FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Deng, ZD Carlson, TJ AF Deng, Z. Daniel Carlson, Thomas J. TI Editorial: Time for green certification for all hydropower? SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Editorial Material DE government policies; hydroelectric power ID ACOUSTIC TELEMETRY SYSTEM; PASSAGE SURVIVAL; BLADE-STRIKE; SALMON; TRACKING; TURBINES; INSTRUMENTATION; BEHAVIOR; DESIGN; MODELS C1 [Deng, Z. Daniel; Carlson, Thomas J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 NR 27 TC 0 Z9 0 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD MAR 1 PY 2012 VL 4 IS 2 AR 020401 DI 10.1063/1.3703693 PG 4 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 934BU UT WOS:000303416100001 ER PT J AU Turner, JA AF Turner, John A. TI Preface to Special Topic: Selected Papers From the Tenth International Congress of the Mexican Society of Hydrogen-Renewable Energies, TOLUCA, MEXICO, 2010 SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Editorial Material DE air pollution; bioenergy conversion; hydrogen production; renewable energy sources; solar absorber-convertors; sustainable development C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Turner, JA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 3 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD MAR 1 PY 2012 VL 4 IS 2 AR 021101 DI 10.1063/1.3698159 PG 1 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 934BU UT WOS:000303416100002 ER PT J AU Xu, JS Deng, ZD Martinez, JJ Carlson, TJ Myers, JR Weiland, MA AF Xu, Jinshan Deng, Z. Daniel Martinez, Jayson J. Carlson, Thomas J. Myers, Joshua R. Weiland, Mark A. TI Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound SO MARINE TECHNOLOGY SOCIETY JOURNAL LA English DT Article DE underwater acoustics; noise measurement; sound propagation; tidal power ID TELEMETRY SYSTEM; NOISE; DESIGN; OCEAN; INSTRUMENTATION; CALIFORNIA; TRACKING; SPECTRA; IMPACT; ISLAND AB Admiralty Inlet, Puget Sound, Washington, has been selected as a potential tidal energy site. It is located near shipping lanes, is possibly a highly variable acoustic environment, and is frequented by the endangered Southern Resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site were acquired at different depths using a cabled vertical line array from two cruises during flood and ebb tidal periods in May and June 2011. The ambient noise level decreases approximately 5 dB re 1 mu Pa per octave for frequency ranges of 1-70 kHz and increases approximately 5 dB re 1 mu Pa per octave for the frequency from 70 to 100 kHz. The difference between noise pressure levels in different months varies from 10 to 30 dB re 1 mu Pa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range of 1-50 kHz, and the variation could be as high as 30 dB re 1 mu Pa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deployment and operation of a tidal power generation alert system. C1 [Xu, Jinshan; Deng, Z. Daniel; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Batten, William/D-2390-2010; Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Program FX The ongoing study is funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Program. The study was conducted at Pacific Northwest National Laboratory (PNNL), operated by Battelle for the U.S. Department of Energy. For their help with this study, the authors thank Brian Polagye, Jim Thompson, and Chris Bassett (University of Washington); Brandon Southall (SEA, Inc.); Jason Wood (Sea Mammal Research Institute, University of St. Andrews); and Tylor Abel, Charlie Brandt, Andrea Copping, Andrea Currie, Michele Halvorsen, Mark Jones, Shari Matzner, Bob Mueller, Gene Ploskey, Jennifer States, Matt Taubman, John Vavrinec, and Ning Zhou (PNNL). NR 26 TC 3 Z9 3 U1 0 U2 13 PU MARINE TECHNOLOGY SOC INC PI COLUMBIA PA 5565 STERRETT PLACE, STE 108, COLUMBIA, MD 21044 USA SN 0025-3324 EI 1948-1209 J9 MAR TECHNOL SOC J JI Mar. Technol. Soc. J. PD MAR-APR PY 2012 VL 46 IS 2 BP 65 EP 73 PG 9 WC Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 941LE UT WOS:000303963900006 ER PT J AU Xu, JS Deng, ZD Carlson, TJ Moore, B AF Xu, Jinshan Deng, Z. Daniel Carlson, Thomas J. Moore, Brian TI Target Strength of Southern Resident Killer Whales (Orcinus orca): Measurement and Modeling SO MARINE TECHNOLOGY SOCIETY JOURNAL LA English DT Article DE target strength; Southern Resident killer whales; active sonar system; tidal power ID ACOUSTIC TELEMETRY SYSTEM; SPERM WHALE; FISH; SCATTERING; INSTRUMENTATION; REFLECTIVITY; TRACKING; DOLPHIN; DESIGN; DEEP AB A major criterion for permitting the deployment of tidal turbines in Washington State's Puget Sound is management of risk of injury to killer whales from collision with moving turbine blades. An active monitoring system is being proposed to detect and track killer whales within proximity of turbines and alert turbine operators of their presence and location to permit temporary turbine shutdown when the risk of collision is high. Knowledge of the target strength (TS) of killer whales is critical to the design and application of active acoustic monitoring systems. In 1996, a study of the TS directivity of a 2.2-m-long bottlenose dolphin at an insonifying frequency of 67 kHz was performed. Noting that killer whales, which are dolphins, are morphologically similar to bottlenose dolphins and then assuming allometry, we estimated the relative broadside and tail aspect TS of a 7.5-m-long adult killer whale at an insonifying frequency of 67 kHz to be -8 and -28 dB, respectively. We used a three-layer model for plane wave reflection of sound at 200 kHz from the lung of killer whales to estimate their TS. We assessed the accuracy of our killer whale IS estimates by comparing them with IS estimates of free swimming killer whales obtained using a split-beam active acoustic system operating at 200 kHz. The killer whale TS estimates based on the preliminary model were in good agreement with those obtained for free swimming killer whales. C1 [Xu, Jinshan; Deng, Z. Daniel; Carlson, Thomas J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Moore, Brian] BioSonics Inc, Seattle, WA USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Department of Energy Office of Energy Efficiency and Renewable Energy FX The work described in this article was funded by The Wind and Water Power Program of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The study was conducted at Pacific Northwest National Laboratory (PNNL) in Richland, Washington, which is operated by Battelle for the U.S. Department of Energy. The authors thank Tim Acker of BioSonics, Inc., for providing the original data. We also thank Charlie Brandt, Andrea Copping, Jayson Martinez, Graysen Squeochs, and Andrea Currie of PNNL, who provided comments and technical help in preparing the manuscript. NR 32 TC 2 Z9 2 U1 1 U2 20 PU MARINE TECHNOLOGY SOC INC PI COLUMBIA PA 5565 STERRETT PLACE, STE 108, COLUMBIA, MD 21044 USA SN 0025-3324 J9 MAR TECHNOL SOC J JI Mar. Technol. Soc. J. PD MAR-APR PY 2012 VL 46 IS 2 BP 74 EP 84 PG 11 WC Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 941LE UT WOS:000303963900007 ER PT J AU Pearson, WH Deriso, RB Elston, RA Hook, SE Parker, KR Anderson, JW AF Pearson, Walter H. Deriso, Richard B. Elston, Ralph A. Hook, Sharon E. Parker, Keith R. Anderson, Jack W. TI Hypotheses concerning the decline and poor recovery of Pacific herring in Prince William Sound, Alaska SO REVIEWS IN FISH BIOLOGY AND FISHERIES LA English DT Review DE Pacific herring; Clupea pallasi; Fisheries collapse; Fisheries recovery; Prince William Sound; Alaska; Exxon Valdez oil spill ID VIRAL HEMORRHAGIC SEPTICEMIA; EXXON-VALDEZ OIL; JUVENILE PINK SALMON; NORTH-AMERICAN STRAIN; CLUPEA-PALLASI; ICHTHYOPHONUS-HOFERI; ONCORHYNCHUS-GORBUSCHA; PUGET-SOUND; BERING-SEA; TEMPORAL VARIABILITY AB This paper updates previous reviews of the 1993 stock decline of Pacific herring (Clupea pallasi) in Prince William Sound, Alaska, and focuses on hypotheses about subsequent poor recovery. Recent age structured assessment modeling with covariate analysis indicates that the population dynamics of the sound's herring are influenced by oceanic factors, nutrition, and, most substantially, hatchery releases of juvenile pink salmon. For the 1993 decline, poor nutrition remains the most probable cause with disease a secondary response. Concerning poor recovery, we examined 16 potential factors and found three to be causal: oceanic factors, poor nutrition, and hatchery releases of juvenile pink salmon. Absences of strong year classes at both Sitka and Prince William Sound after 1993 indicate the action of large-scale ocean processes. Beyond regional-scale environmental factors, two factors specific to the sound influence the population dynamics of herring and are likely impeding recovery. First, pink salmon fry releases have increased to about 600 million annually and may disrupt feeding in young herring, which require adequate nutrition for growth and overwintering survival. Juvenile pink salmon and age-1 herring co-occur in nearshore areas of bays in late spring and summer, and available data on dietary overlap indicates potential competition between the age-1 juvenile herring and juvenile pink salmon. Field studies demonstrate that juvenile herring reduce food intake substantially in the presence of juvenile pink salmon. Second, overwintering humpback whales may consume potentially large amounts of adult herring, but further studies must confirm to what extent whale predation reduces herring biomass. C1 [Pearson, Walter H.] Peapod Res, Allendale, MI 49401 USA. [Deriso, Richard B.] Univ Calif San Diego, Scripps Inst Oceanog, Interamer Trop Tuna Commiss IATTC, La Jolla, CA 