernard, N. Bertolucci, S. Bettoni, S. Biswal, S. Bluemlein, J. Boettcher, H. Bogacz, A. Bracco, C. Brandt, G. Braun, H. Brodsky, S. Bruening, O. Bulyak, E. Buniatyan, A. Burkhardt, H. Cakir, I. T. Cakir, O. Calaga, R. Cetinkaya, V. Ciapala, E. Ciftci, R. Ciftci, A. K. Cole, B. A. Collins, J. C. Dadoun, O. Dainton, J. De Roeck, A. d'Enterria, D. Dudarev, A. Eide, A. Enberg, R. Eroglu, E. Eskola, K. J. Favart, L. Fitterer, M. Forte, S. Gaddi, A. Gambino, P. Morales, H. Garcia Gehrmann, T. Gladkikh, P. Glasman, C. Godbole, R. Goddard, B. Greenshaw, T. Guffanti, A. Guzey, V. Gwenlan, C. Han, T. Hao, Y. Haug, F. Herr, W. Herve, A. Holzer, B. J. Ishitsuka, M. Jacquet, M. Jeanneret, B. Jimenez, J. M. Jowett, J. M. Jung, H. Karadeniz, H. Kayran, D. Kilic, A. Kimura, K. Klein, M. Klein, U. Kluge, T. Kocak, F. Korostelev, M. Kosmicki, A. Kostka, P. Kowalski, H. Kramer, G. Kuchler, D. Kuze, M. Lappi, T. Laycock, P. Levichev, E. Levonian, S. Litvinenko, V. N. Lombardi, A. Maeda, J. Marquet, C. Mellado, B. Mess, K. H. Milanese, A. Moch, S. Morozov, I. I. Muttoni, Y. Myers, S. Nandi, S. Nergiz, Z. Newman, P. R. Omori, T. Osborne, J. Paoloni, E. Papaphilippou, Y. Pascaud, C. Paukkunen, H. Perez, E. Pieloni, T. Pilicer, E. Pire, B. Placakyte, R. Polini, A. Ptitsyn, V. Pupkov, Y. Radescu, V. Raychaudhuri, S. Rinolfi, L. Rohini, R. Rojo, J. Russenschuck, S. Sahin, M. Salgado, C. A. Sampei, K. Sassot, R. Sauvan, E. Schneekloth, U. Schoerner-Sadenius, T. Schulte, D. Senol, A. Seryi, A. Sievers, P. Skrinsky, A. N. Smith, W. Spiesberger, H. Stasto, A. M. Strikman, M. Sullivan, M. Sultansoy, S. Sun, Y. P. Surrow, B. Szymanowski, L. Taels, P. Tapan, I. Tasci, T. Tassi, E. Ten Kate, H. Terron, J. Thiesen, H. Thompson, L. Tokushuku, K. Garcia, R Tomas Tommasini, D. Trbojevic, D. Tsoupas, N. Tuckmantel, J. Turkoz, S. Trinh, T. N. Tywoniuk, K. Unel, G. Urakawa, J. VanMechelen, P. Variola, A. Veness, R. Vivoli, A. Vobly, P. Wagner, J. Wallny, R. Wallon, S. Watt, G. Weiss, C. Wiedemann, U. A. Wienands, U. Willeke, F. Xiao, B.-W. Yakimenko, V. Zarnecki, A. F. Zhang, Z. Zimmermann, F. Zlebcik, R. Zomer, F. CA LHeC Study Grp TI A Large Hadron Electron Collider at CERN SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID DEEP-INELASTIC-SCATTERING; GENERALIZED PARTON DISTRIBUTIONS; HEAVY FLAVOR PRODUCTION; COLOR GLASS CONDENSATE; MONTE-CARLO GENERATOR; TOP-QUARK PRODUCTION; LEPTON-NUCLEON SCATTERING; HIGH-ENERGY FACTORIZATION; FORWARD-JET PRODUCTION; SMALL-X EVOLUTION C1 [Cakir, O.; Cetinkaya, V.; Ciftci, R.; Ciftci, A. K.; Turkoz, S.] Ankara Univ, Ankara, Turkey. [Cakir, I. T.; Karadeniz, H.] SANAEM, Ankara, Turkey. [Akay, A. N.; Sahin, M.; Sultansoy, S.] TOBB Univ Econ & Technol, Ankara, Turkey. [Sauvan, E.] LAPP, Annecy, France. [Taels, P.; VanMechelen, P.] Univ Antwerp, Antwerp, Belgium. [Newman, P. R.] Univ Birmingham, Birmingham, W Midlands, England. [Polini, A.] INFN Bologna, Bologna, Italy. [Favart, L.] Free Univ Brussels, IIHE, Brussels, Belgium. [Sassot, R.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato, Cosenza, Italy. Univ Calabria, Cosenza, Italy. [Surrow, B.] MIT, Cambridge, MA USA. [Bulyak, E.; Gladkikh, P.] Charkow Natl Univ, Charkow, Ukraine. [Guffanti, A.] Univ Copenhagen, Copenhagen, Denmark. [Appleby, R. B.; Barber, D.; Thompson, L.] Cockcroft Inst, Daresbury, England. [Belyaev, A. S.] Rutherford Appleton Lab, Didcot, Oxon, England. [Fernandez, J. L. Abelleira; Bertolucci, S.; Bettoni, S.; Bracco, C.; Bruening, O.; Burkhardt, H.; Calaga, R.; Ciapala, E.; De Roeck, A.; d'Enterria, D.; Dudarev, A.; Fitterer, M.; Gaddi, A.; Morales, H. Garcia; Goddard, B.; Haug, F.; Herr, W.; Holzer, B. J.; Jeanneret, B.; Jimenez, J. M.; Jowett, J. M.; Kosmicki, A.; Kuchler, D.; Lombardi, A.; Marquet, C.; Mess, K. H.; Milanese, A.; Muttoni, Y.; Myers, S.; Osborne, J.; Papaphilippou, Y.; Perez, E.; Rinolfi, L.; Rojo, J.; Russenschuck, S.; Schulte, D.; Sievers, P.; Ten Kate, H.; Thiesen, H.; Garcia, R Tomas; Tommasini, D.; Tuckmantel, J.; Variola, A.; Veness, R.; Vivoli, A.; Watt, G.; Wiedemann, U. A.; Zimmermann, F.] CERN, Geneva, Switzerland. [Alekhin, S.; Barber, D.; Behnke, O.; Behr, J.; Bluemlein, J.; Boettcher, H.; Buniatyan, A.; Jung, H.; Kostka, P.; Kowalski, H.; Levonian, S.; Moch, S.; Placakyte, R.; Radescu, V.; Schneekloth, U.; Schoerner-Sadenius, T.] DESY, Hamburg, Germany. [Bartels, J.; Kramer, G.] Univ Hamburg, Hamburg, Germany. [Guzey, V.] Hampton Univ, Hampton, VA USA. [Eskola, K. J.; Unel, G.] Univ Calif Irvine, Irvine, CA USA. [Lappi, T.] Univ Jyvaskyla, Jyvaskyla, Finland. [Senol, A.; Tasci, T.] Kastamonu Univ, Kastamonu, Turkey. [Fernandez, J. L. Abelleira; Pieloni, T.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Allport, P.; Barber, D.; Dainton, J.; Greenshaw, T.; Klein, M.; Klein, U.; Kluge, T.; Korostelev, M.; Laycock, P.] Univ Liverpool, Liverpool, Merseyside, England. [Bernard, N.] Univ Calif Los Angeles, Los Angeles, CA USA. [Tywoniuk, K.] Lund Univ, Lund, Sweden. [Herve, A.; Mellado, B.; Smith, W.] Univ Wisconsin, Madison, WI 53706 USA. [Glasman, C.; Terron, J.] Univ Autonoma Madrid, Madrid, Spain. [Spiesberger, H.] Johannes Gutenberg Univ Mainz, Mainz, Germany. [Appleby, R. B.; Thompson, L.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Rojo, J.] INFN Milano, Milan, Italy. [Forte, S.] Univ Milan, Milan, Italy. [Azuelos, G.] Univ Montreal, Montreal, PQ, Canada. [Andreev, V.] LPI, Moscow, Russia. [Godbole, R.; Raychaudhuri, S.; Rohini, R.] Tata Inst, Bombay, Maharashtra, India. [Bogacz, A.; Guzey, V.; Weiss, C.] Jefferson Lab, Newport News, VA 23606 USA. [Bai, M.; Ben-Zvi, I.; Hao, Y.; Kayran, D.; Litvinenko, V. N.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.; Willeke, F.; Yakimenko, V.] Brookhaven Natl Lab, New York, NY USA. [Cole, B. A.] Columbia Univ, New York, NY USA. [Aksakal, H.; Arikan, E.; Nergiz, Z.] Nigde Univ, Nigde, Turkey. [Levichev, E.; Morozov, I. I.; Pupkov, Y.; Skrinsky, A. N.; Vobly, P.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Biswal, S.] Orissa Univ Agr & Technol, Orissa 751003, India. [Dadoun, O.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F.] LAL, Orsay, France. [Wallon, S.] Univ Paris 11, Lab Phys Theor, Orsay, France. [Brandt, G.; Gwenlan, C.; Seryi, A.] Univ Oxford, Oxford, England. [Pire, B.] Ecole Polytech, CNRS, CPHT, F-91128 Palaiseau, France. [Wallon, S.] Univ Paris 06, UPMC, Fac Phys, Paris, France. [Trinh, T. N.] Univ Paris 06, LPNHE, CNRS, IN2P3, F-75252 Paris, France. [Trinh, T. N.] Univ Paris 07, LPNHE, CNRS, IN2P3, F-75252 Paris, France. [Collins, J. C.; Stasto, A. M.; Strikman, M.; Xiao, B.-W.] Penn State Univ, University Pk, PA 16802 USA. [Paoloni, E.] Univ Pisa, Pisa, Italy. [Han, T.] Univ Pittsburgh, Pittsburgh, PA USA. [Zlebcik, R.] Charles Univ Prague, Prague, Czech Republic. [Albacete, J. L.] IPhT Saclay, Saclay, France. [Armesto, N.; Paukkunen, H.; Salgado, C. A.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Alekhin, S.] Serpukhov Inst, Serpukhov, Russia. [Nandi, S.] Univ Siegen, Siegen, Germany. [Belyaev, A. S.] Univ Southampton, Southampton, Hants, England. [Adolphsen, C.; Brodsky, S.; Sullivan, M.; Sun, Y. P.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Ishitsuka, M.; Kimura, K.; Kuze, M.; Maeda, J.; Sampei, K.; Wienands, U.] Tokyo Inst Technol, Tokyo 152, Japan. [Eide, A.; Gambino, P.] Univ Turin, INFN, Turin, Italy. NTNU, Trondheim, Norway. [Omori, T.; Tokushuku, K.; Urakawa, J.] KEK, Tsukuba, Ibaraki, Japan. [Eroglu, E.; Kilic, A.; Kocak, F.; Pilicer, E.; Tapan, I.] Uludag Univ, Bursa, Turkey. [Enberg, R.] Uppsala Univ, Uppsala, Sweden. [Azuelos, G.] TRIUMF, Vancouver, BC, Canada. [Braun, H.] Paul Scherrer Inst, Villigen, Switzerland. [Szymanowski, L.; Wagner, J.] Natl Ctr Nucl Res NCBJ, Warsaw, Poland. [Zarnecki, A. F.] Univ Warsaw, Warsaw, Poland. [Wallny, R.] ETH, Zurich, Switzerland. [Gehrmann, T.] Univ Zurich, Zurich, Switzerland. RP Fernandez, JLA (reprint author), Ankara Univ, Ankara, Turkey. RI Wagner, Jakub/F-1392-2016; Gehrmann, Thomas/J-4940-2016; Armesto, Nestor/C-4341-2017; Hao, Yue/D-7153-2013; Kayran, Dmitry/E-1876-2013; Pire, Bernard/I-3994-2013; Tasci, A. Tolga/J-9983-2012; Senol, Abdulkadir/E-4025-2014; urakawa, junji/F-4763-2014; Belyaev, Alexander/F-6637-2015; Forte, Stefano/F-3362-2015; Salgado, Carlos A./G-2168-2015; Levonian, Sergey/M-8693-2015; Andreev, Vladimir/M-8665-2015; Guffanti, Alberto/A-6201-2016; Lopez Albacete, Javier/D-9272-2016; OI Wagner, Jakub/0000-0001-8335-7096; Gehrmann, Thomas/0000-0001-7009-432X; Armesto, Nestor/0000-0003-0940-0783; Paoloni, Eugenio/0000-0001-5969-8712; Buniatyan, Armen/0000-0002-1566-8973; Guzey, Vadim/0000-0002-2393-8507; Bertolucci, Sergio/0000-0003-1738-4736; Enberg, Rikard/0000-0003-0452-0671; Hao, Yue/0000-0001-8131-7509; Kayran, Dmitry/0000-0002-1156-4384; Tasci, A. Tolga/0000-0001-9450-6499; Senol, Abdulkadir/0000-0001-8782-4608; Belyaev, Alexander/0000-0002-1733-4408; Forte, Stefano/0000-0002-5848-5907; Salgado, Carlos A./0000-0003-4586-2758; Guffanti, Alberto/0000-0001-6092-1221; Lopez Albacete, Javier/0000-0001-8345-6123; Jowett, John M./0000-0002-9492-3775 NR 926 TC 122 Z9 122 U1 2 U2 64 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2012 VL 39 IS 7 AR 075001 DI 10.1088/0954-3899/39/7/075001 PG 2 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 978RC UT WOS:000306761900001 ER PT J AU Schrimpe-Rutledge, AC Fontes, G Gritsenko, MA Norbeck, AD Anderson, DJ Waters, KM Adkins, JN Smith, RD Poitout, V Metz, TO AF Schrimpe-Rutledge, Alexandra C. Fontes, Ghislaine Gritsenko, Marina A. Norbeck, Angela D. Anderson, David J. Waters, Katrina M. Adkins, Joshua N. Smith, Richard D. Poitout, Vincent Metz, Thomas O. TI Discovery of Novel Glucose-Regulated Proteins in Isolated Human Pancreatic Islets Using LC-MS/MS-Based Proteomics SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE human; pancreatic islet; glucose; type 2 diabetes; proteomics; mass spectrometry; LC-MS/MS ID GENOME-WIDE ASSOCIATION; 2-DIMENSIONAL GEL-ELECTROPHORESIS; MAMMALIAN MITOCHONDRIAL RIBOSOME; TANDEM MASS-SPECTROMETRY; TRANS-GOLGI NETWORK; GENE-EXPRESSION; BETA-CELL; INSULIN-SECRETION; INTERACTING PROTEIN; SHOTGUN PROTEOMICS AB The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (1.5 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (similar to p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (pleiotropic regulator 1), processing (retinoblastoma binding protein 6), and function (nuclear RNA export factor 1), in addition to neuron navigator I and plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and synaptotagmin-17. Up-regulation of dicer 1 and SLC27A2 and down-regulation of phospholipase C beta 4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles. C1 [Schrimpe-Rutledge, Alexandra C.; Gritsenko, Marina A.; Norbeck, Angela D.; Anderson, David J.; Adkins, Joshua N.; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Fontes, Ghislaine; Poitout, Vincent] CRCHUM, Montreal Diabet Res Ctr, Montreal, PQ, Canada. [Waters, Katrina M.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Poitout, Vincent] Univ Montreal, Dept Med, Montreal, PQ H3C 3J7, Canada. [Poitout, Vincent] Univ Montreal, Dept Nutr, Montreal, PQ H3C 3J7, Canada. [Poitout, Vincent] Univ Montreal, Dept Biochem, Montreal, PQ H3C 3J7, Canada. RP Metz, TO (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM thomas.metz@pnl.gov RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; Metz, Tom/0000-0001-6049-3968; Poitout, Vincent/0000-0002-6555-5053 FU NIDDK [DK070146]; National Institute of Allergy and Infectious Diseases NIH/DHHS [Y1-AI-8401]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research; NIH National Center for Research Resources [RR018522]; DOE [DE-AC05-76RLO 1830]; NIH; Canadian Diabetes Association FX The authors wish to thank Ms. Melissa M. Matzke and Dr. Samuel H. Payne of Pacific Northwest National Laboratory (PNNL) for helpful discussions. This research was supported by NIDDK Grant DK070146. Portions of this research were supported by the National Institute of Allergy and Infectious Diseases NIH/DHHS through Interagency agreement Y1-AI-8401. The work utilized proteomics capabilities developed under support from the U.S. Department of Energy (DOE) Office of Biological and Environmental Research and the NIH National Center for Research Resources (Grant RR018522) and was performed in the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility at PNNL. PNNL is a multiprogram national laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RLO 1830. Isolated human islets were provided by the NIH-supported Integrated Islet Distribution Program and by the Islet Transplant Program at the University of Alberta. V.P. holds the Canada Research Chair in Diabetes and Pancreatic Beta-Cell Function. G.F. was supported by a postdoctoral fellowship from the Canadian Diabetes Association. NR 78 TC 15 Z9 16 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD JUL PY 2012 VL 11 IS 7 BP 3520 EP 3532 DI 10.1021/pr3002996 PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 969IV UT WOS:000306049800002 PM 22578083 ER PT J AU Varnum, SM Webb-Robertson, BJM Pounds, JG Moore, RJ Smith, RD Frevert, CW Skerrett, SJ Wunschel, D AF Varnum, Susan M. Webb-Robertson, Bobbie-Jo M. Pounds, Joel G. Moore, Ronald J. Smith, Richard D. Frevert, Charles W. Skerrett, Shawn J. Wunschel, David TI Proteomic Analysis of Bronchoalveolar Lavage Fluid Proteins from Mice Infected with Francisella tularensis ssp novicida SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE innate immunity; Francisella tularensis; proteomics; bronchoalveolar lavage fluid ID TANDEM MASS-SPECTROMETRY; LIVE VACCINE STRAIN; PULMONARY INFECTION; ALTERNATIVE ACTIVATION; PSEUDOMONAS-AERUGINOSA; AEROSOL INFECTION; SOFTWARE PACKAGE; IMMUNE-RESPONSE; INNATE IMMUNITY; HUMAN MONOCYTES AB Francisella tularensis causes the zoonosis tularemia in humans and is one of the most virulent bacterial pathogens. We utilized a global proteomic approach to characterize protein changes in bronchoalveolar lavage fluid from mice exposed to one of three organisms, F. tularensis ssp. novicida, an avirulent mutant of F. tularensis ssp. novicida (Ft. novicida-Delta mglA), and Pseudomonas aeruginosa. The composition of bronchoalveolar lavage fluid (BALF) proteins was altered following infection, including proteins involved in neutrophil activation, oxidative stress, and inflammatory responses. Components of the innate immune response were induced including the acute phase response and the complement system; however, the timing of their induction varied. F. tularensis ssp. novicida infected mice do not appear to have an effective innate immune response in the first hours of infection; however, within 24 h, they show an upregulation of innate immune response proteins. This delayed response is in contrast to P. aeruginosa infected animals which show an early innate immune response. Likewise, F.t. novicida-Delta mglA infection initiates an early innate immune response; however, this response is diminished by 24 h. Finally, this study identifies several candidate biomarkers, including Chitinase 3-like-1 (CHI3L1 or YKL-40) and peroxiredoxin 1, that are associated with F. tularensis ssp. novicida but not P. aeruginosa infection. C1 [Varnum, Susan M.; Pounds, Joel G.; Moore, Ronald J.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Frevert, Charles W.; Skerrett, Shawn J.] Univ Washington, Sch Med, Div Pulm & Crit Care Med, Seattle, WA 98195 USA. RP Varnum, SM (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. EM susan.varnum@pnnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Pounds, Joel/0000-0002-6616-1566 FU U.S. Department of Energy through the Environmental Biomarkers Initiative at Pacific Northwest National Laboratory (PNNL); NIH/NIAID [3U54AI057141]; NIH/NHLBI [HL098067]; NIH National Center for Research Resources [RR18522, RR030249]; Department of Energy's Office of Biological and Environmental Research located at PNNL; U.S. Department of Energy [AC06-76RLO 1830] FX Portions of this work were funded by the U.S. Department of Energy through the Environmental Biomarkers Initiative at Pacific Northwest National Laboratory (PNNL), by NIH/NIAID grant 3U54AI057141, NIH/NHLBI grant HL098067, and by the NIH National Center for Research Resources (RR18522, RR030249). Some of the experimental work was performed in the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. The authors thank Mark Pelletier for expert technical support. PNNL is operated by Battelle for the U.S. Department of Energy under contract (AC06-76RLO 1830). NR 76 TC 4 Z9 5 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD JUL PY 2012 VL 11 IS 7 BP 3690 EP 3703 DI 10.1021/pr3001767 PG 14 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 969IV UT WOS:000306049800015 PM 22663564 ER PT J AU Hines, M Lenhardt, J Lu, M Jiang, L Xiao, ZG AF Hines, Mardecial Lenhardt, Joshua Lu, Ming Jiang, Li Xiao, Zhigang TI Cooling effect of nanoscale Bi2Te3/Sb2Te3 multilayered thermoelectric thin films SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID QUANTUM-WELL STRUCTURES; HEAT-TRANSFER; MERIT; POWER; FIGURE; COOLER; NANOSTRUCTURES; SUPERLATTICES; PERFORMANCE; TRANSPORT AB Managing high heat flux is one of the greatest technical challenges the integrated circuit (IC) industry is facing because the rising temperature limits device minimization and decreases its lifetime. In this paper, we report the characterization of the cooling effect of nanoscale Bi2Te3/Sb2Te3 multilayered thin films. The multilayer thin film was prepared with e-beam evaporation, and had 21 layers (5-nm-thick each layer and 105-nm-thick total). A thermoelectric device of the multilayer film, which is sandwiched between a diode temperature sensor and a platinum temperature sensor, was fabricated to measure the cooling effect. A maximum cooling temperature difference of about 3K was obtained from the film at an applied dc electrical current of 5 mA. The nanoscale multilayer film could be integrated in the IC devices for the application of high-efficiency thermoelectric solid-state cooling. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4725483] C1 [Xiao, Zhigang] Alabama A&M Univ, Dept Elect Engn, Normal, AL 35762 USA. [Hines, Mardecial; Lenhardt, Joshua] Alabama A&M Univ, Dept Elect Engn, Normal, AL 35762 USA. [Lu, Ming] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Jiang, Li] Tuskegee Univ, Dept Elect Engn, Tuskegee, AL 36088 USA. RP Xiao, ZG (reprint author), Alabama A&M Univ, Dept Elect Engn, Normal, AL 35762 USA. EM zhigang.xiao@aamu.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; CERDEC/Army Power Division; National Science Foundation (NSF) [DUE-0728658, EPS-0814103] FX Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. M.H., J.L., and Z.X. gratefully acknowledge CERDEC/Army Power Division and National Science Foundation for financial support for this research (NSF Grant Nos. DUE-0728658 and EPS-0814103). The authors thank F. Camino at the Center for Functional Nanomaterials for his time and kind help in assisting with the measurements on the device using the LakeShore HFTTP4 cryogenic probe station. NR 26 TC 3 Z9 3 U1 1 U2 24 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL PY 2012 VL 30 IS 4 AR 041509 DI 10.1116/1.4725483 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 970OW UT WOS:000306142800043 ER PT J AU Johnston, S Unold, T Repins, I Kanevce, A Zaunbrecher, K Yan, F Li, JV Dippo, P Sundaramoorthy, R Jones, KM To, B AF Johnston, Steve Unold, Thomas Repins, Ingrid Kanevce, Ana Zaunbrecher, Katherine Yan, Fei Li, Jian V. Dippo, Patricia Sundaramoorthy, Rajalakshmi Jones, Kim M. To, Bobby TI Correlations of Cu(In, Ga)Se-2 imaging with device performance, defects, and microstructural properties SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID LOCK-IN THERMOGRAPHY; SOLAR-CELLS AB Camera imaging techniques have been used for the characterization of Cu(In, Ga)Se-2 (CIGS) solar cells. Photoluminescence (PL) imaging shows brightness variations after the deposition of the CIGS layer that persist through CdS deposition and subsequent processing steps to finish the devices. PL and electroluminescence imaging on finished cells show a correlation to the devices' corresponding efficiency and open-circuit voltage (V-OC), and dark defect-related spots correspond to bright spots on images from illuminated lock-in thermography (LIT) and forward-bias dark LIT. These image-detected defect areas are weak diodes and shunts. Imaging provides locations of defects detrimental to solar cell performance. Some of these defects are analyzed in more detail by scanning electron microscopy using cross-sectional views. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4714358] C1 [Johnston, Steve; Repins, Ingrid; Kanevce, Ana; Zaunbrecher, Katherine; Yan, Fei; Li, Jian V.; Dippo, Patricia; Sundaramoorthy, Rajalakshmi; Jones, Kim M.; To, Bobby] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Unold, Thomas] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. RP Johnston, S (reprint author), Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA. EM steve.johnston@nrel.gov RI Yan, Fei/B-8540-2012; Li, Jian/B-1627-2016; OI Unold, Thomas/0000-0002-5750-0693 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; American Recovery and Reinvestment Act FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory and with support from the American Recovery and Reinvestment Act. NR 15 TC 5 Z9 5 U1 4 U2 35 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL PY 2012 VL 30 IS 4 AR 04D111 DI 10.1116/1.4714358 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 970OW UT WOS:000306142800006 ER PT J AU Kaspar, TC Droubay, TC AF Kaspar, Tiffany C. Droubay, Tim C. TI Variation in band offsets at ZnO/Sn:In2O3 heterojunctions measured by x-ray photoelectron spectroscopy SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID SOLAR-CELLS; OPTICAL-PROPERTIES; ZNO FILMS; INTERFACES; HETEROINTERFACE; PERFORMANCE; ALIGNMENT; VOLTAGE; GROWTH AB ZnO/Sn:In2O3 (ITO) heterojunctions were fabricated by pulsed laser deposition. Ex situ x-ray photoelectron spectroscopy (XPS) was utilized to examine the band structure and band alignments of ITO films and ZnO/ITO heterojunctions. The apparent bandgap of ITO films was found to be sensitive to oxygen plasma exposure, with an observed bandgap similar to 3 eV. Type II band alignments were found for oxygen plasma treated ZnO/ITO heterojunctions with either pure ZnO, Al:ZnO, or Ga:ZnO overlayers. The conduction band offsets were in the range of -0.5 to -0.7 eV, which is a larger magnitude than desired for efficient devices. A strong effect of processing treatment, either exposure to the oxygen plasma or gentle heating in vacuum, was found for the band alignments; under some conditions, the conduction band offset reversed sign. Tuning of the processing parameters in photovoltaic or electronic devices may lead to an improvement in the ZnO/ITO alignment. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4719541] C1 [Kaspar, Tiffany C.; Droubay, Tim C.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Kaspar, TC (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. EM tiffany.kaspar@pnnl.gov RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 FU U.S. Department of Energy's Office of Biological and Environmental Research; Laboratory Directed Research and Development Program at PNNL FX The authors acknowledge fruitful discussions with S. A. Chambers and K. H. L. Zhang. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. This research was supported by the Laboratory Directed Research and Development Program at PNNL. NR 35 TC 1 Z9 1 U1 0 U2 25 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL PY 2012 VL 30 IS 4 AR 04D112 DI 10.1116/1.4719541 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 970OW UT WOS:000306142800005 ER PT J AU Roberts, NA Magel, GA Hartfield, CD Moore, TM Fowlkes, JD Rack, PD AF Roberts, Nicholas A. Magel, Gregory A. Hartfield, Cheryl D. Moore, Thomas M. Fowlkes, Jason D. Rack, Philip D. TI In situ laser processing in a scanning electron microscope SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID BEAM-INDUCED DEPOSITION; NANOPARTICLE ARRAYS; THIN-FILMS; TEMPERATURE; COPPER; PHASE AB Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 mu m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm(2). Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiOx. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4731254] C1 [Roberts, Nicholas A.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Fowlkes, Jason D.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.] Omniprobe Inc, Dallas, TX 75238 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM prack@utk.edu RI Roberts, Nicholas/H-3275-2014; OI Roberts, Nicholas/0000-0002-6490-9454; Rack, Philip/0000-0002-9964-3254 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation [IIP-0956765, IIP-1059286] FX The authors acknowledge that a portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Omniprobe acknowledges that the laser probe development was supported in part by the National Science Foundation under Small Business Innovation Research Grant No. IIP-0956765 to Omniprobe, and under Grant No. IIP-1059286 to the American Society for Engineering Education. NR 24 TC 13 Z9 13 U1 2 U2 24 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL PY 2012 VL 30 IS 4 AR 041404 DI 10.1116/1.4731254 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 970OW UT WOS:000306142800034 ER PT J AU Yilmaz, MB Dadap, JI Knox, KR Zaki, N Hao, ZF Johnson, PD Osgood, RM AF Yilmaz, Mehmet B. Dadap, Jerry I. Knox, Kevin R. Zaki, Nader Hao, Zhaofeng Johnson, Peter D. Osgood, Richard M., Jr. TI Photoemission band mapping with a tunable femtosecond source using nonequilibrium absorption resonances SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID IMAGE-POTENTIAL STATES; RESOLVED 2-PHOTON PHOTOEMISSION; METAL-SURFACES; INVERSE-PHOTOEMISSION; ELECTRONIC EXCITATIONS; BINDING-ENERGIES; STEPPED CU(111); AU(111) SURFACE; DYNAMICS; SPECTROSCOPY AB The authors show that the tunability of a femtosecond optical parametric amplifier combined with its high-repetition rate and short pulses provide a powerful tool for an alternate approach to conventional nonresonant band mapping by two-photon photoemission (2PPE). The authors demonstrate this 2PPE mapping via use of two model systems, i.e., the pair of sp surface and image states on flat Cu(111) and vicinal Cu(775) surfaces, over a photon energy range of 3.9-4.6 eV by making use of direct resonant band-to-band electronic transitions. Since the experimental excitation of the Cu image state from the surface state is comparable in time to the electron-electron equilibration time, the authors measure sharp resonant features in the electron energy distributions. In this approach, the authors track these resonant electronic transitions using 2PPE by varying the photon energy so as to achieve resonant excitation at each value of photoelectron emission angle over a large wavelength range on both types of surfaces. In addition, the authors explore the range of photon energies and optical intensities which may be used for this approach. The repetition rate of this laser was sufficient to yield a good signal-to-noise ratio while maintaining pump pulse intensities at levels that were low enough to prevent significant photon-induced space-charge broadening and electron-kinetic-energy shifting, even for photon energies close to the work function of the sample. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4725477] C1 [Yilmaz, Mehmet B.; Dadap, Jerry I.; Hao, Zhaofeng; Osgood, Richard M., Jr.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Yilmaz, Mehmet B.] Fatih Univ, Dept Phys, TR-34500 Istanbul, Turkey. [Knox, Kevin R.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Zaki, Nader; Osgood, Richard M., Jr.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Hao, Zhaofeng] Nankai Univ, Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China. [Johnson, Peter D.] Brookhaven Natl Lab, Dept Condensed Matter & Mat Sci, Upton, NY 11973 USA. RP Dadap, JI (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM jerry@cumsl.msl.columbia.edu RI Dadap, Jerry/K-2788-2012; OI Yilmaz, Mehmet Burak/0000-0002-3450-5395 FU Department of Energy [DE-FG 02-04-ER-46157, DE-AC 02-98-CH-10886] FX This research was supported by the Department of Energy (Contract Nos. DE-FG 02-04-ER-46157 and DE-AC 02-98-CH-10886). NR 62 TC 1 Z9 1 U1 2 U2 21 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL PY 2012 VL 30 IS 4 AR 041403 DI 10.1116/1.4725477 PG 11 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 970OW UT WOS:000306142800033 ER PT J AU Bringa, EM Monk, JD Caro, A Misra, A Zepeda-Ruiz, L Duchaineau, M Abraham, F Nastasi, M Picraux, ST Wang, YQ Farkas, D AF Bringa, E. M. Monk, J. D. Caro, A. Misra, A. Zepeda-Ruiz, L. Duchaineau, M. Abraham, F. Nastasi, M. Picraux, S. T. Wang, Y. Q. Farkas, D. TI Are Nanoporous Materials Radiation Resistant? SO NANO LETTERS LA English DT Article DE Radiation damage; nanofoams; gold; computer simulations ID METALS; DAMAGE; ALLOYS; AU AB The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically similar to 5 nm for primary knock on atoms (PKA) of similar to 15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., similar to 100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant. C1 [Caro, A.; Misra, A.; Nastasi, M.; Picraux, S. T.; Wang, Y. Q.] Los Alamos Natl Lab, Los Alamos, NM USA. [Bringa, E. M.] Univ Nacl Cuyo, CONICET, RA-5500 Mendoza, Argentina. [Bringa, E. M.] Univ Nacl Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina. [Monk, J. D.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Zepeda-Ruiz, L.; Duchaineau, M.; Abraham, F.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Farkas, D.] Virginia Tech, Dept Mat Sci, Blacksburg, VA 24061 USA. RP Caro, A (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM caro@lanl.gov FU CONICET; PICT; University of Cuyo; Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; U.S. Department of Energy at Los Alamos National Laboratory [2008LANL1026]; CINT, a Department of Energy, Office of Basic Energy Sciences FX We acknowledge J. C. Thorp and J. K. Baldwin for assistance in sample synthesis at the Center for Integrated Nanotechnologies (CINT). E.M.B. acknowledges support from CONICET, PICT-2009, and a SeCTyP grant from University of Cuyo. Work at LANL was supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy (Award Number 2008LANL1026) at Los Alamos National Laboratory, and by CINT, a Department of Energy, Office of Basic Energy Sciences user facility. E.M.B. designed the study and the simulations and contributed to write the paper. J.D.M. performed most of the simulations. A.C. wrote the paper. A.M., M.N., S.T.P., and Y.Q.W performed the experiments (synthesized the nanofoams, carried out the irradiations, and performed TEM characterization). L.Z.R. performed some of the filament simulations. F.A. and M.D. created the numerical samples. D.F. contributed to the writing of the paper. NR 21 TC 53 Z9 54 U1 8 U2 105 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3351 EP 3355 DI 10.1021/nl201383u PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200001 PM 21651306 ER PT J AU Balke, N Kalnaus, S Dudney, NJ Daniel, C Jesse, S Kalinin, SV AF Balke, Nina Kalnaus, Sergiy Dudney, Nancy J. Daniel, Claus Jesse, Stephen Kalinin, Sergei V. TI Local Detection of Activation Energy for Ionic Transport in Lithium Cobalt Oxide SO NANO LETTERS LA English DT Article DE Li-ion battery; lithium cobalt oxide; thin films; scanning probe microscopy; electrochemical strain microscopy; activation energy ID FORCE MICROSCOPY; ELECTRICAL-CONDUCTIVITY; DOMAIN-STRUCTURE; THIN-FILMS; DIFFUSION; BATTERIES; ELECTRODES; NANOSCALE; LIXCOO2; LICOO2 AB Local activation energy for ionic diffusion is probed on the nanometer level in LiCoO2 thin films using variable temperature electrochemical strain microscopy (ESM). The high spatial resolution of ESM allows one to extract information about ionic activation energies on the level of individual grains and grain facets, thus bridging the lengths scales of atomistic calculations and traditional macroscopic experiments. A series of control experiments have been performed and possible signal generating mechanisms are discussed to explain the temperature-dependent ESM measurements. C1 [Balke, Nina; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kalnaus, Sergiy; Dudney, Nancy J.; Daniel, Claus] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM balken@ornl.gov RI Kalinin, Sergei/I-9096-2012; Balke, Nina/Q-2505-2015; Jesse, Stephen/D-3975-2016; Dudney, Nancy/I-6361-2016; Daniel, Claus/A-2060-2008; OI Kalinin, Sergei/0000-0001-5354-6152; Balke, Nina/0000-0001-5865-5892; Jesse, Stephen/0000-0002-1168-8483; Dudney, Nancy/0000-0001-7729-6178; Daniel, Claus/0000-0002-0571-6054; Kalnaus, Sergiy/0000-0002-7465-3034 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725]; Vehicle Technologies Program FX Personal support was provided by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division through the Office of Science Early Career Research Program (N.B.) and as part of the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (S.J., S.V.K.). The samples were provided through research conducted at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725, sponsored by the Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy (S.K., N.J.D., C.D.). Equipment was provided through a user project by the Center for Nanophase Materials Sciences and the Shared Research Equipment Collaborative Research Center, both sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 43 TC 14 Z9 14 U1 9 U2 122 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3399 EP 3403 DI 10.1021/nl300219g PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200008 PM 22681455 ER PT J AU Song, MK Cheng, S Chen, HY Qin, WT Nam, KW Xu, SC Yang, XQ Bongiorno, A Lee, J Bai, JM Tyson, TA Cho, J Liu, ML AF Song, Min-Kyu Cheng, Shuang Chen, Haiyan Qin, Wentao Nam, Kyung-Wan Xu, Shucheng Yang, Xiao-Qing Bongiorno, Angelo Lee, Jangsoo Bai, Jianming Tyson, Trevor A. Cho, Jaephil Liu, Meilin TI Anomalous Pseudocapacitive Behavior of a Nanostructured, Mixed-Valent Manganese Oxide Film for Electrical Energy Storage SO NANO LETTERS LA English DT Article DE Energy storage; electrochemical capacitors; mixed-valent compounds; enhanced pseudocapacitance; in situ X-ray absorption spectroscopy ID ELECTROCHEMICAL CAPACITORS; CHARGE COMPENSATION; ELECTRODE MATERIALS; HIGH-POWER; SUPERCAPACITOR; MNO2; PERFORMANCE; COMPOSITES; DEPOSITION; BATTERIES AB While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, rnixed-valent manganese oxide film that exhibits anomalously high specific capacitance (similar to 2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials similar to 0.16 mg/cm(2)) while maintaining excellent power density and cycling life. The dramatic performance enhancement is attributed to its unique mixed-valence state with porous nanoarchitecture, which may facilitate rapid mass transport and enhance surface double-layer capacitance, while promoting facile redox reactions associated with charge storage by both Mn and O sites, as suggested by in situ X-ray absorption spectroscopy (XAS) and density functional theory calculations. The new charge storage mechanisms (in addition to redox reactions of cations) may offer critical insights to rational design of a new-generation energy storage devices. C1 [Song, Min-Kyu; Cheng, Shuang; Qin, Wentao; Liu, Meilin] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA. [Chen, Haiyan; Tyson, Trevor A.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Nam, Kyung-Wan; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Xu, Shucheng; Bongiorno, Angelo] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Lee, Jangsoo; Cho, Jaephil] UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea. [Bai, Jianming] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Liu, ML (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Innovat Fuel Cell & Battery Technol, 771 Ferst Dr, Atlanta, GA 30332 USA. EM meilin.liu@mse.gatech.edu RI Liu, Meilin/E-5782-2010; Nam, Kyung-Wan/E-9063-2015; Bai, Jianming/O-5005-2015; Nam, Kyung-Wan Nam/G-9271-2011; Nam, Kyung-Wan/B-9029-2013; Cho, Jaephil/E-4265-2010 OI Liu, Meilin/0000-0002-6188-2372; Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369; FU HeteroFoaM Center, an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-SC0001061]; U.S.-DOE-EERE, Vehicle Technologies Program, through the HTML User Program at ORNL; Scientific User Facilities Division, US-DOE-BES; U.S.-DOE for EERE, Office of Vehicle Technologies, Vehicle Technology Program [DEAC02-98CH10886]; WCU program at UNIST FX This material is based upon work supported as part of the HeteroFoaM Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under Award Number DE-SC0001061. The authors acknowledge the use of the X14A beamline at Brookhaven National Laboratory (BNL, partially sponsored by the U.S.-DOE-EERE, Vehicle Technologies Program, through the HTML User Program at ORNL) and the SHaRE User Facility at Oak Ridge National Laboratory (ORNL, sponsored by the Scientific User Facilities Division, US-DOE-BES). K.W.N. and X.Q.Y. are supported by the U.S.-DOE Assistant Secretary for EERE, Office of Vehicle Technologies, Vehicle Technology Program, under Contract Number DEAC02-98CH10886. Partial support of the WCU program at UNIST is also acknowledged. M.K.S. and S.C. thank K. Blinn, S. Lai, and M. F. Liu for their help on Raman spectroscopy and TGA measurements. NR 38 TC 114 Z9 115 U1 19 U2 218 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3483 EP 3490 DI 10.1021/nl300984y PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200022 PM 22681539 ER PT J AU Nah, J Fang, H Wang, C Takei, K Lee, MH Plis, E Krishna, S Javey, A AF Nah, Junghyo Fang, Hui Wang, Chuan Takei, Kuniharu Lee, Min Hyung Plis, E. Krishna, Sanjay Javey, Ali TI III-V Complementary Metal-Oxide-Semiconductor Electronics on Silicon Substrates SO NANO LETTERS LA English DT Article DE III-V CMOS; InAs; InGaSb; two-dimensional semiconductors; logic gate ID TRANSISTORS; FUTURE AB One of the major challenges in further advancement of RI V electronics is to integrate high mobility complementary transistors on the same substrate. The difficulty is due to the large lattice mismatch of the optimal p- and n-type III-V semiconductors. In this work, we employ a two-step epitaxial layer transfer process for the heterogeneous assembly of ultrathin membranes of III-V compound semiconductors on Si/SiO2 substrates. In this III-V-on-insulator (XOI) concept, ultrathin-body InAs (thickness, 13 nm) and InGaSb (thickness, 7 nm) layers are used for enhancement-mode n- and p- MOSFETs, respectively. The peak effective mobilities of the complementary devices are similar to 1190 and similar to 370 cm(2)/(V s) for electrons and holes, respectively, both of which are higher than the state-of-the-art Si MOSFETs. We demonstrate the first proof-of-concept III-V CMOS logic operation by fabricating NOT and NAND gates, highlighting the utility of the XOI platform. C1 [Nah, Junghyo; Fang, Hui; Wang, Chuan; Takei, Kuniharu; Lee, Min Hyung; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Nah, Junghyo; Fang, Hui; Wang, Chuan; Takei, Kuniharu; Lee, Min Hyung; Javey, Ali] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Nah, Junghyo; Fang, Hui; Wang, Chuan; Takei, Kuniharu; Lee, Min Hyung; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Plis, E.; Krishna, Sanjay] Univ New Mexico, Albuquerque, NM 87106 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Wang, Chuan/B-3649-2011; Lee, Min Hyung/H-6777-2012; Fang, Hui/I-8973-2014; Javey, Ali/B-4818-2013; Nah, Junghyo/P-3761-2015 OI Fang, Hui/0000-0002-4651-9786; Nah, Junghyo/0000-0001-9975-239X FU FCRP/MSD; NSF COINS; Intel; NSF E3S Center; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; AFOSR [FA9550-10-1-0113]; World Class University program at Sunchon National University FX The device aspects of this work were funded by FCRP/MSD, NSF COINS, Intel, and the NSF E3S Center. The materials characterization part of this work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. The epitaxial growth and design was supported by AFOSR FA9550-10-1-0113. A.J. acknowledges a Sloan Research Fellowship, NSF CAREER Award, and support from the World Class University program at Sunchon National University. NR 25 TC 51 Z9 51 U1 3 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3592 EP 3595 DI 10.1021/nl301254z PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200040 PM 22694195 ER PT J AU Yu, YL Ferry, VE Alivisatos, AP Cao, LY AF Yu, Yiling Ferry, Vivian E. Alivisatos, A. Paul Cao, Linyou TI Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement SO NANO LETTERS LA English DT Article DE Core-shell; optical antenna; nanowires; solar absorption; solar cells ID SILICON NANOWIRE ARRAYS; PHOTOVOLTAIC APPLICATIONS; CELLS; COST AB We demonstrate a new light trapping technique that exploits dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost 1 order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick hydrogenated amorphous silicon (a-Si:H) thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical antireflective coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and nonabsorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances (LMRs) in the semiconductor part and antireflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar-to-fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors, and solid-state lighting diodes. C1 [Cao, Linyou] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Yu, Yiling; Cao, Linyou] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Ferry, Vivian E.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ferry, Vivian E.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Cao, LY (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM lcao2@ncsu.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU North Carolina State University start-up fund; Miller Institute at the University of California; "Light-Material Interactions in Energy Conversion" Energy Frontiers Research Center, United States Department of Energy [DE-SC0001293] FX Y.Y. and L.C. acknowledge useful discussions with Xiang Ji. L.C. acknowledges North Carolina State University start-up fund and the Miller Institute at the University of California for financial support. Part of work on the simulation of solar absorption in single core-shell nanowires was supported by the "Light-Material Interactions in Energy Conversion" Energy Frontiers Research Center, United States Department of Energy, under Grant No. DE-SC0001293. NR 39 TC 64 Z9 64 U1 3 U2 129 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3674 EP 3681 DI 10.1021/nl301435r PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200054 PM 22686287 ER PT J AU Li, H Yen, CF Sivasankar, S AF Li, Hui Yen, Chi-Fu Sivasankar, Sanjeevi TI Fluorescence Axial Localization with Nanometer Accuracy and Precision SO NANO LETTERS LA English DT Article DE Axial localization; single molecule; confocal fluorescence microscope; atomic force microscope; DNA conformation ID OPTICAL RECONSTRUCTION MICROSCOPY; INTERFERENCE-CONTRAST MICROSCOPY; DNA; RESOLUTION; FLUOROPHORES; PROBES; STORM; LIMIT AB We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities. C1 [Li, Hui; Sivasankar, Sanjeevi] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Yen, Chi-Fu; Sivasankar, Sanjeevi] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Li, Hui; Yen, Chi-Fu; Sivasankar, Sanjeevi] US DOE, Ames Lab, Ames, IA 50011 USA. RP Sivasankar, S (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM sivasank@iastate.edu FU Grow Iowa Values Fund FX The work was supported in part by an award from the Grow Iowa Values Fund. We thank Agilent Technologies for the loan of a 5500 AFM and for technical support. H.L., C.-F.Y. and S.S. designed the experiments. S.S. directed the research. H.L. and C.-F.Y, built the instrument and collected the data. H.L. did the FDTD simulations. H.L. and C.-F.Y. analyzed the data. S.S., H.L., and C.-F.Y. wrote the manuscript. NR 27 TC 5 Z9 5 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3731 EP 3735 DI 10.1021/nl301542c PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200063 PM 22703235 ER PT J AU Cao, YL Xiao, LF Sushko, ML Wang, W Schwenzer, B Xiao, J Nie, ZM Saraf, LV Yang, ZG Liu, J AF Cao, Yuliang Xiao, Lifen Sushko, Maria L. Wang, Wei Schwenzer, Birgit Xiao, Jie Nie, Zimin Saraf, Laxmikant V. Yang, Zhengguo Liu, Jun TI Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications SO NANO LETTERS LA English DT Article DE Hollow carbon nanowires; polyaniline nanowires; anode; sodium ion battery ID RECHARGEABLE LITHIUM BATTERIES; LONG CYCLE LIFE; HIGH-CAPACITY; ELECTRODE MATERIAL; CATHODE MATERIAL; GRAPHITE; ANODE; MECHANISM; CHALLENGES; ADDITIVES AB Hollow carbon nanowires (HCNWs) were prepared through pyrolyzation of a hollow polyaniline nanowire precursor. The HCNWs used as anode material for Na-ion batteries deliver a high reversible capacity of 251 mAh g(-1) and 82.2% capacity retention over 400 charge-discharge cycles between 1.2 and 0.01 V (vs Na'/Na) at a constant current of 50 mA g(-1) (0.2 C). Excellent cycling stability is also observed at an even higher charge-discharge rate. A high reversible capacity of 149 rnAh g(-1) also can be obtained at a current rate of 500 rnA g(-1) (2C). The good Na-ion insertion property is attributed to the short diffusion distance in the HCNWIs and the large interlayer distance (0.37 nm) between the graphitic sheets, which agrees with the interlayered distance predicted by theoretical calculations to enable Na-ion insertion in carbon materials. C1 [Cao, Yuliang; Xiao, Lifen; Sushko, Maria L.; Wang, Wei; Schwenzer, Birgit; Xiao, Jie; Nie, Zimin; Saraf, Laxmikant V.; Yang, Zhengguo; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cao, Yuliang] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Elect Power Sources, Wuhan 430072, Peoples R China. [Xiao, Lifen] Cent China Normal Univ, Coll Chem, Wuhan 430079, Peoples R China. RP Cao, YL (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM ylcao@whu.edu.cn; Jun.Liu@pnnl.gov RI Wang, Wei/F-4196-2010; Sushko, Maria/C-8285-2014; OI Wang, Wei/0000-0002-5453-4695; Sushko, Maria/0000-0002-7229-7072; Schwenzer, Birgit/0000-0002-7872-1372 FU U.S. Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability; Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE [DE-AC05-76RL01830] FX We thank the support from the U.S. Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability for this research. The theoretical modeling is supported by Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. NR 39 TC 419 Z9 424 U1 120 U2 634 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3783 EP 3787 DI 10.1021/nl3016957 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200072 PM 22686335 ER PT J AU Fang, H Chuang, S Chang, TC Takei, K Takahashi, T Javey, A AF Fang, Hui Chuang, Steven Chang, Ting Chia Takei, Kuniharu Takahashi, Toshitake Javey, Ali TI High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts SO NANO LETTERS LA English DT Article DE WSe2; monolayer; FETs; stay-ace chemical doping; two-dimensional; chalcogenide layered semiconductors ID GRAPHENE; TRANSISTORS; CRYSTALS; SURFACE; WIRES; GAS AB We report high performance p-type field-effect transistors based on single layered (thickness, similar to 0.7 nm) WSe2 as the active channel with chemically doped source/drain contacts and high-K gate dielectrics. The top-gated monolayer transistors exhibit a high effective hole mobility of "-ISO cm(2)/(V s), perfect subthreshold swing of similar to 60 mV/dec, and I-ON/'OFF of >10(6) at room temperature. Special attention is given to lowering the contact resistance for hole injection by using high work function Pd contacts along with degenerate surface doping of the contacts by patterned NO2 chemisorption on WSe2. The results here present a promising material system and device architecture for p-type monolayer transistors with excellent characteristics. C1 [Fang, Hui; Chuang, Steven; Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fang, Hui; Chuang, Steven; Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Fang, Hui/I-8973-2014; Javey, Ali/B-4818-2013 OI Fang, Hui/0000-0002-4651-9786; FU NSF E3S Center; FCRP/MSD; U.S. Department of Energy [De-Ac02-05Ch11231]; Electronic Materials (E-Mat) program; Sloan Research Fellowship; NSF CAREER Award; World Class University program at Sunchon National University FX This work was funded by NSF E3S Center and FCRP/MSD. The materials characterization part of this work was partially supported by the Director, Office of Science, Office of Basic Energy Sciences, and Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. De-Ac02-05Ch11231 and the Electronic Materials (E-Mat) program. A.J. acknowledges a Sloan Research Fellowship, NSF CAREER Award, and support from the World Class University program at Sunchon National University. NR 23 TC 522 Z9 525 U1 60 U2 417 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3788 EP 3792 DI 10.1021/nl301702r PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200073 PM 22697053 ER PT J AU Chan, EM Han, G Goldberg, JD Gargas, DJ Ostrowski, AD Schuck, PJ Cohen, BE Milliron, DJ AF Chan, Emory M. Han, Gang Goldberg, Joshua D. Gargas, Daniel J. Ostrowski, Alexis D. Schuck, P. James Cohen, Bruce E. Milliron, Delia J. TI Combinatorial Discovery of Lanthanide-Doped Nanocrystals with Spectrally Pure Upconverted Emission SO NANO LETTERS LA English DT Article DE Phosphors; luminescence; high-throughput; energy transfer; near-infrared; screening ID RARE-EARTH IONS; CONVERSION NANOCRYSTALS; ENERGY-TRANSFER; NANOPARTICLES; LUMINESCENCE; GLASSES; SOLIDS; PHASE; SIZE; FLUORESCENCE AB Nanoparticles doped with lanthanide ions exhibit stable and visible luminescence under near-infrared excitation via a process known as upconversion, enabling long-duration, low-background biological imaging. However, the complex, overlapping emission spectra of lanthanide ions can hinder the quantitative imaging of samples labeled with multiple upconverting probes. Here, we use combinatorial screening of multiply doped NaYF4 nanocrystals to identify a series of doubly and triply doped upconverting nanoparticles that exhibit narrow, spectrally pure emission spectra at various visible wavelengths. We then developed a comprehensive kinetic model validated by our extensive experimental data set. Applying this model, we elucidated the energy transfer mechanisms giving rise to spectrally pure emission. These mechanisms suggest design rules for electronic level structures that yield robust color tuning in lanthanide-doped upconverting nanoparticles. The resulting materials will be useful for background-free multicolor imaging and tracking of biological processes. C1 [Chan, Emory M.; Han, Gang; Goldberg, Joshua D.; Gargas, Daniel J.; Ostrowski, Alexis D.; Schuck, P. James; Cohen, Bruce E.; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Chan, EM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM EMChan@lbl.gov; DMilliron@lbl.gov RI Milliron, Delia/D-6002-2012; han, gang/B-7274-2013 OI han, gang/0000-0002-2300-5862 FU SULI; DOE; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Jeffrey Urban, Brett Helms, and Omar Yaghi for helpful discussions. Rashid Zia and Christopher Dodson provided assistance with calculations. J.D.G. was supported by a SULI internship. D.J.M. was supported by a DOE Early Career Research Program award. This work was carried out entirely at the Molecular Foundry and was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 101 Z9 101 U1 21 U2 160 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3839 EP 3845 DI 10.1021/nl3017994 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200081 PM 22713101 ER PT J AU Buonsanti, R Pick, TE Krins, N Richardson, TJ Helms, BA Milliron, DJ AF Buonsanti, Raffaella Pick, Teresa E. Krins, Natacha Richardson, Thomas J. Helms, Brett A. Milliron, Delia J. TI Assembly of Ligand-Stripped Nanocrystals into Precisely Controlled Mesoporous Architectures SO NANO LETTERS LA English DT Article DE Mesoporosity; colloidal nanocrystals; block copolymers; chemical interactions ID SENSITIZED SOLAR-CELLS; THIN-FILMS; HIERARCHICAL STRUCTURES; SHAPED PARTICLES; TIN OXIDE; TIO2; SURFACES; ANATASE; DESIGN AB The properties of mesoporous materials hinge on control of their composition, pore dimensions, wall thickness, and the size and shape of the crystallite building units. We create ordered mesoporous materials in which all of these parameter; are independently controlled. Different sizes (from 4.5 to 8 nm) and shapes (spheres and rods) of ligand-stripped nanocrystals are assembled using the same structure-directing block copolymers, which contain a tethering domain designed to adsorb to their naked surfaces. Material compositions range from metal oxides (Sn-doped In2O3 or ITO, CeO2, TiO2) to metal fluorides (Yb,Er-doped NaYF4) and metals (FePt). The incorporation of new types of nanocrystals into mesoporous architectures can lead to enhanced performance. For example, TiO2 nanorod-based materials withstand >1000 electrochemical cycles without significant degradation. C1 [Buonsanti, Raffaella; Pick, Teresa E.; Helms, Brett A.; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Krins, Natacha; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Helms, BA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM bahelms@lbl.gov; dmilliron@lbl.gov RI Milliron, Delia/D-6002-2012; OI Helms, Brett/0000-0003-3925-4174 FU DOE; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; F.R.S.-FNRS (National Fund for Scientific Research in Belgium); Fulbright Scholar Program; WBI.World FX The authors thank J. Rivest and O. Yaghi for critical input on the manuscript and acknowledge helpful discussions with S. Tolbert. D.J.M. was supported by a DOE Early Career Research Program award. This work was carried out in part at the Molecular Foundry and was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. T.J.R. was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. N.K thanks the F.R.S.-FNRS (National Fund for Scientific Research in Belgium), the Fulbright Scholar Program, and the WBI.World for the research fellowship and grants. All authors contributed to experimental design and provided critical input on the manuscript, which was written by R.B. and D.J.M. B.A.H. designed the BCPs, which were synthesized by T.E.P. R.B., N.K., and T.E.P. carried out the experiments and analyzed the data. NR 33 TC 52 Z9 52 U1 7 U2 151 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3872 EP 3877 DI 10.1021/nl302206s PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200087 PM 22725257 ER PT J AU Lopez-Bezanilla, A Huang, JS Terrones, H Sumpter, BG AF Lopez-Bezanilla, Alejandro Huang, Jingsong Terrones, Humberto Sumpter, Bobby G. TI Boron Nitride Nanoribbons Become Metallic (vol 11, pg 3267, 2011) SO NANO LETTERS LA English DT Correction C1 [Lopez-Bezanilla, Alejandro; Huang, Jingsong; Terrones, Humberto; Sumpter, Bobby G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lopez-Bezanilla, A (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RI Sumpter, Bobby/C-9459-2013; Lopez-Bezanilla, Alejandro/B-9125-2015; Huang, Jingsong/A-2789-2008 OI Sumpter, Bobby/0000-0001-6341-0355; Lopez-Bezanilla, Alejandro/0000-0002-4142-2360; Huang, Jingsong/0000-0001-8993-2506 NR 1 TC 3 Z9 3 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2012 VL 12 IS 7 BP 3879 EP 3879 DI 10.1021/nl302248m PG 1 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 972QY UT WOS:000306296200089 ER PT J AU Koren, S Schatz, MC Walenz, BP Martin, J Howard, JT Ganapathy, G Wang, Z Rasko, DA McCombie, WR Jarvis, ED Phillippy, AM AF Koren, Sergey Schatz, Michael C. Walenz, Brian P. Martin, Jeffrey Howard, Jason T. Ganapathy, Ganeshkumar Wang, Zhong Rasko, David A. McCombie, W. Richard Jarvis, Erich D. Phillippy, Adam M. TI Hybrid error correction and de novo assembly of single-molecule sequencing reads SO NATURE BIOTECHNOLOGY LA English DT Article ID PYROSEQUENCING READS; STRUCTURAL VARIATION; LARGE GENOMES; EXPRESSION; EVOLUTION; GENE; LANGUAGE; SPEECH; FOXP2; COMPLEXITY AB Single-molecule sequencing instruments can generate multikilobase sequences with the potential to greatly improve genome and transcriptome assembly. However, the error rates of single-molecule reads are high, which has limited their use thus far to resequencing bacteria. To address this limitation, we introduce a correction algorithm and assembly strategy that uses short, high-fidelity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on reads generated by a PacBio RS instrument from phage, prokaryotic and eukaryotic whole genomes, including the previously unsequenced genome of the parrot Melopsittacus undulatus, as well as for RNA-Seq reads of the corn (Zea mays) transcriptome. Our long-read correction achieves >99.9% base-call accuracy, leading to substantially better assemblies than current sequencing strategies: in the best example, the median contig size was quintupled relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly. C1 [Koren, Sergey; Phillippy, Adam M.] Natl Biodef Anal & Countermeasures Ctr, Frederick, MD USA. [Koren, Sergey] Univ Maryland, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA. [Schatz, Michael C.; McCombie, W. Richard] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Walenz, Brian P.] J Craig Venter Inst, Rockville, MD USA. [Martin, Jeffrey; Wang, Zhong] DOE Joint Genome Inst, Walnut Creek, CA USA. [Howard, Jason T.; Ganapathy, Ganeshkumar; Jarvis, Erich D.] Duke Univ, Med Ctr, Howard Hughes Med Inst, Dept Neurobiol, Durham, NC 27710 USA. [Rasko, David A.] Univ Maryland, Sch Med, Dept Microbiol & Immunol, Inst Genome Sci, Baltimore, MD 21201 USA. RP Koren, S (reprint author), Natl Biodef Anal & Countermeasures Ctr, Frederick, MD USA. EM korens@nbacc.net; phillippya@nbacc.net RI Jarvis, Erich/A-2319-2008; OI Jarvis, Erich/0000-0001-8931-5049; McCombie, W. Richard/0000-0003-1899-0682; David, Rasko/0000-0002-7337-7154; Howard, Jason/0000-0003-3265-5127 FU US Department of Homeland Security for the management and operation of the National Biodefense Analysis and Countermeasures Center (NBACC) [HSHQDC-07-C-00020]; Federally Funded Research and Development Center; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; US National Institutes of Health (NIH) [R01-HG006677-12]; NIH [2R01GM077117-04A1]; state of Maryland; National Science Foundation [IOS-1032105]; Howard Hughes Medical Institute; NIH Directors Pioneer Award FX We thank Pacific Biosciences, Roche 454, Illumina, BGI and the Duke Genome Center for the generation and/or release of many of the data sets examined herein, and to the Assemblathon working group for the coordination and release of the parrot genome data. This publication was developed and funded in part under Agreement No. HSHQDC-07-C-00020 awarded by the US Department of Homeland Security for the management and operation of the National Biodefense Analysis and Countermeasures Center (NBACC), a Federally Funded Research and Development Center. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the US Department of Homeland Security. The Department of Homeland Security does not endorse any products or commercial services mentioned in this publication. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was also funded in part by the US National Institutes of Health (NIH) R01-HG006677-12 (M.C.S.), NIH 2R01GM077117-04A1 (B.P.W.), the state of Maryland (D.A.R.), National Science Foundation IOS-1032105 to W.R.M., and Howard Hughes Medical Institute and NIH Directors Pioneer Award to E.D.J. NR 50 TC 275 Z9 283 U1 14 U2 107 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD JUL PY 2012 VL 30 IS 7 BP 692 EP + DI 10.1038/nbt.2280 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 972QV UT WOS:000306293400028 PM 22750884 ER PT J AU Shah, AB Nelson-Cheeseman, BB Subramanian, G Bhattacharya, A Spence, JCH AF Shah, Amish B. Nelson-Cheeseman, Brittany B. Subramanian, Ganesh Bhattacharya, Anand Spence, John C. H. TI Structurally induced magnetization in a La2/3Sr4/3MnO4 superlattice SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article DE EELS; magnetic phase transitions; oxide superlattices; Ruddleson-Popper ID ENERGY-LOSS SPECTROSCOPY; ELECTRON-MICROSCOPE; MANGANESE OXIDES AB A structural transition has been observed in a digital superlattice of La2/3Sr4/3MnO4, which is correlated to a magnetization enhancement upon cooling the sample. These artificial superlattices were grown layer-by-layer using ozone-assisted molecular beam epitaxy (MBE). Electron diffraction experiments show a phase transition below 150?K in nanopatches of the superlattice, which coincides with an enhanced magnetization starting below 110?K. Atomic scale electron energy loss spectroscopy (EELS) also shows changes in the Mn L2,3 and O K edges, which are related to valence, strain, and the atomic coordination within nanopatches. Atomic resolution image and EELS showing variations of oxygen and lanthanum signature edges in a La2/3Sr4/3MnO4 supperlattice. C1 [Shah, Amish B.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Shah, Amish B.; Subramanian, Ganesh; Spence, John C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Nelson-Cheeseman, Brittany B.; Bhattacharya, Anand] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Nelson-Cheeseman, Brittany B.; Bhattacharya, Anand] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Shah, AB (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. EM abshah3@illinois.edu; spence@asu.edu RI Bhattacharya, Anand/G-1645-2011 OI Bhattacharya, Anand/0000-0002-6839-6860 FU Department of Energy [DE-FG03-02ER45996]; Argonne National Laboratory under the U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-05CH11231]; LeRoy Eyring Center for Solid State Science, Arizona State University; Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois FX We thank Dr. Zhenquan Liu for improving the stability of the cold stage and Dr. Bin Jiang for assistance with the EELS acquisition. This research is funded by Department of Energy grants DE-FG03-02ER45996 and Argonne National Laboratory under the U.S. Department of Energy grant DE-AC02-06CH11357 Digital Synthesis FWP. Microscopy was carried out at the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under grant DE-AC02-05CH11231, the LeRoy Eyring Center for Solid State Science, Arizona State University, and the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois. NR 25 TC 0 Z9 0 U1 0 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1862-6300 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD JUL PY 2012 VL 209 IS 7 BP 1322 EP 1327 DI 10.1002/pssa.201127728 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 972LN UT WOS:000306278700020 ER PT J AU Mayer, BP Lewicki, JP Chinn, SC Overturf, GE Maxwell, RS AF Mayer, Brian P. Lewicki, James P. Chinn, Sarah C. Overturf, George E. Maxwell, Robert S. TI Nuclear magnetic resonance and principal component analysis for investigating the degradation of poly[chlorotrifluoroethylene-co-(vinylidene fluoride)] by ionizing radiation SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Multivariate statistics; Nuclear magnetic resonance; Ionizing radiation; Spectroscopy; Principal component analysis; Fluoropolymer ID CHEMISTRY AB Reported here is the application of multivariate statistical analysis to nuclear magnetic resonance (NMR) data for the understanding of irradiative degradation in Kel-F 800: polylchlorotrifluoroethylene-co(vinylidene fluoride)]. F-19 NMR has been employed to characterize changes in the chain structure as a function of radiation dosage. Multivariate statistical analysis of the NMR data elucidates significant variance from comparatively minor changes in the collected NMR spectra, extracting meaningful information on subtle degradation mechanisms from the spectroscopic data. It is shown that the combination of NMR and principal component analysis reveals that PCTFE units are particularly susceptible to the effects of gamma-irradiation and that scissioning and cross-linking occur simultaneously. The results of the statistical analysis are supported by gel permeation chromatography and dynamic scanning calorimetric analyses. The combination of statistical analysis with F-19 NMR offers a non-destructive means of studying degradation in fluoropolymeric materials. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Mayer, Brian P.; Lewicki, James P.; Chinn, Sarah C.; Overturf, George E.; Maxwell, Robert S.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Mayer, BP (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave,L-091, Livermore, CA 94550 USA. EM mayer22@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX B. Mayer would like to thank Prof. M. Wagers for helpful discussions in preparing the PCA discussion. The authors would also like to thank J. Montgomery for assistance performing the DSC analyses. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 14 TC 2 Z9 3 U1 2 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD JUL PY 2012 VL 97 IS 7 BP 1151 EP 1157 DI 10.1016/j.polymdegradstab.2012.04.001 PG 7 WC Polymer Science SC Polymer Science GA 973VO UT WOS:000306388100010 ER PT J AU Leonard, RL Terekhov, AY Thompson, C Erck, RA Johnson, JA AF Leonard, R. L. Terekhov, A. Y. Thompson, C. Erck, R. A. Johnson, J. A. TI Antifog coating for bronchoscope lens SO SURFACE ENGINEERING LA English DT Article DE Coating; Doping; Characterisation; Biomedical; Carbon ID CARBON-FILMS; DEPOSITION; PROPERTY AB Current bronchoscopes suffer from fogging and the adhesion of mucus plugs to the lens. A doped diamond-like carbon film was developed as a possible solution to this problem. A silicon monoxide dopant was found to produce a film that was transparent, hydrophilic and stable in simulated body fluid (SBF) and therefore showed potential as an antifogging coating. The film was deposited by pulsed laser deposition and characterised by Raman spectroscopy, atomic force microscopy, spectrophotometry and contact angle measurements. Root mean square surface roughness was found to be <1 nm. The unique characteristics of these films include production without secondary processing, a lowest contact angle of 25 degrees and stability in SBF for several months combined with transparency. C1 [Leonard, R. L.; Terekhov, A. Y.; Johnson, J. A.] Univ Tennessee, Inst Space, Tullahoma, TN 37388 USA. [Thompson, C.] No Illinois Univ, De Kalb, IL 60115 USA. [Erck, R. A.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Johnson, JA (reprint author), Univ Tennessee, Inst Space, Tullahoma, TN 37388 USA. EM jjohnson@utsi.edu RI Johnson, Jacqueline/P-4844-2014 OI Johnson, Jacqueline/0000-0003-0830-9275 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to acknowledge the Center for Nanoscale Materials at Argonne National Laboratory for use of its Raman microscope. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 17 TC 2 Z9 2 U1 3 U2 28 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0267-0844 EI 1743-2944 J9 SURF ENG JI Surf. Eng. PD JUL PY 2012 VL 28 IS 6 BP 468 EP 472 DI 10.1179/1743294412Y.0000000007 PG 5 WC Materials Science, Coatings & Films SC Materials Science GA 974KX UT WOS:000306435000013 ER PT J AU Tiemeijer, PC Bischoff, M Freitag, B Kisielowski, C AF Tiemeijer, P. C. Bischoff, M. Freitag, B. Kisielowski, C. TI Using a monochromator to improve the resolution in TEM to below 0.5 angstrom. Part II: Application to focal series reconstruction SO ULTRAMICROSCOPY LA English DT Article DE TEM; Monochromator; Brightness; Focal-series reconstruction ID TRANSMISSION ELECTRON-MICROSCOPY; ABERRATION; HREM AB We apply monochromated illumination to improve the information transfer in focal series reconstruction to 0.5 angstrom at 300 kV. Contrary to single images, which can be taken arbitrarily close to Gaussian focus in a C-s-corrected microscope, images in a focal series are taken at a certain defocus. This defocus poses limits on the spatial coherence of the illumination, and through this, limits on the brightness of the monochromated illumination. We derive an estimate for the minimum spatial coherence and the minimal brightness needed for a certain resolution at a certain defocus and apply this estimate to our focal series experiments. We find that the 0.5 angstrom information transfer would have been difficult and probably impossible to obtain without the exceptionally high brightness of the monochromated illumination. (C) 2012 Elsevier B.V. All rights reserved. C1 [Tiemeijer, P. C.; Bischoff, M.; Freitag, B.] FEI Co, NL-5600 KA Eindhoven, Netherlands. [Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Tiemeijer, PC (reprint author), FEI Co, POB 80066, NL-5600 KA Eindhoven, Netherlands. EM p.tiemeijer@fei.com FU Department of Energy, Office of Science, Basic Energy Sciences; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX The TEAM project is supported by the Department of Energy, Office of Science, Basic Energy Sciences. Part of this work was performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract no. DE-AC02-05CH11231. We thank Max. Haider and CEOS GmbH for their support on the Cs correctors. NR 18 TC 8 Z9 8 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2012 VL 118 BP 35 EP 43 DI 10.1016/j.ultramic.2012.03.019 PG 9 WC Microscopy SC Microscopy GA 973KJ UT WOS:000306358700006 PM 22728403 ER PT J AU Li, DG Wang, C Tripkovic, D Sun, SH Markovic, NM Stamenkovic, VR AF Li, Dongguo Wang, Chao Tripkovic, Dusan Sun, Shouheng Markovic, Nenad M. Stamenkovic, Vojislav R. TI Surfactant Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect on Catalytic Performance SO ACS CATALYSIS LA English DT Article DE nanoparticles; organic solution synthesis; surfactant removal; catalysis; oxygen reduction reaction ID SHAPE-CONTROLLED SYNTHESIS; OXYGEN REDUCTION REACTION; PLATINUM NANOCRYSTALS; FEPT NANOPARTICLES; ENHANCED CATALYSIS; CONTROLLED-RELEASE; SIZE; MONODISPERSE; CARBON; GOLD AB Colloidal nanoparticles prepared by solution synthesis with robust control over particle size, shape, composition, and structure have shown great potential for catalytic applications. However, such colloidal nanoparticles are usually capped with organic ligands (as surfactants) and cannot be directly used as catalyst. We have studied the effect of surfactant removal on the electrocatalytic performance of Pt nanoparticles made by organic solution synthesis. Various methods were applied to remove the oleylamine surfactant, which included thermal annealing, acetic acid washing, and UV-Ozone irradiation, and the treated nanoparticles were applied as electrocatalysts for the oxygen reduction reaction. It was found that the electrocatalytic Performance, including electrochemically, active surface area and catalytic activity, was strongly dependent on the pretreatment. Among the methods studied here; low-temperature thermal annealing (similar to 185 degrees C) in air was found to be the most effective for Surface cleaning without inducing particle, size, and morphology changes. C1 [Li, Dongguo; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Li, Dongguo; Wang, Chao; Tripkovic, Dusan; Markovic, Nenad M.; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Sun, SH (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM ssun@brown.edu; vrstamenkovic@anl.gov RI Wang, Chao/F-4558-2012; Li, Dongguo/O-6253-2016 OI Wang, Chao/0000-0001-7398-2090; Li, Dongguo/0000-0001-7578-7811 FU Argonne National Laboratory, a U.S. Department of Energy, Office of Science Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program FX This work was conducted at Argonne National Laboratory, a U.S. Department of Energy, Office of Science Laboratory, operated by UChicago Argonne, LLC, under contract no. DE-AC02-06CH11357. This research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. Microscopy research was conducted at the Electron Microscopy Center for Materials Research at Argonne. NR 27 TC 108 Z9 108 U1 10 U2 189 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2012 VL 2 IS 7 BP 1358 EP 1362 DI 10.1021/cs300219j PG 5 WC Chemistry, Physical SC Chemistry GA 972RP UT WOS:000306297900007 ER PT J AU Yung, MM Cheah, S Magrini-Bair, K Kuhn, JN AF Yung, Matthew M. Cheah, Singfoong Magrini-Bair, Kimberly Kuhn, John N. TI Transformation of Sulfur Species during Steam/Air Regeneration on a Ni Biomass Conditioning Catalyst SO ACS CATALYSIS LA English DT Article DE XANES; nickel; biomass; sulfates; sulfides; regeneration ID RAY-ABSORPTION SPECTROSCOPY; REFORMING CATALYSTS; RAMAN-SPECTROSCOPY; HYDROGEN-SULFIDE; NICKEL CATALYST; IFEFFIT; SYNGAS; FUEL AB Sulfur K-edge XANES identified transformation of sulfides to sulfates during combined steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass derived syngas. This catalyst was tested over multiple reaction/regeneration/reduction cycles. Postreaction catalysts showed the presence of sulfides on H2S-poisoned sites. Although H2S was observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst, and a transformation from sulfides to sulfates was observed. Following the oxidative regeneration, the subsequent H-2 reduction led W.:a partial reduction of sulfates back to sulfides, indicating the difficulty and sensitivity in achieving complete sulfur removal during regeneration for biomass-conditioning catalysts. C1 [Yung, Matthew M.; Cheah, Singfoong; Magrini-Bair, Kimberly] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kuhn, John N.] Univ S Florida, Tampa, FL 33620 USA. RP Yung, MM (reprint author), 1617 Cole Blvd, Golden, CO 80401 USA. EM matthew.yung@nrel.gov FU U.S. Department of Energy, Office of Biomass Program [DE-AC36-99-GO-10337] FX The authors acknowledge the U.S. Department of Energy, Office of the Biomass Program, contract DE-AC36-99-GO-10337 for financial support and also the staff of the Stanford Synchrotron Radiation Lightsource, particularly Riti Sarangi and Erik Nelson, for use of the facility for XANES experiments. The authors also thank Liyu Li from Pacific Northwest National Laboratory for his valuable suggestions and discussions; Professor Yongshen Chen from Pennsylvania State University for his assistance with the project, through valuable comments and XANES scoping experiments; and Calvin Feik and his team for the collection of spent catalysts used in the pilot plant reactions. NR 18 TC 12 Z9 12 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2012 VL 2 IS 7 BP 1363 EP 1367 DI 10.1021/cs3001545 PG 5 WC Chemistry, Physical SC Chemistry GA 972RP UT WOS:000306297900008 ER PT J AU Kwak, JH Tonkyn, R Tran, D Mei, DH Cho, SJ Kovarik, L Lee, JH Peden, CHF Szanyi, J AF Kwak, Ja Hun Tonkyn, Russell Tran, Diana Mei, Donghai Cho, Sung June Kovarik, Libor Lee, Jong H. Peden, Charles H. F. Szanyi, Janos TI Size-Dependent Catalytic Performance of CuO on gamma-Al2O3: NO Reduction versus NH3 Oxidation SO ACS CATALYSIS LA English DT Article DE selective catalytic reduction; gamma-alumina; copper Oxide; ammonia; nitric oxides; morphological effects; density functional theory ID ABSORPTION FINE-STRUCTURE; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELASTIC BAND METHOD; SADDLE-POINTS; BASIS-SET; SITES; TRANSITION; ADSORPTION; PATHS AB Catalytic reaction pathways of NH3 on CuO/gamma-Al2O3 catalysts. during, NH3 selective catalytic reduction reactions were investigated Under oxygen rich conditions. On 10 wt % CuO/gamma-Al2O3, NH3 reacted with oxygen to produce NON. In contrast, on the 0.5 wt % CuO/gamma-Al2O3 catalyst, NH3 reacted primarily with NO to form N-2 with a conversion efficiency of similar to 80% at 450 degrees C. H-2-temperature-programmed reduction (H-2-TPR) results show that Cu species present in 10 wt % CUO/gamma-Al2O3 can be easily reduced at similar to 160 degrees C, which suggests the formation of large CuO Clusters on the alumina surface. On the other. hand, the TPR spectrum obtained from the 0.5 wt % CnO/gamma-Al2O3 catalyst does not show any measurable H-2 consumption up. to 700 degrees C, Which suggests the presence of nonreducible isolated Cu species in this catalyst. Scanning transmission electron microscopy images collected from 10 wt % CuO/gamma-Al2O3 show nanosized CuO clusters, but no evidence Of cluster formation is seen in the images recorded from the 0.5 wt % CuO/gamma-Al2O3 sample due to the intrinsic limitation of low Z contrast between highly dispersed Cu (atomic weight = 63.5) specie's and the alumina Support (atomic weight of Al = 27). EXAFs data indicates the presence of Cu-Cu (Al) second shell at 0.35 nm only in the 10 wt % Cuo/gamma-Al2O3 catalyst, and an estimated coordination number of similar to 1.7. The XANES and EXAFS results suggest the formation of relatively highly dispersed Cu oxide nanoclusters, even at 10 wt % Cu loading. Density functional theory results show that supported CuO clusters, represented by a two-dimensional CuO monolayer, can effectively dissociate adsorbed NO and O-2 to produce atomic oxygen species. These reactive atomic oxygen specie's then react with NH3 to,produce NOx. However, the nonreducible, isolated Cu species, modeled by gamma-Al2O3-supported monomeric CuO, shows relatively weak interactions with both NO and O-2 Most importantly, our calculations suggest that the dissociations of either NO or O-2 are energetically unfavored on this latter catalyst. Therefore, molecularly adsorbed NO can react only with NH3 to produce N-2 on the low (0.5 wt%) CuO-loaded catalyst. C1 [Kwak, Ja Hun; Tonkyn, Russell; Tran, Diana; Mei, Donghai; Kovarik, Libor; Lee, Jong H.; Peden, Charles H. F.; Szanyi, Janos] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Cho, Sung June] Chonnam Natl Univ, Dept Appl Chem Engn, Kwangju, South Korea. RP Kwak, JH (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM kwak@pnnl.gov; donghai.mei@pnnl.gov RI Mei, Donghai/A-2115-2012; Kwak, Ja Hun/J-4894-2014; Mei, Donghai/D-3251-2011; Kovarik, Libor/L-7139-2016; OI Mei, Donghai/0000-0002-0286-4182; Peden, Charles/0000-0001-6754-9928 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; DOE's Office of Vehicle Technologies; Laboratory Directed Research and Development (LDRD) project at Pacific Northwest National Laboratory (PNNL); US DOE by Battelle Memorial Institute [DE-AC05-76RL01830]; DOE Office of Biological and Environmental Research; DOE, Office of Science/Basic Energy Sciences [DE-AC02-98CH10886] FX We gratefully acknowledge the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical, Sciences, and the DOE's Office of Vehicle Technologies for the support of this work. D. Mei is supported by the Laboratory Directed Research and Development (LDRD) project at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at PNNL. Computing time was granted by a user project (st30469) at the Molecular Science Computing Facility in EMSL. The EXAFS data were collected using the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory; the NSLS is supported by the DOE, Office of Science/Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 27 TC 24 Z9 24 U1 6 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2012 VL 2 IS 7 BP 1432 EP 1440 DI 10.1021/cs3002463 PG 9 WC Chemistry, Physical SC Chemistry GA 972RP UT WOS:000306297900018 ER PT J AU Liu, XH Liu, Y Kushima, A Zhang, SL Zhu, T Li, J Huang, JY AF Liu, Xiao Hua Liu, Yang Kushima, Akihiro Zhang, Sulin Zhu, Ting Li, Ju Huang, Jian Yu TI In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures SO ADVANCED ENERGY MATERIALS LA English DT Article DE lithium embrittlement; degradation; nanobatteries; coatings; anisotropy ID LITHIUM-ION BATTERIES; WALLED CARBON NANOTUBES; TRANSMISSION ELECTRON-MICROSCOPY; LINI0.8CO0.2O2 CATHODE MATERIALS; LIQUID-METAL EMBRITTLEMENT; SOLID-STATE AMORPHIZATION; SIZE-DEPENDENT FRACTURE; ATOMIC LAYER DEPOSITION; FILM LICOO2 CATHODES; SECONDARY BATTERIES AB Understanding the microscopic mechanisms of electrochemical reaction and material degradation is crucial for the rational design of high-performance lithium ion batteries (LIBs). A novel nanobattery assembly and testing platform inside a transmission electron microscope (TEM) has been designed, which allows a direct study of the structural evolution of individual nanowire or nanoparticle electrodes with near-atomic resolution in real time. In this review, recent progresses in the study of several important anode materials are summarized. The consistency between in situ and ex situ results is shown, thereby validating the new in situ testing paradigm. Comparisons between a variety of nanostructures lead to the conclusion that electrochemical reaction and mechanical degradation are material specific, size dependent, and geometrically and compositionally sensitive. For example, a highly anisotropic lithiation in Si is observed, in contrast to the nearly isotropic response in Ge. The Ge nanowires can develop a spongy network, a unique mechanism for mitigating the large volume changes during cycling. The Si nanoparticles show a critical size of similar to 150 nm below which fracture is averted during lithiation, and above which surface cracking, rather than central cracking, is observed. In carbonaceous nanomaterials, the lithiated multi-walled carbon nanotubes (MWCNTs) are drastically embrittled, while few-layer graphene nanoribbons remain mechanically robust after lithiation. This distinct contrast manifests a strong geometrical embrittlement effect as compared to a relatively weak chemical embrittlement effect. In oxide nanowires, discrete cracks in ZnO nanowires are generated near the lithiation reaction front, leading to leapfrog cracking, while a mobile dislocation cloud at the reaction front is observed in SnO2 nanowires. This contrast is corroborated by ab initio calculations that indicate a strong chemical embrittlement of ZnO, but not of SnO2, after a small amount of lithium insertion. In metallic nanowires such as Al, delithiation causes pulverization, and the product nanoparticles are held in place by the surface Li-Al-O glass tube, suggesting possible strategies for improving electrode cyclability by coatings. In addition, a new in situ chemical lithiation method is introduced for fast screening of battery materials by conventional TEM. Evidently, in situ nanobattery experiments inside TEM are a powerful approach for advancing the fundamental understanding of electrochemical reactions and materials degradation and therefore pave the way toward rational design of high-performance LIBs. C1 [Zhu, Ting] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Kushima, Akihiro; Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Kushima, Akihiro; Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Zhang, Sulin] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA. [Liu, Xiao Hua; Liu, Yang; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Zhu, T (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM ting.zhu@me.gatech.edu; liju@mit.edu; jhuang@sandia.gov RI Li, Ju/A-2993-2008; Liu, Yang/C-9576-2012; Zhu, Ting/A-2206-2009; Liu, Xiaohua/A-8752-2011; Zhang, Sulin /E-6457-2010; Kushima, Akihiro/H-2347-2011 OI Li, Ju/0000-0002-7841-8058; Liu, Xiaohua/0000-0002-7300-7145; FU Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL); Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC); US Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT); US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSF [CMMI-0900692, CMMI-0758554, 1100205, DMR-1008104, DMR-1120901]; AFOSR [FA9550-08-1-0325] FX X. H. Liu, Y. Liu, and A. Kushima contributed equally to this work. Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the development and fabrication of platforms. The NEES center supported the development of TEM techniques. The Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT) supported the TEM capability. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. S. Zhang acknowledges support by NSF CMMI-0900692. T. Zhu acknowledges support by NSF CMMI-0758554 and 1100205. A. Kushima and J. Li acknowledge the support of NSF DMR-1008104 and DMR-1120901, and AFOSR FA9550-08-1-0325. We also would like to acknowledge the collaborative work with Li Zhong, Jiangwei Wang, Liqiang Zhang, Wentao Liang, Shan Huang, Jeong-Hyun Cho, Jinkyoung Yoo, Shadi A. Dayeh, S. Tom Picraux, Scott X. Mao, John Sullivan, Nicholas Hudak, and Kevin Zavadil. NR 150 TC 152 Z9 153 U1 48 U2 497 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUL PY 2012 VL 2 IS 7 SI SI BP 722 EP 741 DI 10.1002/aenm.201200024 PG 20 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 972WE UT WOS:000306311100003 ER PT J AU Zhang, JS Dera, P Bass, JD AF Zhang, Jin S. Dera, Przemyslaw Bass, Jay D. TI A new high-pressure phase transition in natural Fe-bearing orthoenstatite SO AMERICAN MINERALOGIST LA English DT Article DE Orthoenstatite; high-pressure clinoenstatite; high-pressure phase transition; upper mantle; synchrotron single-crystal X-ray diffraction ID CLINOENSTATITE TRANSITION; MGSIO3 ORTHOENSTATITE; CLAPEYRON SLOPES; ROOM-TEMPERATURE; DISCONTINUITY; ENSTATITE; PYROXENES; SYSTEM; POLYMORPHISM; DIFFRACTION AB Single-crystal X-ray structure refinements have been carried out on natural Fe-bearing orthoenstatite (OEN) at pressures up to 14.53 GPa. We report a new high-pressure phase transition from OEN to a monoclinic phase (HPCEN2) with space group P2(1)/c, with a density change of similar to 1.9(3)%. The HPCEN2 phase is crystallographically different from low-pressure clinoenstatite (LPCEN), which also has P2(1)/c symmetry. Upon release of pressure HPCEN2 reverts to OEN, and the transition pressure is bracketed between 9.96 and 14.26 GPa at room temperature. We find no evidence for a C2/c phase at high pressure. The lattice constants for the new phase at 14.26 GPa are a = 17.87(2), b = 8.526(9), c = 4.9485(10) angstrom, beta = 92.88(4)degrees [rho = 3.658(9) g/cm(3)]. Refinement of the new structure indicates rotation of tetrahedral chain as the key characteristic of this transition. This experiment points to the possibility of OEN and HPCEN2 as the stable phases in Earth's upper mantle. C1 [Zhang, Jin S.; Bass, Jay D.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Dera, Przemyslaw] Univ Chicago, Ctr Adv Radiat Sources, Argonne Natl Lab, Argonne, IL 60439 USA. RP Zhang, JS (reprint author), Univ Illinois, Dept Geol, Urbana, IL 61801 USA. EM zhang72@illinois.edu RI Dera, Przemyslaw/F-6483-2013; Bass, Jay/G-2599-2013; Zhang, Jin/L-6944-2015 FU National Science Foundation (NSF) [EAR07-38871]; Consortium for Materials Properties Research in Earth Sciences (COMPRES) under NSF [EAR 10-43050]; NSF Earth Sciences [EAR-0622171]; Department of Energy (DOE) and Geosciences [DE-FG02-94ER14466]; DOE [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation (NSF) under Grant EAR07-38871. This work was also partially supported by the Consortium for Materials Properties Research in Earth Sciences (COMPRES) under NSF Cooperative Agreement EAR 10-43050. Portions of this work were performed at GESCARS (Sector 13), APS, Argonne National Laboratory. GESCARS is supported by the NSF Earth Sciences (EAR-0622171) and Department of Energy (DOE) and Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by DOE under Contract No. DE-AC02-06CH11357. We thank Ian M. Steele for assistance with EMPA analysis, B. Reynard, R. Downs, C. Prewitt, and J. Smyth for helpful discussions. Reviews by J. Smyth and S. Jahn are appreciated and improved the manuscript. NR 36 TC 21 Z9 22 U1 0 U2 25 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD JUL PY 2012 VL 97 IS 7 BP 1070 EP 1074 DI 10.2138/am.2012.4072 PG 5 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 970RS UT WOS:000306150600005 ER PT J AU Xiao, WS Tan, DY Zhou, W Chen, M Xiong, XL Song, MS Liu, J Ma, HK Xu, J AF Xiao, Wansheng Tan, Dayong Zhou, Wei Chen, Ming Xiong, Xiaolin Song, Maoshuang Liu, Jing Ma, Ho-Kwang Xu, Jian TI A new cubic perovskite in PbGeO3 at high pressures SO AMERICAN MINERALOGIST LA English DT Article DE Lead germanate; cubic perovskite; high pressure; amorphization ID EQUATION-OF-STATE; LOWER MANTLE; CRYSTAL-STRUCTURE; PHASE-TRANSITIONS; LATTICE-CONSTANT; PREDICTION; SYSTEM; TRANSFORMATIONS; TEMPERATURE; STABILITY AB A new cubic perovskite polymorph of PbGeO3 (Phase II) was synthesized by laser heating in the diamond-anvil cell (DAC) at the pressure of 36 GPa. Fitting the Birch-Murnaghan equation of state against its observed P-V data yields a bulk modulus K-0 of 196(6) GPa and the volume V-0 of 56.70(13) angstrom(3) when K-0' is assumed being 4. After the pressure is released, the PbGeO3 Phase II changes gradually into an amorphous phase, which contains mainly fourfold-coordinated germanium. It indicates that the PbGeO3 Phase II with a GeO6 octahedron framework transforms to a GeO4 tetrahedron network during the amorphization. The existence of PbGeO3 cubic perovskite Phase II at high pressures indicates that the polarized character of the Pb2+ ion induced by its 6s(2) lone pair electrons would be totally reduced in the environment of major silicate perovskites inside the lower mantle, and thus the Pb atom would substitute the Ca atom to enter the CaSiO3 perovskite. C1 [Xiao, Wansheng; Tan, Dayong; Zhou, Wei; Chen, Ming] Chinese Acad Sci, Guangzhou Inst Geochem, Key Lab Mineral & Metallogeny, Guangzhou 510640, Peoples R China. [Chen, Ming; Xiong, Xiaolin; Song, Maoshuang] Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Isotope Geochem, Guangzhou 510640, Peoples R China. [Liu, Jing] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Ma, Ho-Kwang] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Ma, Ho-Kwang] Argonne Natl Lab, Carnegie Inst Washington, High Pressure Collaborat Access Team, Adv Photon Source, Argonne, IL 60439 USA. [Xu, Jian] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China. [Xu, Jian] China Acad Engn Phys, Inst Fluid Phys, Mianyang 621900, Peoples R China. RP Xiao, WS (reprint author), Chinese Acad Sci, Guangzhou Inst Geochem, Key Lab Mineral & Metallogeny, Guangzhou 510640, Peoples R China. EM wsxiao@gig.ac.cn FU National Natural Science Foundation of China [11179030, 90714011, 41090373]; Chinese Academy of Sciences [KJCX2-SW-N20]; Research Foundation of China Academy of Engineering Physics [2008A0101001]; Research Foundation of National Key Laboratory of Shock Wave and Detonation Physics [9140C6703010703, 9140C6703010803] FX We gratefully acknowledge the help from High-Pressure Beam Line, BSRF, China. The work has been supported by the National Natural Science Foundation of China (11179030, 90714011, 41090373), the Knowledge Innovation Project of the Chinese Academy of Sciences (KJCX2-SW-N20), the Research Foundation of China Academy of Engineering Physics under Grant No. 2008A0101001, and the Research Foundation of National Key Laboratory of Shock Wave and Detonation Physics under Grants No. 9140C6703010703 and 9140C6703010803. This is contribution No. IS-1460 from GIGCAS. NR 45 TC 7 Z9 8 U1 1 U2 24 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD JUL PY 2012 VL 97 IS 7 BP 1193 EP 1198 DI 10.2138/am.2012.4021 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 970RS UT WOS:000306150600017 ER PT J AU Ma, C Tschauner, O Beckett, JR Rossman, GR Liu, WJ AF Ma, Chi Tschauner, Oliver Beckett, John R. Rossman, George R. Liu, Wenjun TI Panguite, (Ti4+,Sc,Al,Mg,Zr,Ca)(1.8)O-3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD SO AMERICAN MINERALOGIST LA English DT Article DE Panguite; (Ti4+,Sc,Al,Mg,Zr,Ca)(1.8)O-3; new ultra-refractory mineral; new titania; Allende meteorite; CV3 carbonaceous chondrite; synchrotron micro-diffraction; EBSD ID X-RAY-DIFFRACTION; POWDER DIFFRACTION; CARBONACEOUS CHONDRITES; CRYSTAL-CHEMISTRY; HIGH-TEMPERATURES; RICH INCLUSIONS; PETROGRAPHY; TAZHERANITE; REFINEMENT; PEROVSKITE AB Panguite (IMA 2010-057), (Ti4+,Sc,Al,Mg,Zr,Ca)(1.8)O-3, is a new titania, occurring as fine-grained crystals with Ti-rich davisite in an ultra-refractory inclusion within an amoeboid olivine inclusion from the Allende CV3 carbonaceous chondrite. The phase was characterized by SEM, EBSD, synchrotron micro-diffraction, micro-Raman spectroscopy, and EPMA. The mean chemical composition of the type panguite is (wt%) TiO2 47.97, ZrO2 14.61, Sc2O3 10.67, Al2O3 7.58, MgO 5.54, Y2O3 5.38, CaO 3.34, SiO2 1.89, FeO 1.81, V2O3 0.95, Cr2O3 0.54, HfO2 0.28, sum 100.56 with a corresponding empirical formula calculated on the basis of 3 O atoms of [(Ti0.79Zr0.16Si0.04)(Sigma 0.99)(4+)(Sc0.20Al0.20Y0.06V0.02Cr0.01)(Sigma 0.49)(3+) (Mg0.18Ca0.08Fe0.03)(Sigma 0.29)(2+)](Sigma 1.77)O-3. Synchrotron micro-Laue diffraction (i.e., an energy scan by a high-flux X-ray monochromatic beam and white beam diffraction) on one type domain at sub-micrometer resolution revealed that panguite is an orthorhombic mineral in space group Pbca. The structure is a subgroup of the Ia3 bixbyite-type. The cell parameters are a = 9.781(1), b = 9.778(2), and c = 9.815(1) angstrom, yielding V = 938.7(1) angstrom(3), Z = 16, and a calculated density of 3.746 g/cm(3). Panguite is not only a new mineral, but also a new titania material, likely formed by condensation. It is one of the oldest minerals in the solar system. C1 [Ma, Chi; Tschauner, Oliver; Beckett, John R.; Rossman, George R.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Tschauner, Oliver] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Tschauner, Oliver] Univ Nevada, Dept Geosci, Las Vegas, NV 89154 USA. [Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Ma, C (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM chi@gps.caltech.edu OI Rossman, George/0000-0002-4571-6884 FU NSF [EAR-0318518, DMR-0080065, EAR-0947956]; U.S. DOE [DE-AC02-06CH11357]; NNSA [DE-FC88-01NV14049]; NASA OSS [NNX-09AG40G] FX SEM, EBSD, and EPMA analyses were carried out at the Caltech GPS Division Analytical Facility, which is supported, in part, by NSF Grants EAR-0318518 and DMR-0080065. Synchrotron micro-diffraction was carried out at the 34ID-E beamline of the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract no. DE-AC02-06CH11357. This research was also supported by NNSA Cooperative Agreement DE-FC88-01NV14049, NASA OSS Grant NNX-09AG40G, and NSF Grant EAR-0947956. We thank Aicheng Zhang for bringing the CH chondrite SaU 290 to Caltech for EBSD and EPMA study. We thank Irina Galuskina, Vladimir Bermanec, and Fernando Colombo for their helpful reviews. NR 49 TC 7 Z9 7 U1 5 U2 49 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD JUL PY 2012 VL 97 IS 7 BP 1219 EP 1225 DI 10.2138/am.2012.4027 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 970RS UT WOS:000306150600021 ER PT J AU Molinari, AJ Aromando, RF Itoiz, ME Garabalino, MA Hughes, AM Heber, EM Pozzi, ECC Nigg, DW Trivillin, VA Schwint, AE AF Molinari, Ana J. Aromando, Romina F. Itoiz, Maria E. Garabalino, Marcela A. Monti Hughes, Andrea Heber, Elisa M. Pozzi, Emiliano C. C. Nigg, David W. Trivillin, Veronica A. Schwint, Amanda E. TI Blood Vessel Normalization in the Hamster Oral Cancer Model for Experimental Cancer Therapy Studies SO ANTICANCER RESEARCH LA English DT Article DE Blood vessel normalization; hamster cheek pouch oral cancer model; oral cancer; thalidomide ID NEUTRON-CAPTURE THERAPY; CHEEK POUCH MODEL; TUMOR VASCULATURE; THALIDOMIDE; BNCT; CARCINOGENESIS; ANGIOGENESIS; RADIOBIOLOGY; CHEMOTHERAPY; CARCINOMA AB Background: Normalization of tumor blood vessels improves drug and oxygen delivery to cancer cells. The aim of this study was to develop a technique to normalize blood vessels in the hamster cheek pouch model of oral cancer. Materials and Methods: Tumor-bearing hamsters were treated with thalidomide and were compared with controls. Results: Twenty eight hours after treatment with thalidomide, the blood vessels of premalignant tissue observable in vivo became narrower and less tortuous than those of controls; Evans Blue Dye extravasation in tumor was significantly reduced (indicating a reduction in aberrant tumor vascular hyperpermeability that compromises blood flow), and tumor blood vessel morphology in histological sections, labeled for Factor VIII, revealed a significant reduction in compressive forces. These findings indicated blood vessel normalization with a window of 48 h. Conclusion: The technique developed herein has rendered the hamster oral cancer model amenable to research, with the potential benefit of vascular normalization in head and neck cancer therapy. C1 [Molinari, Ana J.; Aromando, Romina F.; Itoiz, Maria E.; Garabalino, Marcela A.; Monti Hughes, Andrea; Heber, Elisa M.; Pozzi, Emiliano C. C.; Trivillin, Veronica A.; Schwint, Amanda E.] Natl Atom Energy Commiss, Dept Radiobiol, Buenos Aires, DF, Argentina. [Molinari, Ana J.; Monti Hughes, Andrea; Trivillin, Veronica A.; Schwint, Amanda E.] Consejo Nacl Invest Cient & Tecn, Natl Res Council, RA-1033 Buenos Aires, DF, Argentina. [Aromando, Romina F.; Itoiz, Maria E.] Univ Buenos Aires, Dept Oral Pathol, Fac Dent, Buenos Aires, DF, Argentina. [Pozzi, Emiliano C. C.] Natl Atom Energy Commiss, Dept Res & Prod Reactors, Buenos Aires, DF, Argentina. [Nigg, David W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Schwint, AE (reprint author), Ave Gen Paz 1499,B1650KNA, Buenos Aires, DF, Argentina. EM schwint@cnea.gov.ar FU Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina [PICT2006-00700]; Department of Energy through Idaho National Laboratory (USA) FX Funding was received as a grant of Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina (Principal Investigator A.E. Schwint, PICT2006-00700). This study was partially supported by the Department of Energy through Idaho National Laboratory (USA). NR 45 TC 4 Z9 4 U1 0 U2 4 PU INT INST ANTICANCER RESEARCH PI ATHENS PA EDITORIAL OFFICE 1ST KM KAPANDRITIOU-KALAMOU RD KAPANDRITI, PO BOX 22, ATHENS 19014, GREECE SN 0250-7005 J9 ANTICANCER RES JI Anticancer Res. PD JUL PY 2012 VL 32 IS 7 SI SI BP 2703 EP 2709 PG 7 WC Oncology SC Oncology GA 972CO UT WOS:000306254300035 PM 22753729 ER PT J AU Wang, RZ Fang, S Wu, DL Lian, JW Fan, J Zhang, YF Wang, SH Lin, WX AF Wang, Rongzhi Fang, Sui Wu, Dinglong Lian, Junwei Fan, Jue Zhang, Yanfeng Wang, Shihua Lin, Wenxiong TI Screening for a Single-Chain Variable-Fragment Antibody That Can Effectively Neutralize the Cytotoxicity of the Vibrio parahaemolyticus Thermo labile Hemolysin SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MULTIPLEX PCR; IN-VITRO; SCFV; CONSTRUCTION; LIBRARIES; SELECTION; PROTEINS; MICROARRAY; GENERATION; EVOLUTION AB Vibrio parahaemolyticus is a halophilic bacterium that is widely distributed in water resources. The bacterium causes lethal food-borne diseases and poses a serious threat to human and animal health all over the world. The major pathogenic factor of V. parahaemolyticus is thermolabile hemolysin (TLH), encoded by the tlh gene, but its toxicity mechanisms are unknown. A high-affinity antibody that can neutralize TLH activity effectively is not available. In this study, we successfully expressed and purified the TLH antigen and discovered a high-affinity antibody to TLH, named scFv-LA3, by phage display screening. Cytotoxicity analysis showed that scFv-LA3 has strong neutralization effects on TLH-induced cell toxicity. C1 [Wang, Rongzhi; Fang, Sui; Wu, Dinglong; Lian, Junwei; Fan, Jue; Wang, Shihua; Lin, Wenxiong] Fujian Agr & Forestry Univ, Key Lab Biopesticide & Chem Biol, Minist Educ, Fuzhou, Peoples R China. [Wang, Rongzhi; Fang, Sui; Wu, Dinglong; Lian, Junwei; Fan, Jue; Wang, Shihua; Lin, Wenxiong] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou, Peoples R China. [Zhang, Yanfeng] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Wang, SH (reprint author), Fujian Agr & Forestry Univ, Key Lab Biopesticide & Chem Biol, Minist Educ, Fuzhou, Peoples R China. EM wshyyl@sina.com; wenxiong181@163.com FU National Natural Science Foundation of China [30700535, 31172297]; Program for New Century Excellent Talents in University [NCET-10-0010]; Fujian Fund for Distinguished Young Scientists [2009106008]; National Agricultural Achievements Transformation Fund [2011GB2C400012]; Fok Ying Tong Education Foundation [111032] FX This work was supported by the National Natural Science Foundation of China (grants 30700535 and 31172297), the Program for New Century Excellent Talents in University (grant NCET-10-0010), the Fujian Fund for Distinguished Young Scientists (grant 2009106008), the National Agricultural Achievements Transformation Fund (grant 2011GB2C400012), and the Fok Ying Tong Education Foundation (grant 111032). NR 44 TC 10 Z9 10 U1 1 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2012 VL 78 IS 14 BP 4967 EP 4975 DI 10.1128/AEM.00435-12 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 969ZT UT WOS:000306098600024 PM 22562997 ER PT J AU Fu, EG Wang, YQ Zou, GF Xiong, J Zhuo, MJ Wei, QM Baldwin, JK Jia, QX Shao, L Misra, A Nastasi, M AF Fu, E. G. Wang, Y. Q. Zou, G. F. Xiong, J. Zhuo, M. J. Wei, Q. M. Baldwin, J. K. Jia, Q. X. Shao, L. Misra, A. Nastasi, M. TI Irradiation induced changes in small angle grain boundaries in mosaic Cu thin films SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID DISLOCATION CLIMB; RADIATION-DAMAGE; METALS; GOLD AB We studied the effect of irradiation on small angle grain boundaries in mosaic structured Cu thin films. The films showed a decrease in mosaic spread via a narrowing of the full width at half maximum in XRD rocking curves and a smaller minimum yield of RBS channeling after irradiation. These data indicate the irradiation decreased the misorientation angles between mosaic blocks separated by small angle grain boundaries. Mechanisms involving interactions between grain boundary dislocations and irradiation induced defects are discussed. C1 [Fu, E. G.; Zou, G. F.; Xiong, J.; Zhuo, M. J.; Wei, Q. M.; Baldwin, J. K.; Jia, Q. X.; Misra, A.; Nastasi, M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77845 USA. RP Fu, EG (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM fuengang@gmail.com RI ZOU, GUIFU/C-8498-2011; Jia, Q. X./C-5194-2008 FU Center for Materials at Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center (EFRC); US Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; Center for Integrated Nanotechnologies (CINT), the US Department of Energy, Office of Basic Energy Sciences FX This work was supported by the Center for Materials at Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. The X-ray analysis portion of this work was supported by the Center for Integrated Nanotechnologies (CINT), the US Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (LANL). NR 34 TC 2 Z9 2 U1 2 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD JUL PY 2012 VL 108 IS 1 BP 121 EP 126 DI 10.1007/s00339-012-6865-y PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 970KH UT WOS:000306126600018 ER PT J AU Hastbacka, M Dieckmann, J Brodrick, J AF Hastbacka, Mildred Dieckmann, John Brodrick, James TI High-SEER Residential AC SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Hastbacka, Mildred] TIAX LLC, Emerging Technol, Lexington, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. [Dieckmann, John] TIAX LLC, Mech Syst Grp, Lexington, MA USA. RP Hastbacka, M (reprint author), TIAX LLC, Emerging Technol, Lexington, MA USA. NR 14 TC 1 Z9 1 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD JUL PY 2012 VL 54 IS 7 BP 141 EP + PG 4 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 972GZ UT WOS:000306266600021 ER PT J AU Flak, AL Tark, JY Tinker, SC Correa, A Cogswell, ME AF Flak, Audrey L. Tark, Ji Yun Tinker, Sarah C. Correa, Adolfo Cogswell, Mary E. TI Major, non-chromosomal, birth defects and maternal physical activity: A systematic review SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Review DE physical activity; birth defects; systematic review ID CONGENITAL-DEFECTS; LIFE-STYLE; PREGNANCY; EXERCISE; OBESITY; MALFORMATIONS; WORK; PHYSIOTHERAPISTS; INTERVENTION; PREVALENCE AB BACKGROUND We reviewed the published literature to assess the association between maternal periconceptional physical activity and the risk for major, non-chromosomal, birth defects and whether this varies by pre-pregnancy obesity. METHODS We conducted a systematic literature search of MEDLINE, EMBASE, and CINAHL databases. Data were abstracted from all articles that met our inclusion criteria and included information on physical activity intensity (mild, moderate, and vigorous) and modality (i.e., standing, lifting, other). We assessed occupational and recreational physical activity separately. The quality of included articles was assessed using the NewcastleOttawa Scale. RESULTS Of 3316 screened articles, 11 were included in this review. Of the four studies that assessed prolonged standing, two reported a positive association with risk for some birth defects; null associations were observed in the other two studies. Associations between heavy lifting or other occupational physical activity exposures and risk for birth defects were inconsistent. A protective association between leisure-time physical activity (i.e., active sports, swimming) and some birth defects (e.g., neural tube defects), was suggested by the results of two studies. Only one study reported assessment of possible effect modification by maternal body mass index (BMI). DISCUSSION Our review suggests that there may be some associations between occupational and leisure-time physical activities and some, major non-chromosomal, birth defects, but relatively limited published research exists on these associations. Further research in this area should include differentiation of birth defects phenotypes, valid assessments of all domains of physical activity, including household and transportation activity, and account for the potential influence of pre-pregnancy BMI. Birth Defects Research (Part A), 2012. (c) 2012 Wiley Periodicals, Inc. C1 [Flak, Audrey L.; Tark, Ji Yun; Tinker, Sarah C.; Correa, Adolfo; Cogswell, Mary E.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Flak, Audrey L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Flak, Audrey L.; Tark, Ji Yun] Emory Univ, Dept Epidemiol, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA. [Correa, Adolfo] Univ Mississippi, Med Ctr, Jackson, MS 39216 USA. [Cogswell, Mary E.] Ctr Dis Control & Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA USA. RP Tinker, SC (reprint author), 1600 Clifton Rd,Mail Stop E-86, Atlanta, GA 30333 USA. EM zzu9@cdc.gov FU Centers for Disease Control and Prevention FX This research was supported in part by an appointment to the Research Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and Centers for Disease Control and Prevention. NR 33 TC 2 Z9 2 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD JUL PY 2012 VL 94 IS 7 BP 521 EP 531 DI 10.1002/bdra.23017 PG 11 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA 971EI UT WOS:000306186100003 PM 22628185 ER PT J AU Nichols, K Jacobson, V AF Nichols, Kathleen Jacobson, Van TI Controlling Queue Delay SO COMMUNICATIONS OF THE ACM LA English DT Article C1 [Jacobson, Van] Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 18 TC 79 Z9 81 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0001-0782 J9 COMMUN ACM JI Commun. ACM PD JUL PY 2012 VL 55 IS 7 BP 42 EP 50 DI 10.1145/2209249.2209264 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 972WC UT WOS:000306310900023 ER PT J AU Taylor, CD AF Taylor, C. D. TI Predictions of Surface Electrochemistry of Saturated and Alkaline NH4Cl Solutions Interacting with Fe(110) from Ab Initio Calculations SO CORROSION LA English DT Article DE ammonium; chloride; computer models; mechanisms; refining corrosion; surface processes ID AMMONIUM-CHLORIDE SOLUTIONS; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CORROSION-RESISTANCE; 1ST-PRINCIPLES CALCULATIONS; AQUEOUS-SOLUTION; IRON; THERMODYNAMICS; WATER AB Ammonium chloride (NH4Cl) precipitation can present deleterious effects on refinery surfaces when it combines with condensed water vapor to produce highly concentrated chloride and ammoniacal solutions. Herein, we have utilized density functional theory methods to compute the adsorption energies for various NHx, OHx, Cl, and H species on the lowest energy surface presented by iron. Adsorption energies are combined with thermodynamic analysis to develop phase diagrams for the various species that may dominate the surface adsorption coverage. Our results indicate that N, O, Cl, and H each possess regions of predominance on the surface Pourbaix diagram under conditions where a saturated NH4Cl solution is present. While N typically does not interfere with O adsorption except at very high anodic potentials, and is unlikely to depassivate any protective oxide films, Cl can compete with O surface stability, providing a competitive mechanism for hindering repassivation and/or accelerating the rate of metal dissolution. C1 Los Alamos Natl Lab, Div Mat Sci, Mat Corros & Environm Effects Lab, Mat Technol Met MST 6, Los Alamos, NM 87545 USA. RP Taylor, CD (reprint author), Los Alamos Natl Lab, Div Mat Sci, Mat Corros & Environm Effects Lab, Mat Technol Met MST 6, POB 1663, Los Alamos, NM 87545 USA. EM cdtaylor@lanl.gov FU Chevron ETC; U.S. Department of Energy [DE-AC52-06NA25396.] FX The author acknowledges financial support from Chevron ETC, and close discussions with S. Lillard (Los Alamos National Laboratory [LANL]) as well as G. Butler, N. Niccolls, K. El Giheny, and A. O'Connor. The LANL is operated by Los Alamos National Security LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 56 TC 6 Z9 6 U1 2 U2 23 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0010-9312 J9 CORROSION JI Corrosion PD JUL PY 2012 VL 68 IS 7 BP 591 EP 599 DI 10.5006/0411 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 969WL UT WOS:000306090000001 ER PT J AU Knizley, AA Srinivasan, KK Krishnan, SR Ciatti, SA AF Knizley, Alta A. Srinivasan, Kalyan K. Krishnan, Sundar R. Ciatti, Stephen A. TI Fuel and diluent effects on entropy generation in a constant internal energy-volume (uv) combustion process SO ENERGY LA English DT Article DE Entropy generation; Constant UV combustion; Combustion irreversibilities; IC engines; Diluent addition; Availability destruction ID THERMODYNAMIC REQUIREMENTS; AVAILABILITY EXERGY; ENGINES; DESTRUCTION AB Recently, Teh et al. (2008) showed that constant internal energy-volume (UV) combustion (with equilibrium products) is the optimal strategy for minimizing entropy generation (S-gen) in idealized internal combustion (IC) engine processes. The present paper examines the effects of fuel type (CH4, C2H5OH, and C8H18), reactant temperature (300-1200 K), reactant pressure (101.325-10132.5 kPa), equivalence ratio (0.3-1.5), and diluents (CO2. H2O, N-2, and O-2) on S-gen in constant UV combustion. With CH4 as the fuel, increasing reactant temperatures by 100 K decreased S-gen by 6-9%, while reactant pressure had a negligible effect on S-gen. Specific entropy generation, calculated per-unit-mixture-mass and per-unit-fuel-mass, followed the same trends as total S-gen for reactant temperature and pressure variations. However, mixture-mass-specific S-gen decreased with decreasing equivalence ratio and increasing diluent fraction while total and fuel-mass-specific S-gen exhibited the opposite trends. Of the diluent species examined, H2O and CO2 had the most (up to 65%) and least (similar to 40%) significant effects on S-gen, respectively. Among fuels, C8H18 exhibited the highest S-gen (four-times higher than C2H5OH and six-times higher than CH4), indicating the strong effect of fuel type and structure on S-gen. Finally, the implications of the present results for practical IC engine combustion processes are also discussed. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Knizley, Alta A.; Srinivasan, Kalyan K.; Krishnan, Sundar R.] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. [Ciatti, Stephen A.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Krishnan, SR (reprint author), Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. EM krishnan@me.msstate.edu OI Knizley, Alta/0000-0002-5578-0847; Krishnan, Sundar Rajan/0000-0003-1882-8829 FU Department of Energy [DE-FG3606GO86025]; Office of Research and Economic Development at Mississippi State University FX This material is based upon work performed through the Sustainable Energy Research Center at Mississippi State University and is supported by the Department of Energy under Award Number DE-FG3606GO86025. The authors also acknowledge financial support from the Office of Research and Economic Development at Mississippi State University. NR 25 TC 4 Z9 4 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 J9 ENERGY JI Energy PD JUL PY 2012 VL 43 IS 1 BP 315 EP 328 DI 10.1016/j.energy.2012.04.024 PG 14 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 966UR UT WOS:000305863400032 ER PT J AU Amundson, R Dietrich, W Bellugi, D Ewing, S Nishiizumi, K Chong, G Owen, J Finkel, R Heimsath, A Stewart, B Caffee, M AF Amundson, Ronald Dietrich, William Bellugi, Dino Ewing, Stephanie Nishiizumi, Kunihiko Chong, Guillermo Owen, Justine Finkel, Robert Heimsath, Arjun Stewart, Brian Caffee, Marc TI Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert SO GEOLOGICAL SOCIETY OF AMERICA BULLETIN LA English DT Article ID NORTH-CENTRAL CHILE; SEA-LEVEL CHANGES; COSMOGENIC NUCLIDES; CLIMATE-CHANGE; CENTRAL ANDES; FORE-ARC; MARINE TERRACES; MICROBIAL LIFE; SOUTH-AMERICA; AMS STANDARDS AB The Atacama Desert has experienced a long and protracted period of hyperaridity that has resulted in what may be the most unusual biome on Earth, but the duration of this aridity is poorly constrained. We reconstructed aspects of the fluvial and geochemical history of this region using integrated landscape features (alluvial fans, hillslope soils, soil chemistry, river profiles) in the southern portion of the present desert. Topographic reconstructions of a large watershed (11,000 km(2)) show deep incision and sediment removal between the late Miocene and the end of the Pliocene, and modest to negligible incision in post-Pliocene times. These changes in incision suggest an similar to 50-280x reduction in river discharge, which should reflect corresponding changes in precipitation. Changes in the nature of hillslope soils in the Atacama Desert indicate that in the Pliocene or earlier, hillslopes were mantled with silicate-derived soil. This mantle was stripped off and locally deposited as alluvial fans (late Pliocene to early Pleistocene) that now block or otherwise cause a rearrangement of Pliocene and earlier river channels. Finally, the hillslopes have largely accreted a soil mantle of dust and salt since the apparent late Pliocene stripping, suggesting a decline in annual precipitation of at least 125 mm yr(-1) or more (mean annual precipitation [MAP] is now <3 mm yr(-1)). Embedded in the long post-Pliocene era of salt accumulation, there are a variety of features suggesting overland flow on hillslopes (rills, striped gravel deposits, piping, and water spouts) and large, infrequent storms that infiltrated gentle alluvial fans (due to the depth of salt-rich horizons). Despite evidence for episodes that punctuate the hyperaridity, the magnitude and duration of these pluvial events have been insufficient to remove the regional accumulations of sulfate, chloride, and nitrate. The late Pliocene cessation of many fluvial features is coincident with recent research on the tropical Pacific, which shows that the Pacific was in a permanent El Nino state until ca. 2.2 Ma, at which time sea-surface temperatures offshore of South America declined greatly relative to those of the western Pacific, in turn setting up the present El Nino Southern Oscillation (ENSO) climate system. These observations indicate that the latest period of aridity has been prolonged and largely continuous, and it appears to have occurred in step with the onset of the ENSO climate system, beginning similar to 2 m.y. ago. C1 [Amundson, Ronald; Owen, Justine] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Dietrich, William; Bellugi, Dino; Finkel, Robert] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Ewing, Stephanie] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Nishiizumi, Kunihiko] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chong, Guillermo] Univ Catolica Norte, Dept Ciencias Geol, Antofagasta, Chile. [Finkel, Robert] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Heimsath, Arjun] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Stewart, Brian] Univ Pittsburgh, Dept Geol & Planetary Sci, Pittsburgh, PA 15260 USA. [Caffee, Marc] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. RP Amundson, R (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, 130 Mulford Hall, Berkeley, CA 94720 USA. EM earthy@berkeley.edu RI Amundson, Ronald /E-2654-2015; Caffee, Marc/K-7025-2015 OI Caffee, Marc/0000-0002-6846-8967 FU National Science Foundation; National Aeronautics and Space Administration FX Funding for this research was provided by a National Science Foundation Geobiology and Low Temperature Geochemistry grant to Amundson and Nishiizumi. A National Aeronautics and Space Administration graduate fellowship supported Owen and Ewing. NR 79 TC 39 Z9 39 U1 3 U2 53 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0016-7606 J9 GEOL SOC AM BULL JI Geol. Soc. Am. Bull. PD JUL-AUG PY 2012 VL 124 IS 7-8 BP 1048 EP 1070 DI 10.1130/B30445.1 PG 23 WC Geosciences, Multidisciplinary SC Geology GA 966YD UT WOS:000305872400002 ER PT J AU Gong, BL Im, J Jensen, JR Coleman, M Rhee, J Nelson, E AF Gong, Binglei Im, Jungho Jensen, John R. Coleman, Mark Rhee, Jinyoung Nelson, Eric TI Characterization of Forest Crops with a Range of Nutrient and Water Treatments Using AISA Hyperspectral Imagery SO GISCIENCE & REMOTE SENSING LA English DT Article ID LEAST-SQUARES REGRESSION; RED EDGE POSITION; VEGETATION INDEXES; LOBLOLLY-PINE; ABOVEGROUND BIOMASS; AREA INDEX; LIDAR DATA; REFLECTANCE; CANOPY; NITROGEN AB This research examined the utility of Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for estimating the biomass of three forest crops-sycamore, sweetgum, and loblolly pine-planted in experimental plots with a range of fertilization and irrigation treatments on the Savannah River Site near Aiken, South Carolina. Both vegetation index (VI) and red-edge positioning (REP) approaches were investigated to estimate the biomass associated with 12 treatment conditions. The optimum band pairs using the VI approach for biomass estimation were located mainly in the visible, NIR, and/or water absorption region around 970 nm, depending on the treatment conditions. Both the selected hyperspectral variables (i.e., VI and REP) resulted in good performance for biomass estimation for a range of treatment conditions except for those associated with loblolly pine. The hyperspectral variables were also examined to determine if they were able to identify the optimum fertilization treatment level. For the fertilization treatment conditions with good biomass estimation (R-2>0.9), their optimum treatment levels were successfully identified. C1 [Im, Jungho] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan 689798, South Korea. [Im, Jungho] SUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USA. [Gong, Binglei] Anchor QEA Llc, Mission Viejo, CA 92691 USA. [Jensen, John R.] Univ S Carolina, Dept Geog, Columbia, SC 29208 USA. [Coleman, Mark] Univ Idaho, Dept Forest Resources, Moscow, ID 83844 USA. [Rhee, Jinyoung] Korea Environm Inst, Korea Adaptat Ctr Climate Change, Seoul 122706, South Korea. [Nelson, Eric] US DOE, Aiken, SC 29802 USA. RP Im, J (reprint author), Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan 689798, South Korea. EM ersgis@unist.ac.kr; imj@esf.edu RI Coleman, Mark/A-6741-2013; OI Im, Jungho/0000-0002-4506-6877 NR 63 TC 7 Z9 7 U1 2 U2 13 PU BELLWETHER PUBL LTD PI COLUMBIA PA 8640 GUILFORD RD, STE 200, COLUMBIA, MD 21046 USA SN 1548-1603 J9 GISCI REMOTE SENS JI GISci. Remote Sens. PD JUL-AUG PY 2012 VL 49 IS 4 BP 463 EP 491 DI 10.2747/1548-1603.49.4.463 PG 29 WC Geography, Physical; Remote Sensing SC Physical Geography; Remote Sensing GA 970HH UT WOS:000306118500001 ER PT J AU Cooke, WH Mostovoy, GV Anantharaj, VG Jolly, WM AF Cooke, William H. Mostovoy, Georgy V. Anantharaj, Valentine G. Jolly, W. Matt TI Wildfire Potential Mapping over the State of Mississippi: A Land Surface Modeling Approach SO GISCIENCE & REMOTE SENSING LA English DT Article ID DROUGHT INDEXES; FUEL MOISTURE; UNITED-STATES; FIRE; PROBABILITY; SYSTEM; IGNITION; CLIMATE; RISK; TIME AB A relationship between the likelihood of wildfires and various drought metrics (soil moisture-based fire potential indices) were examined over the southern part of Mississippi. The following three indices were tested and used to simulate spatial and temporal wildfire probability changes: (1) the accumulated difference between daily precipitation and potential evapotranspiration (P - E); (2) simulated moisture content of the top 10 cm of soil; and (3) the Keetch-Byram Drought Index (KBDI). These indices were estimated from gridded meterological data and Mosaic-simulated soil moisture data available from the North American Land Data Assimilation System (NLDAS-2). The relationships between normalized fire potential index deviations and the probability of at least one fire occurring during the following five consecutive days were evaluated using a 23-year (1986-2008) forest fire record for an evenly spaced grid (0.25 degrees x 0.25 degrees) across the state of Mississippi's coastal plain. Two periods were selected and examined (January-mid June and mid September-December). There was good agreement between the observed and logistic model-fitted fire probabilities over the study area during both seasons. The fire potential indices based on the top 10 cm soil moisture and KBDI had the largest impact on wildfire odds, increasing it by almost 2 times in response to each unit change of the corresponding fire potential index during January-mid-June period and by nearly 1.5 times during mid-September-December. These results suggest that soil moisture-based fire potential indices are good indicators of fire occurrence probability across this region. C1 [Cooke, William H.] Mississippi State Univ, Dept Geosci, Mississippi State, MS 39762 USA. [Cooke, William H.; Mostovoy, Georgy V.] Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS 39762 USA. [Anantharaj, Valentine G.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Jolly, W. Matt] US Forest Serv, Rocky Mt Res Stn, Fire Sci Lab, Missoula, MT 59808 USA. RP Cooke, WH (reprint author), Mississippi State Univ, Dept Geosci, Mississippi State, MS 39762 USA. EM whc5@geosci.msstate.edu FU NASA Applied Sciences Program [NNX10AB74G]; National Center for Computational Sciences at the Oak Ridge National Laboratory, USA FX This research was supported by the NASA Applied Sciences Program via grant/project NNX10AB74G. Valentine Anantharaj was also supported by the National Center for Computational Sciences at the Oak Ridge National Laboratory, USA. The authors greatly appreciate efforts of the NLDAS-2 team for providing high-quality land surface data for the research community, and the efforts of the Mississippi Forestry Commission for continuing to supply wildfire data for research purposes. NR 31 TC 5 Z9 5 U1 0 U2 18 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1548-1603 J9 GISCI REMOTE SENS JI GISci. Remote Sens. PD JUL-AUG PY 2012 VL 49 IS 4 BP 492 EP 509 DI 10.2747/1548-1603.49.4.492 PG 18 WC Geography, Physical; Remote Sensing SC Physical Geography; Remote Sensing GA 970HH UT WOS:000306118500002 ER PT J AU Kalogerakis, KS Romanescu, C Ahmed, M Wilson, KR Slanger, TG AF Kalogerakis, Konstantinos S. Romanescu, Constantin Ahmed, Musahid Wilson, Kevin R. Slanger, Tom G. TI CO prompt emission as a CO2 marker in comets and planetary atmospheres SO ICARUS LA English DT Article DE Mars, Atmosphere; Venus, Atmosphere; Spectroscopy; Photochemistry; Comets ID SPECTRAL-RESOLUTION ATLAS; CAMERON BAND EMISSION; AURORAL SPECTRUM; VENUS NIGHTGLOW; CROSS-SECTIONS; PHOTODISSOCIATION; MARS; SPECTROSCOPY; 1P/HALLEY; CO(A3PI) AB Observations of CO emissions in the visible and near-infrared (NIR) have been rare for comets, and no measurements from orbiters are currently available in the visible for the dayglows of Mars or Venus. Analysis of the ultraviolet CO(a-X) Cameron bands from Mars Express dayglow observations supports the conclusion that these bands have very high rotational temperatures, some thousands of kelvins. The most plausible source for the CO rotational excitation is its generation by CO2 photodissociation. Recent laboratory measurements investigating the photodissociation of CO2 in the extreme ultraviolet (EUV) reveal strong emissions in the visible and NIR region by the triplet CO(a', d, e) states, which we take to be a primary source for the UV CO(a-X) Cameron bands. Thus, detection of visible emissions from the triplet CO states in planetary dayglows and comets provides an upper limit to the CO2 density. The presence of CO high rotational excitation along with the intense visible and NIR band emissions should be considered as a practical way by which planetary dayglow and cometary spectra provide information on the presence of CO2. Finally, we report on existing observations of cometary atmospheres and estimate the altitude for the emitting layer of the CO triplet states in Mars and Venus. (C) 2012 Elsevier Inc. All rights reserved. C1 [Kalogerakis, Konstantinos S.; Romanescu, Constantin; Slanger, Tom G.] SRI Int, Mol Phys Lab, Menlo Pk, CA 94025 USA. [Ahmed, Musahid; Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Kalogerakis, KS (reprint author), SRI Int, Mol Phys Lab, Menlo Pk, CA 94025 USA. EM ksk@sri.com RI Ahmed, Musahid/A-8733-2009 FU NASA [NNX06AB82G]; NSF [AST-0709173, AST-1109372]; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy [DE-AC02-05CH11231] FX This work was performed under grant NNX06AB82G from the NASA Outer Planets Research Program to SRI International. Partial support from NSF grants AST-0709173 and AST-1109372 is also acknowledged. We are grateful to W.L. Dimpfl of Aerospace Corp. for providing laboratory spectra from their flow discharge studies, to the staff at ALS for technical support, and to our colleagues D.L. Huestis and L.C. Lee for helpful advice and discussions. M. Ahmed, K.R. Wilson, and the ALS are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 5 Z9 5 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUL PY 2012 VL 220 IS 1 BP 205 EP 210 DI 10.1016/j.icarus.2012.04.028 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 970QD UT WOS:000306146500019 ER PT J AU Walker, AC Moore, CH Goldstein, DB Varghese, PL Trafton, LM AF Walker, Andrew C. Moore, Chris H. Goldstein, David B. Varghese, Philip L. Trafton, Laurence M. TI A parametric study of Io's thermophysical surface properties and subsequent numerical atmospheric simulations based on the best fit parameters SO ICARUS LA English DT Article DE Io; Atmospheres, Dynamics; Atmospheres, Structure; Jupiter, Satellites; Satellites, Atmospheres ID SO2 ATMOSPHERE; THERMAL-RADIATION; SUBLIMATION; FLOW; VOLCANOS; ECLIPSE; GALILEO; LOKI AB Io's sublimation atmosphere is inextricably linked to the SO2 surface frost temperature distribution which is poorly constrained by observations. We constrain Io's surface thermal distribution by a parametric study of its thermophysical properties in an attempt to better model the morphology of Io's sublimation atmosphere. Io's surface thermal distribution is represented by three thermal units: sulfur dioxide (SO2) frosts/ices, non-frosts (probably sulfur allotropes and/or pyroclastic dusts), and hot spots. The hot spots included in our thermal model are static high temperature surfaces with areas and temperatures based on Keck infrared observations. Elsewhere, over frosts and non-frosts, our thermal model solves the one-dimensional heat conduction equation in depth into Io's surface and includes the effects of eclipse by Jupiter, radiation from Jupiter, and latent heat of sublimation and condensation. The best fit parameters for the SO2 frost and non-frost units are found by using a least-squares method and fitting to observations of the Hubble Space Telescope's Space Telescope Imaging Spectrograph (HST STIS) mid- to near-UV reflectance spectra and Galileo PPR brightness temperature. The thermophysical parameters are the frost Bond albedo, alpha(F), and thermal inertia, Gamma(F), as well as the non-frost surface Bond albedo, alpha(NF), and thermal inertia, Gamma(NF). The best fit parameters are found to be alpha(F) approximate to 0.55 +/- 0.02 and Gamma(F) approximate to 200 +/- 50 J m(-2) K-1 s(-1/2) for the SO2 frost surface and alpha(NF) approximate to 0.49 +/- 0.02 and Gamma(NF) 20 +/- 10 J m(-2) K-1 s(-1/2) for the non-frost surface. These surface thermophysical parameters are then used as boundary conditions in global atmospheric simulations of Io's sublimation-driven atmosphere using the direct simulation Monte Carlo (DSMC) method. These simulations are unsteady, three-dimensional, parallelized across 360 processors, and include the following physical effects: inhomogeneous surface frosts, plasma heating, and a temperature-dependent residence time on the non-frost surface. The DSMC simulations show that the sub-jovian hemisphere is significantly affected by the daily solar eclipse. The simulated SO2 surface frost temperature is found to drop only similar to 5 K during eclipse due to the high thermal inertia of SO2 surface frosts but the SO2 gas column density falls by a factor of 20 compared to the pre-eclipse column due to the exponential dependence of the SO2 vapor pressure on the SO2 surface frost temperature. Supersonic winds exist prior to eclipse but become subsonic during eclipse because the collapse of the atmosphere significantly decreases the day-to-night pressure gradient that drives the winds. Prior to eclipse, the supersonic winds condense on and near the cold nightside and form a highly non-equilibrium oblique shock near the dawn terminator. In eclipse, no shock exists since the gas is subsonic and the shock only reestablishes itself an hour or more after egress from eclipse. Furthermore, the excess gas that condenses on the non-frost surface during eclipse leads to an enhancement of the atmosphere near dawn. The dawn atmospheric enhancement drives winds that oppose those that are driven away from the peak pressure region above the warmest area of the SO2 frost surface. These opposing winds meet and are collisional enough to form stagnation point flow. The simulations are compared to Lyman-alpha observations in an attempt to explain the asymmetry between the dayside atmospheres of the anti-jovian and sub-jovian hemispheres. Lyman-alpha observations indicate that the anti-jovian hemisphere has higher column densities than the sub-jovian hemisphere and also has a larger latitudinal extent. A composite "average dayside atmosphere" is formed from a collisionless simulation of to's atmosphere throughout an entire orbit. This composite "average dayside" atmosphere without the effect of global winds indicates that the sub-jovian hemisphere has lower average column densities than the anti-jovian hemisphere (with the strongest effect at the sub-jovian point) due primarily to the diurnally averaged effect of eclipse. This is in qualitative agreement with the sub-jovian/anti-jovian asymmetry in the Lyman-alpha observations which were alternatively explained by the bias of volcanic centers on the anti-jovian hemisphere. Lastly, the column densities in the simulated average dayside atmosphere agree with those inferred from Lyman-alpha observations despite the thermophysical parameters being constrained by mid- to near UV observations which show much higher instantaneous SO2 gas column densities. This may resolve the apparent discrepancy between the lower "average dayside" column densities observed in the Lyman-a and the higher instantaneous column densities observed in the mid- to near UV. (C) 2012 Elsevier Inc. All rights reserved. C1 [Walker, Andrew C.; Goldstein, David B.; Varghese, Philip L.] Univ Texas Austin, Dept Aerosp Engn, Austin, TX 78712 USA. [Trafton, Laurence M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Moore, Chris H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Walker, AC (reprint author), Univ Texas Austin, Dept Aerosp Engn, Austin, TX 78712 USA. EM andrew.walker@mail.utexas.edu FU NASA [NNG05G083G, NNX08AQ49G] FX This research was supported the NASA Planetary Atmospheres Grant NNG05G083G and Outer Planets Research Grant NNX08AQ49G. Computations were performed at the Texas Advanced Computing Center. NR 30 TC 9 Z9 9 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUL PY 2012 VL 220 IS 1 BP 225 EP 253 DI 10.1016/j.icarus.2012.05.001 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 970QD UT WOS:000306146500022 ER PT J AU Villanueva, GL Mumma, MJ DiSanti, MA Bonev, BP Paganini, L Blake, GA AF Villanueva, G. L. Mumma, M. J. DiSanti, M. A. Bonev, B. P. Paganini, L. Blake, G. A. TI A multi-instrument study of Comet C/2009 P1 (Garradd) at 2.1 AU (pre-perihelion) from the Sun SO ICARUS LA English DT Article DE Comets, Composition; Spectroscopy; Infrared observations; Astrobiology ID O1 HALE-BOPP; C/1996 B2 HYAKUTAKE; WATER; ATMOSPHERES; EXCITATION; MODELS AB We observed Comet C/2009 P1 (Garradd) on UT 2011 September 8th and 9th at a large heliocentric distance of 2.1 AU upon its entry to the inner Solar System. The observations were performed using high-resolution infrared spectrometers (NIRSPEC at Keck II and CSHELL at IRTF), allowing us to obtain strong detections of H2O, CO, CH4 and HCN and sensitive upper-limits for C2H6, C2H2, NH3 and HC3N. We oriented the slit at 45 degrees from the projected Sun-comet vector and obtained spatial profiles of H2O, CH4, and HCN that revealed notable differences among these species. In particular, we observed a strong excess of water in the projected sunward direction, probably due to a solar-activated jet releasing water-rich icy grains. (C) 2012 Elsevier Inc. All rights reserved. C1 [Villanueva, G. L.; Mumma, M. J.; DiSanti, M. A.; Bonev, B. P.; Paganini, L.