92093 USA. [Elston, Ralph A.] AquaTechnics Inc, Carlsborg, WA 98324 USA. [Hook, Sharon E.; Anderson, Jack W.] Battelle Marine Sci Lab, Sequim, WA 98382 USA. [Parker, Keith R.] Data Anal Grp, Cloverdale, CA 95425 USA. RP Pearson, WH (reprint author), Peapod Res, 7335 Watermark Dr, Allendale, MI 49401 USA. EM waltpearson@peapodresearch.com RI Hook, Sharon/D-9067-2011 FU Exxon Mobil Corporation FX We thank Michael Anderson, Michael Cobb, Lee Miller, Ann Skillman, Kathryn Sobocinski, and John Southard of Battelle Marine Sciences Laboratory in Sequim, Washington, and Karen Humphrey of Aquatechnics, for their dedicated efforts in compiling and presenting the information in this review. We thank Mark N. Maunder of Quantitative Resource Assessment LLC for his modeling aid in this effort. We thank Lawrence L. Moulton of MJM Research for sharing his raw data on the co-occurrence of pink salmon and herring in his tow net samples. We thank Kenneth A. Rose of Louisiana State University and John R. Skalski of the University of Washington for valuable discussions and for reviewing an earlier version of this paper. We also thank Douglas E. Hay of Nearshore Consulting for reviewing earlier manuscripts. Exxon Mobil Corporation supported this effort. NR 135 TC 16 Z9 16 U1 10 U2 78 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3166 EI 1573-5184 J9 REV FISH BIOL FISHER JI Rev. Fish. Biol. Fish. PD MAR PY 2012 VL 22 IS 1 BP 95 EP 135 DI 10.1007/s11160-011-9225-7 PG 41 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 940NA UT WOS:000303895100008 ER PT J AU Witte, TM Houk, RS AF Witte, Travis M. Houk, R. S. TI Origins of polyatomic ions in laser ablation-inductively coupled plasma-mass spectrometry: An examination of metal oxide ions and effects of nitrogen and helium in the aerosol gas flow SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE ICP-MS; Laser ablation; Polyatomic ion; Metal oxide ion ID LA-ICP-MS; ISOTOPE RATIO MEASUREMENTS; HIGH-RESOLUTION; ARGON PLASMA; MC-ICPMS; INTERFERENCES; DISSOCIATION; ATTENUATION; SAMPLES; MICROANALYSIS AB Differences in the origins of polyatomic ions in wet plasma conditions, as exist in solution inductively coupled plasma-mass spectrometry (ICP-MS), versus dry plasma conditions, found in laser ablation (LA)-ICP-MS, are investigated. Silicate and metal samples are ablated and gas kinetic temperature (T-gas) is measured to establish the origins of metal oxide (MO+) ions. MO+ ion abundances observed from both the ablation of silicate samples and metallic samples are found to correspond to formation of the polyatomic ion in the ICP. The same strategy is applied to oxide ratios measured when additional gases (N-2 and He) are introduced into the aerosol gas flow. N-2 is found to decrease the MO+/M+ signal ratio by maximizing atomic sensitivity at lower total gas loads. The addition of He reduces polyatomic ions throughout the plasma. Use of both N-2 and He produces the lowest MO+/M+ signal ratio and highest T-gas values at the position sampled in the ICP. By gaining a better understanding of the origin of polyatomic ions in LA-ICP-MS and their behavior in mixed gas plasmas, perhaps strategies can be developed to minimize polyatomic interferences in the mass spectrum. C1 [Witte, Travis M.; Houk, R. S.] Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Houk, RS (reprint author), Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM rshouk@iastate.edu FU National Science Foundation through Institute for Physical Research and Technology at ISU [CHE-0309381]; U. S. Department of Energy, Office of Nuclear Nonproliferation [NA-22]; Office of Basic Energy Sciences; U. S. Department of Energy by Iowa State University [DEAC02-07CH11358] FX This research was supported by the National Science Foundation (Award No. CHE-0309381) through the Institute for Physical Research and Technology at ISU. The ELEMENT 1 ICP-MS was purchased with funds provided by the U. S. Department of Energy, Office of Nuclear Nonproliferation (NA-22) and the Office of Basic Energy Sciences. The authors thank Dr. Scott Schlorholtz for preparing the silicate sample for analysis and Larry Jones and Arne Swanson for providing the Y metal sample. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DEAC02-07CH11358. NR 63 TC 13 Z9 13 U1 1 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD MAR PY 2012 VL 69 BP 9 EP 19 DI 10.1016/j.sab.2012.02.005 PG 11 WC Spectroscopy SC Spectroscopy GA 941IJ UT WOS:000303956600003 ER PT J AU Witte, TM Houk, RS AF Witte, Travis M. Houk, R. S. TI Metal argide (MAr+) ions are lost during ion extraction in laser ablation-inductively coupled plasma-mass spectrometry SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE ICP-MS; Laser ablation; Polyatomic ions; Metal argide ions; MAr+ ions ID X=0-3 BOND-ENERGIES; ELECTRONIC PARTITION-FUNCTIONS; COLLISION-INDUCED DISSOCIATION; HELIUM-ICP-MS; POLYATOMIC IONS; HIGH-RESOLUTION; ARGON; GAS; TEMPERATURE; SILANE AB The abundance of metal argide (MAr+) ions during laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is measured during ablation of pure samples of transition metals. As expected, the relative abundance of MAr+ ions to M+ ions for various elements increases as the dissociation energy (D-0) of the ion increases. Gas kinetic temperatures (T-gas) are determined from the calculated MAr+/M+ ratios and are used to indicate the origins of MAr+ ions. The determined T-gas values are very high, 8000 K to >= 20,000 K. which indicate that MAr+ ions are much less abundant in the mass spectrum than expected based upon plasma conditions. Collision-induced dissociation (CID) during the ion extraction process is suggested to be responsible for removal of MAr+ ions. Factors responsible for these collisions are discussed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Witte, Travis M.; Houk, R. S.] Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Houk, RS (reprint author), Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM rshouk@iastate.edu FU U. S. Department of Energy, Office of Nuclear Nonproliferation [NA-22]; Office of Basic Energy Sciences; U. S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This research was supported by the U. S. Department of Energy, Office of Nuclear Nonproliferation (NA-22). The XSeries 2 ICP-MS was purchased with funds provided by the U. S. Department of Energy, Office of Nuclear Nonproliferation (NA-22) and the Office of Basic Energy Sciences. The authors thank Larry Jones and the Materials Preparation Center at the Ames Laboratory for providing the transition metal samples. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 52 TC 4 Z9 4 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD MAR PY 2012 VL 69 BP 25 EP 31 DI 10.1016/j.sab.2012.02.008 PG 7 WC Spectroscopy SC Spectroscopy GA 941IJ UT WOS:000303956600005 ER PT J AU Lee, J Liu, XY Kitanidis, PK Kim, U Parker, J Bloom, A Lyon, R AF Lee, Jonghyun Liu, Xiaoyi Kitanidis, Peter K. Kim, Ungtae Parker, Jack Bloom, Aleisa Lyon, Robert TI Cost Optimization of DNAPL Remediation at Dover Air Force Base Site SO GROUND WATER MONITORING AND REMEDIATION LA English DT Article ID ENHANCED AQUIFER REMEDIATION; GROUNDWATER REMEDIATION; PARAMETER UNCERTAINTY; DESIGN; MANAGEMENT; SIMULATION; TRANSPORT; SYSTEM; MODEL AB This study investigates stochastic optimization of dense nonaqueous phase liquid (DNAPL) remediation design at Dover Air Force Base Area 5 using emulsified vegetable oil (EVO) injection. The Stochastic Cost Optimization Toolkit (SCOToolkit) is used for the study, which couples semianalytical DNAPL source depletion and transport models with parameter estimation, error propagation, and stochastic optimization modules that can consider multiple sources and remediation strategies. Model parameters are calibrated to field data conditions on prior estimates of parameters and their uncertainty. Monte Carlo simulations are then performed to identify optimal remediation decisions that minimize the expected net present value (NPV) cleanup cost while maintaining concentrations at compliance wells under the maximum contaminant level (MCL). The results show that annual operating costs could be reduced by approximately 50% by implementing the identified optimal remediation strategy. We also show that recalibration and reoptimization after 50 years using additional monitoring data could lead to a further 60% reduction in annual operating cost increases the reliability of the proposed remediation actions. C1 [Lee, Jonghyun; Kitanidis, Peter K.] Stanford Univ, Civil & Environm Engn Dept, Stanford, CA 94305 USA. [Liu, Xiaoyi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kim, Ungtae; Parker, Jack] Univ Tennessee, Civil & Environm Engn Dept, Knoxville, TN 37996 USA. [Bloom, Aleisa] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lyon, Robert] URS Corp, Gaithersburg, MD 20878 USA. RP Lee, J (reprint author), Stanford Univ, Civil & Environm Engn Dept, Stanford, CA 94305 USA. EM jonghyun@stanford.edu RI Liu, Xiaoyi/F-7697-2011 OI Liu, Xiaoyi/0000-0001-6576-3461 FU U.S. Department of Defense [ER-1611] FX This research was funded by the U.S. Department of Defense Strategic Environmental Research and Development Program (SERDP) Environmental Restoration Focus Area managed by Andrea Leeson under project ER-1611 entitled "Practical Cost Optimization of Characterization and Remediation Decisions at DNAPL sites with Consideration of Prediction Uncertainty." NR 35 TC 1 Z9 2 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1069-3629 J9 GROUND WATER MONIT R JI Ground Water Monit. Remediat. PD SPR PY 2012 VL 32 IS 2 BP 48 EP 56 DI 10.1111/j.1745-6592.2011.01382.x PG 9 WC Water Resources SC Water Resources GA 936MX UT WOS:000303595600004 ER PT J AU Abelev, B Adam, J Adamova, D Adare, AM Aggarwal, MM Rinella, GA Agocs, AG Agostinelli, A Salazar, SA Ahammed, Z Ahmad, N Masood, AA Ahn, SU Akindinov, A Aleksandrov, D Alessandro, B Molina, RA Alici, A Alkin, A Avina, EA Alt, T Altini, V Altinpinar, S Altsybeev, I Andrei, C Andronic, A Anguelov, V Anielski, J Anson, C Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arbor, N Arcelli, S Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Bach, M Badala, A Baek, YW Bailhache, R Bala, R Ferrolilli, RB Baldisseri, A Baldit, A Pedrosa, FBD Ban, J Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, IG Beck, H Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bergmann, C Berzano, D Betev, L Bhasin, A Bhati, AK Bianchi, N Bianchi, L Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Bock, N Bogdanovn, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bose, S Bossu, F Botje, M Bottger, S Boyer, B Braun-Munzinger, P Bregant, M Breitner, T Broz, M Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Bugaiev, K Busch, O Buthelezi, Z Orduna, DC Caffarri, D Cai, X Caines, H Villar, EC Camerini, P Roman, VC Romeo, GC Carena, F Carena, W Carlin, N Carminati, F Montoya, CAC Diaz, AC Caselle, M Castellanos, JC Hernandez, JFC Casula, EAR Catanescu, V Cavicchioli, C Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Cherney, M Cheshkov, C Cheynis, B Chiavassa, E Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Coccetti, F Coffin, JP Colamaria, F Colella, D Balbastre, GC del Valle, ZC Constantin, P Contin, G Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Cotallo, ME Crescio, E Crochet, P Alaniz, EC Cuautle, E Cunqueiro, L Dainese, A Dalsgaard, HH Danu, A Das, K Das, D Das, I Dash, A Dash, S De, S Moregula, AD de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D Delagrangel, H Sanchez, ED Deloff, A Demanov, V De Marco, N Denes, E De Pasquale, S Deppman, A Erasmo, GD de Rooij, R Di Bari, D Dietel, T Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Dominguez, I Donigus, B Dordic, O Driga, O Dubey, AK Ducroux, L Dupieux, P Majumdar, AKD Majumdar, MRD Elia, D Emschermann, D Engel, H Erdal, HA Espagnon, B Estienne, M Esumi, S Evans, D Eyyubova, G Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fearick, R Fedunov, A Fehlker, D Feldkamp, L Felea, D Feofilov, G Tellez, AF Ferretti, A Ferretti, R Figiel, J Figueredo, MAS Filchagin, S Fini, R Finogeev, D Fionda, FM Fiore, EM Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Fragkiadakissu, M Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, A Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Garishvilia, I Gerhard, J Germain, M Geuna, C Gheata, A Gheata, M Ghidini, B Ghosh, P Gianotti, P Girard, MR Giubellino, P Gladysz-Dziadus, E Glassel, P Gomez, R Ferreiro, EG Gonzalez-Trueba, LH Gonzalez-Zamora, P Gorbunov, S Goswami, A Gotovac, S Grabski, V Graczykowski, LK Grajcarek, R Grelli, A Grigoras, C Grigoras, A Grigoriev, V Grigoryan, S Grigoryan, A Grinyov, B Grion, N Gros, P Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Gutierrez, CG Guerzoni, B Guilbaud, M Gulbrandsen, K Gunji, T Gupta, A Gupta, R Gutbrod, H Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Han, BH Hanratty, LD Hansen, A Harmanova, Z Harris, JW Hartig, M Hasegan, D Hatzifotiadou, D Hayrapetyan, A Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Herrmann, N Hetland, KF Hicks, B Hille, PT Hippolyte, B Horaguchi, T Hori, Y Hristov, P Hrivnacova, I Huang, M Huber, S Humanic, TJ Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Incani, E Innocenti, GM Innocenti, PC Ippolitov, M Irfan, M Ivan, C Ivanov, A Ivanov, V Ivanov, M Ivanytskyi, O Jacholkowski, A Jacobs, PM Jancurova, L Jang, HJ Jangal, S Janik, R Janik, MA Jayarathna, PHSY Jena, S Bustamante, RTJ Jirden, L Jones, PC Jung, H Jung, W Jusko, A Kaidalov, AB Kakoyan, V Kalcher, S Kalinak, P Kalisky, M Kalliokoski, T Kalweit, A Kanaki, K Kang, JH Kaplin, V Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keide, R Khan, P Khan, MM Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, DJ Kim, DW Kim, JH Kim, JS Kim, M Kim, SH Kim, S Kim, T Kim, B Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Kluge, A Kniche, ML Koch, K Kohler, MK Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Korneev, A Don, CKK Kour, R Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kramer, F Kraus, I Krawutschke, T Krelina, M Kretz, M Krivda, M Krizek, F Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kuhn, C Kuijer, PC Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, V Kushpil, S Kvaerno, H Kweon, MJ Kwon, Y de Guevara, PL Lakomov, I Langoy, R Lara, C Lardeux, A La Rocca, P Lazzeroni, C Lea, R Le Bornec, Y Lee, KS Lee, SC Lefevre, F Lehnert, J Leistam, L Lenhardt, M Lenti, V Leon, H Monzon, IL Vargas, HL Levai, P Li, X Lien, J Lietava, R Linda, S Lindenstruth, V Lippmann, C Lisa, MA Liu, L Loenne, PI Loggins, VR Loginov, V Lohn, S Lohner, D Loizides, C Loo, KK Lopez, X Torres, EL Lovhoiden, G Lu, XG Luettig, P Lunardon, M Luo, J Luparello, G Luquin, L Luzzi, C Ma, K Ma, R Madagodahettige-Don, DM Maevskaya, A Mager, M Mahapatra, DP Maire, A Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Marchisone, M Mares, J Margagliotti, CV Margotti, A Marin, A Markert, C Martashvili, I Martinengo, P Martinez, MI Davalos, AM Garcia, GM Martynov, Y Mas, A Masciocchr, S Masera, M Masoni, A Massacrier, L Mastromarco, M Mastroserio, A Matthews, ZL Matyja, A Mayani, D Mayer, C Mazer, J Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Michalon, A Milano, L Milosevic, J Mischke, A Mishra, AN MiMcowiec, D Mitu, C Mlynarz, J Mohanty, B Mohanty, AK Molnar, L Zetina, LM Monteno, M Montes, E Moon, T Morando, M De Godoy, DAM Moretto, S Morsch, A Muccifora, V Mudnic, E Muhuri, S Muller, H Munhoz, MG Musa, L Musso, A Nandi, BK Nania, R Nappi, E Nattrass, C Naumov, NP Navin, S Nayak, TK Nazarenko, S Nazarov, G Nedosekin, A Nicassio, M Nielsen, BS Niida, T Nikolaev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nomokonov, P Nooren, G Novitzky, N Nyanin, A Nyatha, A Nygaard, C Nystrand, J Ochirov, A Oeschler, H Oh, S Oh, SK Oleniacz, J Oppedisano, C Velasquez, AO Ortona, G Oskarsson, A Ostrowski, P Otterlund, I Otwinowski, J Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Paic, G Painke, F Pajares, C Pal, SK Pal, S Palaha, A Palmeri, A Papikyan, V Pappalardo, GS Park, WJ Passfeld, A Pastircak, B Patalakha, DI Paticchio, V Pavlinov, A Pawlak, T Peitzmann, T Perales, M De Oliveira, EP Peresunkou, D Lara, CEP Lezamas, EP Perini, D Perrino, D Peryt, W Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrov, P Petrovici, M Petta, C Piano, S Piccotti, A Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piuz, F Piyarathnan, DB Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polak, K Polichtchouk, B Pop, A Porteboeuf-Houssais, S Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puchagin, S Puddu, G Pulvirenti, A Punin, V Putis, M Putschke, J Quercigh, E Qvigstad, H Rachevski, A Rademakers, A Radomski, S Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Reyes, AR Raniwala, S Raniwala, R Rasanen, SS Rascanu, BT Ratheeu, D Read, KF Real, JS Redlich, K Reichelt, P Reicher, M Renford, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riccati, L Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Cahuantzi, MR Roed, K Rohr, D Rohrich, D Romita, R Ronchetti, F Rosnet, P Rossegger, S Rossi, A Roukoutakis, F Roy, P Roy, C Montero, AJR Rui, R Ryabinkin, E Rybicki, A Sadovsky, S Safairik, K Sahu, PK Saini, J Sakaguchi, H Sakai, S Sakata, D Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Sano, S Santo, R Santoro, R Sarkamo, J Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schreiner, S Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, PA Scott, R Segato, G Selyuzhenkov, I Senyukov, S Seo, J Serci, S Serradilla, E Sevcenco, A Sgura, I Shabetai, A Shabratova, G Shahoyan, R Sharma, N Sharma, S Shigaki, K Shimomura, M Shtejer, K Sibiriak, Y Siciliano, M Sicking, E Siddhanta, S Siemiarczuk, T Silvermyr, D Simonetti, G Singaraju, R Singh, R Singha, S Sinha, T Sinha, BC Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, R Sogaard, C Soltz, R Son, H Song, M Song, J Soos, C Soramel, F Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stan, I Stefanek, G Stefanin, G Steinbeck, T Steinpreis, M Stenlund, E Steyn, G Stocco, D Stolpovskiy, M Strabykin, K Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Sukhorukov, M Sultanov, R Sumbera, M Susa, T de Toledo, AS Szarka, I Szostak, A Tagridis, C Takahashi, J Takaki, JDT Tauro, A Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Thomas, JH Tieulent, R Timmins, AR Tlusty, D Toia, A Torii, H Toscano, L Tosello, F Traczyk, T Truesdale, D Trzaska, WH Tsuji, T Tunikin, A Turrisi, R Tveter, TS Ulery, J Ullaland, K Ulrich, J Uras, A Urban, J Urciuoli, GM Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S van der Kolk, N Vande Vyvre, P van Leeuwen, M Vannucci, L Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Venaruzzo, M Vercellin, E Vergara, S Vernekohl, DC Vernet, R Verweij, M Vickovic, L Viesti, G Vikhlyantsev, O Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, Y Vinogradov, L Virgili, T Viyogi, YP Vodopyanov, A Voloshin, S Voloshin, K Volpe, G von Haller, B Vranic, D Ovrebekk, G Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, V Wan, R Wang, Y Wang, M Wang, D Wang, Y Watanabe, K Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilk, A Williams, MCS Windelband, B Karampatsos, LX Yang, H Yang, S Yasnopolskiy, S Yi, J Yin, Z Yokoyama, H Yoo, IK Yoon, J Yu, W Yuan, X Yushmanov, I Zach, C Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zelnicek, P Zgura, IS Zhalov, M Zhang, X Zhou, F Zhou, D Zhou, Y Zhu, X Zichichi, A Zimmermann, A Zinovjev, G Zoccarato, Y Zynovyev, M AF Abelev, B. Adam, J. Adamova, D. Adare, A. M. Aggarwal, M. M. Rinella, G. Aglieri Agocs, A. G. Agostinelli, A. Aguilar Salazar, S. Ahammed, Z. Ahmad, N. Masood, A. Ahmad Ahn, S. U. Akindinov, A. Aleksandrov, D. Alessandro, B. Alfaro Molina, R. Alici, A. Alkin, A. Almaraz Avina, E. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anson, C. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bailhache, R. Bala, R. Ferrolilli, R. Baldini Baldisseri, A. Baldit, A. Pedrosa, F. Baltasar Dos Santos Ban, J. Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Beck, H. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bergmann, C. Berzano, D. Betev, L. Bhasin, A. Bhati, A. K. Bianchi, N. Bianchi, L. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Bock, N. Bogdanovn, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bose, S. Bossu, F. Botje, M. Boettger, S. Boyer, B. Braun-Munzinger, P. Bregant, M. Breitner, T. Broz, M. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Bugaiev, K. Busch, O. Buthelezi, Z. Orduna, D. Caballero Caffarri, D. Cai, X. Caines, H. Villar, E. Calvo Camerini, P. Roman, V. Canoa Romeo, G. Cara Carena, F. Carena, W. Carlin Filho, N. Carminati, F. Montoya, C. A. Carrillo Diaz, A. Casanova Caselle, M. Castellanos, J. Castillo Hernandez, J. F. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Cherney, M. Cheshkov, C. Cheynis, B. Chiavassa, E. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Coccetti, F. Coffin, J. -P. Colamaria, F. Colella, D. Balbastre, G. Conesa del Valle, Z. Conesa Constantin, P. Contin, G. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Maldonado, I. Cortes Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cruz Alaniz, E. Cuautle, E. Cunqueiro, L. Dainese, A. Dalsgaard, H. H. Danu, A. Das, K. Das, D. Das, I. Dash, A. Dash, S. De, S. Moregula, A. De Azevedo de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. Delagrangel, H. Sanchez, E. Del Castillo Deloff, A. Demanov, V. De Marco, N. Denes, E. De Pasquale, S. Deppman, A. Erasmo, G. D. de Rooij, R. Di Bari, D. Dietel, T. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Dominguez, I. Doenigus, B. Dordic, O. Driga, O. Dubey, A. K. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Majumdar, M. R. Dutta Elia, D. Emschermann, D. Engel, H. Erdal, H. A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Eyyubova, G. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fearick, R. Fedunov, A. Fehlker, D. Feldkamp, L. Felea, D. Feofilov, G. Tellez, A. Fernandez Ferretti, A. Ferretti, R. Figiel, J. Figueredo, M. A. S. Filchagin, S. Fini, R. Finogeev, D. Fionda, F. M. Fiore, E. M. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Fragkiadakissu, M. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Garishvilia, I. Gerhard, J. Germain, M. Geuna, C. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Gianotti, P. Girard, M. R. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Gomez, R. Ferreiro, E. G. Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gorbunov, S. Goswami, A. Gotovac, S. Grabski, V. Graczykowski, L. K. Grajcarek, R. Grelli, A. Grigoras, C. Grigoras, A. Grigoriev, V. Grigoryan, S. Grigoryan, A. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Gutierrez, C. Guerra Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Gutbrod, H. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Han, B. H. Hanratty, L. D. Hansen, A. Harmanova, Z. Harris, J. W. Hartig, M. Hasegan, D. Hatzifotiadou, D. Hayrapetyan, A. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Herrmann, N. Hetland, K. F. Hicks, B. Hille, P. T. Hippolyte, B. Horaguchi, T. Hori, Y. Hristov, P. Hrivnacova, I. Huang, M. Huber, S. Humanic, T. J. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Incani, E. Innocenti, G. M. Innocenti, P. C. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, A. Ivanov, V. Ivanov, M. Ivanytskyi, O. Jacholkowski, A. Jacobs, P. M. Jancurova, L. Jang, H. J. Jangal, S. Janik, R. Janik, M. A. Jayarathna, P. H. S. Y. Jena, S. Bustamante, R. T. Jimenez Jirden, L. Jones, P. C. Jung, H. Jung, W. Jusko, A. Kaidalov, A. B. Kakoyan, V. Kalcher, S. Kalinak, P. Kalisky, M. Kalliokoski, T. Kalweit, A. Kanaki, K. Kang, J. H. Kaplin, V. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keide, R. Khan, P. Khan, M. M. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, D. J. Kim, D. W. Kim, J. H. Kim, J. S. Kim, M. Kim, S. H. Kim, S. Kim, T. Kim, B. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Kluge, A. Kniche, M. L. Koch, K. Koehler, M. K. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Korneev, A. Don, C. Kottachchi Kankanamge Kour, R. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kraus, I. Krawutschke, T. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kuhn, C. Kuijer, P. C. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, V. Kushpil, S. Kvaerno, H. Kweon, M. J. Kwon, Y. de Guevara, P. Ladron Lakomov, I. Langoy, R. Lara, C. Lardeux, A. La Rocca, P. Lazzeroni, C. Lea, R. Le Bornec, Y. Lee, K. S. Lee, S. C. Lefevre, F. Lehnert, J. Leistam, L. Lenhardt, M. Lenti, V. Leon, H. Monzon, I. Leon Vargas, H. Leon Levai, P. Li, X. Lien, J. Lietava, R. Linda, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Liu, L. Loenne, P. I. Loggins, V. R. Loginov, V. Lohn, S. Lohner, D. Loizides, C. Loo, K. K. Lopez, X. Torres, E. Lopez Lovhoiden, G. Lu, X. -G. Luettig, P. Lunardon, M. Luo, J. Luparello, G. Luquin, L. Luzzi, C. Ma, K. Ma, R. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Malaev, M. Cervantes, I. Maldonado Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Marchisone, M. Mares, J. Margagliotti, C. V. Margotti, A. Marin, A. Markert, C. Martashvili, I. Martinengo, P. Martinez, M. I. Davalos, A. Martinez Garcia, G. Martinez Martynov, Y. Mas, A. Masciocchr, S. Masera, M. Masoni, A. Massacrier, L. Mastromarco, M. Mastroserio, A. Matthews, Z. L. Matyja, A. Mayani, D. Mayer, C. Mazer, J. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Michalon, A. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. MiMcowiec, D. Mitu, C. Mlynarz, J. Mohanty, B. Mohanty, A. K. Molnar, L. Zetina, L. Montano Monteno, M. Montes, E. Moon, T. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morsch, A. Muccifora, V. Mudnic, E. Muhuri, S. Mueller, H. Munhoz, M. G. Musa, L. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Naumov, N. P. Navin, S. Nayak, T. K. Nazarenko, S. Nazarov, G. Nedosekin, A. Nicassio, M. Nielsen, B. S. Niida, T. Nikolaev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Novitzky, N. Nyanin, A. Nyatha, A. Nygaard, C. Nystrand, J. Ochirov, A. Oeschler, H. Oh, S. Oh, S. K. Oleniacz, J. Oppedisano, C. Velasquez, A. Ortiz Ortona, G. Oskarsson, A. Ostrowski, P. Otterlund, I. Otwinowski, J. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. K. Pal, S. Palaha, A. Palmeri, A. Papikyan, V. Pappalardo, G. S. Park, W. J. Passfeld, A. Pastircak, B. Patalakha, D. I. Paticchio, V. Pavlinov, A. Pawlak, T. Peitzmann, T. Perales, M. De Oliveira Filho, E. Pereira Peresunkou, D. Lara, C. E. Perez Lezamas, E. Perez Perini, D. Perrino, D. Peryt, W. Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrov, P. Petrovici, M. Petta, C. Piano, S. Piccotti, A. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piuz, F. Piyarathnan, D. B. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polak, K. Polichtchouk, B. Pop, A. Porteboeuf-Houssais, S. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puchagin, S. Puddu, G. Pulvirenti, A. Punin, V. Putis, M. Putschke, J. Quercigh, E. Qvigstad, H. Rachevski, A. Rademakers, A. Radomski, S. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Reyes, A. Ramirez Raniwala, S. Raniwala, R. Rasanen, S. S. Rascanu, B. T. Ratheeu, D. Read, K. F. Real, J. S. Redlich, K. Reichelt, P. Reicher, M. Renford, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riccati, L. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Cahuantzi, M. Rodriguez Roed, K. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Rosnet, P. Rossegger, S. Rossi, A. Roukoutakis, F. Roy, P. Roy, C. Montero, A. J. Rubio Rui, R. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safairik, K. Sahu, P. K. Saini, J. Sakaguchi, H. Sakai, S. Sakata, D. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sandor, L. Sandoval, A. Sano, M. Sano, S. Santo, R. Santoro, R. Sarkamo, J. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schreiner, S. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, P. A. Scott, R. Segato, G. Selyuzhenkov, I. Senyukov, S. Seo, J. Serci, S. Serradilla, E. Sevcenco, A. Sgura, I. Shabetai, A. Shabratova, G. Shahoyan, R. Sharma, N. Sharma, S. Shigaki, K. Shimomura, M. Shtejer, K. Sibiriak, Y. Siciliano, M. Sicking, E. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Sinha, T. Sinha, B. C. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. Sogaard, C. Soltz, R. Son, H. Song, M. Song, J. Soos, C. Soramel, F. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stan, I. Stefanek, G. Stefanin, G. Steinbeck, T. Steinpreis, M. Stenlund, E. Steyn, G. Stocco, D. Stolpovskiy, M. Strabykin, K. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Sukhorukov, M. Sultanov, R. Sumbera, M. Susa, T. de Toledo, A. Szanto Szarka, I. Szostak, A. Tagridis, C. Takahashi, J. Takaki, J. D. Tapia Tauro, A. Munoz, G. Tejeda Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Thomas, J. H. Tieulent, R. Timmins, A. R. Tlusty, D. Toia, A. Torii, H. Toscano, L. Tosello, F. Traczyk, T. Truesdale, D. Trzaska, W. H. Tsuji, T. Tunikin, A. Turrisi, R. Tveter, T. S. Ulery, J. Ullaland, K. Ulrich, J. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. van der Kolk, N. Vande Vyvre, P. van Leeuwen, M. Vannucci, L. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Venaruzzo, M. Vercellin, E. Vergara, S. Vernekohl, D. C. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Vikhlyantsev, O. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, Y. Vinogradov, L. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voloshin, S. Voloshin, K. Volpe, G. von Haller, B. Vranic, D. Ovrebekk, G. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, V. Wan, R. Wang, Y. Wang, M. Wang, D. Wang, Y. Watanabe, K. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilk, A. Williams, M. C. S. Windelband, B. Karampatsos, L. Xaplanteris Yang, H. Yang, S. Yasnopolskiy, S. Yi, J. Yin, Z. Yokoyama, H. Yoo, I. -K. Yoon, J. Yu, W. Yuan, X. Yushmanov, I. Zach, C. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zelnicek, P. Zgura, I. S. Zhalov, M. Zhang, X. Zhou, F. Zhou, D. Zhou, Y. Zhu, X. Zichichi, A. Zimmermann, A. Zinovjev, G. Zoccarato, Y. Zynovyev, M. CA ALICE Collaboration TI Measurement of event background fluctuations for charged particle jet reconstruction in Pb-Pb collisions at root s(NN)=2.76 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Heavy Ions ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; COLLABORATION; PERSPECTIVE; MATTER; STAR AB The effect of event background fluctuations on charged particle jet reconstruction in Pb-Pb collisions at root s(NN) = 2.76 TeV has been measured with the ALICE experiment. The main sources of non-statistical fluctuations are characterized based purely on experimental data with an unbiased method, as well as by using single high p(t) particles and simulated jets embedded into real Pb-Pb events and reconstructed with the anti-k(t) jet finder. The influence of a low transverse momentum cut-off on particles used in the jet reconstruction is quantified by varying the minimum track p(t) between 0.15 GeV/c and 2 GeV/c. For embedded jets reconstructed from charged particles with p(t) > 0.15 GeV/c, the uncertainty in the reconstructed jet transverse momentum due to the heavy-ion background is measured to be 11.3 GeV/c (standard deviation) for the 10% most central Pb-Pb collisions, slightly larger than the value of 11.0 GeV/c measured using the unbiased method. For a higher particle transverse momentum threshold of 2 GeV/c, which will generate a stronger bias towards hard fragmentation in the jet finding process, the standard deviation of the fluctuations in the reconstructed jet transverse momentum is reduced to 4.8-5.0 GeV/c for the 10% most central events. A non-Gaussian tail of the momentum uncertainty is observed and its impact on the reconstructed jet spectrum is evaluated for varying particle momentum thresholds, by folding the measured fluctuations with steeply falling spectra. C1 [Abelev, B.; Garishvilia, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Milosevic, J.] Vinea Inst Nucl Sci, Belgrade, Serbia. [Roman, V. Canoa; Maldonado, I. Cortes; Tellez, A. Fernandez; Martinez, M. I.; Cahuantzi, M. Rodriguez; Munoz, G. Tejeda; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Bugaiev, K.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Torres, E. Lopez; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Cotallo, M. E.; Gonzalez-Zamora, P.; Montes, E.; Montero, A. J. Rubio; Serradilla, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Roman, V. Canoa; Contreras, J. G.; Crescio, E.; Corral, G. Herrera; Zetina, L. Montano; Reyes, A. Ramirez] CINVESTAV, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Roman, V. Canoa; Contreras, J. G.; Crescio, E.; Corral, G. Herrera; Zetina, L. Montano; Reyes, A. Ramirez] CINVESTAV, Ctr Invest & Estudios Avanzados, Merida, Venezuela. [Alici, A.; Ferrolilli, R. Baldini; Coccetti, F.; De Caro, A.; Noferini, F.; Preghenella, R.; Zichichi, A.] Ctr Studi Ric, Ctr Fermi, Rome, Italy. [Alici, A.; Ferrolilli, R. Baldini; Coccetti, F.; De Caro, A.; Noferini, F.; Preghenella, R.; Zichichi, A.] Museo Stor Fis Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Perales, M.] Chicago State Univ, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Boyer, B.; Castellanos, J. Castillo; Charvet, J. L.; Geuna, C.; Pal, S.; Rakotozafindrabe, A.; Yang, H.] IRFU, Commissariat Energie Atom, Saclay, France. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Ahmad, N.; Masood, A. Ahmad; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Kanaki, K.; Langoy, R.; Lien, J.; Liu, L.; Loenne, P. I.; Nystrand, J.; Roed, K.; Rohrich, D.; Skjerdal, K.; Szostak, A.; Ullaland, K.; Ovrebekk, G.; Wagner, B.; Yang, S.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Anson, C.; Bock, N.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Han, B. H.; Hwang, D. S.; Kim, J. H.; Kim, S.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Dordic, O.; Eyyubova, G.; Kvaerno, H.; Linda, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Pocheptsov, T.; Qvigstad, H.; Richter, M.; Skaali, T. B.; Tveter, T. S.; Wikne, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Agostinelli, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Romeo, G. Cara; Cifarelli, L.; Cindolo, F.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Camerini, P.; Contin, G.; Lea, R.; Margagliotti, C. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Camerini, P.; Contin, G.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, C. V.; Piano, S.; Rachevski, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Casula, E. A. R.; De Falco, A.; Incani, E.; Puddu, G.; Serci, S.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; De Falco, A.; Incani, E.; Masoni, A.; Puddu, G.; Serci, S.; Siddhanta, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Bianchin, C.; Caffarri, D.; Dainese, A.; Fabris, D.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis, Padua, Italy. [Antinori, F.; Bianchin, C.; Caffarri, D.; Dainese, A.; Fabris, D.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, F.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Pulvirenti, A.; Riggi, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Pulvirenti, A.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Grp Collegato INFN, Salerno, Italy. [Beole, S.; Bianchi, L.; Bossu, F.; Bruna, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Marchisone, M.; Masera, M.; Milano, L.; Ortona, G.; Padilla, F.; Poghosyan, M. G.; Siciliano, M.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis Sperimentale, Turin, Italy. [Alessandro, B.; Arnaldi, R.; Bala, R.; Beole, S.; Berzano, D.; Bianchi, L.; Bossu, F.; Bruna, E.; Bufalino, S.; Cerello, P.; Chiavassa, E.; Chojnacki, M.; Morales, Y. Corrales; Dash, S.; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Manceau, L.; Marchisone, M.; Masera, M.; Milano, L.; Monteno, M.; Musso, A.; Oppedisano, C.; Ortona, G.; Padilla, F.; Piccotti, A.; Poghosyan, M. G.; Prino, F.; Riccati, L.; Scomparin, E.; Siciliano, M.; Vasquez, M. A. Subieta; Toscano, L.; Tosello, F.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Cortese, P.; Ferretti, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, Alessandria, Italy. [Cortese, P.; Ferretti, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Nicassio, M.; Perrino, D.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; de Cataldo, G.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fini, R.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastromarco, M.; Mastroserio, A.; Nappi, E.; Nicassio, M.; Paticchio, V.; Perrino, D.; Santoro, R.; Sgura, I.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Dobrin, A.; Gros, P.; Oskarsson, A.; Otterlund, I.; Richert, T.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Rinella, G. Aglieri; Agostinelli, A.; Akindinov, A.; Alici, A.; Alkin, A.; Altini, V.; Andronic, A.; Arend, A.; Asryan, A.; Augustinus, A.; Badala, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Boccioli, M.; Borissov, A.; Bossu, F.; Brun, R.; Carena, F.; Carena, W.; Carminati, F.; Montoya, C. A. Carrillo; Caselle, M.; Cavicchioli, C.; Chapeland, S.; Cheshkov, C.; Barroso, V. Chibante; Chochula, P.; Cifarelli, L.; del Valle, Z. Conesa; Costa, F.; Sanchez, E. Del Castillo; Di Mauro, A.; Divia, R.; Floris, M.; Fuchs, U.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, C.; Grigoras, A.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hayrapetyan, A.; Hristov, P.; Innocenti, P. C.; Jacholkowski, A.; Jirden, L.; Uysal, A. Karasu; Kirsch, S.; Kisiel, A.; Kluge, A.; Leistam, L.; Lippmann, C.; Lohn, S.; Luzzi, C.; Mager, M.; Martinengo, P.; Mastroserio, A.; MiMcowiec, D.; Mohanty, A. K.; Molnar, L.; Morsch, A.; Mueller, H.; Musa, L.; Oeschler, H.; Ortona, G.; Perini, D.; Peskov, V.; Pinazza, O.; Piuz, F.; Poghosyan, M. G.; Pulvirenti, A.; Quercigh, E.; Rademakers, A.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rossegger, S.; Safairik, K.; Santoro, R.; Schreiner, S.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sicking, E.; Simonetti, G.; Soos, C.; Stefanin, G.; Tauro, A.; Telesca, A.; Toia, A.; Vande Vyvre, P.; Volpe, G.; von Haller, B.; Wessels, J. P.; Zampolli, C.; Zelnicek, P.] European Org Nucl Res CERN, Geneva, Switzerland. [Krawutschke, T.] Fachhsch Koln, Cologne, Germany. [Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Broz, M.; Janik, R.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Cepila, J.; Krelina, M.; Krus, M.; Pachr, M.; Petracek, V.; Petran, M.; Pospisil, V.; Smakal, R.; Tlusty, D.; Vajzer, M.; Wagner, V.; Wessels, J. P.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Harmanova, Z.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Alt, T.; Bach, M.; de Cuveland, J.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kretz, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.; Steinbeck, T.; Toia, A.