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Villanueva, G. L.; Bonev, B. P.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Paganini, L.] Oak Ridge Associated Univ, NASA, Oak Ridge, TN 37830 USA. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Villanueva, GL (reprint author), NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Solar Syst Explorat Div, Mailstop 690-3, Greenbelt, MD 20771 USA. EM Geronimo.Villanueva@nasa.gov RI mumma, michael/I-2764-2013 FU NASA's Astrobiology Institute [RTOP 344-53-51]; NASA [RTOPs 344-32-07, 08-PAST08-0034, 08-PATM08-0031]; NSF [AST-0807939]; W.M. Keck Foundation FX G.L.V., M.J.M., M.A.D. and B.P.B. acknowledge support from NASA's Astrobiology Institute (RTOP 344-53-51), and NASA's Planetary Atmospheres and Astronomy Programs (RTOPs 344-32-07, 08-PAST08-0034, 08-PATM08-0031). BPB acknowledges support from the NSF Astronomy and Astrophysics Grants Program (AST-0807939) and LP acknowledges support from the NASA Postdoctoral Program. GAB acknowledges support from the NASA Origins of Solar Systems program. The data presented herein were obtained at the W.M. Keck Observatory operated as a scientific partnership among CalTech. UCLA, and NASA. This observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 26 TC 20 Z9 20 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUL PY 2012 VL 220 IS 1 BP 291 EP 295 DI 10.1016/j.icarus.2012.03.027 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 970QD UT WOS:000306146500027 ER PT J AU Carlton, D Lambson, B Scholl, A Young, A Ashby, P Dhuey, S Bokor, J AF Carlton, David Lambson, Brian Scholl, Andreas Young, Anthony Ashby, Paul Dhuey, Scott Bokor, Jeffrey TI Investigation of Defects and Errors in Nanomagnetic Logic Circuits SO IEEE TRANSACTIONS ON NANOTECHNOLOGY LA English DT Article DE Nanomagnetic logic; post-CMOS computing AB Nanomagnetic logic circuits have recently gained interest as a possible post CMOS ultralow-power computing platform. In these circuits, single-domain nanomagnets communicate and perform logical computations through nearest neighbor dipole interactions. The state variable is magnetization direction and computations can take place without passing an electric current. Both experiment and theory have shown, however, that errors in circuit operation can sometimes occur. In this paper, we investigate the reasons for this, develop a simple model to explain imperfections in 1-D chains of nanomagnets, and show that it agrees with experiment. Finally, we discuss possible improvements in nanomagnet design suggested by the model to improve error rates. C1 [Carlton, David; Lambson, Brian; Bokor, Jeffrey] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Scholl, Andreas; Young, Anthony] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ashby, Paul; Dhuey, Scott; Bokor, Jeffrey] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Carlton, D (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM dcarlton@berkeley.edu; lambson@eecs.berkeley.edu; a_scholl@lbl.gov; ATYoung@lbl.gov; pdashby@lbl.gov; sddhuey@lbl.gov; jbokor@eecs.berkeley.edu RI Scholl, Andreas/K-4876-2012; Bokor, Jeffrey/A-2683-2011 FU Western Institute of Nanoelectronics; Defense Advanced Research Projects Agency Night Vision Laboratory; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Manuscript received January 25, 2012; accepted March 19, 2012. Date of publication April 25, 2012; date of current version July 11, 2012. This work was supported in part by the Western Institute of Nanoelectronics, and the Defense Advanced Research Projects Agency Night Vision Laboratory Program, and by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The review of this paper was arranged by Associate Editor C. A. Moritz. NR 13 TC 20 Z9 20 U1 0 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-125X J9 IEEE T NANOTECHNOL JI IEEE Trans. Nanotechnol. PD JUL PY 2012 VL 11 IS 4 BP 760 EP 762 DI 10.1109/TNANO.2012.2196445 PG 3 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 971DR UT WOS:000306184400017 ER PT J AU Nagase, T Anada, S Rack, PD Noh, JH Yasuda, H Mori, H Egami, T AF Nagase, Takeshi Anada, Satoshi Rack, Philip D. Noh, Joo Hyon Yasuda, Hidehiro Mori, Hirotaro Egami, Takeshi TI Electron-irradiation-induced structural change in Zr-Hf-Nb alloy SO INTERMETALLICS LA English DT Article DE Irradiation effects; Point defects; Microstructure; Transmission electron microscopy ID INDUCED CRYSTALLIZATION; METALLIC GLASSES; AMORPHOUS-ALLOYS; PHASE; STABILITY; ZR66.7CU33.3; SOLIDS AB The structural change in the Zr-Hf-Nb alloy during MeV electron irradiation was investigated using high voltage electron microscopy (HVEM). The nano-crystalline structure, which had a diffraction pattern similar to that of an amorphous phase, could not be maintained under the irradiation. The irradiation-induced structural change was observed after high dpa irradiation (about 10 dpa). The irradiation-induced structural change was sensitive to the irradiation temperature. The difference in the irradiation damage evaluation process between conventional crystalline materials and multi-component alloys was discussed on the basis of the structures of the defects. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Nagase, Takeshi; Yasuda, Hidehiro; Mori, Hirotaro] Osaka Univ, Res Ctr Ultra High Voltage Elect Microscopy, Ibaraki, Osaka 5670047, Japan. [Nagase, Takeshi; Anada, Satoshi] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, Suita, Osaka 5650871, Japan. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Dept Mat Sci & Engn, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Nagase, T (reprint author), Osaka Univ, Res Ctr Ultra High Voltage Elect Microscopy, 7-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan. EM t-nagase@uhvem.osaka-u.ac.jp RI Nagase, Takeshi/M-1189-2015; OI Nagase, Takeshi/0000-0003-4868-0773; Rack, Philip/0000-0002-9964-3254 FU Priority Assistance for the Formation of Worldwide Renowned Centers of Research-Global COE Program (Project: Center of Excellence for Advanced Structural and Functional Materials Design); Joint Institute for Advanced Materials at University of Tennessee; Oak Ridge National Laboratory; Department of Energy, Office of Basic Sciences, through EPSCoR grant [DE-FG02-08ER46528] FX This study was supported by the Priority Assistance for the Formation of Worldwide Renowned Centers of Research-The Global COE Program (Project: Center of Excellence for Advanced Structural and Functional Materials Design) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. PDR and JHN acknowledge support from the Joint Institute for Advanced Materials at the University of Tennessee and the Oak Ridge National Laboratory. TE acknowledges support from the Department of Energy, Office of Basic Sciences, through the EPSCoR grant, DE-FG02-08ER46528. NR 32 TC 10 Z9 10 U1 3 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 J9 INTERMETALLICS JI Intermetallics PD JUL PY 2012 VL 26 BP 122 EP 130 DI 10.1016/j.intermet.2012.02.015 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 970TF UT WOS:000306154500021 ER PT J AU Aguilo, MA Swiler, LP Urbina, A AF Aguilo, M. A. Swiler, L. P. Urbina, A. TI First-order formulations for large-scale stochastic parameter estimation within the frameworks of steady state dynamics: the elastic and viscoelastic case SO INVERSE PROBLEMS LA English DT Article ID CONSTITUTIVE RELATION ERROR; ELLIPTIC INVERSE PROBLEMS; ACOUSTIC RADIATION FORCE; DETERMINING CONDUCTIVITY; IDENTIFICATION STRATEGY; BOUNDARY MEASUREMENTS; ABSTRACT FRAMEWORK; IMPLEMENTATION; TOMOGRAPHY; MODELS AB We consider the problem of large-scale stochastic parameter estimation in the context of a particular problem: determining the material properties of a region of interest given an 'observed' displacement field. Specifically, we derive first-order formulations for the characterization of elastic and viscoelastic properties within the frameworks of steady state dynamics. The formulations presented herein fall into two main classes: the L-2 formulation and modified error in constitutive equation (MECE) formulation. The focus of this work is to rigorously study the performance of these formulations through a series of numerical studies and perceive if choosing the MECE formulation over the L-2 formulation will result in better parameter estimates with less computational effort. Furthermore, we capture the uncertainty in the parameter estimates due to uncertainties in the data as well as the model. To quantify these uncertainties, we use a maximum a posteriori (MAP) estimate approach. We demonstrate the performance obtained when using first-order formulations in MAP Bayesian analysis for stochastic parameter estimation. C1 [Aguilo, M. A.; Swiler, L. P.] Sandia Natl Labs, Computat Solid Mech & Struct Dynam Dept, Albuquerque, NM 87185 USA. [Urbina, A.] Sandia Natl Labs, Validat & Uncertainty Quantificat Dept, Albuquerque, NM 87185 USA. RP Aguilo, MA (reprint author), Sandia Natl Labs, Computat Solid Mech & Struct Dynam Dept, POB 5800,MS 0380, Albuquerque, NM 87185 USA. EM maguilo@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank the Validation, Verification and Uncertainty and Quantification (VU) program under the Department of Energy's Nuclear Energy Advanced Modeling and Simulations (NEAMS) program. We would also like to thank Bart Van Bloemen Waanders, Denis Ridzal and Joseph Young at Sandia National Laboratories for fruitful discussions related to this work. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 35 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0266-5611 J9 INVERSE PROBL JI Inverse Probl. PD JUL PY 2012 VL 28 IS 7 AR 075003 DI 10.1088/0266-5611/28/7/075003 PG 26 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 969UQ UT WOS:000306085300003 ER PT J AU Morales, MA McMinis, J Clark, BK Kim, J Scuseria, GE AF Morales, Miguel A. McMinis, Jeremy Clark, Bryan K. Kim, Jeongnim Scuseria, Gustavo E. TI Multideterminant Wave Functions in Quantum Monte Carlo SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID BASIS-SETS; ENERGIES; EXCHANGE; STATES AB Quantum Monte Carlo (QMC) methods have received considerable attention over past decades due to their great promise for providing a direct solution to the many-body Schrodinger equation in electronic systems. Thanks to their low scaling with the number of particles, QMC methods present a compelling competitive alternative for the accurate study of large molecular systems and solid state calculations. In spite of such promise, the method has not permeated the quantum chemistry community broadly, mainly because of the fixed-node error, which can be large and whose control is difficult. In this Perspective, we present a systematic application of large scale multideterminant expansions in QMC and report on its impressive performance with first row dirners and the 55 molecules of the G1 test set. We demonstrate the potential of this strategy for systematically reducing the fixed-node error in the wave function and for achieving chemical accuracy in energy predictions. When compared to traditional quantum chemistry methods like MP2, CCSD(T), and various DFT approximations, the QMC results show a marked improvement over all of them. In fact, only the explicitly correlated CCSD(T) method with a large basis set produces more accurate results. Further developments in trial wave functions and algorithmic improvements appear promising for rendering QMC as the benchmark standard in large electronic systems. C1 [Morales, Miguel A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McMinis, Jeremy] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Clark, Bryan K.] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA. [Clark, Bryan K.] Princeton Univ, Dept Phys, Joseph Henry Labs, Princeton, NJ 08544 USA. [Kim, Jeongnim] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Kim, Jeongnim] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Kim, Jeongnim] Oak Ridge Natl Lab, Computat Chem & Mat Div, Oak Ridge, TN 37830 USA. [Scuseria, Gustavo E.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Scuseria, Gustavo E.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Morales, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM moralessilva2@llnl.gov RI Scuseria, Gustavo/F-6508-2011; OI McMinis, Jeremy/0000-0003-3285-3940 FU U.S. Department of Energy (DOE) by UNA [DE-AC52-07NA27344]; DOE [DE-FG02-04ER15523]; Welch Foundation [C-0036]; CMCSN [DE-FG02-11ER16257]; National Science Foundation [0904572]; U.S. DOE, Office of Basic Energy Sciences (BES); DOE-BES Materials Sciences and Engineering Division FX This work was performed in part under the auspices of the U.S. Department of Energy (DOE) by UNA, under Contract DE-AC52-07NA27344. The work at Rice University was supported by DOE DE-FG02-04ER15523 and the Welch Foundation (C-0036). M.A.M. and G.E.S. also acknowledge support from CMCSN award DE-FG02-11ER16257. The work at UI was supported by the National Science Foundation under No. 0904572 and EFRC-Center for Defect Physics sponsored by the U.S. DOE, Office of Basic Energy Sciences (BES) and J.K. by DOE-BES Materials Sciences and Engineering Division. NR 62 TC 34 Z9 34 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2012 VL 8 IS 7 BP 2181 EP 2188 DI 10.1021/ct3003404 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 971ZI UT WOS:000306245900001 PM 26588949 ER PT J AU Kim, J Smit, B AF Kim, Jihan Smit, Berend TI Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID SHAPE SELECTIVITY; ZEOLITES; ADSORPTION; DIOXIDE; CAPTURE; CO2 AB Monte Carlo (MC) simulations are commonly used to obtain adsorption properties of gas molecules inside porous materials. In this work, we discuss various optimization strategies that lead to faster MC simulations with CO2 gas molecules inside host zeolite structures used as a test system. The reciprocal space contribution of the gas-gas Ewald summation and both the direct and the reciprocal gas-host potential energy interactions are stored inside energy grids to reduce the wall time in the MC simulations. Additional speedup can be obtained by selectively calling the routine that computes the gas gas Ewald summation, which does not impact the accuracy of the zeolite's adsorption characteristics. We utilize two-level density-biased sampling technique in the grand canonical Monte Carlo (GCMC) algorithm to restrict CO2 insertion moves into low-energy regions within the zeolite materials to accelerate convergence. Finally, we make use of the graphics processing units (GPUs) hardware to conduct multiple MC simulations in parallel via judiciously mapping the GPU threads to available workload. As a result, we can obtain a CO2 adsorption isotherm curve with 14 pressure values (up to 10 atm) for a zeolite structure within a minute of total compute wall time. C1 [Kim, Jihan; Smit, Berend] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn & Chem, Berkeley, CA 94720 USA. RP Kim, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM jihankim@lbl.gov RI Smit, Berend/B-7580-2009; EFRC, CGS/I-6680-2012; Kim, Jihan/H-8002-2013; Stangl, Kristin/D-1502-2015 OI Smit, Berend/0000-0003-4653-8562; FU Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; U.S. Department of Energy [DE-AC02-05CH11231] FX B.S. was supported as part of the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001015.; During the initial stage of this work, J.K. was supported by the Director, Office of Science, Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and during the final stage of this work by the U.S. Department of Energy under contract DE-AC02-05CH11231 through the Carbon Capture Simulation Initiative (CCSI). NR 23 TC 22 Z9 22 U1 4 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2012 VL 8 IS 7 BP 2336 EP 2343 DI 10.1021/ct3003699 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 971ZI UT WOS:000306245900019 PM 26588966 ER PT J AU Jang, JI Bei, HB Becher, PF Pharr, GM AF Jang, Jae-il Bei, Hongbin Becher, Paul F. Pharr, George M. TI Experimental Analysis of the Elastic-Plastic Transition During Nanoindentation of Single Crystal Alpha-Silicon Nitride SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID AB-INITIO; ALPHA-SI3N4; STRENGTH; DEFORMATION; INDENTATION; BETA-SI3N4; LOAD AB The elastic-to-plastic transition in single crystal alpha-silicon nitride was experimentally characterized through a series of nanoindentation experiments using a spherical indenter. The experimental results provide a quantitative description of the critical shear strengths for the transition, as well as estimates of the shear modulus and nanohardness of the material. C1 [Jang, Jae-il] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea. [Bei, Hongbin; Becher, Paul F.; Pharr, George M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Pharr, George M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Jang, JI (reprint author), Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea. EM jijang@hayang.ac.kr RI Jang, Jae-il/A-3486-2011; Bei, Hongbin/I-6576-2012; OI Jang, Jae-il/0000-0003-4526-5355; Bei, Hongbin/0000-0003-0283-7990 FU National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2010-0025526]; US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division; National Science Foundation [CMMI 0926798] FX The authors thank Dr. J. J. Petrovic (at Los Alamos National Laboratory) for providing the valuable sample used here. The research at Hanyang University (JIJ) was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0025526). The portion of the work conducted at the Oak Ridge National Laboratory (HB and PFB) was sponsored by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division. G. M. Pharr's contributions to this work were supported by the National Science Foundation through grant CMMI 0926798. NR 17 TC 11 Z9 11 U1 0 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2012 VL 95 IS 7 BP 2113 EP 2115 DI 10.1111/j.1551-2916.2012.05251.x PG 3 WC Materials Science, Ceramics SC Materials Science GA 969TG UT WOS:000306080900009 ER PT J AU Riley, BJ Johnson, BR Crum, JV Thompson, MR AF Riley, Brian J. Johnson, Bradley R. Crum, Jarrod V. Thompson, Michael R. TI Tricadmium Digermanium Tetraarsenide: A New Crystalline Phase Made with a Double-Containment Ampoule Method SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ELECTRON-PARAMAGNETIC-RESONANCE; NUCLEAR DOUBLE-RESONANCE; GE-AS SYSTEM; OPTICAL-PROPERTIES; SEMICONDUCTING COMPOUNDS; THERMAL-CONDUCTIVITY; GLASS-FORMATION; CDGEAS2; RADIATION; DIARSENIDE AB A new crystalline phase in the Cd-Ge-As family of materials has been recently discovered. This phase was made with a unique double-containment ampoule method that provided a specific cooling rate along with a thermal compression mechanism. The composition of this crystalline phase was determined to be Cd3Ge2As4 with energy dispersive spectroscopy. The detailed methods used to fabricate these crystals are presented. The crystal structure is still under investigation, although preliminary results are given. C1 [Riley, Brian J.; Johnson, Bradley R.; Crum, Jarrod V.; Thompson, Michael R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Riley, BJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM brian.riley@pnnl.gov OI Riley, Brian/0000-0002-7745-6730 FU U.S. Department of Energy by Battelle [DE-AC05-76RL01830]; Department of Energy's Nonproliferation and Verification RD Program [NA-22]; Department of Energy's Office of Biological and Environmental Research FX Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. This work was performed under contract with the Department of Energy's Nonproliferation and Verification R&D (NA-22) Program. Authors thank Clyde Chamberlin for his extensive work with specimen cutting and polishing. Authors also thank Carolyn Burns for running particle size analysis on the copper powder used in the DC experiments and Angus A. Rockett and Damon N. Hebert at the Materials Research Laboratory, located at the University of Illinois at Urbana-Champaign for helpful discussions and assistance in characterization. A portion of this research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 47 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2012 VL 95 IS 7 BP 2161 EP 2168 DI 10.1111/j.1551-2916.2012.05171.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 969TG UT WOS:000306080900019 ER PT J AU Crum, JV Edwards, TB Russell, RL Workman, PJ Schweiger, MJ Schumacher, RF Smith, DE Peeler, DK Vienna, JD AF Crum, Jarrod V. Edwards, Tommy B. Russell, Renee L. Workman, Phyllis J. Schweiger, Michael J. Schumacher, Ray F. Smith, Don E. Peeler, David K. Vienna, John D. TI DWPF Startup Frit Viscosity Measurement Round Robin Results SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID TEMPERATURE AB A viscosity standard is needed to replace the National Institute of Standards and Technology (NIST) glasses currently being used to calibrate viscosity measurement equipment. The current NIST glasses are either unavailable or less than ideal for calibrating equipment to measure the viscosity of high-level waste glasses. This report documents the results of a viscosity round robin study conducted on the Defense Waste Processing Facility (DWPF) startup frit. DWPF startup frit was selected because its viscosity-temperature relationship is similar to most DWPF and Hanford high-level waste glass compositions. The glass underwent grinding and blending to homogenize the large batch. Portions of the batch were supplied to eight laboratories for viscosity measurements, which were conducted following a specified temperature schedule with a temperature range of 1150 degrees C-950 degrees C, with an option to measure viscosity at temperatures below 950 degrees C if their equipment was capable. Results were used to fit the Vogel-Fulcher-Tamman-Hesse and Arrhenius equations to viscosity as a function of temperature for the entire temperature range of 460 degrees C through 1250 degrees C as well as the limited temperature interval of similar to 950 degrees C through 1250 degrees C. The standard errors for confidence and prediction were determined for the fitted models. C1 [Crum, Jarrod V.; Russell, Renee L.; Schweiger, Michael J.; Smith, Don E.; Vienna, John D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Edwards, Tommy B.; Workman, Phyllis J.; Schumacher, Ray F.; Peeler, David K.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Crum, JV (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Jarrod.Crum@pnl.gov FU U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX The authors would like to thank the following laboratories for participating in the round robin study: Pacific Northwest National Laboratory, Savannah River National Laboratory, Idaho National Laboratory, Corning Engineering Laboratory Services, Monarch Services, Commissariat a lEnergie Atomique (France), and the Institute of Chemical Technology (Czech Republic). Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 10 TC 2 Z9 2 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2012 VL 95 IS 7 BP 2196 EP 2205 DI 10.1111/j.1551-2916.2012.05220.x PG 10 WC Materials Science, Ceramics SC Materials Science GA 969TG UT WOS:000306080900023 ER PT J AU Chao, R Munprom, R Petrova, R Gerdes, K Kitchin, JR Salvador, PA AF Chao, Robin Munprom, Ratiporn Petrova, Rumyana Gerdes, Kirk Kitchin, John R. Salvador, Paul A. TI Structure and Relative Thermal Stability of Mesoporous (La,Sr)MnO3 Powders Prepared Using Evaporation-Induced Self-Assembly Methods SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID OXIDE FUEL-CELLS; THIN-FILMS; ELECTRON TOMOGRAPHY; CRYSTAL-STRUCTURE; HIGH-PERFORMANCE; MODEL SYSTEM; METAL-OXIDES; CATHODES; INFILTRATION; TEMPERATURE AB LaMnO3 and (La,Sr)MnO3 were prepared as mesoporous powders using sol-gel methods that incorporated evaporation-induced self-assembly of surfactants as structure-directing agents. The precursor and surfactant concentrations, surfactant character (mainly molecular weight), aging humidity, and annealing temperature were all found to influence the specific surface area of the powders, which were maximized at 50 and 46 m2/g for LaMnO3 and (La,Sr)MnO3, respectively. Increased metal nitrate contents in the initial sol composition and increased relative humidity during aging led to products having increased specific surface areas owing to increased mesoporosity. The lower molecular weight surfactant CTAB was found to generate higher specific surface area powders than those generated using the larger molecular weight nonionic surfactants P-123 and F-127. On the other hand, the relative thermal stability of the mesoporous powders, annealed at 750 degrees C for 100 h, increased with the molecular weight of surfactant. Mesoporous powders having promising thermal stability and surface areas in the 2025 m2/g range were easily obtainable using P-123 and F-127, indicating that high surface area electrocatalysts with mesoporous microstructures can be prepared for high temperature applications. C1 [Chao, Robin; Munprom, Ratiporn; Petrova, Rumyana; Gerdes, Kirk; Salvador, Paul A.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Chao, Robin; Salvador, Paul A.] Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Kitchin, John R.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Kitchin, John R.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Petrova, Rumyana] Int Iberian Nanotechnol Lab, P-4715310 Braga, Portugal. RP Salvador, PA (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. EM paulsalvador@cmu.edu RI Salvador, Paul/A-9435-2011; Kitchin, John/A-2363-2010; INL, Citations/K-3436-2015; OI Salvador, Paul/0000-0001-7106-0017; Kitchin, John/0000-0003-2625-9232; INL, Citations/0000-0002-3745-5100; Munprom, Ratiporn/0000-0003-3637-551X FU National Energy Technology Laboratory, Office of Research and Development through DOE [DE-FE0004000] FX This work was supported by the National Energy Technology Laboratory, Office of Research and Development through DOE contract DE-FE0004000. NR 61 TC 6 Z9 6 U1 2 U2 40 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2012 VL 95 IS 7 BP 2339 EP 2346 DI 10.1111/j.1551-2916.2012.05236.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 969TG UT WOS:000306080900043 ER PT J AU Richardson, DJ Butt, JN Fredrickson, JK Zachara, JM Shi, L Edwards, MJ White, G Baiden, N Gates, AJ Marritt, SJ Clarke, TA AF Richardson, David J. Butt, Julea N. Fredrickson, Jim K. Zachara, John M. Shi, Liang Edwards, Marcus J. White, Gaye Baiden, Nanakow Gates, Andrew J. Marritt, Sophie J. Clarke, Thomas A. TI The porin-cytochrome' model for microbe-to-mineral electron transfer SO MOLECULAR MICROBIOLOGY LA English DT Review ID SHEWANELLA-ONEIDENSIS MR-1; PROTEIN-PROTEIN INTERACTIONS; X-RAY-SCATTERING; OUTER-MEMBRANE; GEOBACTER-SULFURREDUCENS; DECAHEME CYTOCHROME; BACTERIAL NANOWIRES; REDUCING BACTERIUM; ESCHERICHIA-COLI; IRON REDUCTION AB Many species of bacteria can couple anaerobic growth to the respiratory reduction of insoluble minerals containing Fe(III) or Mn(III/IV). It has been suggested that in Shewanella species electrons cross the outer membrane to extracellular substrates via porincytochrome electron transport modules. The molecular structure of an outer-membrane extracellular-facing deca-haem terminus for such a module has recently been resolved. It is debated how, once outside the cells, electrons are transferred from outer-membrane cytochromes to insoluble electron sinks. This may occur directly or by assemblies of cytochromes, perhaps functioning as nanowires, or via electron shuttles. Here we review recent work in this field and explore whether it allows for unification of the electron transport mechanisms supporting extracellular mineral respiration in Shewanella that may extend into other genera of Gram-negative bacteria. C1 [Richardson, David J.; Butt, Julea N.; Edwards, Marcus J.; White, Gaye; Baiden, Nanakow; Gates, Andrew J.; Marritt, Sophie J.; Clarke, Thomas A.] Univ E Anglia, Ctr Mol & Struct Biochem, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England. [Richardson, David J.; Butt, Julea N.; Edwards, Marcus J.; White, Gaye; Baiden, Nanakow; Gates, Andrew J.; Marritt, Sophie J.; Clarke, Thomas A.] Univ E Anglia, Sch Chem, Norwich NR4 7TJ, Norfolk, England. [Fredrickson, Jim K.; Zachara, John M.; Shi, Liang] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Richardson, DJ (reprint author), Univ E Anglia, Ctr Mol & Struct Biochem, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England. EM d.richardson@uea.ac.uk RI Gates, Andrew/F-8218-2011; Richardson, David/E-2275-2011; clarke, tom/D-1837-2009; Butt, Julea/E-2133-2011 OI Gates, Andrew/0000-0002-4594-5038; clarke, tom/0000-0002-6234-1914; Butt, Julea/0000-0002-9624-5226 FU Royal Society Wolfson Foundation; Biotechnology and Biological Sciences Research Council [H007288/1]; W. R. Wiley Environmental Molecular Sciences Laboratory; US Department of Energy, Office of Biological and Environmental Research FX D. J. R. is a Royal Society Wolfson Foundation Merit Award holder. T. A. C. is a Research Council UK Fellow. The research from the author's laboratories was supported by the Biotechnology and Biological Sciences Research Council (H007288/1) and the EMSL Scientific Grand Challenge project at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy, Office of Biological and Environmental Research program located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle. NR 58 TC 65 Z9 66 U1 9 U2 103 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-382X J9 MOL MICROBIOL JI Mol. Microbiol. PD JUL PY 2012 VL 85 IS 2 BP 201 EP 212 DI 10.1111/j.1365-2958.2012.08088.x PG 12 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 970OC UT WOS:000306140300002 PM 22646977 ER PT J AU Balke, N Bonnell, D Ginger, DS Kemerink, M AF Balke, Nina Bonnell, Dawn Ginger, David S. Kemerink, Martijn TI Scanning probes for new energy materials: Probing local structure and function SO MRS BULLETIN LA English DT Article ID FERROELECTRIC THIN-FILMS; ATOMIC-FORCE MICROSCOPY; SOLAR-CELLS; DOMAIN-STRUCTURE; RESOLUTION; NANOSCALE; PERFORMANCE; NANOWIRES; ANODES AB The design and control of materials properties, often at the nanoscale, are the foundation of many new strategies for energy generation, storage, and efficiency. Scanning probe microscopy (SPM) has evolved into a very large toolbox for the characterization of properties spanning size scales from hundreds of microns to nanometers. Recent advances in SPM involve properties and size scales of precise relevance to energy-related materials, as presented in this issue. These advances are put into the general context of energy research, and the general principles are summarized. C1 [Balke, Nina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Bonnell, Dawn] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Ginger, David S.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Kemerink, Martijn] Tech Univ Eindhoven, Eindhoven, Netherlands. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM balken@ornl.gov; bonnell@lrsm.upenn.edu; ginger@chem.washington.edu; m.kemerink@tue.nl RI Ginger, David/C-4866-2011; Kemerink, Martijn/B-4796-2014; Zhou, David/N-5367-2015; Balke, Nina/Q-2505-2015 OI Ginger, David/0000-0002-9759-5447; Kemerink, Martijn/0000-0002-7104-7127; Balke, Nina/0000-0001-5865-5892 FU DoE Office of Basic Energy Science, Division of Materials Science [DE-FG02-00ER45813]; National Science Foundation NSEC [DMR08-32802] FX D.B. is grateful for support from the DoE Office of Basic Energy Science, Division of Materials Science DE-FG02-00ER45813, and the National Science Foundation NSEC DMR08-32802. NR 44 TC 13 Z9 13 U1 3 U2 63 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD JUL PY 2012 VL 37 IS 7 BP 633 EP 637 DI 10.1557/mrs.2012.141 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 973NQ UT WOS:000306367300010 ER PT J AU Jesse, S Kumar, A Arruda, TM Kim, Y Kalinin, SV Ciucci, F AF Jesse, Stephen Kumar, Amit Arruda, Thomas M. Kim, Yunseok Kalinin, Sergei V. Ciucci, Francesco TI Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level SO MRS BULLETIN LA English DT Article ID ATOMIC-FORCE MICROSCOPY; RECHARGEABLE LITHIUM BATTERIES; FERROELECTRIC THIN-FILMS; NANOSCALE; SPECTROSCOPY; OXIDE; CHALLENGES; TRANSPORT; CERAMICS; ANODES AB Atomistic and nanometer scale mechanisms of electrochemical reactions and ionic flows in solids in the nanometer-micron range persist as terra incognito in modern science. While structural and electronic phenomena are now accessible to electron and scanning probe microscopy (SPM) techniques, probing nanoscale electrochemistry requires the capability to probe local ionic currents. Here, we discuss principles and applications of electrochemical strain microscopy (ESM), a technique based on probing minute deformations induced by electric bias applied to an SPM tip. ESM imaging and spectroscopy are illustrated for several energy storage and conversion materials. We further argue that down-scaling of physical device structures based on oxides necessitates ionic and electrochemical effects to be taken into account. Future pathways for ESM development are discussed. C1 [Jesse, Stephen; Kumar, Amit; Arruda, Thomas M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Imaging Funct Grp, Oak Ridge, TN 37831 USA. [Ciucci, Francesco] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China. RP Jesse, S (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Imaging Funct Grp, Oak Ridge, TN 37831 USA. EM sjesse@ornl.gov; ka7@ornl.gov; arrudatm@ornl.gov; kimy4@ornl.gov; sergei2@ornl.gov; mefrank@ust.hk RI Kalinin, Sergei/I-9096-2012; Arruda, Thomas/C-6134-2012; Kumar, Amit/C-9662-2012; Jesse, Stephen/D-3975-2016; Ciucci, Francesco/H-4786-2012 OI Kalinin, Sergei/0000-0001-5354-6152; Arruda, Thomas/0000-0002-6165-2024; Kumar, Amit/0000-0002-1194-5531; Jesse, Stephen/0000-0002-1168-8483; Ciucci, Francesco/0000-0003-0614-5537 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Laboratory Directed Research and Development Program FX This research (S.J., S. V. K., Y.K.) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors (T. M. A., S.J.) acknowledge financial support by the Laboratory Directed Research and Development Program. NR 72 TC 26 Z9 26 U1 3 U2 71 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD JUL PY 2012 VL 37 IS 7 BP 651 EP 658 DI 10.1557/mrs.2012.144 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 973NQ UT WOS:000306367300012 ER PT J AU Besenbacher, F Thostrup, P Salmeron, M AF Besenbacher, Flemming Thostrup, Peter Salmeron, Miquel TI The structure and reactivity of surfaces revealed by scanning tunneling microscopy SO MRS BULLETIN LA English DT Article ID MOS2 NANOCLUSTERS; PRESSURE GAP; CO; RH(111); PHASE; STM; NO; EQUILIBRIUM; ADSORPTION; CATALYST AB Scanning tunneling microscopy (STM) has revolutionized the fields of heterogeneous catalysis and environmental sciences by providing unique insights into the atomic-scale structure of model catalysts. For the first time, STM has revealed the structure of active sites, including steps, kinks, and special atomic geometries in compounds. It has provided images of atomic scale dynamic processes, including diffusion and reactions. STM can operate in environments of gases and liquids, as found in real life and in industrial processes. We illustrate these unique capabilities with examples and how the information obtained can lead to industrially relevant information and help the design of new catalysts. C1 [Besenbacher, Flemming] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Thostrup, Peter] Univ Aarhus, Interdisciplinary Nanosci Ctr, DK-8000 Aarhus C, Denmark. [Thostrup, Peter] Univ Aarhus, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark. [Salmeron, Miquel] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Salmeron, Miquel] Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA. RP Besenbacher, F (reprint author), Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM fbe@inano.au.dk; thostrup@inano.dk; mbsalmeron@lbl.gov FU Villum Foundation; Carlsberg Foundation; Danish National Research Foundation; European Research Council; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX F.B. and P. T. were supported by the Villum Foundation, the Carlsberg Foundation, the Danish National Research Foundation, and the European Research Council. M. S. was supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 8 Z9 8 U1 2 U2 56 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD JUL PY 2012 VL 37 IS 7 BP 677 EP 681 DI 10.1557/mrs.2012.142 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 973NQ UT WOS:000306367300015 ER PT J AU Gleckler, PJ Santer, BD Domingues, CM Pierce, DW Barnett, TP Church, JA Taylor, KE AchutaRao, KM Boyer, TP Ishii, M Caldwell, PM AF Gleckler, P. J. Santer, B. D. Domingues, C. M. Pierce, D. W. Barnett, T. P. Church, J. A. Taylor, K. E. AchutaRao, K. M. Boyer, T. P. Ishii, M. Caldwell, P. M. TI Human-induced global ocean warming on multidecadal timescales SO NATURE CLIMATE CHANGE LA English DT Article ID SEA-LEVEL CHANGES; HEAT-CONTENT; WORLDS OCEANS; TEMPERATURE; VARIABILITY AB Large-scale increases in upper-ocean temperatures are evident in observational records(1). Several studies have used well-established detection and attribution methods to demonstrate that the observed basin-scale temperature changes are consistent with model responses to anthropogenic forcing and inconsistent with model-based estimates of natural variability(2-5). These studies relied on a single observational data set and employed results from only one or two models. Recent identification of systematic instrumental biases(6) in expendable bathythermograph data has led to improved estimates of ocean temperature variability and trends(7-9) and provide motivation to revisit earlier detection and attribution studies. We examine the causes of ocean warming using these improved observational estimates, together with results from a large multimodel archive of externally forced and unforced simulations. The time evolution of upper ocean temperature changes in the newer observational estimates is similar to that of the multimodel average of simulations that include the effects of volcanic eruptions. Our detection and attribution analysis systematically examines the sensitivity of results to a variety of model and data-processing choices. When global mean changes are included, we consistently obtain a positive identification (at the 1% significance level) of an anthropogenic fingerprint in observed upper-ocean temperature changes, thereby substantially strengthening existing detection and attribution evidence. C1 [Gleckler, P. J.; Santer, B. D.; Taylor, K. E.; Caldwell, P. M.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. [Domingues, C. M.] Antarctic & Climate Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia. [Domingues, C. M.; Church, J. A.] CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Hobart, Tas 7001, Australia. [Domingues, C. M.; Church, J. A.] CSIRO Marine & Atmospher Res, Wealth Oceans Flagship, Hobart, Tas 7001, Australia. [Pierce, D. W.; Barnett, T. P.] Univ Calif San Diego, Scripps Inst Oceanog, Climate Res Div, La Jolla, CA 92093 USA. [AchutaRao, K. M.] Indian Inst Technol, Delhi 110016, India. [Boyer, T. P.] NOAA, Natl Oceanog Data Ctr, Silver Spring, MD 20910 USA. [Ishii, M.] Meteorol Res Inst, Climate Res Dept, Tsukuba, Ibaraki 3050052, Japan. RP Gleckler, PJ (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Mail Code L-103,7000 E Ave, Livermore, CA 94550 USA. EM gleckler1@llnl.gov RI Santer, Benjamin/F-9781-2011; Church, John/A-1541-2012; Taylor, Karl/F-7290-2011; Caldwell, Peter/K-1899-2014; Domingues, Catia /A-2901-2015 OI Church, John/0000-0002-7037-8194; Taylor, Karl/0000-0002-6491-2135; Domingues, Catia /0000-0001-5100-4595 FU Office of Science, US Department of Energy; US Department of Energy [DE-AC52-07NA27344]; CSIRO Office of the Chief Executive Postdoctoral Fellowship; Australian Climate Change Science Program; Australian Academy of Science; US Department of Energy's International ad hoc Detection and Attribution Group (IDAG) FX We acknowledge the climate model development groups for providing their simulation output for analysis, PCMDi for collecting and archiving this data and the World Climate Research Programme's Working Group on Coupled Modelling for organizing the model data analysis activity. The CMIP3 multimodel data set is supported by the Office of Science, US Department of Energy. Work at Lawrence Livermore National Laboratory (by P.J.G., P.M.C., B.D.S. and K.E.T.) was carried out under the auspices of the US Department of Energy under contract DE-AC52-07NA27344. C.M.D. was partly financially supported by a CSIRO Office of the Chief Executive Postdoctoral Fellowship, the Australian Climate Change Science Program and the Australian Academy of Science (Scientific Visit to North America Program). D.W.P. was partially funded by the US Department of Energy's International ad hoc Detection and Attribution Group (IDAG). NR 26 TC 52 Z9 53 U1 2 U2 62 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD JUL PY 2012 VL 2 IS 7 BP 524 EP 529 DI 10.1038/NCLIMATE1553 PG 6 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 972AS UT WOS:000306249500017 ER PT J AU Waelbroeck, FL Joseph, I Nardon, E Becoulet, M Fitzpatrick, R AF Waelbroeck, F. L. Joseph, I. Nardon, E. Becoulet, M. Fitzpatrick, R. TI Role of singular layers in the plasma response to resonant magnetic perturbations SO NUCLEAR FUSION LA English DT Article ID RADIAL ELECTRIC-FIELD; EDGE LOCALIZED MODES; COMPASS-C TOKAMAK; DIII-D TOKAMAK; H-MODE; ERROR-FIELD; TEARING MODE; INHOMOGENEOUS-PLASMA; ROTATING PLASMAS; FLUID ROTATION AB The response of an H-mode plasma to magnetic perturbations that are resonant in the edge is evaluated using a fluid model. With two exceptions, the plasma rotation suppresses the formation of magnetic islands, holding their widths to less than a tenth of those predicted by the vacuum approximation. The two exceptions are at the foot of the pedestal, where the plasma becomes more resistive, and at the surface where the perpendicular component of the electron velocity reverses. The perturbations exert a force on the plasma so as to brake the perpendicular component of the electron rotation. In the pedestal, the corresponding Maxwell stress drives the radial electric field in such a way as to accelerate ion rotation. Despite the suppression of the islands, the perturbations give rise to particle fluxes caused by magnetic flutter, with a negligible contribution from E x B convection. In the pedestal, the fluxes are such as to reduce the density. C1 [Waelbroeck, F. L.; Fitzpatrick, R.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Joseph, I.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Nardon, E.; Becoulet, M.] CEA Cadarache, CEA, EURATOM Assoc, F-13108 St Paul Les Durance, France. RP Waelbroeck, FL (reprint author), Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. RI Waelbroeck, Francois/B-6988-2008 OI Waelbroeck, Francois/0000-0001-9324-3690 FU US DoE [DE-FG03-96ER-54346]; US DoE/LLNL [DE-AC52-07NA27344] FX The authors are grateful to P Beyer, K Burrell, T Evans and Q Yu for informative discussions. This work was funded by the US DoE contract number DE-FG03-96ER-54346 and US DoE/LLNL Contract DE-AC52-07NA27344 NR 80 TC 30 Z9 31 U1 0 U2 25 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2012 VL 52 IS 7 SI SI AR 074004 DI 10.1088/0029-5515/52/7/074004 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 970BX UT WOS:000306104200005 ER PT J AU Buchen, SY Calogero, D Hilmantel, G Eydelman, MB AF Buchen, Shelley Y. Calogero, Don Hilmantel, Gene Eydelman, Malvina B. TI Detecting Endotoxin Contamination of Ophthalmic Viscosurgical Devices SO OPHTHALMOLOGY LA English DT Article ID OCULAR INFLAMMATORY RESPONSE; INDUCED UVEITIS AB Objective: To compare the sensitivities of intracameral and intravitreal assays in the rabbit model to determine the relative adequacy of these methods in detecting bacterial endotoxin contamination of ophthalmic viscosurgical devices (OVDs). Design: Experimental, randomized animal study. Participants: Twenty New Zealand white rabbits. Methods: Rabbits were randomized into 4 groups to receive a cohesive or a dispersive OVD via intracameral or intravitreal injection. All 40 treated eyes (10 eyes of 5 animals in each group) received bilateral injection of OVD spiked with bacterial endotoxin at 7.0 endotoxin units/ml. All eyes were evaluated by slit-lamp biomicroscopy for inflammatory response at 3, 6, 9, 24, 48, and 72 hours after exposure. Eyes that received intravitreal injection were also dilated at 24, 48, and 72 hours and were re-examined by slit-lamp biomicroscopy and by indirect ophthalmoscopy. Main Outcome Measures: Conjunctival inflammation, anterior chamber (AC) flare, cells and fibrin, vitreous haze and cells, iridal hyperemia, corneal clouding, lens opacities, and onset times. Results: Intracamerally injected eyes frequently showed conjunctival congestion, AC cells and flare, iridal hyperemia, and fibrin within 6 hours. Up to 80% showed AC cells and flare at 9 hours, and up to 70% showed fibrin at 24 hours. These signs diminished within 48 hours. Fibrin and cells also were seen on the lens surface of most of the eyes. Intravitreally injected eyes showed no signs of inflammation within 24 hours, other than some conjunctival inflammation. After the 24-hour time point, in addition to some conjunctival inflammation, some other signs of inflammation were observed infrequently in the intravitreally injected eyes, including minor vitreous cell reaction in 2 eyes. Although there was 1 dispersive OVD-treated eye with cells and fibrin on the lens capsule at 48 hours, no aqueous cells or flare were seen in the AC of any intravitreally injected eyes at any time during the course of the study. Conclusions: The rabbit intravitreal assay, when limited to 72 hours, does not seem to have adequate sensitivity to detect endotoxin reliably in OVDs. Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article. Ophthalmology 2012;119:e11-e18 (C) 2012 by the American Academy of Ophthalmology. C1 [Calogero, Don; Hilmantel, Gene; Eydelman, Malvina B.] US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, Silver Spring, MD 20993 USA. [Buchen, Shelley Y.] US FDA, ORISE, Silver Spring, MD 20993 USA. RP Eydelman, MB (reprint author), US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Dept Ophthalmol Neurol & ENT Devices, 10903 New Hampshire Ave,WO 66-2410, Silver Spring, MD 20993 USA. EM malvina.eydelman@fda.hhs.gov FU The Food and Drug Administration, Silver Spring, Maryland FX The Food and Drug Administration, Silver Spring, Maryland, funded this work. Food and Drug Administration personnel participated in the design of the study, conducting the study, data collection, data management, data analysis, interpretation of the data, preparation and review of the manuscript. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by Department of Health and Human Services (DHHS). NR 15 TC 6 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0161-6420 J9 OPHTHALMOLOGY JI Ophthalmology PD JUL PY 2012 VL 119 IS 7 BP E11 EP E18 DI 10.1016/j.ophtha.2012.04.005 PG 8 WC Ophthalmology SC Ophthalmology GA 968UQ UT WOS:000306011000002 PM 22578451 ER PT J AU Buchen, SY Calogero, D Tarver, ME Hilmantel, G Tang, X Eydelman, MB AF Buchen, Shelley Y. Calogero, Don Tarver, Michelle E. Hilmantel, Gene Tang, Xing Eydelman, Malvina B. TI Evaluation of Intraocular Reactivity to Organic Contaminants of Ophthalmic Devices in a Rabbit Model SO OPHTHALMOLOGY LA English DT Article ID ANTERIOR SEGMENT SYNDROME; POTENTIAL CAUSE; UVEITIS; DEBRIS AB Objective: To evaluate the intraocular reactivity to organic contaminants of ophthalmic devices in the rabbit. Design: Experimental animal study. Participants: Fifty New Zealand white rabbits. Methods: The rabbits were allocated to 10 groups of 5 each to receive 2 different doses of human albumin and nonhuman nucleic acids and their respective vehicle controls, a denatured cohesive ophthalmic viscosurgical device (OVD) and a denatured dispersive OVD and their respective nondenatured controls. All 10 eyes in each treatment group received bilateral intracameral injection of the test materials. All the eyes in the study were examined by slit-lamp biomicroscopy at baseline and 6, 9, 24, 48, and 72 hours. Pachymetry was also performed on eyes exposed to albumin, protein vehicle control, and the OVDs at these time points. Main Outcome Measures: Corneal thickness, grade of corneal clouding, anterior chamber (AC), cells, flare and fibrin, iridal hyperemia, cell and fibrin on lens surface, and onset time. Results: There were no inflammatory signs in any eyes exposed to human albumin. Anterior chamber cells (1+ to 3+) and flare and fibrin (1+ to 2+), along with cells and fibrin on the lens surface, were seen in the eyes exposed to the nucleic acid samples, and they resolved in 24 hours. Mild (mostly 1+) conjunctival congestion, cells, flare, and fibrin were seen in a few eyes exposed to the 2 denatured OVDs and their controls, with the response durations being shorter in the denatured OVD eyes (24 hours) than in the nondenatured OVD eyes (48 hours). Anterior chamber inflammation was generally observed in fewer denatured OVD eyes than in nondenatured OVD eyes, particularly the dispersive OVD eyes. Conclusions: Intracameral injection of human albumin protein did not cause ocular inflammation. Nucleic acid intracamerally injected into rabbit eyes caused acute inflammation that quickly resolved. Cohesive and dispersive OVD denatured by drying and steam sterilization alone did not cause ocular inflammation. Financial Disclosure(s): The authors have no proprietary or commercial interest in any materials discussed in this article. Ophthalmology 2012;119:e24-e29 (C) 2012 by the American Academy of Ophthalmology. C1 [Buchen, Shelley Y.] US FDA, Oak Ridge Inst Sci & Educ, Silver Spring, MD USA. [Calogero, Don; Tarver, Michelle E.; Hilmantel, Gene; Eydelman, Malvina B.] US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, Silver Spring, MD USA. [Tang, Xing] US FDA, Ctr Devices & Radiol Hlth, Off Sci & Engn Labs, Div Biol, Silver Spring, MD USA. RP Eydelman, MB (reprint author), WO 66-2410,10903 New Hampshire Ave, Silver Spring, MD 20993 USA. EM malvina.eydelman@fda.hhs.gov FU FDA (Silver Spring, MD) FX The FDA (Silver Spring, MD) funded this work. The FDA personnel participated in designing and conducting the study; collecting, managing, analyzing, and interpreting data; and preparing and reviewing the manuscript. NR 15 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0161-6420 J9 OPHTHALMOLOGY JI Ophthalmology PD JUL PY 2012 VL 119 IS 7 BP E24 EP E29 DI 10.1016/j.ophtha.2012.04.007 PG 6 WC Ophthalmology SC Ophthalmology GA 968UQ UT WOS:000306011000004 PM 22578449 ER PT J AU Buchen, SY Calogero, D Hilmantel, G Eydelman, MB AF Buchen, Shelley Y. Calogero, Don Hilmantel, Gene Eydelman, Malvina B. TI Rabbit Ocular Reactivity to Bacterial Endotoxin Contained in Aqueous Solution and Ophthalmic Viscosurgical Devices SO OPHTHALMOLOGY LA English DT Article ID ANTERIOR SEGMENT SYNDROME; DRUG-DELIVERY; CHAMBER; HUMOR; FLOW; INFLAMMATION AB Objective: To describe the ocular reactivity of the rabbit to bacterial endotoxin contained in an aqueous medium and in a cohesive and a dispersive ophthalmic viscosurgical device (OVD). Design: Experimental, randomized animal study. Participants: Seventy-five New Zealand white rabbits. Methods: This study was performed using 75 rabbits to evaluate the ocular reactivity to bacterial endotoxin contained in Dulbecco's phosphate-buffered saline (DPBS), a cohesive OVD, and a dispersive OVD. For each test material, 25 rabbits were randomized into 5 groups and were exposed to the test material containing 0.75 endotoxin units (EU), 0.25 EU, 0.08 EU, and 0.02 EU of endotoxin or the vehicle control. The rabbits in each group received bilateral intracameral injection of 0.05 ml of the same test material. All eyes were examined by slit-lamp biomicroscopy at baseline, 3, 6, 9, 24, 48, and 72 hours after injection. At 24 and 72 hours, slit-lamp biomicroscopy (and additionally indirect ophthalmoscopy) was performed through dilated pupils. Main Outcome Measures: Corneal clouding, anterior chamber (AC) flare, cells and fibrin, vitreous haze and cells, cells and fibrin on lens surface, lens opacities, and onset time. Results: The inflammation seen after exposure to the 3 endotoxin-spiked materials followed the same general time course. Anterior chamber cells, flare, iris hyperemia, and conjunctival congestion were seen as early as 3 hours. They started to diminish after 6 hours (DPBS eyes) and 9 hours (OVDs) and were not detectable at 48 and 72 hours, respectively. The AC inflammation was more severe in the OVD eyes than in the DPBS eyes. Anterior chamber fibrin was seen in the OVD eyes only, which persisted through 72 hours in many eyes. A trend toward a dose-response relationship was seen for AC cells and flare and the presence of cells and fibrin on the lens surface in all 3 treatment groups in the first 24 hours. Conclusions: Inflammation was seen after intracameral injection of as little as 0.02 and 0.08 EU in OVD and DPBS eyes, respectively. Observed responses to intracamerally injected endotoxin in OVDs were more severe and of longer duration than those in aqueous medium. Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article. Ophthalmology 2012;119:e4-e10 (C) 2012 by the American Academy of Ophthalmology. C1 [Calogero, Don; Hilmantel, Gene; Eydelman, Malvina B.] US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, Silver Spring, MD 20993 USA. [Buchen, Shelley Y.] US FDA, Oak Ridge Inst Sci & Educ, Silver Spring, MD 20993 USA. RP Eydelman, MB (reprint author), US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, 10903 New Hampshire Ave,WO 66-2410, Silver Spring, MD 20993 USA. EM malvina.eydelman@fda.hhs.gov FU Food and Drug Administration, Silver Spring, Maryland FX Supported by the Food and Drug Administration, Silver Spring, Maryland. The Food and Drug Administration personnel participated in the design of the study, conducting the study, data collection, data management, data analyses, data interpretation, and manuscript preparation and review. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services (DHHS). NR 23 TC 5 Z9 5 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0161-6420 J9 OPHTHALMOLOGY JI Ophthalmology PD JUL PY 2012 VL 119 IS 7 BP E4 EP E10 DI 10.1016/j.ophtha.2012.04.006 PG 7 WC Ophthalmology SC Ophthalmology GA 968UQ UT WOS:000306011000001 PM 22578450 ER PT J AU Leder, HA Goodkin, M Buchen, SY Calogero, D Hilmantel, G Hitchins, VM Eydelman, MB AF Leder, Henry A. Goodkin, Margot Buchen, Shelley Y. Calogero, Don Hilmantel, Gene Hitchins, Victoria M. Eydelman, Malvina B. TI An Investigation of Enzymatic Detergents as a Potential Cause of Toxic Anterior Segment Syndrome SO OPHTHALMOLOGY LA English DT Article ID CATARACT-SURGERY; STERILE ENDOPHTHALMITIS; OUTBREAK; DEBRIS AB Objective: To investigate whether enzymatic detergents used in cleaning ophthalmic surgical instruments can cause toxic anterior segment syndrome (TASS)-like responses in a rabbit model. Design: Randomized, investigator-masked, controlled experimental animal study. Participants: Thirty-five New Zealand white rabbits. Methods: The rabbit eyes were randomized into 7 treatment groups to receive intracameral injection of 1 of 3 different doses of Medline Dual Detergent or Enzol Detergent, or sterile limulus amoebocyte lysate reagent water as a control. The eyes were evaluated for anterior segment inflammation at baseline and at 1, 3, 6, 24, 48, and 72 hours after treatment by slit-lamp biomicroscopy. Main Outcome Measures: Anterior chamber (AC) inflammation, including cells, flare, fibrin, and iris injection; time course of inflammation; and residual detergent levels in luminated instruments. Results: Moderate to marked injection of the iris vessels was seen as early as 1 hour after treatment with the enzymatic detergents in 41 of 60 eyes, with the response being more severe in the Enzol Detergent-exposed eyes. Severe iris hemorrhages were accompanied by blood in the AC in 13 eyes, which usually persisted through 72 hours, with an associated increase in AC cell and flare. Corneal haze was present in 52 of 56 eyes 1 hour after treatment, but was mild and resolved within 24 hours in all but the Enzol 4.5%-exposed eyes. Median AC cell and flare peaked at 6 hours and resolved by 48 hours. Conclusions: Enzymatic detergents caused a severe but unusual response from the iris when injected intracamerally into rabbit eyes. This response has not been reported in humans with TASS. The time course of inflammation was faster (peak at 6 hours) and resolved more quickly (within 48 hours) than TASS. Simulated cleaning and extraction studies indicate that the level of residual detergent to which a patient could be exposed is significantly less than the lowest dose used in this study. Because that low dose caused no significant observations other than injection of the iris vessels, these results do not support residual enzymatic detergents on surgical instruments as a cause for TASS. Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article. Ophthalmology 2012;119:e30-e35 (C) 2012 by the American Academy of Ophthalmology. C1 [Eydelman, Malvina B.] US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, Silver Spring, MD 20993 USA. [Leder, Henry A.; Buchen, Shelley Y.] US FDA, ORISE, Silver Spring, MD 20993 USA. RP Eydelman, MB (reprint author), US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, 10903 New Hampshire Ave,WO 66-2410, Silver Spring, MD 20993 USA. EM malvina.eydelman@fda.hhs.gov NR 23 TC 7 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0161-6420 EI 1549-4713 J9 OPHTHALMOLOGY JI Ophthalmology PD JUL PY 2012 VL 119 IS 7 BP E30 EP E35 DI 10.1016/j.ophtha.2012.04.016 PG 6 WC Ophthalmology SC Ophthalmology GA 968UQ UT WOS:000306011000005 PM 22578445 ER PT J AU Nussenblatt, RB Calogero, D Buchen, SY Leder, HA Goodkin, M Eydelman, MB AF Nussenblatt, Robert B. Calogero, Don Buchen, Shelley Y. Leder, Henry A. Goodkin, Margot Eydelman, Malvina B. TI Rabbit Intraocular Reactivity to Endotoxin Measured by Slit-Lamp Biomicroscopy and Laser Flare Photometry SO OPHTHALMOLOGY LA English DT Article ID OCULAR INFLAMMATORY RESPONSE; ANTERIOR SEGMENT; INHIBITION; UVEITIS; ALPHA AB Objective: To evaluate the ocular reactivity of the rabbit to an intracameral injection of a dispersive ophthalmic viscosurgical device (OVD) containing various levels of bacterial endotoxin using slit-lamp biomicroscopy and laser flare photometry. Design: Experimental, randomized, masked animal study. Participants: Thirty Dutch-Belted rabbits. Methods: The rabbits were randomized into 6 groups to receive 0.05 ml of a hydroxypropyl methylcellulose-based dispersive OVD to which had been added one of 5 different doses of bacterial endotoxin ranging from 0.02 to 1.4 endotoxin units (EUs) or a vehicle control to both eyes. The eyes were evaluated for anterior segment inflammation at baseline and 3, 6, 9, 24, 48, and 72 hours after injection using slit-lamp biomicroscopy and laser flare photometry. Main Outcome Measures: Corneal clarity and anterior chamber (AC) inflammation. Results: All the corneas remained clear throughout the study. Anterior chamber cells were seen at 6, 9, and 24 hours in 60% to 100% of the eyes intracamerally injected with endotoxin-containing OVD, and the response declined rapidly after 24 hours. A dose-response effect was seen between the concentration of endotoxin and the AC cell response. The aqueous flare response in eyes injected with the 2 highest doses of endotoxin was significantly greater (P<0.05) than that of controls. The amounts of fibrin observed in the AC were random, with no apparent dose-response effect seen. The flare values as obtained by laser flare photometry were consistent with the slit-lamp biomicroscopy flare findings up to grade 3+. However, the increase in laser flare value seemed to level off in eyes with more than 3+ flare. Neither measure of flare correlated with endotoxin level. Conclusions: Among the parameters evaluated in this study, the AC cell response, evaluated by slit-lamp biomicroscopy and graded using a standard grading system, was found to be the most reliable indicator of the amount of endotoxin in the dispersive OVD. The use of laser flare photometry alone does not seem to be useful in detecting an ocular response to endotoxin contamination in OVDs. Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article. Ophthalmology 2012;119:e19-e23 (C) 2012 by the American Academy of Ophthalmology. C1 [Calogero, Don; Goodkin, Margot; Eydelman, Malvina B.] US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, Silver Spring, MD 20993 USA. [Nussenblatt, Robert B.] NEI, NIH, Bethesda, MD 20892 USA. [Buchen, Shelley Y.; Leder, Henry A.] US FDA, ORISE, Silver Spring, MD 20993 USA. RP Eydelman, MB (reprint author), US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, 10903 New Hampshire Ave,WO 66-2410, Silver Spring, MD 20993 USA. EM malvina.eydelman@fda.hhs.gov FU Food and Drug Administration, Silver Spring, Maryland FX Supported by the Food and Drug Administration, Silver Spring, Maryland. The Food and Drug Administration personnel participated in the design of the study, conducting the study, data collection, data management, data analyses, data interpretation, and manuscript preparation and review. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services (DHHS). NR 17 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0161-6420 J9 OPHTHALMOLOGY JI Ophthalmology PD JUL PY 2012 VL 119 IS 7 BP E19 EP E23 DI 10.1016/j.ophtha.2012.04.004 PG 5 WC Ophthalmology SC Ophthalmology GA 968UQ UT WOS:000306011000003 PM 22578448 ER PT J AU Calogero, D Buchen, SY Tarver, ME Hilmantel, G Lucas, AD Eydelman, MB AF Calogero, Don Buchen, Shelley Y. Tarver, Michelle E. Hilmantel, Gene Lucas, Anne D. Eydelman, Malvina B. TI Evaluation of Intraocular Reactivity to Metallic and Ethylene Oxide Contaminants of Medical Devices in a Rabbit Model SO OPHTHALMOLOGY LA English DT Article ID ANTERIOR SEGMENT SYNDROME; PLASMA GAS; SURGERY AB Objective: To evaluate the intraocular reactivity to metallic and ethylene oxide (EO) contaminants of ophthalmic devices in rabbits. Design: Two experimental animal studies. Participants: Thirty-five New Zealand white rabbits. Methods: A metallic exposure study and an EO exposure study were performed. In the first study, both eyes of 25 rabbits were equally allocated to intracameral injections of alumina 0.2 mu g, alumina 20 mu g, copper sulfate 0.4 mu g, copper sulfate 20 mu g, or an aqueous control. In the second study, 10 rabbits were allocated (5 per group) to receive intracamerally an ophthalmic viscosurgical device (OVD) exposed to EO or not exposed to EO (control). All eyes were examined by slit lamp at baseline and 3, 6, 9, 24, 48, and 72 hours after exposure, with dilated indirect ophthalmoscopy being performed at 24 and 72 hours. Tonometry was performed only in the first study. Main Outcome Measures: Grade of corneal clouding, anterior chamber (AC) flare, AC cells, AC fibrin, iridal hyperemia, cell and fibrin on the lens surface, vitreous haze and cells, lens opacities, intraocular pressure, and onset time. Results: For metallic compounds at the study's low doses, mean inflammatory grades were 0.2 or less above the control for all responses at all time points. For the high-dose alumina, mean inflammatory grades peaked at 6 to 9 hours at 0.5 to 0.7 above the control responses for conjunctival congestion, iris hyperemia, AC cells, flare, and fibrin and declined over the remaining time points. For the high-dose copper sulfate, mean inflammatory grades peaked between 3 and 24 hours at 1.2 to 1.8 above the control responses for conjunctival congestion, iris hyperemia, AC cells, flare, fibrin, and corneal clouding, then subsequently declined. The intraocular pressure changes appeared significant for only high-dose copper sulfate, with mean declines of 4.3 to 7.5 mmHg at 6 to 72 hours. No clinically meaningful differences in ocular inflammation were observed between the OVD exposed to EO and the OVD not exposed to EO. Conclusions: Alumina and copper sulfate did not cause clinically meaningful ocular inflammation at the low study levels (levels expected with ophthalmic devices). Ethylene oxide exposure of an OVD was not associated with inflammation. Financial Disclosure(s): The authors have no proprietary or commercial interest in any materials discussed in this article. Ophthalmology 2012;xx:xxx (C) 2012 by the American Academy of Ophthalmology. C1 [Calogero, Don; Tarver, Michelle E.; Hilmantel, Gene; Eydelman, Malvina B.] US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, Silver Spring, MD USA. [Buchen, Shelley Y.] US FDA, ORISE, Silver Spring, MD USA. [Lucas, Anne D.] US FDA, Ctr Devices & Radiol Hlth, Off Sci & Engn Labs, Div Biol, Silver Spring, MD USA. RP Eydelman, MB (reprint author), WO 66-2410,10903 New Hampshire Ave, Silver Spring, MD 20993 USA. EM malvina.eydelman@fda.hhs.gov FU Food and Drug Administration (Silver Spring, MD) FX The Food and Drug Administration (Silver Spring, MD) funded this work. The Food and Drug Administration personnel participated in the design of the study, conducting the study, data collection, data management, data analysis, interpretation of the data, and preparation and review of the manuscript. NR 18 TC 5 Z9 5 U1 1 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0161-6420 J9 OPHTHALMOLOGY JI Ophthalmology PD JUL PY 2012 VL 119 IS 7 DI 10.1016/j.ophtha.2012.04.009 PG 7 WC Ophthalmology SC Ophthalmology GA 968UQ UT WOS:000306011000006 PM 22578444 ER PT J AU Eydelman, MB Tarver, ME Calogero, D Buchen, SY Alexander, KY AF Eydelman, Malvina B. Tarver, Michelle E. Calogero, Don Buchen, Shelley Y. Alexander, Kesia Y. TI The Food and Drug Administration's Proactive Toxic Anterior Segment Syndrome Program SO OPHTHALMOLOGY LA English DT Review ID CATARACT-SURGERY; CORNEAL ENDOTHELIUM; PLASMA GAS; INFLAMMATION; OUTBREAK; STERILIZATION; IMPLANTATION; DESTRUCTION; DETERGENTS; EXTRACTION AB Toxic anterior segment syndrome (TASS) is a rare inflammatory condition usually observed within the first 48 hours after uncomplicated anterior segment surgery. Over the decades since its initial description, a number of TASS outbreaks have been reported. For a few of these outbreaks, the inciting factors were identified, but for the majority, the precipitating factors were often postulated but not confirmed. In light of the limitations identified in these outbreak investigations, the Food and Drug Administration's (FDA's) Center for Devices and Radiological Health staff has embarked on a number of activities aimed at mitigating medical device-related TASS outbreaks. Under the FDA-designed Proactive TASS Program (PTP), FDA scientists have conducted animal studies to better explore the inflammatory potential of suspected ophthalmic device contaminants implicated in prior cases of TASS. For contaminants displaying a TASS-like reaction in these animal models, the FDA scientists have developed analytic test methods to measure the level of those contaminants in or on ophthalmic devices. Moreover, FDA researchers have developed methods to better capture the clinical information necessary to assist investigations of potential future outbreaks. Last, the FDA has partnered with the Centers for Disease Control and Prevention to facilitate a potential TASS investigation, including expediting the analysis of potentially contaminated medical devices. The PTP is an example of the FDA proactively developing test methods and disease surveillance methods geared toward protecting the public's health. Financial Disclosure(s): The authors have no proprietary or commercial interest in any materials discussed in this article. Ophthalmology 2012;xx:xxx (C) 2012 by the American Academy of Ophthalmology. C1 [Eydelman, Malvina B.; Tarver, Michelle E.; Calogero, Don; Alexander, Kesia Y.] US FDA, Ctr Devices & Radiol Hlth, Off Device Evaluat, Div Ophthalm Neurol & Ear Nose & Throat Devices, Silver Spring, MD USA. [Buchen, Shelley Y.] US FDA, ORISE, Silver Spring, MD USA. RP Eydelman, MB (reprint author), 10903 New Hampshire Ave, Silver Spring, MD 20993 USA. EM malvina.eydelman@fda.hhs.gov FU FDA (Silver Spring, MD) FX The FDA (Silver Spring, MD) funded this work. The FDA personnel participated in designing and conducting the study; collecting, managing, analyzing, and interpreting data; and preparing and reviewing the manuscript. NR 41 TC 10 Z9 11 U1 2 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0161-6420 J9 OPHTHALMOLOGY JI Ophthalmology PD JUL PY 2012 VL 119 IS 7 DI 10.1016/j.ophtha.2012.04.008 PG 6 WC Ophthalmology SC Ophthalmology GA 968UQ UT WOS:000306011000009 PM 22578447 ER PT J AU Shields, EA AF Shields, Eric A. TI Phase diversity with undersampled systems via superresolution preprocessing SO OPTICS LETTERS LA English DT Article ID RETRIEVAL ALGORITHMS; IMAGE-RECONSTRUCTION AB Phase diversity algorithms allow a wavefront to be reconstructed from through-focus measurements of a point source or extended scene. These algorithms have traditionally been limited to systems that are Nyquist sampled. Many optical systems for remote sensing applications are designed to be undersampled, however. One approach to phase diversity with undersampled systems is to employ superresolution techniques to first create properly sampled scenes. This is demonstrated experimentally for a point object, but is applicable to extended scenes as well. (C) 2012 Optical Society of America C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shields, EA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM eashiel@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 17 TC 1 Z9 1 U1 1 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 1 PY 2012 VL 37 IS 13 BP 2463 EP 2465 PG 3 WC Optics SC Optics GA 970CN UT WOS:000306105800011 PM 22743422 ER PT J AU Chaudhery, V Lu, M Huang, CS Polans, J Tan, RM Zangar, RC Cunningham, BT AF Chaudhery, Vikram Lu, Meng Huang, Cheng-Sheng Polans, James Tan, Ruimin Zangar, Richard C. Cunningham, Brian T. TI Line-scanning detection instrument for photonic crystal enhanced fluorescence SO OPTICS LETTERS LA English DT Article ID EMISSION AB A laser line-scanning instrument was developed to optimize the near-field enhancement capability of a one-dimensional photonic crystal (PC) for excitation of surface-bound fluorophores. The excitation laser beam is shaped into an 8 mu m x 1 mm line that is focused along the direction of the PC grating, while remaining collimated perpendicular to the grating. Such a beam configuration offers high excitation power density while simultaneously providing high resonant coupling efficiency from the laser to the PC surface. Using a panel of 21 immunofluorescence assays on the PC surface in a microarray format, the approach achieves an enhancement factor as high as 90-fold between on-resonance and off-resonance illumination. The instrument provides a capability for sensitive and inexpensive analysis of cancer biomarkers in clinical applications. (C) 2012 Optical Society of America C1 [Chaudhery, Vikram; Lu, Meng; Huang, Cheng-Sheng; Polans, James; Cunningham, Brian T.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA. [Tan, Ruimin; Zangar, Richard C.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Cunningham, Brian T.] Univ Illinois, Dept Bioengn, Urbana, IL USA. RP Cunningham, BT (reprint author), Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA. EM bcunning@illinois.edu FU National Science Foundation [CBET 07-54122]; National Institutes of Health [R01 GM086382] FX This research was supported by the National Science Foundation (grant no. CBET 07-54122) and the National Institutes of Health (grant no. R01 GM086382). The first two authors contributed equally to this work. NR 13 TC 7 Z9 7 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 1 PY 2012 VL 37 IS 13 BP 2565 EP 2567 PG 3 WC Optics SC Optics GA 970CN UT WOS:000306105800045 PM 22743456 ER PT J AU Phillips, MC Taubman, MS AF Phillips, Mark C. Taubman, Matthew S. TI Intracavity sensing via compliance voltage in an external cavity quantum cascade laser SO OPTICS LETTERS LA English DT Article ID ABSORPTION-SPECTROSCOPY AB We demonstrate a technique for gas phase spectroscopy and sensing by detecting changes in compliance voltage of an external cavity quantum cascade laser due to intracavity absorption. The technique is characterized and used to measure the absorption spectrum of water vapor and Freon-134a. (C) 2012 Optical Society of America C1 [Phillips, Mark C.; Taubman, Matthew S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Phillips, MC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM mark.phillips@pnnl.gov FU Battelle Memorial Institute [DE-AC05-76RLO1830] FX Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract No. DE-AC05-76RLO1830. NR 18 TC 21 Z9 21 U1 2 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 1 PY 2012 VL 37 IS 13 BP 2664 EP 2666 PG 3 WC Optics SC Optics GA 970CN UT WOS:000306105800078 PM 22743488 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Sporting knowledge SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUL PY 2012 VL 25 IS 7 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 975SU UT WOS:000306532600023 ER PT J AU Wang, W Kravchenko, AN Smucker, AJM Liang, W Rivers, ML AF Wang, W. Kravchenko, A. N. Smucker, A. J. M. Liang, W. Rivers, M. L. TI Intra-aggregate Pore Characteristics: X-ray Computed Microtomography Analysis SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID SOIL ORGANIC-MATTER; IMAGE-ANALYSIS; SPATIAL-DISTRIBUTION; TILLAGE SYSTEMS; TOMOGRAPHY; DYNAMICS; QUANTIFICATION; MICROORGANISMS; STABILIZATION; FRACTIONATION AB Intra-aggregate pores play an important role in controlling soil processes on a micro-scale. Differences in parent materials, pedogenic processes, land use, and management practices can have a substantial effect on their characteristics. The goal of this study is to examine intra-aggregate pore characteristics using X-ray computed microtomography (mu CT) images in soils of two contrasting parent materials and of contrasting land use and management. In addition, to quantify pore characteristics in aggregate exterior and interior layers we have developed an approach for aggregate boundary delineation in mu CT images. Soil aggregates from a Hapludalf under Long Term Ecological Research conventional tillage treatment (LTER-CT) and native succession vegetation treatment (LTER-NS) in southwest Michigan, and from an Ustochrept under native succession vegetation and bare soil in northeast China were used. The LTER-CT aggregates had significantly greater macro-porosity (>14.6 mu m in diameter) than those of LTER-NS. The LTER-NS aggregates had more large pores (>97.5 mu m) and more small pores (<15 mu m) than LTER-CT aggregates, while more medium size pores (37.5-97.5 mu m) were found in LTER-CT aggregates. Greater abundance of medium sized pores in LTER-CT aggregates could be the cause of their reported lower stability and higher macro-aggregate turnover rate. The differences in pore size distributions between LTER-CT and LTER-NS were more pronounced in the aggregate interiors, as compared to the exterior layers. In aggregates from both studied soils large pores tended to prevail in the aggregate interiors while medium size pores (37.5-97.5 mu m) were more abundant in the aggregate exteriors. C1 [Kravchenko, A. N.; Smucker, A. J. M.] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. [Wang, W.] Vanderbilt Univ, Sch Med, Dept Biostat, Nashville, TN 37232 USA. [Liang, W.] Chinese Acad Sci, Soil Ecol Grp, Inst Appl Ecol, Shenyang 110016, Peoples R China. [Rivers, M. L.] Univ Chicago, Argonne Natl Lab, APS CARS CAT, Argonne, IL 60439 USA. RP Kravchenko, AN (reprint author), Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. EM kravche1@msu.edu RI Wang, Wei/F-6555-2011 FU National Research Initiative of the USDA Cooperative State Research, Education and Extension Service [32008-35102-04567]; NSF Long-Term Ecological Research Program at the Kellogg Biological Station; Michigan State University AgBioResearch FX The project was supported in part by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 32008-35102-04567. Support for this research was also provided by the NSF Long-Term Ecological Research Program at the Kellogg Biological Station and by Michigan State University AgBioResearch. We would like to thank Katerina Ananyeva and Andrew Worth for their help with image processing and analyses. NR 64 TC 22 Z9 22 U1 3 U2 67 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD JUL PY 2012 VL 76 IS 4 BP 1159 EP 1171 DI 10.2136/sssaj2011.0281 PG 13 WC Soil Science SC Agriculture GA 973JH UT WOS:000306355900004 ER PT J AU Cheng, CL Kang, M Perfect, E Voisin, S Horita, J Bilheux, HZ Warren, JM Jacobson, DL Hussey, DS AF Cheng, C. L. Kang, M. Perfect, E. Voisin, S. Horita, J. Bilheux, H. Z. Warren, J. M. Jacobson, D. L. Hussey, D. S. TI Average Soil Water Retention Curves Measured by Neutron Radiography SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID COMPUTED-TOMOGRAPHY; ABSORPTION; FLOW AB Water retention curves are essential for understanding the hydrologic behavior of partially saturated porous media and modeling flow and transport processes within the vadose zone. We directly measured the main drying and wetting branches of the average water retention function obtained using two-dimensional neutron radiography. Flint sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 by 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (similar to 10-15 matric potential values per experiment) at the National Institute of Standards and Technology Center for Neutron Research BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel-by-pixel basis using Beer-Lambert's law after taking into account beam hardening and geometric corrections. To account for silica attenuation and remove scattering effects at high water contents, the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (P < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve. C1 [Cheng, C. L.; Kang, M.; Perfect, E.] Univ Tennessee, Dep Earth & Planetary Sci, Knoxville, TN 37996 USA. [Voisin, S.; Bilheux, H. Z.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Horita, J.] Texas Tech Univ, Dep Geosci, Lubbock, TX 79409 USA. [Warren, J. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Jacobson, D. L.; Hussey, D. S.] Natl Inst Stand & Technol, Phys Measurement Lab, Gaithersburg, MD 20899 USA. RP Cheng, CL (reprint author), Univ Tennessee, Dep Earth & Planetary Sci, Knoxville, TN 37996 USA. EM ccheng7@utk.edu RI Bilheux, Hassina/H-4289-2012; Warren, Jeffrey/B-9375-2012; Cheng, Chu-Lin/G-3471-2013 OI Bilheux, Hassina/0000-0001-8574-2449; Warren, Jeffrey/0000-0002-0680-4697; Cheng, Chu-Lin/0000-0002-1900-463X FU Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory; Joint Directed Research and Development (JDRD) Program of the University of Tennessee UT-ORNL Science Alliance FX This Research was financially supported by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory and the Joint Directed Research and Development (JDRD) Program of the University of Tennessee UT-ORNL Science Alliance. We thank Keely Willis of the University of Wisconsin-Madison for her contributions made at the early stage of the image analyses. We acknowledge the support of the National Institute of Standards and Technology, U. S. Department of Commerce, in providing the neutron research facilities used in this work. NR 36 TC 5 Z9 5 U1 2 U2 20 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD JUL PY 2012 VL 76 IS 4 BP 1184 EP 1191 DI 10.2136/sssaj2011.0313 PG 8 WC Soil Science SC Agriculture GA 973JH UT WOS:000306355900006 ER PT J AU Santhanam, N Vivanco, JM Decker, SR Reardon, KF AF Santhanam, Navaneetha Vivanco, Jorge M. Decker, Stephen R. Reardon, Kenneth F. TI Response to P.K. et al.: Bacterial laccases still have a case SO TRENDS IN BIOTECHNOLOGY LA English DT Letter C1 [Santhanam, Navaneetha; Reardon, Kenneth F.] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA. [Santhanam, Navaneetha; Vivanco, Jorge M.] Colorado State Univ, Dept Hort & Landscape Architecture, Ft Collins, CO 80523 USA. [Decker, Stephen R.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA. RP Reardon, KF (reprint author), Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA. EM kenneth.reardon@colostate.edu RI Reardon, Kenneth/A-1952-2016 OI Reardon, Kenneth/0000-0002-7753-4049 NR 6 TC 0 Z9 0 U1 1 U2 9 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD JUL PY 2012 VL 30 IS 7 BP 362 EP 363 DI 10.1016/j.tibtech.2012.04.007 PG 2 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 971HR UT WOS:000306195300002 ER PT J AU Kovalevsky, AY Johnson, H Hanson, BL Waltman, MJ Fisher, SZ Taylor, S Langan, P AF Kovalevsky, Andrey Y. Johnson, Hanna Hanson, B. Leif Waltman, Mary Jo Fisher, S. Zoe Taylor, Susan Langan, Paul TI Low- and room-temperature X-ray structures of protein kinase A ternary complexes shed new light on its activity SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID CATALYTIC SUBUNIT; PEPTIDE INHIBITOR; CRYSTAL-STRUCTURE; PHOSPHORYL-TRANSFER; NMR SYSTEM; ADENOSINE; MECHANISM; SITE; DYNAMICS; ATP AB Post-translational protein phosphorylation by protein kinase A (PKA) is a ubiquitous signalling mechanism which regulates many cellular processes. A low-temperature X-ray structure of the ternary complex of the PKA catalytic subunit (PKAc) with ATP and a 20-residue peptidic inhibitor (IP20) at the physiological Mg2+ concentration of similar to 0.5 mM (LT PKA-MgATP-IP20) revealed a single metal ion in the active site. The lack of a second metal in LT PKA-MgATP-IP20 renders the beta- and gamma-phosphoryl groups of ATP very flexible, with high thermal B factors. Thus, the second metal is crucial for tight positioning of the terminal phosphoryl group for transfer to a substrate, as demonstrated by comparison of the former structure with that of the LT PKA-Mg2ATP-IP20 complex obtained at high Mg2+ concentration. In addition to its kinase activity, PKAc is also able to slowly catalyze the hydrolysis of ATP using a water molecule as a substrate. It was found that ATP can be readily and completely hydrolyzed to ADP and a free phosphate ion in the crystals of the ternary complex PKA-Mg2ATP-IP20 by X-ray irradiation at room temperature. The cleavage of ATP may be aided by X-ray-generated free hydroxyl radicals, a very reactive chemical species, which move rapidly through the crystal at room temperature. The phosphate anion is clearly visible in the electron-density maps; it remains in the active site but slides about 2 angstrom from its position in ATP towards Ala21 of IP20, which mimics the phosphorylation site. The phosphate thus pushes the peptidic inhibitor away from the product ADP, while resulting in dramatic conformational changes of the terminal residues 24 and 25 of IP20. X-ray structures of PKAc in complex with the nonhydrolysable ATP analogue AMP-PNP at both room and low temperature demonstrated no temperature effects on the conformation and position of IP20. C1 [Kovalevsky, Andrey Y.; Johnson, Hanna; Waltman, Mary Jo; Fisher, S. Zoe] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Hanson, B. Leif] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Taylor, Susan] Univ San Diego, Dept Chem, La Jolla, CA 92093 USA. [Taylor, Susan] Univ San Diego, Dept Biochem, La Jolla, CA 92093 USA. [Taylor, Susan] Univ San Diego, Dept Pharmacol, La Jolla, CA 92093 USA. [Langan, Paul] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Kovalevsky, AY (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663,MS M888, Los Alamos, NM 87545 USA. EM ayk@lanl.gov RI Hanson, Bryant Leif/F-8007-2010; Langan, Paul/N-5237-2015; OI Hanson, Bryant Leif/0000-0003-0345-3702; Langan, Paul/0000-0002-0247-3122; Kovalevsky, Andrey/0000-0003-4459-9142 FU UCOP; DOE-OBER; NIH-NIGMS [1R01GM071939-01]; NSF [446218] FX ST, PL, HJ and AYK were partly supported by a UCOP grant. AYK, HJ, MJW and SZF were partly supported by a DOE-OBER grant to the neutron Protein Crystallography Station at LANSCE. PL was partly supported by an NIH-NIGMS-funded consortium (1R01GM071939-01) between ORNL and LBNL to develop computational tools for neutron protein crystallography. BLH was supported by NSF 446218. NR 34 TC 15 Z9 15 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD JUL PY 2012 VL 68 BP 854 EP 860 DI 10.1107/S0907444912014886 PN 7 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 968HN UT WOS:000305968400014 PM 22751671 ER PT J AU Terwilliger, TC Read, RJ Adams, PD Brunger, AT Afonine, PV Grosse-Kunstleve, RW Hung, LW AF Terwilliger, Thomas C. Read, Randy J. Adams, Paul D. Brunger, Axel T. Afonine, Pavel V. Grosse-Kunstleve, Ralf W. Hung, Li-Wei TI Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID MACROMOLECULAR CRYSTAL-STRUCTURES; MOLECULAR-REPLACEMENT; MAXIMUM-LIKELIHOOD; LOW-RESOLUTION; DIFFRACTION DATA; RIGID-BODY; BIAS; FEATURES; ARP/WARP; PHENIX AB An approach is presented for addressing the challenge of model rebuilding after molecular replacement in cases where the placed template is very different from the structure to be determined. The approach takes advantage of the observation that a template and target structure may have local structures that can be superimposed much more closely than can their complete structures. A density-guided procedure for deformation of a properly placed template is introduced. A shift in the coordinates of each residue in the structure is calculated based on optimizing the match of model density within a 6 angstrom radius of the center of that residue with a prime-and-switch electron-density map. The shifts are smoothed and applied to the atoms in each residue, leading to local deformation of the template that improves the match of map and model. The model is then refined to improve the geometry and the fit of model to the structure-factor data. A new map is then calculated and the process is repeated until convergence. The procedure can extend the routine applicability of automated molecular replacement, model building and refinement to search models with over 2 angstrom r.m.s.d. representing 65-100% of the structure. C1 [Terwilliger, Thomas C.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Terwilliger, Thomas C.] Los Alamos Natl Lab, Los Alamos Inst, Los Alamos, NM 87545 USA. [Read, Randy J.] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Cambridge CB2 0XY, England. [Adams, Paul D.; Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brunger, Axel T.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Brunger, Axel T.] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA. [Brunger, Axel T.] Stanford Univ, Dept Neurol Sci, Stanford, CA 94305 USA. [Brunger, Axel T.] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA. [Hung, Li-Wei] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Terwilliger, TC (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM terwilliger@lanl.gov RI Read, Randy/L-1418-2013; Terwilliger, Thomas/K-4109-2012; Adams, Paul/A-1977-2013; OI Read, Randy/0000-0001-8273-0047; Terwilliger, Thomas/0000-0001-6384-0320; Adams, Paul/0000-0001-9333-8219; Brunger, Axel/0000-0001-5121-2036; Hung, Li-Wei/0000-0001-6690-8458 FU NIH [P01GM063210]; Wellcome Trust (UK) FX The authors are most grateful for the use of crystallographic data supplied by Alex Wlodawer (NCI), Herb Axelrod and Debanu Das (Joint Center for Structural Genomics), Gustav Oberdorfer and Ulrike Wagner (University of Graz), Eugene Valkov (University of Cambridge), Assaf Alon and Deborah Fass (Weizmann Institute of Science), Sergey M. Vorobiev (Northeast Center for Structural Genomics), Hideo Iwai (University of Helsinki) and P. Raj Pokkuluri (Argonne National Laboratory). The authors would like to thank the NIH (Grant No. P01GM063210 to PDA, TCT and RJR) and the HHMI (ATB) for generous support. RJR is supported by a Principal Research Fellowship from the Wellcome Trust (UK). The phenix.morph_model tool that can carry out morphing and instructions for its use are available as part of Phenix (http://www.phenix-online.org). NR 58 TC 19 Z9 19 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD JUL PY 2012 VL 68 BP 861 EP 870 DI 10.1107/S0907444912015636 PN 7 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 968HN UT WOS:000305968400015 PM 22751672 ER PT J AU Little, DJ Whitney, JC Robinson, H Yip, P Nitz, M Howell, PL AF Little, Dustin J. Whitney, John C. Robinson, Howard Yip, Patrick Nitz, Mark Howell, P. Lynne TI Combining in situ proteolysis and mass spectrometry to crystallize Escherichia coli PgaB SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID DIFFRACTION; BIOFILMS AB The periplasmic poly-beta-1,6-N-acetyl-d-glucosamine (PNAG) de-N-acetylase PgaB from Escherichia coli was overexpressed and purified, but was recalcitrant to crystallization. Use of the in situ proteolysis technique produced crystals of PgaB, but these crystals could not be optimized for diffraction studies. By analyzing the initial crystal hits using SDS-PAGE and mass spectrometry, the boundaries of the protein species that crystallized were determined. The re-engineered protein target crystallized reproducibly without the addition of protease and with significantly increased crystal quality. Crystals of the selenomethionine-incorporated protein exhibited the symmetry of space group P2(1)2(1)2(1) and diffracted to 2.1 angstrom resolution. C1 [Little, Dustin J.; Whitney, John C.; Yip, Patrick; Howell, P. Lynne] Hosp Sick Children, Program Mol Struct & Funct, Toronto, ON M5G 1X8, Canada. [Little, Dustin J.; Whitney, John C.; Howell, P. Lynne] Univ Toronto, Fac Med, Dept Biochem, Toronto, ON M5S 1A8, Canada. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Nitz, Mark] Univ Toronto, Fac Arts & Sci, Dept Chem, Toronto, ON M5S 3H6, Canada. RP Howell, PL (reprint author), Hosp Sick Children, Program Mol Struct & Funct, 555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM howell@sickkids.ca FU Canadian Institutes of Health Research (CIHR) [43998, 259362]; University of Toronto; Natural Sciences and Engineering Research Council of Canada; Cystic Fibrosis Canada; Ontario Graduate Scholarship Program; Hospital for Sick Children Foundation Student Scholarship Program FX The authors would like to thank Dr Tony Romeo for the gift of the pCRpgaB plasmid and Drs Yura Lobsanov, Joel Weadge and Trevor Moraes for helpful discussions. This work was supported by research grants from the Canadian Institutes of Health Research (CIHR; Nos. 43998 and 259362 to PLH and MN, respectively). DJL and JCW have been supported by graduate scholarships from the University of Toronto and from the Natural Sciences and Engineering Research Council of Canada, Cystic Fibrosis Canada, the Ontario Graduate Scholarship Program and The Hospital for Sick Children Foundation Student Scholarship Program, respectively. PLH is the recipient of a Canada Research Chair. Beamline X29 at the National Synchrotron Light Source is supported by the United States Department of Energy Office of Biological and Environmental Research and the National Institutes of Health National Centre for Research Resources. NR 10 TC 8 Z9 8 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JUL PY 2012 VL 68 BP 842 EP 845 DI 10.1107/S1744309112022075 PN 7 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 968HC UT WOS:000305967100028 PM 22750880 ER PT J AU Muth, DJ McCorkle, DS Koch, JB Bryden, KM AF Muth, D. J., Jr. McCorkle, D. S. Koch, J. B. Bryden, K. M. TI Modeling Sustainable Agricultural Residue Removal at the Subfield Scale SO AGRONOMY JOURNAL LA English DT Article ID DIGITAL ELEVATION MODEL; CORN STOVER; SOIL PROPERTIES; PRECISION AGRICULTURE; GRAIN-YIELD; CROP YIELD; PREDICTION; METHODOLOGY; TOPOGRAPHY; WATER AB This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue. C1 [Muth, D. J., Jr.; Koch, J. B.] Idaho Natl Lab, Biofuels & Renewable Energy Technol Dep, Idaho Falls, ID 83415 USA. [McCorkle, D. S.; Bryden, K. M.] Ames Lab, Simulat Modeling & Decis Sci Program, Ames, IA 50011 USA. RP Muth, DJ (reprint author), Idaho Natl Lab, Biofuels & Renewable Energy Technol Dep, POB 1625, Idaho Falls, ID 83415 USA. EM David.Muth@inl.gov RI Bryden, Kenneth/G-6918-2012 FU DOE's Office of Biomass Programs; Sun Grant Initiative through the Biomass Regional Feedstock Partnership; Monsanto FX This work was funded in part by the DOE's Office of Biomass Programs. We gratefully acknowledge the significant support from all partners in the DOE Biomass Regional Feedstock Partnership Program. We also gratefully acknowledge support from Monsanto and Mike Edgerton for providing data and funding to execute the study analyses. We also gratefully acknowledge David Muth, Sr., for providing study data. Professor Bryden gratefully acknowledges the funding support of the Sun Grant Initiative through the Biomass Regional Feedstock Partnership. NR 47 TC 26 Z9 26 U1 0 U2 16 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0002-1962 J9 AGRON J JI Agron. J. PD JUL-AUG PY 2012 VL 104 IS 4 BP 970 EP 981 DI 10.2134/agronj2012.0024 PG 12 WC Agronomy SC Agriculture GA 968DS UT WOS:000305957800014 ER PT J AU Burgers, WA Manrique, A Masopust, D McKinnon, LR Reynolds, MR Rolland, M Blish, C Chege, GK Curran, R Fischer, W Herrera, C Sather, DN AF Burgers, Wendy A. Manrique, Amapola Masopust, David McKinnon, Lyle R. Reynolds, Matthew R. Rolland, Morgane Blish, Catherine Chege, Gerald K. Curran, Rhonda Fischer, William Herrera, Carolina Sather, D. Noah TI Measurements of Immune Responses for Establishing Correlates of Vaccine Protection Against HIV SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Article ID HIV-1/SIV CHIMERIC VIRUS; T-CELL RESPONSES; RHESUS MACAQUES; ANTIBODY ACTIVITIES; MALE CIRCUMCISION; DOUBLE-BLIND; INFECTION; EFFICACY; TRIAL; MONKEYS AB Well-defined correlates of protective immunity are an essential component of rational vaccine development. Despite years of basic science and three HIV vaccine efficacy trials, correlates of immunological protection from HIV infection remain undefined. In December 2010, a meeting of scientists engaged in basic and translational work toward developing HIV-1 vaccines was convened. The goal of this meeting was to discuss current opportunities and optimal approaches for defining correlates of protection, both for ongoing and future HIV-1 vaccine candidates; specific efforts were made to engage young scientists. We discuss here the highlights from the meeting regarding the progress made and the way forward for a protective HIV-1 vaccine. C1 [Masopust, David] Univ Minnesota, Sch Med, Dept Microbiol, Ctr Immunol, Minneapolis, MN 55455 USA. [Burgers, Wendy A.; Chege, Gerald K.] Univ Cape Town, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. [Burgers, Wendy A.; Chege, Gerald K.] Univ Cape Town, Div Med Virol, ZA-7925 Cape Town, South Africa. [Manrique, Amapola] Global HIV Vaccine Enterprise, New York, NY USA. [McKinnon, Lyle R.] Univ Toronto, Dept Med, Toronto, ON, Canada. [McKinnon, Lyle R.] Univ Nairobi, Dept Med Microbiol, Nairobi, Kenya. [Reynolds, Matthew R.] Univ Wisconsin, AIDS Vaccine Res Lab, Madison, WI USA. [Rolland, Morgane] US Mil HIV Res Program, Rockville, MD USA. [Blish, Catherine] Stanford Univ, Dept Med, Div Infect Dis & Geog Med, Stanford, CA 94305 USA. [Curran, Rhonda] Univ Ulster, Sch Nursing, Inst Nursing Res, Coleraine, Londonderry, North Ireland. [Fischer, William] Los Alamos Natl Lab, Grp T6, Los Alamos, NM USA. [Herrera, Carolina] Univ London Imperial Coll Sci Technol & Med, Fac Med, Infect Dis Sect, London, England. [Sather, D. Noah] Seattle Biomed Res Inst, Seattle, WA 98109 USA. RP Masopust, D (reprint author), Univ Minnesota, Sch Med, Dept Microbiol, Ctr Immunol, 2641 Campus Delivery,2101 6th St SE, Minneapolis, MN 55455 USA. EM masopust@umn.edu OI Fischer, Will/0000-0003-4579-4062; Burgers, Wendy/0000-0003-3396-9398 FU Global HIV Vaccine Enterprise; OCTAVE Project; Bill and Melinda Gates Foundation; NIH Office for AIDS Research FX We would like to acknowledge the assistance of Galit Alter, Guido Ferrari, Jonathan Fuchs, Clive Gray, Rick Koup, Penny Moore, and Mark Slifka for running the workshop on Correlates of Vaccine Protection, and guidance in preparing the manuscript. Many thanks to the presenters at this workshop, Galit Alter, Victor Appay, Linda-Gail Bekker, Jake Estes, Nicole Frahm, Genoveffa Franchini, Paul Goepfert, Nilu Goo-netilleke, Barton Haynes, R. Paul Johnson, Chitraporn Karnasuta, Brandon Keele, Anthony Kelleher, Jerome Kim, Bette Korber, Jeff Lifson, Julie McElrath, Jim Mullins, Mario Roederer, Quentin Sattentau, Robin Shattock, and Georgia Tomaras. Finally, we thank the Global HIV Vaccine Enterprise and the OCTAVE Project for funding and organizing the Correlates of Vaccine Protection workshop for Young and Early Career Investigators; the Bill and Melinda Gates Foundation and the NIH Office for AIDS Research for funding the succeeding Correlates of Vaccine Protection meeting and Bonnie Mathieson, Jose Esparza, and Alan Bernstein for their contributions to the Scientific Committee of the meeting. W.A.B., A.M., D.M., L.R.M., M.R.R., and M.R. are the primary contributors to the article. NR 47 TC 6 Z9 6 U1 0 U2 7 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD JUL PY 2012 VL 28 IS 7 BP 641 EP 648 DI 10.1089/aid.2011.0239 PG 8 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 966BF UT WOS:000305810900002 PM 21861777 ER PT J AU Son, YH Lee, JK Soong, Y Martello, D Chyu, MK AF Son, You-Hwan Lee, Jung-Kun Soong, Yee Martello, Donald Chyu, Minking K. TI Heterostructured zero valent iron-montmorillonite nanohybrid and their catalytic efficacy SO APPLIED CLAY SCIENCE LA English DT Article DE Clay; Nanohybrid; Catalytist; Zero-valent Fe; Nanoparticle ID OXIDE NANOPARTICLES; PHASE-TRANSFER; CLAY; NANOCRYSTALS; HEMATITE; LATTICE; WATER AB Nanohybrid catalysts that comprised montmorillonite (Mt) matrix and embedded zero-valent Fe nanoparticle are presented. In this process, clay particles are used as 2-dimensional template that induce the growth of intercalated nanomaterials. Fe polycations are first embedded within the interlayer space and then reduced to Fe nanoparticles through thermal annealing in reducing atmosphere. Structural studies using electron microscopy and high energy X-ray show that the intercalated status of the polycations dictates the crystal structure, shape and size of final Fe compound particles. The magnetic property and caltalytic efficacy of hybrid particles have been verified using magnetometer measurement and Fenton reaction. Hybrized alpha-Fe nanoparticles show high magnetization inherent to zero valent Fe, and high catalytic efficacy in decomposing Rhodamine B due to their zero valency and large surface areas. This simple synthesis process of stable iron nanoparticle without organic agents will be beneficial for large scale production of highly effective catalysts exploiting controlled phase and shape of embedded nanoparticles. (C) 2012 Elsevier B.V. All rights reserved. C1 [Son, You-Hwan; Lee, Jung-Kun; Chyu, Minking K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Soong, Yee; Martello, Donald] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Lee, JK (reprint author), Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. EM jul37@pitt.edu FU U.S. Department of Energy FX This work was supported by the U.S. Department of Energy. The authors wish to thank Dr. Prashant Kumta and Dr. Abhijit Roy for measuring nitrogen adsorption and desorption. NR 28 TC 6 Z9 7 U1 4 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 J9 APPL CLAY SCI JI Appl. Clay Sci. PD JUL PY 2012 VL 62-63 BP 21 EP 26 DI 10.1016/j.clay.2012.04.003 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA 969BV UT WOS:000306031600004 ER PT J AU Moro, EA Todd, MD Puckett, AD AF Moro, Erik A. Todd, Michael D. Puckett, Anthony D. TI Dynamics of a noncontacting, white light Fabry-Perot interferometric displacement sensor SO APPLIED OPTICS LA English DT Article ID CAVITIES AB A white light extrinsic Fabry-Perot interferometer is implemented as a noncontacting displacement sensor, providing robust, absolute displacement measurements with micrometer accuracy at a sampling rate of 10 Hz. This paper presents a dynamic model of the sensing cavity between the sensor probe and the nearby target surface using a Fabry-Perot etalon approach obtained from straightforward electromagnetic field formulations. Such a model is important for system characterization, as the dynamically changing cavity length imparts a Doppler shift on any signals circulating within the sensing cavity. Contrary to previously published results, Doppler-induced shifting within the low-finesse sensing cavity is shown to significantly distort the measurement signal as recorded by the sensor. Experimental and simulation results are compared, and the direct effects of cavity dynamics on the measurement signal are analyzed along with their indirect impact on sensor performance. This document has been approved by Los Alamos National Laboratory for unlimited public release (LA-UR 12-00301). (C) 2012 Optical Society of America C1 [Moro, Erik A.; Todd, Michael D.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. [Moro, Erik A.; Puckett, Anthony D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moro, EA (reprint author), Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. EM moro@lanl.gov NR 10 TC 4 Z9 5 U1 0 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 1 PY 2012 VL 51 IS 19 BP 4394 EP 4402 DI 10.1364/AO.51.004394 PG 9 WC Optics SC Optics GA 970AI UT WOS:000306100100017 PM 22772112 ER PT J AU Kangas, LJ Metz, TO Isaac, G Schrom, BT Ginovska-Pangovska, B Wang, LN Tan, L Lewis, RR Miller, JH AF Kangas, Lars J. Metz, Thomas O. Isaac, Giorgis Schrom, Brian T. Ginovska-Pangovska, Bojana Wang, Luning Tan, Li Lewis, Robert R. Miller, John H. TI In silico identification software (ISIS): a machine learning approach to tandem mass spectral identification of lipids SO BIOINFORMATICS LA English DT Article ID INDUCED DISSOCIATION SPECTRA; INTERNAL ENERGY-DISTRIBUTION; ELECTROSPRAY-IONIZATION; MONTE-CARLO; ION-TRAP; SPECTROMETRY; PEPTIDES; FRAGMENTATION; EXTRACTION; DATABASE AB Motivation: Liquid chromatography-mass spectrometry-based metabolomics has gained importance in the life sciences, yet it is not supported by software tools for high throughput identification of metabolites based on their fragmentation spectra. An algorithm (ISIS: in silico identification software) and its implementation are presented and show great promise in generating in silico spectra of lipids for the purpose of structural identification. Instead of using chemical reaction rate equations or rules-based fragmentation libraries, the algorithm uses machine learning to find accurate bond cleavage rates in a mass spectrometer employing collision-induced dissociation tandem mass spectrometry. Results: A preliminary test of the algorithm with 45 lipids from a subset of lipid classes shows both high sensitivity and specificity. C1 [Kangas, Lars J.] Pacific NW Natl Lab, Computat & Stat Analyt Div, Richland, WA 99352 USA. [Metz, Thomas O.; Isaac, Giorgis] Pacific NW Natl Lab, Biol Sci Div, Richland, WA 99352 USA. [Schrom, Brian T.] Pacific NW Natl Lab, Chem Biol & Phys Sci Div, Richland, WA 99352 USA. [Ginovska-Pangovska, Bojana] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Wang, Luning; Tan, Li; Lewis, Robert R.; Miller, John H.] Washington State Univ, Sch Elect Engn & Comp Sci, Richland, WA 99354 USA. RP Kangas, LJ (reprint author), Pacific NW Natl Lab, Computat & Stat Analyt Div, Richland, WA 99352 USA. EM lars.kangas@pnnl.gov OI Metz, Tom/0000-0001-6049-3968 FU U.S. Department of Energy (DOE) Office of Biological and Environmental Research; DOE [DE-AC06-76RL0-1830]; Pacific Northwest National Laboratory's Laboratory Directed Research and Development Program; National Institute of Diabetes and Digestive and Kidney Diseases [DK071283]; National Institute of Allergy and Infectious Diseases [HHSN272200800060C, U54AI081680]; U.S. Department of Energy FX Experimental work was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under Contract No. DE-AC06-76RL0-1830.; Funding: This work was supported by the Pacific Northwest National Laboratory's Laboratory Directed Research and Development Program. Additional support for portions of this work was provided by the National Institute of Diabetes and Digestive and Kidney Diseases (Grant DK071283); and the National Institute of Allergy and Infectious Diseases (Contract No. HHSN272200800060C and Award Number U54AI081680); and the Low Dose Radiation Research Program of the U.S. Department of Energy. NR 43 TC 21 Z9 21 U1 5 U2 23 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JUL 1 PY 2012 VL 28 IS 13 BP 1705 EP 1713 DI 10.1093/bioinformatics/bts194 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 966GJ UT WOS:000305825600006 PM 22592377 ER PT J AU Cardinale, S Arkin, AP AF Cardinale, Stefano Arkin, Adam Paul TI Contextualizing context for synthetic biology - identifying causes of failure of synthetic biological systems SO BIOTECHNOLOGY JOURNAL LA English DT Review DE Complexity; Context; Environment; Gene expression; Synthetic biology ID PROGRAMMED POPULATION-CONTROL; ESCHERICHIA-COLI; GENE-EXPRESSION; RNA-POLYMERASE; LOGIC GATES; COPY NUMBER; PROTEIN; NETWORKS; DESIGN; GROWTH AB Despite the efforts that bioengineers have exerted in designing and constructing biological processes that function according to a predetermined set of rules, their operation remains fundamentally circumstantial. The contextual situation in which molecules and single-celled or multi-cellular organisms find themselves shapes the way they interact, respond to the environment and process external information. Since the birth of the field, synthetic biologists have had to grapple with contextual issues, particularly when the molecular and genetic devices inexplicably fail to function as designed when tested in vivo. In this review, we set out to identify and classify the sources of the unexpected divergences between design and actual function of synthetic systems and analyze possible methodologies aimed at controlling, if not preventing, unwanted contextual issues. C1 [Cardinale, Stefano; Arkin, Adam Paul] Univ Calif Berkeley, Phys Biosci Div, LBNL, Dept Bioengn, Berkeley, CA 94720 USA. RP Arkin, AP (reprint author), EO Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS Stanley 922, Berkeley, CA 94720 USA. EM aparkin@lbl.gov RI Cardinale, Stefano/F-4024-2014; Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Cardinale, Stefano/0000-0003-4357-9246 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX The authors would like to thank Jeffrey Skerker, Chang Liu and Vivek Mutalik for proofreading and commenting the manuscript. The work described in this report was funded by the Laboratory Directed Research and Development program titled: "Predictive High-Throughput Assembly of Synthetic Biological Systems: From Gene Expression to Carbon Sequestration" of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. NR 76 TC 90 Z9 90 U1 1 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1860-6768 J9 BIOTECHNOL J JI Biotechnol. J. PD JUL PY 2012 VL 7 IS 7 SI SI BP 856 EP 866 DI 10.1002/biot.201200085 PG 11 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 967EA UT WOS:000305888000011 PM 22649052 ER PT J AU Dubois, PF AF Dubois, Paul F. TI TESTING SCIENTIFIC PROGRAMS SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material AB The Automated Testing System (ATS) is an open source, Python-based tool for automating the testing of applications, especially scientific simulations. It's especially designed to support the work of a team of subject-matter experts. C1 [Dubois, Paul F.] LLNL, Livermore, CA USA. EM pfdubois@gmail.com NR 0 TC 6 Z9 6 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD JUL-AUG PY 2012 VL 14 IS 4 BP 69 EP 73 PG 5 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 969DU UT WOS:000306036700011 ER PT J AU Stefaniak, TR Dahlberg, JA Bean, BW Dighe, N Wolfrum, EJ Rooney, WL AF Stefaniak, Thomas R. Dahlberg, Jeffery A. Bean, Brent W. Dighe, Nilesh Wolfrum, Edward J. Rooney, William L. TI Variation in Biomass Composition Components among Forage, Biomass, Sorghum-Sudangrass, and Sweet Sorghum Types SO CROP SCIENCE LA English DT Article ID DRY-MATTER DISAPPEARANCE; ETHANOL-PRODUCTION; FEEDSTOCK; FIBER; QUALITY; STEM AB Alternative biomass sources must be developed if the United States is to meet the goal in the U. S. Energy Security Act of 2007 to derive 30% of its petroleum from renewable sources, and several different biomass crops are currently in development. Sorghum [Sorghum bicolor (L.) Moench] is one such crop that will be an important feedstock source for biofuel production. As composition influences productivity, there exists a need to understand the range in composition observed within the crop. The goal of this research was to assess the range in dietary fiber composition observed within different types of biomass sorghums. A total of 152 sorghum samples were divided into the four end-use types of sorghum: biomass, forage, sorghum-sudangrass, and sweet. These samples were analyzed chemically using dietary fiber analysis performed at the National Renewable Energy Laboratory using published protocols. Significant variation among the groups was detected for glucan and ash. Positive and highly significant correlations were detected between structural carbohydrates in the biomass and sweet sorghums while many of these correlations were negative or not significant in the forage and sorghum-sudangrass types. In addition, a wide range of variation was present within each group indicating that there is potential to manipulate the composition of the crop. C1 [Stefaniak, Thomas R.; Rooney, William L.] Texas A&M Univ, Dep Soil & Crop Sci, College Stn, TX 77843 USA. [Dahlberg, Jeffery A.] Kearney Res & Extens Ctr, Parlier, CA 93648 USA. [Bean, Brent W.] Texas Agrilife Res & Extens Ctr, Amarillo, TX 79106 USA. [Dighe, Nilesh] Monsanto Texas Cotton Breeding & Technol Ctr, Lubbock, TX 79403 USA. [Wolfrum, Edward J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Rooney, WL (reprint author), Texas A&M Univ, Dep Soil & Crop Sci, College Stn, TX 77843 USA. EM wlr@tamu.edu OI Wolfrum, Edward/0000-0002-7361-8931 NR 22 TC 13 Z9 13 U1 2 U2 29 PU CROP SCIENCE SOC AMER PI MADISON PA 677 S SEGOE ROAD, MADISON, WI 53711 USA SN 0011-183X J9 CROP SCI JI Crop Sci. PD JUL PY 2012 VL 52 IS 4 BP 1949 EP 1954 DI 10.2135/cropsci2011.10.0534 PG 6 WC Agronomy SC Agriculture GA 965YY UT WOS:000305804900048 ER PT J AU Guo, XL Wang, L Green, MA AF Guo, X. L. Wang, L. Green, M. A. TI Coupled transient thermal and electromagnetic finite element analysis of quench in MICE coupling magnet SO CRYOGENICS LA English DT Article DE Superconducting magnets; Quench; Quench back; Finite element analysis ID SIMULATION; DESIGN; PROTECTION; ANSYS; BACK AB The superconducting coupling magnet used for the international Muon Ionization Cooling Experiment (MICE) will be passively protected through coil subdivision and quench back simultaneously. The design of such type quench protection system requires detailedly understanding of the heat transfer and electromagnetic process in the magnet during quench process. A coupled transient thermal and electromagnetic finite element model was developed to study the quench process of the coupling magnet. This model sequentially solves two different physics environments, one is thermal physics environment and the other one is coupled-electromagnetic-circuit physics environment. The two environments are coupled by applying results from one environment as loads in another one. The results such as current, hot spot temperature, resistance and over voltage during quench process are presented. The results of this model were compared with that of a semi-empirical model, and the respective advantages of both models were pointed out. The quench propagation process in the coupling magnet and the effect of the quench back on the speeding up the quench process were analyzed. The goal of such work is to predict the quench evolution of the coupling magnet in detail and guide its protection scheme. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Guo, X. L.] Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China. [Wang, L.] Shanghai Inst Appl Phys, Shanghai 201204, Peoples R China. [Green, M. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Guo, XL (reprint author), Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China. EM guoxl@ujs.edu.cn FU Research Foundation of Jiangsu University [11JDG042] FX This wok is supported by the Research Foundation of Jiangsu University under Contract No. 11JDG042. NR 21 TC 2 Z9 2 U1 2 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD JUL-SEP PY 2012 VL 52 IS 7-9 BP 420 EP 427 DI 10.1016/j.cryogenics.2012.04.003 PG 8 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 969CO UT WOS:000306033500016 ER PT J AU Bracco, JN Grantham, MC Stack, AG AF Bracco, Jacquelyn N. Grantham, Meg C. Stack, Andrew G. TI Calcite Growth Rates As a Function of Aqueous Calcium-to-Carbonate Ratio, Saturation Index, and Inhibitor Concentration: Insight into the Mechanism of Reaction and Poisoning by Strontium SO CRYSTAL GROWTH & DESIGN LA English DT Article ID CULTURED BENTHIC FORAMINIFERA; IN-SITU AFM; CRYSTAL-GROWTH; PLANKTONIC-FORAMINIFERA; SOLUTION STOICHIOMETRY; ION CONCENTRATION; SR INCORPORATION; KINETICS; SURFACE; PRECIPITATION AB Using in situ atomic force microscopy, the growth rates of the obtuse and acute step orientations on the {10 (1) over bar4} calcite surface were measured at two saturation indices as a function of the aqueous calcium-to-carbonate ratio and aqueous strontium concentration. The amount of strontium required to inhibit growth was found to correlate with the aqueous calcium concentration, but did not correlate with carbonate, suggesting that strontium inhibits attachment of calcium ions to reactive sites on the calcite surface. Strontium/calcium cation exchange selectivity coefficients, K-ex, are estimated at 1.09 +/- 0.09 and 1.44 +/- 0.19 for reactive sites on the obtuse and acute step orientations, respectively. The implication of this work is that, to avoid poisoning calcite growth, the concentration of calcium should be higher than the quotient of the strontium concentration and K-ex, regardless of the saturation index. Previous analytical models of nucleation of kink sites on steps are expanded to include growth rates at multiple saturation indices and the effect of strontium. The rate constants for calcium attachment are found to be similar for the two step orientations, but those of carbonate vary significantly. This work will have implications for natural or engineered calcite growth, such as to sequester subsurface strontium contamination. C1 [Bracco, Jacquelyn N.; Stack, Andrew G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Bracco, Jacquelyn N.; Grantham, Meg C.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Stack, AG (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM stackag@ornl.gov RI Stack, Andrew/D-2580-2013; OI Stack, Andrew/0000-0003-4355-3679; Bracco, Jacquelyn/0000-0002-7096-8856 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy FX We would like to thank three anonymous reviewers whose helpful comments have improved this manuscript. Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. NR 45 TC 34 Z9 34 U1 11 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD JUL PY 2012 VL 12 IS 7 BP 3540 EP 3548 DI 10.1021/cg300350k PG 9 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 967PG UT WOS:000305919700025 ER PT J AU Abu, EA Bryan, SA Seliskar, CJ Heineman, WR AF Abu, Eme A. Bryan, Samuel A. Seliskar, Carl J. Heineman, William R. TI Assessing a Spectroelectrochemical Sensor's Performance for Detecting [Ru(bpy)3]2+ in Natural and Treated Water SO ELECTROANALYSIS LA English DT Article DE Spectroelectrochemical sensors; SSEBS; ITO electrode ID OPTICALLY TRANSPARENT ELECTRODES; SINGLE DEVICE; ANALYTICAL ELECTROCHEMISTRY; DYNAMIC TECHNIQUES; SELECTIVITY; METHODOLOGY; URINE; CD; PB; CU AB A spectroelectrochemical sensor that combines three modes of selectivity in a single device was evaluated in natural and treated water samples using tris-(2,2'-bipyridyl) ruthenium(II) dichloride hexahydrate, [Ru(bpy)3]2+, as a model analyte. The sensor was an optically transparent indium tin oxide (ITO) electrode coated with a thin film of partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SSEBS). As the potential of the ITO electrode was cycled from +0.7 to +1.3 V, the analyte changed from the colored [Ru(bpy)3]2+ complex to colorless [Ru(bpy)3]3+ complex and the change in absorbance at 450 nm was used as the optical signal for quantification. Calibration curves were obtained for [Ru(bpy)3]2+ in natural well water, river water and treated tap water with detection limits of 108, 139 and 264 nM, respectively. A standard addition method was developed to determine an unknown spike addition concentration of [Ru(bpy)3]2+ in well water. The spectroelectrochemical sensor determined the concentration of [Ru(bpy)3]2+ spiked into a sample of Hanford well water to be 0.39 +/- 0.03 mu M versus the actual concentration of 0.40 mu M. C1 [Abu, Eme A.; Seliskar, Carl J.; Heineman, William R.] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. [Bryan, Samuel A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Heineman, WR (reprint author), Univ Cincinnati, Dept Chem, 301 Clifton Court, Cincinnati, OH 45221 USA. EM william.heineman@uc.edu RI Bryan, Samuel/D-5457-2015 OI Bryan, Samuel/0000-0001-5664-3249 FU Office of Science (BER), U.S. Department of Energy [DE-FG02-07ER64353] FX This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64353. We thank Christopher F. Brown and Michelle M. Valenta of the Earth System Sciences Group (PNNL) for the Hanford water sample and analysis. NR 27 TC 4 Z9 4 U1 9 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1040-0397 J9 ELECTROANAL JI Electroanalysis PD JUL PY 2012 VL 24 IS 7 BP 1517 EP 1523 DI 10.1002/elan.201200143 PG 7 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 968QL UT WOS:000305999200005 ER PT J AU Fujimoto, C Kim, S Stains, R Wei, XL Li, LY Yang, ZG AF Fujimoto, Cy Kim, Soowhan Stains, Ronald Wei, Xiaoliang Li, Liyu Yang, Zhenguo Gary TI Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Sulfonated Diels Alder poly(phenylene); SDAPP; Vanadium redox flow battery; Vanadium ion permeability; Vanadium flow battery durability; Durability screening ID MEMBRANE; WATER; TRANSPORT; STATE AB Sulfonated Diels Alder poly(phenylene) (SDAPP) was examined for vanadium redox flow battery (VRFB) use. The ion exchange capacity (IEC) was varied from 1.4, 1.6 and 2.0 meq/g in order to tune the proton conductivity and vanadium permeability. Coulombic efficiencies between 92 to 99% were observed, depending on IEC (lower IEC, higher coulombic efficiencies). In all cases the SDAPP displayed comparable energy efficiencies (88-90%) to Nafion 117 (88%) at 50 mA/cm(2). Membrane durability also was dependent on IEC; SDAPP with the highest IEC lasted slightly over 50 cycles while SDAPP with the lowest IEC lasted over 400 cycles and testing was discontinued only due to time constraints. Durability screening tests were initialed with SDAPP, by soaking films in a 0.1 M V5+ and 5.0 M total SO4-2 solution. The rate of degradation was also proportional with IEC; the 2 meq/g sample dissolved within 376 h, the 1.6 meq/g sample dissolved after 860 h, while the 1.4 meq/g sample broke apart after 1527 h. (c) 2012 Elsevier B.V. All rights reserved. C1 [Fujimoto, Cy] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Kim, Soowhan; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo Gary] Pacific NW Natl Lab, Richland, WA 99352 USA. [Stains, Ronald] Inst Gas Technol, Des Plaines, IL 60018 USA. RP Fujimoto, C (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM chfujim@sandia.gov; soowhankim@pnnl.gov FU U. S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge the U. S. Department of Energy, Office of Electricity Delivery and Energy Reliability (Dr Imre Gyuk, Energy Storage Program). Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 13 TC 39 Z9 39 U1 6 U2 52 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD JUL PY 2012 VL 20 BP 48 EP 51 DI 10.1016/j.elecom.2012.03.037 PG 4 WC Electrochemistry SC Electrochemistry GA 966ZK UT WOS:000305875700014 ER PT J AU Maity, TS Jha, RK Strauss, CEM Dunbar, J AF Maity, Tuhin S. Jha, Ramesh K. Strauss, Charlie E. M. Dunbar, John TI Exploring the sequence-function relationship in transcriptional regulation by the lac O1 operator SO FEBS JOURNAL LA English DT Article DE LacI; operator; Rosetta; transcription factor ID LACTOSE REPRESSOR; DNA; PROTEIN; BINDING; SPECIFICITY; RECOGNITION; MUTANTS; COMPLEXES; AFFINITY; SYSTEM AB Understanding how binding of a transcription factor to an operator is influenced by the operator sequence is an ongoing quest. It facilitates discovery of alternative binding sites as well as tuning of transcriptional regulation. We investigated the behavior of the Escherichia coli Lac repressor (LacI) protein with a large set of lac O1 operator variants. The 114 variants examined contained a mean of 2.9 (range 04) mutations at positions -4, -2, +2 and +4 in the minimally required 17 bp operator. The relative affinity of LacI for the operators was examined by quantifying expression of a GFP reporter gene and Rosetta structural modeling. The combinations of mutations in the operator sequence created a wide range of regulatory behaviors. We observed variations in the GFP fluorescent signal among the operator variants of more than an order of magnitude under both uninduced and induced conditions. We found that a single nucleotide change may result in changes of up to six- and 12-fold in uninduced and induced GFP signals, respectively. Among the four positions mutated, we found that nucleotide G at position -4 is strongly correlated with strong repression. By Rosetta modeling, we found a significant correlation between the calculated binding energy and the experimentally observed transcriptional repression strength for many operators. However, exceptions were also observed, underscoring the necessity for further improvement in biophysical models of proteinDNA interactions. C1 [Maity, Tuhin S.; Jha, Ramesh K.; Strauss, Charlie E. M.; Dunbar, John] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Maity, TS (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM tuhin@lanl.gov RI Jha, Ramesh/K-7104-2012; OI Jha, Ramesh/0000-0001-5904-3441 FU Los Alamos National Laboratory [DR 20090117]; University of California Laboratory FX This work was supported by a grant from the Los Alamos National Laboratory Directed Research program (DR 20090117). R.K.J was supported by a University of California Laboratory Fees Research Grant administered by the University of California Office of the President. The authors thank Dr Chris Yeager (Bioscience Division, Los Alamos National Laboratory), Dr Mike Wall (Theoretical Division, Los Alamos National Laboratory) and Dr Angela Liu (Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA) for helpful discussions, and the High Performance Computing facility at Los Alamos National Laboratory for computational services. NR 17 TC 1 Z9 1 U1 0 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X J9 FEBS J JI FEBS J. PD JUL PY 2012 VL 279 IS 14 BP 2534 EP 2543 DI 10.1111/j.1742-4658.2012.08635.x PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 967KB UT WOS:000305905300006 PM 22594825 ER PT J AU Lippmann, MJ AF Lippmann, Marcelo J. TI Paul Adams Witherspoon (1919-2012) Obituary SO GEOTHERMICS LA English DT Biographical-Item C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Lippmann, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM mjlippmann@lbl.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 J9 GEOTHERMICS JI Geothermics PD JUL PY 2012 VL 43 BP 83 EP 83 DI 10.1016/j.geothermics.2012.04.001 PG 1 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA 969JF UT WOS:000306050800009 ER PT J AU Tang, GP Watson, DB Parker, JC Brooks, SC AF Tang, Guoping Watson, David B. Parker, Jack C. Brooks, Scott C. TI A Spreadsheet Program for Two-Well Tracer Test Data Analysis SO GROUND WATER LA English DT Article ID LONGITUDINAL DISPERSIVITY; STRATIFIED AQUIFERS; NONUNIFORM FLOW; CHALK; ZONE AB Two-well tracer tests are often conducted to investigate subsurface solute transport in the field. Analyzing breakthrough curves in extraction and monitoring wells using numerical methods is nontrivial due to highly nonuniform flow conditions. We extended approximate analytical solutions for the advection-dispersion equation for an injection-extraction well doublet in a homogeneous confined aquifer under steady-state flow conditions for equal injection and extraction rates with no transverse dispersion and negligible ambient flow, and implemented the solutions in Microsoft Excel using Visual Basic for Application (VBA). Functions were implemented to calculate concentrations in extraction and monitoring wells at any location due to a step or pulse injection. Type curves for a step injection were compared with those calculated by numerically integrating the solution for a pulse injection. The results from the two approaches are similar when the dispersivity is small. As the dispersivity increases, the latter was found to be more accurate but requires more computing time. The code was verified by comparing the results with published-type curves and applied to analyze data from the literature. The method can be used as a first approximation for two-well tracer test design and data analysis, and to check accuracy of numerical solutions. The code and example files are publicly available. C1 [Tang, Guoping; Watson, David B.; Brooks, Scott C.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Parker, Jack C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. RP Tang, GP (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. EM tangg@ornl.gov; watsondb@ornl.gov; jparker@utk.edu; brookssc@ornl.gov RI Brooks, Scott/B-9439-2012; Tang, Guoping/A-5141-2010 OI Brooks, Scott/0000-0002-8437-9788; Tang, Guoping/0000-0003-1090-3564 FU U.S. Department of Energy, Office of Science, Office of the Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725] FX We appreciate review comments provided by Trevor N. Zimmerman and Jitendra Kumar at ORNL, the editor, and three anonymous reviewers. This research was funded by the U.S. Department of Energy, Office of Science, Office of the Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 20 TC 2 Z9 2 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X EI 1745-6584 J9 GROUND WATER JI Ground Water PD JUL-AUG PY 2012 VL 50 IS 4 BP 614 EP 620 DI 10.1111/j.1745-6584.2011.00841.x PG 7 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 967KQ UT WOS:000305906900018 PM 21797850 ER PT J AU Marruffo, A Yoon, H Schaeffer, DJ Barkan, CPL Saat, MR Werth, CJ AF Marruffo, Amanda Yoon, Hongkyu Schaeffer, David J. Barkan, Christopher P. L. Saat, Mohd Rapik Werth, Charles J. TI NAPL Source Zone Depletion Model and Its Application to Railroad-Tank-Car Spills SO GROUND WATER LA English DT Article ID PHASE LIQUID DISSOLUTION; MASS-TRANSFER; SUBSURFACE SYSTEMS; POOL DISSOLUTION; PLUME LENGTHS; GASOLINE; ETHANOL; GROUNDWATER; DISPERSION AB We developed a new semi-analytical source zone depletion model (SZDM) for multicomponent light nonaqueous phase liquids (LNAPLs) and incorporated this into an existing screening model for estimating cleanup times for chemical spills from railroad tank cars that previously considered only single-component LNAPLs. Results from the SZDM compare favorably to those from a three-dimensional numerical model, and from another semi-analytical model that does not consider source zone depletion. The model was used to evaluate groundwater contamination and cleanup times for four complex mixtures of concern in the railroad industry. Among the petroleum hydrocarbon mixtures considered, the cleanup time of diesel fuel was much longer than E95, gasoline, and crude oil. This is mainly due to the high fraction of low solubility components in diesel fuel. The results demonstrate that the updated screening model with the newly developed SZDM is computationally efficient, and provides valuable comparisons of cleanup times that can be used in assessing the health and financial risk associated with chemical mixture spills from railroad-tank-car accidents. C1 [Yoon, Hongkyu] Sandia Natl Labs, Dept Geomech, Albuquerque, NM 87185 USA. [Marruffo, Amanda; Barkan, Christopher P. L.; Saat, Mohd Rapik; Werth, Charles J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Schaeffer, David J.] Univ Illinois, Dept Vet Biosci, Urbana, IL 61801 USA. RP Yoon, H (reprint author), Sandia Natl Labs, Dept Geomech, POB 5800,MS 0735, Albuquerque, NM 87185 USA. EM hyoon@sandia.gov FU Association of American Railroads; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was sponsored by the Association of American Railroads. The authors are grateful to Robert Fronczak and the AAR for their support and assistance. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 1 Z9 1 U1 0 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X J9 GROUND WATER JI Ground Water PD JUL-AUG PY 2012 VL 50 IS 4 BP 627 EP 632 DI 10.1111/j.1745-6584.2011.00863.x PG 6 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 967KQ UT WOS:000305906900020 PM 21895646 ER PT J AU Diamond, DL Krasnoselsky, AL Burnum, KE Monroe, ME Webb-Robertson, BJ McDermott, JE Yeh, MM Dzib, JFG Susnow, N Strom, S Proll, SC Belisle, SE Purdy, DE Rasmussen, AL Walters, KA Jacobs, JM Gritsenko, MA Camp, DG Bhattacharya, R Perkins, JD Carithers, RL Liou, IW Larson, AM Benecke, A Waters, KM Smith, RD Katze, MG AF Diamond, Deborah L. Krasnoselsky, Alexei L. Burnum, Kristin E. Monroe, Matthew E. Webb-Robertson, Bobbie-Jo McDermott, Jason E. Yeh, Matthew M. Dzib, Jose Felipe Golib Susnow, Nathan Strom, Susan Proll, Sean C. Belisle, Sarah E. Purdy, David E. Rasmussen, Angela L. Walters, Kathie-Anne Jacobs, Jon M. Gritsenko, Marina A. Camp, David G. Bhattacharya, Renuka Perkins, James D. Carithers, Robert L., Jr. Liou, Iris W. Larson, Anne M. Benecke, Arndt Waters, Katrina M. Smith, Richard D. Katze, Michael G. TI Proteome and computational analyses reveal new insights into the mechanisms of hepatitis C virus-mediated liver disease posttransplantation SO HEPATOLOGY LA English DT Article ID SMOOTH-MUSCLE-CELLS; OXIDATIVE STRESS; MASS-SPECTROMETRY; NATURAL-HISTORY; UNITED-STATES; FIBROSIS; RECIPIENTS; TRANSPLANTATION; IDENTIFICATION; PATHOGENESIS AB Liver transplant tissues offer the unique opportunity to model the longitudinal protein abundance changes occurring during hepatitis C virus (HCV)-associated liver disease progression in vivo. In this study, our goal was to identify molecular signatures, and potential key regulatory proteins, representative of the processes influencing early progression to fibrosis. We performed global protein profiling analyses on 24 liver biopsy specimens obtained from 15 HCV+ liver transplant recipients at 6 and/or 12 months posttransplantation. Differentially regulated proteins associated with early progression to fibrosis were identified by analysis of the area under the receiver operating characteristic curve. Analysis of serum metabolites was performed on samples obtained from an independent cohort of 60 HCV+ liver transplant patients. Computational modeling approaches were applied to identify potential key regulatory proteins of liver fibrogenesis. Among 4,324 proteins identified, 250 exhibited significant differential regulation in patients with rapidly progressive fibrosis. Patients with rapid fibrosis progression exhibited enrichment in differentially regulated proteins associated with various immune, hepatoprotective, and fibrogenic processes. The observed increase in proinflammatory activity and impairment in antioxidant defenses suggests that patients who develop significant liver injury experience elevated oxidative stresses. This was supported by an independent study demonstrating the altered abundance of oxidative stress-associated serum metabolites in patients who develop severe liver injury. Computational modeling approaches further highlight a potentially important link between HCV-associated oxidative stress and epigenetic regulatory mechanisms impacting on liver fibrogenesis. Conclusion: Our proteome and metabolome analyses provide new insights into the role for increased oxidative stress in the rapid fibrosis progression observed in HCV+ liver transplant recipients. These findings may prove useful in prognostic applications for predicting early progression to fibrosis. (HEPATOLOGY 2012;56:2838) C1 [Diamond, Deborah L.; Krasnoselsky, Alexei L.; Proll, Sean C.; Belisle, Sarah E.; Purdy, David E.; Rasmussen, Angela L.; Walters, Kathie-Anne; Katze, Michael G.] Univ Washington, Dept Microbiol, Sch Med, Seattle, WA 98195 USA. [Yeh, Matthew M.] Univ Washington, Dept Pathol, Sch Med, Seattle, WA 98195 USA. [Susnow, Nathan; Strom, Susan; Bhattacharya, Renuka; Carithers, Robert L., Jr.; Larson, Anne M.] Univ Washington, Div Gastroenterol, Sch Med, Seattle, WA 98195 USA. [Perkins, James D.] Univ Washington, Dept Surg, Sch Med, Seattle, WA 98195 USA. [Burnum, Kristin E.; Monroe, Matthew E.; Jacobs, Jon M.; Gritsenko, Marina A.; Camp, David G.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Dzib, Jose Felipe Golib; Liou, Iris W.; Benecke, Arndt] CNRS, Inst Hautes Etud Sci, Bures Sur Yvette, France. [Katze, Michael G.