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Jung, W.; Kim, D. W.; Kim, J. S.; Kim, S. H.; Lee, K. S.; Lee, S. C.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] HIP, Jyvaskyla, Finland. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Univ Jyvaskyla, Jyvaskyla, Finland. [Sakaguchi, H.; Shigaki, K.; Sugitate, T.; Torii, H.] Hiroshima Univ, Hiroshima, Japan. [Cai, X.; Luo, J.; Ma, K.; Mao, Y.; Wan, R.; Wang, M.; Wang, D.; Wang, Y.; Yin, Z.; Yuan, X.; Zhang, X.; Zhou, F.; Zhou, D.; Zhu, X.] Hua Zhong Normal Univ, Wuhan, Peoples R China. [Dash, S.; Jena, S.; Meethaleveedu, G. Koyithatta; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Das, I.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lakomov, I.; Le Bornec, Y.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. Inst High Energy Phys, Protvino, Russia. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Christakoglou, P.; de Rooij, R.; Grelli, A.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Zhou, Y.] Univ Utrecht, Natl Inst Subat Phys, Utrecht, Netherlands. [Christakoglou, P.; de Rooij, R.; Grelli, A.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Zhou, Y.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Sultanov, R.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Pastircak, B.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Baral, R. C.; Dash, A.; Mahapatra, D. P.; Sahu, P. K.; Sharma, N.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Danu, A.; Felea, D.; Hasegan, D.; Mitu, C.; Sevcenco, A.; Stan, I.] Inst Space Sci, Bucharest, Romania. [Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.; Ulrich, J.; Zelnicek, P.] Goethe Univ Frankfurt, Inst Informat, Frankfurt, Germany. [Appelshaeuser, H.; Arend, A.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Buesching, H.; Hartig, M.; Heckel, S. T.; Kliemant, M.; Kramer, F.; Lehnert, J.; Vargas, H. Leon; Luettig, P.; Pitz, N.; Rascanu, B. T.; Reichelt, P.; Renford, R.; Schuchmann, S.; Ulery, J.; Yu, W.] Goethe Univ Frankfurt, Inst Kernphys, D-6000 Frankfurt, Germany. [Kalweit, A.; Mager, M.; Oeschler, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Anielski, J.; Bathen, B.; Bergmann, C.; Dietel, T.; Emschermann, D.; Feldkamp, L.; Heide, M.; Kalisky, M.; Klein-Boesing, C.; Passfeld, A.; Santo, R.; Vernekohl, D. C.; Westerhoff, U.; Wilde, M.; Wilk, A.] Univ Munster, Inst Kernphys, D-4400 Munster, Germany. [Cuautle, E.; Dominguez, I.; Bustamante, R. T. Jimenez; de Guevara, P. Ladron; Cervantes, I. Maldonado; Mayani, D.; Velasquez, A. Ortiz; Paic, G.; Lezamas, E. Perez; Peskov, V.; Castro, X. Sanchez] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Aguilar Salazar, S.; Alfaro Molina, R.; Almaraz Avina, E.; Belmont-Moreno, E.; Cruz Alaniz, E.; Gonzalez-Trueba, L. H.; Grabski, V.; Leon, H.; Davalos, A. Martinez; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico. Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Belikov, I.; Coffin, J. -P.; del Valle, Z. Conesa; Hippolyte, B.; Jangal, S.; Kuhn, C.; Maire, A.; Michalon, A.; Roy, C.; Castro, X. Sanchez; Senyukov, S.; Wan, R.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Batyunya, B.; Fedunov, A.; Grigoryan, S.; Jancurova, L.; Malinina, L.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Dubna Joint Nucl Res Inst, Dubna 141980, Russia. [Agocs, A. G.; Barnafoeldi, G. G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Levai, P.; Pochybova, S.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. Natl Acad Sci Ukraine, KIPT, Kharkov, Ukraine. [Kebschull, U.; Ulrich, J.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Jang, H. J.] Korea Inst Sci & Technol Informat, Seoul, South Korea. [Ahn, S. U.; Baek, Y. W.; Baldit, A.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Ichou, R.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Vulpescu, B.; Zhang, X.] Univ Clermont Ferrand, Clermont Univ, LPC, CNRS,IN2P3, Clermont Ferrand, France. [Arbor, N.; Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Mao, Y.; Real, J. S.] Univ Grenoble 1, CNRS, LPSC, IN2P3,Inst Polytech Grenoble, Grenoble, France. [Bianchi, N.; Diaz, A. Casanova; Cunqueiro, L.; Moregula, A. De Azevedo; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Cosentino, M. R.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Sakai, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bogdanovn, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Bilandzic, A.; Botje, M.; Christakoglou, P.; Krzewicki, M.; Kuijer, P. C.; Lara, C. E. Perez; van der Kolk, N.] Nikhef, Natl Inst Subatom Phys, Amsterdam, Netherlands. [Adamova, D.; Bielcikova, J.; Kushpil, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Nilsen, B. S.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Ratheeu, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Fragkiadakissu, M.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Tagridis, C.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, IThemba LABS, Dept Phys, ZA-7925 Cape Town, South Africa. [Bhasin, A.; Gupta, A.; Gupta, R.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Goswami, A.; Mishra, A. N.; Raniwala, S.; Raniwala, R.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Anguelov, V.; Busch, O.; Constantin, P.; Fedunov, A.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Ivanov, A.; Klein, J.; Koch, K.; Krawutschke, T.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Radomski, S.; Reygers, K.; Schicker, R.; Schweda, K.; Stachel, J.; Vallero, S.; Wang, Y.; Wiechula, J.; Windelband, B.; Zimmermann, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Huber, S.; Ivan, C.; Ivanov, M.; Kniche, M. L.; Koehler, M. K.; Kraus, I.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Masciocchr, S.; MiMcowiec, D.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Thomas, J. H.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Huber, S.; Ivan, C.; Ivanov, M.; Kniche, M. L.; Koehler, M. K.; Kraus, I.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Masciocchr, S.; MiMcowiec, D.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Thomas, J. H.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.; Nikolic, V.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Demanov, V.; Filchagin, S.; Ilkaev, R.; Korneev, A.; Kuryakin, A.; Mamonov, A.; Naumov, N. P.; Nazarenko, S.; Nazarov, G.; Puchagin, S.; Punin, V.; Strabykin, K.; Sukhorukov, M.; Tunikin, A.; Vikhlyantsev, O.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunkou, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Kurchatov Inst, Russian Res Ctr, Moscow, Russia. [Bose, S.; Chattopadhyay, S.; Das, K.; Das, D.; Das, I.; Majumdar, A. K. Dutta; Khan, P.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. C.; Jusko, A.; Kour, R.; Krivda, M.; Lazzeroni, C.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Villar, E. Calvo; Gago, A.; Gutierrez, C. Guerra] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Aphecetche, L.; Batigne, G.; Bregant, M.; Delagrangel, H.; Driga, O.; Estienne, M.; Germain, M.; Lardeux, A.; Lefevre, F.; Lenhardt, M.; Luquin, L.; Garcia, G. Martinez; Mas, A.; Massacrier, L.; Matyja, A.; Pillot, P.; Schutz, Y.; Shabetai, A.; Stocco, D.] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3, Nantes, France. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Kowalski, M.; Mayer, C.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Markert, C.; Karampatsos, L. Xaplanteris] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Gomez, R.; Monzon, I. Leon; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Carlin Filho, N.; de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; De Godoy, D. A. Moreira; Munhoz, M. G.; De Oliveira Filho, E. Pereira; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chinellato, D. D.; Cosentino, M. R.; Dash, A.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, Brazil. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Guilbaud, M.; Massacrier, L.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Bellwied, R.; Blanco, F.; Jayarathna, P. H. S. Y.; Madagodahettige-Don, D. M.; Pinsky, L.; Piyarathnan, D. B.; Timmins, A. R.] Univ Texas Houston, Houston, TX USA. Univ Technol, Vienna, Austria. Austrian Acad Sci, A-1010 Vienna, Austria. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.] Univ Tennessee, Knoxville, TN USA. [Gunji, T.; Hamagaki, H.; Hori, Y.; Ozawa, K.; Sano, S.; Torii, H.; Tsuji, T.] Univ Tokyo, Tokyo, Japan. [Chujo, T.; Esumi, S.; Horaguchi, T.; Inaba, M.; Miake, Y.; Niida, T.; Sakata, D.; Sano, M.; Shimomura, M.; Watanabe, K.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Ahammed, Z.; Chattopadhyay, S.; De, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ghosh, P.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Nayak, T. K.; Pal, S. K.; Saini, J.; Singaraju, R.; Singha, S.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Altsybeev, I.; Asryan, A.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kondratiev, V.; Lakomov, I.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Girard, M. R.; Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Traczyk, T.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Borissov, A.; Cormier, T. M.; Dobrin, A.; Don, C. Kottachchi Kankanamge; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Prasad, S. K.; Pruneau, C. A.; Putschke, J.; Voloshin, S.] Wayne State Univ, Detroit, MI USA. [Adare, A. M.; Aronsson, T.; Bruna, E.; Orduna, D. Caballero; Caines, H.; Harris, J. W.; Hicks, B.; Hille, P. T.; Ma, R.; Oh, S.; Putschke, J.