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. RP Diamond, DL (reprint author), Univ Washington, Dept Microbiol, Sch Med, 1959 NE Pacific St,Box 358070, Seattle, WA 98195 USA. EM ddiamond@u.washington.edu RI Smith, Richard/J-3664-2012; GOLIB, felipe/L-5422-2013; Burnum, Kristin/B-1308-2011; OI Smith, Richard/0000-0002-2381-2349; GOLIB, felipe/0000-0002-6383-135X; Burnum, Kristin/0000-0002-2722-4149; McDermott, Jason/0000-0003-2961-2572; Rasmussen, Angela/0000-0001-9462-3169 FU National Institute on Drug Abuse [1P30DA01562501]; Department of Energy (DOE) [DE-AC05-76RL0 1830]; National Center for Research Resources [RR018522]; Washington State Life Sciences Discovery Fund [ID 2037574]; CONACYT-Mexico [207676/302245] FX Supported by National Institute on Drug Abuse grant 1P30DA01562501 (to M. G. K.). The proteomics measurements were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy (DOE) and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL0 1830, and used capabilities developed under National Center for Research Resources grant RR018522 (to R. D. S.). Portions of this work were supported by the Washington State Life Sciences Discovery Fund (ID 2037574 to RDS). J. F. G. D. is recipient of a CONACYT-Mexico Ph.D. Fellowship (no. 207676/302245). NR 43 TC 19 Z9 19 U1 12 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD JUL PY 2012 VL 56 IS 1 BP 28 EP 38 DI 10.1002/hep.25649 PG 11 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 967ZQ UT WOS:000305947200006 PM 22331615 ER PT J AU Bachovchin, KD Hoburg, JF Post, RF AF Bachovchin, Kevin D. Hoburg, James F. Post, Richard F. TI Magnetic Fields and Forces in Permanent Magnet Levitated Bearings SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Halbach arrays; magnetic bearings; magnetic levitation; magnetization surface charge ID RINGS AB Magnetic fields and magnetic forces from magnetic bearings made of circular Halbach permanent-magnet arrays are computed and analyzed. The magnetic fields are calculated using superposition of fields due to patches of magnetization charge at surfaces where the magnetization is discontinuous. The magnetic force from the magnetic bearing is computed using superposition of forces on each patch of magnetization charge. The magnetic force from a Halbach array magnetic bearing is compared to an annular ring bearing of the same dimensions. A comparison is also made between the results obtained using the magnetic surface charge method and the simpler approximate method using a 2-D analytic representation of the Halbach array fields. C1 [Bachovchin, Kevin D.; Hoburg, James F.] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. [Post, Richard F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hoburg, JF (reprint author), Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. EM hoburg@ece.cmu.edu FU U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 11 TC 13 Z9 13 U1 2 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD JUL PY 2012 VL 48 IS 7 BP 2112 EP 2120 DI 10.1109/TMAG.2012.2188140 PG 9 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 966JO UT WOS:000305834100002 ER PT J AU Olbrant, E Hauck, CD Frank, M AF Olbrant, Edgar Hauck, Cory D. Frank, Martin TI A realizability-preserving discontinuous Galerkin method for the M1 model of radiative transfer SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Radiative transfer; Discontinuous Galerkin method; Hyperbolic partial differential equations ID LIMITED NEUTRINO DIFFUSION; MOMENT CLOSURE HIERARCHIES; ENTROPY EDDINGTON FACTORS; FINITE-ELEMENT-METHOD; P-N EQUATIONS; MAXIMUM-ENTROPY; CONSERVATION-LAWS; RIEMANN SOLVERS; HYDRODYNAMICAL MODEL; CARRIER TRANSPORT AB The M-1 model for radiative transfer coupled to a material energy equation in planar geometry is studied in this paper. For this model to be well-posed, its moment variables must fulfill certain realizability conditions. Our main focus is the design and implementation of an explicit Runge-Kutta discontinuous Galerkin method which, under a more restrictive CFL condition, guarantees the realizability of the moment variables and the positivity of the material temperature. An analytical proof for our realizability-preserving scheme, which also includes a slope-limiting technique, is provided and confirmed by various numerical examples. Among other things, we present accuracy tests showing convergence up to fourth-order, compare our results with an analytical solution in a Riemann problem, and consider a Marshak wave problem. (C) 2012 Elsevier Inc. All rights reserved. C1 [Olbrant, Edgar; Frank, Martin] Rhein Westfal TH Aachen, Dept Math, D-52062 Aachen, Germany. [Olbrant, Edgar; Frank, Martin] Rhein Westfal TH Aachen, Ctr Computat Engn Sci, D-52062 Aachen, Germany. [Hauck, Cory D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Frank, M (reprint author), Rhein Westfal TH Aachen, Dept Math, Schinkelstr 2, D-52062 Aachen, Germany. EM frank@mathcces.rwth-aachen.de RI Frank, Martin/F-2753-2011 FU Office of Advanced Scientific Computing Research; US Department of Energy; UT-Battelle, LLC [De-AC05-00OR22725] FX The research of this author is sponsored by the Office of Advanced Scientific Computing Research; US Department of Energy. The work was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725. Accordingly, the US Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 59 TC 8 Z9 9 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2012 VL 231 IS 17 BP 5612 EP 5639 DI 10.1016/j.jcp.2012.03.002 PG 28 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 967NQ UT WOS:000305915400003 ER PT J AU Yuan, XF Jardin, SC Keyes, DE AF Yuan, Xuefei Jardin, Stephen C. Keyes, David E. TI Numerical simulation of four-field extended magnetohydrodynamics in dynamically adaptive curvilinear coordinates via Newton-Krylov-Schwarz SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Dynamically adaptive grid; Equidistribution principle; Magnetic reconnection; MHD; Monge-Ampere equation; Monge-Kantorovich optimization; NKS; r-Refinement; Structured grid ID FORCED MAGNETIC RECONNECTION; FINITE-ELEMENT-METHOD; LINEAR-SYSTEMS; TAYLOR PROBLEM; EQUATIONS; IMPLICIT; GRIDS; ALGORITHMS; GMRES; FIELD AB Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of r-refinement adaptive grids obtained from solving a single Monge-Ampere (MA) equation addresses the high-resolution requirements near the x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton-Krylov-Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated. (C) 2012 Elsevier Inc. All rights reserved. C1 [Yuan, Xuefei; Keyes, David E.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Jardin, Stephen C.] Princeton Plasma Phys Lab, Theory & Computat Dept, Princeton, NJ 08540 USA. [Jardin, Stephen C.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Keyes, David E.] King Abdullah Univ Sci & Technol, Div Math & Comp Sci & Engn, Thuwal 239556900, Saudi Arabia. RP Yuan, XF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA 94720 USA. EM xyuan@lbl.gov OI Keyes, David Elliot/0000-0002-4052-7224 FU Department of Applied Physics and Applied Mathematics of Columbia University [DE-FC02-06ER54863]; Center for Simulation of RF Wave Interactions with Magnetohydrodynamics; U.S. Department of Energy, Office of Science; King Abdullah University of Science and Technology (KAUST); National Energy Research Scientific Computing Center (NERSC) [DE-AC02-05CH11231] FX This work was supported by the Department of Applied Physics and Applied Mathematics of Columbia University (under Contract No. DE-FC02-06ER54863), the Center for Simulation of RF Wave Interactions with Magnetohydrodynamics, which is funded by the U.S. Department of Energy, Office of Science, and the King Abdullah University of Science and Technology (KAUST). The computational sources were provided by the National Energy Research Scientific Computing Center (NERSC) (under Contract No. DE-AC02-05CH11231). Their support is gratefully acknowledged. NR 59 TC 1 Z9 1 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2012 VL 231 IS 17 BP 5822 EP 5853 DI 10.1016/j.jcp.2012.05.009 PG 32 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 967NQ UT WOS:000305915400014 ER PT J AU Banks, JW Henshaw, WD AF Banks, Jeffrey W. Henshaw, William D. TI Upwind schemes for the wave equation in second-order form SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Second-order wave equations; Upwind discretization; Godunov methods; High-order accurate; Finite-difference; Finite-volume ID CONSERVATION-LAWS; DIFFERENCE APPROXIMATIONS; EFFICIENT IMPLEMENTATION; OVERLAPPING GRIDS; CAPTURING SCHEMES; MARCHING SCHEMES; TRANSPORT; STABILITY AB We develop new high-order accurate upwind schemes for the wave equation in second-order form. These schemes are developed directly for the equations in second-order form, as opposed to transforming the equations to a first-order hyperbolic system. The schemes are based on the solution to a local Riemann-type problem that uses d'Alembert's exact solution. We construct conservative finite difference approximations, although finite volume approximations are also possible. High-order accuracy is obtained using a space-time procedure which requires only two discrete time levels. The advantages of our approach include efficiency in both memory and speed together with accuracy and robustness. The stability and accuracy of the approximations in one and two space dimensions are studied through normal-mode analysis. The form of the dissipation and dispersion introduced by the schemes is elucidated from the modified equations. Upwind schemes are implemented and verified in one dimension for approximations up to sixth-order accuracy, and in two dimensions for approximations up to fourth-order accuracy. Numerical computations demonstrate the attractive properties of the approach for solutions with varying degrees of smoothness. (C) 2012 Elsevier Inc. All rights reserved. C1 [Banks, Jeffrey W.; Henshaw, William D.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Banks, JW (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, L-422, Livermore, CA 94551 USA. EM banks20@llnl.gov; henshaw1@llnl.gov RI Banks, Jeffrey/A-9718-2012 FU U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE from the ASCR Applied Math Program FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math Program. NR 31 TC 10 Z9 10 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2012 VL 231 IS 17 BP 5854 EP 5889 DI 10.1016/j.jcp.2012.05.012 PG 36 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 967NQ UT WOS:000305915400015 ER PT J AU Lemieux, JF Knoll, DA Tremblay, B Holland, DM Losch, M AF Lemieux, Jean-Francois Knoll, Dana A. Tremblay, Bruno Holland, David M. Losch, Martin TI A comparison of the Jacobian-free Newton-Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: A serial algorithm study SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Sea ice; Viscous-plastic rheology; Newton-Krylov method; Numerical convergence; Numerical stability ID HIGH-RESOLUTION; DYNAMICS; ITERATION; RHEOLOGY; STRENGTH; SCHEME; FLOW AB Numerical convergence properties of a recently developed Jacobian-free Newton-Krylov (JFNK) solver are compared to the ones of the widely used EVP model when solving the sea ice momentum equation with a Viscous-Plastic (VP) formulation. To do so, very accurate reference solutions are produced with an independent Picard solver with an advective time step of 10 s and a tight nonlinear convergence criterion on 10, 20, 40, and 80-km grids. Approximate solutions with the JFNK and EVP solvers are obtained for advective time steps of 10, 20 and 30 min. Because of an artificial elastic term, the EVP model permits an explicit time-stepping scheme with a relatively large subcycling time step. The elastic waves excited during the subcycling are intended to damp out and almost entirely disappear such that the approximate solution should be close to the VP solution. Results show that residual elastic waves cause the EVP approximate solution to have notable differences with the reference solution and that these differences get more important as the grid is refined. Compared to the reference solution, additional shear lines and zones of strong convergence/divergence are seen in the EVP approximate solution. The approximate solution obtained with the JFNK solver is very close to the reference solution for all spatial resolutions tested. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved. C1 [Lemieux, Jean-Francois] Rech Previs Numer Environm Environm Canada, Dorval, PQ H9P 1J3, Canada. [Knoll, Dana A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Tremblay, Bruno] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 2K6, Canada. [Holland, David M.] NYU, Courant Inst Math Sci, New York, NY 10012 USA. RP Lemieux, JF (reprint author), Rech Previs Numer Environm Environm Canada, 2121 Route Transcanadienne, Dorval, PQ H9P 1J3, Canada. EM jean-francois.lemieux@ec.gc.ca RI Losch, Martin/S-5896-2016 OI Losch, Martin/0000-0002-3824-5244 NR 38 TC 9 Z9 9 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2012 VL 231 IS 17 BP 5926 EP 5944 DI 10.1016/j.jcp.2012.05.024 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 967NQ UT WOS:000305915400019 ER PT J AU Berry, LA Elwasif, W Reynolds-Barredo, JM Samaddar, D Sanchez, R Newman, DE AF Berry, L. A. Elwasif, W. Reynolds-Barredo, J. M. Samaddar, D. Sanchez, R. Newman, D. E. TI Event-based parareal: A data-flow based implementation of parareal SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Parareal; Parallelization; Framework; Simulation ID MAGNETOHYDRODYNAMICS AB Parareal is an iterative algorithm that, in effect, achieves temporal decomposition for a time-dependent system of differential or partial differential equations. A solution is obtained in a shorter wall-clock time, but at the expense of increased compute cycles. The algorithm combines a fine solver that solves the system to acceptable accuracy with an approximate coarse solver. The critical task for the successful implementation of parareal on any system is the development of a coarse solver that leads to convergence in a small number of iterations compared to the number of time slices in the full time interval, and is, at the same time, much faster than the fine solver. Very fast coarse solvers may not lead to sufficiently rapid convergence, and slow coarse solvers may not lead to significant gains even if the number of iterations to convergence is satisfactory. We find that the difficulty of meeting these conflicting demands can be substantially eased by using a data-driven, event-based implementation of parareal. As a result, tasks for one iteration do not wait for the previous iteration to complete, but are started when the needed data are available. For given convergence properties, the event-based approach relaxes the speed requirements on the coarse solver by a factor of similar to K, where K is the number of iterations required for a converged solution. This may, for many problems, lead to an efficient parareal implementation that would otherwise not be possible or would require substantial coarse solver development. In addition, the framework used for this implementation executes a task when the data dependencies are satisfied and computational resources are available. This leads to improved computational efficiency over previous approaches that pipeline or schedule groups of tasks to a particular processor or group of processors. Published by Elsevier Inc. C1 [Berry, L. A.; Elwasif, W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Reynolds-Barredo, J. M.; Newman, D. E.] Univ Alaska, Fairbanks, AK 99701 USA. [Reynolds-Barredo, J. M.; Sanchez, R.] Univ Carlos III Madrid, Madrid, Spain. [Samaddar, D.] ITER Org, St Paul Les Durance, France. RP Berry, LA (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6169, Oak Ridge, TN 37831 USA. EM berryla@ornl.gov; elwasifwr@ornl.gov; jmrb2002@gmail.com; Debasmita.Samaddar@iter.org; lraul.sanchez@gmail.com; denewman@alaska.edu FU Spanish National Project [ENE2009-12213-C03-03]; DOE Office of Science [DE-FG02-04ER54741]; U.S. DOE [DE-AC05-00OR22725]; UT-Battelle, LLC FX Research funded in part by Spanish National Project No. ENE2009-12213-C03-03. Part of the research was carried out at the University of Alaska Fairbanks, funded by the DOE Office of Science Grant No. DE-FG02-04ER54741. Work supported in part by the U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors are grateful for grants of supercomputing resources at the University of Alaska's Arctic Region Supercomputing Center (ARSC) in Fairbanks. NR 14 TC 9 Z9 9 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2012 VL 231 IS 17 BP 5945 EP 5954 DI 10.1016/j.jcp.2012.05.016 PG 10 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 967NQ UT WOS:000305915400020 ER PT J AU Zhou, SS Gao, XL Griffith, GW AF Zhou, S-S Gao, X-L Griffith, G. W. TI Stress Analysis and Structural Optimization of a Three-Layer Composite Cladding Tube Under Thermo-Mechanical Loads SO JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT ASME Applied Mechanics and Materials Conference (McMat) CY MAY 31-JUN 02, 2011 CL Chicago, IL SP ASME DE cladding tube; Zircaloy-4; SiC; stress analysis; optimal design; thermal stress; failure theory ID THICK-WALLED CYLINDER; SICF/SIC COMPOSITES; PRESSURE-VESSELS; FAILURE; IRRADIATION; ZIRCALOY-2; STRENGTH; DESIGN; ISSUES AB A general solution for the stress and strain fields in a three-layer composite tube subjected to internal and external pressures and temperature changes is first derived using thermo-elasticity. The material in each layer is treated as orthotropic, and the composite tube is regarded to be in a generalized plane strain state. A three-layer ZRY4-SiCf/SiC-SiC composite cladding tube under a combined pressure and thermal loading is then analyzed and optimized by applying the general solution. The effects of temperature changes, applied pressures, and layer thickness on the mechanical behavior of the tube are quantitatively studied. The von Mises' failure criterion for isotropic materials and the Tsai-Wu's failure theory for composites are used, respectively, to predict the failure behavior of the monolithic ZRY4 (i.e., Zircaloy-4) inner layer and SiC outer layer and the composite SiCf/SiC core layer of the three-layer tube. The numerical results reveal that the maximum radial and circumferential stresses in each layer always occur on the bonding surfaces. By adjusting the thickness of each layer, the effective stress in the three-layer cladding tube under the prescribed thermal-mechanical loading can be changed, thereby making it possible to optimally design the cladding tube. [DOI:10.1115/1.4006510] C1 [Gao, X-L] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA. [Zhou, S-S] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Griffith, G. W.] Idaho Natl Lab, Dept Reactor Phys Anal & Design, Idaho Falls, ID 83415 USA. RP Gao, XL (reprint author), Univ Texas Dallas, Dept Mech Engn, 800 W Campbell Rd, Richardson, TX 75080 USA. EM Xin-Lin.Gao@utdallas.edu NR 39 TC 0 Z9 0 U1 2 U2 11 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-4289 J9 J ENG MATER-T ASME JI J. Eng. Mater. Technol.-Trans. ASME PD JUL PY 2012 VL 134 IS 3 AR 031001 DI 10.1115/1.4006510 PG 12 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 966FF UT WOS:000305822300002 ER PT J AU Alam, S Ahmad, J Ohya, Y Dong, CL Hsu, CC Lee, JF Mutsuhiro, S Miki, K Al-Deyab, SS Guo, JH Nishimura, C AF Alam, Sher Ahmad, Javed Ohya, Yutaka Dong Chungli Hsu, Chih-Chin Lee, Jyh-Fu Mutsuhiro, Shima Miki, Kazuki Al-Deyab, Salem S. Guo, Jinghua Nishimura, Chikashi TI Theory and the Experimental Confirmation of the Local Electronic Structure of the Multiferroic PbVO3, a New Member of PbTiO3 Family, Studied by X-ray Near Edge Absorption Structure: I SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE multiferroic; local lattice distortion; XANES; ELNES; SCF; FEFF8; tetragonality ID VANADIUM AB Recently, an interesting multiferroic system PbVO3 [A. A. Belik et al.: Chem. Mater. 17 (2005) 269] has been successfully prepared using a high-pressure and high-temperature technique. The crystallographic features of PbVO3 were reported. In this note, we concentrate on the theoretical and the experimental X-ray near edge absorption structure (XANES) spectra by considering the K-edge of Vanadium. The tetragonality (c/a 1.229 at 300 K) of PbVO3 is the largest in the PbTiO3 family of compounds. Thus, one is led naturally to examine the effects of the changes in the tetragonality and axial oxygen position on the electronic structure (i.e., XANES spectrum). We study these effects in two ways. At a given temperature, we vary the tetragonality and the axial oxygen position, and quantify the changes in terms of the XANES difference spectrum. Secondly, we compute the XANES spectra at three different temperatures, namely, 90, 300, and 530 K, and quantify the changes in terms of the difference spectrum. We note that in this compound the tetragonality increases almost monotonically with temperature from 12 to 570 K, without transition to the cubic phase under ambient pressure. A key objective of the current investigation is to gain an understanding of various absorption features in the vicinity of the K-edge of V, in terms of valence, local site symmetry, local coordination geometry, local bond distances, charge transfer, and local projected density of states. We consider both the polarized and unpolarized XANES spectra, theoretically. The experiment was performed on the polycrystalline material after the theoretical investigation. In short, we have performed a local electronic study, theoretical as well as experimental, which complements the crystallographic features reported recently for PbVO3. The local electronic study given here is supplemented and enhanced by the O-K edge results indicated in the accompanying Paper II, which gives both the experimental and theoretical analyses of the XES, XAS, and fundamental band gap of PbVO3, which is found to be 1.2 eV. C1 [Alam, Sher; Miki, Kazuki; Nishimura, Chikashi] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan. [Ahmad, Javed] BZU, Dept Phys, Multan, Pakistan. [Ohya, Yutaka; Dong Chungli] Gifu Univ, Dept Mat Sci & Technol, Gifu 5011193, Japan. [Hsu, Chih-Chin; Lee, Jyh-Fu; Mutsuhiro, Shima] NSRRC, Hsinchu 30076, Taiwan. [Al-Deyab, Salem S.] King Saud Univ, Fac Sci, Petrochem Res Chair, Dept Chem, Riyadh 11451, Saudi Arabia. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Alam, S (reprint author), Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan. EM iaalamsher0e@gmail.com FU Matsui's Crystal Structure and Analysis Group at the Advanced Material Laboratory (NIMS); MEXT via the JSPS; Ajayan Vinu's Group; King Saud University FX The initial phase of Sher Alam's work was supported by Matsui's Crystal Structure and Analysis Group at the Advanced Material Laboratory (NIMS) and MEXT via the JSPS invitation program. The experimental part of this study was completed in 2011, and was supported by Ajayan Vinu's Group Collaborative Research Projects with the King Saud University. We thank Alexie Belik for his collaboration and for providing us the sample. NR 12 TC 2 Z9 2 U1 0 U2 26 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD JUL PY 2012 VL 81 IS 7 AR 074709 DI 10.1143/JPSJ.81.074709 PG 10 WC Physics, Multidisciplinary SC Physics GA 967IC UT WOS:000305899300034 ER PT J AU Yeager, JD Ramos, KJ Sun, CQC Singh, S Dubey, M Majewski, J Hooks, DE AF Yeager, John D. Ramos, Kyle J. Sun, Changquan C. Singh, Saurabh Dubey, Manish Majewski, Jaroslaw Hooks, Daniel E. TI Probing Interfaces between Pharmaceutical Crystals and Polymers by Neutron Reflectometry SO MOLECULAR PHARMACEUTICS LA English DT Article DE interface; ellipsometry; neutron reflectometry; acetaminophen; sulfamerazine; cellulose; polyvinylpyrrolidone; binder; films ID WET GRANULATION PROCESSES; SOLID-STATE PROPERTIES; DOSAGE FORMS; DRUG; FORMULATION; REFLECTIVITY; PARACETAMOL; BINDER; AGGLOMERATION; SOLUBILITY AB Pharmaceutical powder engineering often involves forming interfaces between the drug and a suitable polymer. The structure at the interface plays a critical role in the properties and performance of the composite. However, interface structures have not been well understood due to a lack of suitable characterization tool. In this work, we have used ellipsometry and neutron reflectometry to characterize the structure of such interfaces in detail. Ellipsometry provided a quick estimate of the number of layers and their thicknesses, whereas neutron reflectometry provided richer structural information such as density, thickness, roughness, and intermixing of different layers. The combined information allowed us to develop an accurate model about the layered structure and provided information about intermixing of different layer components. Systematic use of these characterization techniques on several model systems suggests that the nature of the polymer had a small effect on the interfacial structure, while the solvent used in polymer coating had a large effect. These results provide useful information on the efforts of engineering particle properties through the control of the interfacial chemistry. C1 [Singh, Saurabh; Dubey, Manish; Majewski, Jaroslaw] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Sun, Changquan C.] Univ Minnesota, Coll Pharm, Minneapolis, MN 55455 USA. RP Yeager, JD (reprint author), Los Alamos Natl Lab, MS P952, Los Alamos, NM 87507 USA. EM jyeager@lanl.gov; sunx0053@umn.edu RI Lujan Center, LANL/G-4896-2012; singh, saurabh/A-6119-2010; OI Yeager, John/0000-0002-3121-6053; Sun, Changquan/0000-0001-7284-5334 FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; DOE Office of Basic Energy Sciences; DOE/DoD Joint Munitions Project and the Explosives Science project of the National Nuclear Security Administration Science Campaign 2; Agnew National Security Fellowship FX Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences, user facility and the Lujan Neutron Scattering Center at LANSCE funded by the DOE Office of Basic Energy Sciences. Funding for this work was provided by the DOE/DoD Joint Munitions Project and the Explosives Science project of the National Nuclear Security Administration Science Campaign 2. J.D.Y. is supported by the Agnew National Security Fellowship. NR 42 TC 2 Z9 2 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1543-8384 J9 MOL PHARMACEUT JI Mol. Pharm. PD JUL PY 2012 VL 9 IS 7 BP 1953 EP 1961 DI 10.1021/mp2006517 PG 9 WC Medicine, Research & Experimental; Pharmacology & Pharmacy SC Research & Experimental Medicine; Pharmacology & Pharmacy GA 967OL UT WOS:000305917600010 PM 22663898 ER PT J AU Chia, JM Song, C Bradbury, PJ Costich, D de Leon, N Doebley, J Elshire, RJ Gaut, B Geller, L Glaubitz, JC Gore, M Guill, KE Holland, J Hufford, MB Lai, JS Li, M Liu, X Lu, YL McCombie, R Nelson, R Poland, J Prasanna, BM Pyhajarvi, T Rong, TZ Sekhon, RS Sun, Q Tenaillon, MI Tian, F Wang, J Xu, X Zhang, ZW Kaeppler, SM Ross-Ibarra, J McMullen, MD Buckler, ES Zhang, GY Xu, YB Ware, D AF Chia, Jer-Ming Song, Chi Bradbury, Peter J. Costich, Denise de Leon, Natalia Doebley, John Elshire, Robert J. Gaut, Brandon Geller, Laura Glaubitz, Jeffrey C. Gore, Michael Guill, Kate E. Holland, Jim Hufford, Matthew B. Lai, Jinsheng Li, Meng Liu, Xin Lu, Yanli McCombie, Richard Nelson, Rebecca Poland, Jesse Prasanna, Boddupalli M. Pyhaejaervi, Tanja Rong, Tingzhao Sekhon, Rajandeep S. Sun, Qi Tenaillon, Maud I. Tian, Feng Wang, Jun Xu, Xun Zhang, Zhiwu Kaeppler, Shawn M. Ross-Ibarra, Jeffrey McMullen, Michael D. Buckler, Edward S. Zhang, Gengyun Xu, Yunbi Ware, Doreen TI Maize HapMap2 identifies extant variation from a genome in flux SO NATURE GENETICS LA English DT Article ID ASSOCIATION MAPPING POPULATION; QUANTITATIVE RESISTANCE; TRANSPOSABLE ELEMENTS; WIDE ASSOCIATION; LEAF-BLIGHT; ALIGNMENT; DIVERSITY; EVOLUTION; ZEA; BIOCONDUCTOR AB Whereas breeders have exploited diversity in maize for yield improvements, there has been limited progress in using beneficial alleles in undomesticated varieties. Characterizing standing variation in this complex genome has been challenging, with only a small fraction of it described to date. Using a population genetics scoring model, we identified 55 million SNPs in 103 lines across pre-domestication and domesticated Zea mays varieties, including a representative from the sister genus Tripsacum. We find that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits. By investigating the drivers of genome size variation, we find that the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin. In contrast, intraspecies genome size variation seems to be controlled by chromosomal knob content. There is tremendous overlap in key gene content in maize and Tripsacum, suggesting that adaptations from Tripsacum (for example, perennialism and frost and drought tolerance) can likely be integrated into maize. C1 [Bradbury, Peter J.; Costich, Denise; Elshire, Robert J.; Glaubitz, Jeffrey C.; Li, Meng; Sun, Qi; Tian, Feng; Zhang, Zhiwu; Buckler, Edward S.] Cornell Univ, Inst Genom Div, Ithaca, NY USA. [Chia, Jer-Ming; Geller, Laura; McCombie, Richard; Ware, Doreen] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Song, Chi; Liu, Xin; Wang, Jun; Xu, Xun; Zhang, Gengyun] BGI Shenzhen, Shenzhen, Peoples R China. [de Leon, Natalia; Sekhon, Rajandeep S.; Kaeppler, Shawn M.] Univ Wisconsin, US Dept Energy DOE, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [de Leon, Natalia; Sekhon, Rajandeep S.; Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Doebley, John] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA. [Gaut, Brandon; Tenaillon, Maud I.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92717 USA. [Gore, Michael] US Arid Land Agr Res Ctr, Maricopa, AZ USA. [Guill, Kate E.; McMullen, Michael D.] Univ Missouri, Div Plant Sci, Columbia, MO USA. [Holland, Jim] N Carolina State Univ, Dept Crop Sci, Raleigh, NC 27695 USA. [Hufford, Matthew B.; Pyhaejaervi, Tanja; Ross-Ibarra, Jeffrey] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Lai, Jinsheng] China Agr Univ, State Key Lab Agrobiotechnol, Beijing 100094, Peoples R China. [Lai, Jinsheng] China Agr Univ, Natl Maize Improvement Ctr, Beijing 100094, Peoples R China. [Lai, Jinsheng] China Agr Univ, Dept Plant Genet & Breeding, Beijing 100094, Peoples R China. [Lu, Yanli; Rong, Tingzhao] Sichuan Agr Univ, Maize Res Inst, Chengdu, Peoples R China. [Nelson, Rebecca] Cornell Univ, Dept Plant Pathol & Plant Microbe Biol, Ithaca, NY USA. [Prasanna, Boddupalli M.] Int Maize & Wheat Improvement Ctr CIMMYT, Nairobi, Kenya. [Poland, Jesse] Kansas State Univ, Manhattan, KS 66506 USA. [Tenaillon, Maud I.] Univ Paris 11, CNRS, INRA, Unite Mixte Rech UMR Genet Vegetale,AgroParisTech, Gif Sur Yvette, France. [Ross-Ibarra, Jeffrey] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Xu, Yunbi] Chinese Acad Agr Sci, Natl Key Facil Crop Genet Resources & Improvement, Inst Crop Sci, Beijing 100193, Peoples R China. [Xu, Yunbi] CIMMYT, Texcoco, Mexico. RP Buckler, ES (reprint author), Cornell Univ, Inst Genom Div, Ithaca, NY USA. EM mcmullenm@missouri.edu; esb33@cornell.edu; zhanggengyun@genomics.org.cn; y.xu@cgiar.org; ware@cshl.edu RI Ross-Ibarra, Jeffrey/D-7782-2011; Hufford, Matthew/E-7810-2012; Wang, Jun/C-8434-2016; Wang, Jun/B-9503-2016; OI Holland, James/0000-0002-4341-9675; Ross-Ibarra, Jeffrey/0000-0003-1656-4954; Poland, Jesse/0000-0002-7856-1399; Wang, Jun/0000-0002-8540-8931; Buckler, Edward/0000-0002-3100-371X; Kaeppler, Shawn/0000-0002-5964-1668; Wang, Jun/0000-0002-2113-5874; McCombie, W. Richard/0000-0003-1899-0682; Elshire, Robert/0000-0003-1753-6920; Zhang, Zhiwu/0000-0002-5784-9684 FU US National Science Foundation [DBI-0820619, 0321467, 0703908, 0638566, IOS-092270]; USDA-ARS; USDA-National Institute of Food and Agriculture (NIFA) [2009-01864]; US DOE (BER) [DE-FC02-07ER44494, DE-AC02-03CH11211]; Rockefeller Foundation; Bill and Melinda Gates Foundation; Generation Challenge Program; Chinese 971 program [2007CB813701, 2007CB813703]; National Natural Science Foundation of China (NSFC) [10723008]; Chinese Ministry of Agriculture [2010-Z11]; National High Technology Research and Development Program of China [2009AA10AA03-2]; National Basic Research Program of China [2007CB108900] FX This work was supported by the US National Science Foundation (DBI-0820619, 0321467, 0703908, 0638566 and IOS-092270), the USDA-ARS, the USDA-National Institute of Food and Agriculture (NIFA) (2009-01864), the US DOE (BER DE-FC02-07ER44494 and DE-AC02-03CH11211), The Rockefeller Foundation, the Bill and Melinda Gates Foundation, the Generation Challenge Program, the Chinese 971 program (2007CB813701, 2007CB813701 and 2007CB813703), the National Natural Science Foundation of China (NSFC) to Young Scientists (10723008), Guangdong Innovation Team Funding, the Chinese Ministry of Agriculture 984 program (2010-Z11), the National High Technology Research and Development Program of China (2009AA10AA03-2) and the National Basic Research Program of China (2007CB108900). NR 40 TC 204 Z9 213 U1 7 U2 126 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 EI 1546-1718 J9 NAT GENET JI Nature Genet. PD JUL PY 2012 VL 44 IS 7 BP 803 EP U238 DI 10.1038/ng.2313 PG 7 WC Genetics & Heredity SC Genetics & Heredity GA 967DP UT WOS:000305886900016 PM 22660545 ER PT J AU Hufford, MB Xu, X van Heerwaarden, J Pyhajarvi, T Chia, JM Cartwright, RA Elshire, RJ Glaubitz, JC Guill, KE Kaeppler, SM Lai, JS Morrell, PL Shannon, LM Song, C Springer, NM Swanson-Wagner, RA Tiffin, P Wang, J Zhang, GY Doebley, J McMullen, MD Ware, D Buckler, ES Yang, S Ross-Ibarra, J AF Hufford, Matthew B. Xu, Xun van Heerwaarden, Joost Pyhaejaervi, Tanja Chia, Jer-Ming Cartwright, Reed A. Elshire, Robert J. Glaubitz, Jeffrey C. Guill, Kate E. Kaeppler, Shawn M. Lai, Jinsheng Morrell, Peter L. Shannon, Laura M. Song, Chi Springer, Nathan M. Swanson-Wagner, Ruth A. Tiffin, Peter Wang, Jun Zhang, Gengyun Doebley, John McMullen, Michael D. Ware, Doreen Buckler, Edward S. Yang, Shuang Ross-Ibarra, Jeffrey TI Comparative population genomics of maize domestication and improvement SO NATURE GENETICS LA English DT Article ID ARABIDOPSIS SEEDS; RICE; GENE; SELECTION; PATTERNS; DIVERSITY; ORIGIN; POLYMORPHISM; EXPRESSION; EVOLUTION AB Domestication and plant breeding are ongoing 10,000-year-old evolutionary experiments that have radically altered wild species to meet human needs. Maize has undergone a particularly striking transformation. Researchers have sought for decades to identify the genes underlying maize evolution(1,2), but these efforts have been limited in scope. Here, we report a comprehensive assessment of the evolution of modern maize based on the genome-wide resequencing of 75 wild, landrace and improved maize lines(3). We find evidence of recovery of diversity after domestication, likely introgression from wild relatives, and evidence for stronger selection during domestication than improvement. We identify a number of genes with stronger signals of selection than those previously shown to underlie major morphological changes(4,5). Finally, through transcriptome-wide analysis of gene expression, we find evidence both consistent with removal of cis-acting variation during maize domestication and improvement and suggestive of modern breeding having increased dominance in expression while targeting highly expressed genes. C1 [Hufford, Matthew B.; van Heerwaarden, Joost; Pyhaejaervi, Tanja; Ross-Ibarra, Jeffrey] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Xu, Xun; Song, Chi; Wang, Jun; Zhang, Gengyun; Yang, Shuang] BGI Shenzhen, Shenzhen, Peoples R China. [Chia, Jer-Ming; Ware, Doreen] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Cartwright, Reed A.] Arizona State Univ, Ctr Evolutionary Med & Informat, Biodesign Inst, Tempe, AZ USA. [Cartwright, Reed A.] Arizona State Univ, Sch Life Sci, Tempe, AZ USA. [Elshire, Robert J.; Glaubitz, Jeffrey C.; Buckler, Edward S.] Cornell Univ, Inst Genom Div, Ithaca, NY USA. [Guill, Kate E.; McMullen, Michael D.] Univ Missouri, Div Plant Sci, Columbia, MO USA. [Kaeppler, Shawn M.] Univ Wisconsin, Dept Energy DOE, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Lai, Jinsheng] China Agr Univ, State Key Lab Agrobiotechnol, Beijing 100094, Peoples R China. [Morrell, Peter L.] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN USA. [Shannon, Laura M.; Doebley, John] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA. [Springer, Nathan M.; Swanson-Wagner, Ruth A.; Tiffin, Peter] Univ Minnesota, Dept Plant Biol, St Paul, MN USA. [Ross-Ibarra, Jeffrey] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Ross-Ibarra, Jeffrey] Univ Calif Davis, Ctr Populat Biol, Davis, CA 95616 USA. RP Ross-Ibarra, J (reprint author), Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. EM esb33@cornell.edu; yangsh@genomics.org.cn; rossibarra@ucdavis.edu RI Ross-Ibarra, Jeffrey/D-7782-2011; Hufford, Matthew/E-7810-2012; Morrell, Peter/E-2059-2011; Springer, Nathan/F-2680-2013; van Heerwaarden, Joost/A-1424-2014; Wang, Jun/C-8434-2016; Wang, Jun/B-9503-2016; OI Ross-Ibarra, Jeffrey/0000-0003-1656-4954; Elshire, Robert/0000-0003-1753-6920; Morrell, Peter/0000-0001-6282-1582; Springer, Nathan/0000-0002-7301-4759; van Heerwaarden, Joost/0000-0002-4959-3914; Wang, Jun/0000-0002-8540-8931; Wang, Jun/0000-0002-2113-5874; Buckler, Edward/0000-0002-3100-371X; Kaeppler, Shawn/0000-0002-5964-1668 FU US National Science Foundation (NSF) [IOS-0820619, IOS-0922703]; USDA-ARS; USDA; Chinese 973 program [2007CB815701]; Chinese Ministry of Agriculture [2010-Z13]; Shenzhen Municipal Government; US DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494]; Office of Science of the US DOE [DE-AC02-05CH11231]; USDA-National Institute of Food and Agriculture [2009-01864] FX The authors would like to thank T. Kono, S. Watson and M. Watson for photographs of inflorescences, P. Brown for help with QTL delineation, B.S. Gaut, A.M. Gonzales and two anonymous reviewers for comments on an earlier version of the manuscript and M. Grote for statistical advice. This work was supported by funding to the maize diversity project from the US National Science Foundation (NSF; IOS-0820619 to E.S.B., J.D. and M.D.M.) and USDA-ARS (to E.S.B., M.D.M. and D.W.), as well as from USDA Hatch Funds (to P.T. and N.M.S.), the Chinese 973 program (2007CB815701 to J.W.), the Chinese Ministry of Agriculture 984 program (2010-Z13 to G.Z.), the Shenzhen Municipal Government Basic Research Program (to J.W.), the US DOE Great Lakes Bioenergy Research Center (DOE Office of Science; BER DE-FC02-07ER64494), the Office of Science of the US DOE (contract DE-AC02-05CH11231 to the US DOE Joint Genome Institute) and by grants from the US NSF (IOS-0922703 to J.R.-I.) and the USDA-National Institute of Food and Agriculture (2009-01864 to J.R.-I.). NR 43 TC 218 Z9 226 U1 19 U2 226 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 EI 1546-1718 J9 NAT GENET JI Nature Genet. PD JUL PY 2012 VL 44 IS 7 BP 808 EP U118 DI 10.1038/ng.2309 PG 6 WC Genetics & Heredity SC Genetics & Heredity GA 967DP UT WOS:000305886900017 PM 22660546 ER PT J AU Schindelin, J Arganda-Carreras, I Frise, E Kaynig, V Longair, M Pietzsch, T Preibisch, S Rueden, C Saalfeld, S Schmid, B Tinevez, JY White, DJ Hartenstein, V Eliceiri, K Tomancak, P Cardona, A AF Schindelin, Johannes Arganda-Carreras, Ignacio Frise, Erwin Kaynig, Verena Longair, Mark Pietzsch, Tobias Preibisch, Stephan Rueden, Curtis Saalfeld, Stephan Schmid, Benjamin Tinevez, Jean-Yves White, Daniel James Hartenstein, Volker Eliceiri, Kevin Tomancak, Pavel Cardona, Albert TI Fiji: an open-source platform for biological-image analysis SO NATURE METHODS LA English DT Article ID 3D VISUALIZATION; GENE-EXPRESSION; REGISTRATION; DROSOPHILA; RECONSTRUCTION; MICROSCOPY; ELEGANS; RESOLUTION; SOFTWARE; GENOME AB Fiji is a distribution of the popular open-source software I ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into I ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities. C1 [Schindelin, Johannes; Pietzsch, Tobias; Preibisch, Stephan; Saalfeld, Stephan; White, Daniel James; Tomancak, Pavel] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany. [Arganda-Carreras, Ignacio] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA. [Frise, Erwin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Genome Dynam, Berkeley Drosophila Genome Project, Berkeley, CA 94720 USA. [Kaynig, Verena] Swiss Fed Inst Technol Zurich, Dept Comp Sci, Zurich, Switzerland. [Longair, Mark; Cardona, Albert] Univ Zurich, Inst Neuroinformat, Zurich, Switzerland. [Rueden, Curtis; Eliceiri, Kevin] Univ Wisconsin, Lab Opt & Computat Instrumentat, Madison, WI USA. [Schmid, Benjamin] Univ Wurzburg, Dept Neurobiol & Genet, Wurzburg, Germany. [Tinevez, Jean-Yves] Inst Pasteur, Paris, France. [Hartenstein, Volker] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA USA. RP Tomancak, P (reprint author), Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany. EM tomancak@mpi-cbg.de; acardona@ini.phys.ethz.ch RI Tomancak, Pavel/C-2109-2009; Arganda-Carreras, Ignacio/L-4605-2014; Tinevez, Jean-Yves/L-7581-2015; Tinevez, Jean-Yves/E-8398-2012; OI Tomancak, Pavel/0000-0002-2222-9370; Arganda-Carreras, Ignacio/0000-0003-0229-5722; Tinevez, Jean-Yves/0000-0002-0998-4718; Tinevez, Jean-Yves/0000-0002-0998-4718; Kaynig, Verena/0000-0002-3520-0577; Eliceiri, Kevin/0000-0001-8678-670X; Saalfeld, Stephan/0000-0002-4106-1761; Cardona, Albert/0000-0003-4941-6536 FU US National Institutes of Health [RC2GM092519]; Human Frontier Science Program Young Investigator grant [RGY0083]; European Research Council Community's Seventh Framework Programme [260746] FX We thank W. Rasband for developing ImageJ and helping thousands of scientists, those who contributed to the Fiji movement by financing and organizing the hackathons, namely G. M. Rubin for hackathons at Janelia Farm, I. Baines for hackathons at Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, R. Douglas for a hackathon at Institute of Neuroinformatics in Zurich, F. Peri and K. Miura for the hackathon at European Molecular Biology Laboratory, and International Neuroinformatics Coordinating Facility for Fiji image-processing school, W. Pereanu for the confocal image of the larval fly brain, M. Sarov for the confocal scan of C. elegans larva, the scientists who released their code under open-source licenses and made the Fiji project possible. We want to thank Carl Zeiss Microimaging for access to the SPIM demonstrator. K. E. and C. R. were supported by US National Institutes of Health grant RC2GM092519. J.S. and P. T. were funded by Human Frontier Science Program Young Investigator grant RGY0083. P. T. was supported by The European Research Council Community's Seventh Framework Programme (FP7/2007-2013) grant agreement 260746. NR 45 TC 3554 Z9 3565 U1 54 U2 383 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 EI 1548-7105 J9 NAT METHODS JI Nat. Methods PD JUL PY 2012 VL 9 IS 7 BP 676 EP 682 DI 10.1038/NMETH.2019 PG 7 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 967XT UT WOS:000305942200021 PM 22743772 ER PT J AU Yang, XD Yao, J Rho, J Yin, XB Zhang, X AF Yang, Xiaodong Yao, Jie Rho, Junsuk Yin, Xiaobo Zhang, Xiang TI Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws SO NATURE PHOTONICS LA English DT Article ID PHOTONIC-CRYSTAL NANOCAVITY; NEGATIVE REFRACTIVE-INDEX; OPTICAL HYPERLENS; METAMATERIAL; MICROCAVITY; CLOAK AB Metamaterials allow for extraordinary electromagnetic properties that are not attainable in nature(1-9). Indefinite media with hyperbolic dispersion, in particular, have found intriguing applications(10-13). The miniaturization of optical cavities increases the photon density of states and therefore enhances light-matter interactions for applications in modern optoelectronics. However, scaling down the optical cavity is limited to the diffraction limit and by the reduced quality factor. Here, we experimentally demonstrate an optical cavity made of indefinite metamaterials that confines the electromagnetic field to an extremely small space. The experiments reveal that indefinite cavities demonstrate anomalous scaling laws: cavities with different sizes can resonant at the same frequency, and a higher-order resonance mode oscillates at a lower frequency. We also demonstrate a universal fourth power law for the radiation quality factor of the wave vector. Cavities with sizes down to lambda/12 are realized with ultrahigh optical indices (up to 17.4), a feature that is critically important for many applications(14-18). C1 [Yang, Xiaodong; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Xiaodong; Yao, Jie; Rho, Junsuk; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. RP Yang, XD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Yin, Xiaobo/A-4142-2011; Zhang, Xiang/F-6905-2011 FU US Department of Energy through Materials Sciences Division of Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231]; Samsung Scholarship Foundation, Republic of Korea FX The authors acknowledge funding support from the US Department of Energy under contract no. DE-AC02-05CH11231 through Materials Sciences Division of Lawrence Berkeley National Laboratory (LBNL). J.S.R. acknowledges a fellowship from the Samsung Scholarship Foundation, Republic of Korea. NR 33 TC 121 Z9 121 U1 10 U2 101 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD JUL PY 2012 VL 6 IS 7 BP 450 EP 454 DI 10.1038/NPHOTON.2012.124 PG 5 WC Optics; Physics, Applied SC Optics; Physics GA 967KA UT WOS:000305905000012 ER PT J AU Kohsaka, Y Hanaguri, T Azuma, M Takano, M Davis, JC Takagi, H AF Kohsaka, Y. Hanaguri, T. Azuma, M. Takano, M. Davis, J. C. Takagi, H. TI Visualization of the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator SO NATURE PHYSICS LA English DT Article ID BI2SR2CACU2O8+DELTA; NEMATICITY AB Superconductivity emerges from the cuprate antiferromagnetic Mott state with hole doping. The resulting electronic structure(1) is not understood, although changes in the state of oxygen atoms seem paramount(2-5). Hole doping first destroys the Mott state, yielding a weak insulator(6,7) where electrons localize only at low temperatures without a full energy gap. At higher doping levels, the 'pseudogap', a weakly conducting state with an anisotropic energy gap and intra-unit-cell breaking of 90 degrees rotational (C-4v) symmetry, appears(3,4,8-10). However, a direct visualization of the emergence of these phenomena with increasing hole density has never been achieved. Here we report atomic-scale imaging of electronic structure evolution from the weak insulator through the emergence of the pseudogap to the superconducting state in Ca2-xNaxCuO2Cl2. The spectral signature of the pseudogap emerges at the lowest doping level from a weakly insulating but C-4v-symmetric matrix exhibiting a distinct spectral shape. At slightly higher hole density, nanoscale regions exhibiting pseudogap spectra and 180 degrees rotational (C-2v) symmetry form unidirectional clusters within the C-4v-symmetric matrix. Thus, hole doping proceeds by the appearance of nanoscale clusters of localized holes within which the broken-symmetry pseudogap state is stabilized. A fundamentally two-component electronic structure(11) then exists in Ca2-xNaxCuO2Cl2 until the C-2v-symmetric clusters touch at higher doping levels, and the long-range superconductivity appears. C1 [Kohsaka, Y.; Takagi, H.] RIKEN Adv Sci Inst, Inorgan Complex Electron Syst Res Team, Wako, Saitama 3510198, Japan. [Hanaguri, T.; Takagi, H.] RIKEN Adv Sci Inst, Magnet Mat Lab, Wako, Saitama 3510198, Japan. [Azuma, M.] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. [Takano, M.] Kyoto Univ, Inst Integrated Cell Mat Sci, Sakyo Ku, Kyoto 6068501, Japan. [Davis, J. C.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. [Davis, J. C.] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. [Davis, J. C.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Davis, J. C.] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. [Takagi, H.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Kohsaka, Y (reprint author), RIKEN Adv Sci Inst, Inorgan Complex Electron Syst Res Team, Wako, Saitama 3510198, Japan. EM kohsaka@riken.jp RI Hanaguri, Tetsuo/I-6710-2012; Azuma, Masaki/C-2945-2009; Takagi, Hidenori/B-2935-2010 OI Hanaguri, Tetsuo/0000-0003-2896-0081; Azuma, Masaki/0000-0002-8378-321X; FU Center for Emergent Superconductivity; Energy Frontier Research Center [DE-2009-BNL-PM015]; JSPS KAKENHI [19840052, 20244060] FX We gratefully acknowledge discussions with M. Lawler and E-Ah Kim. Studies at Brookhaven/ Cornell are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center, under DE-2009-BNL-PM015, and studies at RIKEN by JSPS KAKENHI (19840052, 20244060). NR 22 TC 47 Z9 47 U1 7 U2 68 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD JUL PY 2012 VL 8 IS 7 BP 534 EP 538 DI 10.1038/nphys2321 PG 5 WC Physics, Multidisciplinary SC Physics GA 968IE UT WOS:000305970400012 ER PT J AU LaFleur, AM Charlton, WS Menlove, HO Swinhoe, MT AF LaFleur, Adrienne M. Charlton, William S. Menlove, Howard O. Swinhoe, Martyn T. TI Development of Self-Interrogation Neutron Resonance Densitometry to Quantify the Fissile Content in PWR Spent LEU and MOX Assemblies SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB A new nondestructive assay technique called self-interrogation neutron resonance densitometry (SINRD) is currently being developed at Los Alamos National Laboratory to improve existing nuclear safeguards and material accountability measurements for light water reactor fuel assemblies. The viability of using SINRD to quantify the fissile content (U-235 and Pu-239) in pressurized water reactor 17 x 17 spent low-enriched uranium and mixed-oxide fuel assemblies in water was investigated via Monte Carlo N-particle extended transport code simulations. SINRD utilizes (CM)-C-244 spontaneous fission neutrons to self-interrogate the fuel pins. The amount of resonance absorption of these neutrons in the fuel can be quantified using U-235 and Pu-239 fission chambers placed adjacent to the assembly. The sensitivity of this technique is based on using the same fissile materials in the fission chambers as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the fission chamber. SINRD requires calibration with a reference assembly of similar geometry. However, this densitometry method uses ratios of different fission chambers so that most systematic errors related to calibration and positioning cancel in the ratios. C1 [LaFleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T.] Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. [Charlton, William S.] Texas A&M Univ, Nucl Secur Sci & Policy Inst, College Stn, TX 77843 USA. RP LaFleur, AM (reprint author), Los Alamos Natl Lab, Nucl Nonproliferat Div, POB 1663,MS E540, Los Alamos, NM 87545 USA. EM alafleur@lanl.gov FU NNSA's Next Generation Safeguards Initiative FX We would like to acknowledge the U.S. Department of Energy National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Security (NA-24) for its support in the development of the SINRD method. This work was funded under NNSA's Next Generation Safeguards Initiative. NR 15 TC 5 Z9 5 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2012 VL 171 IS 3 BP 175 EP 191 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 964VY UT WOS:000305726000001 ER PT J AU Yesilyurt, G Martin, WR Brown, FB AF Yesilyurt, Gokhan Martin, William R. Brown, Forrest B. TI On-the-Fly Doppler Broadening for Monte Carlo Codes SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB One of the primary challenges associated with the neutronic analysis of a nuclear reactor is accounting for temperature feedback due to Doppler broadening. This challenge is addressed by a new "on-the-fly" methodology that is applied during the random walk process in Monte Carlo codes with negligible impact on computational efficiency. The Monte Carlo code only needs to store 0 K cross sections for each isotope and the method will broaden the 0 K cross sections for any isotope in the library to any temperature in the range 77 to 3200 K for all incoming neutron energies up to 20 MeV. The methodology is based on a combination of Taylor series expansions and asymptotic series expansions. The type of series representation was determined by investigating the temperature dependence of U-238 resonance cross sections in three regions: near the resonance peaks, midresonance, and the resonance wings. The coefficients for these series expansions were determined by a regression over the energy and temperature range of interest. Since the resonance parameters are a function of the neutron energy and the target nuclide, the psi and chi functions in the Adler-Adler multilevel resonance model can be represented by series expansions in temperature only, allowing the least number of terms to approximate the temperature-dependent cross sections within a specified accuracy. The comparison of the broadened cross sections using this methodology with the NJOY cross sections was excellent over the entire temperature range (77 to 3200 K) and energy range. A Monte Carlo code was implemented to apply the combined regression model and used to estimate the additional computing cost, which was found to be <1%. C1 [Yesilyurt, Gokhan] Argonne Natl Lab, Argonne, IL 60439 USA. [Martin, William R.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Brown, Forrest B.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Yesilyurt, G (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gyesilyurt@anl.gov RI Lujan Center, LANL/G-4896-2012 FU U.S. Department of Energy Office of Science laboratory, ANL [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, operator of Argonne National Laboratory (ANL). A U.S. Department of Energy Office of Science laboratory, ANL is operated under Contract DE-AC02-06CH11357. NR 17 TC 17 Z9 17 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2012 VL 171 IS 3 BP 239 EP 257 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 964VY UT WOS:000305726000007 ER PT J AU Qi, L Lucks, JB Liu, CC Mutalik, VK Arkin, AP AF Qi, Lei Lucks, Julius B. Liu, Chang C. Mutalik, Vivek K. Arkin, Adam P. TI Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals SO NUCLEIC ACIDS RESEARCH LA English DT Article ID MEDIATED TRANSCRIPTIONAL ATTENUATION; SINGLE-NUCLEOTIDE RESOLUTION; ESCHERICHIA-COLI; GENE-EXPRESSION; FLUORESCENT PROTEIN; SECONDARY STRUCTURE; SHAPE CHEMISTRY; COAT PROTEIN; BINDING SITE; IN-VITRO AB Non-coding RNAs (ncRNAs) are versatile regulators in cellular networks. While most trans-acting ncRNAs possess well-defined mechanisms that can regulate transcription or translation, they generally lack the ability to directly sense cellular signals. In this work, we describe a set of design principles for fusing ncRNAs to RNA aptamers to engineer allosteric RNA fusion molecules that modulate the activity of ncRNAs in a ligand-inducible way in Escherichia coli. We apply these principles to ncRNA regulators that can regulate translation (IS10 ncRNA) and transcription (pT181 ncRNA), and demonstrate that our design strategy exhibits high modularity between the aptamer ligand-sensing motif and the ncRNA target-recognition motif, which allows us to reconfigure these two motifs to engineer orthogonally acting fusion molecules that respond to different ligands and regulate different targets in the same cell. Finally, we show that the same ncRNA fused with different sensing domains results in a sensory-level NOR gate that integrates multiple input signals to perform genetic logic. These ligand-sensing ncRNA regulators provide useful tools to modulate the activity of structurally related families of ncRNAs, and building upon the growing body of RNA synthetic biology, our ability to design aptamer-ncRNA fusion molecules offers new ways to engineer ligand-sensing regulatory circuits. C1 [Qi, Lei; Lucks, Julius B.; Liu, Chang C.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Lucks, Julius B.; Liu, Chang C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Mutalik, Vivek K.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, Calif Inst Quantitat Biol Res QB3, Berkeley, CA 94720 USA. [Qi, Lei] Univ Calif Berkeley, UCSF Grad Program Bioengn, Berkeley, CA 94720 USA. RP Arkin, AP (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM aparkin@lbl.gov RI Arkin, Adam/A-6751-2008; Lucks, Julius/L-2801-2016; OI Arkin, Adam/0000-0002-4999-2931; Qi, Lei S/0000-0002-3965-3223; Mutalik, Vivek/0000-0001-7934-0400 FU U.S. Department of Energy, Lawrence Berkeley National Laboratory [DEAC02-05CH11231]; National Science Foundation, Synthetic Biology Engineering Research Center [0540879]; Miller Institute for Basic Research in Science; Synthetic Biology Engineering Research Center (SynBERC) under National Science Foundation [0540879] FX U.S. Department of Energy, Lawrence Berkeley National Laboratory (Contract No. DEAC02-05CH11231); National Science Foundation, Synthetic Biology Engineering Research Center (grant number 0540879); Miller Institute for Basic Research in Science (to J.B.L. and C. C. L.). Funding for open access charge: Synthetic Biology Engineering Research Center (SynBERC) under National Science Foundation (grant number 0540879). NR 49 TC 48 Z9 48 U1 0 U2 28 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL PY 2012 VL 40 IS 12 BP 5775 EP 5786 DI 10.1093/nar/gks168 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 966HR UT WOS:000305829000057 PM 22383579 ER PT J AU Gans, JD Dunbar, J Eichorst, SA Gallegos-Graves, L Wolinsky, M Kuske, CR AF Gans, Jason D. Dunbar, John Eichorst, Stephanie A. Gallegos-Graves, La Verne Wolinsky, Murray Kuske, Cheryl R. TI A robust PCR primer design platform applied to the detection of Acidobacteria Group 1 in soil SO NUCLEIC ACIDS RESEARCH LA English DT Article ID SELECTING SIGNATURE OLIGONUCLEOTIDES; 16S RIBOSOMAL-RNA; PHYLUM ACIDOBACTERIA; DEGENERATE PRIMERS; SEQUENCE DATA; WEB SERVER; GEN. NOV.; DIVERSITY; BACTERIA; ALIGNMENTS AB Environmental biosurveillance and microbial ecology studies use PCR-based assays to detect and quantify microbial taxa and gene sequences within a complex background of microorganisms. However, the fragmentary nature and growing quantity of DNA-sequence data make group-specific assay design challenging. We solved this problem by developing a software platform that enables PCR-assay design at an unprecedented scale. As a demonstration, we developed quantitative PCR assays for a globally widespread, ecologically important bacterial group in soil, Acidobacteria Group 1. A total of 33 684 Acidobacteria 16S rRNA gene sequences were used for assay design. Following 1 week of computation on a 376-core cluster, 83 assays were obtained. We validated the specificity of the top three assays, collectively predicted to detect 42% of the Acidobacteria Group 1 sequences, by PCR amplification and sequencing of DNA from soil. Based on previous analyses of 16S rRNA gene sequencing, Acidobacteria Group 1 species were expected to decrease in response to elevated atmospheric CO2. Quantitative PCR results, using the Acidobacteria Group 1-specific PCR assays, confirmed the expected decrease and provided higher statistical confidence than the 16S rRNA gene-sequencing data. These results demonstrate a powerful capacity to address previously intractable assay design challenges. C1 [Gans, Jason D.; Dunbar, John; Eichorst, Stephanie A.; Gallegos-Graves, La Verne; Wolinsky, Murray; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Gans, JD (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. EM jgans@lanl.gov RI Eichorst, Stephanie A/A-1079-2017 OI Eichorst, Stephanie A/0000-0002-9017-7461 FU US Department of Homeland Security [HSHQDC-08X-00763, HSHQDC-07-X-00908, HSHQDC-08-X-00793]; US Department of Energy; Office of Biological and Environmental Research [2009LANLF260]; US Department of Energy Laboratory Directed Research and Development program [LDRD-ER 20110665ER] FX US Department of Homeland Security [HSHQDC-08X-00763, HSHQDC-07-X-00908, HSHQDC-08-X-00793] (to M.W. and J.G.); US Department of Energy (Science Focus Area grant to C. R. K. and J.D.); Office of Biological and Environmental Research (2009LANLF260); US Department of Energy Laboratory Directed Research and Development program (LDRD-ER 20110665ER). Funding for open access charge: US Department of Energy. NR 62 TC 6 Z9 6 U1 3 U2 20 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL PY 2012 VL 40 IS 12 AR e96 DI 10.1093/nar/gks238 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 966HR UT WOS:000305829000009 PM 22434885 ER PT J AU Durodie, F Nightingale, MPS Mayoral, ML Ongena, J Argouarch, A BergerBy, G Blackman, T Cocilovo, V Czarnecka, A Dowson, S Frigione, D Goulding, R Graham, M Hobirk, J Huygen, S Jachmich, S Jacquet, P Lerche, E Lamalle, PU Loarer, T Maggiora, R Messiaen, A Milanesio, D Monakhov, I Nave, MFF Rimini, F Sheikh, H Sozzi, C Tsalas, M Van Eester, D Vrancken, M Whitehurst, A Wooldridge, E Zastrow, KD AF Durodie, F. Nightingale, M. P. S. Mayoral, M-L Ongena, J. Argouarch, A. BergerBy, G. Blackman, T. Cocilovo, V. Czarnecka, A. Dowson, S. Frigione, D. Goulding, R. Graham, M. Hobirk, J. Huygen, S. Jachmich, S. Jacquet, P. Lerche, E. Lamalle, P. U. Loarer, T. Maggiora, R. Messiaen, A. Milanesio, D. Monakhov, I. Nave, M. F. F. Rimini, F. Sheikh, H. Sozzi, C. Tsalas, M. Van Eester, D. Vrancken, M. Whitehurst, A. Wooldridge, E. Zastrow, K-D CA JET-EFDA Contributors TI Physics and engineering results obtained with the ion cyclotron range of frequencies ITER-like antenna on JET SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID ARC DETECTION SYSTEM; T MATCHING SYSTEM; ICRF ANTENNA; PLUG-IN; MOCK-UP; DESIGN; TOPICA; OPERATIONS; TESTS; LOAD AB This paper summarizes the operational experience of the ion cyclotron resonant frequency (ICRF) ITER-like antenna on JET aiming at substantially increasing the power density in the range of the requirements for ITER combined with load resiliency. An in-depth description of its commissioning, operational aspects and achieved performances is presented. C1 [Durodie, F.; Ongena, J.; Huygen, S.; Jachmich, S.; Lerche, E.; Lamalle, P. U.; Messiaen, A.; Van Eester, D.; Vrancken, M.] Assoc EURATOM Belgian State, LPP ERM KMS, B-1000 Brussels, Belgium. [Nightingale, M. P. S.; Mayoral, M-L; Blackman, T.; Dowson, S.; Graham, M.; Jacquet, P.; Monakhov, I.; Sheikh, H.; Whitehurst, A.; Wooldridge, E.; Zastrow, K-D] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Argouarch, A.; BergerBy, G.; Loarer, T.] CEA Cadarache, Inst Rech Fus Magnet, F-13108 St Paul Les Durance, France. [Cocilovo, V.; Frigione, D.] Assoc EURATOM ENEA Fus, CR Frascati, Rome, Italy. [Czarnecka, A.] Assoc EURATOM IPPLM, PL-01497 Warsaw, Poland. [Hobirk, J.] EURATOM Assoziat, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Goulding, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Maggiora, R.; Milanesio, D.] Politecn Torino, Dept Elettron, Turin, Italy. [Nave, M. F. F.] Assoc EURATOM IST, Inst Plasma & Fusao Nucl, P-1049001 Lisbon, Portugal. [Rimini, F.] Culham Sci Ctr, EFDA Close Support Unit, Abingdon OX14 3DB, Oxon, England. [Sozzi, C.] EURATOM ENEA CNR Assoc, Ist Fis Plasma CNR, Milan, Italy. [Tsalas, M.] NCSR Demokritos, Assoc EURATOM Hellas, Aghia Paraskevi, Greece. [Durodie, F.; Ongena, J.; Huygen, S.; Jachmich, S.; Lerche, E.; Lamalle, P. U.; Messiaen, A.; Van Eester, D.; Vrancken, M.] Partner Trilateral Euregio Cluster TEC, Nieuwegein, Netherlands. JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Durodie, F (reprint author), Assoc EURATOM Belgian State, LPP ERM KMS, B-1000 Brussels, Belgium. EM frederic.durodie@rma.ac.be RI Nave, Maria/A-5581-2013; Goulding, Richard/C-5982-2016 OI Nave, Maria/0000-0003-2078-6584; Goulding, Richard/0000-0002-1776-7983 FU European Communities; RCUK Energy Programme [EP/G003955] FX This work, supported by the European Communities under the contract of Association between EURATOM and CCFE, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also part-funded by the RCUK Energy Programme under grant EP/G003955. NR 44 TC 17 Z9 17 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUL PY 2012 VL 54 IS 7 SI SI AR 074012 DI 10.1088/0741-3335/54/7/074012 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 967FJ UT WOS:000305891500013 ER PT J AU Ekedahl, A Petrzilka, V Baranov, Y Biewer, TM Brix, M Goniche, M Jacquet, P Kirov, KK Klepper, CC Mailloux, J Mayoral, ML Nave, MFF Ongena, J Rachlew, E AF Ekedahl, A. Petrzilka, V. Baranov, Y. Biewer, T. M. Brix, M. Goniche, M. Jacquet, P. Kirov, K. K. Klepper, C. C. Mailloux, J. Mayoral, M-L Nave, M. F. F. Ongena, J. Rachlew, E. CA JET-EFDA Contributors TI Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID CURRENT DRIVE; PAM LAUNCHER; TOKAMAK; LHCD; ITER; EDGE; FTU AB Reliable coupling of the lower hybrid current drive (LHCD) to H-mode plasmas in JET is made feasible through a dedicated gas injection system, located at the outer wall and magnetically connected to the antenna (Pericoli Ridolfini et al 2004 Plasma Phys. Control. Fusion 46 349, Ekedahl et al 2005 Nucl. Fusion 45 351, Ekedahl et al 2009 Plasma Phys. Control. Fusion 51 044001). An experiment was carried out in JET in order to investigate whether a gas injection from the top of the torus, as is foreseen for the main gas injection in ITER, could also provide good coupling of the LH waves if magnetically connected to the antenna. The results show that a top gas injection was not efficient for providing a reliable LHCD power injection, in spite of being magnetically connected and in spite of using almost twice the amount of gas flow compared with the dedicated outer mid-plane gas puffing system. A dedicated gas injection system, set in the outer wall and magnetically connected to the LHCD antenna, is therefore recommended in order to provide the reliable coupling conditions for an LHCD antenna in ITER. C1 [Ekedahl, A.; Goniche, M.] IRFM, CEA, F-13108 St Paul Les Durance, France. [Petrzilka, V.] Assoc Euratom IPP CR, IPP AS CR, Prague 18221 8, Czech Republic. [Baranov, Y.; Brix, M.; Jacquet, P.; Kirov, K. K.; Mailloux, J.; Mayoral, M-L] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Biewer, T. M.; Klepper, C. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nave, M. F. F.] Univ Tecn Lisboa, Assoc Euratom IST, Inst Plasmas & Fusao Nucl, Inst Super Tecn, P-1049001 Lisbon, Portugal. [Ongena, J.] Assoc Euratom Belgian State, ERM KMS, B-1000 Brussels, Belgium. [Rachlew, E.] KTH, Assoc Euratom VR, Dept Phys, SCI, SE-10691 Stockholm, Sweden. JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Ongena, J.] TEC Partner, Ridgeland, MS USA. RP Ekedahl, A (reprint author), IRFM, CEA, F-13108 St Paul Les Durance, France. EM annika.ekedahl@cea.fr RI Nave, Maria/A-5581-2013 OI Nave, Maria/0000-0003-2078-6584 FU CCFE JET Operator of the JET EFDA Facility; Czech Science Foundation [GACR 202/07/0044, 205/10/2055]; MSMT CR [LG11018]; EURATOM FX The authors acknowledge the support of the CCFE JET Operator of the JET EFDA Facility. One of the co-authors (VP) acknowledges the partial support of the Czech Science Foundation Grants GACR 202/07/0044 and 205/10/2055, and of MSMT CR Grant LG11018. This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 31 TC 12 Z9 12 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUL PY 2012 VL 54 IS 7 SI SI AR 074004 DI 10.1088/0741-3335/54/7/074004 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 967FJ UT WOS:000305891500005 ER PT J AU Graham, M Mayoral, ML Monakhov, I Ongena, J Blackman, T Nightingale, MPS Wooldridge, E Durodie, F Argouarch, A Berger-By, G Czarnecka, A Dowson, S Goulding, R Huygen, S Jacquet, P Wade, TJ Lerche, E Lamalle, PU Sheikh, H Van Eester, D Vrancken, M Walden, A Whitehurst, A AF Graham, M. Mayoral, M-L Monakhov, I. Ongena, J. Blackman, T. Nightingale, M. P. S. Wooldridge, E. Durodie, F. Argouarch, A. Berger-By, G. Czarnecka, A. Dowson, S. Goulding, R. Huygen, S. Jacquet, P. Wade, T. J. Lerche, E. Lamalle, P. U. Sheikh, H. Van Eester, D. Vrancken, M. Walden, A. Whitehurst, A. CA JET-EFDA Contributors TI Implementation of load resilient ion cyclotron resonant frequency (ICRF) systems to couple high levels of ICRF power to ELMy H-mode plasmas in JET SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID T MATCHING SYSTEM; ANTENNA AB The paper summarizes the continuous developments made to the ion cyclotron resonant frequency (ICRF) system at JET in order to improve the reliability of the power coupled to plasma. It details the changes and improvements made to the system so that more power is coupled during ELMy plasmas as well as increasing the power density to demonstrate reliable operation in the range of the requirements for ITER. Results obtained using the conventional matching (stubs and trombones) system, 3 dB couplers and the conjugate-T scheme with variable matching elements outside the wave launching structure (external conjugate-T) and inside the wave launching structure (ITER-like antenna) are described. The presence of the three different approaches to load resilient ICRF systems at JET creates a unique opportunity to compare these methods under very similar plasma conditions and to assess the results of ICRF power delivery to ELMy plasmas, an important issue for ITER. The impact of the availability of increased levels of reliable ICRF power on plasma physics studies in JET is illustrated. C1 [Graham, M.; Mayoral, M-L; Monakhov, I.; Blackman, T.; Nightingale, M. P. S.; Wooldridge, E.; Dowson, S.; Jacquet, P.; Wade, T. J.; Sheikh, H.; Walden, A.; Whitehurst, A.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Ongena, J.; Durodie, F.; Huygen, S.; Lerche, E.; Lamalle, P. U.; Van Eester, D.; Vrancken, M.] Assoc EURATOM Belgian State, LPP ERM KMS, Brussels, Belgium. [Argouarch, A.; Berger-By, G.] IRFM, CEA, F-13108 St Paul Les Durance, France. [Czarnecka, A.] Assoc EURATOM IPPLM, PL-01497 Warsaw, Poland. [Goulding, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Graham, M (reprint author), EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM margaret.graham@ccfe.ac.uk RI Goulding, Richard/C-5982-2016 OI Goulding, Richard/0000-0002-1776-7983 FU European Communities; RCUK Energy Programme [EP/I501045] FX This work, supported by the European Communities under the contract of Association between EURATOM and CCFE, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also part-funded by the RCUK Energy Programme under grant EP/I501045. The authors would like to thank Roberta Sartori (Fusion For Energy Joint Undertaking, Spain), Paola Mantica (ENEA-CNR, Italy) and Joelle Mailloux (EURATOM/CCFE Fusion Association, UK) for their contributions to the last paragraph. NR 32 TC 15 Z9 15 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUL PY 2012 VL 54 IS 7 SI SI AR 074011 DI 10.1088/0741-3335/54/7/074011 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 967FJ UT WOS:000305891500012 ER PT J AU Kiptily, VG Van Eester, D Lerche, E Hellsten, T Ongena, J Mayoral, ML Cecil, FE Darrow, D Johnson, MG Goloborod'ko, V Gorini, G Hellesen, C Johnson, T Lin, Y Maslov, M Nocente, M Tardocchi, M Voitsekhovitch, I AF Kiptily, V. G. Van Eester, D. Lerche, E. Hellsten, T. Ongena, J. Mayoral, M-L Cecil, F. E. Darrow, D. Johnson, M. Gatu Goloborod'ko, V. Gorini, G. Hellesen, C. Johnson, T. Lin, Y. Maslov, M. Nocente, M. Tardocchi, M. Voitsekhovitch, I. CA JET EFDA Contributors TI Fast ions in mode conversion heating (He-3)-H plasmas in JET SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID EQUILIBRIUM; FRACTIONS AB Fast ions were analysed in experiments focusing on fundamental He-3 minority and mode conversion (MC) in the ion cyclotron resonance range of frequencies (ICRF) in H plasmas and on second harmonic heating of He-3 ions at 2.65 T mimicking D-T plasma heating in ITER at half its nominal toroidal magnetic field. Gamma-ray spectrometry, neutral particle analysers and fast-ion loss diagnostics provided information on the generation of fast-ion populations and on the distribution of ICRH power among the species in various heating scenarios and for a large range of He-3 concentrations. In the scenario with the fundamental He-3 minority and MC wave heating at B-T(0) = 3.41 T and f approximate to 32 MHz, fast He-3 ions accelerated by ICRH in the MeV energy range were detected in discharges with low He-3 concentration. In the experiments with a He-3 concentration scan it was found that at a He-3 concentration of approximate to 2.2% the He-3 ion losses disappeared while a population of energetic D ions gradually built up due to a redistribution of the ICRH power between species on reaching the first MC regime. Under those conditions the ICRF-heated D beam ions effectively absorbed the wave power at their Doppler shifted resonance, which was close to the plasma centre. In discharges with second harmonic heating of He-3 ions at B-T(0) = 2.65 T and f approximate to 52 MHz, the confined energetic He-3 ions were found in the MeV energy range. There is some evidence that the D ions were also accelerated by ICRF. This paper also demonstrates that the synergy of the various fast ion diagnostics allows making a broad picture of the physics of the redistribution of the absorbed ICRH power in complicated heating scenarios of JET. C1 [Kiptily, V. G.; Mayoral, M-L; Voitsekhovitch, I.] EURATOM CCFE Assoc, Culham Sci Ctr, Abingdon, Oxon, England. [Van Eester, D.; Lerche, E.; Ongena, J.] TEC Partner, Assoc Euratom Belgian State, LPP ERM KMS, Brussels, Belgium. [Hellsten, T.; Johnson, T.] KTH, Assoc Euratom VR, Stockholm, Sweden. [Cecil, F. E.] Colorado Sch Mines, Golden, CO 80401 USA. [Darrow, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Johnson, M. Gatu; Hellesen, C.] Uppsala Univ, Assoc EURATOM VR, Uppsala, Sweden. [Goloborod'ko, V.] Univ Innsbruck, Inst Theoret Phys, EURATOM OEAW Assoc, A-6020 Innsbruck, Austria. [Gorini, G.; Nocente, M.; Tardocchi, M.] EURATOM ENEA CNR Assoc, Inst Fis Plasma, Milan, Italy. [Lin, Y.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Maslov, M.] Assoc Euratom Confederat Suisse, CRPP EPFL, CH-1015 Lausanne, Switzerland. JET EFDA Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Kiptily, VG (reprint author), EURATOM CCFE Assoc, Culham Sci Ctr, Abingdon, Oxon, England. EM vasili.kiptily@jet.uk RI Nocente, Massimo/I-7889-2014; Gorini, Giuseppe/H-9595-2016 OI Nocente, Massimo/0000-0003-0170-5275; Gorini, Giuseppe/0000-0002-4673-0901 FU European Communities; RCUK Energy Programme [EP/I501045] FX This work, partly funded by the European Communities under the contract of Association between EURATOM and CCFE, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also partly funded by the RCUK Energy Programme under grant EP/I501045. NR 25 TC 7 Z9 7 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUL PY 2012 VL 54 IS 7 SI SI AR 074010 DI 10.1088/0741-3335/54/7/074010 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 967FJ UT WOS:000305891500011 ER PT J AU Whitford, PC Sanbonmatsu, KY Onuchic, JN AF Whitford, Paul C. Sanbonmatsu, Karissa Y. Onuchic, Jose N. TI Biomolecular dynamics: order-disorder transitions and energy landscapes SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID PROTEIN-FOLDING FUNNELS; MONTE-CARLO-SIMULATION; AMINOACYL-TRANSFER-RNA; NUDGED ELASTIC BAND; GLASS-FORMING LIQUIDS; COARSE-GRAINED MODELS; NATIVE-STATE TOPOLOGY; NF-KAPPA-B; ADENYLATE-KINASE; MOLECULAR-DYNAMICS AB While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss (1) the development of the energy landscape theory of biomolecular folding, (2) recent advances toward establishing a consistent understanding of folding and function and (3) emerging themes in the functional motions of enzymes, biomolecular motors and other biomolecular machines. Recent theoretical, computational and experimental lines of investigation have provided a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provides significant contributions to the free energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions. C1 [Whitford, Paul C.; Onuchic, Jose N.] Rice Univ, Ctr Theoret Biol Phys, Dept Phys, Houston, TX 77005 USA. [Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Theoret Biol & Biophys Theoret Div, Los Alamos, NM 87545 USA. RP Whitford, PC (reprint author), Rice Univ, Ctr Theoret Biol Phys, Dept Phys, 6100 Main, Houston, TX 77005 USA. FU Center for Theoretical Biological Physics; NSF [PHY-0822283]; NIH [R01-GM072686]; Cancer Prevention and Research Institute of Texas; [NSF-MCB-1214457] FX PCW would like to thank Professor Alexander Schug (Karlsruher Institut fur Technologie) and Dr Jeffrey Noel (UCSD) for critical feedback during manuscript preparation. This work was supported by the Center for Theoretical Biological Physics sponsored by the NSF (Grant PHY-0822283) and by NSF-MCB-1214457, in addition to support from NIH Grant R01-GM072686. JNO is a CPRIT Scholar in Cancer Research sponsored by the Cancer Prevention and Research Institute of Texas. NR 276 TC 46 Z9 46 U1 10 U2 112 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD JUL PY 2012 VL 75 IS 7 AR 076601 DI 10.1088/0034-4885/75/7/076601 PG 29 WC Physics, Multidisciplinary SC Physics GA 967KW UT WOS:000305907700004 PM 22790780 ER PT J AU Perumalla, KS Seal, SK AF Perumalla, Kalyan S. Seal, Sudip K. TI Discrete event modeling and massively parallel execution of epidemic outbreak phenomena SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE discrete event; epidemiology; high performance computing; reverse computation ID SCALE-FREE NETWORKS; UNITED-STATES; INFLUENZA; DISEASE AB In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks cannot be supported by sequential or small-scale parallel execution, making it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction-diffusion simulation model of epidemic propagation is presented to facilitate a dramatic increase in the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallel execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene/P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes, with mobility and detailed state evolution modeled at the level of each individual, exceeding several hundreds of millions of individuals in the largest cases, are successfully exercised to verify model scalability. C1 [Perumalla, Kalyan S.; Seal, Sudip K.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Perumalla, KS (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, POB 2008,MS 6085, Oak Ridge, TN 37831 USA. EM perumallaks@ornl.gov OI Perumalla, Kalyan/0000-0002-7458-0832 FU U.S. Department of Energy [DE-AC05-00OR22725]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); DOE Office of Science, Advanced Scientific Computing Research, Career Research Program FX This paper has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This effort has been partly supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), and in part by the DOE Office of Science, Advanced Scientific Computing Research, Career Research Program. This research utilized resources of the National Center for Computational Sciences at ORNL. NR 20 TC 10 Z9 10 U1 1 U2 9 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 EI 1741-3133 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD JUL PY 2012 VL 88 IS 7 SI SI BP 768 EP 783 DI 10.1177/0037549711413001 PG 16 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA 968HZ UT WOS:000305969800002 ER PT J AU Park, AJ Li, CH Nair, R Ohba, N Shvadron, U Zaks, A Schenfeld, E AF Park, Alfred J. Li, Cheng-Hong Nair, Ravi Ohba, Nobuyuki Shvadron, Uzi Zaks, Ayal Schenfeld, Eugen TI Towards flexible exascale stream processing system simulation SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE stream computing; stream processing systems; simulation; parallel discrete event simulation; exascale ID SYNCHRONIZATION; INFRASTRUCTURE; MANAGEMENT; TIME AB Stream processing is an important emerging computational model for performing complex operations on and across multi-source, high-volume, unpredictable dataflows. We present Flow, a platform for parallel and distributed stream processing system simulation that provides a flexible modeling environment for analyzing stream processing applications. The Flow stream processing system simulator is a high-performance, scalable simulator that automatically parallelizes chunks of the model space and incurs near-zero synchronization overhead for acyclic stream application graphs. We show promising parallel and distributed event rates exceeding 149 million events per second on a cluster with 512 processor cores. C1 [Park, Alfred J.; Li, Cheng-Hong; Nair, Ravi; Schenfeld, Eugen] IBM Res, TJ Watson Res Ctr, Yorktown Hts, NY USA. [Ohba, Nobuyuki] IBM Res, Tokyo Res Lab, Yamato, Kanagawa, Japan. [Shvadron, Uzi; Zaks, Ayal] Univ Haifa, Haifa Res Lab, IBM Res, Har Hakarmel, Israel. RP Park, AJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM parkaj@ornl.gov; eugen@us.ibm.com FU IBM Research FX Funding has been provided in part by IBM Research. No grant number is available. NR 51 TC 1 Z9 1 U1 0 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 EI 1741-3133 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD JUL PY 2012 VL 88 IS 7 SI SI BP 832 EP 851 DI 10.1177/0037549711412981 PG 20 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA 968HZ UT WOS:000305969800005 ER PT J AU Turney, JM Simmonett, AC Parrish, RM Hohenstein, EG Evangelista, FA Fermann, JT Mintz, BJ Burns, LA Wilke, JJ Abrams, ML Russ, NJ Leininger, ML Janssen, CL Seidl, ET Allen, WD Schaefer, HF King, RA Valeev, EF Sherrill, CD Crawford, TD AF Turney, Justin M. Simmonett, Andrew C. Parrish, Robert M. Hohenstein, Edward G. Evangelista, Francesco A. Fermann, Justin T. Mintz, Benjamin J. Burns, Lori A. Wilke, Jeremiah J. Abrams, Micah L. Russ, Nicholas J. Leininger, Matthew L. Janssen, Curtis L. Seidl, Edward T. Allen, Wesley D. Schaefer, Henry F. King, Rollin A. Valeev, Edward F. Sherrill, C. David Crawford, T. Daniel TI PSI4: an open-source ab initio electronic structure program SO WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE LA English DT Article ID DENSITY-FUNCTIONAL THEORIES; COUPLED-CLUSTER THEORY; PERTURBATION-THEORY; EXCITED-STATES; WAVE-FUNCTIONS; COMPUTATION; MODEL; SET; SUBSTITUTIONS; GAUSSIAN-2 AB The PSI4 program is a new approach to modern quantum chemistry, encompassing Hartree-Fock and density-functional theory to configuration interaction and coupled cluster. The program is written entirely in C++ and relies on a new infrastructure that has been designed to permit high-efficiency computations of both standard and emerging electronic structure methods on conventional and high-performance parallel computer architectures. PSI4 offers flexible user input built on the Python scripting language that enables both new and experienced users to make full use of the program's capabilities, and even to implement new functionality with moderate effort. To maximize its impact and usefulness, PSI4 is available through an open-source license to the entire scientific community. (C) 2011 John Wiley & Sons, Ltd. C1 [Abrams, Micah L.; Russ, Nicholas J.; Valeev, Edward F.; Crawford, T. Daniel] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. [Turney, Justin M.; Simmonett, Andrew C.; Wilke, Jeremiah J.; Allen, Wesley D.; Schaefer, Henry F.] Univ Georgia, Ctr Computat Quantum Chem, Dept Chem, Athens, GA 30602 USA. [Parrish, Robert M.; Hohenstein, Edward G.; Burns, Lori A.; Sherrill, C. David] Georgia Inst Technol, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA. [Parrish, Robert M.; Hohenstein, Edward G.; Burns, Lori A.; Sherrill, C. David] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Parrish, Robert M.; Hohenstein, Edward G.; Burns, Lori A.; Sherrill, C. David] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA. [Evangelista, Francesco A.] Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-6500 Mainz, Germany. [Fermann, Justin T.] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. [Mintz, Benjamin J.] Oak Ridge Natl Lab, Oak Ridge Leadership Comp Facil, Oak Ridge, TN USA. [Leininger, Matthew L.; Seidl, Edward T.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Janssen, Curtis L.] Sandia Natl Labs, Scalable Comp Res & Dev, Livermore, CA USA. [King, Rollin A.] Bethel Univ, Dept Chem, St Paul, MN USA. RP Crawford, TD (reprint author), Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. EM crawdad@vt.edu RI Evangelista, Francesco/A-4012-2008; Valeyev, Eduard/A-5313-2009; Allen, Wesley/C-9867-2010; Turney, Justin/G-5390-2014; Crawford, Thomas/A-9271-2017; Evangelista, Francesco/B-4789-2017; OI Valeyev, Eduard/0000-0001-9923-6256; Allen, Wesley/0000-0002-4288-2297; Crawford, Thomas/0000-0002-7961-7016; Evangelista, Francesco/0000-0002-7917-6652; Burns, Lori/0000-0003-2852-5864; Sherrill, David/0000-0002-5570-7666 FU National Science Foundation [CHE-1058420, CHE-1011360, CHE-1054286]; Multi-User Chemistry Research Instrumentation and Facility (CRIF:MU) award [CHE-0741927]; NSF CRIF award [CHE-0946869]; Georgia Tech; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC0500OR22750]; Oak Ridge Associated Universities; U.S. Department of Energy, the division of Advanced Scientific Computing Research as a component of the Computational Chemistry Endstation project; University of Tennessee; Department of Energy, Office of Basic Energy Sciences [DEFG02-97-ER14748] FX This work was supported in part by the National Science Foundation through grants to T.D.C. (Grant No. CHE-1058420), to C.D.S. (Grant No. CHE-1011360), to H.F.S (Grant No. CHE-1054286), and a Multi-User Chemistry Research Instrumentation and Facility (CRIF:MU) award to T.D.C. and E.F.V. (Grant No. CHE-0741927). The Center for Computational Molecular Science and Technology is funded through an NSF CRIF award (Grant No. CHE-0946869) and by Georgia Tech. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This document describes activities performed under contract number DE-AC0500OR22750 between the U.S. Department of Energy and Oak Ridge Associated Universities. This work was also funded in part by the U.S. Department of Energy, the division of Advanced Scientific Computing Research as a component of the Computational Chemistry Endstation project under subcontract from the University of Tennessee. The work in Athens was also supported by the Department of Energy, Office of Basic Energy Sciences (Grant No. DEFG02-97-ER14748). NR 46 TC 251 Z9 251 U1 4 U2 72 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 1759-0876 J9 WIRES COMPUT MOL SCI JI Wiley Interdiscip. Rev.-Comput. Mol. Sci. PD JUL-AUG PY 2012 VL 2 IS 4 BP 556 EP 565 DI 10.1002/wcms.93 PG 10 WC Chemistry, Multidisciplinary; Mathematical & Computational Biology SC Chemistry; Mathematical & Computational Biology GA 960MX UT WOS:000305393700004 ER PT J AU Comerford, JM Gerke, BF Stern, D Cooper, MC Weiner, BJ Newman, JA Madsen, K Barrows, RS AF Comerford, Julia M. Gerke, Brian F. Stern, Daniel Cooper, Michael C. Weiner, Benjamin J. Newman, Jeffrey A. Madsen, Kristin Barrows, R. Scott TI KILOPARSEC-SCALE SPATIAL OFFSETS IN DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. I. MARKERS FOR SELECTION OF COMPELLING DUAL ACTIVE GALACTIC NUCLEUS CANDIDATES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: interactions; galaxies: nuclei ID DIGITAL SKY SURVEY; GALAXY REDSHIFT SURVEY; BINARY BLACK-HOLE; REGION KINEMATICS; EMISSION-LINES; MASS OUTFLOWS; JET-DRIVEN; CHANDRA; MERGERS; DISCOVERY AB Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 <= z <= 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with similar to kpc projected spatial separations on the sky (0.2 h(70)(-1) kpc < Delta x < 5.5 h(70)(-1) kpc; median Delta x = 1.1 h(70)(-1) kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58(-6)(+5)%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42(-5)(+6)%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32(-6)(+8)% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational criteria for selecting the most promising dual AGN candidates from the full sample of double-peaked narrow-line AGNs. Using these criteria, we determine the 17 most compelling dual AGN candidates in our sample. C1 [Comerford, Julia M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Gerke, Brian F.] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94725 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cooper, Michael C.] Univ Calif Irvine, Dept Phys & Astron, Ctr Galaxy Evolut, Irvine, CA 92697 USA. [Weiner, Benjamin J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh Particle Phys Astrophys & Cosmol Ctr, Pittsburgh, PA 15260 USA. [Madsen, Kristin] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Barrows, R. Scott] Univ Arkansas, Arkansas Ctr Space & Planetary Sci, Fayetteville, AR 72701 USA. OI Weiner, Benjamin/0000-0001-6065-7483; Madsen, Kristin/0000-0003-1252-4891 FU NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1102525]; College of Natural Sciences and the Department of Astronomy at the University of Texas at Austin; McDonald Observatory; NASA through Space Telescope Science Institute [HF-51269.01-A, NAS 5-26555]; University of California Office of Research FX We thank Jeffrey Silverman and Maryam Modjaz for valuable assistance in learning to reduce the Lick and MMT data, respectively, and Grant Williams for observations during MMT engineering time. J.M.C. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1102525. The Texas Cosmology Center is supported by the College of Natural Sciences and the Department of Astronomy at the University of Texas at Austin and the McDonald Observatory. M.C.C. acknowledges support for this work provided by NASA through Hubble Fellowship grant HF-51269.01-A, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. M.C.C. also acknowledges support from the Southern California Center for Galaxy Evolution, a multi-campus research program funded by the University of California Office of Research. The observations reported here were obtained at Lick Observatory, a multi-campus research unit of the University of California; the Hale Telescope, Palomar Observatory as part of a continuing collaboration between the California Institute of Technology, NASA/JPL, and Cornell University; and the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. NR 44 TC 44 Z9 44 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2012 VL 753 IS 1 AR 42 DI 10.1088/0004-637X/753/1/42 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 963OV UT WOS:000305632500042 ER PT J AU Stern, D Assef, RJ Benford, DJ Blain, A Cutri, R Dey, A Eisenhardt, P Griffith, RL Jarrett, TH Lake, S Masci, F Petty, S Stanford, SA Tsai, CW Wright, EL Yan, L Harrison, F Madsen, K AF Stern, Daniel Assef, Roberto J. Benford, Dominic J. Blain, Andrew Cutri, Roc Dey, Arjun Eisenhardt, Peter Griffith, Roger L. Jarrett, T. H. Lake, Sean Masci, Frank Petty, Sara Stanford, S. A. Tsai, Chao-Wei Wright, E. L. Yan, Lin Harrison, Fiona Madsen, Kristin TI MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; infrared: galaxies ID DIGITAL-SKY-SURVEY; SPITZER-SPACE-TELESCOPE; X-RAY SOURCES; SPECTRAL ENERGY-DISTRIBUTIONS; IRAC SHALLOW SURVEY; POWER-LAW GALAXIES; ARRAY CAMERA IRAC; HIGH-REDSHIFT; MU-M; RADIO GALAXIES AB The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 - W2 >= 0.8 (i.e., [3.4]-[4.6] >= 0.8, Vega), which identifies 61.9 +/- 5.4 active galactic nucleus (AGN) candidates per deg(2) to a depth of W2 similar to 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 mu Jy at 4.6 mu m, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field. C1 [Stern, Daniel; Assef, Roberto J.; Eisenhardt, Peter] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. [Benford, Dominic J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blain, Andrew] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Cutri, Roc; Griffith, Roger L.; Jarrett, T. H.; Masci, Frank; Tsai, Chao-Wei; Yan, Lin] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dey, Arjun] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Lake, Sean; Petty, Sara; Wright, E. L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Harrison, Fiona; Madsen, Kristin] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. RP Stern, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. EM daniel.k.stern@jpl.nasa.gov RI Benford, Dominic/D-4760-2012; OI Benford, Dominic/0000-0002-9884-4206; Madsen, Kristin/0000-0003-1252-4891 FU National Aeronautics and Space Administration; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; NASA [NAS 5-26555] FX We gratefully acknowledge the anonymous referee for helpful comments that have made the paper both clearer and stronger. We also thank P. Capak for providing two unpublished redshifts obtained with DEIMOS. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We gratefully acknowledge the COSMOS survey and are thankful for the extensive and high quality data products that they have publicly released. This publication makes use of data obtained at the Keck Observatory. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. SDSS is funded by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. This research has made use of the NASA/IPAC Infrared Science Archive (IRSA), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory/California Institute of Technology, under a contract with NASA. This work is also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. R.J.A. is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. NR 119 TC 190 Z9 191 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2012 VL 753 IS 1 AR 30 DI 10.1088/0004-637X/753/1/30 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 963OV UT WOS:000305632500030 ER PT J AU Bleem, LE van Engelen, A Holder, GP Aird, KA Armstrong, R Ashby, MLN Becker, MR Benson, BA Biesiadzinski, T Brodwin, M Busha, MT Carlstrom, JE Chang, CL Cho, HM Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dore, O Dudley, J Geach, JE George, EM Gladders, MD Gonzalez, AH Halverson, NW Harrington, N High, FW Holden, BP Holzapfel, WL Hoover, S Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Luong-Van, D Marrone, DP Martinez-Manso, J McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Natoli, T Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruhl, JE Saliwanchik, BR Sayre, JT Schaffer, KK Shaw, L Shirokoff, E Spieler, HG Stalder, B Stanford, SA Staniszewski, Z Stark, AA Stern, D Story, K Vallinotto, A Vanderlinde, K Vieira, JD Wechsler, RH Williamson, R Zahn, O AF Bleem, L. E. van Engelen, A. Holder, G. P. Aird, K. A. Armstrong, R. Ashby, M. L. N. Becker, M. R. Benson, B. A. Biesiadzinski, T. Brodwin, M. Busha, M. T. Carlstrom, J. E. Chang, C. L. Cho, H. M. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dore, O. Dudley, J. Geach, J. E. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Harrington, N. High, F. W. Holden, B. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Luong-Van, D. Marrone, D. P. Martinez-Manso, J. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Natoli, T. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruhl, J. E. Saliwanchik, B. R. Sayre, J. T. Schaffer, K. K. Shaw, L. Shirokoff, E. Spieler, H. G. Stalder, B. Stanford, S. A. Staniszewski, Z. Stark, A. A. Stern, D. Story, K. Vallinotto, A. Vanderlinde, K. Vieira, J. D. Wechsler, R. H. Williamson, R. Zahn, O. TI A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic background radiation; galaxies: structure ID BACKGROUND POWER SPECTRUM; PHOTOMETRIC REDSHIFTS; SKY SURVEY; FIELD; ANISOTROPIES; SAMPLE AB We compare cosmic microwave background lensing convergence maps derived from South Pole Telescope (SPT) data with galaxy survey data from the Blanco Cosmology Survey, WISE, and a new large Spitzer/IRAC field designed to overlap with the SPT survey. Using optical and infrared catalogs covering between 17 and 68 deg(2) of sky, we detect a correlation between the SPT convergence maps and each of the galaxy density maps at >4 sigma, with zero correlation robustly ruled out in all cases. The amplitude and shape of the cross-power spectra are in good agreement with theoretical expectations and the measured galaxy bias is consistent with previous work. The detections reported here utilize a small fraction of the full 2500 deg(2) SPT survey data and serve as both a proof of principle of the technique and an illustration of the potential of this emerging cosmological probe. C1 [Bleem, L. E.; Becker, M. R.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Natoli, T.; Padin, S.; Plagge, T.; Schaffer, K. K.; Story, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Becker, M. R.; Carlstrom, J. E.; Hoover, S.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [van Engelen, A.; Holder, G. P.; de Haan, T.; Dobbs, M. A.; Dudley, J.; Geach, J. E.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Armstrong, R.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Ashby, M. L. N.; Stalder, B.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Biesiadzinski, T.; McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Busha, M. T.] Univ Zurich, Inst Theoret Phys, CH-8001 Zurich, Switzerland. [Busha, M. T.; Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Meyer, S. S.; Padin, S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, H. M.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Desai, S.; Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Desai, S.; Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Dore, O.; Lueker, M.; Padin, S.; Vieira, J. D.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Dore, O.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Gonzalez, A. H.; Martinez-Manso, J.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Holden, B. P.] Univ Calif Santa Cruz, SantaCruz UCO Lick Observ, Santa Cruz, CA 95065 USA. [Joy, M.] NASA Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Vallinotto, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Zahn, O.] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA. RP Bleem, LE (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Becker, Matthew/0000-0001-7774-2246; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU Kavli Foundation; Moore Foundation; NSERC; CRC program; CIfAR; NASA Hubble Fellowship [HF-51275.01]; KICP Fellowship; Alfred P. Sloan Research Fellowship; DOE [DE-AC02-76SF00515, DE-AC52-06NA25396 (LA-UR-12-20137)]; BCCP fellowship; NASA; [ANT-0638937]; [ANT-0130612]; [PHY-0114422]; [AST-1009012]; [AST-1009811] FX The SPT is supported by grants ANT-0638937 and ANT-0130612, with partial support provided by PHY-0114422, the Kavli Foundation, and the Moore Foundation. Work at McGill is supported by NSERC, the CRC program, and CIfAR, and at Harvard by grant AST-1009012. R. Keisler acknowledges NASA Hubble Fellowship grant HF-51275.01, B. A. Benson a KICP Fellowship, M. Dobbs an Alfred P. Sloan Research Fellowship, L. Shaw grant AST-1009811, R. Wechsler DOE contract DE-AC02-76SF00515, A. Vallinotto DOE contract DE-AC52-06NA25396 (LA-UR-12-20137), and O. Zahn a BCCP fellowship. This publication uses data from the Wide-field Infrared Survey Explorer, a joint project of UCLA, and JPL/Caltech, funded by NASA, and uses data provided by NOAO PI: 2005B-0043, distributed by the NOAO Science Archive. NOAO is operated by AURA under cooperative agreement with the NSF. This work is based in part on observations made with the Spitzer Space Telescope, operated by JPL, Caltech, under a contract with NASA. NR 42 TC 40 Z9 40 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 1 PY 2012 VL 753 IS 1 AR L9 DI 10.1088/2041-8205/753/1/L9 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 963QK UT WOS:000305637900009 ER PT J AU Lam, PS Sokhansanj, S Bi, XTT Lim, CJ Larsson, SH AF Lam, Pak Sui Sokhansanj, Shahab Bi, Xiaotao T. Lim, C. Jim Larsson, Sylvia H. TI Drying characteristics and equilibrium moisture content of steam-treated Douglas fir (Pseudotsuga menziesii L.) SO BIORESOURCE TECHNOLOGY LA English DT Article DE Steam explosion; Douglas fir; Drying kinetics; Giggnheim-Anderson-deBoer; Equilibrium moisture model ID EXPLOSION PRETREATMENT; WOOD; PARAMETERS; PELLETS; SIZE AB Douglas fir (Pseudotsuga menziesii L) particles were exposed to high pressure saturated steam (200 and 220 degrees C for Sand 10 min) to improve the durability and hydrophobicity of pellets produced from them. Depending on treatment severity, the moisture content of the particles increased from 10% to 36% (wet basis). Douglas fir particles steam-treated at 220 degrees C for 10 min had the fastest drying rate of 0.014 min(-1). The equilibrium moisture content (EMC) of steam-treated samples decreased with increasing steam temperature and treatment time. The Giggnheim-Anderson-deBoer (GAB) equilibrium model gave a good fit with the equilibrium data with R-2 = 0.99. The adsorption rate of untreated pellets exposed to humid air (30 degrees C, 90% RH) for 72 h was 0.0152 min(-1) while that of steam-treated pellets ranged from 0.0125 to 0.0135 min(-1) without a clear trend with steam treatment severity. These findings are critical to develop durable and less hygroscopic pellets. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Lam, Pak Sui; Sokhansanj, Shahab; Bi, Xiaotao T.; Lim, C. Jim] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Larsson, Sylvia H.] Swedish Univ Agr Sci, Unit Biomass Technol & Chem, SE-90183 Umea, Sweden. RP Lam, PS (reprint author), Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM wilsonlam82@yahoo.com FU Natural Sciences and Engineering Council of Canada; Wood Pellet Association of Canada; B.C. Ministry of Forest and Range; Oak Ridge National Laboratory; U.S. Department of Energy's Office of Biomass Program; Agricultural Biorefining Innovative Network FX The authors acknowledge the financial support in part by the Natural Sciences and Engineering Council of Canada, Wood Pellet Association of Canada, B.C. Ministry of Forest and Range and Agricultural Biorefining Innovative Network. The co-author Shahab Sokhansanj was supported by the Oak Ridge National Laboratory and the U.S. Department of Energy's Office of Biomass Program while conducting this research at the University of British Columbia. NR 29 TC 16 Z9 16 U1 3 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2012 VL 116 BP 396 EP 402 DI 10.1016/j.biortech.2012.03.093 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 963BP UT WOS:000305595400060 PM 22542137 ER PT J AU Zhang, XZ Amendola, P Hewson, JC Sommerfeld, M Hu, Q AF Zhang, Xuezhi Amendola, Pasquale Hewson, John C. Sommerfeld, Milton Hu, Qiang TI Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation SO BIORESOURCE TECHNOLOGY LA English DT Article DE Cell surface functional group; Dissolved organic matter; Algal harvesting; Coagulation; Model ID ALGOGENIC ORGANIC-MATTER; ALGAE; BIOFUELS; BIOMASS; FLOCCULATION; COAGULATION; MICROALGAE; SURFACE; IMPACT; WATER AB The effects of changes in cellular characteristics and dissolved organic matter (DOM) on dissolved air flotation (DAF) harvesting of Chlorella zofingiensis at the different growth phases were studied. Harvesting efficiency increased with Al3+ dosage and reached more than 90%, regardless of growth phases. In the absence of DOM, the ratio of Al3+ dosage to surface functional group concentration determined the harvesting efficiency. DOM in the culture medium competed with algal cell surface functional groups for Al3+, and more Al3+ was required for cultures with DOM than for DOM-free cultures to achieve the same harvesting efficiency. As the culture aged, the increase of Al3+ dosage due to increased DOM was less than the decrease of Al3+ dosage associated with reduced cell surface functional groups, resulting in overall reduced demand for Al3+. The interdependency of Al3+ dosage and harvesting efficiency on concentrations of cell surface functional groups and DOM was successfully modeled. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Zhang, Xuezhi; Amendola, Pasquale; Sommerfeld, Milton; Hu, Qiang] Arizona State Univ, Dept Appl Sci & Math, Mesa, AZ 85212 USA. [Hewson, John C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zhang, XZ (reprint author), Arizona State Univ, Dept Appl Sci & Math, Polytech Campus, Mesa, AZ 85212 USA. EM xuezhi.zhang@asu.edu; huqiang@asu.edu RI Zhang, Xuezhi/D-2579-2012 OI Zhang, Xuezhi/0000-0001-7751-1173 FU Laboratory Directed Research and Development program at Sandia National Laboratories; US Department of Energy's National Nuclear Security Administration [AC04-94AL85000]; Arizona Center for Algae Technology and Innovation at Arizona State University FX The authors appreciate helpful suggestions by N.B. Wyatt, P.V. Brady and P.I. Pohl in the preparation of this manuscript. This work was partially supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was also partially supported by Arizona Center for Algae Technology and Innovation at Arizona State University. NR 33 TC 36 Z9 38 U1 5 U2 72 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2012 VL 116 BP 477 EP 484 DI 10.1016/j.biortech.2012.04.002 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 963BP UT WOS:000305595400072 PM 22541950 ER PT J AU Bhavsar, S Najera, M Veser, G AF Bhavsar, Saurabh Najera, Michelle Veser, Goetz TI Chemical Looping Dry Reforming as Novel, Intensified Process for CO2 Activation SO CHEMICAL ENGINEERING & TECHNOLOGY LA English DT Article DE Carbon capture; Chemical looping; CO2 utilization; Nanomaterials; Process Intensification ID HYDROGEN-PRODUCTION; SYNTHESIS GAS; CATALYTIC COMBUSTION; PARTIAL OXIDATION; POWER-GENERATION; OXYGEN CARRIERS; REDOX REACTIONS; NI CATALYSTS; METHANE; CAPTURE AB Chemical looping dry reforming (CLDR) is a novel, intensified route for CO2 activation. Two nanostructured carriers (Fe-BHA and Fe@SiO2) are synthesized, characterized, and evaluated with regard to activity and stability in thermogravimetric and fixed-bed CLDR reactor studies over a temperature range of similar to 500-800 degrees C. Fe-barium hexaaluminate (Fe-BHA) shows fast redox kinetics and stable operation over multiple CLDR cycles, while Fe@SiO2 exhibits poor activity for CO generation due to a partial loss of the core-shell structure and formation of silicates. While the latter could be removed via a two-step oxidation scheme, carrier utilization remained well below that of Fe-BHA (similar to?51?% versus similar to?15?%). However, the two-step oxidation configuration turns the net endothermic CLDR process into a net exothermic process, opening up a highly efficient autothermal process alternative. C1 [Bhavsar, Saurabh; Najera, Michelle; Veser, Goetz] Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, Pittsburgh, PA 15261 USA. [Bhavsar, Saurabh; Veser, Goetz] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. [Najera, Michelle; Veser, Goetz] Univ Pittsburgh, Mascaro Ctr Sustainable Innovat, Pittsburgh, PA 15261 USA. RP Veser, G (reprint author), Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, Pittsburgh, PA 15261 USA. EM gveser@pitt.edu RI Veser, Goetz/I-5727-2013 FU U.S. Department of Energy's National Energy Technology Laboratory's on-going research under the RDS [DE-AC26-04NT41817]; DOE-NETL; Swanson School of Engineering; IGERT fellowship from the National Science Foundation through the University of Pittsburgh's Mascaro Center for Sustainable Innovation FX This technical effort was performed in support of the U.S. Department of Energy's National Energy Technology Laboratory's on-going research under the RDS contract DE-AC26-04NT41817. G. V. gratefully acknowledges support through faculty fellowships from DOE-NETL and the Swanson School of Engineering. M. N. gratefully acknowledges support through an IGERT fellowship from the National Science Foundation through the University of Pittsburgh's Mascaro Center for Sustainable Innovation. NR 35 TC 15 Z9 15 U1 5 U2 95 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0930-7516 J9 CHEM ENG TECHNOL JI Chem. Eng. Technol. PD JUL PY 2012 VL 35 IS 7 SI SI BP 1281 EP 1290 DI 10.1002/ceat.201100649 PG 10 WC Engineering, Chemical SC Engineering GA 964KH UT WOS:000305692800023 ER PT J AU Gil, A Karhanek, D Miro, P Antonio, MR Nyman, M Bo, C AF Gil, Adria Karhanek, David Miro, Pere Antonio, Mark R. Nyman, May Bo, Carles TI A Journey inside the U28 Nanocapsule SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE density functional calculations; electronic structure; nanostructures; poly(peroxometalate)s; uranium ID URANYL-PEROXIDE NANOCLUSTERS; AQUEOUS-SOLUTIONS; VIBRATIONAL-SPECTRA; COMPLEXES; ENERGY; POLYOXOMETALATE; APPROXIMATION; URANIUM(VI); HYDROXIDE; BEHAVIOR AB Anionic uranylperoxide U28 nanocapsules trap cations and other anions inside, whose structures cannot be resolved by X-ray diffraction, owing to crystallographic disorder. DFT calculations enabled the complete characterization of the geometry of these complex systems and also explained the origin of the disorder. The stability of the capsules was strongly influenced by the entrapped cations. Excellent agreement between experiment and theory was also obtained for the electronic character and redox properties. C1 [Nyman, May] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gil, Adria; Karhanek, David; Miro, Pere; Bo, Carles] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain. [Antonio, Mark R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Bo, Carles] Univ Rovira & Virgili, Dept Quim Fis & Inorgan, Tarragona 43007, Spain. RP Nyman, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mdnyman@sandia.gov; cbo@iciq.es RI Bo, Carles/A-4128-2009; Miro, Pere/A-2424-2014; OI Bo, Carles/0000-0001-9581-2922; Miro, Pere/0000-0002-3281-0708; Antonio, Mark/0000-0002-1208-4534; Gil-Mestres, Adria/0000-0002-7161-980X FU Spanish Ministerio de Economia y Competitividad (MINECO) [CTQ2011-29054-C02-02]; Generalitat de Catalunya [2009SGR-00462]; ICIQ Foundation; Materials Science of Actinides, an EFRC; U.S. Department of Energy [DE-SC0001089]; U.S. Department of Energy, Division of Chemical Sciences, Biosciences, and Geosciences [DE-AC02-06CH11357]; [DE-AC04-94AL85000] FX This research was supported by the Spanish Ministerio de Economia y Competitividad (MINECO; project no. CTQ2011-29054-C02-02), the Generalitat de Catalunya (2009SGR-00462), and the ICIQ Foundation. M.N. (Sandia) is grateful for support from the Materials Science of Actinides, an EFRC grant funded by the U.S. Department of Energy (DE-SC0001089). Sandia is a multiprogram laboratory that is operated by Sandia Corporation, a Lockheed Martin Company, under Contract DE-AC04-94AL85000. The work at Argonne is supported by the U.S. Department of Energy, Division of Chemical Sciences, Biosciences, and Geosciences, under contract no. DE-AC02-06CH11357. NR 37 TC 23 Z9 23 U1 4 U2 71 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUL PY 2012 VL 18 IS 27 BP 8340 EP 8346 DI 10.1002/chem.201200801 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 962QN UT WOS:000305560200013 PM 22623159 ER PT J AU Hasanbeigi, A du Can, SD Sathaye, J AF Hasanbeigi, Ali du Can, Stephane de la Rue Sathaye, Jayant TI Analysis and decomposition of the energy intensity of California industries SO ENERGY POLICY LA English DT Article DE Decomposition analysis; Energy intensity indicator; California industry ID INDICATORS; EFFICIENCY; COMPONENTS AB In 2008, the gross domestic product (GDP) of California industry was larger than GDP of industry in any other U.S. states. This study analyses the energy use of and output from seventeen industry subsectors in California and performs decomposition analysis to assess the influence of different factors on California industry energy use. The logarithmic mean Divisia index method is used for the decomposition analysis. The decomposition analysis results show that the observed reduction of energy use in California industry since 2000 is the result of two main factors: the intensity effect and the structural effect. The intensity effect has started pushing final energy use downward in 2000 and has since amplified. The second large effect is the structural effect. The significant decrease of the energy-intensive "Oil and Gas Extraction" subsector's share of total industry value added, from 15% in 1997 to 5% in 2008, and the increase of the non-energy intensive "Electric and electronic equipment manufacturing" sector's share of value added, from 7% in 1997 to 30% in 2008, both contributed to a decrease in the energy intensity in the industry sector. Published by Elsevier Ltd. C1 [Hasanbeigi, Ali; du Can, Stephane de la Rue; Sathaye, Jayant] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA. RP du Can, SD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, 1 Cyclotron Rd MS 90R4000, Berkeley, CA 94720 USA. EM sadelarueducan@lbl.gov NR 34 TC 9 Z9 10 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2012 VL 46 BP 234 EP 245 DI 10.1016/j.enpol.2012.03.056 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 963AK UT WOS:000305592300023 ER PT J AU Shen, B Price, L Lu, HY AF Shen, Bo Price, Lynn Lu, Hongyou TI Energy audit practices in China: National and local experiences and issues SO ENERGY POLICY LA English DT Article DE China; Industrial energy efficiency; Energy audit AB China set an ambitious goal of reducing its energy use per unit of GDP by 20% between 2006 and 2010. Much of the country's effort is focused on improving the energy efficiency of the industrial sector, which consumes about two-thirds of China's primary energy. Industrial energy audits are an important part of China's efforts to improve its energy intensity. Such audits are employed to help enterprises identify energy-efficiency improvement opportunities and serve as a means to collect critical energy-consuming information. Information about energy audit practices in China is, however, little known to the outside world. This study combines a review of China's national policies and programs on energy auditing with information collected from surveying a variety of Chinese institutions involved in energy audits. A key goal of the study is to conduct a gap analysis to identify how current practices in China related to energy auditing differ from energy auditing practices found around the world. This article presents our findings on the study of China's energy auditing practices at the national and provincial levels. It discusses key issues related to the energy audits conducted in China and offers policy recommendations that draw upon international best practices. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Shen, Bo; Price, Lynn; Lu, Hongyou] Lawrence Berkeley Natl Lab, China Energy Grp, Energy Anal Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Shen, B (reprint author), Lawrence Berkeley Natl Lab, China Energy Grp, Energy Anal Dept, Environm Energy Technol Div, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM boshen@lbl.gov FU China Sustainable Energy Program (CSEP) of the Energy Foundation; Regulatory Assistance Project (RAP); Dow Chemical Company; Partnership for Climate Action Program of the U.S. Agency for International Development through the Institute for Sustainable Communities through the U.S. Department of Energy [DE-AC02-05CH11231] FX This paper is an extraction from our larger report, which is available online at http://china.lbl.gov/publications/energy-audit-practices-china-national- and-local-experiences-and-issues. Our work was supported by the China Sustainable Energy Program (CSEP) of the Energy Foundation, the Regulatory Assistance Project (RAP), Dow Chemical Company (through a charitable contribution) and the Partnership for Climate Action Program of the U.S. Agency for International Development through the Institute for Sustainable Communities through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We greatly appreciate the guidance that has been provided by He Ping of CSEP and David Moskovitz of RAP. We thank staff at the DSM Technical Center of the Natural Resources Defense Council (NRDC) Beijing Office for their valuable assistance in developing the questionnaire, arranging interviews, and collecting information. The report could not have been written without the information provided to us through numerous interviews which are referenced throughout the report. We greatly appreciate the time the interviewees spent with us to provide information on their work in conducting energy audits. We greatly appreciate the comments received on the larger report by David Crossley of RAP, Li Tienan and Liu Yulong of the Center for Industrial Energy Efficiency (Beijing), Li Yuqi of NRDC, and Shi Xiaoyu of the World Resources Institute Beijing Office and review comments on this paper by Michaela Martin of ICF International and an anonymous Energy Policy reviewer. NR 32 TC 14 Z9 14 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2012 VL 46 BP 346 EP 358 DI 10.1016/j.enpol.2012.03.069 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 963AK UT WOS:000305592300034 ER PT J AU Barter, GE Reichmuth, D Westbrook, J Malczynski, LA West, TH Manley, DK Guzman, KD Edwards, DM AF Barter, Garrett E. Reichmuth, David Westbrook, Jessica Malczynski, Leonard A. West, Todd H. Manley, Dawn K. Guzman, Katherine D. Edwards, Donna M. TI Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles SO ENERGY POLICY LA English DT Article DE Electric vehicle; Greenhouse gas; Oil consumption ID GAS AB A parametric analysis is used to examine the supply demand interactions between the US light-duty vehicle ([DV) fleet, its fuels, and the corresponding primary energy sources through 2050. The analysis emphasizes competition between conventional internal combustion engine (ICE) vehicles, including hybrids, and electric vehicles (EVs), represented by both plug-in hybrid and battery electric vehicles. We find that EV market penetration could double relative to our baseline case with policies to extend consumers' effective payback period to 7 years. EVs can also reduce per vehicle petroleum consumption by up to 5% with opportunities to increase that fraction at higher adoption rates. However, EVs have limited ability to reduce [DV greenhouse gas (GHG) emissions with the current energy source mix. Alone, EVs cannot drive compliance with the most aggressive GHG emission reduction targets, even if the electricity grid shifts towards natural gas powered sources. Since ICEs will dominate the LDV fleet for up to 40 years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions and petroleum consumption over this time. Specifically, achieving fleet average efficiencies of 72 mpg or greater can reduce average GHG emissions by 70% and average petroleum consumption by 81%. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Barter, Garrett E.; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A.; West, Todd H.; Manley, Dawn K.; Guzman, Katherine D.; Edwards, Donna M.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Barter, GE (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM gbarter@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. Christopher Yang for their suggestions over the course of this project. This work was funded by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 44 TC 10 Z9 10 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2012 VL 46 BP 473 EP 488 DI 10.1016/j.enpol.2012.04.013 PG 16 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 963AK UT WOS:000305592300046 ER PT J AU Zhu, QW Luo, KX AF Zhu, Qingwei Luo, Kunxin TI SnoN in regulation of embryonic development and tissue morphogenesis SO FEBS LETTERS LA English DT Review DE SnoN; Embryonic development; Morphogenesis ID GROWTH-FACTOR-BETA; MAMMARY-GLAND DEVELOPMENT; ANAPHASE-PROMOTING COMPLEX; RECEPTOR-LIKE KINASE-1; EARLY MOUSE EMBRYO; TGF-BETA; SMAD PROTEINS; AXONAL MORPHOGENESIS; VASCULAR DEVELOPMENT; NEGATIVE REGULATORS AB SnoN (Ski-novel protein) plays an important role in embryonic development, tumorigenesis and aging. Past studies largely focused on its roles in tumorigenesis. Recent studies of its expression patterns and functions in mouse models and mammalian cells have revealed that SnoN interacts with multiple signaling molecules at different cellular levels to modulate the activities of several signaling pathways in a tissue context and developmental stage dependent manner. These studies suggest that SnoN may have broad functions in the embryonic development and tissue morphogenesis. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. C1 [Zhu, Qingwei; Luo, Kunxin] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Luo, Kunxin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Luo, KX (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 16 Barker Hall,MC3204, Berkeley, CA 94720 USA. EM kluo@berkeley.edu FU NIH [RO1 CA101891, RO1 DK090347] FX We apologize to the authors whose work could not be cited in this review due to space constraints. Research in the authors' laboratory was supported by NIH RO1 CA101891, RO1 DK090347 to K. Luo. NR 71 TC 4 Z9 4 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD JUL PY 2012 VL 586 IS 14 BP 1971 EP 1976 DI 10.1016/j.febslet.2012.03.005 PG 6 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 965GU UT WOS:000305756300016 PM 22710172 ER PT J AU Li, XC Shu, XL Liu, YN Yu, Y Gao, F Lu, GH AF Li, Xiao-Chun Shu, Xiaolin Liu, Yi-Nan Yu, Yi Gao, F. Lu, Guang-Hong TI Analytical W-He and H-He interatomic potentials for a W-H-He system SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MOLECULAR-DYNAMICS; TUNGSTEN; HELIUM; HYDROGEN; DEUTERIUM; SIMULATIONS; DIFFUSIVITY; IRRADIATION; RETENTION; IONS AB We have constructed W-He and H-He analytical bond-order potentials for a W-H-He system. In combination with the previously self-developed W-H potential [X.-C. Li, X. Shu, Y.-N. Liu, F. Gao, G.-H. Lu, J. Nucl. Mater. 408 (2011) 12] and the Hartree-Fock-dispersion pair potential (Aziz-potential) for He-He interactions, we demonstrate that such potentials behave well for reproducing various properties of the W-H-He system such as defect formation energies, structural properties, and diffusion barriers. Such potentials can be employed to model both the He behaviours and the H-He synergetic effects in the W-H-He system. (C) 2012 Elsevier B.V. All rights reserved. C1 [Li, Xiao-Chun; Shu, Xiaolin; Liu, Yi-Nan; Yu, Yi; Lu, Guang-Hong] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lu, GH (reprint author), Beihang Univ, Dept Phys, Beijing 100191, Peoples R China. EM lgh@buaa.edu.cn RI Gao, Fei/H-3045-2012 FU National Natural Science Foundation of China (NSFC) [51061130558, 51171008]; US Department of Energy, Office of Fusion Energy Science [DE-AC06-76RLO1830] FX This work has been supported by National Natural Science Foundation of China (NSFC) Grant Nos. 51061130558 and 51171008. F. Gao is grateful for the support by the US Department of Energy, Office of Fusion Energy Science under Contract DE-AC06-76RLO1830. NR 39 TC 45 Z9 50 U1 4 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2012 VL 426 IS 1-3 BP 31 EP 37 DI 10.1016/j.jnucmat.2012.03.039 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 964TI UT WOS:000305719200005 ER PT J AU Martin, ML Auger, T Johnson, DD Robertson, IM AF Martin, M. L. Auger, T. Johnson, D. D. Robertson, I. M. TI Liquid-metal-induced fracture mode of martensitic T91 steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LEAD-BISMUTH; EMBRITTLEMENT; CRACK; GALLIUM; MERCURY; ALLOYS; IRON; LME AB The liquid-metal-induced fracture mode of T91 martensitic steel was investigated by using transmission electron microscopy techniques to characterize the microstructure and crack network in specimens obtained from focused-ion beam machining at and immediately below the fracture surface. Contrary to previous claims of quasi-cleavage fracture, the dominant fracture mode is intergranular cracking at martensite laths and prior austenite grain boundaries. These fracture mode results clarify an outstanding issue in liquid-metal embrittlement of steels that generally occur in a heavily-deformed microstructure. Several cracks were arrested at intergranular carbides, suggesting a metallurgical strategy for impeding liquid-metal-induced crack propagation. (C) 2012 Elsevier B.V. All rights reserved. C1 [Martin, M. L.; Johnson, D. D.; Robertson, I. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Auger, T.] CNRS, ECP MSSMAT, UMR 8579, F-92290 Chatenay Malabry, France. [Johnson, D. D.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Johnson, D. D.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Martin, ML (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM martin29@illinois.edu RI Auger, Thierry/L-1073-2013; OI Johnson, Duane/0000-0003-0794-7283 FU US Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-FG02-03ER46026]; Chemical Sciences, Geosciences, and Biosciences Division [DE-FG02-03ER15476]; Iowa State University [DE-AC02-07CH11358]; DOE EERE [GO15045]; National Science Foundation; French CNRS; EU [EU-FP7-212175] FX DDJ was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering (Contract DE-FG02-03ER46026) and Chemical Sciences, Geosciences, and Biosciences Division (Contract DE-FG02-03ER15476). Ames Laboratory is operated for the DOE by Iowa State University under Contract DE-AC02-07CH11358. The FIB and TEM work (MLM, IMR) was supported by DOE EERE Grant GO15045. Microscopy work was carried out in the Center for Microanalysis of Materials in the Frederick Seitz Materials Research Laboratory at the University of Illinois. IMR gratefully acknowledges the support of the National Science Foundation. TA support is from the French CNRS research program GEDEPEON and the EU Grant GETMAT (EU-FP7-212175). The help with A-STAR from M. Veron at SI-MAP-Grenoble and A. Carlsson at FEI-Eindoven is gratefully acknowledged. NR 36 TC 17 Z9 17 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2012 VL 426 IS 1-3 BP 71 EP 77 DI 10.1016/j.jnucmat.2012.03.040 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 964TI UT WOS:000305719200010 ER PT J AU Londono-Hurtado, A Szlufarska, I Bratton, R Morgan, D AF Londono-Hurtado, A. Szlufarska, I. Bratton, R. Morgan, D. TI A review of fission product sorption in carbon structures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Review ID GRAPHITE; ADSORPTION AB This paper presents a review of results in the area of fission product sorption in carbon structures. Emphasis is placed on identifying those parameters of carbon-based materials that likely play a dominant role in fission product sorption and the extent to which these parameters have been studied. In particular, we discuss published studies of the effects of atomic structure, sp(2) to sp(3) bonding ratio, coke content, defect structures, irradiation level, and percent of amorphous structures and porosity. Furthermore, the evolution of theories and models for carbon sorption are summarized. A review of the literature available to the authors reveals that the mechanics governing fission product sorptivity remain to be fully understood. (C) 2012 Elsevier B.V. All rights reserved. C1 [Szlufarska, I.; Morgan, D.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. [Londono-Hurtado, A.; Szlufarska, I.; Morgan, D.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Bratton, R.] Idaho Natl Lab, NGNP Graphite Div, Nucl Mat Disposit & Engn Dept, Idaho Falls, ID 83415 USA. RP Szlufarska, I (reprint author), Univ Wisconsin, Mat Sci Program, 1509 Univ Ave, Madison, WI 53706 USA. EM szlufarska@wisc.edu; ddmorgan@wisc.edu RI Morgan, Dane/B-7972-2008 OI Morgan, Dane/0000-0002-4911-0046 FU DOE-NEUP [00089350]; agency of the US Government FX Alejandro Londono-Hurtado, Izabela Szlufarska and Dane Morgan gratefully acknowledge the support of DOE-NEUP grant # 00089350. This information was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof. NR 74 TC 9 Z9 9 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2012 VL 426 IS 1-3 BP 254 EP 267 DI 10.1016/j.jnucmat.2012.02.019 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 964TI UT WOS:000305719200034 ER PT J AU Terrani, KA Kiggans, JO Katoh, Y Shimoda, K Montgomery, FC Armstrong, BL Parish, CM Hinoki, T Hunn, JD Snead, LL AF Terrani, K. A. Kiggans, J. O. Katoh, Y. Shimoda, K. Montgomery, F. C. Armstrong, B. L. Parish, C. M. Hinoki, T. Hunn, J. D. Snead, L. L. TI Fabrication and characterization of fully ceramic microencapsulated fuels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SIC/SIC COMPOSITES; SILICON-CARBIDE; NITE PROCESS; TEMPERATURE; FIBER; MICROSTRUCTURE; IRRADIATION; FRACTION AB The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina-yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder-fuel particle mixture at a temperature of 1800-1900 degrees C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface. (C) 2012 Elsevier B.V. All rights reserved. C1 [Terrani, K. A.; Hunn, J. D.] Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA. [Kiggans, J. O.; Katoh, Y.; Montgomery, F. C.; Armstrong, B. L.; Parish, C. M.; Snead, L. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Shimoda, K.; Hinoki, T.] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. RP Terrani, KA (reprint author), Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA. EM kurt.terrani@gmail.com RI Shimoda, Kazuya/A-5016-2010; Parish, Chad/J-8381-2013; kiggans, james/E-1588-2017; Armstrong, Beth/E-6752-2017 OI kiggans, james/0000-0001-5056-665X; Armstrong, Beth/0000-0001-7149-3576 FU Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, US Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The work presented in this manuscript was supported by the Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, US Department of Energy. The HF3300 TEM/STEM and JEOL6500 FEG SEM were supported by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Efforts by Shawn Reeves and John Henry, ORNL, for TEM specimen preparation and zeta-potential measurement, respectively, are gratefully acknowledged. NR 29 TC 22 Z9 22 U1 1 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2012 VL 426 IS 1-3 BP 268 EP 276 DI 10.1016/j.jnucmat.2012.03.049 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 964TI UT WOS:000305719200035 ER PT J AU McGuire, MA May, AF Sales, BC AF McGuire, Michael A. May, Andrew F. Sales, Brian C. TI Structural and physical properties of layered oxy-arsenides LnRuAsO (Ln=La, Nd, Sm, Gd) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE LaRuAsO; NdRuAsO; SmRuAsO; GdRuAsO; Crystal structure; Magnetic ordering ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; SPIN-DENSITY-WAVE; SUBSTITUTION; CHALCOGENIDES; SUPPRESSION; EARTH; METAL; RU AB Polycrystalline samples of LaRuAsO, NdRuAsO, SmRuAsO, and GdRuAsO have been synthesized and studied using powder x-ray diffraction, electrical transport, magnetization, and heat capacity measurements. Variations in structural properties across the series reveal a trend toward more ideal tetrahedral coordination around Ru as the size of the rare earth element is reduced. The lattice parameters of these Ru compounds show a more anisotropic response to variation in Ln than their Fe analogs, and significant anisotropy in thermal expansion is also observed. Transport measurements show metallic behavior, and carrier concentrations near 10(21)-10(22) electrons per cm(3) are inferred from simple analysis of Hall effect measurements. Anomalies in resistivity, magnetization, and heat capacity indicate antiferromagnetic ordering of rare earth moments at 5 K for GdRuAsO, 4.5 K for SmRuAsO, and <2 K for NdRuAsO. Magnetization measurements on LaRuAsO show no evidence of a magnetic moment on Ru. Observed behaviors are compared to those reported for similar Fe and Ru compounds. (C) 2012 Elsevier Inc. All rights reserved. C1 [McGuire, Michael A.; May, Andrew F.; Sales, Brian C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP McGuire, MA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM McGuireMA@ornl.gov RI McGuire, Michael/B-5453-2009; May, Andrew/E-5897-2011 OI McGuire, Michael/0000-0003-1762-9406; May, Andrew/0000-0003-0777-8539 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Research sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 24 TC 6 Z9 6 U1 0 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2012 VL 191 BP 71 EP 75 DI 10.1016/j.jssc.2012.03.010 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 964CG UT WOS:000305670700012 ER PT J AU Saparov, B Sefat, AS AF Saparov, Bayrammurad Sefat, Athena S. TI Metallic properties of Ba2Cu3P4 and BaCu(2)Pn(2) (Pn=As, Sb) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Copper pnictide; Polymorphism; Thermal conductivity; Crystal structure; Superconductivity ID THCR2SI2 STRUCTURE; SOLID-SOLUTIONS; ZINTL PHASES; SUPERCONDUCTIVITY; POLYMORPHISM; BREAKING; CRYSTAL; SR; BA AB We report the synthesis of ternary barium copper pnictides, Ba2Cu3P4 and BaCu(2)Pn(2) (Pn=As, Sb), and their structural, magnetic, and transport properties. They all crystallize in different structures shown by X-ray diffraction, although their structures reveal close relations. The body-centered tetragonal BaCu2As2 adopts ThCr2Si2-type (I4/mmm) structure, whereas Ba2Cu3P4 is a copper-deficient derivative of this phase, crystallizing in the body-centered orthorhombic space group, Ibam. There are two polymorphs of BaCu2Sb2: alpha-BaCu2Sb2 that adopts CaBe2Ge2-type structure; beta-BaCu2Sb2 that is a 2:1 combination of CaBe2Ge2- and ThCr2Si2-type structural segments. All phases are metallic and nonmagnetic. The room temperature thermal conductivity for polycrystalline BaCu2As2 is approximate to 2 W/(m K) and the Seebeck coefficient is approximate to 15 mu V/K, which result in a small (approximate to 0.03) thermoelectric figure of merit. (C) 2012 Elsevier Inc. All rights reserved. C1 [Saparov, Bayrammurad; Sefat, Athena S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Saparov, B (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM saparovbi@ornl.gov RI Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. We thank R. Custelcean for his assistance with the single crystal X-ray diffraction experiments. NR 36 TC 9 Z9 9 U1 3 U2 47 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2012 VL 191 BP 213 EP 219 DI 10.1016/j.jssc.2012.03.036 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 964CG UT WOS:000305670700032 ER PT J AU Licurse, MW Borisevich, AY Davies, PK AF Licurse, Mark W. Borisevich, Albina Y. Davies, Peter K. TI Nanoscale modulations in (KLa)(CaW)O-6 and (NaLa)(CaW)O-6 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Nanocheckerboards; Nanostripes; Perovskites; Modulated structures; Tungstates ID A-SITE; PEROVSKITES; OXIDES; SUPERLATTICES AB Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O-6 and (NaLa)(CaW)O-6. In (KLa)(CaW)O-6, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with similar to 9.4 x 9.4a(p) periodicity (a(p) approximate to 4 angstrom for the cubic perovskite aristotype). For (NaLa)(CaW)O-6 a one-dimensional modulation is observed with a similar to 16(1 1 0)a(p) repeat; the < 1 1 0 > orientation of the nanostripes is different from the < 1 0 0 > stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complex modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A(+)La(3+))(CaW)O-6 phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a similar to 1:15 periodic arrangement of La-4/3(CaW)O-6:(NaLa)(CaW)O-6 nano-phases. (C) 2012 Elsevier Inc. All rights reserved. C1 [Licurse, Mark W.; Davies, Peter K.