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Grigoryan, A.; Hayrapetyan, A.; Kakoyan, V.; Papikyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Uysal, A. Karasu] Yildiz Tekn Univ, Istanbul, Turkey. [Chang, B.; Kang, J. H.; Kim, M.; Kim, T.; Kim, B.; Kwon, Y.; Moon, T.; Song, M.; Yoon, J.] Yonsei Univ, Seoul 120749, South Korea. [Keide, R.] Fachhsch Worms, ZTT, Worms, Germany. RP Abelev, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Barnafoldi, Gergely Gabor/L-3486-2013; Christensen, Christian Holm/A-4901-2010; Levai, Peter/A-1544-2014; Guber, Fedor/I-4271-2013; Vajzer, Michal/G-8469-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Adamova, Dagmar/G-9789-2014; Blau, Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; Cosentino, Mauro/L-2418-2014; Peitzmann, Thomas/K-2206-2012; Sevcenco, Adrian/C-1832-2012; feofilov, grigory/A-2549-2013; Williams, Crispin/A-8733-2013; Barnby, Lee/G-2135-2010; Traczyk, Tomasz/C-1310-2013; Takahashi, Jun/B-2946-2012; Mischke, Andre/D-3614-2011; Ramello, Luciano/F-9357-2013; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Zarochentsev, Andrey/J-6253-2013; Kondratiev, Valery/J-8574-2013; Barbera, Roberto/G-5805-2012; Christensen, Christian/D-6461-2012; Cortese, Pietro/G-6754-2012; SCAPPARONE, EUGENIO/H-1805-2012; Felea, Daniel/C-1885-2012; Chinellato, David/D-3092-2012; Masera, Massimo/J-4313-2012; Gagliardi, Martino/J-4787-2012; Aglieri Rinella, Gianluca/I-8010-2012; beole', stefania/G-9353-2012; Yoo, In-Kwon/J-6222-2012; Turrisi, Rosario/H-4933-2012; Bregant, Marco/I-7663-2012; Deppman, Airton/J-5787-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Janik, Malgorzata/O-7520-2015; Vechernin, Vladimir/J-5832-2013; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Jena, Deepika/P-2873-2015; Kurepin, Alexey/H-4852-2013; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Kharlov, Yuri/D-2700-2015; Mitu, Ciprian/E-6733-2011; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Altsybeev, Igor/K-6687-2013; Graczykowski, Lukasz/O-7522-2015 OI Christensen, Christian Holm/0000-0002-1850-0121; Guber, Fedor/0000-0001-8790-3218; Cosentino, Mauro/0000-0002-7880-8611; Peitzmann, Thomas/0000-0002-7116-899X; Sevcenco, Adrian/0000-0002-4151-1056; feofilov, grigory/0000-0003-3700-8623; Barnby, Lee/0000-0001-7357-9904; Traczyk, Tomasz/0000-0002-6602-4094; Takahashi, Jun/0000-0002-4091-1779; Castillo Castellanos, Javier/0000-0002-5187-2779; Zarochentsev, Andrey/0000-0002-3502-8084; Kondratiev, Valery/0000-0002-0031-0741; Barbera, Roberto/0000-0001-5971-6415; Christensen, Christian/0000-0002-1850-0121; Felea, Daniel/0000-0002-3734-9439; Chinellato, David/0000-0002-9982-9577; Aglieri Rinella, Gianluca/0000-0002-9611-3696; Deppman, Airton/0000-0001-9179-6363; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Janik, Malgorzata/0000-0002-3356-3438; Vechernin, Vladimir/0000-0003-1458-8055; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398; Jena, Deepika/0000-0003-2112-0311; Kurepin, Alexey/0000-0002-1851-4136; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Karasu Uysal, Ayben/0000-0001-6297-2532; Pshenichnov, Igor/0000-0003-1752-4524; Altsybeev, Igor/0000-0002-8079-7026; FU Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; 'Region Pays de Loire'; 'Region Alsace'; 'Region Auvergne'; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; HELEN (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation; International Science and Technology Center, Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Reseach Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Reseach Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 37 TC 10 Z9 10 U1 0 U2 64 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2012 IS 3 AR 053 DI 10.1007/JHEP03(2012)053 PG 26 WC Physics, Particles & Fields SC Physics GA 920NM UT WOS:000302412100053 ER PT J AU Abramowicz, H Abt, I Adamczyk, L Adamus, M Aggarwal, R Antonelli, S Antonioli, P Antonov, A Arneodo, M Aushev, V Aushev, Y Bachynska, O Bamberger, A Barakbaev, AN Barbagli, G Bari, G Barreiro, F Bartosik, N Bartsch, D Basile, M Behnke, O Behr, J Behrens, U Bellagamba, L Bertolin, A Bhadra, S Bindi, M Blohm, C Bokhonov, V Bold, T Bondarenko, K Boos, EG Borras, K Boscherini, D Bot, D Brock, I Brownson, E Brugnera, R Brummer, N Bruni, A Bruni, G Brzozowska, B Bussey, PJ Bylsma, B Caldwell, A Capua, M Carlin, R Catterall, CD Chekanov, S Chwastowski, J Ciborowski, J Ciesielski, R Cifarelli, L Cindolo, F Contin, A Cooper-Sarkar, AM Coppola, N Corradi, M Corriveau, F Costa, M D'Agostini, G Dal Corso, F del Peso, J Dementiev, RK De Pasquale, S Derrick, M Devenish, RCE Dobur, D Dolgoshein, BA Dolinska, G Doyle, AT Drugakov, V Durkin, LS Dusini, S Eisenberg, Y Ermolov, PF Eskreys, A Fang, S Fazio, S Ferrando, J Ferrero, MI Figiel, J Forrest, M Foster, B Gach, G Galas, A Gallo, E Garfagnini, A Geiser, A Gialas, I Gladilin, LK Gladkov, D Glasman, C Gogota, O Golubkov, YA Gottlicher, P Grabowska-Bold, I Grebenyuk, J Gregor, I Grigorescu, G Grzelak, G Gueta, O Guzik, M Gwenlan, C Haas, T Hain, W Hamatsu, R Hart, JC Hartmann, H Hartner, G Hilger, E Hochman, D Hori, R Horton, K Huttmann, A Ibrahim, ZA Iga, Y Ingbir, R Ishitsuka, M Jakob, HP Januschek, F Jones, TW Jungst, M Kadenko, I Kahle, B Kananov, S Kanno, T Karshon, U Karstens, F Katkov, II Kaur, M Kaur, P Keramidas, A Khein, LA Kim, JY Kisielewska, D Kitamura, S Klanner, R Klein, U Koffeman, E Kooijman, P Korol, I Korzhavina, IA Kotanski, A Kotz, U Kowalski, H Kuprash, O Kuze, M Lee, A Levchenko, BB Levy, A Libov, V Limentani, S Ling, TY Lisovyi, M Lobodzinska, E Lohmann, W Lohr, B Lohrmann, E Long, KR Longhin, A Lontkovskyi, D Lukina, OY Maeda, J Magill, S Makarenko, I Malka, J Mankel, R Margotti, A Marini, G Martin, JF Mastroberardino, A Mattingly, MCK Melzer-Pellmann, IA Mergelmeyer, S Miglioranzi, S Idris, FM Monaco, V Montanari, A Morris, JD Mujkic, K Musgrave, B Nagano, K Namsoo, T Nania, R Nigro, A Ning, Y Nobe, T Noor, U Notz, D Nowak, RJ Nuncio-Quiroz, AE Oh, BY Okazaki, N Oliver, K Olkiewicz, K Onishchuk, Y Papageorgiu, K Parenti, A Paul, E Pawlak, JM Pawlik, B Pelfer, PG Pellegrino, A Perlanski, W Perrey, H Piotrzkowski, K Plucinski, P Pokrovskiy, NS Polini, A Proskuryakov, AS Przybycien, M Raval, A Reeder, DD Reisert, B Ren, Z Repond, J Ri, YD Robertson, A Roloff, P Rubinsky, I Ruspa, M Sacchi, R Salii, A Samson, U Sartorelli, G Savin, AA Saxon, DH Schioppa, M Schlenstedt, S Schleper, P Schmidke, WB Schneekloth, U Schonberg, V Schorner-Sadenius, T Schwartz, J Sciulli, F Shcheglova, LM Shehzadi, R Shimizu, S Singh, I Skillicorn, IO Slominski, M Smith, WH Sola, V Solano, A Son, D Sosnovtsev, V Spiridonov, A Stadie, H Stanco, L Stern, A Stewart, TP Stifutkin, A Stopa, P Suchkov, S Susinno, G Suszycki, L Sztuk-Dambietz, J Szuba, D Szuba, J Tapper, AD Tassi, E Terron, J Theedt, T Tiecke, H Tokushuku, K Tomalak, O Tomaszewska, J Tsurugai, T Turcato, M Tymieniecka, T Vazquez, M Verbytskyi, A Viazlo, O Vlasov, NN Volynets, O Walczak, R Abdullah, WATW Whitmore, JJ Wiggers, L Wing, M Wlasenko, M Wolf, G Wolfe, H Wrona, K Yagues-Molina, AG Yamada, S Yamazaki, Y Yoshida, R Youngman, C Zarnecki, AF Zawiejski, L Zenaiev, O Zeuner, W Zhautykov, BO Zhmak, N Zhou, C Zichichi, A Zolkapli, Z Zolko, M Zotkin, DS AF Abramowicz, H. Abt, I. Adamczyk, L. Adamus, M. Aggarwal, R. Antonelli, S. Antonioli, P. Antonov, A. Arneodo, M. Aushev, V. Aushev, Y. Bachynska, O. Bamberger, A. Barakbaev, A. N. Barbagli, G. Bari, G. Barreiro, F. Bartosik, N. Bartsch, D. Basile, M. Behnke, O. Behr, J. Behrens, U. Bellagamba, L. Bertolin, A. Bhadra, S. Bindi, M. Blohm, C. Bokhonov, V. Bold, T. Bondarenko, K. Boos, E. G. Borras, K. Boscherini, D. Bot, D. Brock, I. Brownson, E. Brugnera, R. Bruemmer, N. Bruni, A. Bruni, G. Brzozowska, B. Bussey, P. J. Bylsma, B. Caldwell, A. Capua, M. Carlin, R. Catterall, C. D. Chekanov, S. Chwastowski, J. Ciborowski, J. Ciesielski, R. Cifarelli, L. Cindolo, F. Contin, A. Cooper-Sarkar, A. M. Coppola, N. Corradi, M. Corriveau, F. Costa, M. D'Agostini, G. Dal Corso, F. del Peso, J. Dementiev, R. K. De Pasquale, S. Derrick, M. Devenish, R. C. E. Dobur, D. Dolgoshein, B. A. Dolinska, G. Doyle, A. T. Drugakov, V. Durkin, L. S. Dusini, S. Eisenberg, Y. Ermolov, P. F. Eskreys, A. Fang, S. Fazio, S. Ferrando, J. Ferrero, M. I. Figiel, J. Forrest, M. Foster, B. Gach, G. Galas, A. Gallo, E. Garfagnini, A. Geiser, A. Gialas, I. Gladilin, L. K. Gladkov, D. Glasman, C. Gogota, O. Golubkov, Yu. A. Goettlicher, P. Grabowska-Bold, I. Grebenyuk, J. Gregor, I. Grigorescu, G. Grzelak, G. Gueta, O. Guzik, M. Gwenlan, C. Haas, T. Hain, W. Hamatsu, R. Hart, J. C. Hartmann, H. Hartner, G. Hilger, E. Hochman, D. Hori, R. Horton, K. Huettmann, A. Ibrahim, Z. A. Iga, Y. Ingbir, R. Ishitsuka, M. Jakob, H. -P. Januschek, F. Jones, T. W. Juengst, M. Kadenko, I. Kahle, B. Kananov, S. Kanno, T. Karshon, U. Karstens, F. Katkov, I. I. Kaur, M. Kaur, P. Keramidas, A. Khein, L. A. Kim, J. Y. Kisielewska, D. Kitamura, S. Klanner, R. Klein, U. Koffeman, E. Kooijman, P. Korol, Ic. Korzhavina, I. A. Kotanski, A. Koetz, U. Kowalski, H. Kuprash, O. Kuze, M. Lee, A. Levchenko, B. B. Levy, A. Libov, V. Limentani, S. Ling, T. Y. Lisovyi, M. Lobodzinska, E. Lohmann, W. Loehr, B. Lohrmann, E. Long, K. R. Longhin, A. Lontkovskyi, D. Lukina, O. Yu. Maeda, J. Magill, S. Makarenko, I. Malka, J. Mankel, R. Margotti, A. Marini, G. Martin, J. F. Mastroberardino, A. Mattingly, M. C. K. Melzer-Pellmann, I. -A. Mergelmeyer, S. Miglioranzi, S. Idris, F. Mohamad