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Borisevich, Albina Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Davies, PK (reprint author), Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. EM mlicurse@seas.upenn.edu; albinab@ornl.gov; davies@seas.upenn.edu RI Borisevich, Albina/B-1624-2009; OI Borisevich, Albina/0000-0002-3953-8460; Licurse, Mark/0000-0001-5891-4102 FU National Science Foundation [DMR0704255]; MRSEC Program [DMR05-20020]; Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the National Science Foundation, under grant DMR0704255, and by the MRSEC Program, under award no. DMR05-20020. STEM studies conducted in part at the ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 14 TC 1 Z9 1 U1 0 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2012 VL 191 BP 220 EP 224 DI 10.1016/j.jssc.2012.03.026 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 964CG UT WOS:000305670700033 ER PT J AU Duffort, V Caignaert, V Pralong, V Barrier, N Raveau, B Avdeev, M Zheng, H Mitchell, JF AF Duffort, V. Caignaert, V. Pralong, V. Barrier, N. Raveau, B. Avdeev, M. Zheng, H. Mitchell, J. F. TI Tetragonal YBaFe4O7.0: A stoichiometric polymorph of the "114" ferrite family SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Iron oxides; LnBaFe(4)O(7); 114; Ferrites ID MAGNETIC-PROPERTIES; POWDER DIFFRACTION; T-C; YBACO4O7+DELTA; CAPABILITY; COBALTITE; BEHAVIOR; SERIES AB The exploration of the phase diagram of the ferrite YBaFe4O7+delta versus the oxygen content delta and temperature shows the complex crystal chemistry of this system. Besides the cubic form (F (4) over bar 3m), which is observed up to 600 degrees C and for 0 < delta <= 0.65, a stoichiometric tetragonal form (delta= 0) is isolated below 300 degrees C that is stable only in the absence of oxidizing atmosphere. The resolution of the structure of this new YBaFe4O7.0 form, from combined neutron and synchrotron data, in the space group I<(4)over bar>, shows significant displacements of the atoms with respect to the cubic form, especially concerning the oxygen atoms surrounding the barium cations. The decrease of several Ba-O distances around the under-bonded barium cations is explained by the existence of hybridized Ba(2-delta)+ -O2- -Fe(2+delta)+ bonds, in agreement with Mossbauer spectroscopy. The role of coulombic repulsions in the [Fe4O] and [Fe-4] tetrahedra of the [Fe-4](infinity) sublattice on the structural transition is also discussed. (C) 2012 Elsevier Inc. All rights reserved. C1 [Duffort, V.; Caignaert, V.; Pralong, V.; Barrier, N.; Raveau, B.] CNRS ENSICAEN, CRISMAT, F-14050 Caen, France. [Avdeev, M.] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Pralong, V (reprint author), CNRS ENSICAEN, CRISMAT, 6 Bd Marechal Juin, F-14050 Caen, France. EM valerie.pralong@ensicaen.fr RI Avdeev, Maxim/A-5625-2008; Victor, DUFFORT/D-6769-2012 OI Avdeev, Maxim/0000-0003-2366-5809; Victor, DUFFORT/0000-0002-9851-0310 FU CNRS; Ministere de l'Enseignement Superieur et de la Recherche; Conseil Regional of Basse Normandie; U.S. Department of Energy Office of Science, Division of Materials Science and Engineering [DE-AC02-06CH211357]; [ANR-09-JCJC-0017-01]; [JC09_442369] FX The authors acknowledge the CNRS, the Ministere de l'Enseignement Superieur et de la Recherche and the Conseil Regional of Basse Normandie for financial support in the frame of Emergence Program. V. P. acknowledges support by the ANR-09-JCJC-0017-01 (Ref: JC09_442369). Work at Argonne National Laboratory is supported by the U.S. Department of Energy Office of Science, Division of Materials Science and Engineering under contract No. DE-AC02-06CH211357. NR 29 TC 9 Z9 9 U1 1 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2012 VL 191 BP 225 EP 231 DI 10.1016/j.jssc.2012.03.024 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 964CG UT WOS:000305670700034 ER PT J AU Lee, E Park, CH Shoemaker, DP Avdeev, M Kim, YI AF Lee, Eunhye Park, Cheol-Hee Shoemaker, Daniel P. Avdeev, Maxim Kim, Young-Il TI Crystal structure analysis of tungsten bronzes beta-SrTa2O6 and beta '-SrTa2O6 by synchrotron X-ray and neutron powder diffraction SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Tetragonal tungsten bronze; Neutron diffraction; Bond valence sum; Atomic disorder ID STRONTIUM; SRTA2O6; BARIUM; DIELECTRICS; TANTALUM; NIOBIUM; OXIDES; PURE AB Strontium ditantalum oxide SrTa2O6 exists in alpha-, beta-, and beta'-polymorphs. Herein the crystal structures of the latter two were studied using synchrotron X-ray and constant-wavelength neutron powder diffraction. While beta'-SrTa2O6 [space group P4/mbm, a=12.47099(1) angstrom, c=3.898210(5) angstrom, V=606.271(2) angstrom(3), Z=5] belongs to the regular tetragonal tungsten bronze (TTB) family, it contains locally disordered strontium atoms within the pentagonal channel. beta-SrTa2O6 [space group Pnam, a = 12.36603(2) angstrom, b=12.43467(2) angstrom, c=7.72403(1) angstrom, V=1187.705(4) angstrom(3), Z=10] can be described as an orthorhombic modification of the TTB, where the octahedral tilting distortion effectively alleviates the bonding strains around TaO6 and SrO13 polyhedra. For comparison, rynersonite type alpha-SrTa2O6 [space group Prima, a=11.00610(6) angstrom, b=7.63397(3) angstrom, c=5.62634(3) angstrom, V=472.727(5) angstrom(3), and Z=4] is built from edge-shared dimer units of TaO6 octahedra. As measured by diffuse-reflection absorption spectroscopy, alpha-, beta- and beta'-SrTa2O6 have indirect band gap energies of 4.4, 4.0, and 3.8 eV, respectively. (C) 2012 Elsevier Inc. All rights reserved. C1 [Lee, Eunhye; Kim, Young-Il] Yeungnam Univ, Dept Chem, Gyongsan 712749, South Korea. [Park, Cheol-Hee] LG Chem Res Pk, Taejon 305380, South Korea. [Shoemaker, Daniel P.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Avdeev, Maxim] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. RP Kim, YI (reprint author), Yeungnam Univ, Dept Chem, Gyongsan 712749, South Korea. EM yikim@ynu.ac.kr RI Avdeev, Maxim/A-5625-2008; Kim, Young-il/I-9322-2014 OI Avdeev, Maxim/0000-0003-2366-5809; Kim, Young-il/0000-0003-2755-9587 FU National Research Foundation (NRF) of Korea; Ministry of Education, Science and Technology [2010-0018525, 2010-0008039]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (2010-0018525, 2010-0008039). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 26 TC 6 Z9 6 U1 1 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2012 VL 191 BP 232 EP 238 DI 10.1016/j.jssc.2012.03.047 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 964CG UT WOS:000305670700035 ER PT J AU Pan, T Loeb, A Kasen, D AF Pan, Tony Loeb, Abraham Kasen, Daniel TI Pair-instability supernovae via collision runaway in young dense star clusters SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; galaxies: star clusters: general ID WOLF-RAYET STARS; MASS-LOSS RATES; M-CIRCLE-DOT; POPULATION-III; LUMINOSITY FUNCTION; BLACK-HOLES; SPIRAL GALAXIES; LOW-METALLICITY; CORE-COLLAPSE; LIGHT CURVES AB Stars with helium cores between similar to 64 and 133 M? are theoretically predicted to die as pair-instability supernovae. This requires very massive progenitors, which are theoretically prohibited for Pop II/I stars within the Galactic stellar mass limit due to mass-loss via line-driven winds. However, the runaway collision of stars in a dense, young star cluster could create a merged star with sufficient mass to end its life as a pair-instability supernova, even with enhanced mass-loss at non-zero metallicity. We show that the predicted rate from this mechanism is consistent with the inferred volumetric rate of roughly similar to 2 x 10(-9) Mpc-3 yr-1 of the two observed pair-instability supernovae, SN 2007bi and PTF 10nmn, neither of which has metal-free host galaxies. Contrary to prior literature, only pair-instability supernovae at low redshifts z < 2 will be observable with the Large Synoptic Survey Telescope. We estimate that the telescope will observe similar to 102 such events per year that originate from the collisional runaway mergers in clusters. C1 [Pan, Tony; Loeb, Abraham] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94708 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Pan, T (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM span@physics.harvard.edu FU Hertz Foundation; NSF [AST-0907890]; NASA [NNX08AL43G, NNA09DB30A]; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF Astronomy and Astrophysics grant [NSF-AST-1109896]; DOE SciDAC Program [DE-FC02-06ER41438] FX We thank Charlie Conroy for helpful comments. TP was supported by the Hertz Foundation. This work was supported in part by NSF grant AST-0907890 and NASA grants NNX08AL43G and NNA09DB30A. DK was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by an NSF Astronomy and Astrophysics grant NSF-AST-1109896. This research has been supported by the DOE SciDAC Program (DE-FC02-06ER41438). We are grateful for computer time provided by ORNL through an INCITE award and by NERSC. NR 60 TC 21 Z9 21 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2012 VL 423 IS 3 BP 2203 EP 2208 DI 10.1111/j.1365-2966.2012.21030.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961NA UT WOS:000305470100017 ER PT J AU Zitrin, A Broadhurst, T Bartelmann, M Rephaeli, Y Oguri, M Benitez, N Hao, JG Umetsu, K AF Zitrin, Adi Broadhurst, Tom Bartelmann, Matthias Rephaeli, Yoel Oguri, Masamune Benitez, Narciso Hao, Jiangang Umetsu, Keiichi TI The universal Einstein radius distribution from 10 000 SDSS clusters SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE gravitational lensing: strong; galaxies: clusters: general; galaxies: luminosity function; mass function; cosmology: observations; cosmology: theory; dark matter ID DIGITAL SKY SURVEY; STRONG-LENSING ANALYSIS; ZELDOVICH EFFECT OBSERVATIONS; SPACE-TELESCOPE OBSERVATIONS; STRONGLY LENSED GALAXIES; RAY-SELECTED SAMPLE; DARK-MATTER HALOS; LINE-OF-SIGHT; X-RAY; ARC STATISTICS AB We present results from strong lens modelling of 10 000 Sloan Digital Sky Survey (SDSS) clusters, to establish the universal distribution of Einstein radii. Detailed lensing analyses have shown that the inner mass distribution of clusters can be accurately modelled by assuming light traces mass, successfully uncovering large numbers of multiple images. Approximate critical curves and the effective Einstein radius of each cluster can therefore be readily calculated, from the distribution of member galaxies and scaled by their luminosities. We use a subsample of 10 well-studied clusters covered by both SDSS and Hubble Space Telescope (HST) to calibrate and test this method, and show that an accurate determination of the Einstein radius and mass can be achieved by this approach blindly, in an automated way, and without requiring multiple images as input. We present the results of the first 10 000 clusters analysed in the range 0.1 < z < 0.55 and compare them to theoretical expectations. We find that for this all-sky representative sample the Einstein radius distribution is lognormal in shape, with , , and with higher abundance of large ?e clusters than predicted by ? cold dark matter. We visually inspect each of the clusters with (zs= 2) and find that similar to 20 per cent are boosted by various projection effects detailed here, remaining with similar to 40 real giant-lens candidates, with a maximum of (zs= 2) for the most massive candidate, in agreement with semi-analytic calculations. The results of this work should be verified further when an extended calibration sample is available. C1 [Zitrin, Adi; Rephaeli, Yoel] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Broadhurst, Tom] Univ Basque Country UPV EHU, Dept Theoret Phys, Leioa 48940, Spain. [Broadhurst, Tom] Basque Fdn Sci, IKERBASQUE, Bilbao 48008, Spain. [Zitrin, Adi; Bartelmann, Matthias] Heidelberg Univ, Inst Theoret Astrophys, ZAH, D-69120 Heidelberg, Germany. [Oguri, Masamune] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Oguri, Masamune] Natl Astron Observ Japan, Div Theoret Astron, Mitaka, Tokyo 1818588, Japan. [Benitez, Narciso] Inst Astrofis Andalucia CSIC, Granada 18008, Spain. [Hao, Jiangang] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Umetsu, Keiichi] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. RP Zitrin, A (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. EM adiz@wise.tau.ac.il RI Oguri, Masamune/C-6230-2011; Bartelmann, Matthias/A-5336-2014; OI Bartelmann, Matthias/0000-0001-6951-3582; Hao, Jiangang/0000-0003-0502-7571; Umetsu, Keiichi/0000-0002-7196-4822; Benitez, Narciso/0000-0002-0403-7455 FU contract research 'Internationale Spitzenforschung II/2' of the Baden-Wurttemberg Stiftung; transregional collaborative research centre of the Deutsche Forschungsgemeinschaft [TR 33]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; FIRST programme 'Subaru Measurements of Images and Redshifts (SuMIRe)', World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; JSPS [23740161] FX We thank the anonymous referee for significant and very constructive comments. AZ is grateful for the John Bahcall excellence prize which further encouraged this work, and to Sharon Sadeh, Dan Maoz, Irene Sendra, Gregor Seidel, Elisabeta Lusso, Bjorn M. Schafer, Matthias Redlich, Joseph Hennawi and Andrea Maccio for useful discussions. This work was supported by contract research 'Internationale Spitzenforschung II/2' of the Baden-Wurttemberg Stiftung, and by the transregional collaborative research centre TR 33 of the Deutsche Forschungsgemeinschaft. Part of this work is based on observations made with the NASA/ESA Hubble Space Telescope. Funding for the SDSS and SDSS II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. This work was supported in part by the FIRST programme 'Subaru Measurements of Images and Redshifts (SuMIRe)', World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and Grant-in-Aid for Scientific Research from the JSPS (23740161). NR 109 TC 18 Z9 18 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2012 VL 423 IS 3 BP 2308 EP 2324 DI 10.1111/j.1365-2966.2012.21041.x PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961NA UT WOS:000305470100025 ER PT J AU Wilson, RE AF Wilson, Richard E. TI Peculiar protactinium SO NATURE CHEMISTRY LA English DT Editorial Material C1 Argonne Natl Lab, Heavy Elements Grp, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Wilson, RE (reprint author), Argonne Natl Lab, Heavy Elements Grp, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rewilson@anl.gov RI Wilson, Richard/H-1763-2011 OI Wilson, Richard/0000-0001-8618-5680 NR 5 TC 4 Z9 4 U1 1 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 J9 NAT CHEM JI Nat. Chem. PD JUL PY 2012 VL 4 IS 7 BP 586 EP 586 PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 964MI UT WOS:000305699100017 PM 22717446 ER PT J AU Yang, PD Tarascon, JM AF Yang, Peidong Tarascon, Jean-Marie TI Towards systems materials engineering SO NATURE MATERIALS LA English DT Editorial Material ID HYDROGEN-PRODUCTION; ION BATTERY; WATER; BIOLOGY; STORAGE; DEVICES; CELL C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] King Abudulaziz Univ, CEAMR KAU, Jeddah 21589, Saudi Arabia. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tarascon, Jean-Marie] Univ Picardie Jules Verne, UMR CNRS 6007, LRCS, F-80039 Amiens, France. [Tarascon, Jean-Marie] Coll France, F-75005 Paris, France. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu; jean-marie.tarascon@sc.u-picardie.fr RI Tarascon, Jean-Marie/B-5952-2016 NR 22 TC 118 Z9 120 U1 15 U2 241 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD JUL PY 2012 VL 11 IS 7 BP 560 EP 563 DI 10.1038/nmat3367 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 963QR UT WOS:000305638600002 PM 22717478 ER PT J AU Zeljkovic, I Main, EJ Williams, TL Boyer, MC Chatterjee, K Wise, WD Yin, Y Zech, M Pivonka, A Kondo, T Takeuchi, T Ikuta, H Wen, JS Xu, ZJ Gu, GD Hudson, EW Hoffman, JE AF Zeljkovic, Ilija Main, Elizabeth J. Williams, Tess L. Boyer, M. C. Chatterjee, Kamalesh Wise, W. D. Yin, Yi Zech, Martin Pivonka, Adam Kondo, Takeshi Takeuchi, T. Ikuta, Hiroshi Wen, Jinsheng Xu, Zhijun Gu, G. D. Hudson, E. W. Hoffman, Jennifer E. TI Scanning tunnelling microscopy imaging of symmetry-breaking structural distortion in the bismuth-based cuprate superconductors SO NATURE MATERIALS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTOR; T-C SUPERCONDUCTOR; PSEUDOGAP STATE; BI2SR2CACU2O8+DELTA; OXIDES AB A complicating factor in unravelling the theory of high-temperature (high-T-c) superconductivity is the presence of a 'pseudogap' in the density of states, the origin of which has been debated since its discovery(1). Some believe the pseudogap is a broken symmetry state distinct from superconductivity(2-4), whereas others believe it arises from short-range correlations without symmetry breaking(5,6). A number of broken symmetries have been imaged and identified with the pseudogap state(7,8), but it remains crucial to disentangle any electronic symmetry breaking from the pre-existing structural symmetry of the crystal. We use scanning tunnelling microscopy to observe an orthorhombic structural distortion across the cuprate superconducting Bi2Sr2Can-1CunO2n+4+x (BSCCO) family tree, which breaks two-dimensional inversion symmetry in the surface BiO layer. Although this inversion-symmetry-breaking structure can impact electronic measurements, we show from its insensitivity to temperature, magnetic field and doping, that it cannot be the long-sought pseudogap state. To detect this picometre-scale variation in lattice structure, we have implemented a new algorithm that will serve as a powerful tool in the search for broken symmetry electronic states in cuprates, as well as in other materials. C1 [Zeljkovic, Ilija; Main, Elizabeth J.; Williams, Tess L.; Yin, Yi; Zech, Martin; Pivonka, Adam; Hudson, E. W.; Hoffman, Jennifer E.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Boyer, M. C.; Chatterjee, Kamalesh; Wise, W. D.; Kondo, Takeshi; Hudson, E. W.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Kondo, Takeshi; Takeuchi, T.; Ikuta, Hiroshi] Nagoya Univ, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan. [Wen, Jinsheng; Xu, Zhijun; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Hoffman, JE (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM jhoffman@physics.harvard.edu RI xu, zhijun/A-3264-2013; Wen, Jinsheng/F-4209-2010; Hoffman, Jennifer/H-4334-2011; Gu, Genda/D-5410-2013; Zeljkovic, Ilija/N-9439-2013; Hudson, Eric/C-2746-2008; Kondo, Takeshi/H-2680-2016 OI xu, zhijun/0000-0001-7486-2015; Wen, Jinsheng/0000-0001-5864-1466; Hoffman, Jennifer/0000-0003-2752-5379; Gu, Genda/0000-0002-9886-3255; Hudson, Eric/0000-0001-7064-0351; FU National Science Foundation (NSF); NSF Career; Presidential Early Career Award in Science and Engineering (PECASE) and Research Corporation; US Department of Energy; National Defense Science and Engineering Graduate fellowship FX We are grateful for fruitful conversations with E. Berg, A. Damascelli, J.C. Davis, S. Kivelson, D-H. Lee, F. Massee, J. Orenstein, S. Sachdev and C. Varma. This work is supported by the National Science Foundation (NSF), NSF Career, Presidential Early Career Award in Science and Engineering (PECASE) and Research Corporation. Work at Brookhaven National Laboratory is supported by the US Department of Energy. T. L. W. acknowledges support from a National Defense Science and Engineering Graduate fellowship. NR 31 TC 19 Z9 19 U1 4 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD JUL PY 2012 VL 11 IS 7 BP 585 EP 589 DI 10.1038/NMAT3315 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 963QR UT WOS:000305638600009 PM 22561901 ER PT J AU Yang, KS Setyawan, W Wang, SD Nardelli, MB Curtarolo, S AF Yang, Kesong Setyawan, Wahyu Wang, Shidong Nardelli, Marco Buongiorno Curtarolo, Stefano TI A search model for topological insulators with high-throughput robustness descriptors SO NATURE MATERIALS LA English DT Article ID MIXED-LAYER COMPOUNDS; X-RAY-DIFFRACTION; STRUCTURE MAPS; DIRAC CONE; PRESSURE; SEMICONDUCTORS; PBTE-BI2TE3; DEPENDENCE; SYSTEM; PHASE AB Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures. Here we show that by defining a reliable and accessible descriptor (chi) over cap TI, which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org, we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. These include peculiar ternary halides, Cs{Sn, Pb, Ge} {Cl, Br, I}(3), which could have been hardly anticipated without high-throughput means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the discovery of more TIs in different and unexplored classes of systems. C1 [Yang, Kesong; Wang, Shidong; Curtarolo, Stefano] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. [Setyawan, Wahyu] Pacific NW Natl Lab, Richland, WA 99352 USA. [Nardelli, Marco Buongiorno] Univ N Texas, Dept Phys, Denton, TX 76203 USA. [Nardelli, Marco Buongiorno] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Nardelli, Marco Buongiorno; Curtarolo, Stefano] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Curtarolo, Stefano] Duke Univ, Dept Phys, Durham, NC 27708 USA. RP Curtarolo, S (reprint author), Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. EM stefano@duke.edu RI Wang, Shidong/H-3992-2012; Buongiorno Nardelli, Marco/C-9089-2009; Yang, Kesong/A-8568-2012 OI Yang, Kesong/0000-0002-9691-0636 FU Office of Naval Research (ONR) [N00014-11-1-0136, N00014-10-1-0436]; National Science Foundation (NSF) [DMR-0639822]; Office of Basic Energy Sciences, Department of Energy (DOE) at Oak Ridge National Laboratory (ORNL) [DE-AC05-00OR22725]; UT-Battelle, LLC. FX Research supported by the Office of Naval Research (ONR) (N00014-11-1-0136, N00014-10-1-0436) and National Science Foundation (NSF) (DMR-0639822). M.B.N. acknowledges partial support from the Office of Basic Energy Sciences, Department of Energy (DOE) at Oak Ridge National Laboratory (ORNL) under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Computational resources provided by Teragrid (MCA 07S005) and by the Center for Nanophase Materials Sciences at ORNL (CNMS2010-206). The authors acknowledge fruitful discussions with J. Liu, J. Terry and M. Fornari. NR 52 TC 104 Z9 107 U1 11 U2 110 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD JUL PY 2012 VL 11 IS 7 BP 614 EP 619 DI 10.1038/NMAT3332 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 963QR UT WOS:000305638600015 PM 22581314 ER PT J AU Lin, LC Berger, AH Martin, RL Kim, J Swisher, JA Jariwala, K Rycroft, CH Bhown, AS Deem, MW Haranczyk, M Smit, B AF Lin, Li-Chiang Berger, Adam H. Martin, Richard L. Kim, Jihan Swisher, Joseph A. Jariwala, Kuldeep Rycroft, Chris H. Bhown, Abhoyjit S. Deem, Michael W. Haranczyk, Maciej Smit, Berend TI In silico screening of carbon-capture materials SO NATURE MATERIALS LA English DT Article ID ZEOLITIC IMIDAZOLATE FRAMEWORKS; CRYSTALLINE POROUS MATERIALS; METAL-ORGANIC FRAMEWORKS; DIOXIDE CAPTURE; FORCE-FIELD; MOLECULAR SIMULATIONS; GAS-ADSORPTION; CO2 CAPTURE; ALKANES; MIXTURES AB One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO2 from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60-80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research. We have developed a computational approach to rank adsorbents for their performance in CCS. Using this analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate framework structures and identified many different structures that have the potential to reduce the parasitic energy of CCS by 30-40% compared with near-term technologies. C1 [Lin, Li-Chiang; Swisher, Joseph A.; Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Lin, Li-Chiang; Kim, Jihan; Swisher, Joseph A.; Jariwala, Kuldeep; Smit, Berend] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Berger, Adam H.; Bhown, Abhoyjit S.] Elect Power Res Inst, Palo Alto, CA 94304 USA. [Martin, Richard L.; Rycroft, Chris H.; Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Rycroft, Chris H.] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Deem, Michael W.] Rice Univ, Dept Bioengn, Houston, TX 77005 USA. [Deem, Michael W.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Smit, B (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM bsmit@lbl.gov RI Martin, Richard/C-7129-2013; Smit, Berend/B-7580-2009; EFRC, CGS/I-6680-2012; Kim, Jihan/H-8002-2013; Haranczyk, Maciej/A-6380-2014; Lin, Li-Chiang/J-8120-2014; Stangl, Kristin/D-1502-2015; Deem, Michael/P-3595-2014; OI Martin, Richard/0000-0001-9858-2608; Smit, Berend/0000-0003-4653-8562; Haranczyk, Maciej/0000-0001-7146-9568; Deem, Michael/0000-0002-4298-3450; Rycroft, Chris/0000-0003-4677-6990; Lin, Li-Chiang/0000-0002-2821-9501 FU US Department of Energy [DE-AC02-05CH11231, CSNEW918, DE-SC0001015, DE-FG02-03ER15456, ARPA-e, CCSI]; Office of Innovation at the Electric Power Research Institute FX The research was supported by the US Department of Energy under contracts DE-AC02-05CH11231, #CSNEW918, DE-SC0001015, DE-FG02-03ER15456, ARPA-e, and CCSI and the Office of Innovation at the Electric Power Research Institute (a detailed description can be found in the Supplementary Information). NR 42 TC 190 Z9 192 U1 20 U2 196 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD JUL PY 2012 VL 11 IS 7 BP 633 EP 641 DI 10.1038/NMAT3336 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 963QR UT WOS:000305638600018 PM 22635045 ER PT J AU Henneberry, YK Kraus, TEC Nico, PS Horwath, WR AF Henneberry, Yumiko K. Kraus, Tamara E. C. Nico, Peter S. Horwath, William R. TI Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions SO ORGANIC GEOCHEMISTRY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; REDUCTIVE DISSOLUTION; WATER-TREATMENT; ULTRAVIOLET ABSORBENCY; CHEMICAL-COMPOSITION; 6-LINE FERRIHYDRITE; HUMIC SUBSTANCES; FLOW CONDITIONS; REDOX PROCESSES; COAGULATION AB The objective was to assess the interaction of Fe coprecipitated with dissolved organic matter (DOM) and its effect on Fe (hydr)oxide crystallinity and DOM retention under abiotic reducing conditions. A Fe-based coagulant was reacted with DOM from an agricultural drain and the resulting precipitate (floc) was exposed to S(-II) and Fe(II). Solution concentrations of Fe(II/III) and DOM were monitored, floc crystallinity was determined using X-ray diffraction, and the composition and distribution of functional groups were assessed using scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Results indicate coprecipitation of Fe(III) with DOM forms a non-crystalline floc that withstands crystallization regardless of change in pH, Fe:DOM ratio and type of reductant added. There was no evidence that exposure to reducing conditions led to release of DOM from the floc, indicating that coprecipitation with complex natural DOM in aquatic environments may stabilize Fe (hydr) oxides against crystallization upon reaction with reduced species and lead to long term sequestration of the DOM. STXM analysis identified spatially distinct regions with remarkable functional group purity, contrary to the model of DOM as a relatively uniform complex polymer lacking identifiable organic compounds. Polysaccharide-like OM was strongly and directly correlated with the presence of Fe but showed different Fe binding strength depending on the presence of carboxylic acid functional groups, whereas amide and aromatic functional groups were inversely correlated with Fe content. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Henneberry, Yumiko K.; Horwath, William R.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Kraus, Tamara E. C.] US Geol Survey, Calif Water Sci Ctr, Sacramento, CA 95819 USA. RP Nico, PS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM psnico@lbl.gov RI Nico, Peter/F-6997-2010; OI Nico, Peter/0000-0002-4180-9397; Kraus, Tamara/0000-0002-5187-8644 FU California Department of Water Resource [v4600003886]; US Geological Survey; US Department of Energy, Office of Biological and Environmental Sciences via the LBNL Earth Sciences Sustainable Systems Science focus area [DE-AC02-05CH11231] FX The overlying project for this work (Low Intensity Chemical Dosing) was initiated by R. Fujii and P. Bachand. Research was made possible from funding by the California Department of Water Resource (Agreement #v4600003886) and matching funds provided by the US Geological Survey. Partial funding was supplied by the US Department of Energy, Office of Biological and Environmental Sciences via the LBNL Earth Sciences Sustainable Systems Science focus area under contract DE-AC02-05CH11231. Access to beamline 5.3.2.2. was provided by the ALS which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under the same contract. We would like to thank R. Dahlgren and two anonymous reviewers for insightful comments. We would also like to thank T. Doane and J. Nugent for assistance with laboratory analysis and R. Southard for XRD expertise. Use of trade names is for identification purposes and does not imply endorsement by the U.S. Government. NR 62 TC 26 Z9 27 U1 12 U2 97 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0146-6380 J9 ORG GEOCHEM JI Org. Geochem. PD JUL PY 2012 VL 48 BP 81 EP 89 DI 10.1016/j.orggeochem.2012.04.005 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 966BH UT WOS:000305811100008 ER PT J AU Weyens, N Boulet, J Adriaensen, D Timmermans, JP Prinsen, E Van Oevelen, S D'Haen, J Smeets, K van der Lelie, D Taghavi, S Vangronsveld, J AF Weyens, Nele Boulet, Jana Adriaensen, Dirk Timmermans, Jean-Pierre Prinsen, Els Van Oevelen, Sandra D'Haen, Jan Smeets, Karen van der Lelie, Daniel Taghavi, Safiyh Vangronsveld, Jaco TI Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar SO PLANT AND SOIL LA English DT Article DE plant growth promotion; endophyte; poplar; biomass production; food-bioenergy conflict; green fluorescent protein ID BACTERIAL ENDOPHYTES; SYSTEMIC RESISTANCE; RHIZOSPHERE; PHYTOREMEDIATION; RHIZOBACTERIA; TREES; ACID; L.; LOCALIZATION; TECHNOLOGY AB This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promote growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution. C1 [Weyens, Nele; Boulet, Jana; Vangronsveld, Jaco] Hasselt Univ, B-3590 Diepenbeek, Belgium. [Adriaensen, Dirk; Timmermans, Jean-Pierre] Univ Antwerp, Lab Cell Biol & Histol, Dept Vet Sci, B-2020 Antwerp, Belgium. [Prinsen, Els; Van Oevelen, Sandra] Univ Antwerp, Dept Biol, B-2020 Antwerp, Belgium. [D'Haen, Jan] Hasselt Univ, Inst Mat Res, B-3590 Diepenbeek, Belgium. [van der Lelie, Daniel] Res Triangle Inst, Res Triangle Pk, NC 27709 USA. [Taghavi, Safiyh] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Weyens, N (reprint author), Hasselt Univ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium. EM nele.weyens@uhasselt.be RI D'Haen, Jan/K-1938-2016; Prinsen, Els/M-8973-2016 FU Institute for the Promotion of Innovation through Science and Technology in Flanders(IWT-Vlaanderen); Fund for Scientific Research Flanders (FWO-Vlaanderen); UHasselt Methusalem [08 M03 VGRJ]; Brookhaven National Laboratory [LDRD05-063, LDRD09-005]; U.S. Department of Energy FX This research was funded by the Institute for the Promotion of Innovation through Science and Technology in Flanders(IWT-Vlaanderen) for N. W. and by the Fund for Scientific Research Flanders (FWO-Vlaanderen), Ph. D. grant for J. B. The project was further supported by the UHasselt Methusalem project 08 M03 VGRJ. Work by S. T. was funded by Laboratory Directed Research and Development funds (LDRD05-063 and LDRD09-005) at the Brookhaven National Laboratory under contract with the U.S. Department of Energy. NR 61 TC 14 Z9 14 U1 0 U2 40 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0032-079X J9 PLANT SOIL JI Plant Soil PD JUL PY 2012 VL 356 IS 1-2 BP 217 EP 230 DI 10.1007/s11104-011-0831-x PG 14 WC Agronomy; Plant Sciences; Soil Science SC Agriculture; Plant Sciences GA 962FX UT WOS:000305528500017 ER PT J AU Harholt, J Jensen, JK Verhertbruggen, Y Sogaard, C Bernard, S Nafisi, M Poulsen, CP Geshi, N Sakuragi, Y Driouich, A Knox, JP Scheller, HV AF Harholt, Jesper Jensen, Jacob Krueger Verhertbruggen, Yves Sogaard, Casper Bernard, Sophie Nafisi, Majse Poulsen, Christian Peter Geshi, Naomi Sakuragi, Yumiko Driouich, Azeddine Knox, J. Paul Scheller, Henrik Vibe TI ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta SO PLANTA LA English DT Article DE Pectin; Arabinan; Glycosyltransferase; Disulfide bridges ID ARABIDOPSIS-THALIANA; HOMOGALACTURONAN GALACTURONOSYLTRANSFERASE; RHAMNOGALACTURONAN-II; UDP-ARABINOFURANOSE; CELL-WALLS; IDENTIFICATION; GENE; GLYCOSYLTRANSFERASES; XYLOSYLTRANSFERASE; POLYSACCHARIDES AB Glycosyltransferase complexes are known to be involved in plant cell wall biosynthesis, as for example in cellulose. It is not known to what extent such complexes are involved in biosynthesis of pectin as well. To address this question, work was initiated on ARAD1 (ARABINAN DEFICIENT 1) and its close homolog ARAD2 of glycosyltransferase family GT47. Using bimolecular fluorescence complementation, Forster resonance energy transfer and non-reducing gel electrophoresis, we show that ARAD1 and ARAD2 are localized in the same Golgi compartment and form homo-and heterodimeric intermolecular dimers when expressed transiently in Nicotiana benthamiana. Biochemical analysis of arad2 cell wall or fractions hereof showed no difference in the monosaccharide composition, when compared with wild type. The double mutant arad1 arad2 had an arad1 cell wall phenotype and overexpression of ARAD2 did not complement the arad1 phenotype, indicating that ARAD1 and ARAD2 are not redundant enzymes. To investigate the cell wall structure of the mutants in detail, immunohistochemical analyses were carried out on arad1, arad2 and arad1 arad2 using the arabinan-specific monoclonal antibody LM13. In roots, the labeling pattern of arad2 was distinct from both that of wild type, arad1 and arad1 arad2. Likewise, in epidermal cell walls of inflorescence stems, LM13 binding differed between arad2 and WILD TYPE, arad1 or arad1 arad2. Altogether, these data show that ARAD2 is associated with arabinan biosynthesis, not redundant with ARAD1, and that the two glycosyltransferases may function in complexes held together by disulfide bridges. C1 [Verhertbruggen, Yves; Scheller, Henrik Vibe] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint Bioenergy Inst, Berkeley, CA 94720 USA. [Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Bernard, Sophie; Driouich, Azeddine] Univ Rouen, Lab Glycobiol & Matrice Extracellulaire Vegetale, UPRES EA 4358,IBiSA,Plate Forme Rech Imagerie Cel, Inst Federatif Rech Multidisciplinaire Peptides 2, F-76821 Mont St Aignan, France. [Verhertbruggen, Yves; Knox, J. Paul] Univ Leeds, Fac Biol Sci, Ctr Plant Sci, Leeds LS2 9JT, W Yorkshire, England. [Jensen, Jacob Krueger] Michigan State Univ, Dept Plant Biol, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Harholt, Jesper; Jensen, Jacob Krueger; Sogaard, Casper; Nafisi, Majse; Poulsen, Christian Peter; Geshi, Naomi; Sakuragi, Yumiko; Scheller, Henrik Vibe] Univ Copenhagen, Plant Mol Biol Lab, VKR Res Ctr Proact Plants, Dept Plant Biol & Biotechnol, DK-1871 Frederiksberg C, Denmark. RP Scheller, HV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint Bioenergy Inst, Berkeley, CA 94720 USA. EM hscheller@lbl.gov RI Knox, Paul/H-4577-2012; Harholt, Jesper/F-6865-2014; Sakuragi, Yumiko/E-9707-2012; Scheller, Henrik/A-8106-2008; OI Knox, Paul/0000-0002-9231-6891; Harholt, Jesper/0000-0002-7984-0066; Sakuragi, Yumiko/0000-0002-9405-5197; Scheller, Henrik/0000-0002-6702-3560; Poulsen, Christian/0000-0002-5395-7418; Verhertbruggen, Yves/0000-0003-4114-5428 FU Villum Kann Rasmussen Foundation through the VKR Research Centre "Pro-Active Plants"; Danish Council for Independent Research; U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; 6th Framework Program of the European Commission, Marie Curie RTN 'WallNet' [MRTN-CT-2004-512265]; 7th Framework Program of the European Commission, large scale integrating project "Renewall" [211982]; DOE Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; University of Rouen; French ministry for research and higher education; regional council research network "VATA" of Haute Normandy FX We thank Dr. Niels B. Jensen for providing materials and technical advice. Dr. Maor Bar-Peled is thanked for providing UXS2 cDNA. Jesse Lee Walker is thanked for technical assistance. Imaging data were achieved at the Center for Advanced Bioimaging (CAB) Denmark, University of Copenhagen. This work was supported by The Villum Kann Rasmussen Foundation through the VKR Research Centre "Pro-Active Plants" [to JH, CS, CPP, NG, YS and HVS]; Danish Council for Independent Research [to CPP, YS, JKJ and HVS]; U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231 to YV and HVS]; 6th Framework Program of the European Commission, Marie Curie RTN 'WallNet' [MRTN-CT-2004-512265 to YV, JPK and HVS]; 7th Framework Program of the European Commission, large scale integrating project "Renewall" [project no. 211982 to NG]; DOE Great Lakes Bioenergy Research Center [DE-FC02-07ER64494 to JKJ]; University of Rouen, the French ministry for research and higher education [to SB and AD]; and by the regional council research network "VATA" of Haute Normandy [to SB and AD]. NR 50 TC 25 Z9 27 U1 4 U2 41 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 EI 1432-2048 J9 PLANTA JI Planta PD JUL PY 2012 VL 236 IS 1 BP 115 EP 128 DI 10.1007/s00425-012-1592-3 PG 14 WC Plant Sciences SC Plant Sciences GA 964GN UT WOS:000305682100009 PM 22270560 ER PT J AU Orfila, C Dal Degan, F Jorgensen, B Scheller, HV Ray, PM Ulvskov, P AF Orfila, Caroline Dal Degan, Florence Jorgensen, Bodil Scheller, Henrik Vibe Ray, Peter M. Ulvskov, Peter TI Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties SO PLANTA LA English DT Article DE Cell wall rheology; Heterologous expression of carbohydrate active enzymes; In vivo cell wall remodelling; Relaxation spectra; Solanum ID RHAMNOGALACTURONAN-I; MOLECULAR-CLONING; TOMATO FRUIT; SIDE-CHAINS; BINDING; CELLULOSE; ENZYMES; HOMOGALACTURONAN; IDENTIFICATION; ASPERGILLUS AB A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres. C1 [Orfila, Caroline; Dal Degan, Florence; Jorgensen, Bodil; Scheller, Henrik Vibe; Ulvskov, Peter] Univ Copenhagen, Dept Plant Biol & Biotechnol, DK-1871 Frederiksberg C, Denmark. [Scheller, Henrik Vibe] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA 94608 USA. [Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Ray, Peter M.] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA. RP Ulvskov, P (reprint author), Univ Copenhagen, Dept Plant Biol & Biotechnol, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. EM ulvskov@life.ku.dk RI Ulvskov, Peter/I-1228-2014; Scheller, Henrik/A-8106-2008; Jorgensen, Bodil/F-6551-2014; OI Ulvskov, Peter/0000-0003-3776-818X; Scheller, Henrik/0000-0002-6702-3560; Jorgensen, Bodil/0000-0002-0453-1277; Orfila, Caroline/0000-0003-2564-8068 FU VKR Research Centre Pro-Active Plants; EU [211982]; Danish National Advanced Technology Foundation; Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by grants from the VKR Research Centre Pro-Active Plants, by the EU-project number 211982 'Renewall', by the Danish National Advanced Technology Foundation, and by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Morten L. Stephensen is acknowledged for skilful technical assistance. NR 51 TC 16 Z9 16 U1 2 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 J9 PLANTA JI Planta PD JUL PY 2012 VL 236 IS 1 BP 185 EP 196 DI 10.1007/s00425-012-1596-z PG 12 WC Plant Sciences SC Plant Sciences GA 964GN UT WOS:000305682100014 PM 22293853 ER PT J AU Stojanoff, V Northrup, P Pietri, R Zhong, Z AF Stojanoff, Vivian Northrup, Paul Pietri, Ruth Zhong, Zhong TI Synchrotron Radiation in Life Sciences SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE Synchrotron Radiation; macromolecular crystallography; spectroscopy; x-ray diffraction; x-ray imaging ID X-RAY DIFFRACTION; PROTEIN CRYSTALS; MACROMOLECULAR CRYSTALLOGRAPHY; POWDER DIFFRACTION; SPECTROSCOPIC METHODS; BIOLOGICAL CRYSTALS; LYSOZYME CRYSTALS; DATA-COLLECTION; CELLULAR-LEVEL; TOPOGRAPHY AB Synchrotron Radiation (SR) presents itself as a "play-ground" with a large range of methods and techniques suitable to unveil the mysteries of life. Here we attempt to present a few of these methods that complement those employed in the home laboratory. SR diffraction, spectroscopy and imaging methods relevant to the atomic structure determination and characterization of the properties and function of chemical compounds and macromolecules of biological relevance, are introduced. C1 [Stojanoff, Vivian; Pietri, Ruth; Zhong, Zhong] Brookhaven Natl Lab, Upton, NY 11973 USA. [Northrup, Paul] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Stojanoff, V (reprint author), Brookhaven Natl Lab, Bldg 725D, Upton, NY 11973 USA. EM stojanoff@bnl.gov RI stojanoff, vivian /I-7290-2012 OI stojanoff, vivian /0000-0002-6650-512X FU National Institute of General Medical Sciences, National Institute of Health [GM-0080] FX To the many friends and colleagues who throughout the years showed that science can be fun, thanks. The X6A beamline at the National Synchrotron Light Source (DE-AC02-98CH10886) is part of the NIGMS-ECSBF supported by the National Institute of General Medical Sciences, National Institute of Health under agreement GM-0080. NR 80 TC 1 Z9 1 U1 1 U2 13 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 EI 1875-5305 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PD JUL PY 2012 VL 19 IS 7 BP 761 EP 769 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 964FL UT WOS:000305679300008 PM 22489785 ER PT J AU Yang, F Kovarik, L Phillips, PJ Noebe, RD Mills, MJ AF Yang, F. Kovarik, L. Phillips, P. J. Noebe, R. D. Mills, M. J. TI Characterizations of precipitate phases in a Ti-Ni-Pd alloy SO SCRIPTA MATERIALIA LA English DT Article DE Shape memory alloys; Precipitation; Crystal structure; High-angle annular dark field ID SHAPE-MEMORY ALLOYS; TRANSFORMATIONS; STEM; RICH AB The microstructure of 46Ti-37.5Ni-16.5Pd (at.%) alloy was investigated by electron diffraction and high-resolution scanning transmission electron microscopy. The phase content and stability were determined at several different temperatures and times. Aging at 400 degrees C for 1 h results in a new phase (P1-phase), which is consumed by P-phase at longer aging times. At 450 degrees C, the P1-phase appears first, and then coexists with P-phase. At 500 degrees C, the entire alloy transforms into the P1-phase. At 550 degrees C, Ti-3(Ni,Pd)(4) phase begins to form. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Yang, F.; Kovarik, L.; Phillips, P. J.; Mills, M. J.] Ohio State Univ, Columbus, OH 43202 USA. [Kovarik, L.] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. [Noebe, R. D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Yang, F (reprint author), Ohio State Univ, 2041 Coll Rd, Columbus, OH 43202 USA. EM yang.1052@osu.edu RI Mills, Michael/I-6413-2013; Kovarik, Libor/L-7139-2016 FU US Department of Energy, Office of Basic Energy Sciences [DE-SC0001258]; NASA Fundamental Aeronautics Program, Supersonics Project, API FX This work has been supported by the US Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0001258 (for F.Y., L.K. and M.J.M.). R.D.N. would like to acknowledge funding from the NASA Fundamental Aeronautics Program, Supersonics Project, Dale Hopkins, API. NR 14 TC 9 Z9 9 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2012 VL 67 IS 2 BP 145 EP 148 DI 10.1016/j.scriptamat.2012.04.003 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 965MK UT WOS:000305771700007 ER PT J AU Rajasekhar, S Ganesh, KJ Hattar, K Knapp, JA Ferreira, PJ AF Rajasekhar, S. Ganesh, K. J. Hattar, K. Knapp, J. A. Ferreira, P. J. TI Evidence of metastable hcp phase grains in as-deposited nanocrystalline nickel films SO SCRIPTA MATERIALIA LA English DT Article DE Precession electron microscopy; Nanostructured nickel; Texture; Metastable hcp phase ID SILVER THIN-FILMS; ELECTRON-DIFFRACTION; GROWTH; MIGRATION; NI AB Precession microscopy is applied to determine the morphology of pulsed laser deposited and unannealed Ni films. The nanostructure of these films, nominally 50 nm in thickness, is heterogeneous and comprised predominantly of face-centered cubic (fcc)-Ni phase with regions of < 1 0 1 >(fcc) < 1 1 2 >(fcc), and < 0 0 1 >(fcc) fiber texture. Metastable hexagonal close-packed (hcp)-Ni phase grains approximately 8.5 nm in size are also present, and there is compelling evidence that local texture of the predominant fcc-Ni phase facilitates the formation and resulting texture of the metastable counterpart. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Rajasekhar, S.; Hattar, K.; Knapp, J. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rajasekhar, S.; Ganesh, K. J.; Ferreira, P. J.] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. RP Rajasekhar, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM snrajas@sandia.gov; ferreira@mail.utexas.edu FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Mr. J. Kacher, Dr. B.G. Clark, Dr. B.L. Boyce and Prof. I.M. Robertson for valuable discussions and suggestions. This work was fully supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, US Department of Energy. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We also acknowledge Nanomegas, Inc. for setting up the Precession Microscopy system at UT-Austin. NR 26 TC 12 Z9 12 U1 1 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2012 VL 67 IS 2 BP 189 EP 192 DI 10.1016/j.scriptamat.2012.04.014 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 965MK UT WOS:000305771700018 ER PT J AU Charnvanichborikarn, S Myers, MT Shao, L Kucheyev, SO AF Charnvanichborikarn, S. Myers, M. T. Shao, L. Kucheyev, S. O. TI Interface-mediated suppression of radiation damage in GaN SO SCRIPTA MATERIALIA LA English DT Article DE Ion-beam process; Rutherford backscattering spectrometry/channelling (RBS); Semiconductor compounds; Surface-interface defects ID ION IRRADIATION; NANOSTRUCTURED MATERIALS; AMORPHIZATION; SEMICONDUCTORS; BOMBARDMENT; DEFECTS; SI; IMPLANTS; SILICON AB Interfaces are often sinks for radiation-generated defects and could either promote defect recombination or cause detrimental disorder accumulation. Here, we study (0 0 0 1) GaN irradiated with 500 keV Xe ions at room temperature. Results show that, when point defects are generated within similar to 50 nm from the surface, they experience efficient recombination without any measurable increase in the rate of surface amorphization. Our findings provide clear experimental evidence of efficient suppression of radiation damage by an interface in a non-metallic material. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Charnvanichborikarn, S.; Myers, M. T.; Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Myers, M. T.; Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Charnvanichborikarn, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM charnvanichb1@llnl.gov FU US DOE by LLNL [DE-AC52-07NA27344]; NSF [0846835] FX This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. L.S. is grateful for the support from NSF Grant No. 0846835. NR 38 TC 4 Z9 4 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2012 VL 67 IS 2 BP 205 EP 208 DI 10.1016/j.scriptamat.2012.04.020 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 965MK UT WOS:000305771700022 ER PT J AU Schwartz, SE AF Schwartz, Stephen E. TI Determination of Earth's Transient and Equilibrium Climate Sensitivities from Observations Over the Twentieth Century: Strong Dependence on Assumed Forcing SO SURVEYS IN GEOPHYSICS LA English DT Review DE Climate sensitivity; Forcing; Global mean surface temperature; Heat capacity; Time constant ID OCEAN HEAT-CONTENT; MIXED GREENHOUSE GASES; TEMPERATURE-CHANGES; ENERGY IMBALANCE; BLACK CARBON; UNCERTAINTY; MODELS; TIME; VARIABILITY; EVOLUTION AB Relations among observed changes in global mean surface temperature, ocean heat content, ocean heating rate, and calculated radiative forcing, all as a function of time over the twentieth century, that are based on a two-compartment energy balance model, are used to determine key properties of Earth's climate system. The increase in heat content of the world ocean, obtained as the average of several recent compilations, is found to be linearly related to the increase in global temperature over the period 1965-2009; the slope, augmented to account for additional heat sinks, which is an effective heat capacity of the climate system, is 21.8 +/- A 2.1 W year m(-2) K-1 (one sigma), equivalent to the heat capacity of 170 m of seawater (for the entire planet) or 240 m for the world ocean. The rate of planetary heat uptake, determined from the time derivative of ocean heat content, is found to be proportional to the increase in global temperature relative to the beginning of the twentieth century with proportionality coefficient 1.05 +/- A 0.06 W m(-2) K-1. Transient and equilibrium climate sensitivities were evaluated for six published data sets of forcing mainly by incremental greenhouse gases and aerosols over the twentieth century as calculated by radiation transfer models; these forcings ranged from 1.1 to 2.1 W m(-2), spanning much of the range encompassed by the 2007 assessment of the Intergovernmental Panel on Climate Change (IPCC). For five of the six forcing data sets, a rather robust linear proportionality obtains between the observed increase in global temperature and the forcing, allowing transient sensitivity to be determined as the slope. Equilibrium sensitivities determined by two methods that account for the rate of planetary heat uptake range from 0.31 +/- 0.02 to 1.32 +/- 0.31 K (W m(-2))(-1) (CO2 doubling temperature 1.16 +/- 0.09-4.9 +/- 1.2 K), more than spanning the IPCC estimated "likely" uncertainty range, and strongly anticorrelated with the forcing used to determine the sensitivities. Transient sensitivities, relevant to climate change on the multidecadal time scale, are considerably lower, 0.23 +/- 0.01 to 0.51 +/- 0.04 K (W m(-2))(-1). The time constant characterizing the response of the upper ocean compartment of the climate system to perturbations is estimated as about 5 years, in broad agreement with other recent estimates, and much shorter than the time constant for thermal equilibration of the deep ocean, about 500 years. C1 Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Schwartz, SE (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. EM ses@bnl.gov RI Schwartz, Stephen/C-2729-2008 OI Schwartz, Stephen/0000-0001-6288-310X FU U.S. Department of Energy's Atmospheric System Research Program (Office of Science, OBER) [DE-AC02-98CH10886] FX I thank the several modeling groups for providing the forcing data sets employed in this analysis. An earlier version of this paper was presented at the Workshop on Observing and Modelling Earth's Energy Flows organized and sponsored by the International Space Science Institute in Bern Switzerland, January, 10-14, 2011, and I thank Lennart Bengtsson for his encouragement of this study. This study benefited from comments by Bjorn Stevens and a second, anonymous reviewer. This work was supported by the U.S. Department of Energy's Atmospheric System Research Program (Office of Science, OBER) under Contract No. DE-AC02-98CH10886. NR 65 TC 18 Z9 18 U1 1 U2 35 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD JUL PY 2012 VL 33 IS 3-4 BP 745 EP 777 DI 10.1007/s10712-012-9180-4 PG 33 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 962IA UT WOS:000305535600027 ER PT J AU Stevens, B Schwartz, SE AF Stevens, Bjorn Schwartz, Stephen E. TI Observing and Modeling Earth's Energy Flows SO SURVEYS IN GEOPHYSICS LA English DT Review DE Climate change; Cloud radiative effects; Aerosol; Energy budget; Climate sensitivity; Radiative forcing ID AEROSOL OPTICAL DEPTH; RADIATION BUDGET; CLIMATE SENSITIVITY; ATMOSPHERE RADIATION; RELATIVE-HUMIDITY; CLOUD; SURFACE; TEMPERATURE; FEEDBACK; TOP AB This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within +/- 2 W m(-2). The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation. C1 [Stevens, Bjorn] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Schwartz, Stephen E.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Stevens, B (reprint author), Max Planck Inst Meteorol, KlimaCampus, D-20146 Hamburg, Germany. EM bjorn.stevens@zmaw.de RI Stevens, Bjorn/A-1757-2013; Schwartz, Stephen/C-2729-2008 OI Stevens, Bjorn/0000-0003-3795-0475; Schwartz, Stephen/0000-0001-6288-310X FU United States Department of Energy (Office of Science, OBER) [DE-AC02-09CH10886]; Max Planck Society for the Advancement of Science FX We thank the organizers of the workshop for giving us the opportunity to present our views. In addition through the development of this manuscript exchanges with Andrea Brose, Robert Cahalan, Robert Cess, Ralph Kahn, Seiji Kato, Norman Loeb, John Lyman, Jochem Marotzke, David Randall, and Graeme Stephens, were a great resource in the development of our ideas and analysis methods. MISR and CERES data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. We thank Wei Wu (BNL) for providing cloud cover data for north Central Oklahoma as well as Stefan Kinne and Thorsten Mauritsen for critical and substantive comments on an initial draft version of this manuscript. Several critical reviews of the manuscript, two of which were anonymous, also resulted in major changes to the manuscript that we believe improved the presentation of our ideas, and these reviewers are thanked for their frankness, and their attention to our ideas. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. Work by S. Schwartz was supported by the United States Department of Energy (Office of Science, OBER) under Contract No. DE-AC02-09CH10886. B. Stevens was supported by the Max Planck Society for the Advancement of Science. NR 105 TC 23 Z9 23 U1 4 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD JUL PY 2012 VL 33 IS 3-4 BP 779 EP 816 DI 10.1007/s10712-012-9184-0 PG 38 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 962IA UT WOS:000305535600028 ER PT J AU Farkas, J Stirrett, K Lipscomb, GL Nixon, W Scott, RA Adams, MWW Westpheling, J AF Farkas, Joel Stirrett, Karen Lipscomb, Gina L. Nixon, William Scott, Robert A. Adams, Michael W. W. Westpheling, Janet TI Recombinogenic Properties of Pyrococcus furiosus Strain COM1 Enable Rapid Selection of Targeted Mutants SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ARCHAEON THERMOCOCCUS-KODAKARAENSIS; HALOFERAX-VOLCANII; RESTRICTION-ENDONUCLEASE; HOMOLOGOUS RECOMBINATION; SACCHAROMYCES-CEREVISIAE; KNOCKOUT SYSTEM; GENE DISRUPTION; CONSTRUCTION; PROTEINS; RESISTANCE AB We recently reported the isolation of a mutant of Pyrococcus furiosus, COM1, that is naturally and efficiently competent for DNA uptake. While we do not know the exact nature of this mutation, the combined transformation and recombination frequencies of this strain allow marker replacement by direct selection using linear DNA. In testing the limits of its recombination efficiency, we discovered that marker replacement was possible with as few as 40 nucleotides of flanking homology to the target region. We utilized this ability to design a strategy for selection of constructed deletions using PCR products with subsequent excision, or "pop-out," of the selected marker. We used this method to construct a "markerless" deletion of the trpAB locus in the GLW101 (COM1 Delta pyrF) background to generate a strain (JFW02) that is a tight tryptophan auxotroph, providing a genetic background with two auxotrophic markers for further strain construction. The utility of trpAB as a selectable marker was demonstrated using prototrophic selection of plasmids and genomic DNA containing the wild-type trpAB alleles. A deletion of radB was also constructed that, surprisingly, had no obvious effect on either recombination or transformation, suggesting that its gene product is not involved in the COM1 phenotype. Attempts to construct a radA deletion mutation were unsuccessful, suggesting that this may be an essential gene. The ease and speed of this procedure will facilitate the construction of strains with multiple genetic changes and allow the construction of mutants with deletions of virtually any nonessential gene. C1 [Farkas, Joel; Stirrett, Karen; Lipscomb, Gina L.; Nixon, William; Westpheling, Janet] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Stirrett, Karen; Lipscomb, Gina L.; Nixon, William; Scott, Robert A.; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Scott, Robert A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. [Farkas, Joel; Nixon, William; Adams, Michael W. W.; Westpheling, Janet] Oak Ridge Natl Lab, Dept Energy, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Westpheling, J (reprint author), Univ Georgia, Dept Genet, Athens, GA 30602 USA. EM janwest@uga.edu FU Bio-Energy Science Center [DE-PS02-06ER64304]; Office of Biological and Environmental Research [FG02-08ER64690]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG05-95ER20175]; predoctoral Graduate Training In Genetics grant [NIH 5T32GM007103-30] FX This work was supported by grants from the Bio-Energy Science Center (grant DE-PS02-06ER64304), administered by Oak Ridge National Laboratory, and from the Office of Biological and Environmental Research (grant FG02-08ER64690) and the Chemical Sciences, Geosciences and Biosciences Division (grant DE-FG05-95ER20175), Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. J.F. was supported by a predoctoral Graduate Training In Genetics grant (grant NIH 5T32GM007103-30) to the Genetics Department of the University of Georgia. NR 37 TC 14 Z9 14 U1 1 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2012 VL 78 IS 13 BP 4669 EP 4676 DI 10.1128/AEM.00936-12 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 960GS UT WOS:000305376600016 PM 22544252 ER PT J AU Windisch, CF Maupin, GD McGrail, BP AF Windisch, Charles F., Jr. Maupin, Gary D. McGrail, B. Peter TI Ultraviolet (UV) Raman Spectroscopy Study of the Soret Effect in High-Pressure CO2-Water Solutions SO APPLIED SPECTROSCOPY LA English DT Article DE Ultraviolet Raman spectroscopy; Soret effect; Thermal diffusion; Supercritical CO2; High-pressure Raman spectroscopy ID SUPERCRITICAL CARBON-DIOXIDE; LIQUID; DIFFUSION; WATER; GAS; CO2 AB Spatially resolved deep-ultraviolet (UV) Raman spectroscopy was applied to solutions of CO2 and H2O or D2O subject to a temperature gradient in a thermally regulated high-pressure concentric-tube Raman cell in an attempt to measure a Soret effect in the vicinity of the critical point of CO2. Although Raman spectra of solutions of CO2 dissolved in D2O, at 10 MPa and temperatures near the critical point of CO2, had adequate signal-to-noise and spatial resolution to observe a Soret effect with a Soret coefficient with magnitude vertical bar S-T vertical bar > 0.03, no evidence for an effect of this size was obtained for applied temperature gradients up to 19 degrees C. In contrast, the concentration of CO2 dissolved in H2O was shown to vary significantly across the temperature gradient when excess CO2 was present, but the results could be explained simply by the variation in CO2 solubility over the temperature range and not by kinetic factors. For mixtures of D2O dissolved in scCO(2) at 10 MPa and temperatures close to the critical point of CO2, the Raman peaks for D2O were too weak to measure with confidence even at the limit of D2O solubility. C1 [Windisch, Charles F., Jr.; Maupin, Gary D.; McGrail, B. Peter] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Windisch, CF (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM cf.windisch@pnnl.gov FU U.S. Department of Energy (DOE), Office of Fossil Energy; DOE [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Fossil Energy. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 17 TC 0 Z9 0 U1 3 U2 21 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD JUL PY 2012 VL 66 IS 7 BP 731 EP 739 DI 10.1366/12-06591 PG 9 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 961CY UT WOS:000305442700001 PM 22734858 ER PT J AU Bryan, AL Brant, HA Jagoe, CH Romanek, CS Brisbin, IL AF Bryan, A. Lawrence, Jr. Brant, Heather A. Jagoe, Charles H. Romanek, Christopher S. Brisbin, I. Lehr, Jr. TI Mercury Concentrations in Nestling Wading Birds Relative to Diet in the Southeastern United States: A Stable Isotope Analysis SO ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article ID WOOD STORKS; COASTAL GEORGIA; FOOD WEBS; BIOACCUMULATION; AVAILABILITY; FEATHERS; ECOLOGY AB Mercury (Hg) is a ubiquitous environmental contaminant that is transferred trophically through aquatic and terrestrial food webs. To better understand the routes of Hg uptake in organisms that rely on both aquatic and terrestrial food resources, we analyzed feather and down samples from nestling wading birds of varying trophic positions in both inland and coastal colonies. We used stable nitrogen and carbon isotope analyses to evaluate trophic positions of individual species (delta N-15) and differences in foraging habitat use (delta C-13). Inland, aquatic species had higher trophic status than the single terrestrial species examined, and the expected positive relationship between delta N-15 and Hg content of feathers was observed. However, the same was not true for all species from coastal colonies. Feathers from species that primarily consumed saltwater prey were relatively high in delta N-15 value and low in Hg content, which is opposite of the trend expected due to Hg biomagnification in food chains. In contrast, coastal species foraging in freshwater or a combination of freshwater and saltwater habitats displayed greater Hg contents in feathers. The apparent differential use of the two aquatic systems (freshwater and saltwater) in coastal environments by wading bird species results in variations in delta N-15 values and Hg contents in nestling feathers not found in species associated with only freshwater systems. C1 [Bryan, A. Lawrence, Jr.; Brant, Heather A.; Jagoe, Charles H.; Romanek, Christopher S.; Brisbin, I. Lehr, Jr.] Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Bryan, AL (reprint author), Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. EM lbryan@srel.edu FU DOE [DE-FC09-07SR22506]; M. K. Pentecost Ecology Trust of the Savannah Presbytery of the Presbyterian Church (USA) FX John Robinette and Karen Pacheco of the United States Fish and Wildlife Service granted access for feather collection at Harris Neck. Alicia Brinton, Noelle Garvin, Lindy Paddock, and Warren Stephens of Savannah River Ecology Laboratory assisted with field collections and/or laboratory analyses. Two anonymous reviewers made comments improving earlier drafts of this manuscript. The research was supported by DOE Award No. DE-FC09-07SR22506 to the University of Georgia Research Foundation and a grant from the M. K. Pentecost Ecology Trust Fund of the Savannah Presbytery of the Presbyterian Church (USA). NR 38 TC 10 Z9 10 U1 2 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-4341 J9 ARCH ENVIRON CON TOX JI Arch. Environ. Contam. Toxicol. PD JUL PY 2012 VL 63 IS 1 BP 144 EP 152 DI 10.1007/s00244-011-9745-0 PG 9 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 958BG UT WOS:000305210400015 PM 22237461 ER PT J AU Mosher, J Sako, M Corlies, L Folatelli, G Frieman, J Holtzman, J Jha, SW Kessler, R Marriner, J Phillips, MM Stritzinger, M Morrell, N Schneider, DP AF Mosher, J. Sako, M. Corlies, L. Folatelli, G. Frieman, J. Holtzman, J. Jha, S. W. Kessler, R. Marriner, J. Phillips, M. M. Stritzinger, M. Morrell, N. Schneider, D. P. TI A PRECISION PHOTOMETRIC COMPARISON BETWEEN SDSS-II AND CSP TYPE Ia SUPERNOVA DATA SO ASTRONOMICAL JOURNAL LA English DT Article DE supernovae: general; techniques: photometric ID DIGITAL SKY SURVEY; HUBBLE-SPACE-TELESCOPE; DARK ENERGY; DATA RELEASE; LEGACY SURVEY; LIGHT CURVES; HOST GALAXIES; COSMOLOGICAL CONSTRAINTS; OPTICAL PHOTOMETRY; MAXIMUM LIGHT AB Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter. C1 [Mosher, J.; Sako, M.; Corlies, L.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Corlies, L.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Folatelli, G.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778583, Japan. [Folatelli, G.; Phillips, M. M.; Morrell, N.] Carnegie Observ, Las Campanas Observ, La Serena, Chile. [Frieman, J.; Kessler, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, J.; Kessler, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Holtzman, J.] New Mexico State Univ, Dept Astron, MSC 4500, Las Cruces, NM 88003 USA. [Jha, S. W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Marriner, J.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Stritzinger, M.] AlbaNova Univ Ctr, Oskar Klein Ctr Cosmo Particle Phys, S-10691 Stockholm, Sweden. [Stritzinger, M.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Stritzinger, M.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. RP Mosher, J (reprint author), Univ Penn, Dept Phys & Astron, 209 S 33rd St, Philadelphia, PA 19104 USA. EM jmosher@sas.upenn.edu OI stritzinger, maximilian/0000-0002-5571-1833 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; NSF CAREER [AST-0847157]; W. M. Keck Foundation; NSF [AST-0607485] FX J.M. wishes to thank Chris D'Andrea, Ravi Gupta, and John Fischer for helpful discussions regarding analysis and image reduction, and Ryan Foley for advice on throughput function measurement. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. Support for this research at Rutgers University was provided in part by NSF CAREER award AST-0847157 to S.W.J.; The APO 3.5 m telescope is owned and operated by the ARC. We thank the observatory director, Suzanne Hawley, and site manager, Bruce Gillespie, for their support of this project. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The William Herschel Telescope is operated by the Isaac Newton Group on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Observations at the ESO New Technology Telescope at La Silla Observatory were made under program IDs 77.A-0437, 78.A-0325, and 79.A-0715. Kitt Peak National Observatory, National Optical Astronomy Observatories (NOAO), is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF. The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and NOAO. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The South African Large Telescope of the South African Astronomical Observatory is operated by a partnership between the National Research Foundation of South Africa, Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, the Hobby-Eberly Telescope Board, Rutgers University, Georg-August-Universitat Gottingen, University of Wisconsin-Madison, University of Canterbury, University of North Carolina-Chapel Hill, Dartmouth College, Carnegie Mellon University, and the United Kingdom SALT Consortium. A.V.F.'s supernova group at U.C. Berkeley is supported by NSF grant AST-0607485. NR 89 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2012 VL 144 IS 1 AR 17 DI 10.1088/0004-6256/144/1/17 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 960VB UT WOS:000305418600017 ER PT J AU Caporuscio, FA Gardner, JN Schultz-Fellenz, ES Kelley, RE AF Caporuscio, Florie A. Gardner, Jamie N. Schultz-Fellenz, Emily S. Kelley, Richard E. TI Fumarolic pipes in the Tshirege Member of the Bandelier Tuff on the Pajarito Plateau, Jemez Mountains, New Mexico SO BULLETIN OF VOLCANOLOGY LA English DT Article DE Fumaroles; Bandelier Tuff; Pajarito Plateau; Scapolite ID DEPOSITS; VALLEY; ALASKA; SYSTEM; SMOKES; RIFT AB The objective of this study is to demonstrate the relationships among devitrification, vapor phase alteration, localization of gas emanations into fumarolic pipes, and initial deformation of the ash flow sheet during cooling and lithification. Utilizing a unique and temporary exposure of the Tshirege Member of the Bandelier Tuff near Los Alamos, New Mexico, we identify several zones of distinctly preserved fossil fumarolic activity. The fumarolic zones vary in width from a few centimeters to more than a meter. Almost ubiquitously, these zones demonstrate fines-depletion, induration of the margins, upward-flaring geometries, and intense fracturing of overlying geologic units. The fumaroles were preferentially located on post welding, early formed cooling joints that vented to the surface after the vapor phase alteration stage. The pipes were regularly spaced at distances of approximately 4.5 m (N-S) to 7 m (E-W). In turn the pipes were covered by a surge deposit and overlying tuff which rapidly lithified. The overlying tuff was then brecciated during continued fumarolic pipe emissions. Geochemical evaluations confirm the presence of high-temperature mineral (scapolite) indicative of transport of hot volcanic gases through these zones. The pipe centers and walls are depleted in SiO2, and enriched in Al2O3 and FeO. The overlying tuff breccia zones are enriched in Al2O3, FeO and MgO, and depleted in SiO2, NaO, and K2O. From comparison to other ignimbrite cooling histories, the fissures, fumaroles, and structures observed all likely formed in the first few decades after the deposition of the upper Tshirege subunits. This may have significant implications as to timing of initial cooling fractures and subsequent consolidation of gas emission pathways. C1 [Caporuscio, Florie A.; Schultz-Fellenz, Emily S.; Kelley, Richard E.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Gardner, Jamie N.] Gardner Geosci, Jemez Springs, NM 87025 USA. RP Caporuscio, FA (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS J966, Los Alamos, NM 87545 USA. EM floriec@lanl.gov NR 35 TC 3 Z9 3 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0258-8900 J9 B VOLCANOL JI Bull. Volcanol. PD JUL PY 2012 VL 74 IS 5 BP 1023 EP 1037 DI 10.1007/s00445-012-0582-4 PG 15 WC Geosciences, Multidisciplinary SC Geology GA 961IZ UT WOS:000305459400005 ER PT J AU Lawson, MJ Craven, BA Paterson, EG Settles, GS AF Lawson, M. J. Craven, B. A. Paterson, E. G. Settles, G. S. TI A Computational Study of Odorant Transport and Deposition in the Canine Nasal Cavity: Implications for Olfaction SO CHEMICAL SENSES LA English DT Article DE canine olfaction; computational fluid dynamics (CFD); nasal airflow; odorant deposition patterns; odorant transport ID MUCOSAL ACTIVITY PATTERNS; RECEPTOR GENE-EXPRESSION; INSPIRATORY AIR-FLOW; COMPOSITE REPRESENTATION; SNIFFING BEHAVIOR; FLUID-DYNAMICS; F344 RAT; EPITHELIUM; MODEL; DOG AB Olfaction begins when an animal draws odorant-laden air into its nasal cavity by sniffing, thus transporting odorant molecules from the external environment to olfactory receptor neurons (ORNs) in the sensory region of the nose. In the dog and other macrosmatic mammals, ORNs are relegated to a recess in the rear of the nasal cavity that is comprised of a labyrinth of scroll-like airways. Evidence from recent studies suggests that nasal airflow patterns enhance olfactory sensitivity by efficiently delivering odorant molecules to the olfactory recess. Here, we simulate odorant transport and deposition during steady inspiration in an anatomically correct reconstructed model of the canine nasal cavity. Our simulations show that highly soluble odorants are deposited in the front of the olfactory recess along the dorsal meatus and nasal septum, whereas moderately soluble and insoluble odorants are more uniformly deposited throughout the entire olfactory recess. These results demonstrate that odorant deposition patterns correspond with the anatomical organization of ORNs in the olfactory recess. Specifically, ORNs that are sensitive to a particular class of odorants are located in regions where that class of odorants is deposited. The correlation of odorant deposition patterns with the anatomical organization of ORNs may partially explain macrosmia in the dog and other keen-scented species. C1 [Lawson, M. J.; Craven, B. A.; Paterson, E. G.] Penn State Univ, Appl Res Lab, Computat Mech Div, University Pk, PA 16802 USA. [Lawson, M. J.; Settles, G. S.] Penn State Univ, Mech & Nucl Engn Dept, Gas Dynam Lab, University Pk, PA 16802 USA. RP Lawson, MJ (reprint author), Natl Wind Technol Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd,Mail Stop 3811, Golden, CO 80401 USA. FU United States National Defence Science and Engineering Graduate (NDSEG) Fellowship Program FX This work was supported by the United States National Defence Science and Engineering Graduate (NDSEG) Fellowship Program. NR 59 TC 24 Z9 25 U1 3 U2 46 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0379-864X J9 CHEM SENSES JI Chem. Senses PD JUL PY 2012 VL 37 IS 6 BP 553 EP 566 DI 10.1093/chemse/bjs039 PG 14 WC Behavioral Sciences; Food Science & Technology; Neurosciences; Physiology SC Behavioral Sciences; Food Science & Technology; Neurosciences & Neurology; Physiology GA 963HR UT WOS:000305611500008 PM 22473924 ER PT J AU Vautard, F Ozcan, S Meyer, H AF Vautard, F. Ozcan, S. Meyer, H. TI Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Carbon fiber; Polymer-Matrix Composites (PMCs); Fiber/matrix bond; Surface properties ID MATRIX ADHESION; ELECTROCHEMICAL OXIDATION; MECHANICAL-PROPERTIES; INTERFACIAL ADHESION; RESIN COMPOSITES; SHEAR-STRENGTH; ELECTRON-BEAM; CHEMISTRY; NANOFIBERS; ROUGHNESS AB Carbon fibers were surface treated by a continuous gas phase thermo-chemical treatment. The surface and the mechanical properties of the fibers were investigated before and after treatment and compared to the properties obtained with a conventional industrial electro-chemical surface treatment. The increase of the oxygen atomic content was much sharper, the surface chemistry was better controlled, and the tensile strength of the fibers increased slightly with the thermo-chemical surface treatment. The thermo-chemical surface treatment created a topography which amplitudes were under 10 nm, thus creating some mechanical interlocking with the matrix. The electro-chemical surface treatment did not generate such a topography. The improvement of interfacial adhesion with a vinyl ester matrix was limited, revealing that oxidation of the carbon fiber surface alone cannot tremendously improve the mechanical properties of carbon fiber-vinyl ester composites. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Vautard, F.; Ozcan, S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Polymer Matrix Composites Grp, Oak Ridge, TN 37831 USA. [Meyer, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, High Temp Mat Lab, Microscopy Grp, Oak Ridge, TN 37831 USA. RP Vautard, F (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Polymer Matrix Composites Grp, Oak Ridge, TN 37831 USA. EM vautardf@ornl.gov OI Ozcan, Soydan/0000-0002-3825-4589 FU U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy Office of Science by the Oak Ridge National Laboratory FX This research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Lightweighting Materials Program. A part of this research was done through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program, sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and through the Shared Research Equipment (SHaRE) User Facility operated for the U.S. Department of Energy Office of Science by the Oak Ridge National Laboratory. Authors would like to thank Mr. Truman Bond and ReMax Lo. for their indispensible contribution to the development of the surface treatment technology. Zoltek, Hexion and Ashland Co. are sincerely thanked for providing the carbon fibers, the epoxy resin and its curing agent and the vinyl ester resin respectively. Mr. Ronny Lomax is thanked for his contribution in the acid digestion of the epoxy based composites. Ms. Laura Poland and Mr. Matthew Warren are sincerely acknowledged for the manufacturing and the testing of the single fiber tensile test coupons. Dr. Tolga Aytug is also acknowledged for his help with AFM imaging. NR 53 TC 28 Z9 29 U1 3 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD JUL PY 2012 VL 43 IS 7 BP 1120 EP 1133 DI 10.1016/j.compositesa.2012.02.018 PG 14 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 960DX UT WOS:000305369300013 ER PT J AU Rhymer, J Kim, H Roach, D AF Rhymer, Jennifer Kim, Hyonny Roach, Dennis TI The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Impact behavior; Delamination; Non-destructive testing; Hail ice impact ID SMALL MASS IMPACT; PREDICTION; PLATES; LOAD AB Transverse impact from hail ice can create internal damage to composite structures that is not visually detectable and is therefore a damage tolerance concern. This paper focuses on the experimental characterization of the damage resistance of laminates made from T800/3900-2 carbon/epoxy tape material to impact by high velocity ice spheres, i.e., simulated hail ice (SHI). The failure threshold energy (FTE) defining the onset of damage was found for three panel thicknesses (1.59.3.11. and 4.66 mm), each impacted by three ice diameters (38.1, 50.8, and 61.0 mm). Non-destructive investigation techniques were used to detect, map, and characterize the delaminated area. A regression analysis was used to quantitatively determine the FTE of the tape laminates, which was found to closely match previous woven carbon/epoxy FTE data. Both data sets were found to exhibit a linear and common relationship to the ratio of panel thickness to ice diameter (HID). The resulting delamination patterns of the current and previous panels were found to be similar at damage initiation, but to differ for higher damage states. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Rhymer, Jennifer; Kim, Hyonny] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. [Roach, Dennis] Sandia Natl Labs, FAA Airworthiness Assurance Ctr, Albuquerque, NM 87185 USA. RP Kim, H (reprint author), Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. EM hyonny@ucsd.edu FU Federal Aviation Administration Joint Advanced Materials and Structures Center of Excellence (FAA JAMS CoE) FX This research was sponsored by the Federal Aviation Administration Joint Advanced Materials and Structures Center of Excellence (FAA JAMS CoE). Program manager Curt Davies and technical monitor Lynn Pham are gratefully acknowledged for their support of the project. Dave Galella of the FAA for his support of the NDI activities. NR 25 TC 13 Z9 13 U1 0 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD JUL PY 2012 VL 43 IS 7 BP 1134 EP 1144 DI 10.1016/j.compositesa.2012.02.017 PG 11 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 960DX UT WOS:000305369300014 ER PT J AU Jackson, HF Nibur, KA Marchi, CS Puskar, JD Somerday, BP AF Jackson, H. F. Nibur, K. A. Marchi, C. San Puskar, J. D. Somerday, B. P. TI Hydrogen-assisted crack propagation in 304L/308L and 21Cr-6Ni-9Mn/308L austenitic stainless steel fusion welds SO CORROSION SCIENCE LA English DT Article DE Stainless steel; SEM; Hydrogen embrittlement ID STACKING-FAULT ENERGY; PLASTIC-DEFORMATION; EMBRITTLEMENT; FRACTURE; TRANSPORT; ALLOYS; SUSCEPTIBILITY; MARTENSITE; LOCALIZATION; PERMEATION AB Elastic-plastic fracture mechanics methods were used to characterize hydrogen-assisted crack propagation in two austenitic stainless steel gas tungsten arc (GTA) welds. Thermally precharged hydrogen (140 wppm) degraded fracture initiation toughness and crack growth toughness and altered fracture mechanisms. Fracture initiation toughness in hydrogen-precharged welds represented a reduction of >67% from the estimated toughness of non-charged welds. In hydrogen-precharged welds, microcracks initiated at ferrite, and dendritic microstructure promoted crack propagation along ferrite. Deformation twinning in austenite interacts with ferrite, facilitating microcrack formation. While hydrogen altered fracture mechanisms similarly for both welds, the amount of ferrite governed the severity of hydrogen-assisted crack propagation. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Jackson, H. F.; Marchi, C. San; Somerday, B. P.] Sandia Natl Labs, Livermore, CA 94550 USA. [Nibur, K. A.] Hyperformance Mat Testing, Bend, OR 97701 USA. [Puskar, J. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jackson, HF (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM hfjacks@sandia.gov OI San Marchi, Christopher/0000-0002-0862-8607 FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors are grateful to A. Gardea for metallographic preparation, J. Chames for SEM imaging, and T. Headley and N. Yang for TEM imaging. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 54 TC 17 Z9 17 U1 6 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD JUL PY 2012 VL 60 BP 136 EP 144 DI 10.1016/j.corsci.2012.03.046 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 963DN UT WOS:000305600400019 ER PT J AU Panicaud, B Retraint, D Grosseau-Poussard, JL Li, L Guerain, M Goudeau, P Tamura, N Kunz, M AF Panicaud, B. Retraint, D. Grosseau-Poussard, J. -L. Li, L. Guerain, M. Goudeau, P. Tamura, N. Kunz, M. TI Experimental and numerical study of the effects of a nanocrystallisation treatment on high-temperature oxidation of a zirconium alloy SO CORROSION SCIENCE LA English DT Article DE Zirconium; X-ray diffraction (XRD); Raman spectroscopy; Kinetic parameters; High temperature corrosion ID SURFACE NANOCRYSTALLIZATION; MECHANICAL-BEHAVIOR; THIN-FILMS; OXIDE; DIFFUSION; KINETICS AB In the present work, the effects of a nanocrystallisation treatment on the high-temperature oxidation of a zirconium alloy are investigated. Surface Mechanical Attrition Treatment is a recent process designed to nanocrystallise the surface of materials. The particular effects of this treatment on an M5 zirconium alloy are studied using different experimental techniques at several scales. This material is of considerable interest, especially to the nuclear industry where very stringent conditions apply. High temperature oxidation was performed in order to show the benefits of this type of nanocrystallisation on the corrosion resistance of the alloy concerned. Microstructure development mechanisms, which improve the oxidation resistance of zirconium alloys have been identified during high-temperature corrosion. Those mechanisms have been discussed in further detail in relation to numerical calculations concerning the oxidation kinetics. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Panicaud, B.; Retraint, D.; Li, L.] Univ Technol Troyes, ICD Lasmis, UMR CNRS 6279, F-10010 Troyes, France. [Grosseau-Poussard, J. -L.; Guerain, M.] Univ La Rochelle, LaSIE FRE CNRS 3474, F-17042 La Rochelle, France. [Goudeau, P.] Univ Poitiers, Inst P UPR CNRS 3346, F-86962 Futuroscope, France. [Tamura, N.; Kunz, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Panicaud, B (reprint author), Univ Technol Troyes, ICD Lasmis, UMR CNRS 6279, 12 Rue Marie Curie, F-10010 Troyes, France. EM benoit.panicaud@utt.fr RI Retraint, Delphine/K-3627-2012; Kunz, Martin/K-4491-2012 OI Kunz, Martin/0000-0001-9769-9900 NR 31 TC 7 Z9 7 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD JUL PY 2012 VL 60 BP 224 EP 230 DI 10.1016/j.corsci.2012.03.033 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 963DN UT WOS:000305600400028 ER PT J AU Thoi, VS Karunadasa, HI Surendranath, Y Long, JR Chang, CJ AF Thoi, V. Sara Karunadasa, Hemamala I. Surendranath, Yogesh Long, Jeffrey R. Chang, Christopher J. TI Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum-oxo catalyst SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID ROTATING-DISK ELECTRODE; PROTEIN REACTION-RATES; H-2 PRODUCTION; ELECTROCATALYTIC REDUCTION; FUNCTIONAL MODELS; HOMOGENEOUS CATALYSIS; LOW OVERPOTENTIALS; EVOLUTION REACTION; IRIDIUM COMPLEXES; PROTON REDUCTION AB We recently reported the catalytic generation of hydrogen from water mediated through the in situ reduction of the molybdenum(IV)-oxo complex [(PY5Me(2))MoO](2+) (1; PY5Me(2) = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine) at a mercury electrode. To gain further insight into this unique molecular motif for hydrogen production, we have now examined the competence of this complex for the catalytic reduction of protons on an alternative electrode material. Herein, we demonstrate the ability of the molybdenum-oxo complex 1 to reduce protons at a glassy carbon electrode in acidic organic media, where the active catalyst is shown to be diffusing freely in solution. Cyclic and rotating disk voltammetry experiments reveal that three reductive electrochemical processes precede the catalytic generation of hydrogen, which occurs at potentials more negative than -1.25 V vs. SHE. Gas chromatographic analysis of the bulk electrolysis cell headspace confirms that hydrogen is generated at a Faradaic efficiency of 99%. Under pseudo-first order conditions with an acid-to-catalyst ratio of >290, a rate constant of 385 s(-1) is calculated for the reduction of acetic acid in acetonitrile. Taken together, these data show that metal-oxo complex 1 is a competent molecular motif for catalytic generation of hydrogen from protons under soluble and diffusion-limited conditions. C1 [Thoi, V. Sara; Karunadasa, Hemamala I.; Surendranath, Yogesh; Long, Jeffrey R.; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Thoi, V. Sara; Karunadasa, Hemamala I.; Chang, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Thoi, VS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu; chrischang@berkeley.edu FU DOE/LBNL Grant [403801]; Helios Solar Energy Research Center (SERC) [51HE112B]; Office of Science, Office of Basic Energy Sciences, Department of Energy [DE-AC02-05CH11231]; NSF grant [CHE-1111900]; National Science Foundation; Miller Institute for Basic Research FX The synthetic portion of this work was supported by DOE/LBNL Grant 403801 (C.J.C.). The electrochemical studies were funded by the Helios Solar Energy Research Center (SERC, 51HE112B), which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Department of Energy, under Contract No. DE-AC02-05CH11231 (C.J.C.). In addition, the contributions of J.R.L. to this work were supported by NSF grant CHE-1111900. We thank Prof. T. D. Tilley for use of his laboratory's rotating disk electrode as well as Dr C.C.L. McCrory and Dr J. Yang for helpful discussions. We also acknowledge Ms A. T. Chantarojsiri for experimental assistance and helpful discussions. V.S.T. thanks the National Science Foundation for a graduate fellowship, and Y.S. acknowledges the Miller Institute for Basic Research for a postdoctoral fellowship. C.J.C. is an Investigator with the Howard Hughes Medical Institute. NR 74 TC 37 Z9 37 U1 2 U2 84 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUL PY 2012 VL 5 IS 7 BP 7762 EP 7770 DI 10.1039/c2ee21519e PG 9 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 962GS UT WOS:000305530900010 ER PT J AU Waidmann, CR Miller, AJM Ng, CWA Scheuermann, ML Porter, TR Tronic, TA Mayer, JM AF Waidmann, Christopher R. Miller, Alexander J. M. Ng, Cheuk-Wa Angela Scheuermann, Margaret L. Porter, Thomas R. Tronic, Tristan A. Mayer, James M. TI Using combinations of oxidants and bases as PCET reactants: thermochemical and practical considerations SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID COUPLED ELECTRON-TRANSFER; HYDROGEN-ATOM TRANSFER; C-H BOND; WATER OXIDATION; CONCERTED ELECTRON; PROTON-TRANSFER; TRIPLET C-60; PHOTOACOUSTIC CALORIMETRY; DIIMINE COMPLEXES; ORGANIC-CHEMISTRY AB Studies in proton-coupled electron transfer (PCET) often require the combination of an outer-sphere oxidant and a base, to remove an electron and a proton. A common problem is the incompatibility of the oxidant and the base, because the former is electron deficient and the latter electron rich. We have tested a variety of reagents and report a number of oxidant/base combinations that are compatible and therefore potentially useful as PCET reagents. A formal bond dissociation free energy (BDFE) for a reagent combination is defined by the redox potential of the oxidant and pK(a) of the base. This is a formal BDFE because no X-H bond is homolytically cleaved, but it is a very useful way to categorize the H-center dot accepting ability of an oxidant/base PCET pair. Formal BDFEs of stable oxidant/base combinations range from 71 to at least 98 kcal mol(-1). Effects of solvent, concentration, temperature, and counterions on the stability of the oxidant/base combinations are discussed. Extensions to catalysis and related reductant/acid combinations are mentioned. C1 [Waidmann, Christopher R.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Miller, Alexander J. M.; Ng, Cheuk-Wa Angela; Scheuermann, Margaret L.; Porter, Thomas R.; Tronic, Tristan A.; Mayer, James M.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Waidmann, CR (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM waidmann@lanl.gov; milleraj@u.washington.edu; mayer@chem.washington.edu FU U.S. National Science Foundation Center for Enabling New Technologies through Catalysis; Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry; U.S. National Institutes of Health [GM-50422]; Center for Molecular Electrocatalysis; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Energy Frontier Research Center FX We gratefully acknowledge the financial support of the U.S. National Science Foundation Center for Enabling New Technologies through Catalysis, the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry (for a fellowship to A.J.M.M.), the U.S. National Institutes of Health (grant GM-50422), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, which fully supported T.A.T. and partially supported J.M.M. NR 90 TC 33 Z9 33 U1 1 U2 38 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUL PY 2012 VL 5 IS 7 BP 7771 EP 7780 DI 10.1039/c2ee03300c PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 962GS UT WOS:000305530900011 ER PT J AU Thackeray, MM Wolverton, C Isaacs, ED AF Thackeray, Michael M. Wolverton, Christopher Isaacs, Eric D. TI Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID COMPUTATIONAL MATERIALS DESIGN; HIGH-CAPACITY; CATHODE MATERIALS; AB-INITIO; ELECTROCHEMICAL-CELLS; CRYSTAL-STRUCTURE; MANGANESE OXIDES; CO ELECTRODES; METAL-OXIDES; MN AB The escalating and unpredictable cost of oil, the concentration of major oil resources in the hands of a few politically sensitive nations, and the long-term impact of CO2 emissions on global climate constitute a major challenge for the 21st century. They also constitute a major incentive to harness alternative sources of energy and means of vehicle propulsion. Today's lithium-ion batteries, although suitable for small-scale devices, do not yet have sufficient energy or life for use in vehicles that would match the performance of internal combustion vehicles. Energy densities 2 and 5 times greater are required to meet the performance goals of a future generation of plug-in hybrid-electric vehicles (PHEVs) with a 40-80 mile all-electric range, and all-electric vehicles (EVs) with a 300-400 mile range, respectively. Major advances have been made in lithium-battery technology over the past two decades by the discovery of new materials and designs through intuitive approaches, experimental and predictive reasoning, and meticulous control of surface structures and chemical reactions. Further improvements in energy density of factors of two to three may yet be achievable for current day lithium-ion systems; factors of five or more may be possible for lithium-oxygen systems, ultimately leading to our ability to confine extremely high potential energy in a small volume without compromising safety, but only if daunting technological barriers can be overcome. C1 [Thackeray, Michael M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wolverton, Christopher] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Isaacs, Eric D.] Argonne Natl Lab, Off Director, Argonne, IL 60439 USA. RP Thackeray, MM (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM thackeray@anl.gov RI Wolverton, Christopher/B-7542-2009 FU US Department of Energy; Center for Electrical Energy Storage (CEES); Energy Frontier Research Center; Office of Science, Office of Basic Energy Sciences; Office of Vehicle Technologies, of the Office of Energy Efficiency and Renewable Energy; [DE-AC02-06CH11357] FX Financial support for MMT, EDI, and CW from the US Department of Energy is gratefully acknowledged. MMT is supported by the Center for Electrical Energy Storage (CEES), an Energy Frontier Research Center funded by the Office of Science, Office of Basic Energy Sciences and by the Office of Vehicle Technologies, of the Office of Energy Efficiency and Renewable Energy, while CW is supported by CEES. Renee Nault, Renee Carlson and Kevin Gallagher (Argonne National Laboratory) and Scott Kirklin (Northwestern University) are thanked for assistance with the figures. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne''). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 64 TC 577 Z9 591 U1 68 U2 490 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUL PY 2012 VL 5 IS 7 BP 7854 EP 7863 DI 10.1039/c2ee21892e PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 962GS UT WOS:000305530900017 ER PT J AU Wang, WH Hull, JF Muckerman, JT Fujita, E Himeda, Y AF Wang, Wan-Hui Hull, Jonathan F. Muckerman, James T. Fujita, Etsuko Himeda, Yuichiro TI Second-coordination-sphere and electronic effects enhance iridium(III)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID FORMIC-ACID; CONVERSION; COMPLEXES; CATALYST; LIGAND; OXYANION; STORAGE; BASE; CO2 AB A new series of water soluble Ir(III) catalysts has been designed and synthesized to determine the catalyst ligand's role in activating CO2 through electronic and second-coordination-sphere effects for the homogeneous catalytic hydrogenation of CO2. We report high catalytic hydrogenation activity of [Cp*Ir(6,6'-R-2-bpy)(OH2)]SO4 (bpy = 2,2'-bipyridine, R = OH) at ambient temperatures and pressures. Good correlation between the ligand substituents' Hammett parameters, which we varied by synthesizing ligands and catalysts substituted with R = H, Me, OMe and OH, and catalytic hydrogenation rates clearly illustrates the importance of electronic effects. Remarkably, additional rate enhancements are consistently observed when substituents are moved from 4,4' positions to 6,6' positions on 2,2'-bipyridine. Combined DFT calculations and NMR experiments suggest that the origin of these effects lies in the pendent base-aided heterolysis of H-2, which significantly lowers the transition state energy. These studies are significant in elucidating new design principles for CO2 hydrogenation that lead to superior catalytic activity. C1 [Wang, Wan-Hui; Himeda, Yuichiro] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. [Hull, Jonathan F.; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Wang, WH (reprint author), Natl Inst Adv Ind Sci & Technol, Tsukuba Cent 5-2,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan. EM fujita@bnl.gov; himeda.y@aist.go.jp RI Muckerman, James/D-8752-2013; Fujita, Etsuko/D-8814-2013; Himeda, Yuichiro/E-8613-2014; Wang, Wan-Hui/J-8773-2012 OI Wang, Wan-Hui/0000-0002-5943-4589 FU Japanese Ministry of Economy, Trade, and Industry; U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences; BNL Goldhaber Distinguished Fellowship FX We thank the Japanese Ministry of Economy, Trade, and Industry for financial support. The work at BNL was carried out under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences. JFH gratefully acknowledges a BNL Goldhaber Distinguished Fellowship. NR 28 TC 74 Z9 74 U1 6 U2 115 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUL PY 2012 VL 5 IS 7 BP 7923 EP 7926 DI 10.1039/c2ee21888g PG 4 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 962GS UT WOS:000305530900030 ER PT J AU Lance, SL Erickson, MR Flynn, RW Mills, GL Tuberville, TD Scott, DE AF Lance, Stacey L. Erickson, Matthew R. Flynn, R. Wesley Mills, Gary L. Tuberville, Tracey D. Scott, David E. TI Effects of Chronic Copper Exposure on Development and Survival in The Southern Leopard Frog (Lithobates [RANA] Sphenocephalus) SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article ID AMBYSTOMA-OPACUM; LARVAL DENSITY; LIFE STAGES; TOXICITY; POPULATION; TADPOLES; SENSITIVITY; AMPHIBIANS; METAL; ZINC C1 [Lance, Stacey L.; Erickson, Matthew R.; Flynn, R. Wesley; Mills, Gary L.; Tuberville, Tracey D.; Scott, David E.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. RP Lance, SL (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. EM lance@srel.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 NR 49 TC 13 Z9 13 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD JUL PY 2012 VL 31 IS 7 BP 1587 EP 1594 PG 8 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 958ZS UT WOS:000305280100022 PM 22511547 ER PT J AU Larsen, PE Gibbons, SM Gilbert, JA AF Larsen, Peter E. Gibbons, Sean M. Gilbert, Jack A. TI Modeling microbial community structure and functional diversity across time and space SO FEMS MICROBIOLOGY LETTERS LA English DT Review DE modeling; microbial ecology; systems biology; microbial diversity; community function ID CLIMATE-CHANGE; BACTERIAL COMMUNITIES; ARCHAEAL DIVERSITY; RARE MEMBERS; SOIL; PATTERNS; GENOMES; BIOFILMS; DISTRIBUTIONS; PREDICTION AB Microbial communities exhibit exquisitely complex structure. Many aspects of this complexity, from the number of species to the total number of interactions, are currently very difficult to examine directly. However, extraordinary efforts are being made to make these systems accessible to scientific investigation. While recent advances in high-throughput sequencing technologies have improved accessibility to the taxonomic and functional diversity of complex communities, monitoring the dynamics of these systems over time and space using appropriate experimental design is still expensive. Fortunately, modeling can be used as a lens to focus low-resolution observations of community dynamics to enable mathematical abstractions of functional and taxonomic dynamics across space and time. Here, we review the approaches for modeling bacterial diversity at both the very large and the very small scales at which microbial systems interact with their environments. We show that modeling can help to connect biogeochemical processes to specific microbial metabolic pathways. C1 [Larsen, Peter E.] Argonne Natl Lab, Dept Biosci, Lemont, IL 60439 USA. [Gibbons, Sean M.; Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gibbons, Sean M.] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA. RP Larsen, PE (reprint author), Argonne Natl Lab, Dept Biosci, 9700 S Cass Ave, Lemont, IL 60439 USA. EM plarsen@anl.gov RI Gibbons, Sean/H-1972-2012; OI Gibbons, Sean/0000-0002-8724-7916 FU NIH [5T32EB009412] FX Funding for S. M. G. was provided by NIH Training Grant 5T32EB009412. NR 100 TC 16 Z9 16 U1 4 U2 110 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0378-1097 J9 FEMS MICROBIOL LETT JI FEMS Microbiol. Lett. PD JUL PY 2012 VL 332 IS 2 BP 91 EP 98 DI 10.1111/j.1574-6968.2012.02588.x PG 8 WC Microbiology SC Microbiology GA 959SW UT WOS:000305334300001 PM 22553907 ER PT J AU Wong, PC Shen, HW Pascucci, V AF Wong, Pak Chung Shen, Han-Wei Pascucci, Valerio TI Extreme-Scale Visual Analytics Introduction SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Editorial Material C1 [Wong, Pak Chung] Pacific NW Natl Lab, Richland, WA USA. [Shen, Han-Wei] Ohio State Univ, Comp Sci & Engn Dept, Columbus, OH 43210 USA. [Pascucci, Valerio] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. RP Wong, PC (reprint author), Pacific NW Natl Lab, Richland, WA USA. EM pak.wong@pnnl.gov; hwshen@cse.ohio-state.edu; pascucci@acm.org NR 5 TC 1 Z9 1 U1 1 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD JUL-AUG PY 2012 VL 32 IS 4 BP 23 EP 25 PG 3 WC Computer Science, Software Engineering SC Computer Science GA 961WA UT WOS:000305499000006 PM 24921079 ER PT J AU Gaither, KP Childs, H Schulz, KW Harrison, C Barth, W Donzis, D Yeung, PK AF Gaither, Kelly P. Childs, Hank Schulz, Karl W. Harrison, Cyrus Barth, William Donzis, Diego Yeung, Pui-Kuen TI Visual Analytics for Finding Critical Structures in Massive Time-Varying Turbulent-Flow Simulations SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Article ID VISUALIZATION C1 [Gaither, Kelly P.; Schulz, Karl W.; Barth, William] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78712 USA. [Childs, Hank] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Harrison, Cyrus] Lawrence Livermore Natl Lab, Livermore, CA USA. [Donzis, Diego] Texas A&M Univ, College Stn, TX 77843 USA. RP Gaither, KP (reprint author), Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78712 USA. EM kelly@tacc.utexas.edu; hchilds@lbl.gov; karl@tacc.utexas.edu; cyrush@llnl.gov; bbarth@tacc.utexas.edu; donzis@tamu.edu; pk.yeung@ae.gatech.edu FU US National Science Foundation's Office of Cyberinfrastructure; Office of Advanced Scientific Computing Research; Office of Science, of the US Department of Energy [DE-AC02-05CH11231] FX We thank the Texas Advanced Computing Center for access to and user support for the Ranger and Longhorn clusters. The Longhorn XD Visualization grant from the US National Science Foundation's Office of Cyberinfrastructure partly supported this research. It was also supported by the Director, Office of Advanced Scientific Computing Research, and Office of Science, of the US Department of Energy under contract DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing program's Visualization and Analysis Center for Enabling Technologies. NR 12 TC 1 Z9 1 U1 1 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 EI 1558-1756 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD JUL-AUG PY 2012 VL 32 IS 4 BP 34 EP 45 PG 12 WC Computer Science, Software Engineering SC Computer Science GA 961WA UT WOS:000305499000008 PM 24806631 ER PT J AU Kendall, W Huang, J Peterka, T AF Kendall, Wesley Huang, Jian Peterka, Tom TI Geometric Quantification of Features in Large Flow Fields SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Article ID OCEAN SIMULATION; VISUALIZATION; TRACKING; EDDIES C1 [Kendall, Wesley; Huang, Jian] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Peterka, Tom] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL USA. RP Kendall, W (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM kendall@eecs.utk.edu; huangj@eecs.utk.edu; tpeterka@mcs.anl.gov FU US Department of Energy's Scientific Discovery through Advanced Computing Institute for Ultrascale Visualization (DOE) [DE-FC02-06ER25778] FX We thank Robert Jacobs of Argonne National Laboratory for providing us with the initial motivation to work in this research direction. We thank David Erickson III of Oak Ridge National Laboratory for guidance on studying atmospheric models. We owe Melissa Allen of the University of Tennessee for her close collaboration on all technical aspects to properly implement flow advection in atmospheric models. Han-Wei Shen's input was also pivotal to the formation of this research. The US Department of Energy's Scientific Discovery through Advanced Computing Institute for Ultrascale Visualization (DOE DE-FC02-06ER25778) funded our research. NR 14 TC 6 Z9 6 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 EI 1558-1756 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD JUL-AUG PY 2012 VL 32 IS 4 BP 46 EP 54 PG 9 WC Computer Science, Software Engineering SC Computer Science GA 961WA UT WOS:000305499000009 PM 24806632 ER PT J AU Wong, PC Shen, HW Johnson, CR Chen, CM Ross, RB AF Wong, Pak Chung Shen, Han-Wei Johnson, Christopher R. Chen, Chaomei Ross, Robert B. TI The Top 10 Challenges in Extreme-Scale Visual Analytics SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Article C1 [Wong, Pak Chung] Pacific NW Natl Lab, Computat & Stat Analyt Div, Richland, WA 99352 USA. [Shen, Han-Wei] Ohio State Univ, Comp Sci & Engn Dept, Columbus, OH 43210 USA. [Johnson, Christopher R.] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Chen, Chaomei] Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA USA. [Ross, Robert B.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wong, PC (reprint author), Pacific NW Natl Lab, Computat & Stat Analyt Div, Richland, WA 99352 USA. EM pak.wong@pnnl.gov; hwshen@cse.ohio-state.edu; crj@sci.utah.edu; chaomei.chen@drexel.edu; rross@cs.anl.gov RI Chen, Chaomei/A-1252-2007; Shen, Han-wei/A-4710-2012 OI Chen, Chaomei/0000-0001-8584-1041; FU US Department of Energy (DOE) Office of Science Advanced Scientific Computing Research [59172]; DOE [DOE-SC0005036, DE-AC06-76R1-1830]; Battelle [137365]; DOE SciDAC [DE-FC02-06ER25770, DE-AC02-06CH11357]; DOE SciDAC Visualization and Analytics Center for Enabling Technologies; US National Science Foundation [IIS-1017635]; Pfizer Corporation FX The article benefited from a discussion with Pat Hanrahan. We thank John Feo, Theresa-Marie Rhyne, and the anonymous reviewers for their comments. This research has been supported partly by the US Department of Energy (DOE) Office of Science Advanced Scientific Computing Research under award 59172, program manager Lucy Nowell; DOE award DOE-SC0005036, Battelle Contract 137365; DOE SciDAC grant DE-FC02-06ER25770; the DOE SciDAC Visualization and Analytics Center for Enabling Technologies; DOE SciDAC grant DE-AC02-06CH11357; US National Science Foundation grant IIS-1017635; and the Pfizer Corporation. Battelle Memorial Institute manages the Pacific Northwest National Laboratory for the DOE under contract DE-AC06-76R1-1830. NR 7 TC 20 Z9 24 U1 1 U2 16 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD JUL-AUG PY 2012 VL 32 IS 4 BP 63 EP 67 PG 5 WC Computer Science, Software Engineering SC Computer Science GA 961WA UT WOS:000305499000011 PM 24489426 ER PT J AU Sanderson, R Van de Sompel, H AF Sanderson, Robert Van de Sompel, Herbert TI Cool URIs and Dynamic Data SO IEEE INTERNET COMPUTING LA English DT Article AB Linked datasets contain descriptions that change over time. Applications that leverage linked data must be aware of these change dynamics to deliver accurate services. Here, the authors highlight important challenges that are involved in dealing with change and review possible solutions. C1 [Sanderson, Robert; Van de Sompel, Herbert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sanderson, R (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM rsanderson@lanl.gov; herbertv@lanl.gov RI Sanderson, Robert/A-3613-2013; OI Sanderson, Robert/0000-0003-4441-6852; Van de Sompel, Herbert/0000-0002-0715-6126 NR 10 TC 4 Z9 5 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1089-7801 J9 IEEE INTERNET COMPUT JI IEEE Internet Comput. PD JUL-AUG PY 2012 VL 16 IS 4 BP 76 EP 79 PG 4 WC Computer Science, Software Engineering SC Computer Science GA 962KY UT WOS:000305545200012 ER PT J AU Woebken, D Burow, LC Prufert-Bebout, L Bebout, BM Hoehler, TM Pett-Ridge, J Spormann, AM Weber, PK Singer, SW AF Woebken, Dagmar Burow, Luke C. Prufert-Bebout, Leslie Bebout, Brad M. Hoehler, Tori M. Pett-Ridge, Jennifer Spormann, Alfred M. Weber, Peter K. Singer, Steven W. TI Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis SO ISME JOURNAL LA English DT Article DE cyanobacteria; dinitrogenase reductase (nifH); microbial mats; NanoSIMS; N-2 fixation ID TARGETED OLIGONUCLEOTIDE PROBES; CATALYZED REPORTER DEPOSITION; IN-SITU HYBRIDIZATION; ION MASS-SPECTROMETRY; NITROGEN-FIXATION; GUERRERO-NEGRO; N-2 FIXATION; OXYGENIC PHOTOSYNTHESIS; PHYLOGENETIC ANALYSIS; TEMPORAL VARIABILITY AB N-2 fixation is a key process in photosynthetic microbial mats to support the nitrogen demands associated with primary production. Despite its importance, groups that actively fix N-2 and contribute to the input of organic N in these ecosystems still remain largely unclear. To investigate the active diazotrophic community in microbial mats from the Elkhorn Slough estuary, Monterey Bay, CA, USA, we conducted an extensive combined approach, including biogeochemical, molecular and high-resolution secondary ion mass spectrometry (NanoSIMS) analyses. Detailed analysis of dinitrogenase reductase (nifH) transcript clone libraries from mat samples that fixed N-2 at night indicated that cyanobacterial nifH transcripts were abundant and formed a novel monophyletic lineage. Independent NanoSIMS analysis of N-15(2)-incubated samples revealed significant incorporation of N-15 into small, non-heterocystous cyanobacterial filaments. Mat-derived enrichment cultures yielded a unicyanobacterial culture with similar filaments (named Elkhorn Slough Filamentous Cyanobacterium-1 (ESFC-1)) that contained nifH gene sequences grouping with the novel cyanobacterial lineage identified in the transcript clone libraries, displaying up to 100% amino-acid sequence identity. The 16S rRNA gene sequence recovered from this enrichment allowed for the identification of related sequences from Elkhorn Slough mats and revealed great sequence diversity in this cluster. Furthermore, by combining N-15(2) tracer experiments, fluorescence in situ hybridization and NanoSIMS, in situ N-2 fixation activity by the novel ESFC-1 group was demonstrated, suggesting that this group may be the most active cyanobacterial diazotroph in the Elkhorn Slough mat. Pyrotag sequences affiliated with ESFC-1 were recovered from mat samples throughout 2009, demonstrating the prevalence of this group. This work illustrates that combining standard and single-cell analyses can link phylogeny and function to identify previously unknown key functional groups in complex ecosystems. The ISME Journal (2012) 6, 1427-1439; doi:10.1038/ismej.2011.200; published online 12 January 2012 C1 [Woebken, Dagmar; Burow, Luke C.; Spormann, Alfred M.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Woebken, Dagmar; Burow, Luke C.; Spormann, Alfred M.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Woebken, Dagmar; Burow, Luke C.; Prufert-Bebout, Leslie; Bebout, Brad M.; Hoehler, Tori M.] NASA, Exobiol Branch, Ames Res Ctr, Moffett Field, CA USA. [Singer, Steven W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Pett-Ridge, Jennifer; Weber, Peter K.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. RP Woebken, D (reprint author), Stanford Univ, Dept Chem Engn, 318 Campus Dr, Stanford, CA 94305 USA. EM dwoebken@gmail.com; SWSinger@lbl.gov RI Woebken, Dagmar/A-4447-2013; OI Woebken, Dagmar/0000-0002-1314-9926 FU US. Department of Energy (DOE) Genomic Science Program [SCW1039]; US Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; German Research Foundation (Deutsche Forschungsgemeinschaft) FX We thank Prof Castenholz for providing the cyanobacterial strains for probe optimization, Erich D Fleming, Angela Detweiler, Adrienne Frisbee, Christina Ramon, and Mike Kubo for excellent technical assistance, Ian PG Marshall for assistance in sequence analysis and Stephanie A Eichorst for comments on the manuscript. We thank Jeff Cann, Associate Wildlife Biologist, Central Region, California Department of Fish and Game for coordinating our access to the Moss Landing Wildlife Area. Funding was provided by the US. Department of Energy (DOE) Genomic Science Program under contract SCW1039. Work at LLNL was performed under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work at LBNL was performed under the auspices of the US Department of Energy at Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. DW was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft). NR 54 TC 31 Z9 31 U1 4 U2 68 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD JUL PY 2012 VL 6 IS 7 BP 1427 EP 1439 DI 10.1038/ismej.2011.200 PG 13 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 963OJ UT WOS:000305631100016 PM 22237543 ER PT J AU Cain, CJ Rueda, R McLelland, B Collette, NM Loots, GG Manilay, JO AF Cain, Corey J. Rueda, Randell McLelland, Bryce Collette, Nicole M. Loots, Gabriela G. Manilay, Jennifer O. TI Absence of sclerostin adversely affects B-cell survival SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Article DE OSTEOBLAST; OSTEOCYTE; B CELL; SCLEROSTIN; HEMATOPOIESIS; SOST; SCLEROSTEOSIS; HIGH BONE MASS ID HEMATOPOIETIC STEM-CELLS; WNT SIGNALING PATHWAY; BONE-MARROW; IN-VIVO; LYMPHOCYTE COMMITMENT; TRANSCRIPTION FACTORS; C-MYC; NICHES; LYMPHOPOIESIS; OSTEOBLASTS AB Increased osteoblast activity in sclerostin-knockout (Sost-/-) mice results in generalized hyperostosis and bones with small bone marrow cavities resulting from hyperactive mineralizing osteoblast populations. Hematopoietic cell fate decisions are dependent on their local microenvironment, which contains osteoblast and stromal cell populations that support both hematopoietic stem cell quiescence and facilitate B-cell development. In this study, we investigated whether high bone mass environments affect B-cell development via the utilization of Sost-/- mice, a model of sclerosteosis. We found the bone marrow of Sost-/- mice to be specifically depleted of B cells because of elevated apoptosis at all B-cell developmental stages. In contrast, B-cell function in the spleen was normal. Sost expression analysis confirmed that Sost is primarily expressed in osteocytes and is not expressed in any hematopoietic lineage, which indicated that the B-cell defects in Sost-/- mice are non-cell autonomous, and this was confirmed by transplantation of wild-type (WT) bone marrow into lethally irradiated Sost-/- recipients. WT?Sost-/- chimeras displayed a reduction in B cells, whereas reciprocal Sost-/-?WT chimeras did not, supporting the idea that the Sost-/- bone environment cannot fully support normal B-cell development. Expression of the pre-B-cell growth stimulating factor, Cxcl12, was significantly lower in bone marrow stromal cells of Sost-/- mice, whereas the Wnt target genes Lef-1 and Ccnd1 remained unchanged in B cells. Taken together, these results demonstrate a novel role for Sost in the regulation of bone marrow environments that support B cells. (c) 2012 American Society for Bone and Mineral Research. C1 [Cain, Corey J.; Rueda, Randell; McLelland, Bryce; Loots, Gabriela G.; Manilay, Jennifer O.] Univ Calif Merced, Sch Nat Sci, Quantitat & Syst Biol Grad Program, Merced, CA 95343 USA. [Collette, Nicole M.; Loots, Gabriela G.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA USA. RP Manilay, JO (reprint author), Univ Calif Merced, Sch Nat Sci, Quantitat & Syst Biol Grad Program, 5200 N Lake Rd, Merced, CA 95343 USA. EM jmanilay@ucmerced.edu FU UC Merced Graduate Student Fellowship; University of California; California Institute for Regenerative Medicine [RN1-00554-1]; NIH [DK075730]; US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX This work was funded by a UC Merced Graduate Student Fellowship to CJC, the University of California, and the California Institute for Regenerative Medicine (RN1-00554-1) to JOM. NMC and GGL were supported by NIH DK075730. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 59 TC 21 Z9 22 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 J9 J BONE MINER RES JI J. Bone Miner. Res. PD JUL PY 2012 VL 27 IS 7 BP 1451 EP 1461 DI 10.1002/jbmr.1608 PG 11 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 959EZ UT WOS:000305297000003 PM 22434688 ER PT J AU Ortiz-Acosta, D Feller, RK Scott, BL Del Sesto, RE AF Ortiz-Acosta, Denisse Feller, Russell K. Scott, Brian L. Del Sesto, Rico E. TI Isolation of an Asymmetric Lanthanide Polyoxometalate, Na12H[(W5O18)Tb(H2W11O39)]center dot 42H(2)O, Containing Two Distinct Isopolyanions SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY LA English DT Article DE Polyoxometalates; Lacunary; Polymorphism; Lanthanides ID MOLECULAR-OXYGEN; ANIONS; COMPLEXES; CATION; ION; TB; GD; SM; LN AB The structural characterization of a new, asymmetric polyoxoanion, Na12H[(W5O18)Tb(H2W11O39)]center dot 42H(2)O, is reported herein. This new structure was isolated from a mixture of a number of compounds, including the symmetric Na-9[Tb(W5O18)(2)] sandwich cluster, and the lanthanide-free cluster, Na-10(H2W12O42). The major product of the reaction was Na-9[Tb(W5O18)(2)], and the compound reported here is a minor product that is obtained reproducibly. The salts of these three clusters do not differ significantly in their crystal habit, size, and color. The crystal structure of Na12H[(W5O18)Tb(H2W11O39)]center dot 42H(2)O was determined by single-crystal X-ray diffraction and shows that the cluster is composed of a lacunary Lindqvist (W5O18)(6-) building block and an unusual lacunary metatungstate (H2W11O39)(10-) polyanion connected through a central Ln(3+) cation. The central Tb3+ cation has a square antiprismatic symmetry, the lacunary metatungstate has a square pyramidal symmetry, and the lacunary Lindqvist polyanion exhibits a cuboctahedral symmetry. This is the first example of a crystallographically characterized sandwich cluster possessing a lacunary metatungstate (H2W11O39)(10-) ligand. C1 [Ortiz-Acosta, Denisse; Feller, Russell K.; Scott, Brian L.; Del Sesto, Rico E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Del Sesto, RE (reprint author), Los Alamos Natl Lab, POB 1663,Mail Stop J514, Los Alamos, NM 87545 USA. EM ricod@lanl.gov RI Feller, Russell/H-3250-2014; G, Neela/H-3016-2014; Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU U.S. Department of Energy through the LANL/LDRD Program; U.S. Department of Energy [DE-AC52-06NA25396] FX The authors gratefully acknowledge the support of this work by the U.S. Department of Energy through the LANL/LDRD Program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 27 TC 2 Z9 2 U1 0 U2 19 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1074-1542 J9 J CHEM CRYSTALLOGR JI J. Chem. Crystallogr. PD JUL PY 2012 VL 42 IS 7 BP 651 EP 655 DI 10.1007/s10870-012-0311-z PG 5 WC Crystallography; Spectroscopy SC Crystallography; Spectroscopy GA 962RQ UT WOS:000305563100001 ER PT J AU Cai, Q Rushton, G Bhaduri, B AF Cai, Qiang Rushton, Gerard Bhaduri, Budhendra TI Validation tests of an improved kernel density estimation method for identifying disease clusters SO JOURNAL OF GEOGRAPHICAL SYSTEMS LA English DT Article DE GIS; Kernel density estimation; Spatial filter; Disease rate; Disease clusters ID RELATIVE RISK; MODELS; POPULATION; HEALTH; RATES; MAPS AB The spatial filter method, which belongs to the class of kernel density estimation methods, has been used to make morbidity and mortality maps in several recent studies. We propose improvements in the method to include spatially adaptive filters to achieve constant standard error of the relative risk estimates; a staircase weight method for weighting observations to reduce estimation bias; and a parameter selection tool to enhance disease cluster detection performance, measured by sensitivity, specificity, and false discovery rate. We test the performance of the method using Monte Carlo simulations of hypothetical disease clusters over a test area of four counties in Iowa. The simulations include different types of spatial disease patterns and high-resolution population distribution data. Results confirm that the new features of the spatial filter method do substantially improve its performance in realistic situations comparable to those where the method is likely to be used. C1 [Cai, Qiang] Natl Minor Qual Forum, Washington, DC 20036 USA. [Rushton, Gerard] Univ Iowa, Dept Geog, Iowa City, IA 52242 USA. [Bhaduri, Budhendra] Oak Ridge Natl Lab, Geog Informat Sci & Technol Grp, Oak Ridge, TN USA. RP Cai, Q (reprint author), Natl Minor Qual Forum, 1200 New Hampshire Ave NW,Suite 575, Washington, DC 20036 USA. EM qcai@nmqf.org; gerard-rushton@uiowa.edu NR 41 TC 9 Z9 10 U1 2 U2 9 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1435-5930 J9 J GEOGR SYST JI J. Geogr. Syst. PD JUL PY 2012 VL 14 IS 3 BP 243 EP 264 DI 10.1007/s10109-010-0146-0 PG 22 WC Geography SC Geography GA 961MQ UT WOS:000305468900001 ER PT J AU George, SJ Barney, BM Mitra, D Igarashi, RY Guo, YS Dean, DR Cramer, SP Seefeldt, LC AF George, Simon J. Barney, Brett M. Mitra, Devrani Igarashi, Robert Y. Guo, Yisong Dean, Dennis R. Cramer, Stephen P. Seefeldt, Lance C. TI EXAFS and NRVS Reveal a Conformational Distortion of the FeMo-cofactor in the MoFe Nitrogenase Propargyl Alcohol Complex SO JOURNAL OF INORGANIC BIOCHEMISTRY LA English DT Article DE Nitrogenase; Nitrogen Fixation; Metalloprotein; X-ray Absorption Spectroscopy (XAS); Extended Absorption Fine Structure (EXAFS); Nuclear Resonant Vibrational Spectroscopy (NRVS) ID ABSORPTION FINE-STRUCTURE; DEPENDENT NITROGENASE; SUBSTRATE INTERACTION; P-CLUSTER; MECHANISM; SPECTROSCOPY; BINDING; PROTEIN; INTERMEDIATE; REDUCTION AB We have used EXAFS and NRVS spectroscopies to examine the structural changes in the FeMo-cofactor active site of the alpha-70(Ala) variant of Azotobacter vinelandii nitrogenase on binding and reduction of propargyl alcohol (PA). The Mo K-edge near-edge and EXAFS spectra are very similar in the presence and absence of PA, suggesting PA does not bind at Mo. By contrast, Fe EXAFS spectra show a clear and reproducible change in the long Fe-Fe interaction at similar to 3.7 angstrom on PA binding with the apparent appearance of a new Fe-Fe interaction at 3.99 angstrom. An analogous change in the long Mo-Fe 5.1 angstrom interaction is not seen. The NRVS spectra exclude the possibility of large-scale structural change of the FeMo-cofactor involving breaking the mu(2) Fe-S-Fe bonds of the Fe6S9X core. The simplest chemically consistent structural change is that the bound form of PA is coordinated at Fe atoms (Fe6 or Fe7) adjacent to the Mo terminus, with a concomitant movement of the Fe away from the central atom X and along the Fe-X bond by about 0.35 angstrom. This study comprises the first experimental evidence of the conformational changes of the FeMo-cofactor active site on binding a substrate or product. (C) 2012 Elsevier Inc. All rights reserved. C1 [George, Simon J.; Cramer, Stephen P.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [George, Simon J.; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Biol & Environm Xray Facil, Berkeley, CA 94720 USA. [Mitra, Devrani; Guo, Yisong] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Barney, Brett M.; Igarashi, Robert Y.; Seefeldt, Lance C.] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. [Dean, Dennis R.] Virginia Polytech Inst & State Univ, Dept Biochem, Blacksburg, VA 24061 USA. RP George, SJ (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM sjgeorge@ucdavis.edu RI Barney, Brett/A-6125-2013; Guo, Yisong/C-7785-2009 OI Guo, Yisong/0000-0002-4132-3565 FU NIH [GM-65440, GM-59087]; NSF [CHE-0745353]; U.S. Department of Energy, Office of Biological and Environmental Research (DOE OBER); NIH, National Center for Research Resources, Biomedical Technology Program; DOE OBES [DE-AC02-06CH11357] FX This work was funded by NIH GM-65440 (SPC), GM-59087 (LCS and DRD) and NSF CHE-0745353 (SPC). ABEX is supported by the U.S. Department of Energy, Office of Biological and Environmental Research (DOE OBER). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the DOE Office of Basic Energy Sciences (OBES). The SSRL Structural Molecular Biology Program is supported by the DOE OBER, and the NIH, National Center for Research Resources, Biomedical Technology Program. Portions of this work were also carried out at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) under Proposal # 4032LD3-NP. Use of the Advanced Photon Source was supported by the DOE OBES under Contract No. DE-AC02-06CH11357. NR 32 TC 18 Z9 18 U1 2 U2 33 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0162-0134 J9 J INORG BIOCHEM JI J. Inorg. Biochem. PD JUL PY 2012 VL 112 BP 85 EP 92 DI 10.1016/j.jinorgbio.2012.02.004 PG 8 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA 961WX UT WOS:000305501300011 PM 22564272 ER PT J AU Scott, AM Petrova, T Odbadrakh, K Nicholson, DM Fuentes-Cabrera, M Lewis, JP Hill, FC Leszczynski, J AF Scott, Andrea Michalkova Petrova, Tetyana Odbadrakh, Khorgolkhuu Nicholson, Donald M. Fuentes-Cabrera, Miguel Lewis, James P. Hill, Frances C. Leszczynski, Jerzy TI Molecular simulations of adsorption of RDX and TATP on IRMOF-1(Be) SO JOURNAL OF MOLECULAR MODELING LA English DT Article DE Adsorption; B97-D; IRMOF-1; RDX; TATP ID METAL-ORGANIC FRAMEWORKS; AB-INITIO; PYRIDINE ADSORPTION; ELECTRON-DENSITY; HYDROGEN STORAGE; CLAY-MINERALS; MOF-5; SITES; MECHANISM; SURFACE AB The influence of different sorption sites of isoreticular metal-organic frameworks (IRMOFs) on interactions with explosive molecules is investigated. Different connector effects are taken into account by choosing IRMOF-1(Be) (IRMOF-1 with Zn replaced by Be), and two high explosive molecules: 1,3,5-trinitro-s-triazine (RDX) and triacetone triperoxide (TATP). The key interaction features (structural, electronic and energetic) of selected contaminants were analyzed by means of density functional calculations. The interaction of RDX and TATP with different IRMOF-1(Be) fragments is studied. The results show that physisorption is favored and occurs due to hydrogen bonding, which involves the C-H groups of both molecules and the carbonyl oxygen atoms of IRMOF-1(Be). Additional stabilization of RDX and TATP arises from weak electrostatic interactions. Interaction with IRMOF-1(Be) fragments leads to polarization of the target molecules. Of the molecular configurations we have studied, the Be-O-C cluster connected with six benzene linkers (1,4-benzenedicarboxylate, BDC), possesses the highest binding energy for the studied explosives (-16.4 kcal mol(-1) for RDX and -12.9 kcal mol(-1) for TATP). The main difference was discovered to be in the preferable adsorption site for adsorbates (RDX above the small and TATP placed above the big cage). Based on these results, IRMOF-1 can be suggested as an effective material for storage and also for separation of similar explosives. Hydration destabilizes most of the studied adsorption systems by 1-3 kcal mol(-1) but it leads to the same trend in the binding strength as found for the non-hydrated complexes. C1 [Scott, Andrea Michalkova; Hill, Frances C.] USA, ERDC, Vicksburg, MS 39180 USA. [Scott, Andrea Michalkova; Petrova, Tetyana; Leszczynski, Jerzy] Jackson State Univ, Dept Chem, Interdisciplinary Nanotox Ctr, Jackson, MS 39217 USA. [Odbadrakh, Khorgolkhuu] ORNL, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Nicholson, Donald M.; Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Lewis, James P.] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Nicholson, Donald M.; Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Scott, AM (reprint author), USA, ERDC, Vicksburg, MS 39180 USA. EM andrea@icnanotox.org RI Fuentes-Cabrera, Miguel/Q-2437-2015 OI Fuentes-Cabrera, Miguel/0000-0001-7912-7079 FU NSF grant EXP-LA [0730186] FX This work was facilitated by the NSF grant EXP-LA no. 0730186. Work at ORNL was performed under the auspices of the Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy. The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government. The tests described and the resulting data presented herein, unless otherwise noted, were obtained from research conducted under the Environmental Quality Technology Program of the United States Army Corps of Engineers by the United States Army Engineer Research and Development Center (USAERDC). Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. NR 76 TC 7 Z9 7 U1 2 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1610-2940 J9 J MOL MODEL JI J. Mol. Model. PD JUL PY 2012 VL 18 IS 7 BP 3363 EP 3378 DI 10.1007/s00894-011-1338-3 PG 16 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Biochemistry & Molecular Biology; Biophysics; Chemistry; Computer Science GA 963EM UT WOS:000305602900044 PM 22271094 ER PT J AU Silver, GL AF Silver, G. L. TI Second empirical method for preparing a plutonium predominance-region diagram SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Plutonium; Disproportionation; Oxidation-states ID EQUATIONS AB The first empirical method for preparing a plutonium predominance-region diagram used horizontal lines to locate the boundaries of the regions of forbidden, unique, and ambiguous oxidation-state distributions. A second approach changes the procedure by using vertical lines to illustrate these regions. In both cases, the boundary lines are determined by the Pu oxidation number and the equilibrium fraction of one oxidation state. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Silver, GL (reprint author), Los Alamos Natl Lab, POB 1663,MS E502, Los Alamos, NM 87545 USA. EM gsilver@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX Los Alamos National Laboratory is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy contract DE-AC52-06NA25396. NR 8 TC 1 Z9 1 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2012 VL 293 IS 1 BP 175 EP 178 DI 10.1007/s10967-012-1633-1 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 958HW UT WOS:000305228200023 ER PT J AU Finn, E Metz, L Greenwood, L Pierson, B Friese, J Kephart, R Kephart, J AF Finn, Erin Metz, Lori Greenwood, Larry Pierson, Bruce Friese, Judah Kephart, Rosara Kephart, Jeremy TI Short-lived fission product measurements from > 0.1 MeV neutron-induced fission using boron carbide SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Boron carbide; Short-lived fission products; Gamma spectra; Fast fission energy neutrons ID GAMMA-RAYS; YIELDS; U-233 AB A boron carbide shield was designed, custom fabricated, and used to create a fast fission energy neutron spectrum. The fissionable isotopes U-233,U- 235,U- 238, Np-237, and Pu-239 were separately placed inside of this shield and irradiated under pulsed conditions at the Washington State University 1 MW TRIGA reactor. A unique set of fission product gamma spectra were collected at short times (4 min to 1 week) post-fission. Gamma spectra were collected on single-crystal high purity germanium detectors and on Pacific Northwest National Laboratory's Direct Simultaneous Measurement system composed of HPGe detectors connected in coincidence. This work defines the experimental methods used to produce and collect the gamma data, and demonstrates the validity of the measurements. It is important to fully document this information so the data can be used with high confidence for the advancement of nuclear science and non-proliferation applications. The gamma spectra collected in these and other experiments are publicly available at https://spcollab.pnnl.gov/sites/gammadata/default.aspx or via the link at http://rdnsgroup.pnnl.gov. A revised version of this publication will be posted with the data to make the experimental details available to those using the data. C1 [Finn, Erin; Metz, Lori; Greenwood, Larry; Pierson, Bruce; Friese, Judah; Kephart, Rosara; Kephart, Jeremy] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pierson, Bruce] Univ Michigan, Ann Arbor, MI 48109 USA. RP Finn, E (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN J4-80, Richland, WA 99352 USA. EM erin.finn@pnnl.gov FU Office of Defense Nuclear Nonproliferation (DNN); U.S. Department of Energy; Pacific Northwest National Laboratory [DE-AC05-76RLO1830] FX The work was supported by the Office of Defense Nuclear Nonproliferation (DNN), U.S. Department of Energy, and Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RLO1830. The team at PNNL gratefully acknowledges the assistance of the staff at the Washington State University Dodgen Research Facility and research reactor for their assistance in the irradiations of these samples: JA Drader, CC Hines, MD King, and D Wall. NR 22 TC 4 Z9 4 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2012 VL 293 IS 1 BP 267 EP 272 DI 10.1007/s10967-012-1652-y PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 958HW UT WOS:000305228200037 ER PT J AU Tereshatov, EE Gostic, JM Henderson, RA Shaughnessy, DA Moody, KJ AF Tereshatov, E. E. Gostic, J. M. Henderson, R. A. Shaughnessy, D. A. Moody, K. J. TI Procedures for Db chemical characterization in off-line experiments SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Niobium; Tantalum; Dubnium; Group V elements; Anion-exchange separation ID INDUCED NUCLEAR-REACTIONS; ANION-EXCHANGE BEHAVIOR; EXCITATION-FUNCTIONS; NATURAL ZIRCONIUM; ELEMENTS; IDENTIFICATION; HF; NIOBIUM; DUBNIUM AB A new procedure to isolate carrier-free isotopes of Nb and Ta after a 12-MeV proton bombardment of a natural Hf foil has been considered. The cross section of the corresponding Hf-nat(p,x)Ta-179 reaction has been estimated for the first time as 5.4 +/- A 0.5 mb. The isotopes that were produced were subsequently used for development of procedures for the chemical characterization of element 105 (Db). HF/HNO3 and HNO3/H2O2 media have been chosen and the parameters of the experiments have been optimized. Based on the results obtained in this work, off-line experimental procedures have been proposed for the evaluation of the chemical behavior of Db. C1 [Tereshatov, E. E.; Gostic, J. M.; Henderson, R. A.; Shaughnessy, D. A.; Moody, K. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Tereshatov, EE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tereshatov1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL [11-ERD-011] FX The authors would like to thank the CAMS facility staff at LLNL for providing beam time and expertise to the production of radionuclides used in this study. This study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 11-ERD-011. NR 28 TC 2 Z9 2 U1 2 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2012 VL 293 IS 1 BP 331 EP 337 DI 10.1007/s10967-012-1737-7 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 958HW UT WOS:000305228200046 ER PT J AU Maier, TA AF Maier, Thomas A. TI Superconductivity in Striped and Multi-Fermi-Surface Hubbard Models: From the Cuprates to the Pnictides SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article DE Superconductivity; Cuprates; Pnictides ID PAIRING CORRELATIONS AB Single- and multiband Hubbard models have been found to describe many of the complex phenomena that are observed in the cuprate and iron-based high-temperature superconductors. Simulations of these models therefore provide an ideal framework to study and understand the superconducting properties of these systems and the mechanisms responsible for them. Here, we review recent dynamic cluster quantum Monte Carlo simulations of these models, which provide an unbiased view of the leading correlations in the system. In particular, we discuss what these simulations tell us about superconductivity in the homogeneous 2D single-orbital Hubbard model, and how charge stripes affect this behavior. We then describe recent simulations of a bilayer Hubbard model, which provides a simple model to study the type and nature of pairing in systems with multiple Fermi surfaces such as the iron-based superconductors. C1 [Maier, Thomas A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Maier, Thomas A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Maier, TA (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM maierta@ornl.gov RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 FU Office of Basic Energy Sciences, US Department of Energy FX We would like to acknowledge useful discussions with D.J. Scalapino, T. C. Schulthess, G. Alvarez, and M. Summers. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, US Department of Energy. This research was enabled by computational resources of the Center for Computational Sciences at Oak Ridge National Laboratory. NR 18 TC 2 Z9 2 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD JUL PY 2012 VL 25 IS 5 BP 1307 EP 1311 DI 10.1007/s10948-012-1600-7 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 962EM UT WOS:000305523100017 ER PT J AU Zhao, JY Sturhahn, W AF Zhao, J. Y. Sturhahn, W. TI High-energy-resolution X-ray monochromator calibration using the detailed-balance principle SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray; monochromator; energy calibration; nuclear resonant scattering ID NUCLEAR RESONANT SCATTERING; DENSITY-OF-STATES; SYNCHROTRON-RADIATION; SPECTROSCOPY; DYNAMICS AB A new method is presented to calibrate an X-ray energy scale with sub-meV relative accuracy by using the detailed-balance principle of the phonon creation and annihilation. This method is conveniently used to define or verify the energy scale of high-energy-resolution monochromators that are used in inelastic X-ray scattering and nuclear resonant inelastic X-ray scattering instruments at synchrotron radiation facilities. This method does not rely on sample properties and its precision only depends on the statistical data quality. Well calibrated instruments are essential for reliable comparison of data sets obtained at different synchrotron radiation beamlines, of data with theoretical predictions, and of data from other techniques such as neutron or light scattering. The principle of the detailed-balance method is described in this paper and demonstrated experimentally. C1 [Zhao, J. Y.; Sturhahn, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Zhao, JY (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jzhao@aps.anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Drs E. E. Alp, A. Alatas of APS, T. Sage, Y. Q. Zeng of Northeasten University, H. X. Wang of University of California at Davis, and Y. M. Xiao of HPCAT, APS, for fruitful discussions. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 21 TC 1 Z9 1 U1 1 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2012 VL 19 BP 602 EP 608 DI 10.1107/S0909049512022339 PN 4 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 962GA UT WOS:000305529100022 PM 22713897 ER PT J AU Jiang, Z Li, XF Strzalka, J Sprung, M Sun, T Sandy, AR Narayanan, S Lee, DR Wang, J AF Jiang, Zhang Li, Xuefa Strzalka, Joseph Sprung, Michael Sun, Tao Sandy, Alec R. Narayanan, Suresh Lee, Dong Ryeol Wang, Jin TI The dedicated high-resolution grazing-incidence X-ray scattering beamline 8-ID-E at the Advanced Photon Source SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray scattering; grazing incidence; coherence; beamline; high resolution ID BLOCK-COPOLYMERS; SURFACE-LAYERS; THIN-FILMS; ANGLE; WAVE; MONOLAYERS; MEMBRANES; DESIGN AB As an increasingly important structural-characterization technique, grazing-incidence X-ray scattering (GIXS) has found wide applications for in situ and real-time studies of nanostructures and nanocomposites at surfaces and interfaces. A dedicated beamline has been designed, constructed and optimized at beamline 8-ID-E at the Advanced Photon Source for high-resolution and coherent GIXS experiments. The effectiveness and applicability of the beamline and the scattering techniques have been demonstrated by a host of experiments including reflectivity, grazing-incidence static and kinetic scattering, and coherent surface X-ray photon correlation spectroscopy. The applicable systems that can be studied at 8-ID-E include liquid surfaces and nanostructured thin films. C1 [Jiang, Zhang; Li, Xuefa; Strzalka, Joseph; Sprung, Michael; Sun, Tao; Sandy, Alec R.; Narayanan, Suresh; Lee, Dong Ryeol; Wang, Jin] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Wang, J (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wangj@aps.anl.gov RI Jiang, Zhang/A-3297-2012 OI Jiang, Zhang/0000-0003-3503-8909 FU US DOE [DE-AC02-06CH11357] FX We thank Dr M. K. Mukhopadhyay for help in the surface XPCS experiment, Professor H. Kim at Sogang University for sharing GIWAXS results, Dr S.-H. Lee for engineering support, and H. Gibson and R. Ziegler for technical assistance. This work and use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, were supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 38 TC 39 Z9 39 U1 1 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2012 VL 19 BP 627 EP 636 DI 10.1107/S0909049512022017 PN 4 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 962GA UT WOS:000305529100025 PM 22713900 ER PT J AU Kalinowski, JA Fournier, B Makal, A Coppens, P AF Kalinowski, Jaroslaw A. Fournier, Bertrand Makal, Anna Coppens, Philip TI The LaueUtil toolkit for Laue photocrystallography. II. Spot finding and integration SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE photocrystallography; X-ray diffraction; X-ray detection; CCD; Laue method; spot integration; background estimate; statistical analysis; image filtering ID SEED-SKEWNESS METHOD; IMAGING PLATES; DIFFRACTION; CRYSTALLOGRAPHY; PEAKS; SIZE AB A spot-integration method is described which does not require prior indexing of the reflections. It is based on statistical analysis of the values from each of the pixels on successive frames, followed for each frame by morphological analysis to identify clusters of high value pixels which form an appropriate mask corresponding to a reflection peak. The method does not require prior assumptions such as fitting of a profile or definition of an integration box. The results are compared with those of the seed-skewness method which is based on minimizing the skewness of the intensity distribution within a peak's integration box. Applications in Laue photocrystallography are presented. C1 [Kalinowski, Jaroslaw A.; Fournier, Bertrand; Makal, Anna; Coppens, Philip] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Kalinowski, Jaroslaw A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kalinowski, JA (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. EM jak@kalinowscy.eu; annamaka@buffalo.edu FU National Science Foundation [CHE0843922]; National Institutes of Health, National Center for Research Resources [RR007707]; US Department of Energy, Office of Basic Energy Sciences [W-31-109-ENG-38] FX Support of this work by the National Science Foundation (CHE0843922) is gratefully acknowledged. Use of the BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources, under grant RR007707. The Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. NR 24 TC 7 Z9 7 U1 2 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2012 VL 19 BP 637 EP 646 DI 10.1107/S0909049512022637 PN 4 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 962GA UT WOS:000305529100026 PM 22713901 ER PT J AU Kastengren, A Powell, CF Arms, D Dufresne, EM Gibson, H Wang, J AF Kastengren, Alan Powell, Christopher F. Arms, Dohn Dufresne, Eric M. Gibson, Harold Wang, Jin TI The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE time-resolved; radiography; multilayer monochromator; Kirkpatrick-Baez mirrors ID X-RAY RADIOGRAPHY; SPRAYS AB In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 mm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS. C1 [Kastengren, Alan; Powell, Christopher F.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Arms, Dohn; Dufresne, Eric M.; Gibson, Harold; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kastengren, A (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM akastengren@anl.gov FU US Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; US Department of Energy Vehicle Technologies Program FX This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This research was performed at the 7-BM beamline of the Advanced Photon Source, Argonne National Laboratory. This work is supported by the US Department of Energy Vehicle Technologies Program. The authors thank Gurpreet Singh for his support of the spray radiography measurements. The authors thank Xusheng Zhang, Seoksu Moon, and Jian Gao for their assistance in performing the diesel spray measurements shown in this work. The authors also wish to thank Mark Erdmann and Mohan Ramanathan of the APS for their work on the beamline construction and commissioning. NR 13 TC 22 Z9 22 U1 2 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2012 VL 19 BP 654 EP 657 DI 10.1107/S0909049512016883 PN 4 PG 4 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 962GA UT WOS:000305529100028 PM 22713903 ER PT J AU Araujo, WWR Salvadori, MC Teixeira, FS Cattani, M Brown, IG AF Araujo, W. W. R. Salvadori, M. C. Teixeira, F. S. Cattani, M. Brown, I. G. TI Environmental effects in kelvin force microscopy of modified diamond surfaces SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Article DE diamond film; Kelvin force microscopy; surface characterization; surface microscopy; surface electronic properties ID KINETIC OSCILLATIONS; THIN-FILMS; OXIDATION; CO AB We have explored the effects of atmospheric environment on Kelvin force microscopy (KFM) measurements of potential difference between different regions of test polycrystalline diamond surfaces. The diamond films were deposited by microwave plasma-assisted chemical vapor deposition, which naturally produces hydrogen terminations on the surface of the films formed. Selected regions were patterned by electron-beam lithography and chemical terminations of oxygen or fluorine were created by exposure to an oxygen or fluorine plasma source. For KFM imaging, the samples were mounted in a hood with a constant flow of helium gas. Successive images were taken over a 5-h period showing the effect of the environment on KFM imaging. We conclude that the helium flow removes water molecules adsorbed on the surface of the samples, resulting in differences in surface potential between adjacent regions. The degree of water removal is different for surfaces with different terminations. The results highlight the importance of taking into account the atmospheric environment when carrying out KFM analysis. (C) 2012 Wiley Periodicals, Inc. C1 [Araujo, W. W. R.; Salvadori, M. C.; Teixeira, F. S.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05315970 Sao Paulo, Brazil. EM mcsalva@if.usp.br RI Salvadori, Maria Cecilia/A-9379-2013; Teixeira, Fernanda/A-9395-2013; Cattani, Mauro/N-9749-2013 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil FX Contract grant sponsors: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. NR 18 TC 2 Z9 2 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1059-910X J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD JUL PY 2012 VL 75 IS 7 BP 977 EP 981 DI 10.1002/jemt.22022 PG 5 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 961GR UT WOS:000305452800019 PM 22395915 ER PT J AU Avena, NM Gearhardt, AN Gold, MS Wang, GJ Potenza, MN AF Avena, Nicole M. Gearhardt, Ashley N. Gold, Mark S. Wang, Gene-Jack Potenza, Marc N. TI Perspectives Tossing the baby out with the bathwater after a brief rinse? The potential downside of dismissing food addiction based on limited data SO NATURE REVIEWS NEUROSCIENCE LA English DT Letter ID BEHAVIORAL ADDICTIONS; OBESITY; BRAIN C1 [Potenza, Marc N.] Yale Univ, Sch Med, Dept Psychiat, New Haven, CT 06519 USA. [Potenza, Marc N.] Yale Univ, Sch Med, Dept Neurobiol, New Haven, CT 06519 USA. [Potenza, Marc N.] Yale Univ, Sch Med, Ctr Child Study, New Haven, CT 06519 USA. [Gearhardt, Ashley N.] Yale Univ, Dept Psychol, New Haven, CT 06520 USA. [Avena, Nicole M.] Princeton Univ, Dept Psychol, Princeton, NJ 08544 USA. [Avena, Nicole M.; Gold, Mark S.] Univ Florida, McKnight Brain Inst, Dept Psychiat, Gainesville, FL 32611 USA. [Wang, Gene-Jack] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Potenza, MN (reprint author), Yale Univ, Sch Med, Dept Psychiat, New Haven, CT 06519 USA. EM marc.potenza@yale.edu NR 14 TC 45 Z9 46 U1 0 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-003X J9 NAT REV NEUROSCI JI Nat. Rev. Neurosci. PD JUL PY 2012 VL 13 IS 7 DI 10.1038/nrn3212-c1 PG 1 WC Neurosciences SC Neurosciences & Neurology GA 963IT UT WOS:000305614600013 PM 22714023 ER PT J AU Wang, K Chien, HT Elmer, TW Lawrence, WP Engel, DM Sheen, SH AF Wang, Ke Chien, Hual-Te Elmer, Thomas W. Lawrence, William P. Engel, David M. Sheen, Shuh-Haw TI Development of ultrasonic waveguide techniques for under-sodium viewing SO NDT & E INTERNATIONAL LA English DT Article DE Ultrasonic; Waveguide; In-service inspection; Sodium-cooled fast reactor; Under-sodium viewing AB An ultrasonic imaging system based on waveguide techniques was developed to provide in-service inspection of reactor core of a sodium-cooled fast reactor (SFR) and potential applications in other hostile environments. By using the ultrasonic waveguide techniques, we overcome the major technical challenge in developing an under-sodium viewing (USV) system that can withstand the high-temperature and corrosive environment. The chosen design of the prototype waveguide (WG) is a hybrid of bundle and spiraled-sheet WG. The prototypes show high detection sensitivity with minimal background noise by effectively reducing spurious echoes and mode conversions. Tests on prototype waveguide transducers were conducted in liquid sodium up to 340 degrees C (650 degrees F). C-scan images of the targets were successfully developed from both time-of-flight and amplitude variations of the reflected echoes. The ultrasonic waveguide imaging system demonstrates a capability of detecting defects with 1 mm width and 0.5 mm depth under molten sodium. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Wang, Ke; Chien, Hual-Te; Elmer, Thomas W.; Lawrence, William P.; Engel, David M.; Sheen, Shuh-Haw] Argonne Natl Lab, Sensors & Instrumentat Sect, Nucl Engn Div, Argonne, IL 60439 USA. RP Wang, K (reprint author), Argonne Natl Lab, Sensors & Instrumentat Sect, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kwang@anl.gov OI Elmer, Thomas/0000-0003-0363-5928 NR 18 TC 4 Z9 5 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0963-8695 J9 NDT&E INT JI NDT E Int. PD JUL PY 2012 VL 49 BP 71 EP 76 DI 10.1016/j.ndteint.2012.03.006 PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA 959IU UT WOS:000305306900010 ER PT J AU Therios, IU AF Therios, Ike U. TI SPECIAL ISSUE ON SAFEGUARDS FOREWORD SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Therios, IU (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 3 EP 3 PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700001 ER PT J AU Bathke, CG Ebbinghaus, BB Collins, BA Sleaford, BW Hase, KR Robel, M Wallace, RK Bradley, KS Ireland, JR Jarvinen, GD Johnson, MW Prichard, AW Smith, BW AF Bathke, Charles G. Ebbinghaus, Bartley B. Collins, Brian A. Sleaford, Brad W. Hase, Kevin R. Robel, Martin Wallace, Richard K. Bradley, Keith S. Ireland, John R. Jarvinen, Gordon D. Johnson, M. W. Prichard, Andrew W. Smith, Brian W. TI THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS SO NUCLEAR TECHNOLOGY LA English DT Article DE denaturing; material attractiveness; proliferation resistance AB We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium. extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides a set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no "silver bullet" fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed. C1 [Bathke, Charles G.; Hase, Kevin R.; Wallace, Richard K.; Ireland, John R.; Jarvinen, Gordon D.; Johnson, M. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ebbinghaus, Bartley B.; Sleaford, Brad W.; Robel, Martin; Bradley, Keith S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Collins, Brian A.; Prichard, Andrew W.; Smith, Brian W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bathke, CG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bathke@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396, DE-AC52-07NA27344, DE-AC06-76RLO] FX The authors would like to thank D. Hollis, P. Jaegers, M. Kirkland, J. Koster, M. Miller, L. Rothrock, and S. Vessard of Los Alamos National Laboratory; D. Brown of Lawrence Livermore National Laboratory; and P. Peterson of the University of California at Berkeley for their many valuable discussions. The authors also would like to thank E. Hoffman of Argonne National Laboratory, S. Bays and S. Piet of Idaho National Laboratory, and H. Trellue of Los Alamos National Laboratory for sharing their isotopic composition data. The submitted manuscript has been authored by contractors of the U.S. government under U.S. Department of Energy contracts DE-AC52-06NA25396, DE-AC52-07NA27344, and DE-AC06-76RLO. NR 34 TC 7 Z9 7 U1 1 U2 16 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 5 EP 30 PG 26 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700002 ER PT J AU Pilat, JF AF Pilat, Joseph F. TI THE PROLIFERATION RESISTANCE DEBATE AND THE PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION EVALUATION METHODOLOGY SO NUCLEAR TECHNOLOGY LA English DT Article DE nonproliferation; proliferation resistance; nuclear energy AB Proliferation resistance has been debated for decades. If international proliferation resistance is to be achieved, the approach will need to involve intrinsic (technological) and extrinsic (institutional) factors. Because there are no simple technological "fixes," extensive analyses and research and development are required to determine the effects of both factors on any proposed approaches for proliferation resistance, particularly their effectiveness, cost, and operational impacts. In support of this goal, a promising evaluation methodology has been developed and is being improved by the Proliferation Resistance and Physical Protection Working Group of the Generation IV International Forum. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pilat, JF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jpilat@lanl.gov NR 11 TC 2 Z9 2 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 31 EP 34 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700003 ER PT J AU Bari, RA AF Bari, Robert A. TI PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION EVALUATION METHODOLOGY: OBJECTIVES, ACCOMPLISHMENTS, AND FUTURE DIRECTIONS SO NUCLEAR TECHNOLOGY LA English DT Article DE proliferation resistance; physical protection; Generation IV AB An overview is presented of the objectives, accomplishments, and potential future directions of the program on the evaluation methodology for proliferation resistance and physical protection (PR&PP) of advanced nuclear energy systems. The PR&PP Working Group of the Generation IV International Forum developed the methodology through a series of demonstration and case studies. The results of the evaluations performed with the methodology are intended for three types of users: system designers, program policy makers, and external stakeholders. During the past few years, various national and international groups have applied the methodology to nuclear energy system design as well as to developing approaches to advanced safeguards. We suggest some future applications of the methodology in this paper. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bari, RA (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. EM bari@bnl.gov FU DOE Office of Nuclear Energy Science and Technology; NNSA FX The sponsorship of the DOE Office of Nuclear Energy Science and Technology and the NNSA is acknowledged. Further, the efforts and ideas of the many members of the PR&PP Working Group over several years is the foundation of this paper. An earlier summary of this work was presented by the author at the Global 2009 conference. NR 21 TC 3 Z9 3 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 35 EP 44 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700004 ER PT J AU Pilat, JF AF Pilat, Joseph F. TI IMPLEMENTATION OF THE PR&PP METHODOLOGY: THE ROLE OF FORMAL EXPERT ELICITATIONS SO NUCLEAR TECHNOLOGY LA English DT Article DE proliferation resistance; physical protection; expert elicitation ID PROBABILISTIC RISK-ASSESSMENT; JUDGMENT AB A Generation IV International Forum (CIF) Working Group has developed a methodology with which to evaluate the proliferation resistance and physical protection (PR&PP) robustness of nuclear energy systems. For such nuclear systems, there is a need to evaluate designs that are not fully developed, technology issues from fuels to fuel cycles that are not yet determined, and safeguards, security, and other measures that are not yet decided. To that end, this paper proposes use of formal expert elicitation in conjunction with the PR&PP methodology. This combination would provide a systematic and transparent qualitative analysis of proliferation resistance and physical protection and also would contribute to the development of credible input for quantitative analyses. The outcome would be valuable for internal planning purposes for nuclear designers, safeguards experts, and technical and policy stakeholders involved in the development of Generation IV nuclear energy systems. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pilat, JF (reprint author), Los Alamos Natl Lab, POB 1663,MS A148, Los Alamos, NM 87545 USA. EM jpilat@lanl.gov NR 33 TC 0 Z9 0 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 52 EP 60 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700006 ER PT J AU Boyer, BD Erpenbeck, HH Scherer, CP AF Boyer, Brian D. Erpenbeck, Heather H. Scherer, Carolynn P. TI IMPLICATIONS FOR ADVANCED SAFEGUARDS DERIVED FROM A PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION CASE STUDY FOR A GENERATION IV NUCLEAR ENERGY SYSTEM SO NUCLEAR TECHNOLOGY LA English DT Article DE nuclear safeguards; Generation IV reactors; electrochemical recycling AB The Proliferation Resistance and Physical Protection Evaluation Methodology Working Group of the Generation IV International Forum produced a full-system case study on the Example Sodium Fast Reactor Nuclear Energy System (ESFR-NES). The ESFR-NES is a hypothetical fuel cycle complex consisting of four sodium-cooled fast reactors of medium size collocated with an on-site dry-fuel storage facility and a spent-fuel reprocessing facility based on electrochemical recycling technology. The complex recycles irradiated fuels from two feed streams, oxide filet from off-site light water reactors and metal fuel from the on-site sodium-cooled fast reactors. Both of these streams are recycled on-site: uranium and transuranics are sent to the electrochemical reprocessing fuel cycle facility. The two streams combine and the fuel cycle facility creates new ESFR-NES metal fuel for the four on-site sodium-cooled fast reactors. The major safeguards concepts driving the safeguards analysis were timeliness goals and material quantity goals. Specifically, the recycled fuel, the in-process material in the fuel reprocessing facility, the off-site light water reactor spent fuel received at the ESFR-NES, and spent fuel from the on-site fast reactors will contain plutonium. The International Atomic Energy Agency defines the material within the ESFR-NES as "direct-use material" with a stringent timeliness goal of 3 months and a material quantity goal of 8 kg of plutonium. Furthermore, the ESFR-NES may have some intrinsic safeguards features if the plutonium and uranium are not separated during reprocessing. This facility would require major modifications to separate the plutonium from other transuranic elements in the reprocessed fuel. The technical difficulty in diverting material from the ESFR-NES is at least as strongly impacted by the adversaries' overall technical capabilities as it is by the effort required to overcome those barriers intrinsic to the nuclear fuel cycle. The intrinsic proliferation resistance of the ESFR-NES can affect how extrinsic measures in the safeguards approach for the complex will provide overall proliferation resistance. C1 [Boyer, Brian D.; Erpenbeck, Heather H.; Scherer, Carolynn P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Boyer, BD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bboyer@lanl.gov NR 18 TC 0 Z9 0 U1 1 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 61 EP 69 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700007 ER PT J AU Zentner, MD Coles, GA Therios, IU AF Zentner, Michael D. Coles, Garill A. Therios, Ike U. TI A QUALITATIVE ASSESSMENT OF DIVERSION SCENARIOS FOR AN EXAMPLE SODIUM FAST REACTOR USING THE GENERATION IV PR&PP METHODOLOGY SO NUCLEAR TECHNOLOGY LA English DT Article DE proliferation resistance; diversion scenarios; Example Sodium Fast Reactor AB A working group was created in 2002 by the Generation IV International Forum for the purpose of developing an internationally accepted methodology for assessing the proliferation resistance of a nuclear energy system (NES) and its individual elements. A case study was performed by the working group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the proliferation resistance assessment methodology can be used to provide important information at various levels of details to NES designers, safeguard administrators, and decision makers. The study analyzed the response of the complete ESFR NES to different proliferation and theft strategies. The challenges considered include concealed diversion, concealed misuse, and "break-out" strategies. This paper describes the work done in performing a qualitative assessment of concealed diversion scenarios from the ESFR. C1 [Zentner, Michael D.; Coles, Garill A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Therios, Ike U.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Zentner, MD (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM md.zentner@pnl.gov NR 1 TC 2 Z9 2 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 70 EP 75 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700008 ER PT J AU Cojazzi, GGM Renda, G Choi, JS Hassberger, J AF Cojazzi, Giacomo G. M. Renda, Guido Choi, Jor Shan Hassberger, Jim TI APPLYING THE GIF PR&PP METHODOLOGY FOR A QUALITATIVE ANALYSIS OF A MISUSE SCENARIO IN A NOTIONAL GENERATION IV EXAMPLE SODIUM FAST REACTOR SO NUCLEAR TECHNOLOGY LA English DT Article DE proliferation resistance; nuclear energy system misuse; Generation IV nuclear reactors AB The Generation IV International Forum (GIF) Proliferation Resistance and Physical Protection (PR&PP) Working Group has developed a methodology for the PR&PP evaluation of advanced nuclear energy systems (NESs). A notional sodium-cooled fast neutron nuclear reactor system, named the Example Sodium Fast Reactor (ESFR), was used as a case study for the development and demonstration of the GIF PR&PP evaluation methodology. This paper presents some of the results of the application of the GIF PR&PP evaluation methodology to a misuse scenario involving the ESFR. The ESFR baseline design and two design variations are addressed. Rather than presenting a complete evaluation of all the possible misuse scenarios, the paper concentrates on methodological aspects and illustrates how a qualitative analysis following the GIF PR&PP evaluation methodology can generate traceable results of the considered design variations and provide useful feedback for both system and safeguards designers as well. C1 [Cojazzi, Giacomo G. M.; Renda, Guido] Commiss European Communities, Joint Res Ctr, Inst Protect & Secur Citizen, I-21027 Ispra, Va, Italy. [Choi, Jor Shan; Hassberger, Jim] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Cojazzi, GGM (reprint author), Inst Transuranium Elements, TP210,Via E Fermi 2749, I-21027 Ispra, VA, Italy. EM giacomo.cojazzi@jrc.ec.europa.eu NR 16 TC 1 Z9 1 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 76 EP 90 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700009 ER PT J AU Zentner, MD Pomeroy, G Bari, RA Cojazzi, GGM Haas, E Killeen, T Peterson, P Whitlock, JJ Wonder, EF AF Zentner, Michael D. Pomeroy, George Bari, Robert A. Cojazzi, Giacomo G. M. Haas, Eckhart Killeen, Thomas Peterson, P. Whitlock, Jeremy J. Wonder, Edward F. TI INTERPRETATION AND USE OF THE RESULTS OF PROLIFERATION RESISTANCE STUDIES SO NUCLEAR TECHNOLOGY LA English DT Article DE proliferation resistance; Generation IV International Forum; International Project on Innovative Nuclear Reactors and Fuel Cycles AB Proliferation resistance (PR) evaluations of nuclear energy systems provide a structured approach for assessing the value of both intrinsic and extrinsic barriers to proliferation. Ultimately, PR studies allow an evaluation of proposed safeguards, an identification of potential weaknesses or alternative safeguard approaches, and a basis for improving and enhancing safeguards. To facilitate understanding and sharing of results, PR evaluations should be carried out following a standardized approach that has international acceptance and that provides consistent results independent of the analysts carrying out the evaluation. Proliferation assessment methodologies such as those being developed under the Generation IV International Forum (GIF) and IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) provide the technical platforms for supporting overall evaluations, but their findings are unlikely to be directly used by decision makers. This situation arises because although all PR evaluation approaches develop valuable information about the proliferation resistance of a nuclear energy system, a significant effort is still required to make results of PR evaluations usable and understandable to decision makers. This paper identifies a reference set of decision makers and other users who could be informed by the results of PR assessments. Whether the INPRO, GIF, or another methodology is used, the need for useful information about the PR of their systems must be met. The paper examines the information needs of different classes of decision makers and presents ideas on how the results of the various PR studies can be interpreted and presented to them in a more usable, understandable fashion. C1 [Zentner, Michael D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pomeroy, George] Natl Nucl Secur Adm, US DOE, Washington, DC USA. [Bari, Robert A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Cojazzi, Giacomo G. M.] Commiss European Communities, Joint Res Ctr, IPSC, I-21020 Ispra, Italy. [Haas, Eckhart; Killeen, Thomas] IAEA, A-1400 Vienna, Austria. [Peterson, P.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Whitlock, Jeremy J.] Atom Energy Canada Ltd, Chalk River Labs, Chalk River, ON K0J 1J0, Canada. [Wonder, Edward F.] QinetiQ N Amer, Fairfax, VA USA. RP Zentner, MD (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM md.zentner@pnl.gov NR 11 TC 0 Z9 0 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 106 EP 111 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700012 ER PT J AU Khalil, H Peterson, PF Bari, R Fiorini, GL Leahy, T Versluis, R AF Khalil, H. Peterson, P. F. Bari, R. Fiorini, G. -L. Leahy, T. Versluis, R. TI CHALLENGES TO INTEGRATION OF SAFETY AND RELIABILITY WITH PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION FOR GENERATION IV NUCLEAR ENERGY SYSTEMS SO NUCLEAR TECHNOLOGY LA English DT Article DE safety; nonproliferation; security AB The optimization of a nuclear energy system's performance requires an integrated consideration of multiple design goals sustainability, safety and reliability (S&R), proliferation resistance and physical protection (PR&PP), and economics as well as careful evaluation of tradeoffs for different system design and operating parameters. Design approaches motivated by each of the goal areas (in isolation from the other goal areas) may be mutually compatible or in conflict. However, no systematic methodology approach has yet been developed to identify and maximize synergies and optimally balance conflicts across the possible design configurations and operating modes of a nuclear energy system. Because most Generation IV systems are at an early stage of development, design, and assessment, designers and analysts are only beginning to identify synergies and conflicts between PR&PP, S&R, and economics goals. The close coupling between PR&PP and S&R goals has motivated early attention within the Generation IV International Forum to their integrated consideration to facilitate the optimization of their effects and the minimization of potential conflicts. This paper discusses the status of this work. C1 [Khalil, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Peterson, P. F.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bari, R.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Leahy, T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Versluis, R.] US DOE, Washington, DC 20585 USA. RP Khalil, H (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM khalil@anl.gov FU U.S. Department of Energy Office of Nuclear Energy Science and Technology; National Nuclear Security Administration FX The sponsorship of the U.S. Department of Energy Office of Nuclear Energy Science and Technology and the National Nuclear Security Administration is acknowledged. Further, the efforts and ideas of the many members of the GIF PR&PP and Risk & Safety Working Groups over several years is the foundation of this summary paper. NR 6 TC 2 Z9 2 U1 2 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 112 EP 116 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700013 ER PT J AU Bjornard, T Morgan, J AF Bjornard, T. Morgan, J. TI INTEGRATING SAFEGUARDS AND SECURITY INTO NUCLEAR FACILITY DESIGN SO NUCLEAR TECHNOLOGY LA English DT Article DE safeguards; security; 2SBD (safeguards-by-design and security-by-design) AB Including safeguards and security fully in the early stages of the design process for new nuclear facilities has the potential to cost effectively minimize proliferation and security risks. This paper addresses the 2SBD (safeguards-by-design and security-by-design) approach and its incorporation into the design and construction process, and describes a framework that can guide its institutionalization. 2SBD could be a basis for a new international norm and standard process for nuclear facility design. Recent progress is positive and substantial. C1 [Bjornard, T.] Idaho Natl Lab, Nucl Nonproliferat Div, Idaho Falls, ID 83415 USA. [Morgan, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bjornard, T (reprint author), Idaho Natl Lab, Nucl Nonproliferat Div, POB 1625,MS 3740, Idaho Falls, ID 83415 USA. EM morganjb@ornl.gov FU U.S. DOE NGSI; U.S. DOE Office of Fuel Cycle Research and Development; MPACT campaign; Idaho National Laboratory under DOE [DE-AC07-05ID14517] FX The authors gratefully acknowledge the contributions of R. Bean, S. Demuth, C. Durst, M. Ehinger, M. Golay, D. Hebditch, and J. Hockert, who contributed to the preceding works upon which this paper is partially based. This work was supported by the U.S. DOE NGSI and by the U.S. DOE Office of Fuel Cycle Research and Development, MPACT campaign, and Idaho National Laboratory under DOE contract DE-AC07-05ID14517. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2012 VL 179 IS 1 SI SI BP 143 EP 149 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 959IS UT WOS:000305306700016 ER PT J AU Fisher, Z Boone, CD Biswas, SM Venkatakrishnan, B Aggarwal, M Tu, C Agbandje-McKenna, M Silverman, D McKenna, R AF Fisher, Zoe Boone, Christopher D. Biswas, Shya Masri Venkatakrishnan, Balasubramanian Aggarwal, Mayank Tu, Chingkuang Agbandje-McKenna, Mavis Silverman, David McKenna, Robert TI Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE carbonic anhydrase; proton transfer; thermostability ID AMINO-ACID SUBSTITUTIONS; PROTON-TRANSFER; ACTIVE-SITE; CATALYTIC MECHANISM; PROTEIN STABILITY; RESIDUES; CRYSTAL; NETWORK; SURFACE; ENZYME AB Carbonic anhydrases (CAs) are ubiquitous enzymes that catalyze the reversible hydration/dehydration of carbon dioxide/bicarbonate. As such, there is enormous industrial interest in using CA as a bio-catalyst for carbon sequestration and biofuel production. However, to ensure cost-effective use of the enzyme under harsh industrial conditions, studies were initiated to produce variants with enhanced thermostability while retaining high solubility and catalytic activity. Kinetic and structural studies were conducted to determine the structural and functional effects of these mutations. X-ray crystallography revealed that a gain in surface hydrogen bonding contributes to stability while retaining proper active site geometry and electrostatics to sustain catalytic efficiency. The kinetic profiles determined under a variety of conditions show that the surface mutations did not negatively impact the carbon dioxide hydration or proton transfer activity of the enzyme. Together these results show that it is possible to enhance the thermal stability of human carbonic anhydrase II by specific replacements of surface hydrophobic residues of the enzyme. In addition, combining these stabilizing mutations with strategic active site changes have resulted in thermostable mutants with desirable kinetic properties. C1 [Fisher, Zoe] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Boone, Christopher D.; Biswas, Shya Masri; Venkatakrishnan, Balasubramanian; Aggarwal, Mayank; Tu, Chingkuang; Agbandje-McKenna, Mavis; Silverman, David; McKenna, Robert] Univ Florida, Gainesville, FL 32610 USA. RP Fisher, Z (reprint author), Los Alamos Natl Lab, Biosci Div, TA-53 Bldg 622,Mailstop H805, Los Alamos, NM 87545 USA. EM zfisher@lanl.gov FU Los Alamos National Laboratory LDRD [20110535ER]; National Institutes of Health [GM25154] FX This work was supported in part by grants from Los Alamos National Laboratory LDRD Early Career #20110535ER (to ZF) and National Institutes of Health GM25154 (to DNS and RM). NR 38 TC 20 Z9 20 U1 4 U2 27 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD JUL PY 2012 VL 25 IS 7 BP 347 EP 355 DI 10.1093/protein/gzs027 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 963PG UT WOS:000305633900004 PM 22691706 ER PT J AU Zuev, YL Wee, SH Christen, DK AF Zuev, Yuri L. Wee, Sung Hun Christen, David K. TI Transition from columnar to point pinning in coated conductors: critical currents that are independent of magnetic field direction SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID DEFECTS EVIDENCE; YBA2CU3O7-DELTA; LOCALIZATION; NANORODS; VORTICES; FILMS; LINE AB We identify a sharp crossover in the vortex pinning of a high-temperature superconductor with nanocolumnar stacks of precipitates as strong vortex pinning centers. Above a particular, temperature-dependent field B-X(T) the vortex response is no longer determined by the nanocolumns, and is instead determined by point-like pinning. This crossover is evident as a change in the dependence of the critical current density on the angle between the applied magnetic field and the nanocolumns. It also leads to the field-orientation-independent power law index n of the E-J curves. Below the transition, there is a strong maximum in J(C) when the field is aligned parallel to the columns and n depends on field direction. Above the transition, n is independent of the field direction and there is a J(C) minimum for H parallel to the columns. We discuss a possible mechanism for such behavior change, as well as testing and confirming a prediction that the crossover must become very broad at high temperatures and low fields. C1 [Zuev, Yuri L.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Wee, Sung Hun; Christen, David K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zuev, YL (reprint author), Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. EM ylzuev@gmail.com FU US DOE, Office of Electricity FX The authors appreciate fruitful discussion with C Cantoni and R Feenstra. Work at ORNL supported by US DOE, Office of Electricity. NR 29 TC 1 Z9 1 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2012 VL 25 IS 7 AR 075009 DI 10.1088/0953-2048/25/7/075009 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 960XL UT WOS:000305426300009 ER PT J AU Patterson, BM Obrey, KAD Hamilton, CE Havrilla, GJ AF Patterson, Brian M. Obrey, Kimberly A. DeFriend Hamilton, Christopher E. Havrilla, George J. TI Three-dimensional density measurements of ultra low density materials by X-ray scatter using confocal micro X-ray fluorescence spectroscopy SO X-RAY SPECTROMETRY LA English DT Article DE X-ray spectrometry; aerogel; polymer foam; confocal micro X-ray fluorescence ID SILICA AEROGEL; SYNCHROTRON; ELEMENTS; COPPER; FOAMS AB Targets used in high energy density physics experiments, such as those fielded at the National Ignition Facility, are typically made of multi-component systems that include metals, metal coatings, and very low density materials. These very low density materials with densities as low as 10?mg/cm3 must have uniform density throughout. Characterizing their density in 3D is a very difficult problem. One technique used is confocal micro X-ray fluorescence. This technique, which uses a polycapillary optic to focus the X-rays from the X-ray source and another on the detector, measures the density of these materials based upon their X-ray scatter. In order to gain a complete picture of their X-ray scatter, the sample is rastered in 3D to generate a complete 3D density map. As proof of technique, the examination of very low density poly(styrene-divinylbenzene) foams, poly(methylpentene) foams, as well as silica aerogels were completed. Results for the polymer foam materials show a linear correlation (R2?=?0.99) between X-ray scatter intensity and bulk density. However, for higher atomic number materials (e.g. aerogels) the amount of X-ray scatter is very dependent upon the depth of data collection as a result of the absorption of the X-rays by the upper portions of the sample. This self-absorption reduces the ability of this technique to quantify the density of the material in full 3D. Self-absorption modeling will be required to compensate. Scans through the aerogel surface indicate an increased density at the surface due processing. Finally, a 3D image of a machined aerogel tube is presented. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Patterson, Brian M.; Obrey, Kimberly A. DeFriend; Hamilton, Christopher E.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Havrilla, George J.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Patterson, BM (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM bpatterson@lanl.gov OI Hamilton, Christopher/0000-0002-1605-5992; Havrilla, George/0000-0003-2052-7152; Patterson, Brian/0000-0001-9244-7376 FU US Department of Energy [DE-AC52-06NA25396]; Enhanced Surveillance Campaign; Campaign 4; Campaign 10 FX Los Alamos National Laboratory is operated by Los Alamos National Security LLC under contract number DE-AC52-06NA25396 for the US Department of Energy. Funding for this research was provided by Campaigns 4 and 10 and the Enhanced Surveillance Campaign. The authors wish to thank Derek Schmidt and Jim Williams for writing the instrument control software and providing the machined aerogel. NR 27 TC 15 Z9 15 U1 1 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0049-8246 EI 1097-4539 J9 X-RAY SPECTROM JI X-Ray Spectrom. PD JUL-AUG PY 2012 VL 41 IS 4 BP 253 EP 258 DI 10.1002/xrs.2389 PG 6 WC Spectroscopy SC Spectroscopy GA 962BS UT WOS:000305514800012 ER PT J AU White, CE Provis, JL Proffen, T van Deventer, JSJ AF White, Claire E. Provis, John L. Proffen, Thomas van Deventer, Jannie S. J. TI Molecular mechanisms responsible for the structural changes occurring during geopolymerization: Multiscale simulation SO AICHE JOURNAL LA English DT Article DE coarse-graining; Monte Carlo; geopolymerization; density functional theory; aluminosilicates ID MONTE-CARLO-SIMULATION; SEMIEMPIRICAL AM1 CALCULATIONS; AQUEOUS SILICATE SOLUTIONS; ALKALINE-SOLUTIONS; DISSOLUTION KINETICS; NETWORK FORMATION; ZEOLITE SYNTHESIS; LOCAL-STRUCTURE; ALUMINOSILICATE; MODEL AB To date, the fundamental details of the molecular structural changes and associated mechanisms, which take place during the formation of aluminosilicate geopolymer gels, have remained largely elusive. Here, density functional theory-based coarse-grained Monte Carlo modeling, a multiscale simulation technique, is used to simulate the geopolymerization reaction and to determine the molecular mechanisms controlling this process. Silica supplied by the alkaline solution plays a significant role in enhancing the dissolution of the solid aluminosilicate precursor (metakaolin, in this case) and the polymerization of the gel. In the reaction between NaOH and metakaolin, in the absence of initially dissolved silica, the solid precursor completely dissolves and the aluminosilicate gel forms via the percolation of small aluminosilicate clusters. On the other hand, in the presence of dissolved silicate, the metakaolin only partially dissolves, as the aluminosilicate gel precipitates on the surfaces of the metakaolin particle after a period of time. (C) 2011 American Institute of Chemical Engineers AIChE J, 2012 C1 [White, Claire E.; Provis, John L.; van Deventer, Jannie S. J.] Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. [White, Claire E.] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [White, Claire E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Proffen, Thomas] Oak Ridge Natl Lab, Neutron Scattering Sci Ctr, Oak Ridge, TN 37831 USA. RP Provis, JL (reprint author), Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. EM jprovis@unimelb.edu.au RI White, Claire/A-1722-2011; Lujan Center, LANL/G-4896-2012; Provis, John/A-7631-2008; Proffen, Thomas/B-3585-2009 OI White, Claire/0000-0002-4800-7960; Provis, John/0000-0003-3372-8922; Proffen, Thomas/0000-0002-1408-6031 FU Australian Research Council (ARC); Centre for Sustainable Resource Processing via Geopolymer Alliance; Particulate Fluids Processing Centre; Special Research Centre of the ARC FX This work was funded in part by the Australian Research Council (ARC) (including some funding via the Particulate Fluids Processing Centre, a Special Research Centre of the ARC), and in part by a studentship paid to Claire White by the Centre for Sustainable Resource Processing via the Geopolymer Alliance. NR 56 TC 19 Z9 19 U1 4 U2 49 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 EI 1547-5905 J9 AICHE J JI AICHE J. PD JUL PY 2012 VL 58 IS 7 BP 2241 EP 2253 DI 10.1002/aic.12743 PG 13 WC Engineering, Chemical SC Engineering GA 953VG UT WOS:000304900700024 ER PT J AU Ramirez, MS Xie, G Marshall, SH Hujer, KM Chain, PSG Bonomo, RA Tolmasky, ME AF Ramirez, M. S. Xie, G. Marshall, S. H. Hujer, K. M. Chain, P. S. G. Bonomo, R. A. Tolmasky, M. E. TI Multidrug-resistant (MDR) Klebsiella pneumoniae clinical isolates: a zone of high heterogeneity (HHZ) as a tool for epidemiological studies SO CLINICAL MICROBIOLOGY AND INFECTION LA English DT Article DE Genomic analysis; ICE; Klebsiella pneumoniae; NDM-1; optical map ID LIVER-ABSCESS; MENINGITIS AB Clin Microbiol Infect 2012; 18: E254E258 Abstract Comparison of genome-wide, high-resolution restriction maps of Klebsiella pneumoniae clinical isolates, including an NDM-1 producer, and in silico-generated restriction maps of sequenced genomes revealed a highly heterogeneous region we designated the high heterogeneity zone (HHZ). The HHZ consists of several regions, including a hot spot prone to insertions and other rearrangements. The HHZ is a characteristic genomic area that can be used in the identification and tracking of outbreak-causing strains. C1 [Ramirez, M. S.; Tolmasky, M. E.] Calif State Univ Fullerton, Dept Biol Sci, Ctr Appl Biotechnol Studies, Fullerton, CA 92831 USA. [Ramirez, M. S.] UBA, Fac Med, Dept Microbiol, Buenos Aires, DF, Argentina. [Xie, G.; Chain, P. S. G.] Los Alamos Natl Lab, Genome Sci Grp, Los Alamos, NM USA. [Xie, G.; Chain, P. S. G.] Joint Genome Inst, Microbial Program, Walnut Creek, CA USA. [Marshall, S. H.; Hujer, K. M.; Bonomo, R. A.] Vet Affairs Med Ctr, Louis Stokes Cleveland Dept, Cleveland, OH USA. [Bonomo, R. A.] Case Western Reserve Univ, Sch Med, Dept Med, Cleveland, OH 44106 USA. [Bonomo, R. A.] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA. [Bonomo, R. A.] Case Western Reserve Univ, Sch Med, Dept Mol Biol, Cleveland, OH USA. [Bonomo, R. A.] Case Western Reserve Univ, Sch Med, Dept Microbiol, Cleveland, OH USA. RP Tolmasky, ME (reprint author), Calif State Univ Fullerton, Dept Biol Sci, Ctr Appl Biotechnol Studies, 800 N State Coll Blvd, Fullerton, CA 92831 USA. EM robert.bonomo@med.va.gov; mtolmasky@fullerton.edu RI chain, patrick/B-9777-2013; OI Chain, Patrick/0000-0003-3949-3634; xie, gary/0000-0002-9176-924X FU Public Health Service from National Institutes of Health [2R15AI047115]; US Department of Energy Joint Genome Institute through the Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Veterans Affairs Merit Review Program; Geriatric Research Education and Clinical Center [VISN 10]; PIP from CONICET [11420100100152]; National Institutes of Health [RO1 AI063517-01] FX This work was supported by Public Health Service grant 2R15AI047115 (to M. E. T.) from the National Institutes of Health, the US Department of Energy Joint Genome Institute through the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231, Veterans Affairs Merit Review Program (to R. A. B.), the National Institutes of Health grant RO1 AI063517-01 (to R. A. B.), and Geriatric Research Education and Clinical Center VISN 10 (R. A. B.). M. S. R. is a career investigator of CONICET and is funded by PIP grant 11420100100152 from CONICET. NR 22 TC 2 Z9 2 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1198-743X J9 CLIN MICROBIOL INFEC JI Clin. Microbiol. Infect. PD JUL PY 2012 VL 18 IS 7 BP E254 EP E258 DI 10.1111/j.1469-0691.2012.03886.x PG 5 WC Infectious Diseases; Microbiology SC Infectious Diseases; Microbiology GA 959BP UT WOS:000305285200012 PM 22551038 ER PT J AU Handley, KM Wrighton, KC Piceno, YM Andersen, GL DeSantis, TZ Williams, KH Wilkins, MJ N'Guessan, AL Peacock, A Bargar, J Long, PE Banfield, JF AF Handley, Kim M. Wrighton, Kelly C. Piceno, Yvette M. Andersen, Gary L. DeSantis, Todd Z. Williams, Kenneth H. Wilkins, Michael J. N'Guessan, A. Lucie Peacock, Aaron Bargar, John Long, Philip E. Banfield, Jillian F. TI High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE PhyloChip; microarray; subsurface; aquifer; acetate; bioremediation ID SULFATE-REDUCING BACTERIUM; URANIUM-CONTAMINATED GROUNDWATER; OIL SEPARATION SYSTEM; SP-NOV.; GEN. NOV.; SUBSURFACE SEDIMENT; U(VI) REDUCTION; ANAEROBIC DEGRADATION; MULTIVARIATE-ANALYSIS; COMB. NOV AB There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments, we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identified hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested that stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (e.g. Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). Data implies complex membership among highly stimulated taxa and, by inference, biogeochemical responses to acetate, a nonfermentable substrate. C1 [Handley, Kim M.; Wrighton, Kelly C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Piceno, Yvette M.; Andersen, Gary L.; DeSantis, Todd Z.; Williams, Kenneth H.; Banfield, Jillian F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wilkins, Michael J.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [N'Guessan, A. Lucie] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Peacock, Aaron] Haley & Aldrich, Oak Ridge, TN USA. [Bargar, John] Stanford Synchrotron Radiat Lightsource, Mol Environm & Interface Sci, Stanford, CA USA. [Long, Philip E.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99353 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Wilkins, Michael/A-9358-2013; Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014; Piceno, Yvette/I-6738-2016; Andersen, Gary/G-2792-2015; OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155; Piceno, Yvette/0000-0002-7915-4699; Andersen, Gary/0000-0002-1618-9827; Handley, Kim/0000-0003-0531-3009 FU Office of Science, Biological and Environmental Research, US Department of Energy FX Funding was provided by the Environmental and Remediation Sciences Program, Office of Science, Biological and Environmental Research, US Department of Energy. We thank Kate Campbell (US Geological Survey, Menlo Park) for her help with column design and Shuk Chan (University of California, Los Angeles) for help with field implementation. We also thank our anonymous reviewers for their helpful comments. NR 75 TC 35 Z9 36 U1 3 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD JUL PY 2012 VL 81 IS 1 SI SI BP 188 EP 204 DI 10.1111/j.1574-6941.2012.01363.x PG 17 WC Microbiology SC Microbiology GA 957SO UT WOS:000305183300018 PM 22432531 ER PT J AU Knaus, R Oefelein, J Pantano, C AF Knaus, Robert Oefelein, Joseph Pantano, Carlos TI On the Relationship Between the Statistics of the Resolved and True Rate of Dissipation of Mixture Fraction SO FLOW TURBULENCE AND COMBUSTION LA English DT Article DE Large-eddy simulation; Probability density function; Filtering; Turbulence theory ID LARGE-EDDY SIMULATION; DIRECT NUMERICAL SIMULATIONS; FILTERED DENSITY-FUNCTION; TURBULENT REACTING FLOWS; SCALAR-DISSIPATION; PASSIVE SCALAR; DIFFUSION FLAMES; CONSERVED SCALAR; LOCAL-STRUCTURE; HIGH-RESOLUTION AB The relationship between the one-point probability-density-function (PDF) of the dissipation rate of mixture fraction fluctuations and the corresponding resolved quantity available in large eddy simulation (LES) is analyzed. The investigation pursues two fronts: an a priori study using direct numerical simulation (DNS), and an analytic development that, using common turbulence physics simplifications, relates the one-point statistics of the resolved and true scalar dissipations. Particularly, the analysis reveals the connection between the multi-point correlations of the mixture fraction gradient and the one-point PDF of the resolved scalar dissipation. A DNS of a temporally evolving shear layer with and without heat release is used to quantify the accuracy of the analytical result. It is verified, both by filtering the DNS and from the theory, that increasing the filter cutoff width reduces the magnitude of the resolved scalar dissipation fluctuations, as expected and observed experimentally. Comparison with DNS indicates that the analytical relationship predicts the behavior of the resolved scalar dissipation PDF well at the center planes of the shear layer, where turbulence is locally more isotropic and homogeneous. Large-scale anisotropy and inhomogeneities in the DNS degrade the accuracy of the approximate analytical result close to the edges of the shear layer. These results may be improved with future investigations to account fully for the missing statistics in LES, which have the potential to allow a more accurate quantification of finite-rate chemistry effects in reacting flows. C1 [Knaus, Robert; Pantano, Carlos] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Oefelein, Joseph] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Pantano, C (reprint author), Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. EM cpantano@illinois.edu RI Pantano, Carlos/B-7571-2009 FU Combustion Research Facility at Sandia National Laboratories; U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; United States Department of Energy [DE-AC04-94-AL85000] FX The first author acknowledges the support of the Combustion Research Facility at Sandia National Laboratories through two summer internship programs. This research was partially supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences supported this work. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. NR 44 TC 3 Z9 3 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1386-6184 J9 FLOW TURBUL COMBUST JI Flow Turbul. Combust. PD JUL PY 2012 VL 89 IS 1 BP 37 EP 71 DI 10.1007/s10494-012-9391-2 PG 35 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 955XX UT WOS:000305055300003 ER PT J AU Flores, GE Shakya, M Meneghin, J Yang, ZK Seewald, JS Wheat, CG Podar, M Reysenbach, AL AF Flores, G. E. Shakya, M. Meneghin, J. Yang, Z. K. Seewald, J. S. Wheat, C. Geoff Podar, M. Reysenbach, A. -L. TI Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-arc basin SO GEOBIOLOGY LA English DT Article ID MID-ATLANTIC RIDGE; EAST PACIFIC RISE; 16S RIBOSOMAL-RNA; SP-NOV.; GEN.-NOV.; EPSILON-PROTEOBACTERIA; OKINAWA TROUGH; BLACK SMOKER; MARIANA ARC; OXIDIZING CHEMOLITHOAUTOTROPH AB Diverse microbial communities thrive on and in deep-sea hydrothermal vent mineral deposits. However, our understanding of the inter-field variability in these communities is poor, as limited sampling and sequencing efforts have hampered most previous studies. To explore the inter-field variability in these communities, we used barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA gene to characterize the archaeal and bacterial communities of over 30 hydrothermal deposit samples from six vent fields located along the Eastern Lau Spreading Center. Overall, the bacterial and archaeal communities of the Eastern Lau Spreading Center are similar to other active vent deposits, with a high diversity of Epsilonproteobacteria and thermophilic Archaea. However, the archaeal and bacterial communities from the southernmost vent field, Mariner, were significantly different from the other vent fields. At Mariner, the epsilonproteobacterial genus Nautilia and the archaeal family Thermococcaceae were prevalent in most samples, while Lebetimonas and Thermofilaceae were more abundant at the other vent fields. These differences appear to be influenced in part by the unique geochemistry of the Mariner fluids resulting from active degassing of a subsurface magma chamber. These results show that microbial communities associated with hydrothermal vent deposits in back-arc basins are taxonomically similar to those from mid-ocean ridge systems, but differences in geologic processes between vent fields in a back-arc basin can influence microbial community structure. C1 [Flores, G. E.; Meneghin, J.; Reysenbach, A. -L.] Portland State Univ, Dept Biol, Portland, OR 97207 USA. [Shakya, M.; Yang, Z. K.; Podar, M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Shakya, M.; Podar, M.] Univ Tennessee, Genome Sci & Technol Grad Program, Knoxville, TN USA. [Seewald, J. S.] WHOI, Dept Marine Chem & Geochem, Woods Hole, MA USA. [Wheat, C. Geoff] Univ Alaska Fairbanks, Global Undersea Res Unit, Moss Landing, CA USA. RP Reysenbach, AL (reprint author), Portland State Univ, Dept Biol, Portland, OR 97207 USA. EM reysenbacha@pdx.edu OI Podar, Mircea/0000-0003-2776-0205 FU United States National Science Foundation [OCE-0728391, OCE-0937404, OCE-1038090, OCE-1038124]; NSF IGERT; Deep Ocean Exploration Institute at Woods Hole Oceanographic Institution; Laboratory Directed Research and Development of Oak Ridge National Laboratory (ORNL) [DE-AC05-00OR22725] FX We thank the crew of the R/V Thomas G. Thompson and the DSROV Jason II for their assistance in obtaining the samples. We would also like to thank Noah Fierer, Christian Lauber, and Scott Bates for insightful discussion about these results. This research was supported by the United States National Science Foundation (OCE-0728391 and OCE-0937404 to A-L. R., OCE-1038090 to C. G. W., and OCE-1038124 to J.S.S). G. E. F. was also supported by an NSF IGERT fellowship. J.S.S was also supported by a grant from the Deep Ocean Exploration Institute at Woods Hole Oceanographic Institution. M. S., Z.K.Y., and M. P. were sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy under Contract No. DE-AC05-00OR22725. NR 72 TC 34 Z9 35 U1 2 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 EI 1472-4669 J9 GEOBIOLOGY JI Geobiology PD JUL PY 2012 VL 10 IS 4 BP 333 EP 346 DI 10.1111/j.1472-4669.2012.00325.x PG 14 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA 956HH UT WOS:000305080200006 PM 22443386 ER PT J AU Mitchell, AC Peterson, L Reardon, CL Reed, SB Culley, DE Romine, MR Geesey, GG AF Mitchell, A. C. Peterson, L. Reardon, C. L. Reed, S. B. Culley, D. E. Romine, M. R. Geesey, G. G. TI Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite SO GEOBIOLOGY LA English DT Article ID EXTRACELLULAR ELECTRON-TRANSFER; PUTREFACIENS MR-1; OXIDE REDUCTION; GEOBACTER-SULFURREDUCENS; BIOFILM FORMATION; METAL REDUCTION; FLOW CONDITIONS; IRON REDUCTION; STRAIN MR-1; SURFACE AB The iron-reducing bacterium Shewanella oneidensis MR-1 has the capacity to contribute to iron cycling over the long term by respiring on crystalline iron oxides such as hematite when poorly crystalline phases are depleted. The ability of outer membrane cytochromes OmcA and MtrC of MR-1 to bind to and transfer electrons to hematite has led to the suggestion that they function as terminal reductases when this mineral is used as a respiratory substrate. Differences in their redox behavior and hematite-binding properties, however, indicate that they play different roles in the electron transfer reaction. Here, we investigated how these differences in cytochrome behavior with respect to hematite affected biofilm development when the mineral served as terminal electron acceptor (TEA). Upon attachment to hematite, cells of the wild-type (WT) strain as well as those of a ?omcA mutant but not those of a ?mtrC mutant replicated and accumulated on the mineral surface. The results indicate that MtrC but not OmcA is required for growth when this mineral serves as TEA. While an OmcA deficiency did not impede cell replication and accumulation on hematite prior to achievement of a maximum surface cell density comparable to that established by WT cells, OmcA was required for efficient electron transfer and cell attachment to hematite once maximum surface cell density was achieved. OmcA may therefore play a role in overcoming barriers to electron transfer and cell attachment to hematite imposed by reductive dissolution of the mineral surface from cell respiration associated with achievement of high surface cell densities. C1 [Mitchell, A. C.; Peterson, L.; Geesey, G. G.] Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA. [Mitchell, A. C.; Peterson, L.; Geesey, G. G.] Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA. [Reardon, C. L.; Reed, S. B.; Culley, D. E.; Romine, M. R.] Pacific NW Natl Lab, Microbiol Grp, Richland, WA 99352 USA. RP Geesey, GG (reprint author), Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA. EM gill_g@erc.montana.edu OI Romine, Margaret/0000-0002-0968-7641 FU U.S. Department of Energy's (DOE) Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC05-76RLO1830] FX This research was performed as part of an EMSL Scientific Grand Challenge project at the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's (DOE) Office of Biological and Environmental Research Program and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO1830. NR 60 TC 10 Z9 11 U1 7 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 J9 GEOBIOLOGY JI Geobiology PD JUL PY 2012 VL 10 IS 4 BP 355 EP 370 DI 10.1111/j.1472-4669.2012.00321.x PG 16 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA 956HH UT WOS:000305080200008 PM 22360295 ER PT J AU Liao, SL Gopalsami, N Elmer, TW Koehl, ER Heifetz, A Avers, K Dieckman, E Raptis, AC AF Liao, Shaolin Gopalsami, Nachappa Elmer, Thomas W., II Koehl, Eugene R. Heifetz, Alexander Avers, Keenan Dieckman, Eric Raptis, Apostolos C. TI Passive Millimeter-Wave Dual-Polarization Imagers SO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT LA English DT Article; Proceedings Paper CT 6th IEEE International Symposium on Medical Measurements and Applications (MeMeA) CY MAY 30-31, 2011 CL Bari, ITALY SP IEEE, IEEE Instrumentat & Measurement Soc (IMS) DE Imaging; millimeter-wave (mmW); polarization; radiometer AB We have developed two passive millimeter-wave imagers for terrestrial remote sensing: one is an integrated imaging and spectroscopy system in the 146-154-GHz range with 16 channels of 500-MHz bandwidth each, and the other is a single-channel dual-polarized imaging radiometer in the 70-100-GHz range. The imaging in both systems is implemented through translation of a 15-cm Gaussian dielectric imaging lens. We compared the outdoor images of objects such as car, vegetation, sky, and ground by both the systems under various weather conditions, including clear, cloudy, and rainy times. A ray-tracing simulation with radiative transfer equation was used to quantify the polarization diversity of the acquired images. C1 [Liao, Shaolin; Gopalsami, Nachappa; Elmer, Thomas W., II; Koehl, Eugene R.; Heifetz, Alexander; Raptis, Apostolos C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Avers, Keenan] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Dieckman, Eric] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. RP Liao, SL (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gopalsami@anl.gov OI Elmer, Thomas/0000-0003-0363-5928 NR 16 TC 10 Z9 10 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9456 J9 IEEE T INSTRUM MEAS JI IEEE Trans. Instrum. Meas. PD JUL PY 2012 VL 61 IS 7 BP 2042 EP 2050 DI 10.1109/TIM.2012.2183032 PG 9 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 957HX UT WOS:000305153000024 ER PT J AU Xu, ZJ AF Xu, Zhijie TI A Reduced-Boundary-Function Method for Convective Heat Transfer With Axial Heat Conduction and Viscous Dissipation SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE heat transport; convective; conduction; multiscale; homogenization ID EXTENDED GRAETZ PROBLEM; SLIP-FLOW AB We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x, r, t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T-a(x, t) equivalent to T(x, r - a, t) and/or T-0(x, t) equivalent to T(x, r = 0, t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x, r, t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method. [DOI: 10.1115/1.4006112] C1 [Xu, Zhijie] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Computat Math Grp, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM zhijie.xu@pnnl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 NR 20 TC 7 Z9 7 U1 0 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD JUL PY 2012 VL 134 IS 7 AR 071705 DI 10.1115/1.4006112 PG 7 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 954CE UT WOS:000304922700011 ER PT J AU Nowak-Lovato, KL Hickmott, AJ Maity, TS Bulyk, ML Dunbar, J Hong-Geller, E AF Nowak-Lovato, Kristy L. Hickmott, Alexana J. Maity, Tuhin S. Bulyk, Martha L. Dunbar, John Hong-Geller, Elizabeth TI DNA binding site analysis of Burkholderia thailandensis response regulators SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Response regulator; Protein-binding microarray; Promoter binding site; Burkholderia; Two component systems; Gene regulation ID SIGNAL-TRANSDUCTION PATHWAYS; TRANSCRIPTION FACTORS; ESCHERICHIA-COLI; BORDETELLA-PERTUSSIS; 2-COMPONENT SYSTEMS; PROTEIN; PHOSPHORYLATION; RECOGNITION; IDENTIFICATION; SPECIFICITIES AB Bacterial response regulators (RR) that function as transcription factors in two component signaling pathways are crucial for ensuring tight regulation and coordinated expression of the genome. Currently, consensus DNA binding sites in the promoter for very few bacterial RRs have been identified. A systematic method to characterize these DNA binding sites for RRs would enable prediction of specific gene expression patterns in response to extracellular stimuli. To identify RR DNA binding sites, we functionally activated RRs using beryllofluoride and applied them to a protein-binding microarray (PBM) to discover DNA binding motifs for RRs expressed in Burkholderia, a Gram-negative bacterial genus. We identified DNA binding motifs for conserved RRs in Burkholderia thailandensis, including KdpE, RisA, and NarL, as well as for a previously uncharacterized RR at locus BTH_II2335 and its ortholog in the human pathogen Burkholderia pseudomallei at locus BPSS2315. We further demonstrate RR binding of predicted genomic targets for the two orthologs using gel shift assays and reveal a pattern of RR regulation of expression of self and other two component systems. Our studies illustrate the use of PBMs to identify DNA binding specificities for bacterial RRs and enable prediction of gene regulatory networks in response to two component signaling. Published by Elsevier B.V. C1 [Nowak-Lovato, Kristy L.; Hickmott, Alexana J.; Maity, Tuhin S.; Dunbar, John; Hong-Geller, Elizabeth] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Bulyk, Martha L.] Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA 02115 USA. [Bulyk, Martha L.] Harvard Univ, Sch Med, Harvard MIT Div Hlth Sci & Technol, Boston, MA 02115 USA. [Bulyk, Martha L.] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA. RP Hong-Geller, E (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM ehong@lanl.gov FU Los Alamos National Laboratory [20080138DR] FX This work was supported by a Los Alamos National Laboratory Directed Research and Development project (20080138DR). All authors state that there are no conflicts of interest. NR 44 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD JUL PY 2012 VL 90 IS 1 BP 46 EP 52 DI 10.1016/j.mimet.2012.03.019 PG 7 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 958SG UT WOS:000305260400008 PM 22521922 ER PT J AU Tolmachev, AV Robinson, EW Wu, S Smith, RD Futrell, JH Pasa-Tolic, L AF Tolmachev, Aleksey V. Robinson, Errol W. Wu, Si Smith, Richard D. Futrell, Jean H. Pasa-Tolic, Ljiljana TI Angular Averaged Profiling of the Radial Electric Field in Compensated FTICR Cells SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE FTICR; Modeling; Potential calculations ID DYNAMIC HARMONIZATION AB A recent publication from this laboratory reported a theoretical analysis comparing approaches for creating harmonic ICR cells. We considered two examples of static segmented cells-namely, a seven segment cell developed in this laboratory and one described by Rempel et al., along with a recently described dynamically harmonized cell by Boldin and Nikolaev. This conceptual design for a dynamically harmonized cell has now been reduced to practice and first experimental results obtained with this cell were recently reported in this journal; this publication reported details of cell construction and described its performance in a 7 tesla Fourier transform mass spectrometer. We describe the extension of theoretical analysis creating harmonic ICR cells to include angular-averaged radial electric field calculations and a discussion of the influence of trapping plates. C1 [Tolmachev, Aleksey V.; Robinson, Errol W.; Wu, Si; Smith, Richard D.; Futrell, Jean H.; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tolmachev, AV (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM tolmachev@pnnl.gov RI Robinson, Errol/I-3148-2012; Smith, Richard/J-3664-2012 OI Robinson, Errol/0000-0003-0696-6239; Smith, Richard/0000-0002-2381-2349 FU US Department of Energy (DOE) Office of Biological and Environmental Research; NIH National Center for Research Resources [RR018522]; DOE [DE-AC05-76RLO 1830] FX The authors acknowledge that portions of this work were supported by the US Department of Energy (DOE) Office of Biological and Environmental Research and by the NIH National Center for Research Resources (RR018522). Work was performed in the Environmental Molecular Science Laboratory (EMSL), a DOE national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program national laboratory operated by Battelle for the DOE under contract DE-AC05-76RLO 1830. NR 5 TC 4 Z9 4 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUL PY 2012 VL 23 IS 7 BP 1169 EP 1172 DI 10.1007/s13361-012-0395-x PG 4 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 958JC UT WOS:000305231700002 PM 22565507 ER PT J AU Sabharwall, P Kim, ES Patterson, M AF Sabharwall, Piyush Kim, Eung Soo Patterson, Mike TI Evaluation methodology for advance heat exchanger concepts using analytical hierarchy process SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB This study describes how the major alternatives and criteria being developed for the heat exchangers for next generation nuclear reactors are evaluated using the analytical hierarchy process (AHP). This evaluation was conducted as an aid in developing and selecting heat exchangers for integrating power production and process heat applications with next generation nuclear reactors. The basic setup for selecting the most appropriate heat exchanger option was established with evaluation goals, alternatives, and criteria. The two potential candidates explored in this study were shell-and-tube (helical coiled) and printed circuit heat exchangers. Based on study results, the shell-and-tube (helical coiled) heat exchanger is recommended for a demonstration reactor in the near term, mainly because of its reliability. Published by Elsevier B.V. C1 [Sabharwall, Piyush; Patterson, Mike] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Kim, Eung Soo] Seoul Natl Univ, Seoul, South Korea. RP Sabharwall, P (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM piyush.sabharwall@inl.gov OI Patterson, Michael/0000-0002-8698-3284 NR 9 TC 1 Z9 1 U1 0 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL PY 2012 VL 248 BP 108 EP 116 DI 10.1016/j.nucengdes.2012.03.030 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 956NJ UT WOS:000305096100013 ER PT J AU Stapleton, A Vaughan, B Xue, BF Sesa, E Burke, K Zhou, XJ Bryant, G Werzer, O Nelson, A Kilcoyne, ALD Thomsen, L Wanless, E Belcher, W Dastoor, P AF Stapleton, Andrew Vaughan, Ben Xue, Bofei Sesa, Elisa Burke, Kerry Zhou, Xiaojing Bryant, Glenn Werzer, Oliver Nelson, Andrew Kilcoyne, A. L. David Thomsen, Lars Wanless, Erica Belcher, Warwick Dastoor, Paul TI A multilayered approach to polyfluorene water-based organic photovoltaics SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Organic solar cells; Nanoparticles; Morphology; Solar paint ID POLYMER SOLAR-CELLS; PHASE-SEPARATION; AQUEOUS DISPERSION; BLENDS; PERFORMANCE; NANOPARTICLES; DEVICES; FABRICATION; GENERATION; MORPHOLOGY AB Water-based polymer nanoparticle dispersions offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic (OPV) devices; namely how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. However, to date, the efficiencies of nanoparticulate-based devices have been inferior to that of the corresponding bulk-heterojunction devices. Here we present an approach for producing optimised OPV devices from polymer nanoparticles via the fabrication of multilayered device architectures. We show that by controlling both nanoparticle morphology and inter-particle interactions it is now possible to build polyfluorene OPV devices from aqueous dispersions of nanoparticles that are more efficient than the corresponding bulk heterojunction devices. In particular we show that: (1) the polyfluorene nanoparticle morphology is suited to effective charge separation, (2) thermal treatment of the deposited layers results in improved interparticle connectivity and effective charge transport, and (3) the optimal device thickness is a delicate balance between the repair of layer defects and the creation of stress cracking in the nanoparticulate film. As such, this work offers insights for the development of printable photovoltaic devices based on water-dispersed nanoparticulate formulations. (C) 2012 Elsevier B.V. All rights reserved. C1 [Stapleton, Andrew; Vaughan, Ben; Xue, Bofei; Sesa, Elisa; Burke, Kerry; Zhou, Xiaojing; Bryant, Glenn; Werzer, Oliver; Wanless, Erica; Belcher, Warwick; Dastoor, Paul] Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia. [Xue, Bofei; Burke, Kerry] CSIRO Energy Technol, Newcastle, NSW 2300, Australia. [Nelson, Andrew] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia. [Kilcoyne, A. L. David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Thomsen, Lars] Australian Synchrotron Co Ltd, Clayton, Vic 3168, Australia. RP Dastoor, P (reprint author), Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia. EM Paul.Dastoor@newcastle.edu.au RI Nelson, Andrew/C-2545-2012; Thomsen, Lars/B-3016-2012; Burke, Kerry/C-9627-2011; DASTOOR, PAUL/G-7189-2013; WANLESS, ERICA/G-7089-2013; Stapleton, Andrew /M-7611-2014; Werzer, Oliver/A-2752-2014; Kilcoyne, David/I-1465-2013 OI Nelson, Andrew/0000-0002-4548-3558; Burke, Kerry/0000-0002-4977-1426; WANLESS, ERICA/0000-0003-0869-4396; Stapleton, Andrew /0000-0003-1198-1572; Werzer, Oliver/0000-0003-0732-4422; FU University of Newcastle; Commonwealth of Australia; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The University of Newcastle is gratefully acknowledged for PhD scholarships (AS and BV). We acknowledge financial support from the Commonwealth of Australia through the Access to Major Research Facilities Programme. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. X-ray photoelectron spectroscopy measurements were undertaken on the soft X-ray beamline at the Australian Synchrotron, Victoria, Australia. NR 48 TC 35 Z9 35 U1 2 U2 61 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUL PY 2012 VL 102 BP 114 EP 124 DI 10.1016/j.solmat.2012.03.016 PG 11 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 956OY UT WOS:000305100200019 ER PT J AU Li, TW Benyahia, S AF Li, Tingwen Benyahia, Sofiane TI Revisiting Johnson and Jackson boundary conditions for granular flows SO AICHE JOURNAL LA English DT Article DE granular flow; boundary condition; two-fluid model; rigid-body theory; specularity coefficient ID CIRCULATING FLUIDIZED-BED; PARTICLE-WALL COLLISIONS; KINETIC-THEORY; VELOCITY DISTRIBUTION; SPHERICAL-PARTICLES; ELASTIC SPHERES; OBLIQUE IMPACT; MODEL; FLAT; FLUX AB In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided. Published 2011 American Institute of Chemical Engineers, 2012 C1 [Li, Tingwen; Benyahia, Sofiane] US DOE, Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Li, Tingwen] URS Corp, Morgantown, WV 26505 USA. RP Li, TW (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM tingwen.li@ur.netl.doe.gov RI Li, Tingwen/D-2173-2012 OI Li, Tingwen/0000-0002-1900-308X FU National Energy Technology Laboratory under RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in advanced multiphase flow simulation under the RES contract DE-FE0004000. The authors acknowledge helpful comments provided by Drs. Madhava Syamlal, Thomas O'Brien, and N'dri Arthur Konan. NR 39 TC 30 Z9 31 U1 2 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 J9 AICHE J JI AICHE J. PD JUL PY 2012 VL 58 IS 7 BP 2058 EP 2068 DI 10.1002/aic.12728 PG 11 WC Engineering, Chemical SC Engineering GA 953VG UT WOS:000304900700009 ER PT J AU Regelsberger, J Milovanovic, P Schmidt, T Hahn, M Zimmermann, EA Tsokos, M Zustin, J Ritchie, RO Amling, M Busse, B AF Regelsberger, J. Milovanovic, P. Schmidt, T. Hahn, M. Zimmermann, E. A. Tsokos, M. Zustin, J. Ritchie, R. O. Amling, M. Busse, B. TI CHANGES TO THE CELL, TISSUE AND ARCHITECTURE LEVELS IN CRANIAL SUTURE SYNOSTOSIS REVEAL A PROBLEM OF TIMING IN BONE DEVELOPMENT SO EUROPEAN CELLS & MATERIALS LA English DT Article DE Human craniosynostosis; sagittal suture; bone structure; bone histomorphometry; biomineralisation AB Premature fusion of cranial sutures is a common problem with an incidence of 3-5 per 10,000 live births. Despite progress in understanding molecular/genetic factors affecting suture function, the complex process of premature fusion is still poorly understood. In the present study, corresponding excised segments of nine patent and nine prematurely fused sagittal sutures from infants (age range 3-7 months) with a special emphasis on their hierarchical structural configuration were compared. Cell, tissue and architecture characteristics were analysed by transmitted and polarised light microscopy, 2D-histomorphometry, backscattered electron microscopy and energy-dispersive-x-ray analyses. Apart from wider sutural gaps, patent sutures showed histologically increased new bone formation compared to reduced new bone formation and osseous edges with a more mature structure in the fused portions of the sutures. This pattern was accompanied by a lower osteocyte lacunar density and a higher number of evenly mineralised osteons, reflecting pronounced lamellar bone characteristics along the prematurely fused sutures. In contrast, increases in osteocyte lacunar number and size accompanied by mineralisation heterogeneity and randomly oriented collagen fibres predominantly signified woven bone characteristics in patent, still growing suture segments. The already established woven-to-lamellar bone transition provides evidence of advanced bone development in synostotic sutures. Since structural and compositional features of prematurely fused sutures did not show signs of pathological/defective ossification processes, this supports the theory of a normal ossification process in suture synostosis - just locally commencing too early. These histomorphological findings may provide the basis for a better understanding of the pathomechanism of craniosynostosis, and for future strategies to predict suture fusion and to determine surgical intervention. C1 [Regelsberger, J.; Schmidt, T.] Univ Med Ctr Hamburg Eppendorf, Dept Neurol Surg, D-22529 Hamburg, Germany. [Milovanovic, P.] Univ Belgrade, Sch Med, Inst Anat, Lab Anthropol, Belgrade, Serbia. [Milovanovic, P.; Hahn, M.; Amling, M.; Busse, B.] Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, D-22529 Hamburg, Germany. [Zimmermann, E. A.; Ritchie, R. O.; Busse, B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tsokos, M.] Charite, Inst Legal Med & Forens Sci, D-13353 Berlin, Germany. [Zustin, J.] Univ Med Ctr Hamburg Eppendorf, Inst Pathol, D-22529 Hamburg, Germany. RP Busse, B (reprint author), Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech IOBM, Lottestr 59, D-22529 Hamburg, Germany. EM b.busse@uke.uni-hamburg.de RI Zimmermann, Elizabeth/A-4010-2015; Busse, Bjorn/O-8462-2016 OI Busse, Bjorn/0000-0002-3099-8073 FU Ministry of Science of Republic of Serbia [III45005] FX The authors would like to thank the scientific editor, Prof. Dr. Hanns Plenk, for many detailed and very helpful comments. Moreover, we thank Marija Djuric and Brian Panganiban who provided helpful comments and research support on the manuscript. Petar Milovanovic thanks the Ministry of Science of Republic of Serbia, Pr.Nr: III45005. Bjorn Busse is a fellow of the DFG (Deutsche Forschungsgemeinschaft; BU 2562/1-1). NR 97 TC 7 Z9 7 U1 0 U2 3 PU AO RESEARCH INSTITUTE DAVOS-ARI PI DAVOS PA CLAVADELERSTRASSE 8, DAVOS, CH 7270, SWITZERLAND SN 1473-2262 J9 EUR CELLS MATER JI Eur. Cells Mater. PD JUL-DEC PY 2012 VL 24 BP 441 EP 458 PG 18 WC Cell & Tissue Engineering; Engineering, Biomedical; Materials Science, Biomaterials SC Cell Biology; Engineering; Materials Science GA V30XB UT WOS:000208847600019 PM 23188743 ER PT J AU Abelev, B Adam, J Adamova, D Adare, AM Aggarwal, MM Rinella, GA Agocs, AG Agostinelli, A Salazar, SA Ahammed, Z Masoodi, AA Ahmad, N Ahn, SA Ahn, SU Akindinov, A Aleksandrov, D Alessandro, B Molina, RA Alici, A Alkin, A Avina, EA Alme, J Alt, T Altini, V Altinpinar, S Altsybeev, I Andrei, C Andronic, A Anguelov Anielski, J Anson, C Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arbor, N Arcelli, S Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Bach, M Badala, A Baek, YW Bailhache, R Bala, R Ferroli, RB Baldisseri, A Baldit, A Pedrosa, FBD Ban, J Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, IG Beck, H Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bergognon, AAE Berzano, D Betev, L Bhasin, A Bhati, AK Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Bock, N Bottger, S Bogdanov, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bose, S Bossu, F Botje, M Boyer, B Braidot, E Braun-Munzinger, P Bregant, M Breitner, T Browning, TA Broz, M Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Bugaiev, K Busch, O Buthelezi, Z Orduna, DC Caffarri, D Cai, X Caines, H Villar, EC Camerini, P Roman, VC Romeo, GV Carena, W Carena, F Carlin, N Carminati, F Montoya, CAC Diaz, AC Castellanos, JC Hernandez, JFC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Chawla, I Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Coccetti, F Colamaria Colella, D Balbastre, GC del Valle, ZC Constantin, P Contin, G Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Cotallo, ME Crescio, E Crochet, P Alaniz, EC Cuautle, E Cunqueiro, L Dainese, A Dalsgaard, HH Danu, A Das, D Das, I Das, K Dash, S Dash, A De, S de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D Delagrange, H Deloff, A Demanov, V De Marco, N Denes, E De Pasquale, S Deppman, A Erasmo, GD de Rooij, R Corchero, MAD Di Bari, D Dietel, T Di Liberto, S Di Mauro, A Di Nezza, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Dominguez, I Donigus, B Dordic, O Driga, O Dubey, AK Ducroux, L Dupieux, P Majumdar, MRD Majumdar, AKD Elia, D Emschermann, D Engel, H Erdal, HA Espagnon, B Estienne, M Esumi, S Evans, D Eyyubova, G Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fearick, R Fedunov, A Fehlker, D Feldkamp, L Felea, D Fenton-Olsen, B Feofilov, G Tellez, AF Ferretti, R Ferretti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, A Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Garishvili, I Gerhard, J Germain, M Geuna, C Gheata, M Gheata, A Ghidini, B Ghosh, P Gianotti, P Girard, MR Giubellino, P Gladysz-Dziadus, E Glassel, P Gomez, R Gonschior, A Ferreiro, EG Gonzalez-Trueba, LH Gonzalez-Zamora, P Gorbunov, S Goswami, A Gotovac, S Grabski, V Graczykowski, LK Grajcarek, R Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gros, P Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Gutierrez, CG Guerzoni, B Guilbaud, M Gulbrandsen, K Gunji, T Gupta, A Gupta, R Gutbrod, H Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Han, BH Hanratty, LD Hansen, A Harmanova, Z Harris, JW Hartig, M Hasegan, D Hatzifotiadou, D Hayrapetyan, A Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Herrmann, N Hess, BA Hetland, KF Hicks, B Hille, PT Hippolyte, B Horaguchi, T Hori, Y Hristov, P Hrivnacova, I Huang, M Humanic, TJ Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Incani, E Innocenti, GM Innocenti, PG Ippolitov, M Irfan, M Ivan, C Ivanov, M Ivanov, V Ivanov, A Ivanytskyi, O Jacholkowski, A Jacobs, PM Jang, HJ Jangal, S Janik, MA Janik, R Jayarathna, PHSY Jena, S Jha, DM Bustamante, RTJ Jirden, L Jones, PG Jung, H Jusko, A Kaidalov, AB Kakoyan, V Kalcher, S Kalinak, P Kalliokoski, T Kalweit, A Kanaki, K Kang, JH Kaplin, V Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Khan, P Khan, MM Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, M Kim, S Kim, DJ Kim, B Kim, T Kim, DW Kim, JH Kim, JS Kim, M Kim, SH Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Kluge, A Knichel, ML Knospe, AG Koch, K Kohler, MK Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Korneev, A Kour, R Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kramer, F Kraus, I Krawutschke, T Krelina, M Kretz, M Krivda, M Krizek, F Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kuhn, C Kuijer, PG Kulakov, I Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, V Kushpil, S Kvaerno, H Kweon, MJ Kwon, Y de Guevara, PL Lakomov, I Langoy, R La Pointe, SL Lara, C Lardeux, A La Rocca, P Lazzeroni, C Lea, R Le Bornec, Y Lechman, M Lee, SC Lee, KS Lee, GR Lefevre, F Lehnert, J Leistam, L Lenhardt, M Lenti, V Leon, H Leoncino, M Monzon, IL Vargas, HL Levai, P Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Liu, L Loenne, PI Loggins, VR Loginov, V Lohn, S Lohner, D Loizides, C Loo, KK Lopez, X Torres, EL Lovhoiden, G Lu, XG Luettig, P Lunardon, M Luo, J Luparello, G Luquin, L Luzzi, C La, R La, K Madagodahettige-Don, DM Maevskaya, A Mager, M Mahapatra, DP Maire, A Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Tobon, CAM Markert, C Martashvili, I Martinengo, P Martinez, MI Davalos, AM Garcia, GM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastromarco, M Mastroserio, A Matthews, ZL Matyja, A Mayani, D Mayer, C Mazer, J Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitu, C Mlynarz, J Mohanty, AK Mohanty, B Molnar, L Zetina, LM Monteno, M Montes, E Moon, T Morando, M De Godoy, DAM Moretto, S Morsch, A Muccifora, V Mudnic, E Muhuri, S Mukherjee, M Muller, H Munhoz, MG Musa, L Musso, A Nandi, BK Nania, R Nappi, E Nattrass, C Naumov, NP Navin, S Nayak, TK Nazarenko, S Nazarov, G Nedosekin, A Niculescu, M Nielsen, BS Niida, T Nikolaev, S Nikolic, V Nikulin, V Nikulin, S Nilsen, BS Nilsson, MS Noferini, F Nomokonov, P Nooren, G Novitzky, N Nyanin, A Nyatha, A Nygaard, C Nystrand, J Ochirov, A Oeschler, H Oh, SK Oh, S Oleniacz, J Oppedisano, C Velasquez, AO Ortona, G Oskarsson, A Ostrowski, P Otwinowski, J Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Paic, G Painke, F Pajares, C Pal, SK Pal, S Palaha, A Palmeri, A Papikyan, V Pappalardo, GS Park, WJ Passfeld, A Pastircak, B Patalakha, DI Paticchio, V Pavlinov, A Pawlak, T Peitzmann, T Da Costa, HP Filho, EPD Peresunko, D Lara, CEP Lezama, EP Perini, D Perrino, D Peryt, W Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrov, P Petrovici, M Petta, C Piano, S Piccotti, A Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piyarathna, DB Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polak, K Polichtchouk, B Pop, A Porteboeuf-Houssais, S Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puchagin, S Puddu, G Teixido, JP Pulvirenti, A Punin, V Putis, M Putschke, J Quercigh, E Qvigstad, H Rachevski, A Rademakers, A Radomski, S Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Reyes, AR Raniwala, S Raniwala, R Rasanen, SS Rascanu, BT Rathee, D Read, KF Real, JS Redlich, K Reichelt, P Reicher, M Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riccati, L Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Rabacal, BRF Cahuantzi, MR Manso, AR Roed, K Rohr, D Rohrich, D Romita, R Ronchetti, F Rosnet, P Rossegger, S Rossi, A Roy, C Roy, P Montero, AJR Rui, R Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahoo, R Sahu, PK Saini, J Sakaguchi, H Sakai, S Sakata, D Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Sano, S Santo, R Santoro, R Sarkamo, J Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schreiner, S Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, PA Scott, R Segato, G Selyuzhenkov, I Senyukov, S Seo, J Serci, S Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Sharma, N Sharma, S Rohni, S Shigaki, K Shimomura, M Shtejer, K Sibiriak, Y Siciliano, M Sicking, E Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, RJM Sogaard, C Soltz, R Son, H Song, J Song, M Soos, C Soramel, F Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinbeck, T Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strabykin, K Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Sukhorukov, M Sultanov, R Sumbera, M Susa, T Toledo, AS Szarka, I Szczepankiewicz, A Szostak, A Szymanski, M Takahashi, J Takaki, JDT Tauro, A Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Tieulent, R Timmins, AR Tlusty, D Toia, A Torii, H Toscano, L Truesdale, D Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ulery, J Ullaland, K Ulrich, J Uras, A Urban, J Urciuoli, GM Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S vander Kolk, N Vande Vyvre, P van Leeuwen, M Vannucci, L Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vickovic, L Viesti, G Vikhlyantsev, O Vilakazi, Z Baillie, OV Vinogradov, L Vinogradov, Y Vinogradov, A Virgili, T Viyogi, YP Vodopyanov, A Voloshin, K Voloshin, S Volpe, G von Haller, B Vranic, D Ovrebekk, G Vrlakova, J Vulpescu, B Vyushin, A Wagner, V Wagner, B Wan, R Wang, M Wang, D Wang, Y Watanabe, K Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilk, A Wilkinson, J Williams, MCS Windelband, B Karampatsos, LX Yaldo, CG Yamaguchi, Y Yang, H Yang, S Yasnopolskiy, S Yi, J Yin, Z Yoo, IK Yoon, J Yu, W Yuan, X Yushmanov, I Zach, C Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zelnicek, P Zgura, IS Zhalov, M Zhang, H Zhang, X Zhou, F Zhou, D Zhou, Y Zhu, X Zhu, J Zichichi, A Zimmermann, A Zinovjev, G Zoccarato, Y Zynovyev, M Zyzak, M AF Abelev, B. Adam, J. Adamova, D. Adare, A. M. Aggarwal, M. M. Rinella, G. Aglieri Agocs, A. G. Agostinelli, A. Salazar, S. Aguilar Ahammed, Z. Masoodi, A. Ahmad Ahmad, N. Ahn, S. A. Ahn, S. U. Akindinov, A. Aleksandrov, D. Alessandro, B. Molina, R. Alfaro Alici, A. Alkin, A. Almaraz Avina, E. Alme, J. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anson, C. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bailhache, R. Bala, R. Ferroli, R. Baldini Baldisseri, A. Baldit, A. Pedrosa, F. Baltasar Dos Santos Ban, J. Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Beck, H. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bergognon, A. A. E. Berzano, D. Betev, L. Bhasin, A. Bhati, A. K. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Belcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Bock, N. Boettger, S. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bose, S. Bossu, F. Botje, M. Boyer, B. Braidot, E. Braun-Munzinger, P. Bregant, M. Breitner, T. Browning, T. A. Broz, M. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Bugaiev, K. Busch, O. Buthelezi, Z. Orduna, D. Caballero Caffarri, D. Cai, X. Caines, H. Calvo Villar, E. Camerini, P. Roman, V. Canoa Romeo, G. Cara Carena, W. Carena, F. Carlin Filho, N. Carminati, F. Montoya, C.A. Carrillo Diaz, A. Casanova Castellanos, J. Castillo Hernandez, J. F. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Sanchez, C. Ceballos Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chawla, I. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Coccetti, F. Colamaria, F. Colella, D. Balbastre, G. Conesa del Valle, Z. Conesa Constantin, P. Contin, G. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Maldonado, I. Cortes Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cruz Alaniz, E. Cuautle, E. Cunqueiro, L. Dainese, A. Dalsgaard, H. H. Danu, A. Das, D. Das, I. Das, K. Dash, S. Dash, A. De, S. de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. Delagrange, H. Deloff, A. Demanov, V. De Marco, N. Denes, E De Pasquale, S. Deppman, A. Erasmo, G D de Rooij, R. Corchero, M.A. Diaz Di Bari, D. Dietel, T. Di Liberto, S. Di Mauro, A. Di Nezza, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Dominguez, I. Doenigus, B. Dordic, O. Driga, O. Dubey, A. K. Ducroux, L. Dupieux, P. Majumdar, M. R. Dutta Majumdar, A. K. Dutta Elia, D. Emschermann, D. Engel, H. Erdal, H. A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Eyyubova, G. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fearick, R. Fedunov, A. Fehlker, D. Feldkamp, L. Felea, D. Fenton-Olsen, B. Feofilov, G. Tellez, A. Fernandez Ferretti, R. Ferretti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Garishvili, I. Gerhard, J. Germain, M. Geuna, C. Gheata, M. Gheata, A. Ghidini, B. Ghosh, P. Gianotti, P. Girard, M. R. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Gomez, R. Gonschior, A. Ferreiro, E. G. Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gorbunov, S. Goswami, A. Gotovac, S. Grabski, V. Graczykowski, L. K. Grajcarek, R. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhaus, J. F. Grossiord, J.-Y. Grosso, R. Guber, F. Guernane, R. Gutierrez, C. Guerra Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Gutbrod, H. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Han, B. H. Hanratty, L. D. Hansen, A. Harmanova, Z. Harris, J. W. Hartig, M. Hasegan, D. Hatzifotiadou, D. Hayrapetyan, A. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Herrmann, N. Hess, B. A. Hetland, K. F. Hicks, B. Hille, P. T. Hippolyte, B. Horaguchi, T. Hori, Y. Hristov, P. Hrivnacova, I. Huang, M. Humanic, T. J. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Incani, E. Innocenti, G. M. Innocenti, P. G. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, M. Ivanov, V. Ivanov, A. Ivanytskyi, O. Jacholkowski, A. Jacobs, P. M. Jang, H. J. Jangal, S. Janik, M. A. Janik, R. Jayarathna, P. H. S. Y. Jena, S. Jha, D. M. Bustamante, R. T. Jimenez Jirden, L. Jones, P. G. Jung, H. Jusko, A. Kaidalov, A. B. Kakoyan, V. Kalcher, S. Kalinak, P. Kalliokoski, T. Kalweit, A. Kanaki, K. Kang, J. H. Kaplin, V. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Khan, P. Khan, M. M. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, M. Kim, S. Kim, D. J. Kim, B. Kim, T. Kim, D. W. Kim, J. H. Kim, J. S. Kim, M. Kim, S. H. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Kluge, A. Knichel, M. L. Knospe, A. G. Koch, K. Koehler, M. K. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Korneev, A. Kour, R. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kraus, I. Krawutschke, T. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kuhn, C. Kuijer, P. G. Kulakov, I. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, V. Kushpil, S. Kvaerno, H. Kweon, M. J. Kwon, Y. de Guevara, P. Ladron Lakomov, I. Langoy, R. La Pointe, S. L. Lara, C. Lardeux, A. La Rocca, P. Lazzeroni, C. Lea, R. Le Bornec, Y. Lechman, M. Lee, S. C. Lee, K. S. Lee, G. R. Lefevre, F. Lehnert, J. Leistam, L. Lenhardt, M. Lenti, V. Leon, H. Leoncino, M. Monzon, I. Leon Vargas, H. Leon Levai, P. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Liu, L. Loenne, P. I. Loggins, V. R. Loginov, V. Lohn, S. Lohner, D. Loizides, C. Loo, K. K. Lopez, X. Torres, E. Lopez Lovhoiden, G. Lu, X.-G. Luettig, P. Lunardon, M. Luo, J. Luparello, G. Luquin, L. Luzzi, C. La, R. La, K. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Malaev, M. Cervantes, I. Maldonado Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Tobon, C. A. Marin Markert, C. Martashvili, I. Martinengo, P. Martinez, M. I. Davalos, A. Martinez Garcia, G. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastromarco, M. Mastroserio, A. Matthews, Z. L. Matyja, A. Mayani, D. Mayer, C. Mazer, J. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitu, C. Mlynarz, J. Mohanty, A. K. Mohanty, B. Molnar, L. Zetina, L. Montano Monteno, M. Montes, E. Moon, T. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morsch, A. Muccifora, V. Mudnic, E. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Musa, L. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Naumov, N. P. Navin, S. Nayak, T. K. Nazarenko, S. Nazarov, G. Nedosekin, A. Niculescu, M. Nielsen, B. S. Niida, T. Nikolaev, S. Nikolic, V. Nikulin, V. Nikulin, S. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Novitzky, N. Nyanin, A. Nyatha, A. Nygaard, C. Nystrand, J. Ochirov, A. Oeschler, H. Oh, S. K. Oh, S. Oleniacz, J. Oppedisano, C. Velasquez, A. Ortiz Ortona, G. Oskarsson, A. Ostrowski, P. Otwinowski, J. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. K. Pal, S. Palaha, A. Palmeri, A. Papikyan, V. Pappalardo, G. S. Park, W. J. Passfeld, A. Pastircak, B. Patalakha, D. I. Paticchio, V. Pavlinov, A. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira Filho, E. Pereira De Oliveira Peresunko, D. Lara, C. E. Perez Lezama, E. Perez Perini, D. Perrino, D. Peryt, W. Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrov, P. Petrovici, M. Petta, C. Piano, S. Piccotti, A. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piyarathna, D. B. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polak, K. Polichtchouk, B. Pop, A. Porteboeuf-Houssais, S. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puchagin, S. Puddu, G. Teixido, J. Pujol Pulvirenti, A. Punin, V. Putis, M. Putschke, J. Quercigh, E. Qvigstad, H. Rachevski, A. Rademakers, A. Radomski, S. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Reyes, A. Ramirez Raniwala, S. Raniwala, R. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Real, J. S. Redlich, K. Reichelt, P. Reicher, M. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J.-P. Reygers, K. Riccati, L. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rabacal, B. Rodrigues Fernandes Cahuantzi, M. Rodriguez Manso, A. Rodriguez Roed, K. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Rosnet, P. Rossegger, S. Rossi, A. Roy, C. Roy, P. Montero, A. J. Rubio Rui, R. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahoo, R. Sahu, P. K. Saini, J. Sakaguchi, H. Sakai, S. Sakata, D. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sandor, L. Sandoval, A. Sano, M. Sano, S. Santo, R. Santoro, R. Sarkamo, J. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schreiner, S. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, P. A. Scott, R. Segato, G. Selyuzhenkov, I. Senyukov, S. Seo, J. Serci, S. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Sharma, N. Sharma, S. Rohni, S. Shigaki, K. Shimomura, M. Shtejer, K. Sibiriak, Y. Siciliano, M. Sicking, E. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Son, H. Song, J. Song, M. Soos, C. Soramel, F. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinbeck, T. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strabykin, K. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Sukhorukov, M. Sultanov, R. Sumbera, M. Susa, T. Toledo, A. Szantode Szarka, I. Szczepankiewicz, A. Szostak, A. Szymanski, M. Takahashi, J. Takaki, J. D. Tapia Tauro, A. Munoz, G. Tejeda Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Tlusty, D. Toia, A. Torii, H. Toscano, L. Truesdale, D. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ulery, J. Ullaland, K. Ulrich, J. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. vander Kolk, N. Vande Vyvre, P. van Leeuwen, M. Vannucci, L. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Vikhlyantsev, O. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, L. Vinogradov, Y. Vinogradov, A. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voloshin, K. Voloshin, S. Volpe, G. von Haller, B. Vranic, D. Ovrebekk, G. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, V. Wagner, B. Wan, R. Wang, M. Wang, D. Wang, Y. Watanabe, K. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilk, A. Wilkinson, J. Williams, M. C. S. Windelband, B. Karampatsos, L. Xaplanteris Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, S. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I.-K. Yoon, J. Yu, W. Yuan, X. Yushmanov, I. Zach, C. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zelnicek, P. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhou, F. Zhou, D. Zhou, Y. Zhu, X. Zhu, J. Zichichi, A. Zimmermann, A. Zinovjev, G. Zoccarato, Y. Zynovyev, M. Zyzak, M. CA ALICE Collaboration TI Measurement of charm production at central rapidity in proton-proton collisions at square s = 2.76 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID ROOT-S=7 TEV; HEAVY; QUARKS; HADROPRODUCTION; HADRONIZATION; PP AB The p(t)-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D-0, D+, and D*(+) in the rapidity range vertical bar y vertical bar < 0.5, and for transverse momentum 1 < p(t) < 12 GeV/c, were measured in proton-proton collisions at root s = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D-0 -> K-pi(+), D+ -> K-pi(+)pi(+), D*(+) -> D-0 pi(+), and their charge conjugates, and was performed on a L-int = 1.1 nb(-1) event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at root s = 2.76 TeV and our previous measurements at root s = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of c(d)over-bar D mesons produced in a vector state was also determined. C1 [Malinina, L.] M V Lomonosov Moscow State Univ, D V Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Roman, V. Canoa; Maldonado, I. Cortes; Tellez, A. Fernandez; Martinez, M. I.; Cahuantzi, M. Rodriguez; Munoz, G. Tejeda; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Bugaiev, K.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Alici, A.; Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Alkin, A.; Vernet, R.] Ctr Calcul, IN2P3, Villeurbanne, France. [Sanchez, C. Ceballos; Torres, E. Lopez; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Cotallo, M. E.; Corchero, M.A. Diaz; Gonzalez-Zamora, P.; Montes, E.; Montero, A. J. Rubio; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain. [Roman, V. Canoa; Contreras, J. G.; Crescio, E.; Corral, G. Herrera; Zetina, L. Montano; Reyes, A. Ramirez] CINVESTAV, Mexico City, DF, Mexico. [Coccetti, F.; De Caro, A.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Fermi, Museo Stor Fis, Rome, Italy. [Ferroli, R. Baldini; Coccetti, F.; De Caro, A.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.] Chicago State Univ, Chicago, IL USA. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Geuna, C.; Pal, S.; Da Costa, H. Pereira; Rakotozafindrabe, A.; Yang, H.] IRFU, Commissariat Energie Atom, Saclay, France. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, IGFAE, Santiago De Compostela, Spain. [Masoodi, A. Ahmad; Ahmad, N.; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Kanaki, K.; Langoy, R.; Lien, J.; Liu, L.; Loenne, P. I.; Nystrand, J.; Roed, K.; Rohrich, D.; Skjerdal, K.; Szostak, A.; Ullaland, K.; Ovrebekk, G.; Wagner, B.; Yang, S.] Univ Bergen, Dept Phys & Technol, N-5020 Bergen, Norway. [Anson, C.; Bock, N.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Han, B. H.; Hwang, D. S.; Kim, S.; Kim, J. H.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Dordic, O.; Eyyubova, G.; Kvaerno, H.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Qvigstad, H.; Richter, M.; Skaali, T. B.; Tveter, T. S.; Wikne, J.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Casula, E. A. R.; De Falco, A.; Incani, E.; Puddu, G.; Serci, S.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; De Falco, A.; Incani, E.; Masoni, A.; Puddu, G.; Serci, S.; Siddhanta, S.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Bianchin, C.; Caffarri, D.; Dainese, A.; Fabris, D.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis, I-35100 Padua, Italy. [Antinori, F.; Bianchin, C.; Caffarri, D.; Dainese, A.; Fabris, D.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, F.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Agostinelli, A.; Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Agostinelli, A.; Camerini, P.; Contin, G.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Alici, A.; Antonioli, P.; Basile, M.; Bellini, F.; Romeo, G. Cara; Cifarelli, L.; Cindolo, F.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Pulvirenti, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Badala, A.; Barbera, R.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Pulvirenti, A.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] ER Caianiello Univ, Dipartimento Fis, Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Grp Collegato INFN, Salerno, Italy. [Beole, S.; Bianchi, L.; Bossu, F.; Bruna, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Marchisone, M.; Masera, M.; Milano, L.; Ortona, G.; Padilla, F.; Poghosyan, M. G.; Siciliano, M.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis Sperimentale, I-10124 Turin, Italy. [Alessandro, B.; Arnaldi, R.; Bala, R.; Beole, S.; Berzano, D.; Bossu, F.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Leoncino, M.; Manceau, L.; Marchisone, M.; Masera, M.; Milano, L.; Monteno, M.; Musso, A.; Oppedisano, C.; Ortona, G.; Padilla, F.; Piccotti, A.; Poghosyan, M. G.; Prino, F.; Riccati, L.; Scomparin, E.; Siciliano, M.; Vasquez, M. A. Subieta; Toscano, L.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Cortese, P.; Ferretti, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, Alessandria, Italy. [Cortese, P.; Ferretti, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G D; Di Bari, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Perrino, D.; Terrevoli, C.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; de Cataldo, G.; Erasmo, G D; Di Bari, D.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastromarco, M.; Mastroserio, A.; Nappi, E.; Paticchio, V.; Perrino, D.; Santoro, R.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Dobrin, A.; Gros, P.; Velasquez, A. Ortiz; Oskarsson, A.; Richert, T.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, S-22100 Lund, Sweden. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Boccioli, M.; Brun, R.; Carena, W.; Carena, F.; Carminati, F.; Montoya, C.A. Carrillo; Cavicchioli, C.; Chapeland, S.; Cheshkov, C.; Barroso, V. Chibante; Chochula, P.; Cifarelli, L.; del Valle, Z. Conesa; Costa, F.; Di Mauro, A.; Divia, R.; Floris, M.; Fuchs, U.; Gheata, M.; Gheata, A.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hayrapetyan, A.; Hristov, P.; Innocenti, P. G.; Jacholkowski, A.; Jirden, L.; Uysal, A. Karasu; Kisiel, A.; Kluge, A.; Lechman, M.; Leistam, L.; Lippmann, C.; Lohn, S.; Luzzi, C.; Mager, M.; Tobon, C. A. Marin; Martinengo, P.; Mastroserio, A.; Miskowiec, D.; Mohanty, A. K.; Molnar, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Oeschler, H.; Perini, D.; Peskov, V.; Pinazza, O.; Poghosyan, M. G.; Pulvirenti, A.; Quercigh, E.; Rademakers, A.; Revol, J.-P.; Riedler, P.; Riegler, W.; Rabacal, B. Rodrigues Fernandes; Rossegger, S.; Rossi, A.; Safarik, K.; Santoro, R.; Schreiner, S.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sicking, E.; Simonetti, G.; Soos, C.; Tauro, A.; Telesca, A.; Toia, A.; Vande Vyvre, P.; Volpe, G.; von Haller, B.; Wessels, J. P.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Krawutschke, T.] Fachhsch Koln, Cologne, Germany. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Italy. [Broz, M.; Janik, R.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava 81806, Slovakia. [Adam, J.; Belcik, J.; Cepila, J.; Krelina, M.; Krus, M.; Pachr, M.; Petracek, V.; Petran, M.; Pospisil, V.; Smakal, R.; Tlusty, D.; Vajzer, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague, Czech Republic. [Bombara, M.; Harmanova, Z.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Alt, T.; Bach, M.; de Cuveland, J.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kretz, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.; Steinbeck, T.; Toia, A.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-6000 Frankfurt, Germany. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.; Kim, S. H.; Lee, S. C.; Lee, K. S.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Aysto, J.; Kalliokoski, T.; Kim, D. J.; Krizek, F.; Loo, K. K.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.] HIP, Jyvaskyla, Finland. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Novitzky, N.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Univ Jyvaskyla, SF-40351 Jyvaskyla, Finland. [Sakaguchi, H.; Shigaki, K.; Sugitate, T.] Hiroshima Univ, Hiroshima 730, Japan. [Cai, X.; Luo, J.; La, K.; Mao, Y.; Wan, R.; Wang, M.; Wang, D.; Wang, Y.; Yin, Z.; Yuan, X.; Zhang, H.; Zhang, X.; Zhou, F.; Zhou, D.; Zhu, X.; Zhu, J.] Hua Zhong Normal Univ, Wuhan, Peoples R China. [Dash, S.; Jena, S.; Meethaleveedu, G. Koyithatta; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol Bombay IIT, Mumbai 400076, Maharashtra, India. [Sahoo, R.] IIT, Indore, India. [Boyer, B.; Das, I.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lakomov, I.; Le Bornec, Y.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS IN2P3, IPNO, Orsay, France. [Bogolyubsky, M.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Stolpovskiy, M.] Inst High Energy Phys, Protvino, Russia. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Bilandzic, A.; Bjelogrlic, S.; Botje, M.; Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Kuijer, P. G.; La Pointe, S. L.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Lara, C. E. Perez; Reicher, M.; Manso, A. Rodriguez; Snellings, R. J. M.; Thomas, D.; vander Kolk, N.; Veldhoen, M.; Verweij, M.; Zhou, Y.] Natl Inst Subat Phys, Nikhef, Amsterdam, Netherlands. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; La Pointe, S. L.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.] Univ Utrecht, Inst Subatom Phys, NL-3508 TC Utrecht, Netherlands. [Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Sultanov, R.; van Leeuwen, M.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow, Russia. [Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Pastircak, B.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice, Slovakia. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar, Orissa, India. [Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Hasegan, D.; Mitu, C.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.; Teixido, J. Pujol; Ulrich, J.; Zelnicek, P.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arend, A.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Buesching, H.; Hartig, M.; Heckel, S. T.; Kliemant, M.; Kramer, F.; Kulakov, I.; Lehnert, J.; Vargas, H. Leon; Luettig, P.; Pitz, N.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Schuchmann, S.; Ulery, J.; Yu, W.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, D-60054 Frankfurt, Germany. [Kalweit, A.; Mager, M.; Oeschler, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Emschermann, D.; Feldkamp, L.; Heide, M.; Klein-Boesing, C.; Passfeld, A.; Santo, R.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Wilk, A.] Univ Munster, Inst Kernphys, D-4400 Munster, Germany. [Cuautle, E.; Dominguez, I.; Bustamante, R. T. Jimenez; de Guevara, P. Ladron; Cervantes, I. Maldonado; Mayani, D.; Velasquez, A. Ortiz; Paic, G.; Lezama, E. Perez; Peskov, V.; Simatovic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Salazar, S. Aguilar; Molina, R. Alfaro; Almaraz Avina, E.; Belmont-Moreno, E.; Cruz Alaniz, E.; Gonzalez-Trueba, L. H.; Grabski, V.; Leon, H.; Davalos, A. Martinez; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Belikov, I.; Hippolyte, B.; Jangal, S.; Kuhn, C.; Roy, C.; Castro, X. Sanchez; Senyukov, S.; Wan, R.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France. [Batyunya, B.; Fedunov, A.; Grigoryan, S.; Malinina, L.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] JINR, Dubna, Russia. [Agocs, A. G.; Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E; Hamar, G.; Levai, P.; Pochybova, S.] Hungarian Acad Sci, KFKI Res Inst Part & Nucl Phys, H-1051 Budapest, Hungary. [Ulrich, J.] Heidelberg Univ, Kirchhoff Inst Phys, D-6900 Heidelberg, Germany. [Ahn, S. A.; Jang, H. J.] Korea Inst Sci & Technol Informat, Daejeon, South Korea. [Ahn, S. U.; Baek, Y. W.; Baldit, A.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Ichou, R.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Vulpescu, B.; Zhang, X.] Clermont Univ, Univ Blaise Pascal, CNRS IN2P3, LPC, F-63006 Clermont Ferrand, France. [Arbor, N.; Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble 1, Inst Polytech Grenoble, CNRS IN2P3, LPSC, F-38041 Grenoble, France. [Bianchi, N.; Diaz, A. Casanova; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Braidot, E.; Cosentino, M. R.; Fenton-Olsen, B.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Sakai, S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow, Russia. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Christensen, C. H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.] Univ Copenhagen, Niels Bohr Inst, DK-1168 Copenhagen, Denmark. [Adamova, D.; Bielcikova, J.; Kushpil, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Nucl Phys Inst, Rez, Czech Republic. [Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Nilsen, B. S.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Chawla, I.; Rathee, D.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, GR-10679 Athens, Greece. [Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, iThemba LABS, Cape Town, South Africa. [Bhasin, A.; Gupta, A.; Gupta, R.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Rohni, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Goswami, A.; Mishra, A. N.; Raniwala, S.; Raniwala, R.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Anguelov, V.; Busch, O.; Constantin, P.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Koch, K.; Krawutschke, T.; Kweon, M. J.; Lohner, D.; Lu, X.-G.; Maire, A.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Radomski, S.; Reygers, K.; Schicker, R.; Schweda, K.; Stachel, J.; Stiller, J. H.; Vallero, S.; Wang, Y.; Wilkinson, J.; Windelband, B.; Zimmermann, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I.-K.] Pusan Natl Univ, Pusan, South Korea. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gonschior, A.; Gutbrod, H.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Kraus, I.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Res Div & ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.; Nikolic, V.; Simatovic, G.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Demanov, V.; Filchagin, S.; Ilkaev, R.; Korneev, A.; Kuryakin, A.; Mamonov, A.; Naumov, N. P.; Nazarenko, S.; Nazarov, G.; Puchagin, S.; Punin, V.; Strabykin, K.; Sukhorukov, M.; Tumkin, A.; Vikhlyantsev, O.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr Kurchatov Inst, Moscow, Russia. [Bose, S.; Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, P.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Kour, R.; Krivda, M.; Lazzeroni, C.; Lee, G. R.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Calvo Villar, E.; Gago, A.; Gutierrez, C. Guerra] Pontificia Univ Catolica Peru, Dept Ciencias, Sect Fis, Lima, Peru. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Soltan Inst Nucl Studies, Warsaw, Poland. STFC Daresbury Lab, Nuclear Phys Grp, Daresbury, England. [Aphecetche, L.; Batigne, G.; Bergognon, A. A. E.; Bregant, M.; Delagrange, H.; Driga, O.; Estienne, M.; Germain, M.; Lardeux, A.; Lefevre, F.; Lenhardt, M.; Luquin, L.; Garcia, G. Martinez; Mas, A.; Massacrier, L.; Matyja, A.; Pillot, P.; Schutz, Y.; Shabetai, A.; Stocco, D.] Univ Nantes, Ecole Mines Nantes, CNRS IN2P3, SUBATECH, Nantes, France. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.; Sputowska, I.; Szczepankiewicz, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.; Karampatsos, L. Xaplanteris] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Gomez, R.; Monzon, I. Leon; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Carlin Filho, N.; de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; De Godoy, D. A. Moreira; Munhoz, M. G.; Filho, E. Pereira De Oliveira; Suaide, A. A. P.; Toledo, A. Szantode] Univ Sao Paulo, BR-05508 Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas UNICAMP, BR-13081970 Campinas, SP, Brazil. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J.-Y.; Guilbaud, M.; Massacrier, L.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, Univ Lyon, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Bellwied, R.; Blanco, F.; Jayarathna, P. H. S. Y.; Madagodahettige-Don, D. M.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX 77004 USA. Univ Technol & Austrian Acad Sci, Vienna, Austria. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.] Univ Tennessee, Knoxville, TN 37996 USA. [Gunji, T.; Hamagaki, H.; Hori, Y.; Ozawa, K.; Sano, S.; Torii, H.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Chujo, T.; Esumi, S.; Horaguchi, T.; Inaba, M.; Miake, Y.; Niida, T.; Sakata, D.; Sano, M.; Shimomura, M.; Watanabe, K.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Ahammed, Z.; Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, D-72074 Tubingen, Germany. [Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ghosh, P.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Variable Energy Cyclotron Ctr, Kolkata, India. [Altsybeev, I.; Asryan, A.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kondratiev, V.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Girard, M. R.; Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, PL-00661 Warsaw, Poland. [Borissov, A.; Cormier, T. M.; Dobrin, A.; Jha, D. M.; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Prasad, S. K.; Pruneau, C. A.; Putschke, J.; Voloshin, S.; Yaldo, C. G.] Wayne State Univ, Detroit, MI 48202 USA. [Adare, A. M.; Aronsson, T.; Orduna, D. Caballero; Caines, H.; Harris, J. W.; Hicks, B.; Hille, P. T.; La, R.; Oh, S.; Putschke, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Grigoryan, A.; Hayrapetyan, A.; Kakoyan, V.; Papikyan, V.] Yerevan Phys Inst, Yerevan, Armenia. [Uysal, A. Karasu] Yildiz Tekn Univ, Istanbul, Turkey. [Chang, B.; Kang, J. H.; Kim, M.; Kim, B.; Kim, T.; Kwon, Y.; Moon, T.; Song, M.; Yoon, J.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] ZTT, Fachhochschule Worms, Worms, Germany. RP Abelev, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Kondratiev, Valery/J-8574-2013; Deppman, Airton/J-5787-2014; Pshenichnov, Igor/A-4063-2008; Castillo Castellanos, Javier/G-8915-2013; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Ferretti, Alessandro/F-4856-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Vinogradov, Leonid/K-3047-2013; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; Felea, Daniel/C-1885-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Suaide, Alexandre/L-6239-2016; Adamova, Dagmar/G-9789-2014; Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Altsybeev, Igor/K-6687-2013; Vechernin, Vladimir/J-5832-2013; Janik, Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; Sevcenco, Adrian/C-1832-2012; feofilov, grigory/A-2549-2013 OI Kondratiev, Valery/0000-0002-0031-0741; Gago Medina, Alberto Martin/0000-0002-0019-9692; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333; Bhasin, Anju/0000-0002-3687-8179; SANTORO, ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; Beole', Stefania/0000-0003-4673-8038; Deppman, Airton/0000-0001-9179-6363; Pshenichnov, Igor/0000-0003-1752-4524; Castillo Castellanos, Javier/0000-0002-5187-2779; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Ferretti, Alessandro/0000-0001-9084-5784; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Coccetti, Fabrizio/0000-0001-7041-3394; Vinogradov, Leonid/0000-0001-9247-6230; Mohanty, Bedangadas/0000-0001-9610-2914; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; Felea, Daniel/0000-0002-3734-9439; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Suaide, Alexandre/0000-0003-2847-6556; Salgado, Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Karasu Uysal, Ayben/0000-0001-6297-2532; Altsybeev, Igor/0000-0002-8079-7026; Vechernin, Vladimir/0000-0003-1458-8055; Janik, Malgorzata/0000-0002-3356-3438; Sevcenco, Adrian/0000-0002-4151-1056; feofilov, grigory/0000-0003-3700-8623 FU Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparoa Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation; Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC and the HELEN Program (High-Energy physics Latin-American-European Network);; Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation; International Science and Technology Center; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN, Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy; The United States National Science Foundation; The State of Texas; The State of Ohio FX The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration would like to thank M. Cacciari and H. Spiesberger for providing the pQCD predictions that are compared to these data. The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparoa Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 51 TC 38 Z9 38 U1 0 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUL PY 2012 IS 7 AR 191 DI 10.1007/JHEP07(2012)191 PG 27 WC Physics, Particles & Fields SC Physics GA 985VY UT WOS:000307299800073 ER PT J AU Tringe, S AF Tringe, S. TI Metagenomics for complex microbial communities SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Phytopathological-Society (APS) CY AUG 04-08, 2012 CL Providence, RI SP Amer Phytopathol Soc (APS) C1 [Tringe, S.] DOE Joint Genome Inst, Walnut Creek, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUL PY 2012 VL 102 IS 7 SU 4 BP 159 EP 159 PG 1 WC Plant Sciences SC Plant Sciences GA 196SX UT WOS:000322797800829 ER PT J AU Gomez, S Steinbrenner, AD Osorio, S Schueller, M Ferrieri, RA Fernie, AR Orians, CM AF Gomez, Sara Steinbrenner, Adam D. Osorio, Sonia Schueller, Michael Ferrieri, Richard A. Fernie, Alisdair R. Orians, Colin M. TI From shoots to roots: transport and metabolic changes in tomato after simulated feeding by a specialist lepidopteran SO ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA LA English DT Article DE carbohydrates; resource allocation; primary metabolism; resource sequestration; tolerance; induced responses; Manduca sexta; Sphingidae; oral secretion; Solanaceae; tobacco hornworm ID HERBIVORE-INDUCED CHANGES; JASMONIC ACID; PLANT DEFENSE; RAPID CHANGES; METHYL JASMONATE; POLYAMINE METABOLISM; ARTHROPOD HERBIVORY; NICOTIANA-ATTENUATA; INSECT HERBIVORY; CARBON TRANSPORT AB Upon herbivory, plants can swiftly reallocate newly acquired resources to different tissues within a plant. Although the herbivore-induced movement of resources is apparent, the movement direction and the role of the remobilized resources are not well understood. Here, we used a two-pronged approach combining radioisotope and metabolomic techniques to shed light on whole-plant resource reallocation and changes in primary metabolism within the tomato, Solanum lycopersicum (L.) (Solanaceae), model in response to simulated herbivory by the specialist Manduca sexta (L.) (Lepidoptera: Sphingidae). Manduca sexta regurgitant applied to damaged leaves, but not mechanical damage alone, increased 11C-photosynthate allocation to roots but did not affect 11CO2 fixation and leaf export. Changes in primary metabolite concentrations occurred mostly in sink tissues (apex and roots) as well as in damaged leaves. Both damage treatments (with and without M. sexta regurgitant application) resulted in increased concentrations of primary metabolites relative to undamaged plants in the apex and decreased concentrations in the roots, but there were also extensive changes specific to each damage treatment. Mechanical damage alone led to changes consistent with water stress caused by tissue damage. Manduca sexta led to metabolite increases in the apex consistent with an increase in glucose breakdown, metabolite increases in damaged leaves consistent with starch degradation, and metabolite decreases in roots suggesting a high use of metabolites. A possible explanation for the observed patterns in the aboveground tissues might be an increase in carbohydrate degradation to support defense production in attacked leaves and vulnerable developing leaves, and/or subsequent remobilization to belowground tissues to support high carbohydrate demand for respiration, enhanced nutrient uptake, and storage. C1 [Gomez, Sara] Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA. [Gomez, Sara; Orians, Colin M.] Tufts Univ, Dept Biol, Medford, MA 02155 USA. [Steinbrenner, Adam D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94704 USA. [Osorio, Sonia; Fernie, Alisdair R.] Max Planck Inst Mol Pflanzenphysiol, D-14476 Potsdam, Germany. [Schueller, Michael; Ferrieri, Richard A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Gomez, S (reprint author), Univ Rhode Isl, Dept Biol Sci, 9 E Alumni Ave, Kingston, RI 02881 USA. EM sara.gomez@tufts.edu OI Steinbrenner, Adam/0000-0002-7493-678X FU Neubauer Scholars Program; Paula Frazier Poskitt Memorial Scholarship; Astronaut Scholarship; National Research Initiative of the USDA Cooperative State Research, Education and Extension Service under USDA/CSREES [2007-35302-18351]; DOE's Office of Biological and Environmental Research [DE-AC02-98CH10886] FX The authors thank B. Trimmer for providing M. sexta larvae and three anonymous reviewers for valuable feed-back on the manuscript. ADS was supported by The Neubauer Scholars Program, The Paula Frazier Poskitt Memorial Scholarship, and the Astronaut Scholarship. This research was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service under USDA/CSREES grant 2007-35302-18351 to CMO and supported by DOE's Office of Biological and Environmental Research under contract DE-AC02-98CH10886 to RAF. NR 49 TC 23 Z9 25 U1 6 U2 73 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0013-8703 J9 ENTOMOL EXP APPL JI Entomol. Exp. Appl. PD JUL PY 2012 VL 144 IS 1 SI SI BP 101 EP 111 DI 10.1111/j.1570-7458.2012.01268.x PG 11 WC Entomology SC Entomology GA 956GO UT WOS:000305078300012 ER PT J AU Schmidt, M Lee, SS Wilson, RE Soderholm, L Fenter, P AF Schmidt, M. Lee, S. S. Wilson, R. E. Soderholm, L. Fenter, P. TI Sorption of tetravalent thorium on muscovite SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY REFLECTIVITY; FULVIC-ACID; CONTACT TIME; HYDRATION FORCES; IONIC-STRENGTH; MICA SURFACES; ELECTROLYTE-SOLUTIONS; HYDROLYSIS PRODUCTS; CHLORIDE SOLUTIONS; AMORPHOUS SILICA AB Adsorption of tetravalent thorium to the (0 0 1) basal surface of the phyllosilicate muscovite from an aqueous solution (1 x 10(-4) mol/L Th(IV) in 1 x 10(-1) mol/L NaCl, pH = 3.2) was studied by crystal truncation rod (CTR) and resonant anomalous X-ray reflectivity (RAXR) measurements. Th uptake to the muscovite surface from solutions with total Th concentrations [Th](tot) = 1 x 10(-6)-4.88 x 10(-3) mol/L and 1 x 10(-1) mol/L NaCl, pH = 3.2 was quantified by alpha-spectrometry. The uptake measurements showed that Th adsorption to the muscovite surface follows a Langmuir isotherm with an apparent adsorption constant K-app = 2 x 10(4) L/mol up to [Th](tot) = 1.02 x 10(-3) mol/L. The CTR and RAXR results identified one dominant Th species with a very broad distribution centered similar to 10 angstrom above the surface, in agreement with strongly hydrated extended outer sphere sorption. The findings indicate that the large energy of hydration (Delta G(hyd) = -5815 kJ/mol (Marcus, 1991)) for the small and highly-charged Th4+ cation is a controlling parameter in its surface speciation. The surface occupancy (0.4 Th per unit cell area, A(UC)) measured by RAXR exceeds the expected level for surface charge compensation by tetravalent Th (0.25 Th/A(UC)). However, the radiometric uptake measurements show smaller occupancies (0.21 Th/A(UC)) after rinsing by deionized water, indicating a partial removability of sorbed thorium. Thorium oligomerization was observed at total Th concentrations [Th](tot) >= 2.0 x 10(-3) mol/L in presence of the surface, although solubility studies suggest that Th is soluble under these solution conditions. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Schmidt, M.; Lee, S. S.; Wilson, R. E.; Soderholm, L.; Fenter, P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Fenter, P (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM ls@anl.gov; fenter@anl.gov RI Lee, Sang Soo/B-9046-2012; Wilson, Richard/H-1763-2011; Schmidt, Moritz/C-2610-2011 OI Wilson, Richard/0000-0001-8618-5680; Schmidt, Moritz/0000-0002-8419-0811 FU United States Department of Energy [DE-AC02-06CH11357]; United States Department of Energy Office of Science; BER; NSF; EPA FX This work conducted at Argonne National Laboratory, operated by UChicagoArgonne LLC for the United States Department of Energy under contract number DE-AC02-06CH11357, is jointly supported by the United States Department of Energy Office of Science, BER, NSF, and the EPA. The X-ray reflectivity data were collected at the X-ray Operations and Research beamline 6-ID-B at the Advanced Photon Source (APS), Argonne National Laboratory. Additional XR measurements were performed at beamline 13-ID-C, GSECARS, at the APS. NR 72 TC 11 Z9 11 U1 1 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2012 VL 88 BP 66 EP 76 DI 10.1016/j.gca.2012.04.001 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 952BR UT WOS:000304765200005 ER PT J AU Breier, JA Toner, BM Fakra, SC Marcus, MA White, SN Thurnherr, AM German, CR AF Breier, J. A. Toner, B. M. Fakra, S. C. Marcus, M. A. White, S. N. Thurnherr, A. M. German, C. R. TI Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9 degrees 50 ' N East Pacific Rise SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MID-ATLANTIC RIDGE; RARE-EARTH-ELEMENTS; DE-FUCA RIDGE; TRANSPARENT EXOPOLYMER PARTICLES; MOLAL THERMODYNAMIC PROPERTIES; ENDEAVOR SEGMENT; MIDOCEAN RIDGE; HIGH-PRESSURES; GUAYMAS BASIN; GEOCHEMICAL CONSTRAINTS AB Deep-sea hydrothermal plume particles are known to sequester seawater trace elements and influence ocean-scale biogeochemical budgets. The relative importance of biotic versus abiotic oxidation-reduction and other particle-forming reaction, however, and the mechanisms of seawater trace element sequestration remain unknown. Suspended particulate material was collected from a non-buoyant hydrothermal plume by in situ filtration at 9 degrees 50'N East Pacific Rise during a 3-day, 24 sample, time-series. Twenty-three samples were digested for total elemental analysis. One representative sample was selected for particle-by-particle geochemical analyses including elemental composition by X-ray fluorescence, speciation of Fe, S, and C by 1s X-ray absorption near edge structure spectroscopy, and X-ray diffraction. Consistent with past studies, positive linear correlations were observed for P, V, As, and Cr with Fe in the bulk chemistry. Arsenic was associated with both Fe oxyhydroxides and sulfides but not uniformly distributed among either mineral type. Particle aggregation was common. Aggregates were composed of minerals embedded in an organic matrix; the minerals ranged from <20 nm to >10 mu m in diameter. The speciation of major mineral forming elements (Fe, Mn, S) was complex. Over 20 different minerals were observed, nine of which were either unpredicted by thermodynamic modeling or had no close match in the thermodynamic database. Sulfur-bearing phases consisted of polysulfides (S-6, S-8), and metal sulfides (Fe, Cu, Zn, Mn). Four dominant species, Fe oxyhydroxide, Fe monosulfide, pyrrhotite, and pyrite, accounted for >80% of the Fe present. Particulate Mn was prevalent in both oxidized and reduced minerals. The organic matrix was: (1) always associated with minerals, (2) composed of biomolecules, and (3) rich in S. Possible sources of this S-rich organic matter include entrained near vent biomass and in situ production by S-oxidizing microorganisms. These results indicate that particle aggregation with organic material is prevalent in dispersing hydrothermal plume fluxes, as well as in sinking particulate matter at this site. Particle aggregation and organic coatings can influence the reactivity, transport, and residence time of hydrothermal particles in the water column. Thus a biogeochemical approach is critical to understanding the net effect of hydrothermal fluxes on ocean and sedimentary trace element budgets. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Breier, J. A.; White, S. N.; German, C. R.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Toner, B. M.] Univ Minnesota Twin Cities, St Paul, MN 55108 USA. [Fakra, S. C.; Marcus, M. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Thurnherr, A. M.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Breier, JA (reprint author), Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. EM jbreier@whoi.edu RI Toner, Brandy/N-7911-2016 OI Toner, Brandy/0000-0002-3681-3455 FU construction of the SUPR sampler; RIDGE [NSF OCE-0550331]; Mike Purcell and John Fetterman (WHOI); Office of Science, Basic Energy Sciences, Division of Materials Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [OCE-0647948, OCE-0425361] FX We would like to thank Lauren Mullineaux and the R/V Atlantis cruise AT15-26 (LADDER 2007) crew and science party (NSF OCE-0424953) for allowing us to conduct our sampling, and Steven Manganini and Olivier Rouxel for assistance with sample processing. The Woods Hole Oceanographic Institution's Deep Ocean Exploration Institute funded construction of the SUPR sampler. Postdoctoral support for JAB was through RIDGE 2000 (NSF OCE-0550331); Mike Purcell and John Fetterman (WHOI), and Ken Doherty, Michael Mathewson, Ivory Engstrom, and Tim Shanahan (McLane Research Laboratories Inc.) all made significant contributions during the SUPR sampler development. Part of this work was carried out at the Institute of Technology, Characterization Facility, University of Minnesota (an NSF-funded Materials Research Facilities Network), in particular we thank Maria Torija for assistance with JADE. We thank T. Tyliszczak for support at ALS BL11.0.2, Amanda Turner and Katrina Edwards for ALS BL 10.3.2 beam time assistance, Dean Hesterberg for providing S reference spectra, Clara Chan for providing a ferrihydrite specimen and Shawn French (U. Guelph) for providing a lipid specimen. BMT acknowledges support from the Office of the Vice President for Research, University of Minnesota. The Advanced Light Source (SCF, MAM) is supported by the Office of Science, Basic Energy Sciences, Division of Materials Science of the U.S. Department of Energy (DE-AC02-05CH11231). CRG acknowledges support from NSF Grant OCE-0647948. AMT acknowledges support from NSF Grant OCE-0425361. NR 116 TC 39 Z9 39 U1 4 U2 78 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2012 VL 88 BP 216 EP 236 DI 10.1016/j.gca.2012.04.003 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 952BR UT WOS:000304765200015 ER PT J AU Farfan, EB Coleman, JR Stanley, S Adamovics, J Oldham, M Thomas, A AF Farfan, Eduardo B. Coleman, J. Rusty Stanley, Steven Adamovics, John Oldham, Mark Thomas, Andrew TI SUBMERGED RADBALL (R) DEPLOYMENTS IN HANFORD SITE HOT CELLS CONTAINING (CsCl)-Cs-137 CAPSULES SO HEALTH PHYSICS LA English DT Article DE Cs-137; contamination; detector, radiation; dose assessment AB The overall objective of this study was to demonstrate that a new technology, known as RadBall (R), could locate submerged radiological hazards. RadBall (R) is a novel, passive, radiation detection device that provides a 3-D visualization of radiation from areas where measurements have not been previously possible due to lack of access or extremely high radiation doses. This technology has been under development during recent years, and all of its previous tests have included dry deployments. This study involved, for the first time, underwater RadBall (R) deployments in hot cells containing (CsCl)-Cs-137 capsules at the U.S. Department of Energy's Hanford Site. RadBall (R) can be used to characterize a contaminated room, hot cell, or glovebox by providing the locations of the radiation sources and hazards, identifying the radionuclides present within the cell, and determining the radiation sources' strength (e. g., intensities or dose rates). These parameters have been previously determined for dry deployments; however, only the location of radiation sources and hazards can be determined for an underwater RadBall (R) deployment. The results from this study include 3-D images representing the location of the radiation sources within the Hanford Site cells. Due to RadBall (R)'s unique deployability and non-electrical nature, this technology shows significant promise for future characterization of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities. Health Phys. 103(1):100-106; 2012 C1 [Farfan, Eduardo B.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Environm Anal Sect, Environm Sci & Biotechnol, Aiken, SC 29808 USA. [Stanley, Steven] Springfields, Natl Nucl Lab, Preston PR4 OXJ, Lancs, England. [Adamovics, John] Rider Univ, Dept Chem, Lawrenceville, NJ 08648 USA. [Oldham, Mark; Thomas, Andrew] Duke Univ, Med Ctr, Durham, NC 27710 USA. RP Farfan, EB (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Environm Anal Sect, Environm Sci & Biotechnol, 773-42A,Room 236, Aiken, SC 29808 USA. EM Eduardo.Farfan@srnl.doe.gov FU Office of Deactivation and Decommissioning (DD); Facility Engineering, U.S. Department of Energy-Office of Environmental Management [EM-13]; SRNS General Counsel; SRNL Technology Transfer FX The authors would like to thank Mr. Andrew P. Szilagyi, Director of the Office of Deactivation and Decommissioning (D&D) and Facility Engineering (EM-13), U.S. Department of Energy-Office of Environmental Management, for his support of the project titled, "Hot Cell Characterization,'' involving the testing, verification, and development of the RadBall (R) technology. The authors would also like to thank the Hanford Site for allowing the use of its facilities and Kori Escujuri for coordinating the RadBall (R) deployments at WESF. In addition, the authors would like to express their gratitude to Don Mackenzie and Tim Jannik for their guidance, Rebecca Butler (SRNS General Counsel) and Eric Frickey (SRNL Technology Transfer) for their support on the new technologies developed during this project, and Brent Douglas (SRNL Executive Communications) for helping with the graphic representations of WESF. This project is being completed at Savannah River National Laboratory in collaboration with the United Kingdom's National Nuclear Laboratory, Duke University Medical Center, and Heuris Pharma LLC. NR 14 TC 2 Z9 2 U1 0 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JUL PY 2012 VL 103 IS 1 BP 100 EP 106 DI 10.1097/HP.0b013e31824dada5 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 955MY UT WOS:000305025300017 PM 22647921 ER PT J AU Siriwardane, HJ Bowes, BD Bromhal, GS Gondle, RK Wells, AW Strazisar, BR AF Siriwardane, Hema J. Bowes, Benjamin D. Bromhal, Grant S. Gondle, Raj K. Wells, Arthur W. Strazisar, Brian R. TI Modeling of CBM production, CO2 injection, and tracer movement at a field CO2 sequestration site SO INTERNATIONAL JOURNAL OF COAL GEOLOGY LA English DT Article DE Carbon sequestration; Reservoir modeling; Tracer injection; Tracer modeling ID THEORETICAL-MODEL; METHANE RECOVERY; COAL; SORPTION; PILOT; SIMULATION; PROJECT AB Sequestration of carbon dioxide in unmineable coal seams is a potential technology mainly because of the potential for simultaneous enhanced coalbed methane production (ECBM). Several pilot tests have been performed around the globe leading to mixed results. Numerous modeling efforts have been carried out successfully to model methane production and carbon dioxide (CO2) injection. Sensitivity analyses and history matching along with several optimization tools were used to estimate reservoir properties and to investigate reservoir performance. Geological and geophysical techniques have also been used to characterize field sequestration sites and to inspect reservoir heterogeneity. The fate and movement of injected CO2 can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring technologies. As a part of this monitoring technique, a small fraction of a traceable fluid is added to the injection wellhead along with the CO2 stream at different times to monitor the timing and location of the breakthrough in nearby monitoring wells or offset production wells. A reservoir modeling study was performed to simulate a pilot sequestration site located in the San Juan coal basin of northern New Mexico. Several unknown reservoir properties at the field site were estimated by modeling the coal seam as a dual porosity formation and by history matching the methane production and CO2 injection. In addition to reservoir modeling of methane production and CO2 injection, tracer injection was modeled. Tracers serve as a surrogate for determining potential leakage of CO2. The tracer was modeled as a non-reactive gas and was injected into the reservoir as a mixture along with CO2. Geologic and geometric details of the field site, numerical modeling details of methane production. CO2 injection, and tracer injection are presented in this paper. Moreover, the numerical predictions of the tracer arrival times were compared with the measured field data. Results show that tracer modeling is useful in investigating movement of injected CO2 into the coal seam at the field site. Also, such new modeling techniques can be utilized to determine potential leakage pathways, and to investigate reservoir anisotropy and heterogeneity. (c) 2012 Elsevier B.V. All rights reserved. C1 [Siriwardane, Hema J.; Bowes, Benjamin D.; Gondle, Raj K.] W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. [Siriwardane, Hema J.; Bromhal, Grant S.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Wells, Arthur W.; Strazisar, Brian R.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Siriwardane, HJ (reprint author), W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. EM Hema.Siriwardane@mail.wvu.edu FU National Energy Technology Laboratory under the RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in CO2 Sequestration under the RES contract DE-FE0004000. The authors would like to thank Ryan Frost at Conoco Philips for providing us with useful field data, and to Anne Oudinot, Genevieve Young, Brian McPherson, Grigg Reid and others in the Southwest Regional Partnership for their assistance in obtaining necessary data. Also, we are greatly indebted to Turgay Ertekin for the use of the reservoir simulator PSU-COALCOMP, to which the equations for shrinkage, swelling, and their effects on permeability were added, and which was used for the reservoir simulations in this paper. Authors would also like to thank Thomas Wilson for providing useful comments to this paper. NR 46 TC 11 Z9 11 U1 0 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-5162 J9 INT J COAL GEOL JI Int. J. Coal Geol. PD JUL 1 PY 2012 VL 96-97 BP 120 EP 136 DI 10.1016/j.coal.2012.02.009 PG 17 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA 952KW UT WOS:000304792400011 ER PT J AU Wang, RL Zhang, SC Brassell, S Wang, JX Lu, ZY Ming, QZ Wang, XM Bian, LZ AF Wang, Ruiliang Zhang, Shuichang Brassell, Simon Wang, Jiaxue Lu, Zhengyuan Ming, Qingzhong Wang, Xiaomei Bian, Lizeng TI Molecular carbon isotope variations in core samples taken at the Permian-Triassic boundary layers in southern China SO INTERNATIONAL JOURNAL OF EARTH SCIENCES LA English DT Article DE Permian; Triassic; Southern China; PTB; Mass extinction, carbon isotope; delta C-13; Upwelling; Outgassing ID MASS-SPECTROMETRY; EXTINCTION AB Stable carbon isotope composition (delta C-13) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian-Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian-Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C-15 to C-40, steranes (C-27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C-25, and squalane, are depleted in delta C-13 by up to 8-10aEuro degrees in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian-Triassic boundary. C1 [Wang, Ruiliang] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zhang, Shuichang; Wang, Xiaomei] PetroChina, Key Lab Petr Geochem, Beijing 100083, Peoples R China. [Brassell, Simon] Indiana Univ, Dept Geol, Bloomington, IN 47405 USA. [Wang, Jiaxue; Ming, Qingzhong] Yunnan Normal Univ, Yunnan Key Lab Geog & Environm Change, Kunming 650031, Peoples R China. [Lu, Zhengyuan] Chengdu Univ Technol, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610059, Peoples R China. [Bian, Lizeng] Nanjing Univ, Dept Geol, Nanjing 100083, Jiangsu, Peoples R China. RP Wang, RL (reprint author), Brookhaven Natl Lab, Bldg 555A, Upton, NY 11973 USA. EM rlwang@bnl.gov RI Brassell, SImon/H-4970-2011 FU State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology [PLC200901]; NSFC [U0933604/40872118, 2009CC007]; U.S. Department of Energy [DE-AC02-98CHI-886] FX The current study was partially supported by Open Fund (PLC200901) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology (RW) and NSFC-Yunnan Joint Funding project #U0933604/40872118 and 2009CC007 (RW & JW). The authors are very thankful to the anonymous reviewers for many helpful linguistic and scientific comments on the manuscript. Mrs. H. Shang (emeritus of CNPC) is acknowledged for participating in the early field sampling for the earlier related projects on PTB of southern China.r This article was authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CHI-886 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this article, or allow others to do so, for United States Government purposes. NR 38 TC 0 Z9 0 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1437-3254 EI 1437-3262 J9 INT J EARTH SCI JI Int. J. Earth Sci. PD JUL PY 2012 VL 101 IS 5 BP 1397 EP 1406 DI 10.1007/s00531-011-0730-7 PG 10 WC Geosciences, Multidisciplinary SC Geology GA 953HJ UT WOS:000304857400019 ER PT J AU Guedj, H Guedj, J Negro, F Lagging, M Westin, J Bochud, PY Bibert, S Neumann, AU AF Guedj, H. Guedj, J. Negro, F. Lagging, M. Westin, J. Bochud, P. -Y. Bibert, S. Neumann, A. U. CA DITTO-HCV Study Grp TI The impact of fibrosis and steatosis on early viral kinetics in HCV genotype 1-infected patients treated with Peg-IFN-alfa-2a and ribavirin SO JOURNAL OF VIRAL HEPATITIS LA English DT Article DE early viral kinetics; fibrosis; pegylated interferon; steatosis; treatment outcome ID CHRONIC HEPATITIS-C; SUSTAINED VIROLOGICAL RESPONSE; INSULIN-RESISTANCE; PEGINTERFERON ALPHA-2A; PLUS RIBAVIRIN; PEGYLATED INTERFERON; TREATMENT DURATION; VIRUS-INFECTION; IN-VIVO; THERAPY AB . Hepatitis C viral (HCV) kinetics after initiation of interferon-based therapy provide valuable insights for understanding virus pathogenesis, evaluating treatment antiviral effectiveness and predicting treatment outcome. Adverse effects of liver fibrosis and steatosis on sustained virological response have been frequently reported, yet their impacts on the early viral kinetics remain unclear. In this study, associations between histology status and early viral kinetics were assessed in 149 HCV genotype 1infected patients treated with pegylated interferon alfa-2a and ribavirin (DITTO trial). In multivariate analyses adjusted for critical factors such as IL28B genotype and baseline viral load, presence of significant fibrosis (Ishak stage > 2) was found to independently reduce the odds of achieving an initial reduction (calculated from day 0 to day 4) in HCV RNA of =2 logIU/mL (adjusted OR 0.03, P = 0.004) but was not associated with the second-phase slope of viral decline (calculated from day 8 to day 29). On the contrary, presence of liver steatosis was an independent risk factor for not having a rapid second-phase slope, that is, =0.3 logIU/mL/week (adjusted OR 0.22, P = 0.012) but was not associated with the first-phase decline. Viral kinetic modelling theory suggests that significant fibrosis primarily impairs the treatment antiviral effectiveness in blocking viral production by infected cells, whereas the presence of steatosis is associated with a lower net loss of infected cells. Further studies will be necessary to identify the biological mechanisms underlain by these findings. C1 [Guedj, J.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Guedj, H.; Guedj, J.; Neumann, A. U.] Bar Ilan Univ, Fac Life Sci, Ramat Gan, Israel. [Negro, F.] Hop Cantonal Univ Geneva, Serv Gastroenterol & Hepatol, Geneva, Switzerland. [Negro, F.] Hop Cantonal Univ Geneva, Pathol Clin, Geneva, Switzerland. [Lagging, M.; Westin, J.] Univ Gothenburg, Dept Infect Dis, Gothenburg, Sweden. [Bochud, P. -Y.; Bibert, S.] Univ Lausanne Hosp, Infect Dis Serv, Dept Med, Lausanne, Switzerland. [Bochud, P. -Y.; Bibert, S.] Univ Lausanne, Lausanne, Switzerland. RP Guedj, J (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, MS K710, Los Alamos, NM 87545 USA. EM jeremie.guedj@gmail.com RI Negro, Francesco/E-2183-2012; Lagging, Martin/D-7734-2015; OI Lagging, Martin/0000-0002-7995-3626; Bibert, Stephanie/0000-0001-5170-7506; guedj, Jeremie/0000-0002-5534-5482 FU French Ministry of Foreign Affairs; Israel Science Foundation (ISF) [939/2008]; U.S. Department of Energy [DE-AC52-06NA25396]; NIH [RR006555, P20-RR018754, AI065256, AI028433] FX We thank the two anonymous reviewers for their insightful comments. This work was supported by the French Ministry of Foreign Affairs, the Israel Science Foundation (ISF 939/2008), the U.S. Department of Energy under contract DE-AC52-06NA25396 and NIH grants RR006555, P20-RR018754, AI065256 and AI028433. NR 41 TC 9 Z9 9 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1352-0504 J9 J VIRAL HEPATITIS JI J. Viral Hepatitis PD JUL PY 2012 VL 19 IS 7 BP 488 EP 496 DI 10.1111/j.1365-2893.2011.01569.x PG 9 WC Gastroenterology & Hepatology; Infectious Diseases; Virology SC Gastroenterology & Hepatology; Infectious Diseases; Virology GA 956CL UT WOS:000305067300005 PM 22676361 ER PT J AU Willetts, A Joint, I Gilbert, JA Trimble, W Muhling, M AF Willetts, Andrew Joint, Ian Gilbert, Jack A. Trimble, William Muehling, Martin TI Isolation and initial characterization of a novel type of Baeyer-Villiger monooxygenase activity from a marine microorganism SO MICROBIAL BIOTECHNOLOGY LA English DT Article ID FLAVIN-CONTAINING MONOOXYGENASE; PHENYLACETONE MONOOXYGENASE; COENZYME SPECIFICITY; FUNCTIONAL-ANALYSIS; IDENTIFICATION; FLAVOPROTEINS; DETERMINANTS; PURIFICATION; BIOCATALYSTS; OXIDATIONS AB A novel type of BaeyerVilliger monooxygenase (BVMO) has been found in a marine strain of Stenotrophomonas maltophila strain PML168 that was isolated from a temperate intertidal zone. The enzyme is able to use NADH as the source of reducing power necessary to accept the atom of diatomic oxygen not incorporated into the oxyfunctionalized substrate. Growth studies have establish that the enzyme is inducible, appears to serve a catabolic role, and is specifically induced by one or more unidentified components of seawater as well as various anthropogenic xenobiotic compounds. A blast search of the primary sequence of the enzyme, recovered from the genomic sequence of the isolate, has placed this atypical BVMO in the context of the several hundred known members of the flavoprotein monooxygenase superfamily. A particular feature of this BVMO lies in its truncated C-terminal domain, which results in a relatively small protein (357 amino acids; 38.4 kDa). In addition, metagenomic screening has been conducted on DNA recovered from an extensive range of marine environmental samples to gauge the relative abundance and distribution of similar enzymes within the global marine microbial community. Although low, abundance was detected in samples from many marine provinces, confirming the potential for biodiscovery in marine microorganisms. C1 [Willetts, Andrew; Muehling, Martin] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England. [Willetts, Andrew] Curnow Consultancies, Ashton Under Lyne TR13 9PQ, Helston, England. [Joint, Ian] Marine Biol Assoc United Kingdom Lab, Plymouth PL1 2PB, Devon, England. [Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gilbert, Jack A.; Trimble, William] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60437 USA. [Gilbert, Jack A.; Trimble, William] Univ Chicago, Chicago, IL 60437 USA. [Gilbert, Jack A.; Trimble, William] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Muehling, Martin] TU Bergakad Freiberg, Inst Biol Sci, D-09599 Freiberg, Germany. RP Willetts, A (reprint author), Plymouth Marine Lab, Prospect Pl, Plymouth PL1 3DH, Devon, England. EM andrewj.willetts@btconnect.com OI Trimble, William L./0000-0001-7029-2676 FU EU [EVK CT 2002 00087]; National Environment Research Council (UK [NE/B505770/1] FX This research was partially supported through grants to I.J. from the EU (project Microbial Marine Communities Diversity from Culture to Function [MIRACLE], grant number EVK CT 2002 00087, and from the National Environment Research Council (UK) Follow-up Fund grant number NE/B505770/1 to I.J. as PI and Dr Sohail Ali (Plymouth Marine Laboratory) as Co-I. We also acknowledge significant contributions to the original isolation of the bacterial strain by Dr Karen Tait (Plymouth Marine Laboratory), to the sequencing of the genome of S. maltophila strain PML 168 by Professor Mark Blaxter (University of Edinburgh), to the development of the 3D model of the BVMO of S. maltophila strain PML 168 by Professor Andrzej Joachimiak (Argonne National Laboratory; Protein Structure Initiative), and to the analysis of the L4 transcriptome by Dr Paul Swift (Centre for Ecology and Hydrology). NR 55 TC 4 Z9 4 U1 0 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1751-7907 J9 MICROB BIOTECHNOL JI Microb. Biotechnol. PD JUL PY 2012 VL 5 IS 4 BP 549 EP 559 DI 10.1111/j.1751-7915.2012.00337.x PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 956CY UT WOS:000305068600010 PM 22414193 ER PT J AU Allen, DK Laclair, RW Ohlrogge, JB Shachar-Hill, Y AF Allen, Doug K. Laclair, Russell W. Ohlrogge, John B. Shachar-Hill, Yair TI Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments SO PLANT CELL AND ENVIRONMENT LA English DT Article DE compartmentation; isotopic labelling; metabolic flux analysis; primary metabolism ID METABOLIC FLUX ANALYSIS; BRASSICA-NAPUS EMBRYOS; DEVELOPING SOYBEAN SEEDS; BETA-OXIDATION; NONAQUEOUS FRACTIONATION; ARABIDOPSIS CELLS; LIPID STORAGE; PLANTS; PROTEIN; LEAVES AB The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynthesis. To explore the extent to which amino acids are made in single compartments and to gain insight into the metabolic precursors from which they derive, we used steady state 13C labelling and analysed labelling in protein amino acids from plastid and cytosol. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major component of green tissues and its large and small subunits are synthesized from different pools of amino acids in the plastid and cytosol, respectively. Developing Brassica napus embryos were cultured in the presence of [U-13C]-sucrose, [U-13C]-glucose, [U-13C]-glutamine or [U-13C]-alanine to generate proteins. The large subunits (LSU) and small subunits (SSU) of Rubisco were isolated and the labelling in their constituent amino acids was analysed by gas chromatography-mass spectrometry. Amino acids including alanine, glycine and serine exhibited different 13C enrichment in the LSU and SSU, demonstrating that these pools have different metabolic origins and are not isotopically equilibrated between the plastid and cytosol on the time scale of cellular growth. Potential extensions of this novel approach to other macromolecules, organelles and cell types of eukaryotes are discussed. C1 [Allen, Doug K.] ARS, USDA, Plant Genet Res Unit, St Louis, MO 63132 USA. [Allen, Doug K.] Donald Danforth Plant Sci Ctr, St Louis, MO 63132 USA. [Laclair, Russell W.; Ohlrogge, John B.; Shachar-Hill, Yair] Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Laclair, Russell W.; Ohlrogge, John B.; Shachar-Hill, Yair] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Allen, DK (reprint author), ARS, USDA, Plant Genet Res Unit, St Louis, MO 63132 USA. EM doug.allen@ars.usda.gov RI Shachar-Hill, Yair/B-6165-2013; Allen, Doug/M-2836-2013 OI Shachar-Hill, Yair/0000-0001-8793-5084; Allen, Doug/0000-0001-8599-8946 FU Great Lakes Bioenergy Research Center (U.S. Department of Energy, Office of Biological and Environmental Research, Office of Science) [DE-FG02-87ER13729]; USDA [2006-35318-16661]; U.S. National Science Foundation [DBI-0701919, EF-1105249]; USDA-ARS FX This work was supported by USDA-ARS, Great Lakes Bioenergy Research Center (U.S. Department of Energy, Office of Biological and Environmental Research, Office of Science grant no. DE-FG02-87ER13729), USDA Grant 2006-35318-16661, and by U.S. National Science Foundation Plant Genome award DBI-0701919 and Emerging Frontiers award EF-1105249. NR 76 TC 24 Z9 24 U1 2 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD JUL PY 2012 VL 35 IS 7 BP 1232 EP 1244 DI 10.1111/j.1365-3040.2012.02485.x PG 13 WC Plant Sciences SC Plant Sciences GA 956DC UT WOS:000305069000005 PM 22292468 ER PT J AU Snyder, DA Aramini, JM Yu, B Huang, YJ Xiao, R Cort, JR Shastry, R Ma, LC Liu, J Rost, B Acton, TB Kennedy, MA Montelione, GT AF Snyder, David A. Aramini, James M. Yu, Bomina Huang, Yuanpeng J. Xiao, Rong Cort, John R. Shastry, Ritu Ma, Li-Chung Liu, Jinfeng Rost, Burkhard Acton, Thomas B. Kennedy, Michael A. Montelione, Gaetano T. TI Solution NMR structure of the ribosomal protein RP-L35Ae from Pyrococcus furiosus SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE ribosomal protein; L35Ae; PF01247; tRNA binding; EF-Tu; eEF-1A; solution NMR; structural genomics ID TORSION ANGLE DYNAMICS; RESONANCE ASSIGNMENTS; STRUCTURE VALIDATION; SOFTWARE SUITE; DATABASE; DOMAIN; CLASSIFICATION; IDENTIFICATION; INFORMATION; ALGORITHM AB The ribosome consists of small and large subunits each composed of dozens of proteins and RNA molecules. However, the functions of many of the individual protomers within the ribosome are still unknown. In this article, we describe the solution NMR structure of the ribosomal protein RP-L35Ae from the archaeon Pyrococcus furiosus. RP-L35Ae is buried within the large subunit of the ribosome and belongs to Pfam protein domain family PF01247, which is highly conserved in eukaryotes, present in a few archaeal genomes, but absent in bacteria. The protein adopts a six-stranded anti-parallel beta-barrel analogous to the tRNA binding motif fold. The structure of the P. furiosus RP-L35Ae presented in this article constitutes the first structural representative from this protein domain family. Proteins 2012. (c) 2012 Wiley Periodicals, Inc. C1 [Snyder, David A.; Aramini, James M.; Yu, Bomina; Huang, Yuanpeng J.; Xiao, Rong; Shastry, Ritu; Ma, Li-Chung; Acton, Thomas B.; Montelione, Gaetano T.] State Univ New Jersey, NE Struct Genom Consortium, Piscataway, NJ 08854 USA. [Snyder, David A.; Aramini, James M.; Yu, Bomina; Huang, Yuanpeng J.; Xiao, Rong; Shastry, Ritu; Ma, Li-Chung; Acton, Thomas B.; Montelione, Gaetano T.] State Univ New Jersey, Dept Mol Biol & Biochem, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA. [Snyder, David A.] William Paterson Univ, Coll Sci & Hlth, Dept Chem, Wayne, NJ 07470 USA. [Cort, John R.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Cort, John R.] NE Struct Genom Consortium, Richland, WA 99352 USA. [Liu, Jinfeng; Rost, Burkhard] Columbia Univ, NE Struct Genom Consortium, New York, NY 10032 USA. [Liu, Jinfeng; Rost, Burkhard] Columbia Univ, Dept Biochem & Mol Biophys, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA. [Kennedy, Michael A.] Miami Univ, NE Struct Genom Consortium, Oxford, OH 45056 USA. [Kennedy, Michael A.] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA. [Montelione, Gaetano T.] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA. RP Montelione, GT (reprint author), Rutgers State Univ, CABM, 679 Hoes Lane, Piscataway, NJ 08854 USA. EM guy@cabm.rutgers.edu OI Liu, Jinfeng/0000-0002-0343-8222; Snyder, David/0000-0001-6608-2975 FU National Institute of General Medical Sciences Protein Structure Initiative (PSI) [U54-GM074958, U54-GM094597]; Department of Energy's Office of Biological and Environmental Research FX Grant sponsor: National Institute of General Medical Sciences Protein Structure Initiative (PSI); Grant numbers: U54-GM074958 and U54-GM094597 (Gaetano T. Montelione).; The authors thank A. Bhattacharya, J. Everett, M. Gerstein, C. S. Goh, G. V. T. Swapna, and H. Moseley for technical assistance and helpful discussions. A portion of the NMR spectra were acquired in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, Richland, WA. NR 44 TC 2 Z9 2 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUL PY 2012 VL 80 IS 7 BP 1901 EP 1906 DI 10.1002/prot.24071 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 953KK UT WOS:000304866000017 PM 22422653 ER PT J AU Skartlien, R Sollum, E Akselsen, A Meakin, P AF Skartlien, Roar Sollum, Espen Akselsen, Andreas Meakin, Paul TI Direct numerical simulation of surfactant-stabilized emulsions Morphology and shear viscosity in starting shear flow SO RHEOLOGICA ACTA LA English DT Article DE Emulsion; Shear viscosity; Morphology; Surfactant; Computer modeling; Flow visualization ID IMMISCIBLE POLYMER BLENDS; INTERFACIAL-TENSION; DILUTE EMULSION; RHEOLOGY; MODEL; DYNAMICS; STEADY; FLUIDS; MICROSTRUCTURE; DEFORMATION AB A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it at later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous. C1 [Skartlien, Roar; Sollum, Espen] Inst Energy Technol IFE, N-2027 Kjeller, Norway. [Skartlien, Roar; Sollum, Espen; Akselsen, Andreas; Meakin, Paul] FACE Multiphase Flow Assurance & Innovat Ctr, N-2027 Kjeller, Norway. [Akselsen, Andreas] Norwegian Univ Sci & Technol NTNU, N-7491 Trondheim, Norway. [Meakin, Paul] Idaho Natl Lab, Carbon Resource Management Dept, Idaho Falls, ID 83415 USA. [Meakin, Paul] Ctr Phys Geol Proc, N-0316 Oslo, Norway. RP Skartlien, R (reprint author), Inst Energy Technol IFE, POB 40, N-2027 Kjeller, Norway. EM roar.skartlien@ife.no RI Sollum, Espen/B-5288-2017 FU Research Council of Norway; Statoil ASA; ConocoPhillips Scandinavia A/S; VetcoGray Scandinavia A/S; SPTgroup AS; FMC technologies; CD-adapco; Shell Technology Norway AS FX Dr. Johan Kristian Sveen initiated the cooperation with M.Sc. student A. Akselsen and provided suggestions to the manuscript. Prof. Johan Sjoblom and his colleagues at NTNU and Dr. Kalli Furtado, IFE, provided valuable input to an earlier version of the manuscript. The work was performed as part of the FACE center-a research cooperation between IFE, NTNU, and SINTEF, funded by The Research Council of Norway and by the following industrial partners: Statoil ASA, ConocoPhillips Scandinavia A/S, VetcoGray Scandinavia A/S, SPTgroup AS, FMC technologies, CD-adapco, and Shell Technology Norway AS. A large part of the work utilized the freeware Ubuntu, gFortran, MPICH2, VISIT, and Texmaker, developed by volunteers. NR 59 TC 4 Z9 4 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0035-4511 EI 1435-1528 J9 RHEOL ACTA JI Rheol. Acta PD JUL PY 2012 VL 51 IS 7 BP 649 EP 673 DI 10.1007/s00397-012-0628-8 PG 25 WC Mechanics SC Mechanics GA 957BO UT WOS:000305133800007 ER PT J AU Myers, MT Charnvanichborikarn, S Shao, L Kucheyev, SO AF Myers, M. T. Charnvanichborikarn, S. Shao, L. Kucheyev, S. O. TI Effect of the surface on ion-beam damage build-up in ZnO SO SCRIPTA MATERIALIA LA English DT Article DE Implantation; Semiconductor; Interface defects; Intermediate defect peak ID INDUCED AMORPHIZATION; SPUTTERING YIELD; IMPLANTATION; FILMS AB Lattice disorder in ZnO irradiated with heavy ions is anomalous, exhibiting an intermediate peak (IP) between the surface and bulk. Bombarding (0001) ZnO single crystals with 500 keV Xe ions at two angles shows that the formation and propagation of the IP are independent of the displacement generation profile. The ZnO surface plays the dominant role in IP formation and propagation. The IP likely traps and annihilates mobile point defects, as evidenced by a step in Rutherford backscattering/channeling spectra. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Myers, M. T.; Charnvanichborikarn, S.; Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Myers, M. T.; Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Myers, MT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM myers63@llnl.gov FU U.S. DOE by LLNL [DE-AC52-07NA27344]; NSF [0846835]; LLNL FX This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. L.S. is grateful for the support from NSF Grant No. 0846835, and M.T.M. would like to acknowledge the LLNL Lawrence Scholar Program for funding. We are grateful to A.I. Titov for helpful discussions and for providing valuable comments on the manuscript. NR 26 TC 7 Z9 7 U1 3 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2012 VL 67 IS 1 BP 65 EP 68 DI 10.1016/j.scriptamat.2012.03.021 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 953FF UT WOS:000304851600017 ER PT J AU Chu, HJ Wang, J Beyerlein, IJ AF Chu, H. J. Wang, J. Beyerlein, I. J. TI Anomalous reactions of a supersonic coplanar dislocation dipole: Bypass or twinning? SO SCRIPTA MATERIALIA LA English DT Article DE Dislocation; High velocity; Twinning; Atomistic simulations ID RATE DEFORMATION; CRYSTALS; DYNAMICS; MOTION; FORCE; SLIP AB Using atomic-scale simulation, we show for the first time that when two oppositely signed, coplanar dislocations glide towards one another at transonic and supersonic speeds, they do not annihilate. Depending on the shear direction, they either overshoot one another or nucleate twins. These anomalous responses are explained by inertial and relativistic effects on the dislocation core at high velocities. Their discovery deepens the understanding of materials behavior under extreme rates of deformation. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Chu, H. J.; Wang, J.; Beyerlein, I. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chu, H. J.] Yanzhou Univ, Res Grp Mech, Yangzhou 225009, Peoples R China. RP Wang, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU Los Alamos National Laboratory [DR20110029, ER20110573]; National Natural Science Foundation [10602050]; Jiangsu Government FX The authors acknowledge the support provided by the Los Alamos National Laboratory Directed Research and Development projects DR20110029 and ER20110573. Chu also acknowledges the National Natural Science Foundation for the research support (10602050) and Jiangsu Government Scholarship for overseas studies. The authors sincerely appreciate the discussions with Prof. J.P. Hirth and Prof. R.G. Hoagland at Los Alamos National Laboratory. NR 25 TC 9 Z9 9 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2012 VL 67 IS 1 BP 69 EP 72 DI 10.1016/j.scriptamat.2012.03.027 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 953FF UT WOS:000304851600018 ER PT J AU Bjork, R Tikare, V Frandsen, HL Pryds, N AF Bjork, R. Tikare, V. Frandsen, H. L. Pryds, N. TI The sintering behavior of close-packed spheres SO SCRIPTA MATERIALIA LA English DT Article DE Sintering; Microstructure; Monte Carlo simulation; Grain growth; Ordering ID NUMERICAL-SIMULATION; CRYSTALLINE SOLIDS; PARTICLE PACKING; POWDER COMPACTS; INTERMEDIATE; SHRINKAGE; MODELS; PORE AB The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full density is reached for all systems. During sintering, the grains change shape from spherical to tet-rakaidecahedron, similar to the geometry analyzed by Coble [R.L. Coble, J. Appl. Phys. 32 (1961) 787]. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bjork, R.; Frandsen, H. L.; Pryds, N.] Tech Univ Denmark DTU, Dept Energy Convers & Storage, DK-4000 Roskilde, Denmark. [Tikare, V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bjork, R (reprint author), Tech Univ Denmark DTU, Dept Energy Convers & Storage, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. EM rabj@risoe.dtu.dk RI Frandsen, Henrik/C-4826-2013; OI Frandsen, Henrik/0000-0001-8336-6363; Bjork, Rasmus/0000-0002-3728-2326; Pryds, Nini/0000-0002-5718-7924 FU Danish Council for Independent Research Technology and Production Sciences (FTP), The Danish Agency for Science, Technology and Innovation (FI) [09-072888]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank the Danish Council for Independent Research Technology and Production Sciences (FTP), which is part of The Danish Agency for Science, Technology and Innovation (FI) (Project #09-072888), for sponsoring the OPTIMAC research work. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 10 Z9 10 U1 1 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2012 VL 67 IS 1 BP 81 EP 84 DI 10.1016/j.scriptamat.2012.03.024 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 953FF UT WOS:000304851600021 ER PT J AU Coughlin, DR Phillips, PJ Bigelow, GS Garg, A Noebe, RD Mills, MJ AF Coughlin, D. R. Phillips, P. J. Bigelow, G. S. Garg, A. Noebe, R. D. Mills, M. J. TI Characterization of the microstructure and mechanical properties of a 50.3Ni-29.7Ti-20Hf shape memory alloy SO SCRIPTA MATERIALIA LA English DT Article DE Shape memory alloy; Aging; Compression testing; Scanning transmission electron microscopy; Electron diffraction ID TRANSFORMATION; MARTENSITE; STRESS; PHASE AB The alloy 50.3Ni-29.7Ti-20Hf (at.%) exhibits attractive high-temperature shape memory properties. To determine the effect of aging on the behavior of this alloy, isothermal constant strain rate compression testing was performed at temperatures above the austenite finish temperature. This revealed that the alloy strength and the temperature range for pseudoelasticity vs. austenite plasticity was strongly influenced by aging. Electron microscopy has revealed precipitates rich in hafnium with a novel ordered structure relative to the B2 austenite phase form during aging. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Coughlin, D. R.; Phillips, P. J.; Mills, M. J.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Coughlin, D. R.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Bigelow, G. S.; Garg, A.; Noebe, R. D.] NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44109 USA. [Garg, A.] Univ Toledo, Toledo, OH 43606 USA. RP Coughlin, DR (reprint author), Ohio State Univ, Dept Mat Sci & Engn, 2041 Coll Rd,477 Watts, Columbus, OH 43210 USA. EM coughlin@matsceng.ohio-state.edu RI Mills, Michael/I-6413-2013 NR 17 TC 34 Z9 34 U1 5 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2012 VL 67 IS 1 BP 112 EP 115 DI 10.1016/j.scriptamat.2012.03.036 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 953FF UT WOS:000304851600029 ER PT J AU Li, ZJ Calaza, F Tysoe, WT AF Li, Zhenjun Calaza, Florencia Tysoe, Wilfred T. TI The adsorption and reaction of vinyl acetate on Au/Pd(100) alloy surfaces SO SURFACE SCIENCE LA English DT Article DE Infrared absorption spectroscopy; Temperature-programmed desorption; Chemisorption; Palladium gold alloy; Vinyl acetate monomer ID ENERGY-ELECTRON-DIFFRACTION; PD-BASED CATALYSTS; NEAR-ATMOSPHERIC PRESSURES; ACETIC-ACID; THERMAL-DECOMPOSITION; LOSS SPECTROSCOPY; ULTRAHIGH-VACUUM; CARBIDE FORMATION; METAL-SURFACES; CO OXIDATION AB The surface chemistry of vinyl acetate monomer (VAM) is studied on Au/Pd(100) alloys as a function of alloy composition using temperature-programmed desorption and reflection-adsorption infrared spectroscopy. VAM adsorbs weakly on isolated palladium sites on the alloy with a heat of adsorption of similar to 55 kJ/mol, with the plane of the VAM adsorbed close to parallel to the surface. The majority of the VAM adsorbed on isolated sites desorbs molecularly with only a small portion decomposing. At lower gold coverages (below similar to 0.5 ML of gold), where palladium-palladium bridge sites are present, VAM binds to the surface in a distorted geometry via a rehybridized vinyl group. A larger proportion of this VAM decomposes and this reaction is initiated by C-O bond scission in the VAM to form adsorbed acetate and vinyl species. The implication of this surface chemistry for VAM synthesis on Au/Pd(100) alloys is discussed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Li, Zhenjun; Tysoe, Wilfred T.] Univ Wisconsin, Dept Chem, Milwaukee, WI 53211 USA. [Li, Zhenjun; Tysoe, Wilfred T.] Univ Wisconsin, Surface Studies Lab, Milwaukee, WI 53211 USA. [Calaza, Florencia] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Zhenjun] Pacific NW Natl Lab, Chem & Mat Sci Div, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Tysoe, WT (reprint author), Univ Wisconsin, Dept Chem, POB 413, Milwaukee, WI 53211 USA. EM wtt@uwm.edu FU U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences [DE-FG02-92ER14289] FX We gratefully acknowledge support of this work by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, under grant number DE-FG02-92ER14289. NR 60 TC 2 Z9 3 U1 0 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL PY 2012 VL 606 IS 13-14 BP 1113 EP 1119 DI 10.1016/j.susc.2012.03.011 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 951SP UT WOS:000304740600021 ER PT J AU Dong, J Lin, ZH AF Dong, Jing Lin, Zhenhong TI Within-day recharge of plug-in hybrid electric vehicles: Energy impact of public charging infrastructure SO TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT LA English DT Article DE Plug-in hybrid electric vehicles; Vehicle energy consumption; Public charger network AB This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers' within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Dong, Jing; Lin, Zhenhong] Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. RP Dong, J (reprint author), Oak Ridge Natl Lab, Natl Transportat Res Ctr, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM dongj@ornl.gov FU US Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX This research is sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors would like to acknowledge gratefully David Greene for his constructive comments. The authors remain solely responsible for all contents in the paper. The views and opinions expressed are those of the authors and do not necessarily of the sponsoring agency. NR 13 TC 25 Z9 25 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1361-9209 J9 TRANSPORT RES D-TR E JI Transport. Res. Part D-Transport. Environ. PD JUL PY 2012 VL 17 IS 5 BP 405 EP 412 DI 10.1016/j.trd.2012.04.003 PG 8 WC Environmental Studies; Transportation; Transportation Science & Technology SC Environmental Sciences & Ecology; Transportation GA 953RZ UT WOS:000304892200008 ER PT J AU Kumpiene, J Fitts, JP Mench, M AF Kumpiene, Jurate Fitts, Jeffrey P. Mench, Michel TI Arsenic fractionation in mine spoils 10 years after aided phytostabilization SO ENVIRONMENTAL POLLUTION LA English DT Article DE Iron; Selective dissolution; XANES; mu XRF mapping ID SEQUENTIAL EXTRACTION PROCEDURE; CONTAMINATED SOIL; SPECIATION; IRON; TAILINGS; METALS; REVEGETATION; FERRIHYDRITE; SPECTROSCOPY; RHIZOSPHERE AB Aided phytostabilization using a combination of compost, zerovalent iron grit and coal fly ash (CZA) amendments and revegetation effectively promoted the biological recovery of mining spoils generated at a gold mine in Portugal. Selective dissolution of spoil samples in combination with solid phase characterization using microbeam X-ray absorption near edge structure (mu XANES) spectroscopy and microbeam X-ray fluorescence (mu XRF) mapping were used to assess As associations in spoils ten years after CZA treatment. The results show that As preferentially associates with poorly crystalline Fe-oxyhydroxides as opposed to crystalline Fe-(oxyhydr)oxide phases. The crystalline Fe(III)-phases dominated in the treated spoil and exceeded those of the untreated spoil three-fold, but only 2.6-6.8% of total As was associated with this fraction. Correlation maps of As:Fe reveal that As in the CZA-treated spoils is primarily contained in surface coatings as precipitates and sorbates. Arsenic binding with poorly crystalline Fe-oxyhydroxides did not inhibit As uptake by plants. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Kumpiene, Jurate] Lulea Univ Technol, Div Waste Sci & Technol, SE-97187 Lulea, Sweden. [Fitts, Jeffrey P.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Mench, Michel] Univ Bordeaux 1, UMR BIOGECO INRA 1202, F-33405 Talence, France. RP Kumpiene, J (reprint author), Lulea Univ Technol, Div Waste Sci & Technol, SE-97187 Lulea, Sweden. EM jurate.kumpiene@ltu.se; fitts@bnl.gov; mench@bordeaux.inra.fr RI Fitts, Jeffrey/J-3633-2012; OI Mench, michel/0000-0002-0273-4142 FU Swedish Research Council FORMAS; US Department of Energy, Office of Science [DE-AC-02-98CH10886] FX This work was financially supported by The Swedish Research Council FORMAS. We gratefully acknowledge the National Synchrotron Light Source, Brookhaven National Laboratory (Upton, USA) for the use of beamlines X11A and X27A and Ing J. Guinberteau at MYCSA, INRA, Villenave d'Ornon for the assistance with the examination of fungi. J. Fitts and the NSLS are supported by US Department of Energy, Office of Science under contract DE-AC-02-98CH10886. NR 44 TC 24 Z9 24 U1 4 U2 47 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PD JUL PY 2012 VL 166 BP 82 EP 88 DI 10.1016/j.envpol.2012.02.016 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 948ON UT WOS:000304512600011 PM 22481180 ER PT J AU Jewett, A Smith, BD Garfein, RS Cuevas-Mota, J Teshale, EH Weinbaum, CM AF Jewett, A. Smith, B. D. Garfein, R. S. Cuevas-Mota, J. Teshale, E. H. Weinbaum, C. M. TI Field-based performance of three pre-market rapid hepatitis C virus antibody assays in STAHR (Study to Assess Hepatitis C Risk) among young adults who inject drugs in San Diego, CA SO JOURNAL OF CLINICAL VIROLOGY LA English DT Article DE Hepatitis C; Screening; Rapid assays; Sensitivity; Specificity ID UNITED-STATES; OF-CARE; HIV; PREVALENCE; INFECTION; USERS; SURVEILLANCE; OUTREACH; TRIAL; RATES AB Background: Approximately 4.1 million Americans are estimated to have been infected with hepatitis C virus (HCV), 45-85% of whom are unaware of their infection. Persons who inject drugs (PWID) account for 55.8% of all persons with HCV antibody (anti-HCV) in the U. S. PWID have limited access to healthcare and are infrequently tested for anti-HCV using conventional laboratory assays. Objective: To evaluate performance characteristics (sensitivity and specificity) of three, pre-market rapid point-of-care tests (one oral fluid and two finger-stick assays) from two manufacturers (Chembio and MedMira) in settings providing services to young adult PWID in San Diego, CA. Study design: Behavioral risk assessment surveys and testing for HCV were conducted among persons who reported injection drug use (IDU) within the past 6 months as part of the Study to Assess Hepatitis C Risk (STAHR) among PWID aged 18-40 years in 2009-2010. Sensitivity and specificity of the rapid anti-HCV assays were evaluated among STAHR participants, using two commonly used testing algorithms. Results: Variability in sensitivity (76.6-97.1%) and specificity (99.0-100.0%) was found across assays. The highest sensitivity achieved for the Chembio finger-stick blood, Chembio oral fluid and MedMira finger-stick blood tests was 97.1%, 85.4% and 80.0% respectively; the highest specificity was 99.0%, 100.0% and 100.0%, respectively. In multivariate analysis false negative anti-HCV results were associated with female sex for the MedMira blood assay. Conclusions: Sensitive anti-HCV rapid assays are appropriate and feasible for high-prevalence, high-risk populations such as young PWID. (C) 2012 Elsevier B. V. All rights reserved. C1 [Jewett, A.] Oak Ridge Inst Sci & Educ, Clinton, TN USA. [Smith, B. D.; Teshale, E. H.; Weinbaum, C. M.] Ctr Dis Control & Prevent, Div Viral Hepatitis, Atlanta, GA USA. [Garfein, R. S.; Cuevas-Mota, J.] Univ Calif San Diego, Sch Med, Div Global Publ Hlth, San Diego, CA 92103 USA. RP Jewett, A (reprint author), 1600 Clifton Rd,MS G-37, Atlanta, GA 30333 USA. EM ACJewett@cdc.gov FU Division of Viral Hepatitis at the Centers for Disease Control and Prevention FX All funding was provided by the Division of Viral Hepatitis at the Centers for Disease Control and Prevention. All assays were provided in kind by the manufacturers. NR 29 TC 18 Z9 18 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-6532 J9 J CLIN VIROL JI J. Clin. Virol. PD JUL PY 2012 VL 54 IS 3 BP 213 EP 217 DI 10.1016/j.jcv.2012.04.003 PG 5 WC Virology SC Virology GA 951JG UT WOS:000304716200003 PM 22560051 ER PT J AU Timokhina, IB Enomoto, M Miller, MK Pereloma, EV AF Timokhina, I. B. Enomoto, M. Miller, M. K. Pereloma, E. V. TI Microstructure-Property Relationship in the Thermomechanically Processed C-Mn-Si-Nb-Al-(Mo) Transformation-Induced Plasticity Steels Before and After Prestraining and Bake Hardening Treatment SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID DUAL-PHASE STEELS; TRIP STEELS; RETAINED AUSTENITE; MECHANICAL-PROPERTIES; MICROALLOYED STEELS; SI; PRECIPITATION; NB; STABILITY; BEHAVIOR AB The effect of prestraining and bake hardening (PS/BH) on the development of microstructures and mechanical properties in thermomechanically processed transformation-induced plasticity (TRIP) steels with additions of Nb, Mo, and Al was studied by atom probe tomography (APT) and transmission electron microscopy (TEM). An increase in number density and sizes of clusters and nanoscale precipitates was observed in both steels but was more significant in the Nb-Al-Mo steel than in the Nb-Al steel. This increase could be explained by the possible fast diffusion of Nb and Mo atoms at low temperatures, as was observed for surface diffusivity. The contributions of cluster strengthening and precipitation strengthening to the yield strength increment after PS/BH were estimated. C1 [Timokhina, I. B.] Deakin Univ, Ctr Mat & Fibre Innovat, Geelong, Vic 3216, Australia. [Enomoto, M.] Ibaraki Univ, Dept Mat Sci & Engn, Hitachi, Ibaraki 3168511, Japan. [Miller, M. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Microscopy Grp, Oak Ridge, TN 37831 USA. [Pereloma, E. V.] Univ Wollongong, Sch Mech Mat & Mechatron Engn, Wollongong, NSW 2522, Australia. RP Timokhina, IB (reprint author), Deakin Univ, Ctr Mat & Fibre Innovat, Geelong, Vic 3216, Australia. EM ilanat@deakin.edu.au FU Scientific User Facilities Division, Basic Energy Sciences, United States Department of Energy FX The authors thank K.F. Russell, Oak Ridge National Laboratory, for technical assistance. Atom probe research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Basic Energy Sciences, United States Department of Energy. NR 37 TC 9 Z9 10 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2012 VL 43A IS 7 BP 2473 EP 2483 DI 10.1007/s11661-012-1106-8 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 947CK UT WOS:000304404000027 ER PT J AU Demas, NG Timofeeva, EV Routbort, JL Fenske, GR AF Demas, Nicholaos G. Timofeeva, Elena V. Routbort, Jules L. Fenske, George R. TI Tribological Effects of BN and MoS2 Nanoparticles Added to Polyalphaolefin Oil in Piston Skirt/Cylinder Liner Tests SO TRIBOLOGY LETTERS LA English DT Article DE Nanolubricants; Nanoparticles; Surfactants; Additives; Cast iron; Cylinder liner; Piston skirt; Boron nitride (BN); Molybdenum disulfide (MoS2); Polyalphaolefin (PAO) ID LUBRICANT ADDITIVES; HEXAGONAL MOS2; RAMAN; SCATTERING; SPECTRA; WEAR AB We report in this article the friction and wear results of polyalphaolefin (PAO 10) base oil with the addition of 3 wt% boron nitride (BN) and molybdenum disulfide (MoS2) nanoparticles with nominal size of 70 and 50 nm, respectively. The formulations were tested using cast iron cylinder liner segments reciprocating against aluminum alloy piston skirt segments at 20, 40, and 100 A degrees C. The results showed that, at a load of 250 N and a reciprocating frequency of 2 Hz, BN did not lower friction whereas MoS2 nanoparticles were very effective at reducing both friction and wear, compared with the base oil. The viscosities of both formulations were similar to the base oil, which allowed for a direct comparison between them. Raman spectroscopy showed the formation of an aligned MoS2 layer on the cast iron liner surface, which most likely functions as a tribofilm. In the case of the cast iron liner tested with BN nanolubricant, no traces of BN were found. The effect of surfactants was also studied, and it was found that some surfactants were not only beneficial in dispersing the nanoparticles in oil, but also in producing some reduction in friction and wear, even when used as stand-alone additives in PAO 10. C1 [Demas, Nicholaos G.; Timofeeva, Elena V.; Routbort, Jules L.; Fenske, George R.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Demas, NG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ndemas@anl.gov RI Timofeeva, Elena/E-6391-2010; OI Timofeeva, Elena V./0000-0001-7839-2727 FU US Department of Energy [M68008852]; UChicago Argonne, LLC [DE-AC02-06CH11357] FX This study is a part of Industrial Technology Program #M68008852 supported by the US Department of Energy. The scanning electron microscopy was performed at the Electron Microscopy Center for Materials Research, and Raman Microscopy was conducted at the Center for Nanoscale Materials, at Argonne National Laboratory-The US Department of Energy Office of Science Laboratory-operated under Contract No. DE-AC02-06CH11357 by the UChicago Argonne, LLC. The authors would like to thank Eduardo Tomanik at Mahle Metal Leve S.A. for providing the samples used in this study. NR 27 TC 11 Z9 11 U1 5 U2 48 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD JUL PY 2012 VL 47 IS 1 BP 91 EP 102 DI 10.1007/s11249-012-9965-0 PG 12 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 950RQ UT WOS:000304666800010 ER PT J AU Mitri, FG AF Mitri, F. G. TI Three-dimensional vectorial analysis of an electromagnetic non-diffracting high-order Bessel trigonometric beam SO WAVE MOTION LA English DT Article DE Bessel trigonometric beam; Non-diffracting beam; Vector analysis ID NONDIFFRACTING BEAMS; DIELECTRIC SPHERE; WAVE ANALYSIS; VORTEX BEAM; SUPERPOSITIONS; GENERATION; SCATTERING AB The vector wave analysis of a new type of non-diffracting electromagnetic beam, termed as a high-order Bessel trigonometric (non-vortex) beam, that satisfies the three-dimensional Helmholtz equation in free space, is presented stemming from the vector Maxwell's equations and Lorenz' gauge condition. Particular emphasis is made for the cases where the ratio of the wave number over its transverse component k/k(R) approaches to unity and largely exceeds it. Computed cross-sectional beam profiles demonstrate the significant differences-for the components of the electric and magnetic fields in those two limits. The results are of particular importance in the study of electromagnetic wave scattering and radiation forces of this category of trigonometric beams by particles. (C) 2012 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Acoust & Sensors Technol Team, Los Alamos, NM 87545 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA-11,MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov FU Los Alamos National Laboratory [20100595PRD1] FX The author acknowledges the financial support provided through a Director's fellowship (LDRD-X9N9, Project #20100595PRD1) from Los Alamos National Laboratory. Disclosure: this unclassified publication, with the following reference no. LA-UR 12-20187, has been approved for unlimited public release under DUSA ENSCI. NR 21 TC 8 Z9 9 U1 3 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2125 J9 WAVE MOTION JI Wave Motion PD JUL PY 2012 VL 49 IS 5 BP 561 EP 568 DI 10.1016/j.wavemoti.2012.03.002 PG 8 WC Acoustics; Mechanics; Physics, Multidisciplinary SC Acoustics; Mechanics; Physics GA 949OM UT WOS:000304585500004 ER PT J AU Bhattarai, SR Yoo, SY Lee, SW Dean, D AF Bhattarai, Shanta Raj Yoo, So Young Lee, Seung-Wuk Dean, Deborah TI Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection SO BIOMATERIALS LA English DT Article DE Cell culture; Microbiology; Bacteria; Infection; Molecular biology; Molecular imaging ID MEMBRANE-PROTEIN-D; FILAMENTOUS PHAGE; MAMMALIAN-CELLS; GENE-TRANSFER; EXPRESSION; DELIVERY; AUTOTRANSPORTER; BACTERIOPHAGE; PEPTIDE; PMPD AB Developing materials that are effective against sexually transmitted pathogens such as Chlamydia trachomatis (Ct) and HIV-1 is challenging both in terms of material selection and improving bio-membrane and cellular permeability at desired mucosa! sites. Here, we engineered the prokaryotic bacterial virus (M13 phage) carrying two functional peptides, integrin binding peptide (RGD) and a segment of the polymorphic membrane protein D (PmpD) from Ct, as a phage-based material that can ameliorate Ct infection. Ct is a globally prevalent human pathogen for which there are no effective vaccines or microbicides. We show that engineered phage stably express both RGD motifs and Ct peptides and traffic intracellularly and into the lumen of the inclusion in which the organism resides within the host cell. Engineered phage were able to significantly reduce Ct infection in both HeLa and primary endocervical cells compared with Ct infection alone. Polyclonal antibodies raised against PmpD and co-incubated with constructs prior to infection did not alter the course of infection, indicating that PmpD is responsible for the observed decrease in Ct infection. Our results suggest that phage-based design approaches to vector delivery that overcome mucosal cellular barriers may be effective in preventing Ct and other sexually transmitted pathogens. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Bhattarai, Shanta Raj; Yoo, So Young; Dean, Deborah] Childrens Hosp Oakland Res Inst, Ctr Immunobiol & Vaccine Dev, Oakland, CA 94609 USA. [Bhattarai, Shanta Raj; Yoo, So Young; Lee, Seung-Wuk; Dean, Deborah] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Bhattarai, Shanta Raj; Yoo, So Young; Lee, Seung-Wuk] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dean, Deborah] UCSF Dept Med, San Francisco, CA 94143 USA. RP Dean, D (reprint author), Childrens Hosp & Res Ctr Oakland, 5700 Martin Luther King Jr Way, Oakland, CA 94609 USA. EM ddean@chori.org FU National Institute of Health (NIH) [R56 AI78419]; Hellman Family Faculty Award FX This work was supported in part by a grant from the National Institute of Health (NIH) R56 AI78419 (to DD) and the Hellman Family Faculty Award (to SWL). We would like to thank Wue Ling Chuang, Tara Srinivasan, and Ryan Wang for excellent technical assistance. NR 65 TC 16 Z9 17 U1 2 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 EI 1878-5905 J9 BIOMATERIALS JI Biomaterials PD JUL PY 2012 VL 33 IS 20 BP 5166 EP 5174 DI 10.1016/j.biomaterials.2012.03.054 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 948KU UT WOS:000304502900021 PM 22494890 ER PT J AU Darcy, D Tobin, CJ Yasunaga, K Simmie, JM Wurmel, J Metcalfe, WK Niass, T Ahmed, SS Westbrook, CK Curran, HJ AF Darcy, Daniel Tobin, Colin J. Yasunaga, Kenji Simmie, John M. Wuermel, Judith Metcalfe, Wayne K. Niass, Tidjani Ahmed, Syed S. Westbrook, Charles K. Curran, Henry J. TI A high pressure shock tube study of n-propylbenzene oxidation and its comparison with n-butylbenzene SO COMBUSTION AND FLAME LA English DT Article DE Shock tube; Oxidation; Ignition; Propylbenzene; Ignition delay times; Butylbenzene ID HIGH-TEMPERATURE OXIDATION; AUTO-IGNITION; DIESEL FUEL; BENZENE OXIDATION; RATE CONSTANTS; M-XYLENE; TOLUENE; COMBUSTION; JSR; HYDROCARBONS AB Ignition delay times have been measured for mixtures of n-propylbenzene in air (approximate to 21% O-2, approximate to 79% N-2) at equivalence ratios of 0.29, 0.48, 0.96 and 1.92 and at reflected shock pressures of 1, 10 and 30 atm in a heated high-pressure shock tube over a wide temperature range (1000-1600 K). The effects of reflected shock pressure and of equivalence ratio on ignition delay time were determined and common trends highlighted. Simulations were carried out using the n-propylbenzene sub-mechanism contained in an n-butylbenzene reaction mechanism available in the literature. This kinetic model was improved by including pressure dependent reactions which were not in place previously and the addition of the NUI Galway C-0-C-4 sub-mechanism. These simulations showed very good agreement with the experimental data. Additionally a comparison is made with experimental data previously obtained and published for n-butylbenzene over the same range of conditions and common trends are highlighted. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Darcy, Daniel; Tobin, Colin J.; Yasunaga, Kenji; Simmie, John M.; Wuermel, Judith; Metcalfe, Wayne K.; Curran, Henry J.] NUI Galway, Sch Chem, Combust Chem Ctr, Galway, Ireland. [Niass, Tidjani; Ahmed, Syed S.] Saudi Aramco, Div Res & Dev, Dhahran, Saudi Arabia. [Westbrook, Charles K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Curran, HJ (reprint author), NUI Galway, Sch Chem, Combust Chem Ctr, Galway, Ireland. EM henry.curran@nuigalway.ie OI Curran, Henry/0000-0002-5124-8562 FU Saudi Aramco FX We acknowledge the financial support of Saudi Aramco. NR 47 TC 29 Z9 29 U1 3 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JUL PY 2012 VL 159 IS 7 BP 2219 EP 2232 DI 10.1016/j.combustflame.2012.02.009 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 944OM UT WOS:000304213700001 ER PT J AU Peukert, SL Sivaramakrishnan, R Su, MC Michael, JV AF Peukert, Sebastian L. Sivaramakrishnan, Raghu Su, Meng-Chih Michael, Joe V. TI Experiment and theory on methylformate and methylacetate kinetics at high temperatures: Rate constants for H-atom abstraction and thermal decomposition SO COMBUSTION AND FLAME LA English DT Article DE Shock tube; H-ARAS; Ab initio calculations; Transition state theory; Master equation modeling; Absorption cross sections ID TRANSITION-STATE-THEORY; REFLECTED SHOCK-WAVES; METHYL FORMATE; MASTER EQUATION; GAS-PHASE; ACETATE; TUBE; DISSOCIATION; COMBUSTION; PYROLYSIS AB The shock tube technique was used to study the high temperature thermal decomposition of methylformate (MF) and methylacetate (MA). The formation of H-atoms was measured behind reflected shock waves by using atomic resonance absorption spectrometry (ARAS). The experiments span a T-range of 1194-1371 K at pressures similar to 0.5 atm. The H-atom profiles were simulated using a detailed chemical kinetic mechanism for MF and MA thermal decomposition. The simulations were used to derive rate constants for sensitive decomposition and H-abstraction reactions in MF and MA. In methylformate, the most sensitive reactions that determine H-atom profiles are: CH3OC(O)H -> HCO2 + CH3 (A) CH3OC(O)H + H -> CH3OCO + H-2 (B) where H is formed from HCO2 -> H + CO2. In methylacetate the most sensitive reactions affecting H-atom formation are: CH3OC(O)CH3 -> CH3 + OC(O)CH3 (C) CH3OC(O)CH3 + H -> CH2OC(O)CH3 + H-2 (D) Minor sensitivity was observed for the energetically higher lying bond fission, CH3OC(O)CH3 -> CH3 + CH3OCO (E) and H-atom abstraction from MA by CH3 through, CH3OC(O)CH3 + CH3 -> CH2OC(O)CH3 + CH4 (F) CH3OC(O)CH3 + CH3 -> CH3OC(O)CH2 + CH4 (G) Unlike MF, where H-atoms are formed instantaneously at high-temperatures from (A), in MA, H-atoms form from the CH3 radicals (through CH3 + CH3 -> C2H4 + 2H) generated primarily through the C-O bond fission channel (C) with minor contributions from (E). A master equation analysis was performed using CCSD(T)/cc-pv infinity z//B3LYP/6-311++G(d,p) energetics and molecular properties for all thermal decomposition processes in MF and MA. The theoretical predictions were found to be in good agreement with the present experimentally derived rate constants for the bond fissions. TST calculations employing CCSD(T)/cc-pv infinity z//MP2/aug-cc-pvtz energies and molecular properties for reactions (B) and (D) (the only sensitive abstraction processes in MF and MA) are in good agreement with the experimental rate constants. The theoretically derived rate constants for these processes can be represented by modified Arrhenius expressions for the bond fissions at 0.5 atm over the T-range 1000-2000 K and for the bimolecular abstractions over the 500-2000 K regime. k(A)(T) = 9.79 x 10(68)T(-15.95)exp(-57, 434 K/T) s(-1) k(B)(T) = 5.67 x 10(-19)T(2.50)exp(-3188 K/T) cm(3) molecule(-1) s(-1) k(C)(T) = 1.42 x 10(84)T(-19.60)exp(-63, 608 K/T) s(-1) k(D)(T) = 1.18 x 10(-18)T(2.58)exp(-3714 K/T) cm(3) molecule(-1) s(-1) k(E)(T) = 1.90 x 10(82)T(-193)exp(-64, 724 K/T) s(-1) Our theoretical predictions for MA + CH3 give over the T-range 500-2000 K, k(F)(T) = 2.12 x 10(-25)T(3.93)exp(-4440 K/T) cm(3) molecule(-1) s(-1) k(G)(T) = 3.40 x 10(-25)T(3.88)exp(-4149 K/T) cm(3) molecule(-1) s(-1) To our knowledge this is the first study providing experimentally derived rate constant values for the primary bond fission and abstraction reactions in MF and MA. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Peukert, Sebastian L.; Sivaramakrishnan, Raghu; Su, Meng-Chih; Michael, Joe V.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Sivaramakrishnan, R (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, R-109,Bldg 200, Argonne, IL 60439 USA. EM raghu@anl.gov; jmichael@anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008; Michael, Joe/E-3907-2010 OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254; FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357. The authors thank Dr. Stephen Klippenstein (Argonne National Laboratory) for his guidance in using VARIFLEX and for his invaluable suggestions that have had a significant impact on the theoretical component of this study. NR 69 TC 23 Z9 23 U1 4 U2 61 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JUL PY 2012 VL 159 IS 7 BP 2312 EP 2323 DI 10.1016/j.combustflame.2012.03.007 PG 12 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 944OM UT WOS:000304213700007 ER PT J AU Richardson, ES Chen, JH AF Richardson, Edward S. Chen, Jacqueline H. TI Application of PDF mixing models to premixed flames with differential diffusion SO COMBUSTION AND FLAME LA English DT Article DE Probability density function; Mixing models; Differential diffusion; Direct numerical simulation; Premixed turbulent combustion ID PROBABILITY DENSITY-FUNCTION; TURBULENT REACTIVE FLOWS; SCALAR DISSIPATION EQUATION; NUMERICAL-SIMULATION; PASSIVE SCALARS; COMBUSTION; FORMULATION; GRADIENTS; MIXTURE; CLOSURE AB Differential diffusion alters the balance of reaction and diffusion in turbulent premixed combustion, affecting the performance and emissions of combustion devices. Modelling combustion devices with Probability or Filtered Density Function (PDF or FDF) methods provides an exact treatment for the change in composition due to chemical reaction, while molecular mixing has to be modelled. Previous PDF molecular mixing models do not account for differential diffusion in a manner which satisfies realizability requirements. A new approach for treating differential diffusion, which ensures realizability, is proposed for pairwise-exchange mixing models in general, and applied in the Interaction by Exchange with the Mean (IEM) model of Dopazo [26], and in the Euclidean Minimum Spanning Tree (EMST) model of Subramaniam and Pope [5]. The new differential diffusion models are referred to as IEM-DD and EMST-DD respectively. Results from two and three-dimensional DNS of turbulent premixed methane-air combustion show that mixing rates and conditional statistics of species mass fractions depend on species diffusivities and the combustion regime. Zero-dimensional PDF model results obtained for the two-dimensional DNS case show that the EMST-DD model best reproduces the features that characterize differential diffusion in the DNS. The essential feature of the EMST-DD model, which accounts for its success in turbulent premixed combustion, is that differential mixing rates are imposed within a model which mixes locally in composition space. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Richardson, Edward S.] Univ Southampton, Fac Engn & Environment, Southampton SO17 1BJ, Hants, England. [Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Reacting Flow Res Dept, Livermore, CA 94551 USA. RP Richardson, ES (reprint author), Univ Southampton, Fac Engn & Environment, Southampton SO17 1BJ, Hants, England. EM e.s.richardson@soton.ac.uk FU Division of Chemical Sciences, Geosciences and Bio-sciences, the Office of Basic Energy Sciences, the US Department of Energy; US Department of Energy [DE-AC04-94-AL85000]; Office of Science of the US Department of Energy [DE-AC05-00OR22725]; UK Engineering and Physical Sciences Research Council [EP/I004564/1] FX Many constructive and detailed suggestions of three anonymous reviewers are gratefully acknowledged. This work was supported by the Division of Chemical Sciences, Geosciences and Bio-sciences, the Office of Basic Energy Sciences, the US Department of Energy. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94-AL85000. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725; and E.S. Richardson received further support from the UK Engineering and Physical Sciences Research Council (Grant No. EP/I004564/1). In addition, the authors would like to thank Stephen B. Pope for helpful comments, and Fabrizio Bisetti for providing part of the PDF simulation program. NR 52 TC 13 Z9 13 U1 2 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JUL PY 2012 VL 159 IS 7 BP 2398 EP 2414 DI 10.1016/j.combustflame.2012.02.026 PG 17 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 944OM UT WOS:000304213700015 ER PT J AU Poovaiah, CR Shen, H Wuddineh, WA Mielenz, J Tschaplinski, TJ Stewart, CN Chen, F Dixon, RA AF Poovaiah, Charleson R. Shen, Hui Wuddineh, Wegi A. Mielenz, Jonathan Tschaplinski, Timothy J. Stewart, C. Neal, Jr. Chen, Fang Dixon, Richard A. TI Overexpression of PvMYB4 in Switchgrass Leads to a Three-fold Increase in Ethanol Production without Pretreatment SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL LA English DT Meeting Abstract C1 [Poovaiah, Charleson R.; Wuddineh, Wegi A.; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Shen, Hui; Chen, Fang; Dixon, Richard A.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Mielenz, Jonathan] OakRidge Natl Lab, Biosci Div, Oakridge, TN 37831 USA. [Tschaplinski, Timothy J.] OakRidge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Poovaiah, Charleson R.; Shen, Hui; Wuddineh, Wegi A.; Mielenz, Jonathan; Tschaplinski, Timothy J.; Stewart, C. Neal, Jr.; Chen, Fang; Dixon, Richard A.] Oak Ridge Natl Lab, Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. EM Charleson@utk.edu NR 0 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1071-2690 J9 IN VITRO CELL DEV-AN JI In Vitro Cell. Dev. Biol.-Anim. PD JUL PY 2012 VL 48 SU 1 BP 60 EP 61 PG 2 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 947BU UT WOS:000304402400149 ER PT J AU Parvaz, MA Konova, AB Tomasi, D Volkow, ND Goldstein, RZ AF Parvaz, Muhammad A. Konova, Anna B. Tomasi, Dardo Volkow, Nora D. Goldstein, Rita Z. TI Structural Integrity of the Prefrontal Cortex Modulates Electrocortical Sensitivity to Reward SO JOURNAL OF COGNITIVE NEUROSCIENCE LA English DT Article ID EVENT-RELATED POTENTIALS; COERULEUS-NOREPINEPHRINE SYSTEM; HUMAN ORBITOFRONTAL CORTEX; VOXEL-BASED MORPHOMETRY; MONETARY REWARD; GRAY-MATTER; HUMAN BRAIN; CORTICAL GENERATORS; SOURCE LOCALIZATION; OPTIMAL PERFORMANCE AB The P300 is a known ERP component assessing stimulus value, including the value of a monetary reward. In parallel, the incentive value of reinforcers relies on the PFC, a major cortical projection region of the mesocortical reward pathway. Here we show a significant positive correlation between P300 response to money (vs. no money) with PFC gray matter volume in the OFC, ACC, and dorsolateral and ventrolateral PFC in healthy control participants. In contrast, individuals with cocaine use disorders showed compromises in both P300 sensitivity to money and PFC gray matter volume in the ventrolateral PFC and OFC and their interdependence. These results document for the first time the importance of gray matter structural integrity of subregions of PFC to the reward-modulated P300 response. C1 [Parvaz, Muhammad A.; Konova, Anna B.; Goldstein, Rita Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Konova, Anna B.] SUNY Stony Brook, Stony Brook, NY USA. [Tomasi, Dardo] Natl Inst Alcohol & Alcoholism, Bethesda, MD USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD USA. RP Goldstein, RZ (reprint author), Brookhaven Natl Lab, 30 Bell Ave,Bldg 490, Upton, NY 11973 USA. EM rgoldstein@bnl.gov RI Tomasi, Dardo/J-2127-2015; OI Parvaz, Muhammad/0000-0002-2671-2327 FU National Institute on Drug Abuse [1R01DA023579]; General Clinical Research Center [5-MO1-RR-10710]; U.S. Department of Energy [DE-AC02-98CHI-886] FX We would like to thank Thomas Maloney, Nelly Alia-Klein, Patricia A. Woicik, and Frank Telang for their assistance in participant recruitment, assessment, and study conduct and Ruiliang Wang for the technical support in MRI acquisition and data reconstruction. This work was supported by grants from the National Institute on Drug Abuse (Grant 1R01DA023579 to R. Z. G.) and General Clinical Research Center (Grant 5-MO1-RR-10710). This manuscript has been authored by Brookhaven Science Associates, LLC, under contract DE-AC02-98CHI-886 with the U.S. Department of Energy. The U.S. Government retains and, by accepting the article for publication, the publisher acknowledges a worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the U.S. Government purposes. NR 74 TC 9 Z9 9 U1 2 U2 5 PU MIT PRESS PI CAMBRIDGE PA 55 HAYWARD STREET, CAMBRIDGE, MA 02142 USA SN 0898-929X J9 J COGNITIVE NEUROSCI JI J. Cogn. Neurosci. PD JUL PY 2012 VL 24 IS 7 BP 1560 EP 1570 PG 11 WC Neurosciences; Psychology, Experimental SC Neurosciences & Neurology; Psychology GA 949RK UT WOS:000304593300005 PM 22098260 ER PT J AU Ravindranath, S Wang, YY Boukany, P Li, X AF Ravindranath, Sham Wang, Yangyang Boukany, Pouyan Li, Xin TI Letter to the editor: Cone partitioned plate (CPP) vs circular couette SO JOURNAL OF RHEOLOGY LA English DT Letter ID ENTANGLED POLYMER-SOLUTIONS; NORMAL STRESS DIFFERENCES; WALL SLIP; SHEAR; POLYSTYRENE; RHEOMETER; LIQUIDS; FLOW; MELT AB In geometries capable of producing uniform shear stress across the gap such as cone-plate, it is a challenge to study the nonlinear rheology of well-entangled polymers without wall slip and edge fracture. The task to obtain meaningful steady-state information is particularly daunting. Significant insights are required in the design of experiments and choice of reliable apparatuses that could ful-fill the objective to determine the constitutive behavior. In a recent published article, Hu J. Rheol. 54, 1307-1323 (2010) reported particle-imaging velocimetric measurements of two highly entangled polybutadiene solutions with a cocylinder geometry. One of the solutions was prepared and provided to Hu by Ravindranath from the University of Akron. Rheological and particle-tracking velocimetric studies have been carried out on the same sample in our laboratory. In this letter, we will compare Hu's results with our own measurements, clarify a few misrepresentations, and discuss several important issues concerning shear banding in entangled polymers. VC 2012 The Society of Rheology. [http://dx.doi.org/10.1122/1.4708515] C1 [Wang, Yangyang] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Ravindranath, Sham] Ticona Engn Polymers, Florence, KY 41042 USA. [Boukany, Pouyan] Ohio State Univ, Nanoscale Sci & Engn Ctr Affordable Nanoengn Poly, Columbus, OH 43212 USA. [Li, Xin] Milliken & Co, Milliken Res Corp, Spartanburg, SC 29303 USA. RP Wang, YY (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM wangy@ornl.gov RI Boukany, Pouyan/G-5043-2011; Wang, Yangyang/A-5925-2010 OI Wang, Yangyang/0000-0001-7042-9804 NR 18 TC 3 Z9 3 U1 2 U2 8 PU JOURNAL RHEOLOGY AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0148-6055 J9 J RHEOL JI J. Rheol. PD JUL PY 2012 VL 56 IS 4 BP 675 EP 681 DI 10.1122/1.4708515 PG 7 WC Mechanics SC Mechanics GA 945VY UT WOS:000304305700001 ER PT J AU Sjogreen, B Petersson, NA AF Sjoegreen, Bjoern Petersson, N. Anders TI A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Elastic wave equation; Finite difference scheme; Summation by parts; Stability; Energy estimate ID DISCONTINUOUS GALERKIN METHOD; NAVIER-STOKES EQUATIONS; APPROXIMATIONS; PROPAGATION; MEDIA; SUMMATION; PARTS AB We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (() ) . This discretization satisfies a summation by parts identity that guarantees stability of the scheme. The boundary conditions are enforced through ghost points, thereby avoiding projections or penalty terms, which often are used with previous summation by parts operators. The temporal discretization is obtained by an explicit modified equation method. Numerical examples with free surface boundary conditions show that the scheme is stable for CFL-numbers up to 1.3, and demonstrate a significant improvement in efficiency over the second order accurate method. The new discretization of (() ) has general applicability, and will enable stable fourth order accurate approximations of other partial differential equations as well as the elastic wave equation. C1 [Sjoegreen, Bjoern; Petersson, N. Anders] LLNL, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Sjogreen, B (reprint author), LLNL, Ctr Appl Sci Comp, L 422,POB 808, Livermore, CA 94551 USA. EM sjogreen2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore NR 25 TC 17 Z9 18 U1 0 U2 6 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 J9 J SCI COMPUT JI J. Sci. Comput. PD JUL PY 2012 VL 52 IS 1 BP 17 EP 48 DI 10.1007/s10915-011-9531-1 PG 32 WC Mathematics, Applied SC Mathematics GA 944NQ UT WOS:000304211100002 ER PT J AU Cliffe, KA Hall, EJC Houston, P Phipps, ET Salinger, AG AF Cliffe, K. Andrew Hall, Edward J. C. Houston, Paul Phipps, Eric T. Salinger, Andrew G. TI Adaptivity and a Posteriori Error Control for Bifurcation Problems III: Incompressible Fluid Flow in Open Systems with (2) Symmetry SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Incompressible flows; Bifurcation problems; A posteriori error estimation; Adaptivity; Discontinuous Galerkin methods; O(2) symmetry ID DISCONTINUOUS GALERKIN METHODS; BREAKING BIFURCATION; STENOTIC FLOWS; EQUATIONS; STEADY; POINTS AB In this article we consider the error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork bifurcation occurs when the underlying physical system possesses rotational and reflectional or (2) symmetry. Here, computable error bounds are derived based on employing the generalization of the standard Dual Weighted Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed error indicator on adaptively refined computational meshes are presented. Here, particular attention is devoted to the problem of flow through a cylindrical pipe with a sudden expansion, which represents a notoriously difficult computational problem. C1 [Cliffe, K. Andrew; Hall, Edward J. C.; Houston, Paul] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England. [Phipps, Eric T.; Salinger, Andrew G.] Sandia Natl Labs, Comp Sci Res Inst, Albuquerque, NM 87185 USA. RP Houston, P (reprint author), Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England. EM Andrew.Cliffe@nottingham.ac.uk; Edward.Hall@nottingham.ac.uk; Paul.Houston@nottingham.ac.uk; etphipp@sandia.gov; agsalin@sandia.gov FU EPSRC [EP/E013724/1, EP/E013724, EP/F01340X]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The research of E.J.C. Hall was supported by the EPSRC under grant EP/E013724/1. The authors would like to express their gratitude to Prof. T. Mullin (University of Manchester) for his insight and lengthy discussions concerning the flow in the pipe with a sudden expansion. KAC, PH, and EJCH gratefully acknowledge the financial support of the EPSRC under the grant EP/E013724. In addition, all of the authors acknowledge the support of the EPSRC under the grant EP/F01340X. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 29 TC 3 Z9 3 U1 0 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD JUL PY 2012 VL 52 IS 1 BP 153 EP 179 DI 10.1007/s10915-011-9545-8 PG 27 WC Mathematics, Applied SC Mathematics GA 944NQ UT WOS:000304211100006 ER PT J AU Biezuner, RJ Brown, J Ercole, G Martins, EM AF Biezuner, Rodney Josue Brown, Jed Ercole, Grey Martins, Eder Marinho TI Computing the First Eigenpair of the -Laplacian via Inverse Iteration of Sublinear Supersolutions SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE p-Laplacian; First eigenvalue and eigenfunction; Inverse iteration; Lane-Emden problem; Torsional creep problem ID FINITE-ELEMENT-METHOD; P-LAPLACIAN; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; APPROXIMATION; EIGENVALUES; DIFFUSION; COMPUTATION; ALGORITHM; OPERATORS AB We introduce an iterative method for computing the first eigenpair ( , ) for the -Laplacian operator with homogeneous Dirichlet data as the limit of ( (,) ) as -> (-), where is the positive solution of the sublinear Lane-Emden equation with the same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of to is in the (1)-norm and the rate of convergence of to is at least (-). Numerical evidence is presented. C1 [Biezuner, Rodney Josue; Ercole, Grey] Univ Fed Minas Gerais, Dept Matemat ICEx, BR-30161970 Belo Horizonte, MG, Brazil. [Brown, Jed] ETH, Lab Hydraul Hydrol & Glaciol VAW, CH-8092 Zurich, Switzerland. [Brown, Jed] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Martins, Eder Marinho] Univ Fed Ouro Preto, Dept Matemat ICEB, BR-35400000 Ouro Preto, MG, Brazil. RP Ercole, G (reprint author), Univ Fed Minas Gerais, Dept Matemat ICEx, Av Antonio Carlos 6627,Caixa Postal 702, BR-30161970 Belo Horizonte, MG, Brazil. EM rodney@mat.ufmg.br; jed@59A2.org; grey@mat.ufmg.br; eder@iceb.ufop.br RI Ercole, Grey/H-4373-2012 OI Ercole, Grey/0000-0002-0459-7292 FU FAPEMIG; CNPq FX The authors would like to thank the support of FAPEMIG and CNPq. NR 45 TC 9 Z9 9 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 J9 J SCI COMPUT JI J. Sci. Comput. PD JUL PY 2012 VL 52 IS 1 BP 180 EP 201 DI 10.1007/s10915-011-9540-0 PG 22 WC Mathematics, Applied SC Mathematics GA 944NQ UT WOS:000304211100007 ER PT J AU Aksoylu, B Bond, SD Cyr, EC Holst, M AF Aksoylu, Burak Bond, Stephen D. Cyr, Eric C. Holst, Michael TI Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Poisson-Boltzmann equation; Adaptive finite element methods; Multilevel preconditioning; Goal-oriented a posteriori error estimation; Solvation free energy; Electrostatics ID FINITE-ELEMENT EQUATIONS; ERROR ESTIMATION; ELECTROSTATIC FORCES; ITERATIVE METHODS; SYSTEMS; REFINEMENT; ALGORITHMS; DECOMPOSITION; SIMULATIONS; COMPUTATION AB In this article, we develop goal-oriented error indicators to drive adaptive refinement algorithms for the Poisson-Boltzmann equation. Empirical results for the solvation free energy linear functional demonstrate that goal-oriented indicators are not sufficient on their own to lead to a superior refinement algorithm. To remedy this, we propose a problem-specific marking strategy using the solvation free energy computed from the solution of the linear regularized Poisson-Boltzmann equation. The convergence of the solvation free energy using this marking strategy, combined with goal-oriented refinement, compares favorably to adaptive methods using an energy-based error indicator. Due to the use of adaptive mesh refinement, it is critical to use multilevel preconditioning in order to maintain optimal computational complexity. We use variants of the classical multigrid method, which can be viewed as generalizations of the hierarchical basis multigrid and Bramble-Pasciak-Xu (BPX) preconditioners. C1 [Bond, Stephen D.] Sandia Natl Labs, Multiphys Simulat Technol Dept, Albuquerque, NM 87185 USA. [Aksoylu, Burak] TOBB Univ Econ & Technol, Dept Math, TR-06560 Ankara, Turkey. [Aksoylu, Burak] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA. [Cyr, Eric C.] Sandia Natl Labs, Scalable Algorithms Dept, Albuquerque, NM 87185 USA. [Holst, Michael] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA. RP Bond, SD (reprint author), Sandia Natl Labs, Multiphys Simulat Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM baksoylu@etu.edu.tr; sdbond@sandia.gov; eccyr@sandia.gov; mholst@math.ucsd.edu RI Aksoylu, Burak/C-4948-2016 FU NSF [1016190, 0830578, 0715146, 0411723, 0511766]; University of Illinois; DOE Office of Science ASCR-UQ effort at Sandia National Laboratory [DE-AC04-94AL85000]; DOE [DE-FG02-05ER25707, DE-FG02-04ER25620]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX BA was supported in part by NSF Award 1016190. SB was supported in part by NSF Award 0830578. EC was supported in part by a University of Illinois CSE Fellowship and by a DOE Office of Science ASCR-UQ effort at Sandia National Laboratory under contract DE-AC04-94AL85000. MH was supported in part by NSF Awards 0715146, 0411723, and 0511766, and DOE Awards DE-FG02-05ER25707 and DE-FG02-04ER25620. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 86 TC 3 Z9 3 U1 0 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 J9 J SCI COMPUT JI J. Sci. Comput. PD JUL PY 2012 VL 52 IS 1 BP 202 EP 225 DI 10.1007/s10915-011-9539-6 PG 24 WC Mathematics, Applied SC Mathematics GA 944NQ UT WOS:000304211100008 ER PT J AU DiBiasio, CM Hopkins, JB AF DiBiasio, Christopher M. Hopkins, Jonathan B. TI Sensitivity of freedom spaces during flexure stage design via FACT SO PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY LA English DT Article DE Constraint-based design; FACT; Flexure; Compliant mechanism ID DEGREE-OF-FREEDOM; SYSTEM CONCEPTS AB The theoretical kinematic design of flexure stages using exact constraint methods is well known. These methods, however, do not take into account practical design considerations such as non-ideal constraint behavior. It is shown via a case study that the freedom space of a one degree-of-freedom (DOF) translation stage is extremely sensitive to both the arrangement and the elastomechanic behavior of the flexural constraints. The results of the case study show that certain combinations of constraint properties and layout yield a 1-DOF system that is more accurately modeled as a 3-DOF system. A non-dimensional constraint quality metric. CQ is introduced in this paper to help classify the system in the case study as a 1-DOF system, a 3-DOF system, or a combination thereof. This paper is a first step in showing how practical design considerations may negatively influence the kinematics of systems that were previously assumed to have been designed "correctly" using exact constraint methods. (c) 2012 Elsevier Inc. All rights reserved. C1 [DiBiasio, Christopher M.] Charles Stark Draper Lab Inc, Cambridge, MA 02139 USA. [Hopkins, Jonathan B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP DiBiasio, CM (reprint author), Charles Stark Draper Lab Inc, 555 Technol Sq, Cambridge, MA 02139 USA. EM cdibiasio@draper.com FU U.S. Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-489555]; Draper Laboratory FX Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-489555. Additional support for this work was provided through internal funding by Draper Laboratory. NR 13 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0141-6359 J9 PRECIS ENG JI Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. PD JUL PY 2012 VL 36 IS 3 BP 494 EP 499 DI 10.1016/j.precisioneng.2012.03.003 PG 6 WC Engineering, Multidisciplinary; Engineering, Manufacturing; Nanoscience & Nanotechnology; Instruments & Instrumentation SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation GA 944XJ UT WOS:000304236800015 ER PT J AU Beylkin, G Fann, G Harrison, RJ Kurcz, C Monzon, L AF Beylkin, Gregory Fann, George Harrison, Robert J. Kurcz, Christopher Monzon, Lucas TI Multiresolution representation of operators with boundary conditions on simple domains SO APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS LA English DT Article DE Multiresolution; Non-standard form; Projector on divergence free functions; Poisson Green's function; Non-oscillatory Helmholtz Green's function; Hilbert transform; Periodic boundary conditions; Separated representations ID SINGULAR-OPERATORS; GREENS-FUNCTIONS; ALGORITHMS; CRYSTALS; DIMENSIONS; EQUATIONS; COULOMB; BASES; SUMS; STABILITY AB We develop a multiresolution representation of a class of integral operators satisfying boundary conditions on simple domains in order to construct fast algorithms for their application. We also elucidate some delicate theoretical issues related to the construction of periodic Green's functions for Poisson's equation. By applying the method of images to the non-standard form of the free space operator, we obtain lattice sums that converge absolutely on all scales, except possibly on the coarsest scale. On the coarsest scale the lattice sums may be only conditionally convergent and, thus, allow for some freedom in their definition. We use the limit of square partial sums as a definition of the limit and obtain a systematic, simple approach to the construction (in any dimension) of periodized operators with sparse non-standard forms. We illustrate the results on several examples in dimensions one and three: the Hilbert transform, the projector on divergence free functions, the non-oscillatory Helmholtz Green's function and the Poisson operator. Remarkably, the limit of square partial sums yields a periodic Poisson Green's function which is not a convolution. Using a short sum of decaying Gaussians to approximate periodic Green's functions, we arrive at fast algorithms for their application. We further show that the results obtained for operators with periodic boundary conditions extend to operators with Dirichlet, Neumann, or mixed boundary conditions. (C) 2011 Elsevier Inc. All rights reserved. C1 [Beylkin, Gregory; Kurcz, Christopher; Monzon, Lucas] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA. [Fann, George; Harrison, Robert J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Beylkin, G (reprint author), Univ Colorado, Dept Appl Math, 526 UCB, Boulder, CO 80309 USA. EM beylkin@colorado.edu RI Monzon, Lucas/E-2232-2013; Beylkin, Gregory/G-6653-2011; OI BEYLKIN, GREGORY/0000-0003-3447-1460 FU DOE/ORNL [4000038129]; NSF [DMS-0612358, DMS-100995, OCI 0904972]; Office of Advanced Scientific Computing Research, U.S. Department of Energy; Oak Ridge National Laboratory [De-AC05-00OR22725] FX This research was partially supported by DOE/ORNL grant 4000038129, and NSF grants DMS-0612358 and DMS-100995.; R.J.H. gratefully acknowledges support from NSF OCI 0904972. G.F. gratefully acknowledges support from Applied Mathematics Program of the Office of Advanced Scientific Computing Research, U.S. Department of Energy. His work was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725. NR 33 TC 8 Z9 8 U1 2 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1063-5203 J9 APPL COMPUT HARMON A JI Appl. Comput. Harmon. Anal. PD JUL PY 2012 VL 33 IS 1 BP 109 EP 139 DI 10.1016/j.acha.2011.10.001 PG 31 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 944VQ UT WOS:000304232300006 ER PT J AU Baryshev, SV Zinovev, AV Tripa, CE Erck, RA Veryovkin, IV AF Baryshev, S. V. Zinovev, A. V. Tripa, C. E. Erck, R. A. Veryovkin, I. V. TI White light interferometry for quantitative surface characterization in ion sputtering experiments SO APPLIED SURFACE SCIENCE LA English DT Article DE White light interferometry; Ion sputtering; Depth profiling; Mass spectrometry; Genesis ID YIELD MEASUREMENTS; SIMULATIONS; BOMBARDMENT; CARBON; CR AB White light interferometry (WLI) can be used to obtain surface morphology information on dimensional scale of millimeters with lateral resolution as good as similar to 1 mu m and depth resolution down to 1 nm. By performing true three-dimensional imaging of sample surfaces, the WLI technique enables accurate quantitative characterization of the geometry of surface features and compares favorably to scanning electron and atomic force microscopies by avoiding some of their drawbacks. In this paper, results of using the WLI imaging technique to characterize the products of ion sputtering experiments are reported. With a few figures, several example applications of the WLI method are illustrated when used for (i) sputtering yield measurements and time-to-depth conversion, (ii) optimizing ion beam current density profiles, the shapes of sputtered craters, and multiple ion beam superposition and (iii) quantitative characterization of surfaces processed with ions. In particular, for sputter depth profiling experiments of Mg-25, Ca-44 and Cr-53 ion implants in Si (implantation energy of 1 keV per nucleon), the depth calibration of the measured depth profile curves determined by the WLI method appeared to be self-consistent with TRIM simulations for such projectile-matrix systems. In addition, high depth resolution of the WLI method is demonstrated for a case of a Genesis solar wind Si collector surface processed by gas cluster ion beam: a 12.5 nm layer was removed from the processed surface, while the transition length between the processed and untreated areas was 150 mu m. (C) 2012 Elsevier B. V. All rights reserved. C1 [Baryshev, S. V.; Zinovev, A. V.; Tripa, C. E.; Veryovkin, I. V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Erck, R. A.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Baryshev, SV (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sergey.v.baryshev@gmail.com FU UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-06CH11357]; NASA [NNH08AH761, NNH08ZDA001N] FX The authors would like to thank Dr. James Norem (Argonne National Laboratory, USA) for providing the Cu monocrystals, and Profs. Isao Yamada and Noriaki Toyoda (University of Hyogo, Japan) for GCIB processing of the Genesis sample surface. This work was supported under Contract No. DE-AC02-06CH11357 between UChicago Argonne, LLC and the U. S. Department of Energy and by NASA through grants NNH08AH761 and NNH08ZDA001N. NR 31 TC 11 Z9 11 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 1 PY 2012 VL 258 IS 18 BP 6963 EP 6968 DI 10.1016/j.apsusc.2012.03.144 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 941YB UT WOS:000304004100038 ER PT J AU Cheah, S Parent, YO Jablonski, WS Vinzant, T Olstad, JL AF Cheah, Singfoong Parent, Yves O. Jablonski, Whitney S. Vinzant, Todd Olstad, Jessica L. TI Manganese and ceria sorbents for high temperature sulfur removal from biomass-derived syngas - The impact of steam on capacity and sorption mode SO FUEL LA English DT Article DE Desulfurization; Sulfur sorbent; Hot gas clean-up; Biofuel; Ceria ID ZINC TITANATE SORBENTS; CALCIUM-BASED SORBENTS; H2S REMOVAL; FUEL GASES; COAL-GAS; DESULFURIZATION SORBENT; REGENERABLE SORBENTS; ELEVATED-TEMPERATURE; UNCALCINED LIMESTONE; HYDROGEN-SULFIDE AB Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 degrees C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H2S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H2S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H2S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H2S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Cheah, Singfoong; Jablonski, Whitney S.; Vinzant, Todd; Olstad, Jessica L.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Parent, Yves O.] Chem Engn Consulting Serv LLC, Golden, CO 80403 USA. RP Cheah, S (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd,MS 3322, Golden, CO 80401 USA. EM Singfoong.cheah@nrel.gov FU Office of the Biomass Program, U.S. Department of Energy [DE-AC36-99GO10337]; National Renewable Energy Laboratory FX Funding for this research was provided by the Office of the Biomass Program, U.S. Department of Energy, under contract number DE-AC36-99GO10337 with the National Renewable Energy Laboratory. We gratefully acknowledge stimulating and fruitful discussion with our colleagues Dr. Matthew Yung and Dr. Kimberly Magrini-Bair. NR 62 TC 17 Z9 17 U1 2 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD JUL PY 2012 VL 97 BP 612 EP 620 DI 10.1016/j.fuel.2012.03.007 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 941RB UT WOS:000303979400067 ER PT J AU Swenson, KM Chen, E Pattengale, ND Sankoff, D AF Swenson, Krister M. Chen, Eric Pattengale, Nicholas D. Sankoff, David TI The Kernel of Maximum Agreement Subtrees SO IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS LA English DT Article DE Phylogenetics; consensus tree; agreement subtree; MAST ID CONSENSUS TREES; DATA SETS; PROTEOBACTERIA; INFORMATION; CRUSADE; MODEL AB A Maximum Agreement SubTree (MAST) is a largest subtree common to a set of trees and serves as a summary of common substructure in the trees. A single MAST can be misleading, however, since there can be an exponential number of MASTs, and two MASTs for the same tree set do not even necessarily share any leaves. In this paper, we introduce the notion of the Kernel Agreement SubTree (KAST), which is the summary of the common substructure in all MASTs, and show that it can be calculated in polynomial time (for trees with bounded degree). Suppose the input trees represent competing hypotheses for a particular phylogeny. We explore the utility of the KAST as a method to discern the common structure of confidence, and as a measure of how confident we are in a given tree set. We also show the trend of the KAST, as compared to other consensus methods, on the set of all trees visited during a Bayesian analysis of flatworm genomes. C1 [Swenson, Krister M.; Sankoff, David] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada. [Swenson, Krister M.] Univ Quebec Montreal UQAM, Lab Combinatoire & Informat Math LaCIM, Montreal, PQ H2P2K7, Canada. [Chen, Eric] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada. [Pattengale, Nicholas D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Swenson, KM (reprint author), Univ Ottawa, Dept Math & Stat, 585 King Edward Ave,Room KED 303B, Ottawa, ON K1N 6N5, Canada. EM akswenson@uottawa.ca; lupi123@gmail.com; npcomplete@gmail.com; sankoff@uottawa.ca NR 37 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1545-5963 J9 IEEE ACM T COMPUT BI JI IEEE-ACM Trans. Comput. Biol. Bioinform. PD JUL-AUG PY 2012 VL 9 IS 4 BP 1023 EP 1031 DI 10.1109/TCBB.2012.9 PG 9 WC Biochemical Research Methods; Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Biochemistry & Molecular Biology; Computer Science; Mathematics GA 943TB UT WOS:000304147000011 PM 22231622 ER PT J AU Sharma, S Shi, Y Liu, J Hou, YT Kompella, S Midkiff, SF AF Sharma, Sushant Shi, Yi Liu, Jia Hou, Y. Thomas Kompella, Sastry Midkiff, Scott F. TI Network Coding in Cooperative Communications: Friend or Foe? SO IEEE TRANSACTIONS ON MOBILE COMPUTING LA English DT Article DE Cooperative communications; network coding; network coding noise ID WIRELESS NETWORKS; CODED COOPERATION; PERFORMANCE ANALYSIS; RELAY NETWORKS; DIVERSITY; STRATEGIES; ALLOCATION AB A major benefit of employing network coding (NC) in cooperative communications (CCs) is its ability to reduce time-slot overhead. Such approach is called network-coded CC (or NC-CC). Most of the existing works have mainly focused on exploiting this benefit without considering its potential adverse effect. In this paper, we show that NC may not always benefit CC. We substantiate this important finding with two important scenarios: employing analog network coding (ANC) in amplify-and-forward (AF) CC, and digital network coding (DNC) in decode-and-forward (DF) CC. For both scenarios, we introduce the important concept of network coding noise (NC noise). We analyze the origin of this noise via a careful study of signal aggregation at a relay node and signal extraction at a destination node. We derive a closed-form expression for NC noise at each destination node and show that the existence of NC noise could diminish the advantage of NC in CC. Our results shed new light on how to use NC in CC most effectively. C1 [Sharma, Sushant] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Shi, Yi; Hou, Y. Thomas; Midkiff, Scott F.] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. [Liu, Jia] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Kompella, Sastry] USN, Res Lab, Div Informat Technol, Washington, DC 20375 USA. RP Sharma, S (reprint author), Brookhaven Natl Lab, Computat Sci Ctr, Room 255,Bldg 463B, Upton, NY 11973 USA. EM sushant@bnl.gov; yshi@vt.edu; liu@ece.osu.edu; thou@vt.edu; sastry.kompella@nrl.navy.mil; midkiff@vt.edu OI Midkiff, Scott/0000-0003-4933-7360 FU US National Science Foundation [CNS-1064953]; ONR FX The work of Y.T. Hou, S.F. Midkiff, S. Sharma, and Y. Shi was supported in part by the US National Science Foundation under Grant CNS-1064953. The work of S. Kompella was supported in part by the ONR. This work was completed while S. Sharma and J. Liu were with Virginia Tech, Blacksburg, Virginia. NR 27 TC 20 Z9 22 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1536-1233 J9 IEEE T MOBILE COMPUT JI IEEE. Trans. Mob. Comput. PD JUL PY 2012 VL 11 IS 7 BP 1073 EP 1085 DI 10.1109/TMC.2011.130 PG 13 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 943TU UT WOS:000304148900001 ER PT J AU Pelechrinis, K Yan, G Eidenbenz, S Krishnamurthy, SV AF Pelechrinis, Konstantinos Yan, Guanhua Eidenbenz, Stephan Krishnamurthy, Srikanth V. TI Detection of Selfish Manipulation of Carrier Sensing in 802.11 Networks SO IEEE TRANSACTIONS ON MOBILE COMPUTING LA English DT Article DE Wireless networks; carrier sensing; clear channel assessment threshold; denial of service; selfish behavior; experimentation; analysis AB Recently, tuning the clear channel assessment (CCA) threshold in conjunction with power control has been considered for improving the performance of WLANs. However, we show that, CCA tuning can be exploited by selfish nodes to obtain an unfair share of the available bandwidth. Specifically, a selfish entity can manipulate the CCA threshold to ignore ongoing transmissions; this increases the probability of accessing the medium and provides the entity a higher, unfair share of the bandwidth. We experiment on our 802.11 testbed to characterize the effects of CCA tuning on both isolated links and in 802.11 WLAN configurations. We focus on AP-client(s) configurations, proposing a novel approach to detect this misbehavior. A misbehaving client is unlikely to recognize low power receptions as legitimate packets; by intelligently sending low power probe messages, an AP can efficiently detect a misbehaving node. Our key contributions are: 1) We are the first to quantify the impact of selfish CCA tuning via extensive experimentation on various 802.11 configurations. 2) We propose a lightweight scheme for detecting selfish nodes that inappropriately increase their CCAs. 3) We extensively evaluate our system on our testbed; its accuracy is 95 percent while the false positive rate is less than 5 percent. C1 [Pelechrinis, Konstantinos] Univ Pittsburgh, Sch Informat Sci, Pittsburgh, PA 15260 USA. [Yan, Guanhua; Eidenbenz, Stephan] Los Alamos Natl Lab, Informat Sci Grp CCS 3, Los Alamos, NM 87545 USA. [Krishnamurthy, Srikanth V.] Univ Calif Riverside, Dept Comp Sci, Riverside, CA 92521 USA. RP Pelechrinis, K (reprint author), Univ Pittsburgh, Sch Informat Sci, 717B Informat Sci Bldg,135 N Bellefield Ave, Pittsburgh, PA 15260 USA. EM kpele@pitt.edu; ghyan@lanl.gov; eidenben@lanl.gov; krish@cs.ucr.edu OI Eidenbenz, Stephan/0000-0002-2628-1854 FU US Army Research Office under the Multi University Research Initiative (MURI) [W911NF-07-1-0318]; US National Science Foundation NeTS:WN/Cyber trust [0721941] FX The authors would like to thank Dr. Konstantina Papagiannaki from Intel Research for providing the source code of the prototype driver. This work was supported in part by the US Army Research Office under the Multi University Research Initiative (MURI) grant W911NF-07-1-0318 and the US National Science Foundation NeTS:WN/Cyber trust grant 0721941. NR 28 TC 9 Z9 9 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1536-1233 J9 IEEE T MOBILE COMPUT JI IEEE. Trans. Mob. Comput. PD JUL PY 2012 VL 11 IS 7 BP 1086 EP 1101 DI 10.1109/TMC.2011.131 PG 16 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 943TU UT WOS:000304148900002 ER PT J AU Spoerke, ED Polsky, R Burckel, DB Wheeler, DR Bunker, BC AF Spoerke, Erik D. Polsky, Ronen Burckel, D. Bruce Wheeler, David R. Bunker, Bruce C. TI Rapid thermal pyrolysis of interferometrically patterned resist SO CARBON LA English DT Article ID CARBON-FILMS; FABRICATION; ELECTRODES AB In recent years pyrolysis of interferometrically-patterned photoresists has produced three-dimensionally nanopatterned, electrically conductive carbon films with applications from energy storage to biological sensing. We investigate here conditions for rapid thermal pyrolysis that drastically reduce film processing time (from hours to minutes) while preserving the films' unique nanoscale morphology, film adhesion, and electrochemical properties. We specifically show that heating rate dramatically affects nanoscale morphology, while reducing atmosphere composition, dwell time, and dwell temperature impact the electrochemical performance of these rapidly pyrolyzed nanostructures. Accelerated processing with rapid thermal pyrolysis may facilitate the expanded applicability and rapid fabrication of these promising nanostructured materials. (C) 2012 Published by Elsevier Ltd. C1 [Spoerke, Erik D.; Bunker, Bruce C.] Sandia Natl Labs, Elect & Nanostruct Mat, Albuquerque, NM USA. [Bunker, Bruce C.] Ctr Integrated Nanotechnol, Albuquerque, NM USA. [Polsky, Ronen; Wheeler, David R.] Sandia Natl Labs, Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Burckel, D. Bruce] Sandia Natl Labs, Appl Photon Microsyst, Albuquerque, NM 87185 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, Elect & Nanostruct Mat, POB 5800,MS 1411, Albuquerque, NM USA. EM edspoer@sandia.gov FU Sandia's Laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by Sandia's Laboratory Directed Research and Development Program. Thanks to Diana Moore who conducted the RTP experiments, Bonnie McKenzie who performed the scanning electron microscopy analysis, and DeAnna Lopez for assistance with electrochemical measurements. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 10 TC 2 Z9 2 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD JUL PY 2012 VL 50 IS 8 BP 2894 EP 2898 DI 10.1016/j.carbon.2012.02.058 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 936UY UT WOS:000303616700027 ER PT J AU Petersson, NA Sjogreen, B AF Petersson, N. Anders Sjoegreen, Bjoern TI Stable and Efficient Modeling of Anelastic Attenuation in Seismic Wave Propagation SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Viscoelastic; standard linear solid; finite difference; summation by parts ID SPECTRAL-ELEMENT METHOD; NUMERICAL-SIMULATION; MEDIA; EQUATION AB We develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation. The material model is a super-imposition of N standard linear solid mechanisms, which commonly is used in seismology to model a material with constant quality factor Q. The proposed scheme discretizes the governing equations in second order displacement formulation using 3 N memory variables, making it significantly more memory efficient than the commonly used first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation [SIAM J. Numer. Anal., 45 (2007), pp. 1902-1936]. Our main result is a proof that the proposed discretization is energy stable, even in the case of variable material properties. The proof relies on the summation-by-parts property of the discretization. The new scheme is implemented with grid refinement with hanging nodes on the interface. Numerical experiments verify the accuracy and stability of the new scheme. Semi-analytical solutions for a half-space problem and the LOH.3 layer over half-space problem are used to demonstrate how the number of viscoelastic mechanisms and the grid resolution influence the accuracy. We find that three standard linear solid mechanisms usually are sufficient to make the modeling error smaller than the discretization error. C1 [Petersson, N. Anders; Sjoegreen, Bjoern] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Petersson, NA (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, L-422,POB 808, Livermore, CA 94551 USA. EM andersp@llnl.gov; sjogreen2@llnl.gov NR 26 TC 8 Z9 8 U1 1 U2 11 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD JUL PY 2012 VL 12 IS 1 BP 193 EP 225 DI 10.4208/cicp.201010.090611a PG 33 WC Physics, Mathematical SC Physics GA 938VW UT WOS:000303762600008 ER PT J AU Breer, S Krause, M Busse, B Hahn, M Ruther, W Morlock, MM Amling, M Zustin, J AF Breer, Stefan Krause, Matthias Busse, Bjoern Hahn, Michael Ruether, Wolfgang Morlock, Michael M. Amling, Michael Zustin, Jozef TI Analysis of retrieved hip resurfacing arthroplasties reveals the interrelationship between interface hyperosteoidosis and demineralization of viable bone trabeculae SO JOURNAL OF ORTHOPAEDIC RESEARCH LA English DT Article DE hip arthroplasty; interface; bone cement; hyperosteoidosis; trabeculae ID BACKSCATTERED ELECTRON IMAGES; METAL SURFACE ARTHROPLASTY; FEMORAL-NECK FRACTURES; MINERALIZATION DENSITY; CEMENT INTERFACE; CONSERVE-PLUS; FOLLOW-UP; REPLACEMENT; EXPERIENCE; HYPERSENSITIVITY AB Retrieved hip resurfacing arthroplasties (HRA) revised for causes other than osteonecrosis enable further insights into bonecement interactions within the interface with only minimal biomechanical stresses. Our primary objective was to investigate the mineralization changes at the trabecular bone interface in retrieved hips using bright field and polarized light microscopy and by quantitative backscattered electron imaging. Because superficial seams of non-mineralized bone tissue varied substantially, we defined hyperosteoidosis as an osteoid seam of more than 20 mu m thickness. We hypothesized that interface hyperosteoidosis might be caused by the demineralization of previously mineralized bone tissue. One hundred and thirty-one retrieved HRAs with viable bone remnant tissue were analyzed. Bone mineral density distribution obtained from backscattered signal intensities of the trabecular bone at the bonecement interface was assessed in cases with and without interface hyperosteoidosis. In cases with interface hyperosteoidosis, the degree of trabecular mineralization was also analyzed in deeper areas of the femoral remnants. Thirty-four cases showed hyperosteoidosis at the bonecement interface, mostly in female patients. Bone trabeculae with hyperosteoidosis displayed a mineral density distribution pattern suggestive of the demineralization of a previously mineralized bone matrix. Our results demonstrate the localized disorder of the mineralization pattern of bone trabeculae at the bonecement interface in a group of retrieved HRAs. In previously well-fixed femoral components, potential adverse effects on the load-bearing bone due to a decreased degree of mineralization at the bonecement interface may affect the durability of the implant's function. (C) 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:11551161, 2012 C1 [Zustin, Jozef] Univ Med Ctr Hamburg Eppendorf, Inst Pathol, Hamburg, Germany. [Breer, Stefan; Krause, Matthias; Busse, Bjoern; Hahn, Michael; Amling, Michael] Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, Hamburg, Germany. [Busse, Bjoern] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Ruether, Wolfgang] Univ Med Ctr Hamburg Eppendorf, Dept Orthopaed, Hamburg, Germany. [Morlock, Michael M.] Univ Technol Hamburg Harburg, Biomech Sect, Hamburg, Germany. RP Zustin, J (reprint author), Univ Med Ctr Hamburg Eppendorf, Inst Pathol, Hamburg, Germany. EM j.zustin@uke.uni-hamburg.de RI Busse, Bjorn/O-8462-2016 OI Busse, Bjorn/0000-0002-3099-8073 NR 55 TC 9 Z9 9 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0736-0266 J9 J ORTHOP RES JI J. Orthop. Res. PD JUL PY 2012 VL 30 IS 7 BP 1155 EP 1161 DI 10.1002/jor.22035 PG 7 WC Orthopedics SC Orthopedics GA 939KT UT WOS:000303810000021 PM 22180341 ER PT J AU Gupta, A Murugan, R Paranthaman, MP Bi, ZH Bridges, CA Nakanishi, M Sokolov, AP Han, KS Hagaman, EW Xie, H Mullins, CB Goodenough, JB AF Gupta, Asha Murugan, Ramaswamy Paranthaman, M. Parans Bi, Zhonghe Bridges, Craig A. Nakanishi, Masahiro Sokolov, Alexei P. Han, Kee Sung Hagaman, E. W. Xie, Hui Mullins, C. Buddie Goodenough, John B. TI Optimum lithium-ion conductivity in cubic Li7-xLa3Hf2-xTaxO12 SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion battery; Solid electrolyte; Garnet; Li7-xLa3H f(2-x)Ta(x)O(12); Li NMR; Ionic conductivity ID LI7LA3ZR2O12; CONDUCTORS; GARNETS AB The nominal Li concentration giving a maximum room temperature Li-ion conductivity sigma(1.i) similar or equal to 3.45 x 10(-4) Scm(-1) with an E-a similar or equal to 0.438 eV in the system Li7-xLa3Hf2-xTaxO12 fired in an alumina crucible at 1130 degrees C for 48h occurs in the narrow range of x = 0.45 +/- 0.05. The samples were prepared by solid-state reaction and characterized by XRD, SEM, electrochemical impedance spectroscopy and Li-7 MAS NMR measurements. Published by Elsevier B.V. C1 [Gupta, Asha; Xie, Hui; Mullins, C. Buddie; Goodenough, John B.] Univ Texas Austin, Mat Res Program, Austin, TX 78712 USA. [Gupta, Asha; Xie, Hui; Mullins, C. Buddie; Goodenough, John B.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Murugan, Ramaswamy] Pondicherry Univ, Dept Phys, Pondicherry 605014, India. [Paranthaman, M. Parans; Bi, Zhonghe; Bridges, Craig A.; Nakanishi, Masahiro; Sokolov, Alexei P.; Han, Kee Sung; Hagaman, E. W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Nakanishi, Masahiro] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mullins, C. Buddie] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Mullins, C. Buddie] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. RP Goodenough, JB (reprint author), Univ Texas Austin, Mat Res Program, ETC 9-184, Austin, TX 78712 USA. EM jgoodenough@mail.utexas.edu RI Bi, zhonghe/D-7377-2012; Xie, Hui/B-7636-2012; Nakanishi, Masahiro/J-9497-2014; Paranthaman, Mariappan/N-3866-2015; OI Nakanishi, Masahiro/0000-0003-0844-8363; Paranthaman, Mariappan/0000-0003-3009-8531; Han, Kee Sung/0000-0002-3535-1818 FU Robert A Welch Foundation of Houston, Texas [F-1066, F-1436]; Department of Energy Office of Basic Energy Science [DE SC00005397]; US Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division; LDRD [LOIS 5608]; US Department of Energy; ORISE; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy FX The authors at the University of Texas at Austin gratefully acknowledge The Robert A Welch Foundation of Houston, Texas [grant numbers F-1066 for JBG and F-1436 for CBM] and the Department of Energy Office of Basic Energy Science grant DE SC00005397. MPP and CAB were supported by the US Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division. APS acknowledges the financial support from the LDRD Program of ORNL (LOIS 5608), managed by UT-Battelle, LLC for US Department of Energy. ZB acknowledge the support of the ORISE postdoctoral fellowship. EWH and KSH were supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. NR 16 TC 22 Z9 22 U1 6 U2 120 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2012 VL 209 BP 184 EP 188 DI 10.1016/j.jpowsour.2012.02.099 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 937XZ UT WOS:000303698800024 ER PT J AU Neubauer, J Brooker, A Wood, E AF Neubauer, Jeremy Brooker, Aaron Wood, Eric TI Sensitivity of battery electric vehicle economics to drive patterns, vehicle range, and charge strategies SO JOURNAL OF POWER SOURCES LA English DT Article DE Battery Ownership Model; Total cost of ownership; Electric vehicles; Charge strategies; Drive pattern; Range AB Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns: and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV. (C) 2012 Elsevier B.V. All rights reserved. C1 [Neubauer, Jeremy; Brooker, Aaron; Wood, Eric] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Neubauer, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Jeremy.neubauer@nrel.gov FU Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy; U.S. Department of Energy FX This study was supported by Dave Howell and Brian Cunningham of the Energy Storage, Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. The use of the battery degradation and FASTSim vehicle simulation tools, both developed at the National Renewable Energy Laboratory under funding from the U.S. Department of Energy's Vehicle Technologies Program, was critical to the completion of this study. Special thanks to Michael O'Keefe, Caley Johnson, and Michael Mendelsohn for all their work framing and developing the Battery Ownership Model; Kandler Smith for developing and supporting the integration of the battery degradation model; and Ahmad Pesaran, the National Renewable Energy Laboratory's Energy Storage team leader, for his continual guidance. NR 14 TC 32 Z9 32 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2012 VL 209 BP 269 EP 277 DI 10.1016/j.jpowsour.2012.02.107 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 937XZ UT WOS:000303698800036 ER PT J AU Li, YT Han, JT Wang, CA Vogel, SC Xie, H Xu, MW Goodenough, JB AF Li, Yutao Han, Jian-Tao Wang, Chang-An Vogel, Sven C. Xie, Hui Xu, Maowen Goodenough, John B. TI Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 SO JOURNAL OF POWER SOURCES LA English DT Article DE Li+-ion solid electrolyte; Li garnet; Li7La3Zr2O12; Lithium ion battery ID COMPATIBILITY AB The garnet-related oxide with nominal formula Li7La3Zr2O12 prepared by the sol-gel method is cubic, space group Ia-3d with lattice parameter a = 12.9720 angstrom at room temperature. The occupancies of three lithium positions (24d, 48g, 96h) and the position of a small amount of Al3+ (ca 0.61 wt%) inside the grains were determined by neutron diffraction. The occupancy of the 24d Li sites was reduced to 36.0% by the Al3+ occupying the 48g sites. The bulk and total Li+-ion conductivity at 25 degrees C was 3.1 x 10(-4) S cm(-1) and 1.4 x 10(-4) S cm(-1) with an activation energy 0.34 eV in the temperature range 25-160 degrees C. (C) 2012 Elsevier B.V. All rights reserved. C1 [Li, Yutao; Xie, Hui; Xu, Maowen; Goodenough, John B.] Univ Texas Austin, Mat Res Program, Austin, TX 78712 USA. [Li, Yutao; Xie, Hui; Xu, Maowen; Goodenough, John B.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Han, Jian-Tao; Vogel, Sven C.] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. [Li, Yutao; Wang, Chang-An] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China. RP Goodenough, JB (reprint author), Univ Texas Austin, Mat Res Program, ETC9-184, Austin, TX 78712 USA. EM jgoodenough@mail.utexas.edu RI Xie, Hui/B-7636-2012; han, jiantao/F-8021-2010; Lujan Center, LANL/G-4896-2012; Wang, Changan/I-4260-2012 OI Vogel, Sven C./0000-0003-2049-0361; Goodenough, John Bannister/0000-0001-9350-3034; han, jiantao/0000-0002-9509-3785; FU Office of Vehicle Technologies, U.S. Department of Energy [DE-AC02-05CH11231, 6805919] FX Dr. Yutao Li thanks the China Scholarship Council for the opportunity to work in Texas. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, U.S. Department of Energy, under Contract DE-AC02-05CH11231 through the Batteries for Advanced Transportation Technologies (BATT) Program Subcontract 6805919. NR 23 TC 41 Z9 43 U1 9 U2 176 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2012 VL 209 BP 278 EP 281 DI 10.1016/j.jpowsour.2012.02.100 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 937XZ UT WOS:000303698800037 ER PT J AU Ottaviani, M Cairns, B Ferrare, R Rogers, R AF Ottaviani, Matteo Cairns, Brian Ferrare, Rich Rogers, Raymond TI Iterative atmospheric correction scheme and the polarization color of alpine snow SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Remote sensing; Polarization; Snow; Polarized BRDF; Tuolumne Intrusive Suite ID REFLECTANCE FACTOR MEASUREMENTS; AEROSOL OPTICAL-PROPERTIES; BIDIRECTIONAL REFLECTANCE; RADIATIVE-TRANSFER; GRAIN-SIZE; IMAGING SPECTROMETER; SPECTRAL ALBEDO; SPACEBORNE MEASUREMENTS; INVERSION ALGORITHM; LIGHT-REFLECTION AB Characterization of the Earth's surface is crucial to remote sensing, both to map geomorphological features and because subtracting this signal is essential during retrievals of the atmospheric constituents located between the surface and the sensor. Current operational algorithms model the surface total reflectance through a weighted linear combination of a few geometry-dependent kernels, each devised to describe a particular scattering mechanism. The information content of these measurements is overwhelmed by that of instruments with polarization capabilities: proposed models in this case are based on the Fresnel reflectance of an isotropic distribution of facets. Because of its remarkable lack of spectral contrast, the polarized reflectance of land surfaces in the shortwave infrared spectral region, where atmospheric scattering is minimal, can be used to model the surface also at shorter wavelengths, where aerosol retrievals are attempted based on well-established scattering theories. In radiative transfer simulations, straightforward separation of the surface and atmospheric contributions is not possible without approximations because of the coupling introduced by multiple reflections. Within a general inversion framework, the problem can be eliminated by linearizing the radiative transfer calculation, and making the Jacobian (i.e., the derivative expressing the sensitivity of the reflectance with respect to model parameters) available at output. We present a general methodology based on a Gauss-Newton iterative search, which automates this procedure and eliminates de facto the need of an ad hoc atmospheric correction. In this case study we analyze the color variations in the polarized reflectance measured by the NASA Goddard Institute of Space Studies Research Scanning Polarimeter during a survey of late-season snowfields in the High Sierra. This insofar unique dataset presents challenges linked to the rugged topography associated with the alpine environment and a likely high water content due to melting. The analysis benefits from ancillary information provided by the NASA Langley High Spectral Resolution Lidar deployed on the same aircraft. The results obtained from the iterative scheme are contrasted against the surface polarized reflectance obtained ignoring multiple reflections, via the simplistic subtraction of the atmospheric scattering contribution. Finally, the retrieved reflectance is modeled after the scattering properties of a dense collection of ice crystals at the surface. Confirming that the polarized reflectance of snow is spectrally flat would allow to extend the techniques already in use for polarimetric retrievals of aerosol properties over land to the large portion of snow-covered pixels plaguing orbital and suborbital observations. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Ottaviani, Matteo; Cairns, Brian] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Ottaviani, Matteo] Oak Ridge Associated Univ, NASA, Postdoctoral Program, Oak Ridge, TN USA. [Ferrare, Rich; Rogers, Raymond] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Ottaviani, M (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM matteo.ottaviani@nasa.gov OI Cairns, Brian/0000-0002-1980-1022 FU NASA Goddard Institute for Space Studies; NASA; Glory Mission project FX M. Ottaviani was supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Institute for Space Studies, administered by Oak Ridge Associated Universities through a contract with NASA. The authors also acknowledge the additional support offered by the Glory Mission project and the NASA Radiation Sciences Program managed by Hal Maring. The collection of this unparalleled dataset was the result of an exceptional effort spent by a number of people involved in flight planning and execution during the CARES campaign. We are particularly grateful to Rick Yasky and Mike Wusk: their piloting skills all showed in the maneuvers performed to guarantee best data quality. We appreciate the responsiveness of Crystal Schaaf, Miguel Roman, Alexei Lyapustin and Charles Gatebe during discussions on the performance of the surface reflectance models, and that of Tom Painter and Felix Seidel on issues regarding several aspects specific of Sierra snow. Many thanks to Luc Mehl, Claudio Berti, Alessio Ponza and Andrew Kylander-Clark for having provided interesting information on the geology of the Tuolumne Intrusive Suite. Finally, the knowledge shared by Bastiaan Van Diedenhoven, Josh Ferris and Tomonori Tanikawa was inspirational in driving this study. NR 100 TC 7 Z9 7 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2012 VL 113 IS 10 BP 789 EP 804 DI 10.1016/j.jqsrt.2012.03.014 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 940OZ UT WOS:000303904200005 ER PT J AU Treseder, KK Balser, TC Bradford, MA Brodie, EL Dubinsky, EA Eviner, VT Hofmockel, KS Lennon, JT Levine, UY MacGregor, BJ Pett-Ridge, J Waldrop, MP AF Treseder, Kathleen K. Balser, Teri C. Bradford, Mark A. Brodie, Eoin L. Dubinsky, Eric A. Eviner, Valerie T. Hofmockel, Kirsten S. Lennon, Jay T. Levine, Uri Y. MacGregor, Barbara J. Pett-Ridge, Jennifer Waldrop, Mark P. TI Integrating microbial ecology into ecosystem models: challenges and priorities SO BIOGEOCHEMISTRY LA English DT Article DE Community composition; Functional groups; Global change; Nitrogen; Precipitation; Temporal dynamics; Warming ID SOIL ORGANIC-MATTER; ARBUSCULAR MYCORRHIZAL FUNGI; COMMUNITY STRUCTURE; NITROGEN ADDITIONS; FUNCTIONAL REDUNDANCY; BOREAL FOREST; TERRESTRIAL ECOSYSTEM; LITTER DECOMPOSITION; THERMAL ADAPTATION; TALLGRASS PRAIRIE AB Microbial communities can potentially mediate feedbacks between global change and ecosystem function, owing to their sensitivity to environmental change and their control over critical biogeochemical processes. Numerous ecosystem models have been developed to predict global change effects, but most do not consider microbial mechanisms in detail. In this idea paper, we examine the extent to which incorporation of microbial ecology into ecosystem models improves predictions of carbon (C) dynamics under warming, changes in precipitation regime, and anthropogenic nitrogen (N) enrichment. We focus on three cases in which this approach might be especially valuable: temporal dynamics in microbial responses to environmental change, variation in ecological function within microbial communities, and N effects on microbial activity. Four microbially-based models have addressed these scenarios. In each case, predictions of the microbial-based models differ-sometimes substantially-from comparable conventional models. However, validation and parameterization of model performance is challenging. We recommend that the development of microbial-based models must occur in conjunction with the development of theoretical frameworks that predict the temporal responses of microbial communities, the phylogenetic distribution of microbial functions, and the response of microbes to N enrichment. C1 [Treseder, Kathleen K.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA. [Balser, Teri C.] Univ Wisconsin, Dept Soil Sci, Madison, WI 53706 USA. [Bradford, Mark A.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA. [Brodie, Eoin L.; Dubinsky, Eric A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. [Eviner, Valerie T.] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Hofmockel, Kirsten S.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. [Lennon, Jay T.] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Lennon, Jay T.] Michigan State Univ, Dept Microbiol & Mol Genet, Hickory Corners, MI 49060 USA. [Levine, Uri Y.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [MacGregor, Barbara J.] Univ N Carolina, Dept Marine Sci, Chapel Hill, NC 27599 USA. [Pett-Ridge, Jennifer] Lawrence Livermore Natl Lab, NanoSIMS Grp, Div Chem Sci, Livermore, CA 94551 USA. [Waldrop, Mark P.] US Geol Survey, Menlo Pk, CA 94025 USA. RP Treseder, KK (reprint author), Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA. EM treseder@uci.edu RI Treseder, Kathleen/E-5148-2011; Bradford, Mark/G-3850-2012; MacGregor, Barbara/D-9911-2013; Dubinsky, Eric/D-3787-2015; Brodie, Eoin/A-7853-2008; OI Bradford, Mark/0000-0002-2022-8331; MacGregor, Barbara/0000-0003-1238-5799; Dubinsky, Eric/0000-0002-9420-6661; Brodie, Eoin/0000-0002-8453-8435; Waldrop, Mark/0000-0003-1829-7140 FU US National Science Foundation Division of Environmental Biology FX We are grateful for the intellectual contributions of the participants of the "Micro/Macroscale" workshop: S. D. Allison, K. L. Amatangelo, D. J. Bradley, N. Cavallaro, A. R. Contosta, N. Fierer, S. D. Frey, M. E. Gallo, A. S. Grandy, C. V. Hawkes, K. Lloyd, K. D. McMahon, S. K. McMahon, J. S. Powers, J. P. Schimel, A. Shade, W. L. Silver, R. L. Sinsabaugh, and M. S. Strickland. This work was sponsored by grants from the US National Science Foundation Division of Environmental Biology to TCB and KKT. NR 112 TC 78 Z9 80 U1 15 U2 142 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD JUL PY 2012 VL 109 IS 1-3 BP 7 EP 18 DI 10.1007/s10533-011-9636-5 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 933QT UT WOS:000303377800002 ER PT J AU Yang, XL Tranter, RS AF Yang, Xueliang Tranter, Robert S. TI High-temperature dissociation of ethyl radicals and ethyl iodide SO INTERNATIONAL JOURNAL OF CHEMICAL KINETICS LA English DT Article ID ACTIVE THERMOCHEMICAL TABLES; SHOCK-TUBE; TRANSITION-STATE; THERMAL-DECOMPOSITION; HYDROGEN-ATOMS; PYROLYSIS; WAVES; KINETICS; RRKM; ELIMINATION AB The decomposition of ethyl iodide and subsequent dissociation of ethyl radicals have been investigated behind incident shock waves in a diaphragmless shock tube by laser-schlieren (LS) densitometry (1150-1870 K, 55 +/- 2 Torr and 123 +/- 3 Torr). The LS density-gradient profiles were simulated assuming that the initial dissociation of C2H5I proceeded by 87% CI fission and 13% HI elimination. Excellent agreement was found between the simulations and experimental profiles. Rate coefficients for the CI scission reaction were obtained and show strong falloff. Gorin model RRKM (Rice, Ramsperger, Kassel, and Marcus) calculations are in excellent agreement with the experimental data with E0 = 55.0 kcal/mol, which is in very good agreement with recent thermochemical measurements and evaluations. However, E0 is approximately 2.7 kcal/mol higher than previous estimates. First-order rate coefficients for dissociation of C2H5I were determined to be k55Torr = 8.65 x 10(68) T-16.65 exp(-37,890/T) s-1, k123Torr = 3.01 x 10(69) T-16.68 exp(-38,430/T) s-1, k8 = 2.52 x 10(19) T-1.01 exp(-28,775/T) s-1. Rates of dissociation for ethyl radicals were also obtained, and these are in very good agreement with theoretical predictions (Miller J. A. and Klippenstein S. J. Phys Chem Chem Phys 2004, 6, 11921202). The simulations show that at low temperatures ethyl radicals are consumed through recombination reactions as well as dissociation, whereas at high temperatures, dissociation dominates. (C) 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 433443, 2012 C1 [Yang, Xueliang; Tranter, Robert S.] Argonne Natl Lab, Chem Sci & Engn Dept, Argonne, IL 60439 USA. RP Tranter, RS (reprint author), Argonne Natl Lab, Chem Sci & Engn Dept, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tranter@anl.gov FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy [DE-AC02-06CH11357] FX Contract grant sponsor: Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy.; Contract grant number: DE-AC02-06CH11357. NR 51 TC 8 Z9 8 U1 1 U2 26 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0538-8066 J9 INT J CHEM KINET JI Int. J. Chem. Kinet. PD JUL PY 2012 VL 44 IS 7 BP 433 EP 443 DI 10.1002/kin.20601 PG 11 WC Chemistry, Physical SC Chemistry GA 930DM UT WOS:000303117200001 ER PT J AU Burke, MP Chaos, M Ju, YG Dryer, FL Klippenstein, SJ AF Burke, Michael P. Chaos, Marcos Ju, Yiguang Dryer, Frederick L. Klippenstein, Stephen J. TI Comprehensive H2/O2 kinetic model for high-pressure combustion SO INTERNATIONAL JOURNAL OF CHEMICAL KINETICS LA English DT Review ID LAMINAR BURNING VELOCITIES; THERMAL UNIMOLECULAR REACTIONS; RAPID COMPRESSION MACHINE; HYDROGEN-AIR MIXTURES; PROPAGATING SPHERICAL FLAMES; COLLISION RATE CONSTANTS; SHOCK-TUBE MEASUREMENTS; IGNITION DELAY TIMES; FALL-OFF RANGE; ELEVATED PRESSURES AB An updated H2/O2 kinetic model based on that of Li et al. (Int J Chem Kinet 36, 2004, 566575) is presented and tested against a wide range of combustion targets. The primary motivations of the model revision are to incorporate recent improvements in rate constant treatment and resolve discrepancies between experimental data and predictions using recently published kinetic models in dilute, high-pressure flames. Attempts are made to identify major remaining sources of uncertainties, in both the reaction rate parameters and the assumptions of the kinetic model, affecting predictions of relevant combustion behavior. With regard to model parameters, present uncertainties in the temperature and pressure dependence of rate constants for HO2 formation and consumption reactions are demonstrated to substantially affect predictive capabilities at high-pressure, low-temperature conditions. With regard to model assumptions, calculations are performed to investigate several reactions/processes that have not received much attention previously. Results from ab initio calculations and modeling studies imply that inclusion of H + HO2 = H2O + O in the kinetic model might be warranted, though further studies are necessary to ascertain its role in combustion modeling. In addition, it appears that characterization of nonlinear bath-gas mixture rule behavior for H + O2(+ M) = HO2(+ M) in multicomponent bath gases might be necessary to predict high-pressure flame speeds within similar to 15%. The updated model is tested against all of the previous validation targets considered by Li et al. as well as new targets from a number of recent studies. Special attention is devoted to establishing a context for evaluating model performance against experimental data by careful consideration of uncertainties in measurements, initial conditions, and physical model assumptions. For example, ignition delay times in shock tubes are shown to be sensitive to potential impurity effects, which have been suggested to accelerate early radical pool growth in shock tube speciation studies. In addition, speciation predictions in burner-stabilized flames are found to be more sensitive to uncertainties in experimental boundary conditions than to uncertainties in kinetics and transport. Predictions using the present model adequately reproduce previous validation targets and show substantially improved agreement against recent high-pressure flame speed and shock tube speciation measurements. Comparisons of predictions of several other kinetic models with the experimental data for nearly the entire validation set used here are also provided in the Supporting Information. (C) 2011 Wiley Periodicals, Inc. Int J Chem Kinet 44: 444474, 2012 C1 [Burke, Michael P.; Klippenstein, Stephen J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Burke, Michael P.; Ju, Yiguang; Dryer, Frederick L.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Chaos, Marcos] FM Global Engn & Res, Fire Hazards & Protect Area, Fire & Explos Dynam Grp, Norwood, MA 02062 USA. RP Burke, MP (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mpburke@anl.gov OI Klippenstein, Stephen/0000-0001-6297-9187 FU U.S. Department of Energy [DE-NT0000752]; "From Fundamentals to Multiscale Predictive Models for 21st Century Transportation Fuels," an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001198, DE-AC02-06CH11357]; Siemens Power Generation, Inc. FX This work was supported by the following awards: award number DE-NT0000752 funded by the U.S. Department of Energy through the University Turbine Systems Research (UTSR) Program; "From Fundamentals to Multiscale Predictive Models for 21st Century Transportation Fuels," an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001198, and under contract no. DE-AC02-06CH11357 at ANL; and Siemens Power Generation, Inc., (technical monitor: Dr. Scott Martin). We wish to thank researchers in the Dryer and Ju groups, Andrei Kazakov, James Miller, Wing Tsang, and Jurgen Troe for helpful discussions as well as Hai Wang for supplying the updated transport database and interpreter. NR 147 TC 172 Z9 172 U1 18 U2 145 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0538-8066 J9 INT J CHEM KINET JI Int. J. Chem. Kinet. PD JUL PY 2012 VL 44 IS 7 BP 444 EP 474 DI 10.1002/kin.20603 PG 31 WC Chemistry, Physical SC Chemistry GA 930DM UT WOS:000303117200002 ER PT J AU Lindner, B Smith, JC AF Lindner, Benjamin Smith, Jeremy C. TI Sassena - X-ray and neutron scattering calculated from molecular dynamics trajectories using massively parallel computers SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE X-ray; Neutron; Scattering; Molecular dynamics; Massively parallel ID SIMULATIONS; CELLULOSE; PROGRAM; LYSOZYME; MOTIONS AB Massively parallel computers now permit the molecular dynamics (MD) simulation of multi-million atom systems on time scales up to the microsecond. However, the subsequent analysis of the resulting simulation trajectories has now become a high performance computing problem in itself. Here, we present software for calculating X-ray and neutron scattering intensities from MD simulation data that scales well on massively parallel supercomputers. The calculation and data staging schemes used maximize the degree of parallelism and minimize the IO bandwidth requirements. The strong scaling tested on the jaguar Petaflop Cray XT5 at Oak Ridge National Laboratory exhibits virtually linear scaling up to 7000 cores for most benchmark systems. Since both MPI and thread parallelism is supported, the software is flexible enough to cover scaling demands for different types of scattering calculations. The result is a high performance tool capable of unifying large-scale supercomputing and a wide variety of neutron/synchrotron technology. Program summary Program title: Sassena Catalogue identifier: AELW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 003 742 No. of bytes in distributed program, including test data, etc.: 798 Distribution format: tar.gz Programming language: C++, OpenMPI Computer: Distributed Memory, Cluster of Computers with high performance network, Supercomputer Operating system: UNIX, LINUX, OSX Has the code been vectorized or parallelized?: Yes, the code has been parallelized using MPI directives. Tested with up to 7000 processors RAM: Up to 1 Gbytes/core Classification: 6.5, 8 External routines: Boost Library, FFTW3, CMAKE, GNU C++ Compiler, OpenMPI, LibXML, LAPACK Nature of problem: Recent developments in supercomputing allow molecular dynamics simulations to generate large trajectories spanning millions of frames and thousands of atoms. The structural and dynamical analysis of these trajectories requires analysis algorithms which use parallel computation and IO schemes to solve the computational task in a practical amount of time. The particular computational and IO requirements very much depend on the particular analysis algorithm. In scattering calculations a very frequent pattern is that the trajectory data is used multiple times to compute different projections and aggregates this into a single scattering function. Thus, for good performance the trajectory data has to be kept in memory and the parallel computer has to have enough RAM to store a volatile version of the whole trajectory. In order to achieve high performance and good scalability the mapping of the physical equations to a parallel computer needs to consider data locality and reduce the amount of the inter-node communication. Solution method: The physical equations for scattering calculations were analyzed and two major calculation schemes were developed to support any type of scattering calculation (all/self). Certain hardware aspects were taken into account, e.g. high performance computing clusters and supercomputers usually feature a 2 tier network system, with Ethernet providing the file storage and infiniband the inter-node communication via MPI calls. The time spent loading the trajectory data into memory is minimized by letting each core only read the trajectory data it requires. The performance of inter-node communication is maximized by exclusively utilizing the appropriate MPI calls to exchange the necessary data, resulting in an excellent scalability. The partitioning scheme developed to map the calculation onto a parallel computer covers a wide variety of use cases without negatively effecting the achieved performance. This is done through a 2D partitioning scheme where independent scattering vectors are assigned to independent parallel partitions and all communication is local to the partition. Additional comments: !!!!! The distribution file for this program is approximately 36 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead an html file giving details of how the program can be obtained is sent. !!!!! Running time: Usual runtime spans from 1 min on 20 nodes to 2 h on 2000 nodes. That is 0.5-4000 CPU hours per execution. (C) 2012 Elsevier B.V. All rights reserved. C1 [Lindner, Benjamin] Univ Tennessee, Knoxville, TN 37996 USA. [Lindner, Benjamin; Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Lindner, B (reprint author), Univ Tennessee, F337 Walters Life Sci, Knoxville, TN 37996 USA. EM lindnerb@ornl.gov; smithjc@ornl.gov RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU National Science Foundation [MCB-0842871]; Office of Science of the Department of Energy [DE-AC05-00OR22725]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This project was funded by Grant Number MCB-0842871 from the National Science Foundation. This research used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725, and used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 20 Z9 20 U1 0 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2012 VL 183 IS 7 BP 1491 EP 1501 DI 10.1016/j.cpc.2012.02.010 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 929OQ UT WOS:000303075600009 ER PT J AU Dutta, A Talmadge, M Hensley, J Worley, M Dudgeon, D Barton, D Groenendijk, P Ferrari, D Stears, B Searcy, E Wright, C Hess, JR AF Dutta, Abhijit Talmadge, Michael Hensley, Jesse Worley, Matt Dudgeon, Doug Barton, David Groenendijk, Peter Ferrari, Daniela Stears, Brien Searcy, Erin Wright, Christopher Hess, J. Richard TI Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis SO ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY LA English DT Article DE biomass; thermochemical conversion; indirect gasification; tar reforming; mixed alcohols; process design AB This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and n(th)-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. (C) 2012 American Institute of Chemical Engineers Environ Prog, 31: 182-190, 2012 C1 [Dutta, Abhijit; Talmadge, Michael; Hensley, Jesse] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. [Worley, Matt; Dudgeon, Doug] Harris Grp Inc, Atlanta, GA USA. [Worley, Matt; Dudgeon, Doug] Harris Grp Inc, Seattle, WA USA. [Barton, David] Dow Chem Co USA, Core Res & Dev, Midland, MI 48674 USA. [Groenendijk, Peter; Ferrari, Daniela; Stears, Brien] Dow Chem Co USA, Hydrocarbons Res & Dev, Midland, MI 48674 USA. [Searcy, Erin; Wright, Christopher; Hess, J. Richard] Idaho Natl Lab, Idaho Falls, ID USA. RP Dutta, A (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. EM Abhijit.Dutta@nrel.gov RI Barton, David/B-8601-2013 OI Barton, David/0000-0002-4518-6609 FU U.S. Department of Energy FX This work was supported by the U.S. Department of Energy's Biomass Program. The authors thank Sara Havig for communications support. NR 14 TC 25 Z9 25 U1 2 U2 46 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1944-7442 J9 ENVIRON PROG SUSTAIN JI Environ. Prog. Sustain. Energy PD JUL PY 2012 VL 31 IS 2 SI SI BP 182 EP 190 DI 10.1002/ep.10625 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Engineering, Chemical; Engineering, Industrial; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 925WY UT WOS:000302794000003 ER PT J AU Connors, JM Howell, JS AF Connors, Jeffrey M. Howell, Jason S. TI A fluid-fluid interaction method using decoupled subproblems and differing time steps SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS LA English DT Article DE fluid-fluid interaction; fluid-structure interaction; implicit-explicit method; ocean-atmosphere; semi-implicit ID OCEAN MODELS; CLIMATE; FORMULATION AB A time stepping procedure is proposed for a coupled fluid model motivated by the dynamic core of the atmosphere-ocean system. The method exploits properties of the atmosphere-ocean system to obtain efficiency. The momentum equations for the two fluids may be solved in parallel with different time step sizes. Stability is maintained with large time steps via a balanced two-way passing of momentum flux. Numerical tests are provided that demonstrate the efficiency of the method. Published 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012 C1 [Connors, Jeffrey M.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Howell, Jason S.] Clarkson Univ, Dept Math & Comp Sci, Potsdam, NY 13699 USA. [Howell, Jason S.] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA. RP Connors, JM (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM connors4@llnl.gov OI Howell, Jason/0000-0003-4696-8482 FU U.S. Government [DE-AC52-07NA27344]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-461451]; NSF [DMS 0508260, 0810385]; Center for Nonlinear Analysis (CNA), National Science Foundation [DMS 0635983] FX This work has been authored by a contractor of the U.S. Government under contract number DE-AC52-07NA27344. Accordingly, the U. S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.; Contract grant sponsor: U.S. Department of Energy by Lawrence Livermore National Laboratory; contract grant numbers: DE-AC52-07NA27344, LLNL-JRNL-461451; Contract grant sponsor: NSF; contract grant numbers: DMS 0508260, 0810385; Contract grant sponsor: Center for Nonlinear Analysis (CNA), National Science Foundation; contract grant number: DMS 0635983 NR 17 TC 4 Z9 4 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0749-159X J9 NUMER METH PART D E JI Numer. Meth. Part Differ. Equ. PD JUL PY 2012 VL 28 IS 4 BP 1283 EP 1308 DI 10.1002/num.20681 PG 26 WC Mathematics, Applied SC Mathematics GA 929HN UT WOS:000303052000009 ER PT J AU Field, RV Grigoriu, M AF Field, R. V., Jr. Grigoriu, M. TI A method for the efficient construction and sampling of vector-valued translation random fields SO PROBABILISTIC ENGINEERING MECHANICS LA English DT Article DE Monte Carlo simulation; Optimization; Random fields; Stochastic processes; Translation models ID GAUSSIAN WIND PRESSURE; PRISMATIC BUILDINGS; SIMULATION; ALGORITHMS AB A method is developed for the efficient construction and sampling of vector-valued translation random processes and fields. Given a target marginal CDF and target covariance function, the approach is to approximate the spectral densities of the Gaussian image by a linear sum of shape functions, where each is scaled by a constant. An efficient optimization algorithm is developed to solve for the unknown constants. The objective function to be minimized is equal to the mean-square difference between the target covariance function, and the translated version of the approximate covariance function: a complex set of constraint equations is enforced during the optimization routine to ensure that the resulting covariance function of the Gaussian image is positive definite. It is shown that classical Monte Carlo simulation techniques can be used to generate samples of the Gaussian images of these models and map them into desired non-Gaussian samples. Several examples are considered to illustrate the application of the proposed method and to assess its accuracy. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Field, R. V., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Grigoriu, M.] Cornell Univ, Ithaca, NY 14853 USA. RP Field, RV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rvfield@sandia.gov; mdg12@cornell.edu RI Field, Richard/K-6468-2013 OI Field, Richard/0000-0002-2765-7032 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 8 Z9 8 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-8920 J9 PROBABILIST ENG MECH JI Probab. Eng. Eng. Mech. PD JUL PY 2012 VL 29 BP 79 EP 91 DI 10.1016/j.probengmech.2011.09.003 PG 13 WC Engineering, Mechanical; Mechanics; Statistics & Probability SC Engineering; Mechanics; Mathematics GA 920YZ UT WOS:000302446500009 ER PT J AU Gobbato, M Conte, JP Kosmatka, JB Farrar, CR AF Gobbato, Maurizio Conte, Joel P. Kosmatka, John B. Farrar, Charles R. TI A reliability-based framework for fatigue damage prognosis of composite aircraft structures SO PROBABILISTIC ENGINEERING MECHANICS LA English DT Article DE Fatigue damage prognosis; Structural health monitoring; Probabilistic damage detection; Damage evolution; System reliability; Composite unmanned aerial vehicles ID INSPECTION AB The extensive use of lightweight composite materials in composite aircraft structures drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components during their service life. Within this scenario, an integrated hardware-software system that is capable of monitoring the composite airframe, assessing its structural integrity, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. As a contribution to this goal, this paper presents the theoretical basis of a novel and comprehensive probabilistic methodology for predicting the remaining service life of adhesively bonded joints within the structural components of composite aircraft, with emphasis on a composite wing structure. Non-destructive evaluation techniques and recursive Bayesian inference are used to (i) assess the current state of damage of the system and (ii) update the joint probability distribution function (PDF) of the damage extents at various locations. A probabilistic model for future aerodynamic loads and a damage evolution model for the adhesive are then used to stochastically propagate damage through the joints and predict the joint PDF of the damage extents at future times. This information is subsequently used to probabilistically assess the reduced (due to damage) global aeroelastic performance of the wing by computing the PDFs of its flutter velocity and the velocities associated with the limit cycle oscillations of interest. Combined local and global failure criteria are finally used to compute lower and upper bounds for the reliability index of the composite wing structure at future times. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gobbato, Maurizio; Conte, Joel P.; Kosmatka, John B.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. [Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. RP Conte, JP (reprint author), Univ Calif San Diego, Dept Struct Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM mgobbato@ucsd.edu; jpconte@ucsd.edu; jkosmatka@ucsd.edu; farrar@lanl.gov OI Farrar, Charles/0000-0001-6533-6996 FU Los Alamos National Laboratory (LANL); University of California, San Diego, (UCSD) [72232-001-03, RJ086G-CONTE] FX The work presented in this paper is part of a research project funded by the Educational Collaboration between the Los Alamos National Laboratory (LANL) and the University of California, San Diego, (UCSD) on "A Damage Prognosis System for Unmanned Aerial Vehicles"; contract number: 72232-001-03. Partial support for the work presented was also provided by the UCSD Academic Senate Research Grant RJ086G-CONTE. The authors wish to thank Dr. Gyuhae Park and Dr. Francois Hemez of the Los Alamos National Laboratory for valuable technical discussions on the subject of this study. NR 38 TC 13 Z9 15 U1 5 U2 52 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-8920 J9 PROBABILIST ENG MECH JI Probab. Eng. Eng. Mech. PD JUL PY 2012 VL 29 BP 176 EP 188 DI 10.1016/j.probengmech.2011.11.004 PG 13 WC Engineering, Mechanical; Mechanics; Statistics & Probability SC Engineering; Mechanics; Mathematics GA 920YZ UT WOS:000302446500017 ER PT J AU Elmer, W Taciroglu, E McMichael, L AF Elmer, William Taciroglu, Ertugrul McMichael, Larry TI Dynamic strength increase of plain concrete from high strain rate plasticity with shear dilation SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article DE Concrete; Dynamic increase factor; Plasticity; Split Hopkinson pressure bar; Computational mechanics ID HOPKINSON PRESSURE BAR; COMPRESSIVE BEHAVIOR; NUMERICAL-SIMULATION; ENHANCEMENT; IMPACT; MODEL AB An increase in the strength of concrete when loaded dynamically has been noted in the testing literature since the early twentieth century. The origins or mechanisms leading to this increase, despite having been observed in a variety of tests, are not satisfactorily established. Aspects of test setup, specimen design, etc., have been shown to influence the outcome of any given test. More recently, computer representations of concrete have been tasked with analyzing or predicting the dynamic behavior of structures. Computers have also enabled an inward look at the same empirical tests, showing that some strength increase in compression can be captured by implementation of the proper plasticity model. The major factor touted for strength increase is the well known pressure sensitivity of concrete and a mechanism known as 'inertial confinement'. The present work proposes a new mechanism for dynamic strength increase, focusing on the failure mechanism of concrete in compression known as shear faulting. The faulting process and its associated plastic deformation mode is compared using several material models. Adjustments are made to some parameters within these models to study their effect on dynamic and inertial plastic response. Shear dilation, which does little to increase dynamic strength at moderate strain rates, is identified as a key component of a concrete material model subject to high strain rates. Shear dilation's effects can be seen in the range of strain rates that are practically attainable in a laboratory by using the split Hopkinson pressure bar apparatus. They may also have an increasingly important effect on problems featuring even higher strain rates, such as blast, impact, and penetration through concrete slabs. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Elmer, William; McMichael, Larry] Lawrence Livermore Natl Lab, Engn Technol Div, Def Syst Anal Grp, Livermore, CA 94550 USA. [Taciroglu, Ertugrul] Univ Calif Los Angeles, Civil & Env Engn Dept, Los Angeles, CA 90095 USA. RP Elmer, W (reprint author), Lawrence Livermore Natl Lab, Engn Technol Div, Def Syst Anal Grp, 7000 East Ave,L-126, Livermore, CA 94550 USA. EM elmer2@llnl.gov FU National Science Foundation [CMMI 0547670]; United States Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Homeland Security's Science and Technology Directorate FX The authors would like to acknowledge the support provided by the National Science Foundation under Grant No. CMMI 0547670 for this work. Portions of this work were performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Department of Homeland Security's Science and Technology Directorate. NR 35 TC 5 Z9 6 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD JUL PY 2012 VL 45 BP 1 EP 15 DI 10.1016/j.ijimpeng.2012.01.003 PG 15 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 921ZB UT WOS:000302515500001 ER PT J AU Patel, SP Pivin, JC Patel, MK Won, J Chandra, R Kanjilal, D Kumar, L AF Patel, Shiv P. Pivin, J. C. Patel, M. K. Won, Jonghan Chandra, Ramesh Kanjilal, D. Kumar, Lokendra TI Defects induced magnetic transition in Co doped ZnS thin films: Effects of swift heavy ion irradiations SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE DMS; SHI irradiation; SQUID; Ion track; Defect ID ROOM-TEMPERATURE FERROMAGNETISM; ELECTRICAL-TRANSPORT; SEMICONDUCTORS; TRANSFORMATION; DEPOSITION; TIO2 AB The effect of swift heavy ions (SHI) on magnetic ordering in ZnS thin films with Co ions substituted on Zn sites is investigated. The materials have been synthesized by pulsed laser deposition on substrates held at 600 degrees C for obtaining films with wurtzite crystal structure and it showed ferromagnetic ordering up to room temperature with a paramagnetic component. 120 MeV Ag ions have been used at different fluences of 1 x 10(11) ions/cm(2) and 1 x 10(12) ions/cm(2) for SHI induced modifications. The long range correlation between paramagnetic spins on Co ions was destroyed by irradiation and the material became purely paramagnetic. The effect is ascribed to the formation of cylindrical ion tracks due to the thermal spikes resulting from electron-phonon coupling. (C) 2012 Elsevier B.V. All rights reserved. C1 [Patel, Shiv P.; Kumar, Lokendra] Univ Allahabad, Dept Phys, Allahabad 211002, Uttar Pradesh, India. [Pivin, J. C.] CNRS, IN2P3, CSNSM, F-91405 Orsay, France. [Patel, M. K.; Won, Jonghan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Chandra, Ramesh] Ind Technol Inst, IIC, Nanosci Lab, Roorkee 247667, Uttar Pradesh, India. [Kanjilal, D.] Inter Univ Accelerator Ctr, New Delhi 110067, India. RP Patel, SP (reprint author), Univ Allahabad, Dept Phys, Allahabad 211002, Uttar Pradesh, India. EM shivpoojanbhola@gmail.com RI Kanjilal, Dinakar/D-4731-2013; CHANDRA, RAMESH/C-8027-2016 OI won, Jonghan/0000-0002-7612-1322; Kanjilal, Dinakar/0000-0001-9728-3147; CHANDRA, RAMESH/0000-0002-8751-6274 FU Council of Scientific and Industrial Research (CSIR), India FX One of the authors (SPP) would like to express his sincere thanks to Council of Scientific and Industrial Research (CSIR), India, for providing financial assistance through junior research fellowship (JRF) to carry out this work. The authors are thankful to the Pelletron group of IUAC, New Delhi, for providing constant ion current throughout the irradiation experiment. The authors are thankful to Mr. P.K. Kulariya for XRD measurements. The help received from Mr. S.A. Khan and Jai Prakash during ion irradiation experiment is highly acknowledged. NR 41 TC 17 Z9 17 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD JUL PY 2012 VL 324 IS 13 BP 2136 EP 2141 DI 10.1016/j.jmmm.2012.02.031 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 912LG UT WOS:000301798900025 ER PT J AU Harrison, M Stanwyck, E Beckingham, B Starry, O Hanlon, B Newcomer, J AF Harrison, Melanie Stanwyck, Elizabeth Beckingham, Barbara Starry, Olyssa Hanlon, Bernadette Newcomer, Justin TI Smart growth and the septic tank: Wastewater treatment and growth management in the Baltimore region SO LAND USE POLICY LA English DT Article DE Septic systems; Smart growth; Maryland; Sewer infrastructure ID PRIORITY FUNDING AREAS; GROUNDWATER; MARYLAND; SUBURBAN AB The purpose of this study is to determine the degree to which residential development in the Baltimore region utilizes septic systems, specifically in the context of Maryland's Priority Funding Area (PFA) policy. Our results indicate that residential development in designated growth areas within the five counties surrounding Baltimore City has, in general, been successfully tethered to sewer infrastructure. However, since passage of Maryland's PFA law, development that utilizes septic tanks has grown significantly and, in some cases, growth has occurred inside PFAs generally when there is a lack of existing sewer services. The proliferation of septic systems is a concern because it encourages low-density sprawl-like development, and has negative environmental consequences since these systems are a non-point source for nitrogen, a major pollutant of concern in the Chesapeake Bay. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hanlon, Bernadette] Ohio State Univ, Columbus, OH 43210 USA. [Harrison, Melanie; Stanwyck, Elizabeth; Beckingham, Barbara] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Starry, Olyssa] Univ Maryland, College Pk, MD 20742 USA. [Newcomer, Justin] Sandia Natl Labs, Livermore, CA 94550 USA. [Harrison, Melanie] Natl Ocean & Atmospher Adm, Protected Resources Div, Santa Rosa, CA 95404 USA. RP Hanlon, B (reprint author), Ohio State Univ, 275 W Woodruff Ave, Columbus, OH 43210 USA. EM hanlon.42@osu.edu RI Hanlon, Bernadette/B-1826-2013 NR 36 TC 6 Z9 6 U1 1 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8377 J9 LAND USE POLICY JI Land Use Pol. PD JUL PY 2012 VL 29 IS 3 BP 483 EP 492 DI 10.1016/j.landusepol.2011.08.007 PG 10 WC Environmental Studies SC Environmental Sciences & Ecology GA 898MF UT WOS:000300745800002 ER PT J AU Ye, S Covino, TP Sivapalan, M Basu, NB Li, HY Wang, SW AF Ye, Sheng Covino, Timothy P. Sivapalan, Murugesu Basu, Nandita B. Li, Hong-Yi Wang, Shao-Wen TI Dissolved nutrient retention dynamics in river networks: A modeling investigation of transient flows and scale effects SO WATER RESOURCES RESEARCH LA English DT Article ID STREAM ECOSYSTEMS; WATERSHED THERMODYNAMICS; ADDITION EXPERIMENTS; UNIFYING FRAMEWORK; MISSISSIPPI RIVER; SOLUTE TRANSPORT; NITROGEN UPTAKE; STORAGE; NITRATE; SATURATION AB We have used a dynamic hydrologic network model, coupled with a transient storage zone solute transport model, to simulate dissolved nutrient retention processes during transient flow events at the channel network scale. We explored several scenarios with a combination of rainfall variability, and biological and geomorphic characteristics of the catchment, to understand the dominant factors that control the transport of dissolved nutrients (e.g., nitrate) along channel networks. While much experimental work has focused on studying nutrient retention during base flow periods in headwater streams, our model-based theoretical analyses, for the given parameter combinations used, suggest that high-flow periods can contribute substantially to overall nutrient retention, and that bulk nutrient retention is greater in larger rivers compared to headwaters. The relative efficiencies of nutrient retention during high-and low-flow periods vary due to changes in the relative sizes of the main channel and transient storage zones, as well as due to differences in the relative strengths of the various nutrient retention mechanisms operating in both zones. Our results also indicate that nutrient retention efficiency at all spatial scales of observation has strong dependence on within-year variability of streamflow (e.g., frequency and duration of high and low flows), as well as on the relative magnitudes of the coefficients that govern biogeochemical uptake processes: the more variable the streamflow, the greater the export of nutrients. Despite limitations of the model parameterizations, our results suggest that increased attention must be paid to field observations of the interactions between process hydrology and nutrient transport and reaction processes at a range of scales to assist with extrapolation of understandings and estimates gained from site-specific studies to ungauged basins across gradients in climate, human impacts, and landscape characteristics. C1 [Sivapalan, Murugesu] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Ye, Sheng; Sivapalan, Murugesu; Wang, Shao-Wen] Univ Illinois, Dept Geog, Urbana, IL USA. [Covino, Timothy P.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Basu, Nandita B.] Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA. [Li, Hong-Yi] Pacific NW Natl Lab, Hydrol Tech Grp, Richland, WA 99352 USA. [Wang, Shao-Wen] Univ Illinois, Nat Ctr Supercomp Applicat, Urbana, IL USA. RP Sivapalan, M (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. EM sivapala@illinois.edu RI Wang, Shaowen/O-1926-2013; Li, Hong-Yi/C-9143-2014; Sivapalan, Murugesu/A-3538-2008 OI Wang, Shaowen/0000-0001-5848-590X; Li, Hong-Yi/0000-0001-5690-3610; Sivapalan, Murugesu/0000-0003-3004-3530 FU NSF [EAR-0636043, DEB-0922118] FX Work on this paper commenced during the Summer Institute organized at the University of British Columbia (UBC) during June-July 2009 as part of the NSF-funded project: Water Cycle Dynamics in a Changing Environment : Advancing Hydrologic Science through Synthesis (NSF grant EAR-0636043, M. Sivapalan, PI). Thanks also due to Marwan Hassan and the Department of Geography of UBC for hosting the Summer Institute and for providing outstanding facilities. Work on the paper was also partially supported by NSF-Project: Using Empirical and Modeling Approaches to Quantify the Importance of Nutrient Spiraling in Rivers (grant DEB-0922118, Jennifer Tank, PI). NR 68 TC 16 Z9 17 U1 3 U2 77 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 30 PY 2012 VL 48 AR W00J17 DI 10.1029/2011WR010508 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 968RG UT WOS:000306001500001 ER PT J AU Varga, T Droubay, TC Bowden, ME Nachimuthu, P Shutthanandan, V Bolin, TB Shelton, WA Chambers, SA AF Varga, Tamas Droubay, Timothy C. Bowden, Mark E. Nachimuthu, Ponnusamy Shutthanandan, Vaithiyalingam Bolin, Trudy B. Shelton, William A. Chambers, Scott A. TI Epitaxial growth of NiTiO3 with a distorted ilmenite structure SO THIN SOLID FILMS LA English DT Article DE Thin film; Nickel titanate; Pulsed laser deposition; X-ray diffraction; Multiferroic; Ilmenite; Density functional theory ID PULSED-LASER DEPOSITION; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; X-RAY; HIGH-PRESSURE; THIN-FILMS; MAGNETIC-PROPERTIES; PHASE-TRANSITION; HIGH-TEMPERATURE; FETIO3 ILMENITE AB MTiO3 (M = Fe, Mn, Ni) compounds have received recent attention as possible candidates for multiferroic materials capable of magnetization switching by application of an electric field. In an attempt to stabilize NiTiO3 in the rhombohedral R3 structure, epitaxial Ni1-xTi1-yO3 films of different thickness and composition were deposited on Al2O3(0001) by pulsed laser deposition, and characterized using several techniques. Structural parameters for ilmenite-type NiTiO3 and the metastable LiNbO3-type NiTiO3 structure with the space group R3c were predicted using density functional theory calculations, and compared with the experimental results. Our structural data from X-ray diffraction and X-ray absorption spectroscopy indicate that epitaxial ilmenite-type NiTiO3 films were grown. Furthermore, lattice strain exerted by the sapphire substrate results in a distorted ilmenite structure similar to the LiNbO3-type one. While R3c NiTiO3, the desired structure based on recent theory, cannot be claimed at this point, our results demonstrate the potential of oxide heteroepitaxy to stabilize metastable multiferroic phases that may be difficult to prepare or are inaccessible in the bulk. Published by Elsevier B.V. C1 [Varga, Tamas; Bowden, Mark E.; Nachimuthu, Ponnusamy; Shutthanandan, Vaithiyalingam; Shelton, William A.] Environm Mol Sci Lab, Richland, WA USA. [Droubay, Timothy C.; Chambers, Scott A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Bolin, Trudy B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Varga, T (reprint author), Environm Mol Sci Lab, Richland, WA USA. EM tamas.varga@pnnl.gov RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 FU Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering Physics; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-ENG-38] FX This work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering Physics. One of the authors (T. V.) acknowledges help from Dr. Andrew Mangham for assistance with the XAS data collection, and from Dr. Tiffany Kaspar for providing Co K-edge XANES data. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38. NR 60 TC 10 Z9 10 U1 0 U2 51 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUN 30 PY 2012 VL 520 IS 17 BP 5534 EP 5541 DI 10.1016/j.tsf.2012.04.060 PG 8 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 965LV UT WOS:000305770200009 ER PT J AU Rogstrom, L Ullbrand, J Almer, J Hultman, L Jansson, B Oden, M AF Rogstrom, L. Ullbrand, J. Almer, J. Hultman, L. Jansson, B. Oden, M. TI Strain evolution during spinodal decomposition of TiAlN thin films SO THIN SOLID FILMS LA English DT Article DE Titanium aluminum nitride; Thin films; Phase-field simulations; Spinodal decomposition; High energy X-ray diffraction ID TI-AL-N; MECHANICAL-PROPERTIES; RESIDUAL-STRESSES; HARD COATINGS; MICROSTRUCTURE; TI1-XALXN; SYSTEM; DESIGN; ORIGIN; GROWTH AB We use a combination of in-situ X-ray scattering experiments during annealing and phase-field simulations to study the strain and microstructure evolution during decomposition of TiAlN thin films. The evolved microstructure is observed to depend on the initial alloy composition, where the microstructure is finer and the TiN and AlN domains formed are more interconnected and aligned in the [100] directions in the higher Al content film. The simulations show strain formation in the evolving cubic AlN and TiN domains, which is a combined effect of increasing lattice mismatch and elastic incompatibility between the domains. The experimental results show that the strain of the film is a result of defect density, thermal strains, and the phase evolution during decomposition of the cubic TiAlN. The compressive strain increases at temperatures above similar to 850 degrees C for Ti0.35Al0.55N and above similar to 930 degrees C for Ti0.53Al0.47N due to the onset of transformation to hexagonal-AlN, which is similar to the temperature where the maximum hardness of similar TiAlN films has been found. The higher driving force for decomposition in the higher Al content film results in a higher decomposition rate revealed by the simulations and earlier formation of hexagonal-AlN in this film. (C) 2012 Elsevier B.V. All rights reserved. C1 [Rogstrom, L.; Ullbrand, J.; Hultman, L.; Jansson, B.; Oden, M.] Linkoping Univ, Dept Phys Chem & Biol IFM, S-58183 Linkoping, Sweden. [Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Jansson, B.] Seco Tools AB, S-73782 Fagersta, Sweden. RP Rogstrom, L (reprint author), Linkoping Univ, Dept Phys Chem & Biol IFM, S-58183 Linkoping, Sweden. EM linro@ifm.liu.se RI Oden, Magnus/E-9662-2010; OI Oden, Magnus/0000-0002-2286-5588; Rogstrom, Lina/0000-0002-0866-1909 FU VINNEX Center of Excellence on Functional Nanoscale Materials (FunMat); Swedish Foundation for Strategic Research under the program Designed Multicomponent Coatings (Multifilms); Swedish Research Council; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge financial support from the VINNEX Center of Excellence on Functional Nanoscale Materials (FunMat), the Swedish Foundation for Strategic Research under the program Designed Multicomponent Coatings (Multifilms), and the Swedish Research Council. Axel Knutsson and Niklas Norrby from Linkoping University assisted with DSC and TEM work, respectively.; The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract No. DE-AC02-06CH11357. NR 38 TC 31 Z9 31 U1 4 U2 40 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUN 30 PY 2012 VL 520 IS 17 BP 5542 EP 5549 DI 10.1016/j.tsf.2012.04.059 PG 8 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 965LV UT WOS:000305770200010 ER PT J AU Ratcliff, EL Sigdel, AK Macech, MR Nebesny, K Lee, PA Ginley, DS Armstrong, NR Berry, JJ AF Ratcliff, Erin L. Sigdel, Ajaya K. Macech, Mariola R. Nebesny, Kenneth Lee, Paul A. Ginley, David S. Armstrong, Neal R. Berry, Joseph J. TI Surface composition, work function, and electrochemical characteristics of gallium-doped zinc oxide SO THIN SOLID FILMS LA English DT Article DE Gallium-doped zinc oxide; X-ray photoelectron spectroscopy; Ultraviolet photoelectron spectroscopy; Electrochemistry; Photovoltaics ID ZNO THIN-FILMS; TRANSPARENT CONDUCTING OXIDES; ENERGY-LEVEL ALIGNMENT; LIGHT-EMITTING-DIODES; ELECTRICAL-PROPERTIES; PHOTOELECTRON-SPECTROSCOPY; OPTICAL-PROPERTIES; SPRAY-PYROLYSIS; PROBE MOLECULE; SOLAR-CELLS AB Gallium-doped zinc oxide (GZO) possesses the electric conductivity, thermal stability, and earth abundance to be a promising transparent conductive oxide replacement for indium tin oxide electrodes in a number of molecular electronic devices, including organic solar cells and organic light emitting diodes. The surface chemistry of GZO is complex and dominated by the hydrolysis chemistry of ZnO, which influences the work function via charge transfer and band bending caused by adsorbates. A comprehensive characterization of the surface chemical composition and electrochemical properties of GZO electrodes is presented, using both solution and surface adsorbed redox probe molecules. The GZO surface is characterized using monochromatic X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy after the following pretreatments: (i) hydriodic acid etch, (ii) potassium hydroxide etch, (iii) RF oxygen plasma etching, and (iv) high-vacuum argon-ion sputtering. The O is spectra for the GZO electrodes have contributions from the stoichiometric oxide lattice, defects within the lattice, hydroxylated species, and carbonaceous impurities, with relative near-surface compositions varying with pretreatment. Solution etching procedures result in an increase of the work function and ionization potential of the GZO electrode, but yield different near surface Zn:Ga atomic ratios, which significantly influence charge transfer rates for a chemisorbed probe molecule. The near surface chemical composition is shown to be the dominant factor in controlling surface work function and significantly influences the rate of electron transfer to both solution and tethered probe molecules. (C) 2012 Elsevier B.V. All rights reserved. C1 [Ratcliff, Erin L.; Macech, Mariola R.; Nebesny, Kenneth; Lee, Paul A.; Armstrong, Neal R.] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [Sigdel, Ajaya K.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ginley, David S.; Berry, Joseph J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ratcliff, EL (reprint author), Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. EM ratcliff@email.arizona.edu; joe.berry@nrel.gov FU Center for Interface Science: Solar Electric Materials (CIS:SEM); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001084] FX This material is based upon work supported as part of the Center for Interface Science: Solar Electric Materials (CIS:SEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001084. NR 95 TC 12 Z9 12 U1 0 U2 98 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUN 30 PY 2012 VL 520 IS 17 BP 5652 EP 5663 DI 10.1016/j.tsf.2012.04.038 PG 12 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 965LV UT WOS:000305770200028 ER PT J AU Goldberg, N Eckstein, J AF Goldberg, Noam Eckstein, Jonathan TI Sparse weighted voting classifier selection and its linear programming relaxations SO INFORMATION PROCESSING LETTERS LA English DT Article DE Machine learning; Computational complexity; Weighted voting classification; Sparsity; Integrality gap; Hardness of approximation ID THRESHOLD GATES; HARDNESS; SYSTEMS AB We consider the problem of minimizing the number of misclassifications of a weighted voting classifier, plus a penalty proportional to the number of nonzero weights. We first prove that its optimum is at least as hard to approximate as the minimum disagreement halfspace problem for a wide range of penalty parameter values. After formulating the problem as a mixed integer program (MIP), we show that common "soft margin" linear programming (LP) formulations for constructing weighted voting classsifiers are equivalent to an LP relaxation of our formulation. We show that this relaxation is very weak, with a potentially exponential integrality gap. However, we also show that augmenting the relaxation with certain valid inequalities tightens it considerably, yielding a linear upper bound on the gap for all values of the penalty parameter that exceed a reasonable threshold. Unlike earlier techniques proposed for similar problems (Bradley and Mangasarian (1998) [4], Weston et al. (2003) [14]), our approach provides bounds on the optimal solution value. (c) 2012 Elsevier B.V. All rights reserved. C1 [Goldberg, Noam] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Eckstein, Jonathan] Rutgers State Univ, MSIS Dept, Piscataway, NJ 08855 USA. [Eckstein, Jonathan] Rutgers State Univ, RUTCOR, Piscataway, NJ 08855 USA. RP Goldberg, N (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. EM noamgold@mcs.anl.gov; jeckstei@rci.rutgers.edu FU U.S. Department of Homeland Security [2008-DN-077-ARI001-02]; Daniel Rose Technion-Yale Initiative for Research on Homeland Security and Counter-Terrorism; Council of Higher Education, State of Israel FX This material is based upon work funded in part by the U.S. Department of Homeland Security under Grant Award Number 2008-DN-077-ARI001-02, the Daniel Rose Technion-Yale Initiative for Research on Homeland Security and Counter-Terrorism, and the Council of Higher Education, State of Israel. We thank Rob Schapire for helpful discussions, and also thank the anonymous referees for comments that helped improve the presentation of these results. The first author would also like to thank Martin Milanic, Ilan Newman, and Asaf Levin for their comments. NR 14 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0020-0190 J9 INFORM PROCESS LETT JI Inf. Process. Lett. PD JUN 30 PY 2012 VL 112 IS 12 BP 481 EP 486 DI 10.1016/j.ipl.2012.03.004 PG 6 WC Computer Science, Information Systems SC Computer Science GA 941JK UT WOS:000303959300005 ER PT J AU Garzon, M Gray, LJ Sethian, JA AF Garzon, M. Gray, L. J. Sethian, J. A. TI Axisymmetric boundary integral formulation for a two-fluid system SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE axisymmetric Laplace; two fluids; boundary integral equation; Galerkin approximation ID FREE-SURFACE FLOWS; PINCH-OFF; BREAKUP AB A 3D axisymmetric Galerkin boundary integral formulation for potential flow is employed to model two fluids of different densities, one fluid enclosed inside the other. The interface variables are the velocity potential and the normal velocity, and they can be solved for separately, the second linear system being symmetric. The algorithm is validated by comparing with the analytic solutions for a static interior spherical drop over a range of values for the relative densities D=?E/?I of exterior and interior fluids and various boundary conditions. For time-dependent simulations utilizing a level set method for the interface tracking, the accuracy has been checked by comparing against the known oscillation frequency of the sphere. Pinch-off profiles corresponding to an initial two-lobe geometry drop and D?=?6 are also presented. Published in 2011 by John Wiley & Sons, Ltd. C1 [Gray, L. J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Garzon, M.] Univ Oviedo, Dept Appl Math, Oviedo, Spain. [Garzon, M.; Sethian, J. A.] Univ Calif Berkeley, Dept Math, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Gray, LJ (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM ljg@ornl.gov FU Spanish Ministry of Science and Innovation [MTM2010-18427]; Office of Mathematical, Information, and Computational Sciences, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; National Science Foundation; US government [DE-AC05-00OR22725] FX The authors gratefully acknowledge the support of the Spanish Ministry of Science and Innovation, through the project MTM2010-18427, the Applied Mathematical Sciences Research Program of the Office of Mathematical, Information, and Computational Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC, and the National Science Foundation.; The submitted manuscript has been authored by a contractor of the US government under contract DE-AC05-00OR22725. Accordingly, the US government retains a non-exclusive, royalty free license to publish or reproduce the published form of this contribution or allow others to do so, for US government purposes. NR 22 TC 4 Z9 4 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD JUN 30 PY 2012 VL 69 IS 6 BP 1124 EP 1134 DI 10.1002/fld.2633 PG 11 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 942KH UT WOS:000304042400005 ER PT J AU Omidi, N Tokar, RL Averkamp, T Gurnett, DA Kurth, WS Wang, Z AF Omidi, N. Tokar, R. L. Averkamp, T. Gurnett, D. A. Kurth, W. S. Wang, Z. TI Flow stagnation at Enceladus: The effects of neutral gas and charged dust SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA-WAVE INSTRUMENT; SOUTH-POLE; CASSINI; ATMOSPHERE; SATURN; RING AB Enceladus is one of Saturn's most active moons. It ejects neutral gas and dust particles from its southern plumes with velocities of hundreds of meters per second. The interaction between the ejected material and the corotating plasma in Saturn's magnetosphere leads to flow deceleration in ways that remain to be understood. The most effective mechanism for the interaction between the corotating plasma and the neutral gas is charge exchange which replaces the hotter corotating ions with nearly stationary cold ions that are subsequently accelerated by the motional electric field. Dust particles in the plume can become electrically charged through electron absorption and couple to the plasma through the motional electric field. The objective of this study is to determine the level of flow deceleration associated with each of these processes using Cassini RPWS dust impact rates, Cassini Plasma Spectrometer (CAPS) plasma data, and 3-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations. Hybrid simulations show that the degree of flow deceleration by charged dust varies considerably with the spatial distribution of dust particles. Based on the RPWS observations of dust impacts during the E7 Cassini flyby of Enceladus, we have constructed a dust model consisting of multiple plumes. Using this model in the hybrid simulation shows that when the dust density is high enough for complete absorption of electrons at the point of maximum dust density, the corotating flow is decelerated by only a few km/s. This is not sufficient to account for the CAPS observation of flow stagnation in the interaction region. On the other hand, charge exchange with neutral gas plumes similar to the modeled dust plumes but with base (plume opening) densities of similar to 10(9) cm(-3) result in flow deceleration similar to that observed by CAPS. The results indicate that charge exchange with neutral gas is the dominant mechanism for flow deceleration at Enceladus. C1 [Omidi, N.] Solana Sci Inc, Solana Beach, CA 92075 USA. [Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM USA. [Averkamp, T.; Gurnett, D. A.; Kurth, W. S.; Wang, Z.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Omidi, N (reprint author), Solana Sci Inc, 777 Pacific Coast Hwy, Solana Beach, CA 92075 USA. EM omidi@solanasci.com OI Kurth, William/0000-0002-5471-6202 FU NASA [1356500]; Jet Propulsion Laboratory FX We thank the reviewers for their helpful comments and suggestions. Work for this project was supported by NASA contract 1356500 to the University of Iowa with the Jet Propulsion Laboratory. NR 36 TC 6 Z9 6 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 29 PY 2012 VL 117 AR A06230 DI 10.1029/2011JA017488 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 968PS UT WOS:000305996800006 ER PT J AU Petrus, AK Swithers, KS Ranjit, C Wu, S Brewer, HM Gogarten, JP Pasa-Tolic, L Noll, KM AF Petrus, Amanda K. Swithers, Kristen S. Ranjit, Chaman Wu, Si Brewer, Heather M. Gogarten, J. Peter Pasa-Tolic, Ljiljana Noll, Kenneth M. TI Genes for the Major Structural Components of Thermotogales Species' Togas Revealed by Proteomic and Evolutionary Analyses of OmpA and OmpB Homologs SO PLOS ONE LA English DT Article ID CARBOXY-TERMINAL PHENYLALANINE; MULTIPLE SEQUENCE ALIGNMENT; BACTERIAL OUTER-MEMBRANE; PROTEIN EVOLUTION; ESCHERICHIA-COLI; MARITIMA MSB8; COILED-COIL; CELL-WALL; DATABASE; SERVER AB The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Omp alpha) and the porin OmpB (or Omp beta). The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant beta-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had beta-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath. C1 [Petrus, Amanda K.; Swithers, Kristen S.; Ranjit, Chaman; Gogarten, J. Peter; Noll, Kenneth M.] Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06340 USA. [Wu, Si; Brewer, Heather M.; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Washington, DC USA. RP Petrus, AK (reprint author), Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06340 USA. EM kenneth.noll@uconn.edu OI Gogarten, Johann Peter/0000-0001-6459-6518 FU US Department of Energy Office of Basic Science program [DE-FG02-08ER64687]; NASA Exobiology program [NNX08AQ10G]; Environmental Molecular Sciences Laboratory of Pacific Northwest National Laboratory [39965]; U. S. Department of Energy (DOE) Office of Biological and Environmental Research FX This study was funded by grants from the US Department of Energy Office of Basic Science program (DE-FG02-08ER64687), NASA Exobiology program (NNX08AQ10G), and the Environmental Molecular Sciences Laboratory of Pacific Northwest National Laboratory (ID # 39965). Portions of this work were supported by the U. S. Department of Energy (DOE) Office of Biological and Environmental Research and performed in the Environmental Molecular Science Laboratory (EMSL), a DOE national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. The aforementioned funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study. NR 46 TC 3 Z9 3 U1 0 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 29 PY 2012 VL 7 IS 6 AR e40236 DI 10.1371/journal.pone.0040236 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 967FO UT WOS:000305892100232 PM 22768259 ER PT J AU Zhang, SL Wang, YC Mao, JH Hsieh, D Kim, IJ Hu, LM Xu, ZD Long, H Jablons, DM You, L AF Zhang, Shulin Wang, Yucheng Mao, Jian-Hua Hsieh, David Kim, Il-Jin Hu, Li-Min Xu, Zhidong Long, Hao Jablons, David M. You, Liang TI Inhibition of CK2 alpha Down-Regulates Hedgehog/Gli Signaling Leading to a Reduction of a Stem-Like Side Population in Human Lung Cancer Cells SO PLOS ONE LA English DT Article ID PROTEIN-KINASE CK2; PROSTATE-CANCER; THERAPEUTIC INHIBITION; PATHWAY; TARGET; ABCG2; WNT; DIVERGENCE; CARCINOMAS; SUPPRESSOR AB Protein kinase CK2 is frequently elevated in a variety of human cancers. The Hedgehog (Hh) signaling pathway has been implicated in stem cell maintenance, and its aberrant activation has been indicated in several types of cancer, including lung cancer. In this study, we show that CK2 is positively involved in Hh/Gli signaling in lung cancer cell lines A549 and H1299. First, we found a correlation between CK2 alpha and Gli1 mRNA levels in 100 primary lung cancer tissues. Down-regulation of Gli1 expression and transcriptional activity were demonstrated after the silencing of CK2 alpha in lung cancer cells. In addition, CK2 alpha siRNA down-regulated the expression of Hh target genes. Furthermore, two small-molecule CK2 alpha inhibitors led to a dose-dependent inhibition of Gli1 expression and transcriptional activity in lung cancer cells. Reversely, forced overexpression of CK2 alpha resulted in an increase both in Gli1 expression and transcriptional activity in A549 cells. Finally, the inhibition of Hh/Gli by CK2 alpha siRNA led to a reduction of a cancer stem cell-like side population that shows higher ABCG2 expression level. Thus, we report that the inhibition of CK2 alpha down-regulates Hh/Gli signaling and subsequently reduces stem-like side population in human lung cancer cells. C1 [Zhang, Shulin; Hsieh, David; Kim, Il-Jin; Xu, Zhidong; Long, Hao; Jablons, David M.; You, Liang] Univ Calif San Francisco, Dept Surg, Helen Diller Family Comprehens Canc Ctr, Thorac Oncol Lab, San Francisco, CA 94143 USA. [Zhang, Shulin] Sun Yat Sen Univ, Lung Canc Inst, Guangzhou 510275, Guangdong, Peoples R China. [Zhang, Shulin] Guangzhou Med Univ, Affiliated Hosp 3, Dept Surg Oncol, Guangzhou, Guangdong, Peoples R China. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hu, Li-Min] Univ Calif San Francisco, Dept Obstet & Gynecol, San Francisco, CA 94143 USA. RP Zhang, SL (reprint author), Univ Calif San Francisco, Dept Surg, Helen Diller Family Comprehens Canc Ctr, Thorac Oncol Lab, San Francisco, CA 94143 USA. EM longhao@mail.sysu.edu.cn; Liang.You@ucsfmedctr.org FU National Institutes of Health [R01 CA140654-01A1]; Natural Science Foundation of Guangdong Province, P.R.C. [9451008901003072]; Kazan, McClain, Abrams, Fernandez, Lyons, Greenwood, Harley & Oberman Foundation, Inc; Estate of Robert Griffiths; Jeffrey and Karen Peterson Family Foundation; Paul and Michelle Zygielbaum; Estate of Norman Mancini; Barbara Isackson Lung Cancer Research Fund FX The present work was supported by National Institutes of Health grant R01 CA140654-01A1 (LY) and Natural Science Foundation of Guangdong Province, P.R.C. 2009 (9451008901003072). We are also grateful for support from the Kazan, McClain, Abrams, Fernandez, Lyons, Greenwood, Harley & Oberman Foundation, Inc; the Estate of Robert Griffiths; the Jeffrey and Karen Peterson Family Foundation; Paul and Michelle Zygielbaum; the Estate of Norman Mancini; and the Barbara Isackson Lung Cancer Research Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 26 Z9 27 U1 0 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 29 PY 2012 VL 7 IS 6 AR e38996 DI 10.1371/journal.pone.0038996 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 967FO UT WOS:000305892100026 PM 22768056 ER PT J AU Das, T Markiewicz, RS Bansil, A Balatsky, AV AF Das, Tanmoy Markiewicz, R. S. Bansil, A. Balatsky, A. V. TI Visualizing electron pockets in cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article ID T-C SUPERCONDUCTOR; FERMI-SURFACE; STRIPE ORDER; BI2SR2CACU2O8+DELTA AB Fingerprints of the electron pocket in cuprates have been obtained only in numerous magnetotransport measurements, but its absence in spectroscopic observations poses a long-standing mystery. We develop a theoretical tool to provide ways to detect electron pockets via spectroscopies including scanning tunneling microscopy (STM) spectra, inelastic neutron scattering (INS), and angle-resolved photoemission spectroscopy (ARPES). We show that the quasiparticle-interference (QPI) pattern, measured by STM, shows an additional seven q vectors associated with the scattering on the electron pocket than that on the hole pocket. Furthermore, the Bogolyubov quasiparticle scatterings of the electron pocket lead to a second magnetic resonance mode in the INS spectra at a higher resonance energy. Finally, we reanalyze some STM, INS, and ARPES experimental data of several cuprates which dictates the direct fingerprints of electron pockets in these systems. C1 [Das, Tanmoy; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Markiewicz, R. S.; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Das, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012 FU Los Alamos National Laboratory, of the US Department of Energy [DE-AC52-06NA25396]; US Department of Energy, Office of Science, Basic Energy Sciences [DE-FG02-07ER46352]; [UCOP-TR27] FX This work was supported, in part, by UCOP-TR27 and by Los Alamos National Laboratory, of the US Department of Energy under Contract DE-AC52-06NA25396, and benefited from the allocation of supercomputer time at NERSC. The work at Northeastern University is supported by the US Department of Energy, Office of Science, Basic Energy Sciences Contracts No. DE-FG02-07ER46352. NR 35 TC 6 Z9 6 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2012 VL 85 IS 22 AR 224535 DI 10.1103/PhysRevB.85.224535 PG 9 WC Physics, Condensed Matter SC Physics GA 966HB UT WOS:000305827400003 ER PT J AU Singh, S Fitzsimmons, MR Lookman, T Jeen, H Biswas, A Roldan, MA Varela, M AF Singh, Surendra Fitzsimmons, M. R. Lookman, T. Jeen, H. Biswas, A. Roldan, M. A. Varela, M. TI Role of elastic bending stress on magnetism of a manganite thin film studied by polarized neutron reflectometry SO PHYSICAL REVIEW B LA English DT Article ID COLOSSAL MAGNETORESISTANCE; STRAIN; TRANSITION; PHYSICS AB We measured themagnetization depth profile of a (La1-xPrx)(1-y)CayMnO3 (x = 0.60 +/-0.04, y = 0.20 +/-0.03) film using polarized neutron reflectometry as a function of applied elastic bending stress and temperature. We found unequivocal and until now elusive direct evidence that the exclusive application of compressive or tensile bending stress along the magnetic easy axis increases or decreases, respectively, the saturation magnetization of the film. Furthermore, we obtained a coupling coefficient relating strain to the depth-dependent saturation magnetization. C1 [Singh, Surendra; Fitzsimmons, M. R.; Lookman, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Singh, Surendra] Bhabha Atom Res Ctr, Div Solid State Phys, Bombay 400085, Maharashtra, India. [Jeen, H.; Biswas, A.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Roldan, M. A.] Univ Complutense, E-28040 Madrid, Spain. [Varela, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Singh, S (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM surendra@barc.gov.in RI Lujan Center, LANL/G-4896-2012; Varela, Maria/H-2648-2012; Singh, Surendra/E-5351-2011; Varela, Maria/E-2472-2014 OI Singh, Surendra/0000-0001-5482-9744; Varela, Maria/0000-0002-6582-7004 FU Office of Basic Energy Science (BES), US Department of Energy (DOE); BES; National Science Foundation [DMR-0804452]; Materials Sciences and Engineering Division of the DOE; European Research Council [239739 STEMOX]; DOE [DE-AC52-06NA25396]; Oak Ridge National Laboratory FX We thank N. A. Mara for nanoindentation measurements on our LPCMO film. This work was supported by the Office of Basic Energy Science (BES), US Department of Energy (DOE), and funded by the BES, the National Science Foundation (Grant No. DMR-0804452, H.J. and A. B.), the Materials Sciences and Engineering Division (M. V.) of the DOE, and the European Research Council (Starting Investigator Award, Grant No. 239739 STEMOX, M. A. R.). Los Alamos National Laboratory is operated by Los Alamos National Security under DOE Contract No. DE-AC52-06NA25396. Research was supported in part by the Oak Ridge National Laboratory's Shared Research Equipment User Facility, which is sponsored by the BES. NR 38 TC 12 Z9 12 U1 0 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2012 VL 85 IS 21 AR 214440 DI 10.1103/PhysRevB.85.214440 PG 6 WC Physics, Condensed Matter SC Physics GA 966HA UT WOS:000305827300001 ER PT J AU Zhao, GB Li, H Linder, EV Koyama, K Bacon, DJ Zhang, XM AF Zhao, Gong-Bo Li, Hong Linder, Eric V. Koyama, Kazuya Bacon, David J. Zhang, Xinmin TI Testing Einstein gravity with cosmic growth and expansion SO PHYSICAL REVIEW D LA English DT Article ID DARK-ENERGY CONSTRAINTS; LARGE-SCALE STRUCTURE; COSMOLOGICAL CONSEQUENCES; SUPERNOVAE; UNIVERSE; SPACE AB We test Einstein gravity using cosmological observations of both expansion and structure growth, including the latest data from supernovae (Union2.1), cosmic microwave background (WMAP7), weak lensing (CFHTLS) and the peculiar velocity of galaxies (WiggleZ). We fit modified gravity parameters of the generalized Poisson equations simultaneously with the effective equation of state for the background evolution, exploring the covariances and model dependence. The results show that general relativity is a good fit to the combined data. Using a Pade approximant form for the gravity deviations accurately captures the time and scale dependence for theories like f(R) and DGP gravity, and weights high and low redshift probes fairly. For current observations, cosmic growth and expansion can be fit simultaneously with little degradation in accuracy, while removing the possibility of bias from holding one aspect fixed. C1 [Zhao, Gong-Bo] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Zhao, Gong-Bo; Koyama, Kazuya; Bacon, David J.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Li, Hong; Zhang, Xinmin] Chinese Acad Sci, Inst High Energy Phys, Div Theoret Phys, Beijing 100049, Peoples R China. [Li, Hong; Zhang, Xinmin] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China. [Linder, Eric V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Linder, Eric V.] Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Ewha Womans Univ, Inst Early Universe WCU, Seoul, South Korea. RP Zhao, GB (reprint author), Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. FU STFC [ST/H002774/1]; DOE; WCU [R32-2009-000-10130-0]; ERC; Leverhulme trust; RCUK Academic Fellowship; National Natural Science Foundation of China [11033005, 10803001, 10975142]; 973 program [2010CB833000] FX We thank the Supernova Cosmology Project for providing the Union2.1 data before publication. G. Z. and K. K. are supported by the STFC Grant No. ST/H002774/1. E. L. is supported by the DOE and by the WCU Grant No. R32-2009-000-10130-0. K. K. is also supported by the ERC and by the Leverhulme trust. D. B. acknowledges the support of an RCUK Academic Fellowship. H. L. and X. Z. are supported in part by the National Natural Science Foundation of China under Grants No. 11033005, No. 10803001, and No. 10975142 and by the 973 program Grant No. 2010CB833000. NR 36 TC 30 Z9 31 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 29 PY 2012 VL 85 IS 12 AR 123546 DI 10.1103/PhysRevD.85.123546 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 966HL UT WOS:000305828400001 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Bondioli, M Boonekamp, M Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodet, E Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocca, C Ciocio, A Cirilli, M Citterio, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Colas, J Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F De Lotto, B De Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebke, J Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Fournier, D Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonzalez, S de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guida, A Guindon, S Guler, H Gunther, J Guo, B Guo, J Gushchin, VN Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Haller, J Hamacher, K Hamal, P Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hayward, HS Haywood, SJ He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horn, C Horner, S Hostachy, JY Hou, S Hoummada, A Howarth, J Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keeler, R Kehoe, R Keil, M Kekelidze, GD Keller, JS Kennedy, J Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollefrath, M Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruth, A Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahboubi, K Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS de Andrade, LM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Martens, FK Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morin, J Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okada, S Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinto, B Pizio, C Plamondon, M Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumyantsev, L Runge, K Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, Y Ryan, P Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Viegas, FJTA Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Wang, T Warburton, A Ward, CP Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K Wheeler-Ellis, SJ White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuches, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Young, CJ Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Bondioli, M. Boonekamp, M. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodet, E. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Cheplakov, A. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. De Lotto, B. De Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guida, A. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gushchin, V. N. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Haller, J. Hamacher, K. Hamal, P. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hayward, H. S. Haywood, S. J. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horn, C. Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kennedy, J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollefrath, M. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manhaes de Andrade Filho, L. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Mellado Garcia, B. R. Meloni, F. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morin, J. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Olivares Pino, S. A. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinto, B. Pizio, C. Plamondon, M. Pleier, M. -A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumyantsev, L. Runge, K. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. F. Ryabov, Y. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuches, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for Supersymmetry in Events with Three Leptons and Missing Transverse Momentum in root s=7 TeV pp Collisions with the ATLAS Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERGAUGE TRANSFORMATIONS; PARTON DISTRIBUTIONS; MODEL; GENERATORS; PARTICLE; CURRENTS; STATES; PIONS; WEAK AB A search for the weak production of charginos and neutralinos decaying to a final state with three leptons (electrons or muons) and missing transverse momentum is presented. The analysis uses 2.06 fb(-1) of root s = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with standard model expectations in two signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric and simplified models. For the simplified models, degenerate lightest chargino and next-to-lightest neutralino masses up to 300 GeV are excluded for mass differences from the lightest neutralino up to 300 GeV. C1 [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuches, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Ernst, J.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Li, S.] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Fellmann, D.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wang, T.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Love, J.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Manhaes de Andrade Filho, L.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lamanna, M.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Shimizu, S.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Olivares Pino, S. A.; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Li, H.; Meng, Z.; Miao, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] CNRS IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Qin, Z.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Qin, Z.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] INFN Lab Nazl Frascati, Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Tbilisi State Univ, E Andronikashvili Inst Phys, GE-380086 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Lee, S. C.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Kar, D.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Pashapour, S.; Quadt, A.; Roe, A.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Ishikawa, A.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; De Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, London, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Lane, J. L.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; van Eldik, N.; Varol, T.; Ventura, D.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gonzalez, B. Alvarez; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] INFN Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Guler, H.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Beale, S.; Becker, S.; Biebel, O.; Calfayan, P.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bronner, J.; Capriotti, D.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Haefner, P.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst Phys, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Sandaker, H.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Malon, D.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Malon, D.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Farrington, S. M.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Huffman, T. B.; Jones, G.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Donega, M.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lester, C. M.; Lipeles, E.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; F. Ryabov, Y.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] INFN Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gushchin, V. N.; Ivashin, A. V.; Karyukhin, A. N.; Kiver, A. M.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Lphea Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.] Mohammed V Agdal Univ, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Mal, P.; Malone, C.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.; Xu, C.] CEA, CEA Saclay, Inst Rech Lois Fondamentales Univers, DSM IRFU, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Mockett, P.; Rothberg, J.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Milstead, D. A.; Moa, T.; Ohm, C. C.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Milstead, D. A.; Moa, T.; Ohm, C. C.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron & Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cuthbert, C.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Beauchemin, P. H.; Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bondioli, M.; Deng, J.; Farrell, S.; Eschrich, I. Gough; Hawkins, D.; Lankford, A. J.; Nelson, A.; Okawa, H.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] INFN Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Li, H.; Ma, L. L.; Mellado Garcia, B. R.; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Kootz, A.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Kaplan, B.; Lee, L.; Loginov, A.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Domaine Sci Doua, Villeurbanne, France. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Toronto, ON, Canada. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Dobson, E.] UCL, Dept Phys & Astron, London, England. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Di Micco, Biagio/J-1755-2012; Negri, Andrea/J-2455-2012; Giordano, Raffaele/J-3695-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Wolter, Marcin/A-7412-2012; Kramarenko, Victor/E-1781-2012; Ferrando, James/A-9192-2012; Gutierrez, Phillip/C-1161-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; Fazio, Salvatore /G-5156-2010; Moorhead, Gareth/B-6634-2009; Veneziano, Stefano/J-1610-2012; Alexa, Calin/F-6345-2010; Takai, Helio/C-3301-2012; Doyle, Anthony/C-5889-2009; semprini cesari, nicola/G-7817-2012; Petrucci, Fabrizio/G-8348-2012; Smirnov, Sergei/F-1014-2011; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; valente, paolo/A-6640-2010; Delmastro, Marco/I-5599-2012; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; la rotonda, laura/B-4028-2016; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Korol, Aleksandr/A-6244-2014; Grancagnolo, Francesco/K-2857-2015; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Mitsou, Vasiliki/D-1967-2009; Gladilin, Leonid/B-5226-2011; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Kepka, Oldrich/G-6375-2014; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; Santamarina Rios, Cibran/K-4686-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Loh, Chang Wei/I-1310-2014; Peleganchuk, Sergey/J-6722-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Passaggio, Stefano/B-6843-2013; messina, andrea/C-2753-2013; Weigell, Philipp/I-9356-2012; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Ishikawa, Akimasa/G-6916-2012 OI Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Ferrando, James/0000-0002-1007-7816; Cascella, Michele/0000-0003-2091-2501; Moorhead, Gareth/0000-0002-9299-9549; Veneziano, Stefano/0000-0002-2598-2659; Takai, Helio/0000-0001-9253-8307; Doyle, Anthony/0000-0001-6322-6195; Petrucci, Fabrizio/0000-0002-5278-2206; Smirnov, Sergei/0000-0002-6778-073X; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; valente, paolo/0000-0002-5413-0068; Delmastro, Marco/0000-0003-2992-3805; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Korol, Aleksandr/0000-0001-8448-218X; Grancagnolo, Francesco/0000-0002-9367-3380; Maio, Amelia/0000-0001-9099-0009; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Mitsou, Vasiliki/0000-0002-1533-8886; Gladilin, Leonid/0000-0001-9422-8636; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Vanyashin, Aleksandr/0000-0002-0367-5666; Santamarina Rios, Cibran/0000-0002-9810-1816; Villaplana Perez, Miguel/0000-0002-0048-4602; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; La Rosa, Alessandro/0000-0001-6291-2142; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide. NR 50 TC 26 Z9 26 U1 5 U2 75 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 29 PY 2012 VL 108 IS 26 AR 261804 DI 10.1103/PhysRevLett.108.261804 PG 18 WC Physics, Multidisciplinary SC Physics GA 966HU UT WOS:000305829300001 PM 23004965 ER PT J AU Kullberg, A del-Castillo-Negrete, D AF Kullberg, A. del-Castillo-Negrete, D. TI Transport in the spatially tempered, fractional Fokker-Planck equation SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID TRUNCATED-LEVY-FLIGHT; ANOMALOUS DIFFUSION; STOCHASTIC-PROCESS; DRIVEN; CONVERGENCE; STATISTICS; TURBULENCE; LANGEVIN; DYNAMICS AB A study of truncated Levy flights in super-diffusive transport in the presence of an external potential is presented. The study is based on the spatially tempered, fractional Fokker-Planck (TFFP) equation in which the fractional diffusion operator is replaced by a tempered fractional diffusion (TFD) operator. We focus on harmonic (quadratic) potentials and periodic potentials with broken spatial symmetry. The main objective is to study the dependence of the steady-state probability density function (PDF), and the current (in the case of periodic potentials) on the level of tempering, lambda, and on the order of the fractional derivative in space, alpha. An expansion of the TFD operator for large lambda is presented, and the corresponding equation for the coarse grained PDF is obtained. The steady-state PDF solution of the TFFP equation for a harmonic potential is computed numerically. In the limit lambda -> infinity, the PDF approaches the expected Boltzmann distribution. However, nontrivial departures from this distribution are observed for finite (lambda > 0) truncations, and alpha not equal 2. In the study of periodic potentials, we use two complementary numerical methods: a finite-difference scheme based on the Grunwald-Letnikov discretization of the truncated fractional derivatives and a Fourier-based spectral method. In the limit lambda -> infinity, the PDFs converges to the Boltzmann distribution and the current vanishes. However, for alpha not equal 2, the PDF deviates from the Boltzmann distribution and a finite non-equilibrium ratchet current appears for any lambda > 0. The current is observed to converge exponentially in time to the steady-state value. The steady-state current exhibits algebraical decay with lambda, as J similar to lambda(-zeta), for alpha >= 1.75. However, for alpha <= 1.5, the steady-state current decays exponentially with lambda, as J similar to e(-xi lambda). In the presence of an asymmetry in the TFD operator, the tempering can lead to a current reversal. A detailed numerical study is presented on the dependence of the current on lambda and the physical parameters of the system. C1 [Kullberg, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [del-Castillo-Negrete, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kullberg, A (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM delcastillod@ornl.gov OI del-Castillo-Negrete, Diego/0000-0001-7183-801X FU US Department of Energy [DE-AC05-00OR22 725]; NSF/DOE [SC0004663] FX The authors thank Professor G Morales for the valuable comments and suggestions to this work. This work was supported by the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22 725. Work at UCLA was sponsored by NSF/DOE partnership grant SC0004663. NR 32 TC 9 Z9 9 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUN 29 PY 2012 VL 45 IS 25 AR 255101 DI 10.1088/1751-8113/45/25/255101 PG 21 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 960NM UT WOS:000305395200005 ER PT J AU Hittinger, CT AF Hittinger, Chris Todd TI Endless Rots Most Beautiful SO SCIENCE LA English DT Editorial Material ID LIGNIN BIOSYNTHESIS; TRANSPORTER GENES; EVOLUTION; RECRUITMENT; PEROXIDASE C1 Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Wisconsin Bioenergy Initiat, Genet Lab, Madison, WI 53706 USA. RP Hittinger, CT (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Wisconsin Bioenergy Initiat, Genet Lab, Madison, WI 53706 USA. EM cthittinger@wisc.edu NR 15 TC 0 Z9 0 U1 0 U2 15 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 29 PY 2012 VL 336 IS 6089 BP 1649 EP 1650 DI 10.1126/science.1224682 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 965VD UT WOS:000305794500030 PM 22745411 ER PT J AU Floudas, D Binder, M Riley, R Barry, K Blanchette, RA Henrissat, B Martinez, AT Otillar, R Spatafora, JW Yadav, JS Aerts, A Benoit, I Boyd, A Carlson, A Copeland, A Coutinho, PM de Vries, RP Ferreira, P Findley, K Foster, B Gaskell, J Glotzer, D Gorecki, P Heitman, J Hesse, C Hori, C Igarashi, K Jurgens, JA Kallen, N Kersten, P Kohler, A Kues, U Kumar, TKA Kuo, A LaButti, K Larrondo, LF Lindquist, E Ling, A Lombard, V Lucas, S Lundell, T Martin, R McLaughlin, DJ Morgenstern, I Morin, E Murat, C Nagy, LG Nolan, M Ohm, RA Patyshakuliyeva, A Rokas, A Ruiz-Duenas, FJ Sabat, G Salamov, A Samejima, M Schmutz, J Slot, JC John, FS Stenlid, J Sun, H Sun, S Syed, K Tsang, A Wiebenga, A Young, D Pisabarro, A Eastwood, DC Martin, F Cullen, D Grigoriev, IV Hibbett, DS AF Floudas, Dimitrios Binder, Manfred Riley, Robert Barry, Kerrie Blanchette, Robert A. Henrissat, Bernard Martinez, Angel T. Otillar, Robert Spatafora, Joseph W. Yadav, Jagjit S. Aerts, Andrea Benoit, Isabelle Boyd, Alex Carlson, Alexis Copeland, Alex Coutinho, Pedro M. de Vries, Ronald P. Ferreira, Patricia Findley, Keisha Foster, Brian Gaskell, Jill Glotzer, Dylan Gorecki, Pawel Heitman, Joseph Hesse, Cedar Hori, Chiaki Igarashi, Kiyohiko Jurgens, Joel A. Kallen, Nathan Kersten, Phil Kohler, Annegret Kuees, Ursula Kumar, T. K. Arun Kuo, Alan LaButti, Kurt Larrondo, Luis F. Lindquist, Erika Ling, Albee Lombard, Vincent Lucas, Susan Lundell, Taina Martin, Rachael McLaughlin, David J. Morgenstern, Ingo Morin, Emanuelle Murat, Claude Nagy, Laszlo G. Nolan, Matt Ohm, Robin A. Patyshakuliyeva, Aleksandrina Rokas, Antonis Ruiz-Duenas, Francisco J. Sabat, Grzegorz Salamov, Asaf Samejima, Masahiro Schmutz, Jeremy Slot, Jason C. John, Franz St. Stenlid, Jan Sun, Hui Sun, Sheng Syed, Khajamohiddin Tsang, Adrian Wiebenga, Ad Young, Darcy Pisabarro, Antonio Eastwood, Daniel C. Martin, Francis Cullen, Dan Grigoriev, Igor V. Hibbett, David S. TI The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes SO SCIENCE LA English DT Article ID PHANEROCHAETE-CHRYSOSPORIUM; WOOD DECAY; EVOLUTION; GENE; MODELS; DEGRADATION; PEROXIDASES; CELLULOSE; SEQUENCE; FAMILY AB Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period. C1 [Riley, Robert; Barry, Kerrie; Otillar, Robert; Aerts, Andrea; Copeland, Alex; Foster, Brian; Kuo, Alan; LaButti, Kurt; Lindquist, Erika; Lucas, Susan; Nolan, Matt; Ohm, Robin A.; Salamov, Asaf; Sun, Hui; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Floudas, Dimitrios; Binder, Manfred; Carlson, Alexis; Glotzer, Dylan; Kallen, Nathan; Ling, Albee; Martin, Rachael; Nagy, Laszlo G.; Young, Darcy; Hibbett, David S.] Clark Univ, Dept Biol, Worcester, MA 01610 USA. [Blanchette, Robert A.; Jurgens, Joel A.; Kumar, T. K. Arun; McLaughlin, David J.] Univ Minnesota, Dept Plant Pathol, St Paul, MN 55108 USA. [Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent] Aix Marseille Univ, CNRS, UMR 6098, F-13288 Marseille 9, France. [Martinez, Angel T.; Ruiz-Duenas, Francisco J.] CSIC, Ctr Invest Biol, E-28040 Madrid, Spain. [Spatafora, Joseph W.; Boyd, Alex; Hesse, Cedar] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Yadav, Jagjit S.; Syed, Khajamohiddin] Univ Cincinnati, Coll Med, Dept Environm Hlth, Environm Genet & Mol Toxicol Div, Cincinnati, OH 45267 USA. [Benoit, Isabelle; de Vries, Ronald P.] Univ Utrecht, Microbiol & Kluyver Ctr Genom Ind Fermentat, NL-3584 CH Utrecht, Netherlands. [Benoit, Isabelle; de Vries, Ronald P.; Patyshakuliyeva, Aleksandrina; Wiebenga, Ad] CBS KNAW Fungal Biodivers Ctr, NL-3584 CT Utrecht, Netherlands. [Ferreira, Patricia] Univ Zaragoza, Dept Biochem & Mol & Cellular Biol, E-50009 Zaragoza, Spain. [Ferreira, Patricia] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst, E-50009 Zaragoza, Spain. [Findley, Keisha; Heitman, Joseph; Sun, Sheng] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC 27710 USA. [Gaskell, Jill; Kersten, Phil; John, Franz St.; Cullen, Dan] USDA, Forest Prod Lab, Madison, WI 53726 USA. [Gorecki, Pawel] Warsaw Univ, Inst Informat, PL-02097 Warsaw, Poland. [Hori, Chiaki; Igarashi, Kiyohiko; Samejima, Masahiro] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biomat Sci, Bunkyo Ku, Tokyo 1138657, Japan. [Kohler, Annegret; Morin, Emanuelle; Murat, Claude; Martin, Francis] Nancy Univ, INRA, UMR 1136, F-54280 Champenoux, France. [Kuees, Ursula] Univ Gottingen, Busgen Inst, D-37077 Gottingen, Germany. [Larrondo, Luis F.] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Mol Genet & Microbiol, Santiago 8331010, Chile. [Lundell, Taina] Univ Helsinki, Viikki Bioctr, Dept Appl Chem & Microbiol, FIN-00014 Helsinki, Finland. [Morgenstern, Ingo; Tsang, Adrian] Concordia Univ, Ctr Struct & Funct Genom, Montreal, PQ H4B 1R6, Canada. [Rokas, Antonis; Slot, Jason C.] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37235 USA. [Sabat, Grzegorz] Univ Wisconsin, Ctr Biotechnol, Madison, WI 53726 USA. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Stenlid, Jan] Swedish Univ Agr Sci, Dept Forest Mycol & Pathol, S-75007 Uppsala, Sweden. [Pisabarro, Antonio] Univ Publ Navarra, Genet & Microbiol Res Grp, Pamplona 31006, Spain. [Eastwood, Daniel C.] Univ Swansea, Coll Sci, Swansea SA2 8PP, W Glam, Wales. RP Grigoriev, IV (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM ivgrigoriev@lbl.gov; dhibbett@clarku.edu RI Ohm, Robin/I-6689-2016; Larrondo, Luis/J-1086-2016; St John, Franz/J-8970-2016; Lundell, Taina/P-6623-2016; Henrissat, Bernard/J-2475-2012; Larrondo, Luis/A-2916-2013; Gorecki, Pawel/D-3160-2013; Slot, Jason/E-4802-2011; Syed, Khajamohiddin/L-8774-2013; Schmutz, Jeremy/N-3173-2013; de Vries, Ronald/F-8125-2011; Pisabarro, Antonio/K-3622-2014; Ruiz-Duenas, Francisco/L-9837-2015; Rokas, Antonis/A-9775-2008; Igarashi, Kiyohiko/E-6799-2016; Binder, Manfred/C-8571-2013 OI Martinez, Angel T/0000-0002-1584-2863; Larrondo, Luis/0000-0002-8832-7109; St John, Franz/0000-0003-3458-5628; Lundell, Taina/0000-0003-3899-1658; Eastwood, Daniel/0000-0002-7015-0739; Kues, Ursula/0000-0001-9180-4079; Gorecki, Pawel/0000-0002-2045-5892; Syed, Khajamohiddin/0000-0002-1497-3570; Schmutz, Jeremy/0000-0001-8062-9172; de Vries, Ronald/0000-0002-4363-1123; Pisabarro, Antonio/0000-0001-6987-5794; Ruiz-Duenas, Francisco/0000-0002-9837-5665; Rokas, Antonis/0000-0002-7248-6551; Igarashi, Kiyohiko/0000-0001-5152-7177; FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Assembling the Fungal Tree of Life (AFTOL) project under NSF [DEB-0732968, DEB-0732993, DEB-0732550] FX The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. Also supported by the Assembling the Fungal Tree of Life (AFTOL) project under NSF awards DEB-0732968 (D. S. H.), DEB-0732993 (J.W.S.), and DEB-0732550 (D.J.M.). We thank R. H. Petersen for the strain of A. delicata. The organisms A. delicata and Dacryopinax sp. were obtained in Costa Rica and can only be used for research purposes. Assemblies and annotations of the 12 genomes reported here are available from the JGI fungal portal MycoCosm (http://jgi.doe.gov/fungi) and from DDBJ/EMBL/GenBank under the following accessions: AFVO00000000, AEIT00000000, AEUS00000000, AEID00000000, AEJJ00000000, AEHC00000000, AFVP00000000, AEGM00000000, AEGX00000000, AEJI00000000, AFVY00000000, and AEHD00000000. Aligned sequence data for organismal and gene family phylogenies and molecular clock analyses, and secretome results are available at DRYAD (http://dx.doi.org/10.5061/dryad.5k3t47p0). NR 25 TC 397 Z9 409 U1 44 U2 429 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUN 29 PY 2012 VL 336 IS 6089 BP 1715 EP 1719 DI 10.1126/science.1221748 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 965VD UT WOS:000305794500053 PM 22745431 ER PT J AU Lin, F Li, CP Chen, G Tenent, RC Wolden, CA Gillaspie, DT Dillon, AC Richards, RM Engtrakul, C AF Lin, Feng Li, Chi-Ping Chen, Gang Tenent, Robert C. Wolden, Colin A. Gillaspie, Dane T. Dillon, Anne C. Richards, Ryan M. Engtrakul, Chaiwat TI Low-temperature ozone exposure technique to modulate the stoichiometry of WOx nanorods and optimize the electrochromic performance SO NANOTECHNOLOGY LA English DT Article ID OXIDE THIN-FILMS; ULTRASONIC SPRAY DEPOSITION; CHEMICAL-VAPOR-DEPOSITION; SENSITIZED SOLAR-CELLS; TUNGSTEN-OXIDE; NANOPARTICLES; COLORATION; DENSITY; ROUTE; TIO2 AB A low-temperature ozone exposure technique was employed for the post-treatment of WOx nanorod thin films fabricated from hot-wire chemical vapor deposition (HWCVD) and ultrasonic spray deposition (USD) techniques. The resulting films were characterized with x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV-vis-NIR spectroscopy and x-ray photoelectron spectroscopy (XPS). The stoichiometry and surface crystallinity of the WOx thin films were subsequently modulated upon ozone exposure and thermal annealing without particle growth. The electrochromic performance was studied in a LiClO4-propylene carbonate electrolyte, and the results suggest that the low-temperature ozone exposure technique is superior to the traditional high-temperature thermal annealing (employed to more fully oxidize the WOx). The optical modulation at 670 nm was improved from 35% for the as-deposited film to 57% for the film after ozone exposure at 150 degrees C. The coloration efficiency was improved and the switching speed to the darkened state was significantly accelerated from 18.0 s for the as-deposited film to 11.8 s for the film after the ozone exposure. The process opens an avenue for low-temperature and cost-effective manufacturing of electrochromic films, especially on flexible polymer substrates. C1 [Richards, Ryan M.] Colorado Sch Mines, Dept Chem & Geochem, Mat Sci Program, Golden, CO 80401 USA. [Engtrakul, Chaiwat] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Chen, Gang] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Richards, RM (reprint author), Colorado Sch Mines, Dept Chem & Geochem, Mat Sci Program, 1500 Illinois St, Golden, CO 80401 USA. EM rrichard@mines.edu; chaiwat.engtrakul@nrel.gov RI Engtrakul, Chaiwat/H-5634-2011; Lin, Feng/H-5027-2012; Richards, Ryan/B-3513-2008 OI Lin, Feng/0000-0001-7286-7525; FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory, DOE Office of Energy Efficiency and Renewable Energy Office of Building Technologies; Colorado School of Mines; National Science Foundation through the Renewable Energy Materials Research Science and Engineering Center [DMR-0820518] FX This research was supported by the US Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory as part of the DOE Office of Energy Efficiency and Renewable Energy Office of Building Technologies Program. F Lin and R M Richards also acknowledge support from the Colorado School of Mines. C-P Li and C A Wolden were supported by the National Science Foundation through the Renewable Energy Materials Research Science and Engineering Center (DMR-0820518). The authors thank Professor Tim Ohno and Harrison Wilterdink for help with the x-ray photoelectron spectroscopy measurements. NR 35 TC 18 Z9 18 U1 3 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 29 PY 2012 VL 23 IS 25 AR 255601 DI 10.1088/0957-4484/23/25/255601 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 957PH UT WOS:000305174500015 PM 22653083 ER PT J AU Ray, AW Taatjes, CA Welz, O Osborn, DL Meloni, G AF Ray, Amelia W. Taatjes, Craig A. Welz, Oliver Osborn, David L. Meloni, Giovanni TI Synchrotron Photoionization Measurements of OH-Initiated Cyclohexene Oxidation: Ring-Preserving Products in OH plus Cyclohexene and Hydroxycyclohexyl plus O-2 Reactions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL GEOMETRIES; SET MODEL CHEMISTRY; CROSS-SECTIONS; COMBUSTION CHEMISTRY; ALIPHATIC-ALDEHYDES; MASS-SPECTROMETRY; RADICALS; BENZENE; ISOMERS; FLAMES AB Earlier synchrotron photoionization mass spectrometry experiments suggested a prominent ring-opening channel in the OH-initiated oxidation of cyclohexene, based on comparison of product photoionization spectra with calculated spectra of possible isomers. The present work reexamines the OH + cyclohexene reaction, measuring the isomeric products of OH-initiated oxidation of partially and fully deuterated cyclohexene. In particular, the diredly measured photoionization spectrum of 2-cyclohexen-1ol differs substantially from the previously calculated Franck Condon envelope, and the.oroduct spectrum can be fit with no contribution from ring-opening. Measurements of H2O2 photolysis in the presence of C6D10 establish that the 2,ddition elimination product incorporates the hydrogen atom from the hydroxyl radical reactant and loses a hydrogen (a D atom in this case) from the ring. Investigation of OH + cyclohexene-4,4,5,5-d4 confirms this result and allows mass discrimination of different abstraction pathways. Products of 2-hydroxycyclohexyl-d(10) reaction with O-2 are observed upon adding a large excess of O-2 to the OH + C6D10 system. C1 [Ray, Amelia W.; Meloni, Giovanni] Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA. [Taatjes, Craig A.; Welz, Oliver; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Meloni, G (reprint author), Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA. EM gmeloni@usfca.edu RI Welz, Oliver/C-1165-2013 OI Welz, Oliver/0000-0003-1978-2412 FU University of San Francisco Faculty Development Fund; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences; U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000] FX G.M. acknowledges the University of San Francisco Faculty Development Fund for financial support and the Advanced Light Source (ALS) division at the Lawrence Berkeley National Laboratory for beamtime allocation. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work is also supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, and the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. NR 51 TC 4 Z9 4 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 28 PY 2012 VL 116 IS 25 SI SI BP 6720 EP 6730 DI 10.1021/jp3022437 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 965LR UT WOS:000305769800034 PM 22631211 ER PT J AU Lopez, GV Chang, CH Johnson, PM Hall, GE Sears, TJ Markiewicz, B Milan, M Teslja, A AF Lopez, Gary V. Chang, Chih-Hsuan Johnson, Philip M. Hall, Gregory E. Sears, Trevor J. Markiewicz, Beatrice Milan, Mariana Teslja, Alexey TI What Is the Best DFT Functional for Vibronic Calculations? A Comparison of the Calculated Vibronic Structure of the S-1-S-0 Transition of Phenylacetylene with Cavity Ringdown Band Intensities SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID EXCITED RADICAL CATIONS; AB-INITIO; ARCHETYPAL MODELS; NAPHTHALENE; ANTHRACENE; DYNAMICS; SPECTRA; SYSTEM; S-1 AB The sensitivity of vibronic calculations to electronic structure methods and basis sets is explored and compared to accurate relative intensities of the vibrational bands of phenylacetylene in the Si(A B-1(2)) <- S-0(X (1)A(1)) transition. To provide a better measure of vibrational band intensities, the spectrum was recorded by cavity ringdown absorption spectroscopy up to energies of 2000 cm(-1) above the band origin in a slit jet sample. The sample rotational temperature was estimated to be about 30 K, but the vibrational temperature was higher, permitting the assignment of many vibrational hot bands. The vibronic structure of the electronic transition was simulated using a combination of time-dependent density functional theory (TD-DFT) electronic structure codes, Franck-Condon integral calculations, and a second-order vibronic model developed previously [Johnson, P. M.; Xu, H. F.; Sears, T. J. J. Chem. Phys. 2006, 125, 164331]. The density functional theory (DFT) functionals B3LYP, CAM-B3LYP, and LC-BLYP were explored. The long-range-corrected fimctionals, CAM-B3LYP and LC-BLYP, produced better values for the equilibrium geometry transition moment, but overemphasized the vibronic coupling for some normal modes, while B3LYP provided better-balanced vibronic coupling but a poor equilibrium transition moment. Enlarging the basis set made very little difference. The cavity ringdown measurements show that earlier intensities derived from resonance-enhanced multiphoton ionization (REMPI) spectra have relative intensity errors. C1 [Lopez, Gary V.; Johnson, Philip M.; Sears, Trevor J.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Chang, Chih-Hsuan; Hall, Gregory E.; Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Markiewicz, Beatrice; Milan, Mariana; Teslja, Alexey] Fairleigh Dickinson Univ, Dept Chem & Pharmaceut Sci, Madison, NJ 07940 USA. RP Johnson, PM (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RI Hall, Gregory/D-4883-2013; Sears, Trevor/B-5990-2013 OI Hall, Gregory/0000-0002-8534-9783; Sears, Trevor/0000-0002-5559-0154 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science; Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences; Fairleigh Dickinson University (FDU SEED) FX This work was carried out at Stony Brook University and at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences. We are grateful to Noel Blackburn at the BNL Office of Educational Programs, and to Fairleigh Dickinson University (FDU SEED Grant) for each of their generous contributions in funding the Faculty and Student Team during the Summer of 2010. The authors thank Vasily Goncharov for assistance with the MOPO system. NR 25 TC 14 Z9 14 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 28 PY 2012 VL 116 IS 25 SI SI BP 6750 EP 6758 DI 10.1021/jp302936h PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 965LR UT WOS:000305769800037 PM 22616733 ER PT J AU Vasiliu, M Knope, KE Soderholm, L Dixon, DA AF Vasiliu, Monica Knope, Karah E. Soderholm, L. Dixon, David A. TI Spectroscopic and Energetic Properties of Thorium(IV) Molecular Clusters with a Hexanuclear Core SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; X-RAY-SCATTERING; HYDROLYSIS PRODUCTS; N=1-4 CLUSTERS; AQUA ION; ORBITALS; APPROXIMATION; COMPLEXES; CHEMISTRY; ENERGIES AB The spectral and energetic properties of three polynuclear thorium(IV) molecular complexes Th-6(OH)(4)O-4(H2O)(6)(HCOO)(12).nH(2)O (1), Th-6(OH)(4)O-4(H2O)(6)(CH3COO)(12).nH(2)O (2), and Th-6(OH)(4)O-4(H2O)(6)(CICH2COO)(12).4H(2)O (3) have been studied. Each complex has a hexanuclear core with six 9-coordinate Th(IV) cations bridged by four mu(3)-hydroxo and four mu(3)-oxo groups. The +12 core is stabilized by twelve bridging carboxylate functionalized organic acid (formate, acetate, and chloroacetate) units. The calculated H-1 NMR chemical shifts for the four mu(3)-hydroxo, water, and formate protons are reported and compared to the experimental values. The vibrational frequencies were calculated to aid in the assignment of the observed Raman bands. The Mulliken and NBO (natural bond orbital) charges are calculated for the Th clusters. The Th atoms are positive and the bridging O and O(H) are negative. The analysis of the calculated highest-occupied and lowest-unoccupied molecular orbitals (HOMO and LUMO) is reported. The average water complexation energies, the gas phase, the aqueous and dimethylsulfoxide (DMSO) acidities were predicted, and the Th clusters are found to be mild to strong acids in gas phase yet they behave as weak acids in solution. C1 [Vasiliu, Monica; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Knope, Karah E.; Soderholm, L.; Dixon, David A.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Shelby Hall,Box 870336, Tuscaloosa, AL 35487 USA. EM dadixon@bama.ua.edu FU United States Department of Energy [DE-AC02-06CH11357]; DOE Office of Basic Energy Sciences; Single-Investigator and Small-Group Research; University of Alabama FX This work was performed in part at the Argonne National Laboratory, operated by UChicagoArgonne LLC for the United States Department of Energy under contract number DE-AC02-06CH11357. The work was supported by a DOE Office of Basic Energy Sciences, Single-Investigator and Small-Group Research Project. D.A.D. is indebted to the Robert Ramsay Endowment of the University of Alabama for partial support. The authors thank Dr. John V. Muntean (Argonne National Laboratory) for his assistance in collecting the NMR data. NR 69 TC 23 Z9 23 U1 4 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 28 PY 2012 VL 116 IS 25 SI SI BP 6917 EP 6926 DI 10.1021/jp303493t PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 965LR UT WOS:000305769800056 PM 22616693 ER PT J AU Cui, HY Kessler, MR AF Cui, Hongyu Kessler, Michael R. TI Glass fiber reinforced ROMP-based bio-renewable polymers: Enhancement of the interface with silane coupling agents SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Bio-renewable polymer; Glass fibers; Coupling agents; Surface treatments; Interfacial strength ID OPENING METATHESIS POLYMERIZATION; MODIFIED LINSEED OIL; MATRIX ADHESION; SHEAR-STRENGTH; MECHANICAL-PROPERTIES; MICROBOND METHOD; RESIN INTERFACE; COMPOSITES; BIOCOMPOSITES; SILICA AB In this study, the influence of silane coupling agents on interfacial adhesion in glass fiber reinforced polymers from the ring-opening metathesis polymerization (ROMP) of a linseed oil-based monomer and dicyclopentadiene is investigated experimentally. Two types of silane coupling agents, norbornenylethyldimethylchlorosilane (MCS) and norbornenylethyltrichlorosilane (TCS), are examined. Interfacial shear strength (IFSS) is evaluated by the microbond technique. The IFSS increases by about 150% for the MCS-treated fibers and by about 50% for the TCS-treated fibers compared to untreated fibers. Dynamic mechanical analysis of composite panels made with untreated and silane-treated fibers reveals that MCS-treated fiber composites have the highest storage modulus and glass transition temperature, indicating strong interfacial interactions at the glass/matrix interface. Short beam shear tests and scanning electron microscopy of fracture surfaces also confirm that MCS is more effective than TCS at improving interfacial adhesion. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Cui, Hongyu; Kessler, Michael R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Kessler, Michael R.] Iowa State Univ, Dept Mech Engn, Ames, IA USA. [Kessler, Michael R.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Kessler, MR (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM mkessler@iastate.edu RI Kessler, Michael/C-3153-2008 OI Kessler, Michael/0000-0001-8436-3447 FU USEPA [EM-83438801] FX The authors would like to thank James Anderegg in Ames lab for his help in XPS tests. This publication was made possible by USEPA grant EM-83438801. Its contents are solely the responsibility of the grantee and do not necessarily represent the views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in this publication. NR 29 TC 22 Z9 23 U1 4 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD JUN 28 PY 2012 VL 72 IS 11 BP 1264 EP 1272 DI 10.1016/j.compscitech.2012.04.013 PG 9 WC Materials Science, Composites SC Materials Science GA 967OV UT WOS:000305918600006 ER PT J AU Smith, QA Ruedenberg, K Gordon, MS Slipchenko, LV AF Smith, Quentin A. Ruedenberg, Klaus Gordon, Mark S. Slipchenko, Lyudmila V. TI The dispersion interaction between quantum mechanics and effective fragment potential molecules SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ATOM-ATOM POTENTIALS; WAVE-FUNCTIONS; DAMPING FUNCTIONS; ORBITAL METHODS; BASIS-SETS; INTERMOLECULAR POTENTIALS; BENCHMARK CALCULATIONS; BENZENE DIMER; ENERGY AB A method for calculating the dispersion energy between molecules modeled with the general effective fragment potential (EFP2) method and those modeled using a full quantum mechanics (QM) method, e. g., Hartree-Fock (HF) or second-order perturbation theory, is presented. C-6 dispersion coefficients are calculated for pairs of orbitals using dynamic polarizabilities from the EFP2 portion, and dipole integrals and orbital energies from the QM portion of the system. Dividing by the sixth power of the distance between localized molecular orbital centroids yields the first term in the commonly employed London series expansion. A C-8 term is estimated from the C-6 term to achieve closer agreement with symmetry adapted perturbation theory values. Two damping functions for the dispersion energy are evaluated. By using terms that are already computed during an ordinary HF or EFP2 calculation, the new method enables accurate and extremely rapid evaluation of the dispersion interaction between EFP2 and QM molecules. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729535] C1 [Smith, Quentin A.; Ruedenberg, Klaus; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Smith, Quentin A.; Ruedenberg, Klaus; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Slipchenko, Lyudmila V.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. RP Gordon, MS (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM mgordon@iastate.edu; lslipchenko@purdue.edu RI Slipchenko, Lyudmila/G-5182-2012 FU U.S. Air Force Office of Scientific Research (US AFOSR); National Science Foundation (NSF) Multiscale Modeling grant; National Science Foundation Petascale Applications grant; National Science Foundation CAREER grant; Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) [DE-AC02-07CH11358]; Iowa State University through the Ames Laboratory FX This work was supported in part by a grant from the U.S. Air Force Office of Scientific Research (US AFOSR) (Q. A. S., M. S. G.), by a National Science Foundation (NSF) Multiscale Modeling grant (M. S. G., L. V. S.), by a National Science Foundation Petascale Applications grant (Q. A. S., M. S. G.), by a National Science Foundation CAREER grant (L. V. S.), and by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under Contract No. DE-AC02-07CH11358 with Iowa State University through the Ames Laboratory (K. R.). The authors are grateful for many helpful discussions with Dr. Ivana Adamovic. NR 54 TC 9 Z9 9 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2012 VL 136 IS 24 AR 244107 DI 10.1063/1.4729535 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 967BM UT WOS:000305881100009 PM 22755565 ER PT J AU Yacovitch, TI Heine, N Brieger, C Wende, T Hock, C Neumark, DM Asmis, KR AF Yacovitch, Tara I. Heine, Nadja Brieger, Claudia Wende, Torsten Hock, Christian Neumark, Daniel M. Asmis, Knut R. TI Communication: Vibrational spectroscopy of atmospherically relevant acid cluster anions: Bisulfate versus nitrate core structures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INFRARED-SPECTROSCOPY; ION CHEMISTRY; COMPLEXES; H2SO4; CONSTANTS; BASES; TRAP AB Infrared multiple photon dissociation spectra for the smallest atmospherically relevant anions of sulfuric and nitric acid allow us to characterize structures and distinguish between clusters with a bisulfate or a nitrate core. We find that bisulfate is the main charge carrier for HSO4 center dot H2SO4 center dot HNO3 but not for NO3 center dot H2SO4 center dot HNO3. For the mixed dimer anion, we find evidence for the presence of two isomers: HSO4 center dot HNO3 and NO3 center dot H2SO4. Density functional calculations accompany the experimental results and provide support for these observations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732148] C1 [Yacovitch, Tara I.; Hock, Christian; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Heine, Nadja; Brieger, Claudia; Wende, Torsten; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Yacovitch, TI (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu; asmis@fhi-berlin.mpg.de RI Heine, Nadja/G-8839-2013; Asmis, Knut/N-5408-2014; OI Asmis, Knut/0000-0001-6297-5856; Lentz, Claudia/0000-0002-1876-9331 FU European Community's Seventh Framework Program [226716]; (U.S.) Air Force Office of Scientific Research (USAFOSR) [FA9550-09-1-0343]; National Science and Engineering Research Council of Canada (NSERC); German Academic Exchange Service (DAAD); National Science Foundation (NSF) [CHE-0840505] FX We gratefully acknowledge Jia Zhou, Gabriele Santam-brogio, Mathias Brummer, and Ludger Woste for their aid in the preliminary measurements on HSO4-. We thank the Stichting voor Fundamenteel Onderzoek der Materie (FOM) for granting the required beam time and highly appreciate the skill and assistance of the FELIX staff. This research is funded by the European Community's Seventh Framework Program (FP7/2007-2013, Grant No. 226716) and the (U.S.) Air Force Office of Scientific Research (USAFOSR) (FA9550-09-1-0343). T.I.Y. thanks the National Science and Engineering Research Council of Canada (NSERC) for a postgraduate scholarship. C. H. thanks the German Academic Exchange Service (DAAD) for a postdoctoral scholarship. Calculations were performed at the Molecular Dynamics and Computational Facility at the University of California, Berkeley (National Science Foundation (NSF) Grant No. CHE-0840505). NR 31 TC 12 Z9 12 U1 2 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2012 VL 136 IS 24 AR 241102 DI 10.1063/1.4732148 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 967BM UT WOS:000305881100002 PM 22755558 ER PT J AU Yang, J Pearson, JE AF Yang, Jin Pearson, John E. TI Origins of concentration dependence of waiting times for single-molecule fluorescence binding SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MICHAELIS-MENTEN EQUATION; DETAILED BALANCE; OMISSION PROBLEM; CHANNEL ANALYSIS; LIVING CELLS; KINETICS; GRB2; SYSTEMS AB Binary fluorescence time series obtained from single-molecule imaging experiments can be used to infer protein binding kinetics, in particular, association and dissociation rate constants from waiting time statistics of fluorescence intensity changes. In many cases, rate constants inferred from fluorescence time series exhibit nonintuitive dependence on ligand concentration. Here, we examine several possible mechanistic and technical origins that may induce ligand dependence of rate constants. Using aggregated Markov models, we show under the condition of detailed balance that non-fluorescent bindings and missed events due to transient interactions, instead of conformation fluctuations, may underly the dependence of waiting times and thus apparent rate constants on ligand concentrations. In general, waiting times are rational functions of ligand concentration. The shape of concentration dependence is qualitatively affected by the number of binding sites in the single molecule and is quantitatively tuned by model parameters. We also show that ligand dependence can be caused by non-equilibrium conditions which result in violations of detailed balance and require an energy source. As to a different but significant mechanism, we examine the effect of ambient buffers that can substantially reduce the effective concentration of ligands that interact with the single molecules. To demonstrate the effects by these mechanisms, we applied our results to analyze the concentration dependence in a single-molecule experiment EGFR binding to fluorophore-labeled adaptor protein Grb2 by Morimatsu et al. [Proc. Natl. Acad. Sci. U. S. A. 104, 18013 (2007)]. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729947] C1 [Yang, Jin] Chinese Acad Sci, Shanghai 200031, Peoples R China. [Yang, Jin] Shanghai Inst Biol Sci, Max Plank Soc Partner Inst Computat Biol, Shanghai 200031, Peoples R China. [Pearson, John E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yang, J (reprint author), Chinese Acad Sci, Shanghai 200031, Peoples R China. EM jinyang2004@gmail.com FU National Science Foundation of China (NSFC) [30870477]; Sanofi-SIBS Innovation [SA-SIBS-DIG-03]; National Institutes of Health (NIH) [R01GM065830-07] FX We thank Byron Goldstein, Steven N. Evans, Michael J. O'Donnell, and Yandong Yin for helpful discussions. The study was supported by National Science Foundation of China (NSFC) Grant No. 30870477 and Sanofi-SIBS Innovation Grant No. SA-SIBS-DIG-03 (J.Y.), and by National Institutes of Health (NIH) Grant No. R01GM065830-07 (J.E.P). NR 28 TC 1 Z9 1 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2012 VL 136 IS 24 AR 244506 DI 10.1063/1.4729947 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 967BM UT WOS:000305881100030 PM 22755586 ER PT J AU Kobljanskyj, Y Melkov, G Guslienko, K Novosad, V Bader, SD Kostylev, M Slavin, A AF Kobljanskyj, Yuri Melkov, Gennady Guslienko, Konstantin Novosad, Valentyn Bader, Samuel D. Kostylev, Michael Slavin, Andrei TI Nano-structured magnetic metamaterial with enhanced nonlinear properties SO SCIENTIFIC REPORTS LA English DT Article AB Nano-structuring can significantly modify the properties of materials. We demonstrate that size-dependent modification of the spin-wave spectra in magnetic nano-particles can affect not only linear, but also nonlinear magnetic response. The discretization of the spectrum removes the frequency degeneracy between the main excitation mode of a nano-particle and the higher spin-wave modes, having the lowest magnetic damping, and reduces the strength of multi-magnon relaxation processes. This reduction of magnon-magnon relaxation for the main excitation mode leads to a dramatic increase of its lifetime and amplitude, resulting in the intensification of all the nonlinear processes involving this mode. We demonstrate this experimentally on a two-dimensional array of permalloy nano-dots for the example of parametric generation of a sub-harmonic of an external microwave signal. The characteristic lifetime of this sub-harmonic is increased by two orders of magnitude compared to the case of a continuous magnetic film, where magnon-magnon relaxation limits the lifetime. C1 [Slavin, Andrei] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Kobljanskyj, Yuri; Melkov, Gennady] Taras Shevchenko Natl Univ Kyiv, Fac Radiophys, UA-01601 Kiev, Ukraine. [Guslienko, Konstantin] Univ Basque Country, Dept Fis Mat, UPV EHU, San Sebastian 20018, Spain. [Guslienko, Konstantin] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain. [Novosad, Valentyn; Bader, Samuel D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kostylev, Michael] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia. RP Slavin, A (reprint author), Oakland Univ, Dept Phys, Rochester, MI 48309 USA. EM slavin@oakland.edu RI Bader, Samuel/A-2995-2013; Novosad, Valentyn/C-2018-2014; Kostylev, Mikhail/H-5214-2014; Novosad, V /J-4843-2015 FU U.S. National Science Foundation; DARPA; U.S. Army TARDEC, RDECOM; State Fund for Fundamental Researches of Ukraine [UU34/008]; Australian Research Council; IKERBASQUE (the Basque Foundation for Science); MEC [PIB2010US-00153, FIS2010-20979-C02-01]; U.S.DOE Office of Science [DE-AC02-06CH11357] FX Y.K., G.M. and A.S. acknowledge support from the U.S. National Science Foundation, DARPA, and the U.S. Army TARDEC, RDECOM, the State Fund for Fundamental Researches of Ukraine (Project # UU34/008) and the Australian Research Council, K.G. acknowledges support by IKERBASQUE (the Basque Foundation for Science) and by MEC Grants PIB2010US-00153 and FIS2010-20979-C02-01. Work at Argonne was supported by the U.S.DOE Office of Science under Contract No. DE-AC02-06CH11357. M.K. acknowledges support by the Australian Research Council. NR 19 TC 11 Z9 11 U1 0 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 28 PY 2012 VL 2 AR 478 DI 10.1038/srep00478 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 969SN UT WOS:000306078700002 PM 22745899 ER PT J AU Kowalsky, MB Finsterle, S Williams, KH Murray, C Commer, M Newcomer, D Englert, A Steefel, CI Hubbard, SS AF Kowalsky, M. B. Finsterle, S. Williams, K. H. Murray, C. Commer, M. Newcomer, D. Englert, A. Steefel, C. I. Hubbard, S. S. TI On parameterization of the inverse problem for estimating aquifer properties using tracer data SO WATER RESOURCES RESEARCH LA English DT Article ID PILOT POINTS METHOD; STRUCTURE IDENTIFICATION; FIELD-SCALE; MODEL CALIBRATION; GROUNDWATER; URANIUM; TRANSPORT; FLOW; BIOREMEDIATION; HETEROGENEITY AB In developing a reliable approach for inferring hydrological properties through inverse modeling of tracer data, decisions made on how to parameterize heterogeneity (i.e., how to represent a heterogeneous distribution using a limited number of parameters that are amenable to estimation) are of paramount importance, as errors in the model structure are partly compensated for by estimating biased property values during the inversion. These biased estimates, while potentially providing an improved fit to the calibration data, may lead to wrong interpretations and conclusions and reduce the ability of the model to make reliable predictions. We consider the estimation of spatial variations in permeability and several other parameters through inverse modeling of tracer data, specifically synthetic and actual field data associated with the 2007 Winchester experiment from the Department of Energy Rifle site. Characterization is challenging due to the real-world complexities associated with field experiments in such a dynamic groundwater system. Our aim is to highlight and quantify the impact on inversion results of various decisions related to parameterization, such as the positioning of pilot points in a geostatistical parameterization; the handling of up-gradient regions; the inclusion of zonal information derived from geophysical data or core logs; extension from 2-D to 3-D; assumptions regarding the gradient direction, porosity, and the semivariogram function; and deteriorating experimental conditions. This work adds to the relatively limited number of studies that offer guidance on the use of pilot points in complex real-world experiments involving tracer data (as opposed to hydraulic head data). C1 [Kowalsky, M. B.; Finsterle, S.; Williams, K. H.; Commer, M.; Steefel, C. I.; Hubbard, S. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Murray, C.; Newcomer, D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Englert, A.] Ruhr Univ Bochum, Dept Hydrogeol, Bochum, Germany. RP Kowalsky, MB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mbkowalsky@lbl.gov RI Steefel, Carl/B-7758-2010; Finsterle, Stefan/A-8360-2009; Williams, Kenneth/O-5181-2014; Hubbard, Susan/E-9508-2010; Commer, Michael/G-3350-2015 OI Finsterle, Stefan/0000-0002-4446-9906; Williams, Kenneth/0000-0002-3568-1155; Commer, Michael/0000-0003-0015-9217 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The authors wish to thank Michael Cardiff and two anonymous reviewers for their constructive comments, which helped improve this paper. This material is based upon work supported as part of the Subsurface Science Scientific Focus Area funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under award DE-AC02-05CH11231. NR 60 TC 9 Z9 9 U1 0 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 28 PY 2012 VL 48 AR W06535 DI 10.1029/2011WR011203 PG 25 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 968RB UT WOS:000306001000001 ER PT J AU Annapureddy, HVR Dang, LX AF Annapureddy, Harsha V. R. Dang, Liem X. TI Molecular Mechanism of Specific Ion Interactions between Alkali Cations and Acetate Anion in Aqueous Solution: A Molecular Dynamics Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-ABSORPTION; FRICTION KERNELS; LIQUID WATER; CHEMICAL-REACTIONS; HOFMEISTER SERIES; PROTEIN SURFACES; SOLVATION SHELLS; POLAR-SOLVENT; MEAN FORCE; AB-INITIO AB Specific ion interactions between alkali cations (i.e., Li+, Na+, and K+) and an acetate anion in aqueous solution were studied using molecular dynamics simulation techniques and polarizable potential models. The ions acetate systems were used as a model for understanding the interactions between ions and protein surfaces. We computed free energy profiles for different ion pairs using constrained mean force methods. Upon analyzing the computed free energy profiles for the Na+/K+-acetate ion-pairs, we observed a deeper contact ion minimum and also a larger association constant for the Ne+-acetate pair as compared to the corresponding K+-acetate pair. These observations help to demonstrate the preferential binding of Na+ over K+ to protein surfaces. We also applied various rate theories to study the kinetics of ion pair interconversion. C1 [Annapureddy, Harsha V. R.; Dang, Liem X.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM liem.dang@pnl.gov RI Annapureddy, Harsha V R/E-9818-2013 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle. The calculations were carried out using computer resources provided by BES. NR 44 TC 14 Z9 14 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 28 PY 2012 VL 116 IS 25 BP 7492 EP 7498 DI 10.1021/jp301859z PG 7 WC Chemistry, Physical SC Chemistry GA 965LQ UT WOS:000305769700012 PM 22663162 ER PT J AU Du, Y Huang, M Lograsso, TA McQueeney, RJ AF Du, Y. Huang, M. Lograsso, T. A. McQueeney, R. J. TI X-ray diffuse scattering measurements of chemical short-range order and lattice strains in a highly magnetostrictive Fe0.813Ga0.187 alloy in an applied magnetic field SO PHYSICAL REVIEW B LA English DT Article ID FE-GA ALLOYS; STRUCTURALLY HETEROGENEOUS MODEL; EXTRINSIC MAGNETOSTRICTION AB The rapid growth of the magnetostriction coefficient of ferromagnetic Fe1-xGax alloys that occurs at a composition range from 0 < x < 0.20 has recently been associated with the formation of nanoscale tetragonal precipitates close to an order-disorder transition. The structurally anisotropic precipitates are proposed to rotate in an applied magnetic field, thereby resulting in a large magnetoelastic response. X-ray diffuse scattering measurements sensitive to the atomic short-range ordering and lattice strain were performed on a quenched 18.7 at. % Ga alloy and show no dependence on the application of a magnetic field. This negative result sets limits on the role of nanoscale precipitates in magnetostriction. C1 [Du, Y.; McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Huang, M.] S Dakota Sch Mines, Dept Mat & Met Engn, Rapid City, SD 57701 USA. [Lograsso, T. A.; McQueeney, R. J.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Du, Y (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI McQueeney, Robert/A-2864-2016 OI McQueeney, Robert/0000-0003-0718-5602 FU Office of Naval Research [N000140610530] FX R.J.M. would like to thank D. S. Robinson for his assistance with the beamline and the magnet and K. Dennis for sample characterization studies. This work was supported by the Office of Naval Research under ONR Grant No. N000140610530. NR 16 TC 6 Z9 6 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 28 PY 2012 VL 85 IS 21 AR 214437 DI 10.1103/PhysRevB.85.214437 PG 6 WC Physics, Condensed Matter SC Physics GA 965QR UT WOS:000305782800002 ER PT J AU Doherty, DT Lotay, G Woods, PJ Seweryniak, D Carpenter, MP Chiara, CJ David, HM Janssens, RVF Trache, L Zhu, S AF Doherty, D. T. Lotay, G. Woods, P. J. Seweryniak, D. Carpenter, M. P. Chiara, C. J. David, H. M. Janssens, R. V. F. Trache, L. Zhu, S. TI Key Resonances in the P-30(p, gamma)S-31 Gateway Reaction for the Production of Heavy Elements in ONe Novae SO PHYSICAL REVIEW LETTERS LA English DT Article ID CLASSICAL NOVAE; NUCLEOSYNTHESIS AB Material emitted as ejecta from ONe novae outbursts is observed to be rich in elements as heavy as Ca. The bottleneck for the synthesis of elements beyond sulphur is the P-30(p, gamma)S-31 reaction. Its reaction rate is, however, not well determined due to uncertainties in the properties of key resonances in the burning regime. In the present study, gamma-ray transitions are reported for the first time from all key states in S-31 relevant for the P-30(p, gamma)S-31 reaction. The spins and parity of these resonances have been deduced, and energies have been measured with the highest precision to date. The uncertainty in the estimated P-30(p, gamma)S-31 reaction rate has been drastically reduced. The rate using this new information is typically higher than previous estimates based on earlier experimental data, implying a higher flux of material processed to high-Z elements in novae, but it is in good agreement with predictions using the Hauser-Feshbach approach at higher burning temperatures. C1 [Doherty, D. T.; Lotay, G.; Woods, P. J.; David, H. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Seweryniak, D.; Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Trache, L.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. RP Doherty, DT (reprint author), Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. RI Carpenter, Michael/E-4287-2015; Trache, Livius/M-6265-2016 OI Carpenter, Michael/0000-0002-3237-5734; NR 24 TC 16 Z9 16 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 28 PY 2012 VL 108 IS 26 AR 262502 DI 10.1103/PhysRevLett.108.262502 PG 5 WC Physics, Multidisciplinary SC Physics GA 965QJ UT WOS:000305782000004 PM 23004970 ER PT J AU Jnawali, G Klein, C Wagner, T Hattab, H Zahl, P Acharya, DP Sutter, P Lorke, A Horn-von Hoegen, M AF Jnawali, G. Klein, C. Wagner, Th. Hattab, H. Zahl, P. Acharya, D. P. Sutter, P. Lorke, A. Horn-von Hoegen, M. TI Manipulation of Electronic Transport in the Bi(111) Surface State SO PHYSICAL REVIEW LETTERS LA English DT Article ID FILM NUCLEATION KINETICS; TOPOLOGICAL INSULATOR; TEXTURE; SI(001); GROWTH; PHASE AB We demonstrate the controlled manipulation of the 2D-electronic transport in the surface state of Bi(111) through the deposition of small amounts of Bi to generate adatoms and 2D islands as additional scatterers. The corresponding increase in resistance is recorded in situ and in real time. Model calculations based on mean-field nucleation theory reveal a constant scattering efficiency of adatoms and of small 2D Bi islands, independent of their size. This finding is supported by a detailed scanning tunneling microscopy and spectroscopy study at 5 K which shows a highly anisotropic scattering pattern surrounding each surface protrusion. C1 [Jnawali, G.; Klein, C.; Wagner, Th.; Hattab, H.; Lorke, A.; Horn-von Hoegen, M.] Univ Duisburg Essen, Dept Phys, D-47057 Duisburg, Germany. [Jnawali, G.; Klein, C.; Wagner, Th.; Hattab, H.; Lorke, A.; Horn-von Hoegen, M.] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, D-47057 Duisburg, Germany. [Zahl, P.; Acharya, D. P.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Jnawali, G (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM gr.jnawali@uni-due.de RI Zahl, Percy/B-1244-2008; Lorke, Axel/A-1170-2013; Wagner, Thorsten/D-1589-2010 OI Zahl, Percy/0000-0002-6629-7500; Lorke, Axel/0000-0002-0405-7720; Wagner, Thorsten/0000-0002-9178-8301 FU Deutsche Forschungsgemeinschaft [SFB 616]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Financial support from the Deutsche Forschungsgemeinschaft through SFB 616 "Energy Dissipation at Surfaces" is gratefully acknowledged. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 30 TC 17 Z9 17 U1 5 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 28 PY 2012 VL 108 IS 26 AR 266804 DI 10.1103/PhysRevLett.108.266804 PG 5 WC Physics, Multidisciplinary SC Physics GA 965QJ UT WOS:000305782000012 PM 23005004 ER PT J AU Zhang, XG Pantelides, ST AF Zhang, X. -G. Pantelides, Sokrates T. TI Theory of Space Charge Limited Currents SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIGHT-EMITTING-DIODES; HOLE TRANSPORT; SEMICONDUCTORS; DEFECTS AB Space-charge-limited currents are important in energy devices such as solar cells and light-emitting diodes, but the available theory from the 1950s finds it necessary to postulate defect states that are distributed in energy in order to match data. Here, we show that this postulate is not warranted. Instead, we demonstrate that dopants and the concomitant Frenkel effect, which have been neglected, control the shape of measured current-voltage characteristics. We also account for the observed peak in the noise power. The new theory can anchor efforts to develop experimental techniques to measure deep-trap levels. C1 [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. RP Zhang, XG (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. FU Division of Scientific User Facilities; Division of Material Science and Engineering, BES, U.S. DOE; McMinn Endowment at Vanderbilt University FX This research was conducted at the Center for Nanophase Materials Sciences, sponsored at ORNL by the Division of Scientific User Facilities (X. G. Z.), and by the Division of Material Science and Engineering, BES, U.S. DOE (S. T. P.), and the McMinn Endowment at Vanderbilt University (S. T. P.). NR 28 TC 26 Z9 26 U1 1 U2 60 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 28 PY 2012 VL 108 IS 26 AR 266602 DI 10.1103/PhysRevLett.108.266602 PG 5 WC Physics, Multidisciplinary SC Physics GA 965QJ UT WOS:000305782000011 PM 23005000 ER PT J AU Erler, J Birge, N Kortelainen, M Nazarewicz, W Olsen, E Perhac, AM Stoitsov, M AF Erler, Jochen Birge, Noah Kortelainen, Markus Nazarewicz, Witold Olsen, Erik Perhac, Alexander M. Stoitsov, Mario TI The limits of the nuclear landscape SO NATURE LA English DT Article ID GROUND-STATE PROPERTIES; NEUTRON-DRIP-LINE; ISOTOPES AB In 2011, 100 new nuclides were discovered(1). They joined the approximately 3,000 stable and radioactive nuclides that either occur naturally on Earth or are synthesized in the laboratory(2,3). Every atomic nucleus, characterized by a specific number of protons and neutrons, occupies a spot on the chart of nuclides, which is bounded by 'drip lines' indicating the values of neutron and proton number at which nuclear binding ends. The placement of the neutron drip line for the heavier elements is based on theoretical predictions using extreme extrapolations, and so is uncertain. However, it is not known how uncertain it is or how many protons and neutrons can be bound in a nucleus. Here we estimate these limits of the nuclear 'landscape' and provide statistical and systematic uncertainties for our predictions. We use nuclear density functional theory, several Skyrme interactions and high-performance computing, and find that the number of bound nuclides with between 2 and 120 protons is around 7,000. We find that extrapolations for drip-line positions and selected nuclear properties, including neutron separation energies relevant to astrophysical processes, are very consistent between the models used. C1 [Erler, Jochen; Birge, Noah; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik; Perhac, Alexander M.; Stoitsov, Mario] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Erler, Jochen; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik; Stoitsov, Mario] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kortelainen, Markus] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Nazarewicz, Witold] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. RP Nazarewicz, W (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM witek@utk.edu FU Office of Nuclear Physics, US Department of Energy; Academy of Finland FX This work was supported by the Office of Nuclear Physics, US Department of Energy, and by the Academy of Finland. NR 30 TC 133 Z9 136 U1 4 U2 60 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 28 PY 2012 VL 486 IS 7404 BP 509 EP 512 DI 10.1038/nature11188 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 965IJ UT WOS:000305760600038 PM 22739315 ER PT J AU Loh, ND Hampton, CY Martin, AV Starodub, D Sierra, RG Barty, A Aquila, A Schulz, J Lomb, L Steinbrener, J Shoeman, RL Kassemeyer, S Bostedt, C Bozek, J Epp, SW Erk, B Hartmann, R Rolles, D Rudenko, A Rudek, B Foucar, L Kimmel, N Weidenspointner, G Hauser, G Holl, P Pedersoli, E Liang, M Hunter, MM Gumprecht, L Coppola, N Wunderer, C Graafsma, H Maia, FRNC Ekeberg, T Hantke, M Fleckenstein, H Hirsemann, H Nass, K White, TA Tobias, HJ Farquar, GR Benner, WH Hau-Riege, SP Reich, C Hartmann, A Soltau, H Marchesini, S Bajt, S Barthelmess, M Bucksbaum, P Hodgson, KO Struder, L Ullrich, J Frank, M Schlichting, I Chapman, HN Bogan, MJ AF Loh, N. D. Hampton, C. Y. Martin, A. V. Starodub, D. Sierra, R. G. Barty, A. Aquila, A. Schulz, J. Lomb, L. Steinbrener, J. Shoeman, R. L. Kassemeyer, S. Bostedt, C. Bozek, J. Epp, S. W. Erk, B. Hartmann, R. Rolles, D. Rudenko, A. Rudek, B. Foucar, L. Kimmel, N. Weidenspointner, G. Hauser, G. Holl, P. Pedersoli, E. Liang, M. Hunter, M. M. Gumprecht, L. Coppola, N. Wunderer, C. Graafsma, H. Maia, F. R. N. C. Ekeberg, T. Hantke, M. Fleckenstein, H. Hirsemann, H. Nass, K. White, T. A. Tobias, H. J. Farquar, G. R. Benner, W. H. Hau-Riege, S. P. Reich, C. Hartmann, A. Soltau, H. Marchesini, S. Bajt, S. Barthelmess, M. Bucksbaum, P. Hodgson, K. O. Strueder, L. Ullrich, J. Frank, M. Schlichting, I. Chapman, H. N. Bogan, M. J. TI Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight SO NATURE LA English DT Article ID FREE-ELECTRON LASER; OPTICAL-PROPERTIES; SOOT AEROSOLS; BLACK CARBON; MIXING STATE; SCATTERING; CLIMATE; FLAME AB The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology(1) to climate science(2), yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate(3); visible light scattering provides insufficient resolution(4); and X-ray synchrotron studies have been limited to ensembles of particles(5). Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source(6) free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins(7), vibrational energy transfer by the hydrodynamic interaction of amino acids(8), and large-scale production of nanoscale structures by flame synthesis(9). C1 [Loh, N. D.; Hampton, C. Y.; Starodub, D.; Sierra, R. G.; Bucksbaum, P.; Hodgson, K. O.; Bogan, M. J.] PULSE Inst, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Martin, A. V.; Barty, A.; Aquila, A.; Schulz, J.; Liang, M.; Gumprecht, L.; Fleckenstein, H.; Nass, K.; White, T. A.; Chapman, H. N.] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Aquila, A.; Schulz, J.; Coppola, N.] European XFEL GmbH, D-22761 Hamburg, Germany. [Lomb, L.; Steinbrener, J.; Shoeman, R. L.; Kassemeyer, S.; Rolles, D.; Foucar, L.; Schlichting, I.] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Bostedt, C.; Bozek, J.] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Epp, S. W.; Erk, B.; Rolles, D.; Rudenko, A.; Rudek, B.; Foucar, L.; Schlichting, I.] Ctr Free Electron Laser Sci CFEL, Max Planck Adv Study Grp, D-22607 Hamburg, Germany. [Epp, S. W.; Erk, B.; Rudenko, A.; Rudek, B.; Ullrich, J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hartmann, R.; Holl, P.; Reich, C.; Hartmann, A.; Soltau, H.] PNSensor GmbH, D-81739 Munich, Germany. [Kimmel, N.; Weidenspointner, G.; Hauser, G.; Strueder, L.] Max Planck Inst Halbleiterlab, D-81739 Munich, Germany. [Kimmel, N.; Weidenspointner, G.; Hauser, G.; Strueder, L.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Pedersoli, E.] Sincrotrone Trieste, Microscopy Sect, I-34149 Trieste, Italy. [Hunter, M. M.; Farquar, G. R.; Benner, W. H.; Hau-Riege, S. P.; Frank, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Wunderer, C.; Graafsma, H.; Hirsemann, H.; Bajt, S.; Barthelmess, M.] DESY, Photon Sci, D-22607 Hamburg, Germany. [Maia, F. R. N. C.] Natl Energy Res Sci Comp Ctr NERSC, Berkeley, CA 94720 USA. [Ekeberg, T.; Hantke, M.] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Nass, K.; Chapman, H. N.] Univ Hamburg, D-22761 Hamburg, Germany. [Tobias, H. J.] Cornell Univ, Div Nutr Sci, Ithaca, NY 14853 USA. [Marchesini, S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Loh, ND (reprint author), PULSE Inst, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM duaneloh@slac.stanford.edu; mbogan@slac.stanford.edu RI Rudek, Benedikt/A-5100-2017; Chapman, Henry/G-2153-2010; Rudenko, Artem/C-7412-2009; Schlichting, Ilme/I-1339-2013; Rocha Neves Couto Maia, Filipe/C-3146-2014; Bozek, John/E-9260-2010; Barty, Anton/K-5137-2014; Frank, Matthias/O-9055-2014; Bajt, Sasa/G-2228-2010; Loh, Duane/I-7371-2013 OI Bogan, Michael J./0000-0001-9318-3333; graafsma, heinz/0000-0003-2304-667X; MARTIN, ANDREW/0000-0003-3704-1829; Epp, Sascha/0000-0001-6366-9113; Pedersoli, Emanuele/0000-0003-0572-6735; Chapman, Henry/0000-0002-4655-1743; Rudenko, Artem/0000-0002-9154-8463; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Bozek, John/0000-0001-7486-7238; Barty, Anton/0000-0003-4751-2727; Loh, Duane/0000-0002-8886-510X FU AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy; SLAC Laboratory Directed Research and Development Program; Max Planck Society; Hamburg Ministry of Science and Research; Joachim Herz Stiftung as part of the Hamburg Initiative for Excellence in Research (LEXI); Hamburg School for Structure and Dynamics in Infection, CBST at UC [PHY 0120999]; US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; University of California [09-LR-05-118036-BARA]; Swedish Research Council; European Research Council; Knut och Alice Wallenbergs Stiftelse; DFG Cluster of Excellence at the Munich Centre for Advanced Photonics FX Experiments were carried out at the Linac Coherent Light Source, a national user facility operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences. N.D.L., C.Y.H., R. G. S., P. B. and M.J.B. were supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy. M.J.B. acknowledges support by the SLAC Laboratory Directed Research and Development Program. We acknowledge support from the Max Planck Society for funding the development and operation of the CAMP instrument within the ASG at CFEL, the Hamburg Ministry of Science and Research and Joachim Herz Stiftung as part of the Hamburg Initiative for Excellence in Research (LEXI) and the Hamburg School for Structure and Dynamics in Infection, CBST at UC under Cooperative Agreement number PHY 0120999. Lawrence Livermore National Laboratory (LLNL) is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Work by LLNL has been supported, in part, by University of California Laboratory Fee grant 09-LR-05-118036-BARA. We also acknowledge support from the Swedish Research Council, the European Research Council, Knut och Alice Wallenbergs Stiftelse, and the DFG Cluster of Excellence at the Munich Centre for Advanced Photonics. We acknowledge the staff of the LCLS for their support in carrying out these experiments. The Max Planck Advanced Study Group at CFEL acknowledges technical support by R. Andritschke, K. Gartner, O. Halker, S. Herrmann, A. Homke, Ch. Kaiser, K.-U. Kuhnel, W. Leitenberger, D. Miessner, D. Pietschner, M. Porro, R. Richter, G. Schaller, C. Schmidt, F. Schopper, C.-D. Schroter, Ch. Thamm, A. Walenta, A. Ziegler and H. Gorke. N.D.L. thanks M. J. Berg, G. Simpson, G. Williams and J. Hajdu for their critique, and G. M. Stewart for rendering the experiment's schematic. NR 31 TC 86 Z9 86 U1 12 U2 193 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 28 PY 2012 VL 486 IS 7404 BP 513 EP 517 DI 10.1038/nature11222 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 965IJ UT WOS:000305760600039 PM 22739316 ER PT J AU McGrath, R Sharma, HR Smerdon, JA Ledieu, J AF McGrath, R. Sharma, H. R. Smerdon, J. A. Ledieu, J. TI The memory of surfaces: epitaxial growth on quasi-crystals SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Review DE bismuth; aluminium-palladium-manganese; scanning tunnelling microscopy; quasi-crystal; surface; adsorption ID FIVEFOLD SURFACE; DEPOSITION; ADSORPTION; NUCLEATION; SUBSTRATE AB If crystal structures can be viewed as repositories of information, then crystal surfaces offer a pathway by which this information can be used to grow new structures through the process of epitaxy. The information transfer process is one of self-organization, and the kinetic and energetic factors influencing this are complex. They include the relative strengths of the adsorbate-adsorbate and adsorbate-substrate interactions, the flux of incoming species and the temperature of the system. In this brief review, we explore how the interplay of these factors influences the degree to which the epitaxial structures retain the 'memory' of the template, illustrating the discussion with examples from epitaxy on quasi-crystal surfaces. C1 [McGrath, R.; Sharma, H. R.] Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3BX, Merseyside, England. [McGrath, R.; Sharma, H. R.] Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. [Smerdon, J. A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Ledieu, J.] UMR7198 CNRS Nancy Univ UPVM, Ecole Mines, Inst Jean Lamour, F-54042 Nancy, France. RP McGrath, R (reprint author), Univ Liverpool, Surface Sci Res Ctr, POB 147, Liverpool L69 3BX, Merseyside, England. EM mcgrath@liv.ac.uk RI McGrath, Ronan/A-1568-2009; Ledieu, Julian/F-1430-2010 OI McGrath, Ronan/0000-0002-9880-5741; FU EPSRC [EP/D071828/1]; Physical Sciences Research Council [EP/D05253X/1]; Agence Nationale de la Recherche [ANR-08-Blan-0041-01] FX R.McG. thanks the EPSRC for part-funding this project under grant EP/D071828/1. H.R.S. is grateful to the Physical Sciences Research Council for financial support (grant no. EP/D05253X/1). J.L. thanks the Agence Nationale de la Recherche, reference ANR-08-Blan-0041-01, for its financial support. NR 52 TC 4 Z9 4 U1 2 U2 20 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JUN 28 PY 2012 VL 370 IS 1969 SI SI BP 2930 EP 2948 DI 10.1098/rsta.2011.0220 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 946KQ UT WOS:000304350900009 PM 22615469 ER PT J AU Chang, JC Tomlinson, ID Warnement, MR Ustione, A Carneiro, AMD Piston, DW Blakely, RD Rosenthal, SJ AF Chang, Jerry C. Tomlinson, Ian D. Warnement, Michael R. Ustione, Alessandro Carneiro, Ana M. D. Piston, David W. Blakely, Randy D. Rosenthal, Sandra J. TI Single Molecule Analysis of Serotonin Transporter Regulation Using Antagonist-Conjugated Quantum Dots Reveals Restricted, p38 MAPK-Dependent Mobilization Underlying Uptake Activation SO JOURNAL OF NEUROSCIENCE LA English DT Article ID PROTEIN-KINASE-G; DOPAMINE TRANSPORTER; LIPID MICRODOMAINS; SUBSTRATE RECOGNITION; GLYCINE RECEPTORS; PARTICLE TRACKING; CHOLERA-TOXIN; MEMBRANE; TRAFFICKING; DIFFUSION AB The presynaptic serotonin (5-HT) transporter (SERT) is targeted by widely prescribed antidepressant medications. Altered SERT expression or regulation has been implicated in multiple neuropsychiatric disorders, including anxiety, depression and autism. Here, we implement a generalizable strategy that exploits antagonist-conjugated quantum dots (Qdots) to monitor, for the first time, single SERT proteins on the surface of serotonergic cells. We document two pools of SERT proteins defined by lateral mobility, one that exhibits relatively free diffusion, and a second, localized to cholesterol and GM1 ganglioside-enriched microdomains, that displays restricted mobility. Receptor-linked signaling pathways that enhance SERT activity mobilize transporters that, nonetheless, remain confined to membrane microdomains. Mobilization of transporters arises from a p38 MAPK-dependent untethering of the SERT C terminus from the juxtamembrane actin cytoskeleton. Our studies establish the utility of ligand-conjugated Qdots for analysis of the behavior of single membrane proteins and reveal a physical basis for signaling-mediated SERT regulation. C1 [Chang, Jerry C.; Tomlinson, Ian D.; Warnement, Michael R.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37240 USA. [Ustione, Alessandro; Piston, David W.] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37240 USA. [Carneiro, Ana M. D.; Blakely, Randy D.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37240 USA. [Blakely, Randy D.] Vanderbilt Univ, Dept Psychiat, Nashville, TN 37240 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37240 USA. [Carneiro, Ana M. D.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. [Blakely, Randy D.] Vanderbilt Univ, Ctr Mol Neurosci, Nashville, TN 37240 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37240 USA. [Blakely, Randy D.] Vanderbilt Univ, Silvio O Conte Ctr Neurosci Res, Nashville, TN 37240 USA. [Rosenthal, Sandra J.] Oak Ridge Natl Lab, Joint Fac, Oak Ridge, TN 37831 USA. RP Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA. EM randy.blakely@vanderbilt.edu; sandra.j.rosenthal@vanderbilt.edu FU National Institutes of Health [R01EB003728-02, MH096972, MH094527, GM72048-02]; Vanderbilt Institute of Nanoscale Science and Engineering FX This work was supported by the National Institutes of Health (R01EB003728-02, MH096972, MH094527, and GM72048-02). J.C.C. acknowledges a research fellowship from the Vanderbilt Institute of Nanoscale Science and Engineering. We thank Dr. Sam Wells and the Vanderbilt University Cell Imaging Shared Resource for help with the single-molecule microscopy. We also thank Drs. Alessandro Esposito and Jaqaman Khuloud for technical assistance with the Matlab routines. NR 59 TC 33 Z9 33 U1 0 U2 22 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD JUN 27 PY 2012 VL 32 IS 26 BP 8919 EP 8929 DI 10.1523/JNEUROSCI.0048-12.2012 PG 11 WC Neurosciences SC Neurosciences & Neurology GA 967FB UT WOS:000305890700016 PM 22745492 ER PT J AU Li, R Ackerman, WE Mihai, C Volakis, LI Ghadiali, S Kniss, DA AF Li, Ruth Ackerman, William E. Mihai, Cosmin Volakis, Leonithas I. Ghadiali, Samir Kniss, Douglas A. TI Myoferlin Depletion in Breast Cancer Cells Promotes Mesenchymal to Epithelial Shape Change and Stalls Invasion SO PLOS ONE LA English DT Article ID BASEMENT-MEMBRANE; MUSCULAR-DYSTROPHY; ENDOTHELIAL-CELLS; MUSCLE GROWTH; DYSFERLIN; REPAIR; METASTASIS; EXPRESSION; FUSION; TUMOR AB Myoferlin (MYOF) is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET). These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin) and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF) transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF. C1 [Li, Ruth; Ackerman, William E.; Kniss, Douglas A.] Ohio State Univ, Dept Obstet & Gynecol, Div Maternal Fetal Med, Lab Perinatal Res, Columbus, OH 43210 USA. [Volakis, Leonithas I.; Ghadiali, Samir; Kniss, Douglas A.] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA. [Ghadiali, Samir] Ohio State Univ, Dept Internal Med, Div Pulm Allergy Crit Care & Sleep Med, Columbus, OH 43210 USA. [Mihai, Cosmin] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, R (reprint author), Ohio State Univ, Dept Obstet & Gynecol, Div Maternal Fetal Med, Lab Perinatal Res, Columbus, OH 43210 USA. EM kniss.1@osu.edu RI Ghadiali, Samir/C-5463-2012; Ackerman, William/E-2612-2011 OI Ghadiali, Samir/0000-0002-6845-774X; FU Ohio State University; NIH [K08 HD49628]; National Science Foundation Nanoscience Science and Engineering Center [EEC-0425626]; Chemical, Bioengineering, Environmental, and Transport Systems (CBET) [1134201] FX This work was supported by the Ohio State University Perinatal Research and Development Fund (DAK), NIH K08 HD49628 (WEA), and the National Science Foundation Nanoscience Science and Engineering Center grant #EEC-0425626 (RL) and Chemical, Bioengineering, Environmental, and Transport Systems (CBET) #1134201 (LV, DAK, SG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 54 TC 16 Z9 16 U1 2 U2 18 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 27 PY 2012 VL 7 IS 6 AR e39766 DI 10.1371/journal.pone.0039766 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 966GL UT WOS:000305825800067 PM 22761893 ER PT J AU Rossi, B Ogden, D Llano, I Tan, YP Marty, A Collin, T AF Rossi, Benedicte Ogden, David Llano, Isabel Tan, Yusuf P. Marty, Alain Collin, Thibault TI Current and Calcium Responses to Local Activation of Axonal NMDA Receptors in Developing Cerebellar Molecular Layer Interneurons SO PLOS ONE LA English DT Article ID PURKINJE CELL SYNAPSES; ENHANCES GABA RELEASE; D-ASPARTATE RECEPTORS; LONG-TERM DEPRESSION; PRESYNAPTIC NMDA; STELLATE CELLS; RAT CEREBELLUM; PARALLEL FIBER; SOMATIC DEPOLARIZATION; SYNAPTIC PLASTICITY AB In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca2+ channels (VDCCs). Using Ca2+ imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg2+ or by the addition of APV. Similar paradigms yielded restricted Ca2+ transients in interneurons loaded with a Ca2+ indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca2+ elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca2+-induced Ca2+ release process mediated by presynaptic Ca2+ stores. Such a mechanism is likely to exert a crucial role in various forms of Ca2+-mediated synaptic plasticity. C1 [Rossi, Benedicte; Ogden, David; Llano, Isabel; Tan, Yusuf P.; Marty, Alain; Collin, Thibault] Univ Paris Diderot, Univ Paris Descartes, CNRS UMR 8118, Lab Physiol Cerebrale, Paris, France. RP Rossi, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM thibault.collin@parisdescartes.fr FU Agence Nationale de la Recherche [BLAN08-2_31083]; EU Strep 'Photolysis' [LSHM-CT-2007-037765]; Fondation pour la Recherche Medicale (FRM Team) FX This work was supported by Agence Nationale de la Recherche (contract BLAN08-2_31083), the EU Strep 'Photolysis' (LSHM-CT-2007-037765), and Fondation pour la Recherche Medicale (FRM Team, A. M.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 46 TC 10 Z9 10 U1 1 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 27 PY 2012 VL 7 IS 6 AR e39983 DI 10.1371/journal.pone.0039983 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 966GL UT WOS:000305825800084 PM 22761940 ER PT J AU Albada, HB Wieberneit, F Dijkgraaf, I Harvey, JH Whistler, JL Stoll, R Metzler-Nolte, N Fish, RH AF Albada, H. Bauke Wieberneit, Florian Dijkgraaf, Ingrid Harvey, Jessica H. Whistler, Jennifer L. Stoll, Raphael Metzler-Nolte, Nils Fish, Richard H. TI The Chemoselective Reactions of Tyrosine-Containing G-Protein-Coupled Receptor Peptides with [Cp*Rh(H2O)(3)](OTf)(2), Including 2D NMR Structures and the Biological Consequences SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID (ETA(5)-PENTAMETHYLCYCLOPENTADIENYL)RHODIUM AQUA COMPLEXES; AQUEOUS ORGANOMETALLIC CHEMISTRY; BIOORGANOMETALLIC CHEMISTRY; CANCER; PH; BIOMOLECULES; METABOLISM; DISCOVERY; LIGANDS; ANALOGS AB The bioconjugation of organometallic complexes with peptides has proven to be a novel approach for drug discovery. We report the facile and chemoselective reaction of tyrosine-containing G-protein-coupled receptor (GPCR) peptides with [Cp*Rh(H2O)(3)](OTf)(2), in water, at room temperature, and at pH 5-6. We have focused on three important GPCR peptides; namely, [Tyr(1)]-leu-enkephalin, [Tyr(4)]-neurotensin(8-13), and [Tyr(3)]-octreotide, each of which has a different position for the tyrosine residue, together with competing functionalities. Importantly, all other functional groups present, i.e., amino, carboxyl, disulfide, phenyl, and indole, were not prominent sites of reactivity by the Cp*Rh tris aqua complex. Furthermore, the influence of the Cp*Rh moiety on the structure of [Tyr(3)]-octreotide was characterized by 2D NMR, resulting in the first representative structure of an organometallic-peptide complex. The biological consequences of these Cp*Rh-peptide complexes, with respect to GPCR binding and growth inhibition of MCF7 and HT29 cancer cells, will be presented for [(eta(6)-Cp*Rh-Tyr(1))-leu-enkephalin](OTf)(2) and [(eta(6)-Cp*Rh-Tyr(3))-octreotide](OTf)(2). C1 [Wieberneit, Florian; Stoll, Raphael] Ruhr Univ Bochum, Fac Chem & Biochem, Biomol NMR, Bochum, Germany. [Dijkgraaf, Ingrid] Radboud Univ Nijmegen, Dept Nucl Med, Med Ctr, NL-6525 ED Nijmegen, Netherlands. [Harvey, Jessica H.; Whistler, Jennifer L.] Univ Calif San Francisco, Dept Neurol, Ernest Gallo Clin & Res Ctr, Emeryville, CA 94608 USA. [Fish, Richard H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Stoll, R (reprint author), Ruhr Univ Bochum, Fac Chem & Biochem, Biomol NMR, Univ Str 150, Bochum, Germany. EM raphael.stoll@rub.de; nils.metzler-nolte@rub.de; rhfish@lbl.gov RI Metzler-Nolte, Nils/H-7626-2014; Albada, Bauke/M-5149-2015; Stoll, Raphael/S-6780-2016 OI Metzler-Nolte, Nils/0000-0001-8111-9959; Albada, Bauke/0000-0003-3659-2434; Stoll, Raphael/0000-0003-2890-8419 FU Department of Energy [DE AC02-05CH11231]; German Science Foundation, DFG, research unit [FOR630, SFB642] FX R.H.F. wishes to thank the Research Department for Interfacial Systems Chemistry, Ruhr University Bochum, for a Visiting Professorship, Spring 2010, where these studies were initiated, and the Department of Energy under Contract No. DE AC02-05CH11231. N.M-N. and R.S. wish to thank the German Science Foundation, DFG, research unit FOR630 and SFB642, respectively, for support. We also thank Martin Gartmann for NMR expertise; Annegret Knufer for cell viability studies; Marina Wotske, Ruhr Univ., for HR-ESI-MS; and Gerben M. Franssen, Radboud Univ., for SST2 cell cultures. NR 41 TC 18 Z9 18 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 27 PY 2012 VL 134 IS 25 BP 10321 EP 10324 DI 10.1021/ja303010k PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 964SJ UT WOS:000305716700004 PM 22671299 ER PT J AU Al-Mahboob, A Muller, E Karim, A Muckerman, JT Ciobanu, CV Sutter, P AF Al-Mahboob, Abdullah Muller, Erik Karim, Altaf Muckerman, James T. Ciobanu, Cristian V. Sutter, Peter TI Site-Dependent Activity of Atomic Ti Catalysts in Al-Based Hydrogen Storage Materials SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-HYDROGEN; ALUMINUM-HYDRIDE; METAL-SURFACES; ALLOYS; NAALH4 AB Doping catalytically inactive materials with dispersed atoms of an active species is a promising route toward realizing ultradilute binary catalyst systems. Beyond catalysis, strategically placed metal atoms can accelerate a wide range of solid-state reactions, particularly in hydrogen storage processes. Here we analyze the role of atomic Ti catalysts in the hydrogenation of Al-based hydrogen storage materials. We show that Ti atoms near the Al surface activate gas-phase H-2, a key step toward hydrogenation. By controlling the placement of Ti, we have found that the overall reaction, comprising H-2 dissociation and H spillover onto the Al surface, is governed by a pronounced trade-off between lowering of the H-2 dissociation barrier and trapping of the products near the active site, with a sharp maximum in the overall activity for Ti in the subsurface layer. Our findings demonstrate the importance of controlling the placement of the active species in optimizing the activity of dilute binary systems. C1 [Al-Mahboob, Abdullah; Muller, Erik; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Karim, Altaf; Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Ciobanu, Cristian V.] Colorado Sch Mines, Mat Sci Program, Dept Mech Engn, Golden, CO 80401 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov RI Ciobanu, Cristian/B-3580-2009; Al-Mahboob, Abdullah/B-9529-2011; Muller, Erik/A-9790-2008; Muckerman, James/D-8752-2013 FU Materials Sciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE-BES) [FWP BO-130]; DOE-BES [DE-AC02-98CH10886] FX This work was supported by the Materials Sciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE-BES) under FWP BO-130. Research carried out at the Center for Functional Nanomaterials and the Chemistry Department at Brookhaven National Laboratory was supported by DOE-BES under Contract DE-AC02-98CH10886. NR 29 TC 5 Z9 5 U1 6 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 27 PY 2012 VL 134 IS 25 BP 10381 EP 10384 DI 10.1021/ja304203y PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 964SJ UT WOS:000305716700019 PM 22694246 ER PT J AU Zhu, X Tian, CC Mahurin, SM Chai, SH Wang, CM Brown, S Veith, GM Luo, HM Liu, HL Dai, S AF Zhu, Xiang Tian, Chengcheng Mahurin, Shannon M. Chai, Song-Hai Wang, Congmin Brown, Suree Veith, Gabriel M. Luo, Huimin Liu, Honglai Dai, Sheng TI A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID INTRINSIC MICROPOROSITY PIMS; COVALENT ORGANIC FRAMEWORKS; GAS-TRANSPORT PROPERTIES; HIGH-SURFACE-AREA; POLYMER NETWORKS; HYDROGEN STORAGE; CARBON-DIOXIDE; LINKED POLYMER; METHANE; FUNCTIONALITY AB A general strategy for the synthesis of porous, fluorescent, triazine-framework-based membranes with intrinsic porosity through an aromatic nitrile trimerization reaction is presented. The essence of this strategy lies in the use of a superacid to catalyze the cross-linking reaction efficiently at a low temperature, allowing porous polymer membrane architectures to be facilely derived. With fiinctionalized triazine units, the membrane exhibits an increased selectivity for membrane separation of CO2 over N-2. The good ideal CO2/N-2 selectivity of 29 +/- 2 was achieved with a CO2 permeability of 518 +/- 25 barrer. Through this general synthesis protocol, a new class of porous polymer membranes with tunable functionalities and porosities can be derived, significantly expanding the currently limited library of polymers with intrinsic microporosity for synthesizing functional membranes in separation, catalysis, and energy storage/conversion. C1 [Zhu, Xiang; Tian, Chengcheng; Mahurin, Shannon M.; Chai, Song-Hai; Wang, Congmin; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Zhu, Xiang; Tian, Chengcheng; Liu, Honglai] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China. [Zhu, Xiang; Tian, Chengcheng; Liu, Honglai] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China. [Wang, Congmin] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China. [Luo, Huimin] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Brown, Suree; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Chai, Song-Hai/A-9299-2012; Wang, Congmin/I-7889-2013; Zhu, Xiang/P-6867-2014; Dai, Sheng/K-8411-2015 OI Chai, Song-Hai/0000-0002-4152-2513; Zhu, Xiang/0000-0002-3973-4998; Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy, Advanced Research Projects Agency-ENERGY; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Natural Science Foundation of China [20990224, 21076071]; National High Technology Research and Development Program of China [2008AA062302]; 111 Project of China [B08021]; Fundamental Research Funds for the Central Universities of China FX X.Z. and C.C.T. were financially supported by the U.S. Department of Energy, Advanced Research Projects Agency-ENERGY. C.W., S.M.M., S.H.-C., S.B., H.M.L., and S.D. were sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. G.M.V. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. X.Z. and H.L.L. acknowledge the support from National Natural Science Foundation of China (No. 20990224, 21076071), the National High Technology Research and Development Program of China (No. 2008AA062302), the 111 Project of China (No.B08021), and the Fundamental Research Funds for the Central Universities of China. NR 69 TC 134 Z9 138 U1 40 U2 337 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 27 PY 2012 VL 134 IS 25 BP 10478 EP 10484 DI 10.1021/ja304879c PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 964SJ UT WOS:000305716700032 PM 22631446 ER PT J AU Ketkar, A Zafar, MK Banerjee, S Marquez, VE Egli, M Eoff, RL AF Ketkar, Amit Zafar, Maroof K. Banerjee, Surajit Marquez, Victor E. Egli, Martin Eoff, Robert L. TI A Nucleotide-Analogue-Induced Gain of Function Corrects the Error-Prone Nature of Human DNA Polymerase iota SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CONFORMATION NUCLEOSIDE ANALOGS; NUCLEIC-ACID STRUCTURES; SULFOLOBUS-SOLFATARICUS; N-METHANOCARBATHYMIDINE; STRUCTURAL BASIS; LESION-BYPASS; SUGAR PUCKER; POL-ETA; REPLICATION; TEMPLATE AB Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol t) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol t through use of the fixed-conformation nucleotide North-methanocarba-2'-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol t in complex with DNA containing a template 2'-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol t inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle, which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol t. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base-stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol t by preventing the Hoogsteen base-pairing mode normally observed for hpol t-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase. C1 [Ketkar, Amit; Zafar, Maroof K.; Eoff, Robert L.] Univ Arkansas Med Sci, Dept Biochem & Mol Biol, Little Rock, AR 72205 USA. [Banerjee, Surajit] Cornell Univ, Dept Chem & Chem Biol, Argonne Natl Lab, Argonne, IL 60439 USA. [Banerjee, Surajit] Cornell Univ, Argonne Natl Lab, NE Collaborat Access Team, Argonne, IL 60439 USA. [Marquez, Victor E.] NCI, Biol Chem Lab, Ctr Canc Res, Frederick, MD 21702 USA. [Egli, Martin] Vanderbilt Univ, Dept Biochem, Sch Med, Nashville, TN 37232 USA. RP Eoff, RL (reprint author), Univ Arkansas Med Sci, Dept Biochem & Mol Biol, Little Rock, AR 72205 USA. EM rleoff@uams.edu OI Banerjee, Surajit/0000-0002-9414-7163 FU National Institutes of Health [R00 GM084460, R01 GM055237]; NIH, National Cancer Institute, Center for Cancer Research; National Center for Research Resources [5P41RR015301-10]; National Institute of General Medical Sciences from the National Institutes of Health [8 P41 GM103403-10]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported in part by National Institutes of Health grants R00 GM084460 (R.L.E.) and R01 GM055237 (M.E.). Supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. This work is based upon research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by grants from the National Center for Research Resources (5P41RR015301-10) and the National Institute of General Medical Sciences (8 P41 GM103403-10) from the National Institutes of Health. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357). NR 51 TC 4 Z9 4 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 27 PY 2012 VL 134 IS 25 BP 10698 EP 10705 DI 10.1021/ja304176q PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 964SJ UT WOS:000305716700056 PM 22632140 ER PT J AU Brandino, GP De Luca, A Konik, RM Mussardo, G AF Brandino, G. P. De Luca, A. Konik, R. M. Mussardo, G. TI Quench dynamics in randomly generated extended quantum models SO PHYSICAL REVIEW B LA English DT Article ID STATISTICAL-MECHANICS; XY MODEL; THERMALIZATION; SYSTEMS AB We analyze the thermalization properties and the validity of the eigenstate thermalization hypothesis in a generic class of quantum Hamiltonians where the quench parameter explicitly breaks a Z(2) symmetry. Natural realizations of such systems are given by random matrices expressed in a block form where the terms responsible for the quench dynamics are the off-diagonal blocks. Our analysis examines both dense and sparse random matrix realizations of the Hamiltonians and the observables. Sparse random matrices may be associated with local quantum Hamiltonians and they show a different spread of the observables on the energy eigenstates with respect to the dense ones. In particular, the numerical data seem to support the existence of rare states, i.e., states where the observables take expectation values that are different compared to the typical ones sampled by the microcanonical distribution. In the case of sparse random matrices, we also extract the finite-size behavior of two different time scales associated with the thermalization process. C1 [Brandino, G. P.; De Luca, A.; Mussardo, G.] Int Sch Adv Studies SISSA, I-34136 Trieste, Italy. [Brandino, G. P.; De Luca, A.; Mussardo, G.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Konik, R. M.] Brookhaven Natl Labs, Condensed Matter & Mat Sci Dept, Upton, NY USA. [Mussardo, G.] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy. RP Brandino, GP (reprint author), Univ Amsterdam, Inst Theoret Phys, Sci Pk 904, NL-1090 GL Amsterdam, Netherlands. RI Konik, Robert/L-8076-2016; OI Konik, Robert/0000-0003-1209-6890; mussardo, giuseppe/0000-0001-5730-9963 FU US DOE [DE-AC02-98 CH 10886] FX We are grateful to M. Rigol, L. Santos, P. Calabrese, V. Kravtsov, and M. Mueller for useful discussions. R.M.K. acknowledges support by the US DOE under contract number DE-AC02-98 CH 10886. NR 50 TC 48 Z9 48 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 27 PY 2012 VL 85 IS 21 AR 214435 DI 10.1103/PhysRevB.85.214435 PG 14 WC Physics, Condensed Matter SC Physics GA 965AX UT WOS:000305739400002 ER PT J AU Gastler, D Kearns, E Hime, A Stonehill, LC Seibert, S Klein, J Lippincott, WH McKinsey, DN Nikkel, JA AF Gastler, Dan Kearns, Ed Hime, Andrew Stonehill, Laura C. Seibert, Stan Klein, Josh Lippincott, W. Hugh McKinsey, Daniel N. Nikkel, James A. TI Measurement of scintillation efficiency for nuclear recoils in liquid argon SO PHYSICAL REVIEW C LA English DT Article ID DARK-MATTER SEARCH; ION-PAIR; XENON; ENERGY; LUMINESCENCE; YIELD; DEPENDENCE AB The scintillation light yield of liquid argon from nuclear recoils relative to electronic recoils has been measured as a function of recoil energy from 10 keVr up to 250 keVr at zero electric field. The scintillation efficiency, defined as the ratio of the nuclear recoil scintillation response to the electronic recoil response, is 0.25 +/- 0.01 + 0.01 (correlated) above 20 keVr. C1 [Gastler, Dan; Kearns, Ed] Boston Univ, Boston, MA 02215 USA. [Hime, Andrew; Stonehill, Laura C.; Seibert, Stan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klein, Josh] Univ Penn, Philadelphia, PA 19104 USA. [Lippincott, W. Hugh; McKinsey, Daniel N.; Nikkel, James A.] Yale Univ, New Haven, CT 06511 USA. RP Gastler, D (reprint author), Boston Univ, Boston, MA 02215 USA. FU NIH [RR19895]; US Department of Energy; David and Lucille Packard Foundation FX Computer resources were supplied by Yale University Biomedical High Performance Computing Center, NIH Grant No. RR19895, and in part by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center. We are also grateful for the support of the US Department of Energy. This work was supported by the David and Lucille Packard Foundation. NR 26 TC 21 Z9 21 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 27 PY 2012 VL 85 IS 6 AR 065811 DI 10.1103/PhysRevC.85.065811 PG 8 WC Physics, Nuclear SC Physics GA 965BF UT WOS:000305740300008 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Aoki, M Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Berger, MS Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Facini, G Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Garcia-Guerra, GA Gavrilov, V Gay, P Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jesik, R Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kostelecky, VA Kozelov, AV Kraus, J Kulikov, S Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nunnemann, T Obrant, G Orduna, J Osman, N Osta, J Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shivpuri, RK Simak, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Stutte, L Suter, L Svoisky, P Takahashi, M Titov, M Tokmenin, VV Tsai, YT Tschann-Grimm, K Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L White, A Whittington, D Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Zennamo, J Zhao, T Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Aoki, M. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Berger, M. S. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garcia-Guerra, G. A. Gavrilov, V. Gay, P. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jesik, R. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kostelecky, V. A. Kozelov, A. V. Kraus, J. Kulikov, S. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nunnemann, T. Obrant, G. Orduna, J. Osman, N. Osta, J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shivpuri, R. K. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Stutte, L. Suter, L. Svoisky, P. Takahashi, M. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tschann-Grimm, K. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. White, A. Whittington, D. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Zennamo, J. Zhao, T. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for Violation of Lorentz Invariance in Top Quark Pair Production and Decay SO PHYSICAL REVIEW LETTERS LA English DT Article AB Using data collected with the D0 detector at the Fermilab Tevatron Collider, corresponding to 5: 3 fb(-1) of integrated luminosity, we search for violation of Lorentz invariance by examining the t (t) over bar production cross section in lepton + jets final states. We quantify this violation using the standard-model extension framework, which predicts a dependence of the t (t) over bar production cross section on sidereal time as the orientation of the detector changes with the rotation of the Earth. Within this framework, we measure components of the matrices (c(Q))(mu nu 33) and (c(U))(mu nu 33) containing coefficients used to parametrize violation of Lorentz invariance in the top quark sector. Within uncertainties, these coefficients are found to be consistent with zero. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Maciel, A. K. A.; Rangel, M. S.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Barreto, J.; Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Fac Math & Phys, CR-11636 Prague 1, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS IN2P3, LPC, Clermont, France. [Li, H.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Lellouch, J.] Univ Paris 06, LPNHE, CNRS IN2P3, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Lellouch, J.] Univ Paris 07, LPNHE, CNRS IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Deterre, C.; Grohsjean, A.; Hubacek, Z.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, Irfu, CEA, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Kulikov, S.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Recerca & Estudis Avancats ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; Peters, Y.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Berger, M. S.; Evans, H.; Kostelecky, V. A.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Whittington, D.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Kaadze, K.; Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Kraus, J.; Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tschann-Grimm, K.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Heintz, U.; Jabeen, S.; Landsberg, G.; Narain, M.; Parihar, V.; Partridge, R.; Zivkovic, L.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Mulhearn, M.] Univ Virginia, Charlottesville, VA 22901 USA. [Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Kupco, Alexander/G-9713-2014; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Santos, Angelo/K-5552-2012; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Max, Mad/E-5238-2010; Lokajicek, Milos/G-7800-2014; Kozelov, Alexander/J-3812-2014; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; OI Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; Sharyy, Viatcheslav/0000-0002-7161-2616; Max, Mad/0000-0001-6966-6829; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Williams, Mark/0000-0001-5448-4213; Grohsjean, Alexander/0000-0003-0748-8494; Chapon, Emilien/0000-0001-6968-9828; Melnychuk, Oleksandr/0000-0002-2089-8685; Ding, Pengfei/0000-0002-4050-1753; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Verdier, Patrice/0000-0003-3090-2948; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); MON (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China); Indiana University Center for Spacetime Symmetries (IUCSS) FX We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). We also acknowledge support from the Indiana University Center for Spacetime Symmetries (IUCSS). NR 19 TC 12 Z9 12 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 27 PY 2012 VL 108 IS 26 AR 261603 DI 10.1103/PhysRevLett.108.261603 PG 7 WC Physics, Multidisciplinary SC Physics GA 965AR UT WOS:000305738700006 PM 23004960 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, S Cerny, K Cornelis, T DeWolf, EA Janssen, X Luyckx, S Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Reis, T Thomas, L Vander Velde, C Vanlaer, P Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Damiao, DD Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Jorge, LS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, S Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, S Zhu, B Zou, W Avila, C Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Khalil, S Mahmoud, MA Radi, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Azzolini, V Eerola, P Fedi, G Voutilainen, M Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Shreyber, I Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Daci, N Dahms, T Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Juillot, P Karim, M Le Bihan, AC Van Hove, P Fassi, F Mercier, D Beauceron, S Beaupere, N Bondu, O Boudoul, G Brun, H Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Lingemann, J Magass, C Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Weber, M Bontenackels, M Cherepanov, V Davids, M Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Martin, MA Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Eckerlin, G Eckstein, D Fischer, D Flucke, G Geiser, A Glushkov, I Habib, S Hauk, J Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kraemer, M Kruecker, D Kuznetsova, E Lange, W Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Erfle, J Gebbert, U Gorner, M Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Nowak, F Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Stadie, H Steinbruck, G Thomsen, J Barth, C Berger, J Chwalek, T De Boer, W Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Husemann, U Katkov, I Komaragiri, JR Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Peiffer, T Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Saout, C Scheurer, A Schilling, FP Schmanau, M Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Weiler, T Zeise, M Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Bencze, G Hajdu, C Hidas, P Horvath, D Krajczar, K Radics, B Sikler, F Veszpremi, V Vesztergombi, G Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, J Singh, SP Ahuja, S Choudhary, BC Kumar, A Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Abdulsalam, A Choudhury, RK Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Gasparini, F Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Bilei, GM Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Taroni, S Azzurri, P Bagliesi, G Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Pereira, AV Visca, L Belforte, S Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Heo, SG Kim, TY Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, JY Kim, ZJ Song, S Jo, HY Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Seo, E Choi, M Kang, S Kim, H Kim, JH Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Bialkowska, H Boimska, B Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Seixas, J Varela, J Vischia, P Belotelov, I Bunin, P Golutvin, I Gorbunov, I Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lenzi, P Lourenco, C Maeki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Cortezon, EP Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stoye, M Tsirou, A Veres, GI Vlimant, JR Woehri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Chen, Z Deisher, A Dissertori, G Dittmar, M Duenser, M Eugster, J Freudenreich, K Grab, C Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Go, A Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Hos, I Kangal, EE Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Deliomeroglu, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Cankocak, K Levchuk, L Bostock, F Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Alimena, J Bhattacharya, S Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wuerthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Agostino, L Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hahn, A Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kilminster, B Klima, B Kunori, S Kwan, S Lincoln, D Lipton, R Lueking, L Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Sellers, P Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Evdokimov, O Garcia-Solis, EJ Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F Malek, M O'Brien, C Silkworth, C Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Chung, K Clarida, W Duru, F Griffiths, S Lae, CK Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Iii, RPK Murray, M Noonan, D Radicci, V Sanders, S Stringer, R Tinti, G Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Peterman, A Rossato, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Hahn, KA Kim, Y Klute, M Klute, Y Lee, YJ Li, W Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stoeckli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Cushman, P Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Jindal, P Keller, J Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Wolf, M Ziegler, J Bylsma, B Durkin, LS Hill, C Hughes, R Killewald, P Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hegeman, J Hunt, A Laird, E Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R De Barbaro, P Demina, R Eshaq, Y Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Korjenevski, S Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Richards, A Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Roh, Y Volobouev, I Appelt, E Engh, D Florez, C Greene, S Gurrola, A Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Bachtis, M Belknap, D Borrello, L Carlsmith, D Cepeda, M Dasu, S Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, S. Cerny, K. Cornelis, T. DeWolf, E. A. Janssen, X. Luyckx, S. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Reis, T. Thomas, L. Vander Velde, C. Vanlaer, P. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. De Jesus Damiao, D. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Soares Jorge, L. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, S. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, S. Zhu, B. Zou, W. Avila, C. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Khalil, S. Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Azzolini, V. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Daci, N. Dahms, T. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Karim, M. Le Bihan, A. -C. Van Hove, P. Fassi, F. Mercier, D. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Brun, H. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Weber, M. Bontenackels, M. Cherepanov, V. Davids, M. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Martin, M. Aldaya Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Eckerlin, G. Eckstein, D. Fischer, D. Flucke, G. Geiser, A. Glushkov, I. Habib, S. Hauk, J. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Nowak, F. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Stadie, H. Steinbrueck, G. Thomsen, J. Barth, C. Berger, J. Chwalek, T. De Boer, W. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Husemann, U. Katkov, I. Komaragiri, J. R. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Saout, C. Scheurer, A. Schilling, F. -P. Schmanau, M. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Weiler, T. Zeise, M. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Krajczar, K. Radics, B. Sikler, F. Veszpremi, V. Vesztergombi, G. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, J. Singh, S. P. Ahuja, S. Choudhary, B. C. Kumar, A. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Sarkar, S. Abdulsalam, A. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Gasparini, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Bilei, G. M. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Taroni, S. Azzurri, P. Bagliesi, G. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Pereira, A. Vilela Visca, L. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Heo, S. G. Kim, T. Y. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Jo, H. Y. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Seo, E. Choi, M. Kang, S. Kim, H. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Bialkowska, H. Boimska, B. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Musella, P. Seixas, J. Varela, J. Vischia, P. Belotelov, I. Bunin, P. Golutvin, I. Gorbunov, I. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lenzi, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Chen, Z. Deisher, A. Dissertori, G. Dittmar, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Hos, I. Kangal, E. E. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Cankocak, K. Levchuk, L. Bostock, F. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Alimena, J. Bhattacharya, S. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Agostino, L. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kilminster, B. Klima, B. Kunori, S. Kwan, S. Lincoln, D. Lipton, R. Lueking, L. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Sellers, P. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Evdokimov, O. Garcia-Solis, E. J. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Chung, K. Clarida, W. Duru, F. Griffiths, S. Lae, C. K. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Iii, R. P. Kenny Murray, M. Noonan, D. Radicci, V. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Peterman, A. Rossato, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Kim, Y. Klute, M. Klute, Y. Lee, Y-J. Li, W. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Jindal, P. Keller, J. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Wolf, M. Ziegler, J. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Killewald, P. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Laird, E. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Korjenevski, S. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Richards, A. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Roh, Y. Volobouev, I. Appelt, E. Engh, D. Florez, C. Greene, S. Gurrola, A. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLIDERS AB Results are presented from a search for new physics in the final state containing a photon (gamma) and missing transverse energy (is not an element of(T)). The data correspond to an integrated luminosity of 5.0 fb(-1) collected in pp collisions at root s = 7 TeV by the CMS experiment. The observed event yield agrees with standard-model expectations for the gamma + is not an element of(T) events. Using models for the production of dark-matter particles (chi), we set 90% confidence level (C. L.) upper limits of 13.6-15.4 fb on chi production in the gamma + is not an element of(T) state. These provide the most sensitive upper limits for spin-dependent chi-nucleon scattering for chi masses (M-chi) between 1 and 100 GeV. For spin-independent contributions, the present limits are extended to M-chi < 3.5 GeV. For models with 3-6 large extra dimensions, our data exclude extra-dimensional Planck scales between 1.64 and 1.73 TeV at 95% C.L. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Cerny, K.; Cornelis, T.; DeWolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, S.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Avila, C.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Choudhary, B. C.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] IN2P3 CNRS, Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Fassi, F.; Mercier, D.] IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Klein, B.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.] Rhein Westfal TH Aachen, Inst Phys 2, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Davids, M.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Habib, S.; Hauk, J.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Fisher, M.] DESY, Hamburg, Germany. [Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Stadie, H.; Steinbrueck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Saout, C.; Scheurer, A.; Schilling, F. -P.; Schmanau, M.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Krajczar, K.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Arfaei, H.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Lusito, L.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pacifico, N.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [Bisello, D.; Carlin, R.; Gasparini, F.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] INFN Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Rovelli, C.] Univ Roma La Sapienza, INFN Sez Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Pereira, A. Vilela; Visca, L.] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.; Visca, L.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] INFN Sez Trieste, Trieste, Italy. [Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Jo, H. Y.] Konkuk Univ, Seoul, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Seo, E.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Obispo, CA USA. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Musella, P.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Belotelov, I.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Jung, H.; Guthoff, M.; Hajdu, C.; Sikler, F.; Mohanty, A. K.; Calabria, C.; De Filippis, N.; Fasanella, D.; Meneghelli, M.; Tropiano, A.; Benaglia, A.; Di Matteo, L.; Gennai, S.; Massironi, A.; Montoya, C. A. Carrillo; Iorio, A. O. M.; Bacchetta, N.; Branca, A.; Nespolo, M.; Tosi, M.; Lucaroni, A.; Taroni, S.; Fiori, F.; Squillacioti, P.; Tonelli, G.; Venturi, A.; Del Re, D.; Grassi, M.; Meridiani, P.; Mariotti, C.; Musich, M.; Marone, M.; Montanino, D.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lenzi, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.; Pela, J.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Chen, Z.; Deisher, A.; Dissertori, G.; Dittmar, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Anastassov, A.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Anastassov, A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.] Cornell Univ, Ithaca, NY USA. [Abdullin, S.] Fairfield Univ, Fairfield, CT 06430 USA. [Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Lincoln, D.; Lipton, R.; Lueking, L.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Evdokimov, O.; Garcia-Solis, E. J.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Chung, K.; Clarida, W.; Duru, F.; Griffiths, S.; Lae, C. K.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Iii, R. P. Kenny; Murray, M.; Noonan, D.; Radicci, V.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Peterman, A.; Rossato, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Klute, Y.; Lee, Y-J.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Wolf, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Killewald, P.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Killewald, P.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, IN USA. [Adair, A.; Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; De Barbaro, P.; Korjenevski, S.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Richards, A.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Engh, D.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI USA. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Khalil, S.; Radi, A.] British Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Krajczar, K.; Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Bucharest, Romania. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Kaya, M.; Kaya, O.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Bilei, G. M.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Taroni, S.; Pioppi, M.] Univ Perugia, INFN Sez Perugia, Perugia, Italy. [Jeng, G. Y.] Univ Sydney, Sydney, NSW 2006, Australia. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Fabbricatore, P.] INFN Sez Genova, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [De Cosa, A.; Dogangun, O.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Varela, Joao/K-4829-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Fassi, Farida/F-3571-2016; Hernandez Calama, Jose Maria/H-9127-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Bernardes, Cesar Augusto/D-2408-2015; Lazzizzera, Ignazio/E-9678-2015; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Santoro, Alberto/E-7932-2014; Codispoti, Giuseppe/F-6574-2014; Max, Mad/E-5238-2010; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Azzi, Patrizia/H-5404-2012; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Rolandi, Luigi (Gigi)/E-8563-2013; Tomei, Thiago/E-7091-2012; Zalewski, Piotr/H-7335-2013; Tinti, Gemma/I-5886-2013; Ivanov, Andrew/A-7982-2013; Raidal, Martti/F-4436-2012; Torassa, Ezio/I-1788-2012; Kadastik, Mario/B-7559-2008; Hill, Christopher/B-5371-2012; Liu, Sheng/K-2815-2013; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Klyukhin, Vyacheslav/D-6850-2012; Petrushanko, Sergey/D-6880-2012; Snigirev, Alexander/D-8912-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Chen, Jie/H-6210-2011; Tinoco Mendes, Andre David/D-4314-2011; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Dudko, Lev/D-7127-2012; Venturi, Andrea/J-1877-2012; Lokhtin, Igor/D-7004-2012; Gregores, Eduardo/F-8702-2012; Novaes, Sergio/D-3532-2012; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016 OI Luukka, Panja/0000-0003-2340-4641; Sogut, Kenan/0000-0002-9682-2855; Ulrich, Ralf/0000-0002-2535-402X; Lenzi, Piergiulio/0000-0002-6927-8807; Gutsche, Oliver/0000-0002-8015-9622; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; CHANG, PAO-TI/0000-0003-4064-388X; Reis, Thomas/0000-0003-3703-6624; Faccioli, Pietro/0000-0003-1849-6692; Grachov, Oleg/0000-0002-4294-9025; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Mercier, Damien/0000-0001-5063-7067; Gallinaro, Michele/0000-0003-1261-2277; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Abbiendi, Giovanni/0000-0003-4499-7562; Gonzi, Sandro/0000-0003-4754-645X; HSIUNG, YEE/0000-0003-4801-1238; Levchenko, Petr/0000-0003-4913-0538; Vidal Marono, Miguel/0000-0002-2590-5987; Varela, Joao/0000-0003-2613-3146; Arneodo, Michele/0000-0002-7790-7132; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Beuselinck, Raymond/0000-0003-2613-7446; Stober, Fred/0000-0003-2620-3159; Fiorendi, Sara/0000-0003-3273-9419; Toback, David/0000-0003-3457-4144; Sguazzoni, Giacomo/0000-0002-0791-3350; WANG, MIN-ZU/0000-0002-0979-8341; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Tricomi, Alessia Rita/0000-0002-5071-5501; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Costa, Salvatore/0000-0001-9919-0569; Kasemann, Matthias/0000-0002-0429-2448; Longo, Egidio/0000-0001-6238-6787; Ghezzi, Alessio/0000-0002-8184-7953; Bilki, Burak/0000-0001-9515-3306; Covarelli, Roberto/0000-0003-1216-5235; Fassi, Farida/0000-0002-6423-7213; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bean, Alice/0000-0001-5967-8674; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Codispoti, Giuseppe/0000-0003-0217-7021; Max, Mad/0000-0001-6966-6829; Cerrada, Marcos/0000-0003-0112-1691; Azzi, Patrizia/0000-0002-3129-828X; Scodellaro, Luca/0000-0002-4974-8330; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Tomei, Thiago/0000-0002-1809-5226; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Wimpenny, Stephen/0000-0003-0505-4908; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Klyukhin, Vyacheslav/0000-0002-8577-6531; Mundim, Luiz/0000-0001-9964-7805; Tinoco Mendes, Andre David/0000-0001-5854-7699; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Lloret Iglesias, Lara/0000-0002-0157-4765; bianco, stefano/0000-0002-8300-4124; Martelli, Arabella/0000-0003-3530-2255; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER (Estonia) [SF0690030s09]; ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); WCU (Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MSTD (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); STFC (U.K.); DOE (U.S.); NSF (U.S.); TAEK (Turkey) FX We thank R. Harnik, P. J. Fox, and J. Kopp for help in modeling dark-matter production. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.). NR 42 TC 109 Z9 109 U1 4 U2 82 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 27 PY 2012 VL 108 IS 26 AR 261803 DI 10.1103/PhysRevLett.108.261803 PG 16 WC Physics, Multidisciplinary SC Physics GA 965AR UT WOS:000305738700008 PM 23004964 ER PT J AU Henry, N Harper, D Dadmun, M AF Henry, Nathan Harper, David Dadmun, Mark TI Optimizing Noncovalent Interactions Between Lignin and Synthetic Polymers to Develop Effective Compatibilizers SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article DE biopolymers; compatibilization; neutron reflectivity; renewable resources ID TRUE MOLECULAR COMPOSITE; KRAFT LIGNIN; INTERMOLECULAR INTERACTIONS; MISCIBLE BLENDS; COPOLYMERS; POLYETHYLENE; DEGRADATION; MISCIBILITY AB Experiments are designed and completed to identify an effective polymeric compatibilizer for ligninpolystyrene blends. Copolymers of styrene and vinylphenol are chosen as the structure of the compatibilizer as the VPh unit can readily form intermolecular hydrogen bonds with the lignin molecule. Electron microscopy, thermal analysis, and neutron reflectivity results demonstrate that among these compatibilizers, a copolymer of styrene and VPh with similar to 20%30% VPh most readily forms intermolecular interactions with the lignin molecule and results in the most well-dispersed blends with lignin. This behavior is explained by invoking the competition of intra- and intermolecular hydrogen bonding and functional group accessibility in forming intermolecular interactions. C1 [Henry, Nathan; Dadmun, Mark] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Harper, David] Univ Tennessee, Ctr Renewable Carbon, Knoxville, TN 37996 USA. [Dadmun, Mark] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dadmun, M (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM dad@utk.edu OI Harper, David/0000-0003-2783-5406 FU Department of Energy, Office of Basic Sciences, through the EPSCoR [DE-FG02-08ER46528]; Joint Institute for Neutron Sciences at the University of Tennessee; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the Department of Energy, Office of Basic Sciences, through the EPSCoR grant, DE-FG02-08ER46528. The authors also wish to acknowledge the Joint Institute for Neutron Sciences at the University of Tennessee for support of this project. The support of the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, who sponsors the Oak Ridge National Laboratory's Spallation Neutron Source is gratefully acknowledged. NR 56 TC 3 Z9 3 U1 0 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1022-1352 J9 MACROMOL CHEM PHYS JI Macromol. Chem. Phys. PD JUN 27 PY 2012 VL 213 IS 12 BP 1196 EP 1205 DI 10.1002/macp.201100633 PG 10 WC Polymer Science SC Polymer Science GA 962WH UT WOS:000305577800003 ER PT J AU Wang, K Jesse, S Wang, SF AF Wang, Kan Jesse, Stephen Wang, Shanfeng TI Banded Spherulitic Morphology in Blends of Poly (propylene fumarate) and Poly(epsilon-caprolactone) and Interaction with MC3T3-E1 Cells SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article DE banded spherulites; biomaterials; blends; poly(e-caprolactone); poly(propylene fumarate) ID NANO-STRUCTURED SURFACES; MELTING-POINT DEPRESSION; POLY(PROPYLENE FUMARATE); MOLECULAR-WEIGHT; POLY(VINYL CHLORIDE); PHYSICAL-PROPERTIES; CRYSTALLIZATION KINETICS; MISCIBLE BLENDS; POLY(STYRENE-CO-ACRYLONITRILE); METHACRYLATE) AB The thermal properties, morphological development, crystallization behavior, and miscibility of semicrystalline PCL and its 25, 50, and 75 wt% blends with amorphous PPF in spin-coated thin films crystallized at various crystallization temperatures (Tc) from 25 to 52 degrees C are investigated. The surface roughness of PPF/PCL (?PCL = 75%) films increases with increasing Tc and consequently the adsorption of serum proteins is also increased. No significant variance is found in surface hydrophilicity or in mouse MC3T3-E1 cell attachment, spreading, and proliferation on PPF/PCL (?PCL = 75%) films crystallized isothermally at 25, 37, and 45 degrees C, because of low ridge height, nonuniformity in structures, and PPF surface segregation. C1 [Wang, Kan; Wang, Shanfeng] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Wang, Shanfeng] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Jesse, Stephen] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Wang, SF (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM swang16@utk.edu RI Jesse, Stephen/D-3975-2016 OI Jesse, Stephen/0000-0002-1168-8483 FU University of Tennessee; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2009-R03] FX This work was supported by the start-up research fund from the University of Tennessee. We thank Dr. Kevin Kit in our department for providing the polarized optical microscope. AFM and film thickness measurements were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division (CNMS2009-R03 to S.W.), Office of Basic Energy Sciences, U.S. Department of Energy. NR 61 TC 6 Z9 6 U1 0 U2 30 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1022-1352 J9 MACROMOL CHEM PHYS JI Macromol. Chem. Phys. PD JUN 27 PY 2012 VL 213 IS 12 BP 1239 EP 1250 DI 10.1002/macp.201200004 PG 12 WC Polymer Science SC Polymer Science GA 962WH UT WOS:000305577800007 ER PT J AU Lazarevic, N Radonjic, MM Tanaskovic, D Hu, RW Petrovic, C Popovic, ZV AF Lazarevic, N. Radonjic, M. M. Tanaskovic, D. Hu, Rongwei Petrovic, C. Popovic, Z. V. TI Lattice dynamics of FeSb2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID OPTICAL PHONONS; PNICTIDES AB The lattice dynamics of FeSb2 is investigated by first-principles density functional theory calculations and Raman spectroscopy. All Raman-and infrared-active phonon modes are properly assigned. The calculated and measured phonon energies are in good agreement. We have observed strong mixing of the A(g) symmetry modes, with the intensity exchange in the temperature range 210 and 260 K. The A(g) mode repulsion increases by doping FeSb2 with Co, with no signatures of the electron-phonon interaction for these modes. C1 [Lazarevic, N.; Popovic, Z. V.] Univ Belgrade, Inst Phys Belgrade, Ctr Solid State Phys & New Mat, Belgrade 11080, Serbia. [Radonjic, M. M.; Tanaskovic, D.] Univ Belgrade, Inst Phys Belgrade, Comp Sci Lab, Belgrade 11080, Serbia. [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Lazarevic, N (reprint author), Univ Belgrade, Inst Phys Belgrade, Ctr Solid State Phys & New Mat, Pregrevica 118, Belgrade 11080, Serbia. EM nenad.lazarevic@ipb.ac.rs RI Lazarevic, Nenad/C-3254-2012; Petrovic, Cedomir/A-8789-2009; Radonjic, Milos/M-1890-2015 OI Petrovic, Cedomir/0000-0001-6063-1881; FU Serbian Ministry of Education and Science [ON171032, III45018, ON171017]; FP7 project EGI-InSPIRE; FP7 project PRACE-1IP; FP7 project HP-SEE; Swiss National Science Foundation through the SCOPES [IZ73Z0-128169] FX This work was supported by the Serbian Ministry of Education and Science under projects ON171032, III45018 and ON171017. Part of this work (CP and RH) was carried out at the Brookhaven National Laboratory which is operated for the Office of Basic Energy Sciences, US Department of Energy by Brookhaven Science Associates (DE-Ac02-98CH10886). Numerical simulations were run on the AEGIS e-Infrastructure, supported in part by FP7 projects EGI-InSPIRE, PRACE-1IP and HP-SEE. ZVP and MMR acknowledges support from the Swiss National Science Foundation through the SCOPES grant no. IZ73Z0-128169. NR 27 TC 6 Z9 6 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 27 PY 2012 VL 24 IS 25 AR 255402 DI 10.1088/0953-8984/24/25/255402 PG 7 WC Physics, Condensed Matter SC Physics GA 953NO UT WOS:000304875600011 ER PT J AU Salje, EKH Gofryk, K Safarik, DJ Lashley, JC AF Salje, E. K. H. Gofryk, K. Safarik, D. J. Lashley, J. C. TI Order-parameter coupling in the improper ferroelectric lawsonite SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TEMPERATURE PHASE-TRANSITIONS; HEAT-CAPACITY MEASUREMENTS; SPONTANEOUS STRAIN; BEHAVIOR; SPECTROSCOPY; MINERALS AB Low-temperature specific heat and thermal expansion measurements are used to study the hydrogen-based ferroelectric lawsonite over the temperature range 1.8 K <= T <= 300 K. The second-order phase transition near 125 K is detected in the experiments, and the low-temperature phase is determined to be improper ferroelectric and co-elastic. In the ferroelectric phase T <= 125 K, the spontaneous polarization P-s is proportional to (1) the volume strain e(s), and (2) the excess entropy Delta S-e. These proportionalities confirm the improper character of the ferroelectric phase transition. We develop a structural model that allows the off-centering of hydrogen positions to generate the spontaneous polarization. In the low-temperature limit we detect a Schottky anomaly (two-level system) with an energy gap of Delta similar to 0.5 meV. C1 [Salje, E. K. H.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Salje, E. K. H.] Los Alamos Natl Lab, Ctr Nonlinear Sci, Los Alamos, NM 87545 USA. [Gofryk, K.; Safarik, D. J.; Lashley, J. C.] Los Alamos Natl Lab, Phys Met Grp MST 6, Los Alamos, NM 87545 USA. RP Salje, EKH (reprint author), Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. EM ekhard@esc.cam.ac.uk RI Salje, Ekhard/M-2931-2013; Gofryk, Krzysztof/F-8755-2014; OI Salje, Ekhard/0000-0002-8781-6154; Gofryk, Krzysztof/0000-0002-8681-6857; Safarik, Douglas/0000-0001-8648-9377 FU United States Department of Energy FX Part of this work was performed at the University of Cambridge, and the thermodynamic measurements were performed and the paper was written in Los Alamos. The work at Los Alamos was performed under the auspices of the United States Department of Energy. JCL is grateful to Angus Lawson (the mineral name lawsonite originates from his family) for discussions on the Schottky anomaly. NR 31 TC 2 Z9 2 U1 2 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 27 PY 2012 VL 24 IS 25 AR 255901 DI 10.1088/0953-8984/24/25/255901 PG 6 WC Physics, Condensed Matter SC Physics GA 953NO UT WOS:000304875600018 PM 22634712 ER PT J AU Si, P Liu, JL Zhen, Z Liu, XH Lakshminarayana, G Kityk, IV AF Si, Peng Liu, Jialei Zhen, Zhen Liu, Xinhou Lakshminarayana, G. Kityk, I. V. TI Synthesis and characterization of NLO chromophore with benzo [1,2-b:4,5-b ']dithiophene unit as pi-electron bridge SO TETRAHEDRON LETTERS LA English DT Article DE Organic EO materials; Polymer optoelectronics; BDT pi-electron bridge; Hyper Rayleigh scattering AB A novel chromophore BDT-TCF with benzo[1,2-b:4,5-b']dithiophene (BDT) unit as electron bridge was synthesized and characterized by UV-vis, NMR spectroscopy, and thermal analysis. It is the first time that BDT unit was introduced into NLO materials. The chromophore showed excellent solubility in most common solvents, and good thermal stability for practical applications. The second order nonlinear optical effect was measured by hyper Rayleigh scattering method. The diagonal hyperpolarizability beta(zzz) of BDT-TCF was 8.2 x 10(-28) and 9.3 x 10(-29) esu in THF solvent and in PMMA polymer matrices, respectively. The potential NLO response indicates that BUT unit is a promising pi-electron bridge and an excellent candidate for nonlinear optical devices. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Si, Peng; Liu, Jialei; Zhen, Zhen; Liu, Xinhou] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China. [Si, Peng] Chinese Acad Sci, Grad Univ, Beijing 100043, Peoples R China. [Lakshminarayana, G.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA. [Kityk, I. V.] Czestochowa Tech Univ, Dept Elect Engn, Czestochowa, Poland. RP Liu, XH (reprint author), Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China. EM xinhouliu@yahoo.cn RI Kityk, Iwan/M-4032-2015 FU Chinese Academy of Sciences [KJCX2.YW.H02, CXJJ-11-M035]; National Natural Science Foundation of China [11104284, 61101054] FX We are grateful to the Directional Program of the Chinese Academy of Sciences (KJCX2.YW.H02), Innovation Fund of Chinese Academy of Sciences (CXJJ-11-M035) and National Natural Science Foundation of China (Nos. 11104284 and 61101054) for financial support. NR 24 TC 14 Z9 14 U1 1 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0040-4039 J9 TETRAHEDRON LETT JI Tetrahedron Lett. PD JUN 27 PY 2012 VL 53 IS 26 BP 3393 EP 3396 DI 10.1016/j.tetlet.2012.04.109 PG 4 WC Chemistry, Organic SC Chemistry GA 953FE UT WOS:000304851500048 ER PT J AU Booth, CH Jiang, Y Wang, DL Mitchell, JN Tobash, PH Bauer, ED Wall, MA Allen, PG Sokaras, D Nordlund, D Weng, TC Torrez, MA Sarrao, JL AF Booth, C. H. Jiang, Yu Wang, D. L. Mitchell, J. N. Tobash, P. H. Bauer, E. D. Wall, M. A. Allen, P. G. Sokaras, D. Nordlund, D. Weng, T-C. Torrez, M. A. Sarrao, J. L. TI Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE local moment magnetism; intermediate valence; strongly correlated systems ID X-RAY-SCATTERING; MAGNETIC TRANSITIONS; DUAL NATURE; SYSTEM; HEAT; SPECTROSCOPY; ELECTRONS; BEHAVIOR; UPD2AL3; UPD3 AB Uranium and plutonium's 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e. g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. C1 [Booth, C. H.; Jiang, Yu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Wang, D. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Mitchell, J. N.; Tobash, P. H.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Bauer, E. D.; Torrez, M. A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wall, M. A.; Allen, P. G.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Sokaras, D.; Nordlund, D.; Weng, T-C.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Sarrao, J. L.] Los Alamos Natl Lab, Sci Program Off, Off Sci, Los Alamos, NM 87545 USA. RP Booth, CH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM chbooth@lbl.gov RI Sokaras, Dimosthenis/G-6037-2010; Nordlund, Dennis/A-8902-2008; Booth, Corwin/A-7877-2008; Mitchell, Jeremy/E-2875-2010; OI Sokaras, Dimosthenis/0000-0001-8117-1933; Nordlund, Dennis/0000-0001-9524-6908; Mitchell, Jeremy/0000-0001-7109-3505; Bauer, Eric/0000-0003-0017-1937 FU Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; LANL Directed Research and Development program; U.S. DOE, OBES, Division of Materials Sciences and Engineering FX Work at Lawrence Berkeley National Laboratory supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. The authors acknowledge enlightening conversations with J. A. Bradley, G. Kotliar, G. H. Lander, J.-P. Rueff, J. Seidler, J. D. Thompson, and Z. Fisk. X-ray absorption and RXES data were collected at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the DOE, Office of Basic Energy Sciences. Work at Los Alamos National Laboratory (LANL) was performed under the auspices of the U.S. DOE, OBES, Division of Materials Sciences and Engineering and funded in part by the LANL Directed Research and Development program. NR 48 TC 28 Z9 28 U1 5 U2 82 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 26 PY 2012 VL 109 IS 26 BP 10205 EP 10209 DI 10.1073/pnas.1200725109 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 972QE UT WOS:000306291400030 PM 22706643 ER PT J AU Mao, Z Lin, JF Liu, J Alatas, A Gao, LL Zhao, JY Mao, HK AF Mao, Zhu Lin, Jung-Fu Liu, Jin Alatas, Ahmet Gao, Lili Zhao, Jiyong Mao, Ho-Kwang TI Sound velocities of Fe and Fe-Si alloy in the Earth's core SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE compressional-wave velocity; high pressure-temperature ID NEUTRON POWDER DIFFRACTION; IRON-SILICON ALLOYS; EQUATION-OF-STATE; X-RAY-SCATTERING; HIGH-PRESSURE; INNER-CORE; THERMAL-EXPANSION; BIRCHS LAW; PHASE-TRANSFORMATIONS; CRYSTAL-STRUCTURE AB Compressional wave velocity-density (V-P - rho) relations of candidate Fe alloys at relevant pressure-temperature conditions of the Earth's core are critically needed to evaluate the composition, seismic signatures, and geodynamics of the planet's remotest region. Specifically, comparison between seismic V-P - rho profiles of the core and candidate Fe alloys provides first-order information on the amount and type of potential light elements-including H, C, O, Si, and/or S-needed to compensate the density deficit of the core. To address this issue, here we have surveyed and analyzed the literature results in conjunction with newly measured V-P - rho results of hexagonal closest-packed (hcp) Fe and hcp-Fe0.85Si0.15 alloy using in situ high-energy resolution inelastic X-ray scattering and X-ray diffraction. The nature of the Fe-Si alloy where Si is readily soluble in Fe represents an ideal solid-solution case to better understand the light-element alloying effects. Our results show that high temperature significantly decreases the V-P of hcp-Fe at high pressures, and the Fe-Si alloy exhibits similar high-pressure V-P - rho behavior to hcp-Fe via a constant density offset. These V-P - rho data at a given temperature can be better described by an empirical power-law function with a concave behavior at higher densities than with a linear approximation. Our new datasets, together with literature results, allow us to build new V-P - rho models of Fe alloys in order to determine the chemical composition of the core. Our models show that the V-P - rho profile of Fe with 8 wt% Si at 6,000 K matches well with the Preliminary Reference Earth Model of the inner core. C1 [Mao, Zhu; Lin, Jung-Fu; Liu, Jin] Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA. [Alatas, Ahmet; Gao, Lili; Zhao, Jiyong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Mao, Ho-Kwang] Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Washington, DC 20015 USA. RP Mao, Z (reprint author), Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA. EM zhumao@mail.utexas.edu RI Liu, Jin/C-6558-2011; Lin, Jung-Fu/B-4917-2011; Mao, Zhu/A-9015-2015 OI Liu, Jin/0000-0002-1670-8199; FU US National Science Foundation (NSF) [EAR-1056670, EAR-1053446]; Carnegie/Department of Energy (DOE) Alliance Center; NSF [EAR-1119504, EAR-0911492]; DOE-Basic Energy Sciences [DE-AC02-06CH11357] FX We acknowledge G. Xu, R. Kundargi, and Y. Meng for experimental assistance. We acknowledge A. Wheat and N. Seymour for editing the manuscript. We thank GeoSoilEnviro Collaborative Access Team (CARS), High Pressure CARS, APS, and Argonne National Laboratory for providing XRD and optical ruby system facilities for the study. This work at the University of Texas, Austin was supported by the US National Science Foundation (NSF) (EAR-1056670 and EAR-1053446), and the Carnegie/Department of Energy (DOE) Alliance Center. H.-K.M. would like to acknowledge support from NSF EAR-1119504 and EAR-0911492. APS is supported by DOE-Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 64 TC 34 Z9 37 U1 1 U2 52 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 26 PY 2012 VL 109 IS 26 BP 10239 EP 10244 DI 10.1073/pnas.1207086109 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 972QE UT WOS:000306291400037 PM 22689958 ER PT J AU Zhang, WJ Dai, M Fridberger, A Hassan, A DeGagne, J Neng, LL Zhang, F He, WX Ren, TY Trune, D Auer, M Shi, XR AF Zhang, Wenjing Dai, Min Fridberger, Anders Hassan, Ahmed DeGagne, Jacqueline Neng, Lingling Zhang, Fei He, Wenxuan Ren, Tianying Trune, Dennis Auer, Manfred Shi, Xiaorui TI Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE mouse cochlea; paracellular permeability; tight junction; capillary ID EPITHELIUM-DERIVED FACTOR; COCHLEAR STRIA VASCULARIS; ENDOTHELIAL GROWTH-FACTOR; LABYRINTH BARRIER; INTERMEDIATE CELLS; DENDRITIC CELLS; GUINEA-PIG; PERMEABILITY; PIGMENT; FACTOR-1-ALPHA AB The microenvironment of the cochlea is maintained by the barrier between the systemic circulation and the fluids inside the stria vascularis. However, the mechanisms that control the permeability of the intrastrial fluid-blood barrier remain largely unknown. The barrier comprises endothelial cells connected to each other by tight junctions and an underlying basement membrane. In a recent study, we found that the intrastrial fluid-blood barrier also includes a large number of perivascular cells with both macrophage and melanocyte characteristics. The perivascular-resident macrophage-like melanocytes (PVM/Ms) are in close contact with vessels through cytoplasmic processes. Here we demonstrate that PVM/Ms have an important role in maintaining the integrity of the intrastrial fluid-blood barrier and hearing function. Using a cell culture-based in vitro model and a genetically induced PVM/M-depleted animal model, we show that absence of PVM/Ms increases the permeability of the intrastrial fluid-blood barrier to both low- and high-molecular-weight tracers. The increased permeability is caused by decreased expression of pigment epithelial-derived factor, which regulates expression of several tight junction-associated proteins instrumental to barrier integrity. When tested for endocochlear potential and auditory brainstem response, PVM/M-depleted animals show substantial drop in endocochlear potential with accompanying hearing loss. Our results demonstrate a critical role for PVM/Ms in regulating the permeability of the intrastrial fluid-blood barrier for establishing a normal endocochlear potential hearing threshold. C1 [Zhang, Wenjing; Dai, Min; DeGagne, Jacqueline; Neng, Lingling; Zhang, Fei; He, Wenxuan; Ren, Tianying; Trune, Dennis; Shi, Xiaorui] Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr NRC04, Portland, OR 97239 USA. [Zhang, Wenjing; Neng, Lingling] Zhengzhou Univ, Affiliated Hosp 1, Dept Otolaryngol Head & Neck Surg, Zhengzhou 450052, Henan, Peoples R China. [Fridberger, Anders] Karolinska Inst, Dept Clin Sci Intervent & Technol, SE-17176 Stockholm, Sweden. [Hassan, Ahmed; Auer, Manfred] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Shi, XR (reprint author), Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr NRC04, Portland, OR 97239 USA. EM shix@ohsu.edu RI Dai, Min/B-9908-2012; Fridberger, Anders/E-8977-2010 OI Fridberger, Anders/0000-0002-7960-1559 FU National Institutes of Health/National Institute on Deafness and Other Communication Disorders [DC008888-02A1, DC008888-02S1, R01-DC010844, NIHP30-DC005983] FX We thank John Henry for input and guidance with the development of work-flows for 3D rendering. This work was supported by National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grants DC008888-02A1 (to X. S.), DC008888-02S1 (to X. S.), R01-DC010844 (to X. S.), and NIHP30-DC005983. NR 34 TC 36 Z9 40 U1 0 U2 6 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 26 PY 2012 VL 109 IS 26 BP 10388 EP 10393 DI 10.1073/pnas.1205210109 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 972QE UT WOS:000306291400062 PM 22689949 ER PT J AU Hopkins, FM Torn, MS Trumbore, SE AF Hopkins, Francesca M. Torn, Margaret S. Trumbore, Susan E. TI Warming accelerates decomposition of decades-old carbon in forest soils SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE climate feedback; soil organic matter; soil respiration; radiocarbon; soil incubation ID ORGANIC-MATTER DECOMPOSITION; TEMPERATURE SENSITIVITY; ELEVATED CO2; ATMOSPHERIC CO2; CYCLE FEEDBACKS; PINE FOREST; RESPIRATION; MODEL; DIOXIDE; YOUNG AB Global climate carbon-cycle models predict acceleration of soil organic carbon losses to the atmosphere with warming, but the size of this feedback is poorly known. The temperature sensitivity of soil carbon decomposition is commonly determined by measuring changes in the rate of carbon dioxide (CO2) production under controlled laboratory conditions. We added measurements of carbon isotopes in respired CO2 to constrain the age of carbon substrates contributing to the temperature response of decomposition for surface soils from two temperate forest sites with very different overall rates of carbon cycling. Roughly one-third of the carbon respired at any temperature was fixed from the atmosphere more than 10 y ago, and the mean age of respired carbon reflected a mixture of substrates of varying ages. Consistent with global ecosystem model predictions, the temperature sensitivity of the carbon fixed more than a decade ago was the same as the temperature sensitivity for carbon fixed less than 10 y ago. However, we also observed an overall increase in the mean age of carbon respired at higher temperatures, even correcting for potential substrate limitation effects. The combination of several age constraints from carbon isotopes showed that warming had a similar effect on respiration of decades-old and younger (< 10 y) carbon but a greater effect on decomposition of substrates of intermediate (between 7 and 13 y) age. Our results highlight the vulnerability of soil carbon to warming that is years-to-decades old, which makes up a large fraction of total soil carbon in forest soils globally. C1 [Hopkins, Francesca M.; Trumbore, Susan E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Hopkins, Francesca M.; Trumbore, Susan E.] Max Planck Inst Biogeochem, Dept Biogeochem Proc, D-07745 Jena, Germany. [Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Torn, Margaret S.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Hopkins, FM (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM fhopkins@uci.edu RI Trumbore, Susan/B-1948-2013; Torn, Margaret/D-2305-2015 FU US Department of Energy's Office of Science (DOE-BER) [DE-FG02-95ER62083]; DOE-BER; National Science Foundation; Achievement Rewards for College Scientists Foundation Scholarship; Ralph and Carol Cicerone Graduate Fellowship; DOE-BER [DE-AC02-05CH11231] FX We thank Xiaomei Xu and the staff of the W. M. Keck Carbon Cycle Accelerator Mass Spectrometer, University of California at Irvine for radiocarbon analyses. We thank Tim Filley and Sara Top of Purdue University for collection of soils from Aspen FACE and John Lichter at Bowdoin College for providing density and size fractions of soil from Duke FACE. We also thank to the principle investigators and staff of the Duke and Aspen FACE experiments for site access, Carlos Sierra for discussion, and Claudia Czimczik and two anonymous reviewers for insightful comments on the manuscript. The Duke FACE experiment was funded by US Department of Energy's Office of Science (DOE-BER) Grant DE-FG02-95ER62083. The Aspen FACE experiment was funded by DOE-BER, with additional support from the US Forest Service (USFS) Global Change Program, Michigan Technological University, the Canadian Forest Service, and the USFS Northern Research Station. F. M. H. was supported by a National Science Foundation Graduate Research Fellowship, an Achievement Rewards for College Scientists Foundation Scholarship, and a Ralph and Carol Cicerone Graduate Fellowship. M. S. T. was supported by DOE-BER Contract DE-AC02-05CH11231. NR 60 TC 28 Z9 30 U1 6 U2 150 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 26 PY 2012 VL 109 IS 26 BP E1753 EP E1761 DI 10.1073/pnas.1120603109 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 972QE UT WOS:000306291400012 PM 22689999 ER PT J AU Watrous, J Roach, P Alexandrov, T Heath, BS Yang, JY Kersten, RD van der Voort, M Pogliano, K Gross, H Raaijmakers, JM Moore, BS Laskin, J Bandeira, N Dorrestein, PC AF Watrous, Jeramie Roach, Patrick Alexandrov, Theodore Heath, Brandi S. Yang, Jane Y. Kersten, Roland D. van der Voort, Menno Pogliano, Kit Gross, Harald Raaijmakers, Jos M. Moore, Bradley S. Laskin, Julia Bandeira, Nuno Dorrestein, Pieter C. TI Mass spectral molecular networking of living microbial colonies SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ambient mass spectrometry; microbial ecology; natural products ID DESORPTION ELECTROSPRAY-IONIZATION; ASSISTED LASER DESORPTION/IONIZATION; BACILLUS-SUBTILIS; METABOLIC EXCHANGE; AMBIENT CONDITIONS; NATURAL-PRODUCTS; ASSEMBLY-LINE; SPECTROMETRY; IDENTIFICATION; ANTIBIOTICS AB Integrating the governing chemistry with the genomics and phenotypes of microbial colonies has been a "holy grail" in microbiology. This work describes a highly sensitive, broadly applicable, and cost-effective approach that allows metabolic profiling of live microbial colonies directly from a Petri dish without any sample preparation. Nanospray desorption electrospray ionization mass spectrometry (MS), combined with alignment of MS data and molecular networking, enabled monitoring of metabolite production from live microbial colonies from diverse bacterial genera, including Bacillus subtilis, Streptomyces coelicolor, Mycobacterium smegmatis, and Pseudomonas aeruginosa. This work demonstrates that, by using these tools to visualize small molecular changes within bacterial interactions, insights can be gained into bacterial developmental processes as a result of the improved organization of MS/MS data. To validate this experimental platform, metabolic profiling was performed on Pseudomonas sp. SH-C52, which protects sugar beet plants from infections by specific soil-borne fungi [R. Mendes et al. (2011) Science 332: 1097-1100]. The antifungal effect of strain SHC52 was attributed to thanamycin, a predicted lipopeptide encoded by a nonribosomal peptide synthetase gene cluster. Our technology, in combination with our recently developed peptidogenomics strategy, enabled the detection and partial characterization of thanamycin and showed that it is a monochlorinated lipopeptide that belongs to the syringomycin family of antifungal agents. In conclusion, the platform presented here provides a significant advancement in our ability to understand the spatiotemporal dynamics of metabolite production in live microbial colonies and communities. C1 [Roach, Patrick; Heath, Brandi S.; Laskin, Julia] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Watrous, Jeramie; Yang, Jane Y.; Kersten, Roland D.; Dorrestein, Pieter C.] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA. [Watrous, Jeramie; Yang, Jane Y.; Kersten, Roland D.; Dorrestein, Pieter C.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Watrous, Jeramie; Alexandrov, Theodore; Yang, Jane Y.; Moore, Bradley S.; Bandeira, Nuno; Dorrestein, Pieter C.] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA. [Alexandrov, Theodore] Univ Bremen, Ctr Ind Math, D-28334 Bremen, Germany. [Kersten, Roland D.; Moore, Bradley S.; Dorrestein, Pieter C.] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA. [van der Voort, Menno; Raaijmakers, Jos M.] Wageningen Univ, Phytopathol Lab, NL-PB6708 Wageningen, Netherlands. [Pogliano, Kit] Univ Calif San Diego, Div Biol Sci, San Diego, CA 92093 USA. [Gross, Harald] Univ Bonn, Inst Pharmaceut Biol, D-53115 Bonn, Germany. [Bandeira, Nuno] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA. [Bandeira, Nuno] Univ Calif San Diego, Ctr Computat Mass Spectrometry, Natl Ctr Res Resources, La Jolla, CA 92093 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. EM julia.laskin@pnnl.gov; bandeira@ucsd.edu; pdorrestein@ucsd.edu RI Raaijmakers, Jos/D-1574-2014; Laskin, Julia/H-9974-2012; OI Raaijmakers, Jos/0000-0003-1608-6614; Laskin, Julia/0000-0002-4533-9644; Alexandrov, Theodore/0000-0001-9464-6125 FU National Institutes of Health (NIH) [GM094802, AI095125, 1-P41-RR024851, GM085770]; German Research Foundation, Deutsche Forschungsgemeinschaft (DFG) [DFG-FOR854 GR2673/2-1]; Chemical Imaging Program at Pacific Northwest National Laboratory (PNNL); US Department of Energy (DOE) Science Undergraduate Laboratory Internship (SULI) program at PNNL; Dutch Science Organization Ecology Regarding Gene-Modified Organisms [838.06.101]; Netherlands Genomics Initiative (NGI) ECOLINC and PreSeed; DOE's Office of Biological and Environmental Research FX The authors thank Peter Tonge (Stony Brook University) for providing the Mycobacterium smegamatis strain. Work in this area in the P. C. D. laboratory for the development of real-time MS was supported by National Institutes of Health (NIH) Grant GM094802; work on interspecies interaction was supported by NIH Grant AI095125 and Johnson & Johnson; work in this area in the N.B. laboratory was supported by NIH Grant 1-P41-RR024851; and work in this area in the K. P. laboratory is supported by NIH grant AI095125. This work was also supported in part by NIH Grant GM085770 (to B. S. M.); the German Research Foundation, Deutsche Forschungsgemeinschaft (DFG), Grant DFG-FOR854 GR2673/2-1 (to H. G.); the Chemical Imaging Program at Pacific Northwest National Laboratory (PNNL) (P. R. and J.L.); the US Department of Energy (DOE) Science Undergraduate Laboratory Internship (SULI) program at PNNL (B. S. H.); Dutch Science Organization Ecology Regarding Gene-Modified Organisms Grant838.06.101 (to M.v.d.V. and J.M.R.); and Netherlands Genomics Initiative (NGI) ECOLINC and PreSeed (M.v.d.V. and J.M.R.). A part of the research described in this paper was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL, which is operated by Battelle for the DOE. NR 49 TC 194 Z9 196 U1 16 U2 190 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 26 PY 2012 VL 109 IS 26 BP E1743 EP E1752 DI 10.1073/pnas.1203689109 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 972QE UT WOS:000306291400011 PM 22586093 ER PT J AU Sun, J Stone, GM Balsara, NP Zuckermann, RN AF Sun, Jing Stone, Gregory M. Balsara, Nitash P. Zuckermann, Ronald N. TI Structure-Conductivity Relationship for Peptoid-Based PEO-Mimetic Polymer Electrolytes SO MACROMOLECULES LA English DT Article ID ALKALI-METAL SALTS; MOLECULAR-WEIGHT; POLY(ETHYLENE OXIDE); IONIC-CONDUCTIVITY; TRANSPORT; MODEL AB Polymer electrolytes offer great potential for application in lithium batteries. In order to systematically optimize the performance of these materials, atomic level synthetic control over the polymer chemical structure is desired. In this study, we designed a series of chemically defined, monodisperse peptoid polymers to explore the impact of side-chain structure on the thermal and electrical properties. A series of comblike peptoid homopolymers with ethylene oxide (EO)(n) side chains of varying length were synthesized by a rapid solid phase synthetic method. The electrical properties of these materials with dissolved lithium salt were characterized by ac impedance. The temperature dependence of the ionic conductivity of the polypeptoid electrolytes is consistent with the Vogel-Tamman-Fulcher equation. The optimum ionic conductivity of 2.6 x 10(-4) S/cm achieved for oligo-N-2-(2-(2-methoxyethoxy)ethoxy)ethylglycine -Li salt complex at 100 degrees C, is approximately 10-fold lower than the analogous PEO-salt complex. It is, however, nearly 2 orders of magnitude higher than previously reported comblike PEO-mimetic polypeptides. The ionic conductivities of these side chain analogs vary by 3 orders of magnitude, but this variation is entirely governed by the proximity of the system to the glass transition temperature. This investigation shows that polypeptoids provide a unique platform for examining the structure property relationships of solid polymer electrolytes. C1 [Sun, Jing; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Stone, Gregory M.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Stone, Gregory M.; Balsara, Nitash P.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov RI Zuckermann, Ronald/A-7606-2014 OI Zuckermann, Ronald/0000-0002-3055-8860 FU Soft Matter Electron Microscopy Program; Office of Science, Office of Basic Energy Science, U.S. Department of Energy [DE-AC02-05CH11231] FX Funding for this work was provided by the Soft Matter Electron Microscopy Program, supported by the Office of Science, Office of Basic Energy Science, U.S. Department of Energy, under Contract DE-AC02-05CH11231. The work was carried out at the Molecular Foundry at Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Science, U.S. Department of Energy, under Contract DE-AC02-05CH11231. We thank Dr. Daniel Hallinan, Scott Mullin, and Alexander Teran for helpful advice and Babak Sanii for help with the XRD experiments. NR 35 TC 40 Z9 40 U1 4 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 26 PY 2012 VL 45 IS 12 BP 5151 EP 5156 DI 10.1021/ma300775b PG 6 WC Polymer Science SC Polymer Science GA 963YT UT WOS:000305661600023 ER PT J AU Murnen, HK Khokhlov, AR Khalatur, PG Segalman, RA Zuckermann, RN AF Murnen, Hannah K. Khokhlov, Alexei R. Khalatur, Pavel G. Segalman, Rachel A. Zuckermann, Ronald N. TI Impact of Hydrophobic Sequence Patterning on the Coil-to-Globule Transition of Protein-like Polymers SO MACROMOLECULES LA English DT Article ID CONFORMATIONAL TRANSITIONS; NONBIOLOGICAL POLYMER; RANDOM COPOLYMERS; AQUEOUS-SOLUTIONS; DESIGN; POLYGLUTAMINE; POLYPEPTOIDS; PRINCIPLES; LIBRARIES; SURFACES AB Understanding the driving forces for the collapse of a polymer chain from a random coil to a globule would be invaluable in enabling scientists to predict the folding of polypeptide sequences into defined tertiary structures. The HP model considers hydrophobic collapse to be the major driving force for protein folding. However, due to the inherent presence of chirality and hydrogen bonding in polypeptides, it has been difficult to experimentally test the ability of hydrophobic forces to independently drive structural transitions. In this work, we use polypeptoids, which lack backbone hydrogen bonding and chirality, to probe the exclusive effect of hydrophobicity on the coil-to-globule collapse. Two sequences containing the same composition of only hydrophobic "H" N-methylglycine and polar "P" N-(2-carboxyethyl)glycine monomers are shown to have very different globule collapse behaviors due only to the difference in their monomer sequence. As compared to a repeating sequence with an even distribution of H and P monomers, a designed protein-like sequence collapses into a more compact globule in aqueous solution as evidenced by small-angle X-ray scattering, dynamic light scattering, and probing with environmentally sensitive fluorophores. The free energy change for the coil-to-globule transition was determined by equilibrium denaturant titration with acetonitrile. Using a two-state model, the protein-like sequence is shown to have a much greater driving force for globule formation, as well as a higher m value, indicating increased cooperativity for the collapse transition. This difference in globule collapse behavior validates the ability of the HP model to describe structural transitions based solely on hydrophobic forces. C1 [Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Murnen, Hannah K.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Khokhlov, Alexei R.] Moscow MV Lomonosov State Univ, Dept Phys, Moscow, Russia. [Khokhlov, Alexei R.; Khalatur, Pavel G.] Univ Ulm, Dept Adv Energy Related Nanomat, D-89069 Ulm, Germany. [Segalman, Rachel A.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RI Khokhlov, Alexei/E-9233-2011; Zuckermann, Ronald/A-7606-2014; OI Zuckermann, Ronald/0000-0002-3055-8860; Segalman, Rachel/0000-0002-4292-5103; Khalatur, Pavel/0000-0001-5480-5531 FU Office of Naval Research via Presidential Early Career Award in Science and Engineering; Department of Defense; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Dr. Byoung-Chul Lee for helpful discussions. We gratefully acknowledge funding from the Office of Naval Research via a Presidential Early Career Award in Science and Engineering. H.K.M. also gratefully acknowledges the Department of Defense for a graduate fellowship. Polypeptoid synthesis and associated chemical characterization were performed at the Molecular Foundry, a Lawrence Berkeley National Laboratory user facility supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-05CH11231. Parts of the X-ray scattering studies were carried out at the Advanced Light Source (ALS) on Beamline 7-3-3. The Advanced Light Source is supported by the U.S. Department of Energy under Contract DE-AC02-05CH11231. Additional X-ray scattering studies were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the U.S. Department of Energy on Beamline 1-4. NR 47 TC 24 Z9 24 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 26 PY 2012 VL 45 IS 12 BP 5229 EP 5236 DI 10.1021/ma300707t PG 8 WC Polymer Science SC Polymer Science GA 963YT UT WOS:000305661600032 ER PT J AU Aihara, H Arinstein, K Asner, DM Aulchenko, V Aushev, T Bakich, AM Belous, K Bhuyan, B Bischofberger, M Bondar, A Bonvicini, G Bozek, A Bracko, M Browder, TE Chang, MC Chang, P Cheon, BG Chilikin, K Chistov, R Cho, K Choi, Y Dalseno, J Dolezal, Z Drutskoy, A Eidelman, S Epifanov, D Fast, JE Feindt, M Gaur, V Gabyshev, N Garmash, A Goh, YM Golob, B Haba, J Hayashii, H Horii, Y Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwabuchi, M Julius, T Kang, JH Kawasaki, T Kiesling, C Kim, HJ Kim, HO Kim, JB Kim, JH Kim, KT Kim, MJ Kim, YJ Kinoshita, K Ko, BR Koblitz, S Kodys, P Korpar, S Krizan, P Krokovny, P Kronenbitter, B Kuhr, T Kumita, T Kuzmin, A Kwon, YJ Lee, SH Li, J Li, Y Libby, J Liu, C Liu, Y Liu, ZQ Liventsev, D Louvot, R Matvienko, D Miyabayashi, K Miyata, H Mizuk, R Mohanty, GB Moll, A Mori, T Muramatsu, N Nagasaka, Y Nakano, E Nakao, M Natkaniec, Z Nishida, S Nitoh, O Ogawa, S Ohshima, T Okuno, S Olsen, SL Pakhlova, G Park, CW Park, H Park, HK Park, KS Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Poluektov, A Prothmann, K Ritter, M Rohrken, M Rozanska, M Ryu, S Sahoo, H Sakai, Y Sanuki, T Sato, Y Schneider, O Schwanda, C Schwartz, AJ Senyo, K Seon, O Sevior, ME Shapkin, M Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Singh, JB Smerkol, P Sohn, YS Sokolov, A Solovieva, E Stanic, S Staric, M Sumisawa, K Sumiyoshi, T Tatishvili, G Trabelsi, K Uchida, M Uehara, S Unno, Y Uno, S Urquijo, P Vanhoefer, P Varner, G Varvell, KE Vinokurova, A Vorobyev, V Wang, CH Wang, MZ Wang, P Watanabe, Y Williams, KM Won, E Yabsley, BD Yamamoto, H Yamaoka, J Yamashita, Y Yuan, CZ Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF Aihara, H. Arinstein, K. Asner, D. M. Aulchenko, V. Aushev, T. Bakich, A. M. Belous, K. Bhuyan, B. Bischofberger, M. Bondar, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Chang, M. -C. Chang, P. Cheon, B. G. Chilikin, K. Chistov, R. Cho, K. Choi, Y. Dalseno, J. Dolezal, Z. Drutskoy, A. Eidelman, S. Epifanov, D. Fast, J. E. Feindt, M. Gaur, V. Gabyshev, N. Garmash, A. Goh, Y. M. Golob, B. Haba, J. Hayashii, H. Horii, Y. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwabuchi, M. Julius, T. Kang, J. H. Kawasaki, T. Kiesling, C. Kim, H. J. Kim, H. O. Kim, J. B. Kim, J. H. Kim, K. T. Kim, M. J. Kim, Y. J. Kinoshita, K. Ko, B. R. Koblitz, S. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kronenbitter, B. Kuhr, T. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lee, S. -H. Li, J. Li, Y. Libby, J. Liu, C. Liu, Y. Liu, Z. Q. Liventsev, D. Louvot, R. Matvienko, D. Miyabayashi, K. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Mori, T. Muramatsu, N. Nagasaka, Y. Nakano, E. Nakao, M. Natkaniec, Z. Nishida, S. Nitoh, O. Ogawa, S. Ohshima, T. Okuno, S. Olsen, S. L. Pakhlova, G. Park, C. W. Park, H. Park, H. K. Park, K. S. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Poluektov, A. Prothmann, K. Ritter, M. Roehrken, M. Rozanska, M. Ryu, S. Sahoo, H. Sakai, Y. Sanuki, T. Sato, Y. Schneider, O. Schwanda, C. Schwartz, A. J. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Singh, J. B. Smerkol, P. Sohn, Y. -S. Sokolov, A. Solovieva, E. Stanic, S. Staric, M. Sumisawa, K. Sumiyoshi, T. Tatishvili, G. Trabelsi, K. Uchida, M. Uehara, S. Unno, Y. Uno, S. Urquijo, P. Vanhoefer, P. Varner, G. Varvell, K. E. Vinokurova, A. Vorobyev, V. Wang, C. H. Wang, M. -Z. Wang, P. Watanabe, Y. Williams, K. M. Won, E. Yabsley, B. D. Yamamoto, H. Yamaoka, J. Yamashita, Y. Yuan, C. Z. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. TI First measurement of phi(3) with a model-independent Dalitz plot analysis of B-+/- -> DK +/-, D -> K-S(0)pi(+)pi(-) decay SO PHYSICAL REVIEW D LA English DT Article ID DETECTOR; SEARCH AB We present the first measurement of the angle phi(3) of the unitarity triangle using a model-independent Dalitz plot analysis of B-+/- -> DK +/-, D -> K-S(0)pi(+)pi(-) ecays. The method uses, as input, measurements of the strong phase of the D -> K-S(0)pi(+)pi(-) amplitude from the CLEO Collaboration. The result is based on the full data set of 772 x 10(6) B (B) over bar pairs collected by the Belle experiment at the Gamma(4S) resonance. We obtain phi(3) = (77.3(-14.9)(+15.1) +/- 4.1 +/- 4.3)degrees and the suppressed amplitude ratio r(B) = 0.145 +/- 0.030 +/- 0.010 +/- 0.011. Here the first error is statistical, the second is the experimental systematic uncertainty, and the third is the error due to the precision of the strong-phase parameters obtained by CLEO. C1 [Aihara, H.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Arinstein, K.; Aulchenko, V.; Bondar, A.; Eidelman, S.; Epifanov, D.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Matvienko, D.; Poluektov, A.; Shwartz, B.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] SB RAS, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Urquijo, P.] Univ Bonn, Bonn, Germany. [Dolezal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Kinoshita, K.; Liu, Y.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Chang, M. -C.] Fu Jen Catholic Univ, Dept Phys, Taipei, Taiwan. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Olsen, S. L.; Sahoo, H.; Varner, G.; Yamaoka, J.] Univ Hawaii, Honolulu, HI 96822 USA. [Haba, J.; Itoh, R.; Nakao, M.; Nishida, S.; Sakai, Y.; Sumisawa, K.; Trabelsi, K.; Uehara, S.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima, Japan. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati, India. [Libby, J.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Liu, Z. Q.; Wang, P.; Yuan, C. Z.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Schwanda, C.] Inst High Energy Phys, Vienna, Austria. [Belous, K.; Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino, Russia. [Aushev, T.; Chilikin, K.; Chistov, R.; Drutskoy, A.; Liventsev, D.; Mizuk, R.; Pakhlova, G.; Solovieva, E.] Inst Theoret & Expt Phys, Moscow, Russia. [Bracko, M.; Golob, B.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Smerkol, P.; Staric, M.] J Stefan Inst, Ljubljana, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa, Japan. [Feindt, M.; Kronenbitter, B.; Kuhr, T.; Roehrken, M.; Zupanc, A.] Karlsruher Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul, South Korea. [Hyun, H. J.; Kim, H. J.; Kim, H. O.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Louvot, R.; Schneider, O.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Dalseno, J.; Kiesling, C.; Koblitz, S.; Moll, A.; Prothmann, K.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Iijima, T.; Mori, T.; Ohshima, T.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Bischofberger, M.; Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 630, Japan. [Wang, C. H.] Natl United Univ, Miaoli, Taiwan. [Chang, P.; Hou, W. -S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Bozek, A.; Natkaniec, Z.; Rozanska, M.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata, Japan. [Kawasaki, T.; Miyata, H.] Niigata Univ, Niigata, Japan. [Stanic, S.] Univ Nova Gor, Nova Gorica, Slovenia. [Nakano, E.] Osaka City Univ, Osaka 558, Japan. [Asner, D. M.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Singh, J. B.] Panjab Univ, Chandigarh, India. [Muramatsu, N.] Osaka Univ, Nucl Phys Res Ctr, Osaka, Japan. [Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.; Olsen, S. L.; Ryu, S.] Seoul Natl Univ, Seoul, South Korea. [Choi, Y.; Park, C. W.; Park, K. S.] Sungkyunkwan Univ, Suwon, South Korea. [Bakich, A. M.; Sibidanov, A.; Varvell, K. E.; Yabsley, B. D.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Gaur, V.; Mohanty, G. B.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Prothmann, K.; Simon, F.] Tech Univ Munich, D-8046 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 274, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi, Japan. [Ishikawa, A.; Sanuki, T.; Sato, Y.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 158, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo, Japan. [Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 990, Japan. [Iwabuchi, M.; Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea. RP Aihara, H (reprint author), Univ Tokyo, Dept Phys, Tokyo, Japan. RI Aihara, Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Nitoh, Osamu/C-3522-2013; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014 OI Aihara, Hiroaki/0000-0002-1907-5964; Trabelsi, Karim/0000-0001-6567-3036; Krokovny, Pavel/0000-0002-1236-4667; Chilikin, Kirill/0000-0001-7620-2053; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Solovieva, Elena/0000-0002-5735-4059 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; National Natural Science Foundation of China [10575109, 10775142, 10875115, 10825524]; Ministry of Education, Youth and Sports of the Czech Republic [LA10033, MSM0021620859]; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; BK21 and WCU program of the Ministry Education Science and Technology; National Research Foundation of Korea; GSDC of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education; Ministry of Education and Science of the Russian Federation; Russian Federal Agency for Atomic Energy; Slovenian Research Agency; Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation; MEXT for Science Research in a Priority Area ("New Development of Flavor Physics''); JSPS for Creative Scientific Research ("Evolution of Taulepton Physics''); Russian Presidential Grant for support of young scientists [MK-1403.2011.2] FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; the National Natural Science Foundation of China under Contract No. 10575109, 10775142, 10875115 and 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LA10033 and MSM0021620859; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea, and GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics''), and from JSPS for Creative Scientific Research ("Evolution of Taulepton Physics''). This research is partially funded by the Russian Presidential Grant for support of young scientists, Grant No. MK-1403.2011.2. NR 25 TC 25 Z9 25 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 26 PY 2012 VL 85 IS 11 AR 112014 DI 10.1103/PhysRevD.85.112014 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 964GA UT WOS:000305680800001 ER PT J AU Roach, WM Beringer, DB Skuza, JR Oliver, WA Clavero, C Reece, CE Lukaszew, RA AF Roach, W. M. Beringer, D. B. Skuza, J. R. Oliver, W. A. Clavero, C. Reece, C. E. Lukaszew, R. A. TI Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID GROWTH AB Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization. C1 [Roach, W. M.; Clavero, C.; Lukaszew, R. A.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Beringer, D. B.; Lukaszew, R. A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Skuza, J. R.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Oliver, W. A.] Virginia Commonwealth Univ, Dept Mech Engn, Richmond, VA 23284 USA. [Reece, C. E.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Roach, WM (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. EM wmroach@email.wm.edu RI Skuza, Jonathan/E-9048-2010; Clavero, Cesar/C-4391-2008 OI Skuza, Jonathan/0000-0002-9252-2708; Clavero, Cesar/0000-0001-6665-3141 FU Defense Threat Reduction Agency [HDTRA1-10-1-0072]; U.S. Department of Energy [DE-AC05-06OR23177] FX This work was funded by the Defense Threat Reduction Agency (HDTRA1-10-1-0072) and the U.S. Department of Energy (DE-AC05-06OR23177). NR 22 TC 7 Z9 7 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 26 PY 2012 VL 15 IS 6 AR 062002 DI 10.1103/PhysRevSTAB.15.062002 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 964JN UT WOS:000305690400001 ER PT J AU Liang, ZQ Gregg, BA AF Liang, Ziqi Gregg, Brian A. TI Compensating Poly(3-hexylthiophene) Reveals Its Doping Density and Its Strong Exciton Quenching by Free Carriers SO ADVANCED MATERIALS LA English DT Article DE charge transport; conjugated polymers; doping; organic electronics; photovoltaic devices ID HETEROJUNCTION SOLAR-CELLS; CHARGE-LIMITED CURRENTS; PI-CONJUGATED POLYMERS; OPEN-CIRCUIT VOLTAGE; TREATING POLY(3-HEXYLTHIOPHENE); PHOTOVOLTAIC CELLS; QUANTUM EFFICIENCY; TRANSPORT; SEMICONDUCTORS; KINETICS AB Adding increasing quantities of an n-type compensating dopant, cobaltocene, to poly(3-hexylthiophene) reveals an almost perfect mirror symmetry between the conductivity and the luminescence intensity. The sharp minimum/maximum shows that the uncompensated p-type doping density is 1.2 x 10(18) cm(-3) and that excitons are strongly quenched by free charge carriers, not by bound charges. C1 [Liang, Ziqi; Gregg, Brian A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Liang, ZQ (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM ziqi.liang@nrel.gov; brian.gregg@nrel.gov FU U.S. Department of Energy, Office of Science, Basic Energy Science, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308] FX We thank Justin Johnson for assistance with the luminescence lifetime measurements. This work was funded by the U.S. Department of Energy, Office of Science, Basic Energy Science, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 43 TC 34 Z9 34 U1 2 U2 63 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 26 PY 2012 VL 24 IS 24 BP 3258 EP 3262 DI 10.1002/adma.201201157 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 961FV UT WOS:000305450500015 PM 22570320 ER PT J AU Jesche, A Dennis, KW Kreyssig, A Canfield, PC AF Jesche, A. Dennis, K. W. Kreyssig, A. Canfield, P. C. TI Nearly itinerant ferromagnetism in CaNi2 and CaNi3 SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-SUSCEPTIBILITY; HEAT; PRESSURE; BEHAVIOR; SYSTEM; PD AB Single crystals of CaNi2 and CaNi3 are successfully grown out of excess Ca. Both compounds manifest a metallic ground state with enhanced, temperature-dependent magnetic susceptibility. The relatively high Stoner factors of Z = 0.79 and 0.87 found for CaNi2 and CaNi3, respectively, reveal their close vicinity to ferromagnetic instabilities. The pronounced field dependence of the magnetic susceptibility of CaNi3 at low temperatures (T < 25 K) suggests strong ferromagnetic fluctuations. A corresponding contribution to the specific heat with a temperature dependence of T(3)lnT is also observed. C1 [Jesche, A.; Dennis, K. W.; Kreyssig, A.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kreyssig, A.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Jesche, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM jesche@ameslab.gov RI Canfield, Paul/H-2698-2014 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX The authors thank H. Hodovanets, S. K. Kim, X. Lin, S. M. Sauerbrei, and S. Ran for technical support. S. L. Bud'ko is acknowledged for technical support as well as for fruitful (Kirsche) discussions. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 24 TC 1 Z9 1 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 26 PY 2012 VL 85 IS 22 AR 224432 DI 10.1103/PhysRevB.85.224432 PG 6 WC Physics, Condensed Matter SC Physics GA 964FA UT WOS:000305678200006 ER PT J AU Shapiro, MC Riggs, SC Stone, MB de la Cruz, CR Chi, S Podlesnyak, AA Fisher, IR AF Shapiro, M. C. Riggs, Scott C. Stone, M. B. de la Cruz, C. R. Chi, S. Podlesnyak, A. A. Fisher, I. R. TI Structure and magnetic properties of the pyrochlore iridate Y2Ir2O7 SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON POWDER DIFFRACTION; TRANSITION AB Neutron powder diffraction and inelastic measurements were performed examining the 5d pyrochlore Y2Ir2O7. Temperature-dependent measurements were performed between 3.4 K and 290 K, spanning the magnetic transition at 155 K. No sign of any structural or disorder-induced phase transition was observed over the entire temperature range. In addition, no sign of magnetic long-range order was observed to within the sensitivity of the instrumentation. These measurements do not rule out long-range magnetic order, but the neutron-powder-diffraction structural refinements do put an upper bound for the ordered iridium moment of similar to 0.2 mu(B)/Ir ( for a magnetic structure with wave vector Q not equal 0) or similar to 0.5 mu(B)/Ir (for Q = 0). C1 [Shapiro, M. C.; Riggs, Scott C.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Shapiro, M. C.; Riggs, Scott C.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Shapiro, M. C.; Riggs, Scott C.; Fisher, I. R.] Stanford Inst Energy & Mat Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Stone, M. B.; de la Cruz, C. R.; Chi, S.; Podlesnyak, A. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Shapiro, MC (reprint author), Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RI Stone, Matthew/G-3275-2011; Podlesnyak, Andrey/A-5593-2013; Instrument, CNCS/B-4599-2012; dela Cruz, Clarina/C-2747-2013; Chi, Songxue/A-6713-2013; BL18, ARCS/A-3000-2012 OI Stone, Matthew/0000-0001-7884-9715; Podlesnyak, Andrey/0000-0001-9366-6319; dela Cruz, Clarina/0000-0003-4233-2145; Chi, Songxue/0000-0002-3851-9153; FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE); US DOE, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX We thank Robert M. White for valuable discussions. The research at Oak Ridge National Laboratory's High Flux Isotope Reactor and Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE). Work at Stanford was supported by the US DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515. NR 19 TC 34 Z9 34 U1 3 U2 87 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 26 PY 2012 VL 85 IS 21 AR 214434 DI 10.1103/PhysRevB.85.214434 PG 5 WC Physics, Condensed Matter SC Physics GA 964EV UT WOS:000305677600004 ER PT J AU Chtchelkatchev, NM Glatz, A AF Chtchelkatchev, N. M. Glatz, A. TI Analytical description of the quantum-mesoscopic-classical transition in systems with quasidiscrete environments SO PHYSICAL REVIEW E LA English DT Article ID ULTRASMALL TUNNEL-JUNCTIONS; PHASE-TRANSITIONS; COULOMB BLOCKADE; DYNAMICS AB We investigate the dynamic properties of inhomogeneous nanomaterials, which appear in analytical descriptions typically as a series of delta functions with corresponding Gibbs weights. We focus on observables relevant for transport theories of Josephson junction arrays and granular systems near the superconductor-insulator transition. Furthermore, our description applies to the theory of tunnel junctions exchanging energy with a "bath," the latter having a discrete spectrum. Using the matrix theta-function formalism, we find an analytical expression for the transport characteristics capturing the complete temperature-driven transition from the quantum to the classical regime. C1 [Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. [Chtchelkatchev, N. M.] Moscow Inst Phys & Technol, Dept Theoret Phys, Moscow 141700, Russia. [Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Glatz, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Chtchelkatchev, NM (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. RI Chtchelkatchev, Nikolay/L-1273-2013 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483 FU Russian Foundation for Basic Research [10-02-00700, 10-02-00882, 11-02-00519]; RAS; U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX The authors thank A. Petkovic and V. Vinokur for active discussions in the initial stage of the work. We also thank M. Fistul for helpful comments and T.Baturina for interest in our work. This work was supported in part by the Russian Foundation for Basic Research (Grant No. 10-02-00700, 10-02-00882, and 11-02-00519), Programs of RAS and by the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357. NR 36 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUN 26 PY 2012 VL 85 IS 6 AR 061129 DI 10.1103/PhysRevE.85.061129 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 964HG UT WOS:000305684100004 PM 23005073 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Gonzalez, BA Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Caminada, LM Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Colas, J Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S De Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dueren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Haller, J Hamacher, K Hamal, P Hamer, M Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, AD Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ippolito, V Quiles, AI Isaksson, C Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keeler, R Kehoe, R Keil, M Kekelidze, GD Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruth, A Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS de Andrade, LM Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maurer, J Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morin, J Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Neep, TJ Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olariu, A Olcese, M Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, A Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Plamondon, M Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, J Price, LE Price, MJ Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romano, M Romanov, VM Romeo, G Adam, ER Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumiantsev, V Rumyantsev, L Runge, K Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuler, G Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Scott, WG Searcy, J Sedov, G Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smart, BH Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stevenson, K Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tanasijczuk, AJ Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Viegas, FJTA Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vanadia, M Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendland, D Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xella, S Xiao, M Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Caminada, L. M. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Haller, J. Hamacher, K. Hamal, P. Hamer, M. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manhaes de Andrade Filho, L. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maurer, J. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morin, J. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu Neep, T. J. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olcese, M. Olchevski, A. G. Olivares Pino, S. A. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, A. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Plamondon, M. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, J. Price, L. E. Price, M. J. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romano, M. Romanov, V. M. Romeo, G. Romero Adam, E. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumiantsev, V. Rumyantsev, L. Runge, K. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuler, G. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph Schwanenberger, C. Schwartzman, A. Schwemling, Ph Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smart, B. H. Smirnov, S. Yu Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vanadia, M. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendland, D. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for Pair Production of a Heavy Up-Type Quark Decaying to a W Boson and a b Quark in the lepton plus jets Channel with the ATLAS Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOP-QUARK AB A search is presented for production of a heavy up-type quark (t') together with its antiparticle, assuming subsequent decay to a W boson and a b quark, t'(t) over bar' -> W(+)bW(-)(b) over bar. The search is based on 1.04 fb(-1) of proton-proton collisions at root s = 7 TeV collected by the ATLAS detector at the CERN Large Hadron Collider. Data are analyzed in the lepton + jets final state, characterized by a high transverse momentum isolated electron or muon, high missing transverse momentum, and at least three jets. No significant excess of events above the background expectation is observed. A 95% C.L. lower limit of 404 GeV is set for the mass of the t' quark. C1 [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Le Menedeu, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Fiolhais, M. C. N.; Krstic, J.; Popovic, D. S.; Sijacki, Dj; Simic, Lj] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Rinaldi, L.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Hazen, E.; Love, J.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Coura Torres, R.; Da Silva, P. V. M.; Maidantchik, C.; Manhaes de Andrade Filho, L.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Caramarcu, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Gabaldon, C.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Jonsson, O.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Kotamaeki, M. J.; Lamanna, M.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Palestini, S.; Pauly, T.; Pengo, R.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Olivares Pino, S. A.; Panes, B.; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Li, H.; Meng, Z.; Miao, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Qin, Z.; Rubinskiy, I.; Sedov, G.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Qin, Z.; Rubinskiy, I.; Sedov, G.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Selbach, K. E.; Smart, B. H.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Tbilisi State Univ, E Andronikashvili Inst Phys, GE-380086 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Kasieczka, G.; Narayan, R.; Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Mineev, M.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Krumnack, N.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Pozdnyakov, V.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, London, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Klinger, J. A.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Guler, H.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu; Smirnov, Y.; Soldatov, E.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Bronner, J.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, NL-6525 ED Nijmegen, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nakano, I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, A.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, A.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hall, D.; Hawes, B. M.; Howell, D. F.; Huffman, T. B.; Issever, C.; Jones, G.; Karagoz, M.; King, R. S. B.; Kogan, L. A.; Korn, A.; Kundu, N.; Larner, A.; Lewis, A.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Do Valle Wemans, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rossi, E.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Mal, P.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondament Univers, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Mockett, P.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Kim, H.; Klimek, P.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Kim, H.; Klimek, P.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Hershenhorn, A. D.; Kajomovitz, E.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Beauchemin, P. H.; Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bondioli, M.; Ciobotaru, M. D.; Deng, J.; Eschrich, I. Gough; Hawkins, D.; Lankford, A. J.; Nelson, A.; Okawa, H.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Stapnes, S.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Stapnes, S.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Stapnes, S.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Stapnes, S.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Stapnes, S.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Coccaro, A.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Domaine Sci Doua, Villeurbanne, France. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Toronto, ON, Canada. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Mitsou, Vasiliki/D-1967-2009; Gladilin, Leonid/B-5226-2011; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Kepka, Oldrich/G-6375-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; M, Saleem/B-9137-2013; messina, andrea/C-2753-2013; valente, paolo/A-6640-2010; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Ishikawa, Akimasa/G-6916-2012; Di Micco, Biagio/J-1755-2012; Negri, Andrea/J-2455-2012; Giordano, Raffaele/J-3695-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Wolter, Marcin/A-7412-2012; Kramarenko, Victor/E-1781-2012; Ferrando, James/A-9192-2012; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; Passaggio, Stefano/B-6843-2013; Gutierrez, Phillip/C-1161-2011; Fazio, Salvatore /G-5156-2010; Fabbri, Laura/H-3442-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Moorhead, Gareth/B-6634-2009; Alexa, Calin/F-6345-2010; Takai, Helio/C-3301-2012; Doyle, Anthony/C-5889-2009; semprini cesari, nicola/G-7817-2012; Petrucci, Fabrizio/G-8348-2012; Smirnov, Sergei/F-1014-2011; Wemans, Andre/A-6738-2012; Veneziano, Stefano/J-1610-2012; Goncalo, Ricardo/M-3153-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016 OI Mitsou, Vasiliki/0000-0002-1533-8886; Gladilin, Leonid/0000-0001-9422-8636; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; valente, paolo/0000-0002-5413-0068; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Ferrando, James/0000-0002-1007-7816; Cascella, Michele/0000-0003-2091-2501; Fabbri, Laura/0000-0002-4002-8353; Delmastro, Marco/0000-0003-2992-3805; Moorhead, Gareth/0000-0002-9299-9549; Takai, Helio/0000-0001-9253-8307; Doyle, Anthony/0000-0001-6322-6195; Petrucci, Fabrizio/0000-0002-5278-2206; Smirnov, Sergei/0000-0002-6778-073X; Wemans, Andre/0000-0002-9669-9500; Veneziano, Stefano/0000-0002-2598-2659; abi, babak/0000-0001-7036-9645; Quinonez Granados, Fernando Andres/0000-0002-0153-6160; Belanger-Champagne, Camille/0000-0003-2368-2617; Lacasta, Carlos/0000-0002-2623-6252; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Farrington, Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson, Aidan/0000-0002-1659-8284; Canelli, Florencia/0000-0001-6361-2117; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Succurro, Antonella/0000-0003-0227-2803; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Cranmer, Kyle/0000-0002-5769-7094; Pomarede, Daniel/0000-0003-2038-0488; Vos, Marcel/0000-0001-8474-5357; Casadei, Diego/0000-0002-3343-3529; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Goncalo, Ricardo/0000-0002-3826-3442; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Della Volpe, Domenico/0000-0001-8530-7447; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS; ERC, European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, The Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (USA) and in the Tier-2 facilities worldwide. NR 37 TC 26 Z9 26 U1 5 U2 68 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2012 VL 108 IS 26 AR 261802 DI 10.1103/PhysRevLett.108.261802 PG 18 WC Physics, Multidisciplinary SC Physics GA 964JF UT WOS:000305689400013 ER PT J AU Cherry, JF Carlson, J Friedland, A Fuller, GM Vlasenko, A AF Cherry, John F. Carlson, J. Friedland, Alexander Fuller, George M. Vlasenko, Alexey TI Neutrino Scattering and Flavor Transformation in Supernovae SO PHYSICAL REVIEW LETTERS LA English DT Article ID CORE-COLLAPSE SUPERNOVAE; ELECTRON-CAPTURE SUPERNOVAE; NE-MG CORES; GRAVITATIONAL COLLAPSE; SPECTRA FORMATION; SIMULATIONS; EXPLOSIONS; NUCLEOSYNTHESIS; OSCILLATIONS; EVOLUTION AB We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times but could be inadequate in early epochs of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new approach in neutrino flavor transformation modeling. C1 [Cherry, John F.; Fuller, George M.; Vlasenko, Alexey] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Cherry, John F.; Carlson, J.; Friedland, Alexander; Fuller, George M.; Vlasenko, Alexey] New Mexico Consortium, Neutrino Engn Inst, Los Alamos, NM 87545 USA. [Carlson, J.; Friedland, Alexander] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Cherry, JF (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. FU NSF [PHY-09-70064]; DOE Office of Science; LDRD Program; Open Supercomputing at LANL FX This work was supported in part by NSF Grant No. PHY-09-70064 at UCSD and by the DOE Office of Science, the LDRD Program, and Open Supercomputing at LANL. We thank B. Messer and A. Mezzacappa for providing their supernova model. We would like to thank V. Cirigliano, Y.-Z. Qian, the Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense Matter at LANL, and the New Mexico Consortium. NR 67 TC 56 Z9 56 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2012 VL 108 IS 26 AR 261104 DI 10.1103/PhysRevLett.108.261104 PG 5 WC Physics, Multidisciplinary SC Physics GA 964JF UT WOS:000305689400009 PM 23004955 ER PT J AU Ghaemi, P Cayssol, J Sheng, DN Vishwanath, A AF Ghaemi, Pouyan Cayssol, Jerome Sheng, D. N. Vishwanath, Ashvin TI Fractional Topological Phases and Broken Time-Reversal Symmetry in Strained Graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTIZED HALL CONDUCTANCE; HONEYCOMB LATTICE; DIRAC FERMIONS; LANDAU-LEVELS; TRANSITION; FIELD; GAS AB We show that strained or deformed honeycomb lattices are promising platforms to realize fractional topological quantum states in the absence of any magnetic field. The strain-induced pseudomagnetic fields are oppositely oriented in the two valleys and can be as large as 60-300 T as reported in recent experiments. For strained graphene at neutrality, a spin-or a valley-polarized state is predicted depending on the value of the on-site Coulomb interaction. At fractional filling, the unscreened Coulomb interaction leads to a valley-polarized fractional quantum Hall liquid which spontaneously breaks time-reversal symmetry. Motivated by artificial graphene systems, we consider tuning the short-range part of interactions and demonstrate that exotic valley symmetric states, including a valley fractional topological insulator and a spin triplet superconductor, can be stabilized by such interaction engineering. C1 [Ghaemi, Pouyan] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Ghaemi, Pouyan; Cayssol, Jerome; Vishwanath, Ashvin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ghaemi, Pouyan; Vishwanath, Ashvin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Cayssol, Jerome] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [Cayssol, Jerome] Univ Bordeaux, F-33400 Talence, France. [Cayssol, Jerome] CNRS, LOMA, UMR 5798, F-33400 Talence, France. [Sheng, D. N.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. RP Ghaemi, P (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM pouyan@berkeley.edu FU EU; ANR [2010-BLANC-041902]; DOE Office of Basic Energy Sciences [DE-FG02-06ER46305, DE-AC02-05CH1123]; NSF [DMR-0958596]; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy [DE-AC02-05CH11231]; institute for condensed matter theory at the University of Illinois at Urbana-Champaign FX We are grateful to J. Alicea and N. Regnault for useful comments. J. C. acknowledges support from EU/FP7 under Contract TEMSSOC and from ANR through Project No. 2010-BLANC-041902 (ISOTOP). This work is also supported by DOE Office of Basic Energy Sciences under Grant No. DE-FG02-06ER46305 (D. N. S.) and DE-AC02-05CH1123 (A. V.), the NSF Grant No. DMR-0958596 for instrument (D. N. S.), as well as the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy Contract No. DE-AC02-05CH11231 (P. G.). A. V. acknowledges hospitality from ICTS Bangalore where part of this work was completed. P. G. also acknowledges support from the institute for condensed matter theory at the University of Illinois at Urbana-Champaign. NR 47 TC 51 Z9 52 U1 2 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2012 VL 108 IS 26 AR 266801 DI 10.1103/PhysRevLett.108.266801 PG 6 WC Physics, Multidisciplinary SC Physics GA 964JF UT WOS:000305689400031 PM 23005001 ER PT J AU Graves, WS Kartner, FX Moncton, DE Piot, P AF Graves, W. S. Kaertner, F. X. Moncton, D. E. Piot, P. TI Intense Superradiant X Rays from a Compact Source Using a Nanocathode Array and Emittance Exchange SO PHYSICAL REVIEW LETTERS LA English DT Article ID EMISSION AB A novel method of producing intense short wavelength radiation from relativistic electrons is described. The electrons are periodically bunched at the wavelength of interest enabling in-phase superradiant emission that is far more intense than from unbunched electrons. The periodic bunching is achieved in steps beginning with an array of beamlets emitted from a nanoengineered field emission array. The beamlets are then manipulated and converted to a longitudinal density modulation via a transverse-to-longitudinal emittance exchange. Periodic bunching at short wavelength is shown to be possible, and the partially coherent x-ray properties produced by inverse Compton scattering from an intense laser are estimated. The proposed method increases the efficiency of x-ray production by several orders of magnitude, potentially enabling compact x-ray sources to produce brilliance and flux similar to major synchrotron facilities. C1 [Graves, W. S.; Kaertner, F. X.; Moncton, D. E.] MIT, Cambridge, MA 02139 USA. [Kaertner, F. X.] DESY, Ctr Free Elect Laser Sci, D-22607 Hamburg, Germany. [Piot, P.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. [Piot, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Graves, WS (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. FU NSF [DMR-1042342]; DOE [DE-FG02-10ER46745, DE-FG02-08ER41532]; DARPA [N66001-11-1-4192] FX We are grateful to Karl Berggren and Luis Velasquez-Garcia for discussions of the field emission array properties. This work was supported by NSF Grant No. DMR-1042342, DOE Grants No. DE-FG02-10ER46745 and No. DE-FG02-08ER41532, and DARPA Grant No. N66001-11-1-4192. NR 23 TC 43 Z9 43 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2012 VL 108 IS 26 AR 263904 DI 10.1103/PhysRevLett.108.263904 PG 5 WC Physics, Multidisciplinary SC Physics GA 964JF UT WOS:000305689400020 PM 23004981 ER EF