Monaco, V. Montanari, A. Morris, J. D. Mujkic, K. Musgrave, B. Nagano, K. Namsoo, T. Nania, R. Nigro, A. Ning, Y. Nobe, T. Noor, U. Notz, D. Nowak, R. J. Nuncio-Quiroz, A. E. Oh, B. Y. Okazaki, N. Oliver, K. Olkiewicz, K. Onishchuk, Yu. Papageorgiu, K. Parenti, A. Paul, E. Pawlak, J. M. Pawlik, B. Pelfer, P. G. Pellegrino, A. Perlanski, W. Perrey, H. Piotrzkowski, K. Plucinski, P. Pokrovskiy, N. S. Polini, A. Proskuryakov, A. S. Przybycien, M. Raval, A. Reeder, D. D. Reisert, B. Ren, Z. Repond, J. Ri, Y. D. Robertson, A. Roloff, P. Rubinsky, I. Ruspa, M. Sacchi, R. Salii, A. Samson, U. Sartorelli, G. Savin, A. A. Saxon, D. H. Schioppa, M. Schlenstedt, S. Schleper, P. Schmidke, W. B. Schneekloth, U. Schoenberg, V. Schoerner-Sadenius, T. Schwartz, J. Sciulli, F. Shcheglova, L. M. Shehzadi, R. Shimizu, S. Singh, I. Skillicorn, I. O. Slominski, M. Smith, W. H. Sola, V. Solano, A. Son, D. Sosnovtsev, V. Spiridonov, A. Stadie, H. Stanco, L. Stern, A. Stewart, T. P. Stifutkin, A. Stopa, P. Suchkov, S. Susinno, G. Suszycki, L. Sztuk-Dambietz, J. Szuba, D. Szuba, J. Tapper, A. D. Tassi, E. Terron, J. Theedt, T. Tiecke, H. Tokushuku, K. Tomalak, O. Tomaszewska, J. Tsurugai, T. Turcato, M. Tymieniecka, T. Vazquez, M. Verbytskyi, A. Viazlo, O. Vlasov, N. N. Volynets, O. Walczak, R. Abdullah, W. A. T. Wan Whitmore, J. J. Wiggers, L. Wing, M. Wlasenko, M. Wolf, G. Wolfe, H. Wrona, K. Yaguees-Molina, A. G. Yamada, S. Yamazaki, Y. Yoshida, R. Youngman, C. Zarnecki, A. F. Zawiejski, L. Zenaiev, O. Zeuner, W. Zhautykov, B. O. Zhmak, N. Zhou, C. Zichichi, A. Zolkapli, Z. Zolko, M. Zotkin, D. S. CA ZEUS Collaboration TI Scaled momentum distributions for K-S(0) and Lambda/(Lambda)over-bar in DIS at HERA SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Lepton-Nucleon Scattering ID DEEP-INELASTIC-SCATTERING; LEPTON-NUCLEON SCATTERING; CENTRAL TRACKING DETECTOR; PHYSICS EVENT GENERATION; ZEUS BARREL CALORIMETER; MONTE-CARLO GENERATOR; COLOR DIPOLE MODEL; FRAGMENTATION FUNCTIONS; BREIT FRAME; E(+)E(-) ANNIHILATION AB Scaled momentum distributions for the strange hadrons K-S(0) and Lambda/(Lambda) over bar were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb(-1). The evolution of these distributions with h the photon virtuality, Q(2), was studied in the kinematic region 10 < Q(2) < 40000 CeV2 and 0.001 < x < 0.75, where x is the Bjorken scaling variable. Clear scaling violations are observed. Predictions based on different approaches to fragmentation were compared to the measurements. Leading-logarithm parton-shower Monte Carlo calculations interfaced to the Lund string fragmentation model describe the data reasonably well in the whole range measured. Next-to-leading-order QC[) calculations based on fragmentation functions, FFs, extracted front e(+)e(-) data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e(+)e(-), ep and pp data give an improved description. The measurements presented in this paper have the potential to further constrain the FFs of quarks, anti-quarks and gluons yielding K-S(0) and Lambda/(Lambda) over bar strange hadrons. C1 [Abramowicz, H.; Gueta, O.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.; Tomaszewska, J.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Chekanov, S.; De Pasquale, S.; Derrick, M.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonelli, S.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Margotti, A.; Morris, J. D.; Nania, R.; Polini, A.; Sartorelli, G.; Zichichi, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Morris, J. D.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Aggarwal, R.; Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Kaur, P.; Mergelmeyer, S.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Singh, I.; Wlasenko, M.] Univ Bonn, Inst Phys, Bonn, Germany. [Morris, J. D.; Tassi, E.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Aggarwal, R.; Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Morris, J. D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Morris, J. D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Chwastowski, J.; Ibrahim, Z. A.; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Zolkapli, Z.] Univ Malaya, Jabatan Fiz, Kuala Lumpur 50603, Malaysia. [Kotanski, A.; Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Ciesielski, R.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Coppola, N.; Gach, G.; Grabowska-Bold, I.; Guzik, M.; Kisielewska, D.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, M.] Jagellonian Univ, Dept Phys, Krakow, Poland. [Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Kuprash, O.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Mujkic, K.; Namsoo, T.; Notz, D.; Parenti, A.; Perrey, H.; Raval, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Spiridonov, A.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Verbytskyi, A.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zenaiev, O.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Morris, J. D.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Morris, J. D.; Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.; Tassi, E.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Chios, Greece. [Fang, S.; Klanner, R.; Lohrmann, E.; Schleper, P.; Stadie, H.; Sztuk-Dambietz, J.; Szuba, D.; Tassi, E.; Turcato, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Long, K. R.; Tapper, A. D.; Tassi, E.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Goettlicher, P.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] High Energy Accelerator Org, Inst Particle & Nucl Studies, KEK, Tsukuba, Ibaraki 3050801, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bokhonov, V.; Dolinska, G.; Gogota, O.; Korol, Ic.; Viazlo, O.; Zhmak, N.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Aushev, Y.; Bartosik, N.; Bondarenko, K.; Dolinska, G.; Gogota, O.; Kadenko, I.; Korol, Ic.; Onishchuk, Yu.; Salii, A.; Tomalak, O.; Viazlo, O.; Volynets, O.; Zolko, M.] Natl Taras Shevchenko Univ Kyiv, Dept Nucl Phys, Kiev, Ukraine. [Katkov, I. I.; Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [Klein, U.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; del Peso, J.; Glasman, C.; Miglioranzi, S.; Roloff, P.; Shimizu, S.; Terron, J.; Vazquez, M.; Zeuner, W.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Mujkic, K.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Goettlicher, P.; Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Namsoo, T.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Spiridonov, A.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abramowicz, H.; Abt, I.; Caldwell, A.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Szuba, J.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Szuba, J.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; De Pasquale, S.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Tassi, E.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Morris, J. D.; Stanco, L.] Ist Nazl Fis Nucl, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.; Morris, J. D.] Univ Padua, Dipartimento Fis, Padua, Italy. [Kotanski, A.; Oh, B. Y.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Goettlicher, P.; Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Morris, J. D.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Morris, J. D.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Hart, J. C.; Tassi, E.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Goettlicher, P.; Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Goettlicher, P.; Hori, R.; Okazaki, N.; Shimizu, S.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Goettlicher, P.; Hamatsu, R.; Kitamura, S.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Levchenko, B. B.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Morris, J. D.; Sacchi, R.; Sola, V.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Morris, J. D.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Martin, J. F.; Mujkic, K.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Jones, T. W.; Tassi, E.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Univ Warsaw, Fac Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Tymieniecka, T.] Natl Ctr Nucl Res, Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, Rehovot, Israel. [Brownson, E.; De Pasquale, S.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Hartner, G.; Mujkic, K.; Noor, U.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Chwastowski, J.] Cracow Univ Technol, Fac Phys Math & Appl Comp Sci, Krakow, Poland. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Tymieniecka, T.] Cardinal Stefan Wyszynski Univ, Warsaw, Poland. RP Abramowicz, H (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. EM levy@alzt.tau.ac.il RI Wiggers, Leo/B-5218-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Korzhavina, Irina/D-6848-2012; Shcheglova, Lydia/E-2221-2012; Katkov, Igor/E-2627-2012; Fazio, Salvatore /G-5156-2010; Doyle, Anthony/C-5889-2009; Golubkov, Yury/E-1643-2012; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Ferrando, James/A-9192-2012 OI Wiggers, Leo/0000-0003-1060-0520; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; Katkov, Igor/0000-0003-3064-0466; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816 FU US Department of Energy; Italian National Institute for Nuclear Physics (INFN); German Federal Ministry for Education and Research (BMBF) [05 H09PDF, 05h09GUF]; Science and Technology Facilities Council, UK; FRGS from the Malaysian government; US National Science Foundation; Polish Ministry of Science and Higher Education [DPN/N188/DESY/2009]; Deutsche Forschungsgemeinschaft (DFG) [SFB 676]; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT); Korean Ministry of Education; Korea Science and Engineering, Foundation; FNRS; Inter-University Attraction Poles Programme; Belgian Federal Science Policy Office; Spanish Ministry of Education and Science; CICYT; Natural Sciences and Engineering Research Council of Canada (NSERC); RE [N 4142.2010.2]; Russian Ministry of Education and Science [02.740.11.0244]; Netherlands Foundation for Research on Matter (FOM); Israel Science Foundation; Max Planck Institute for Physics, Munich, Germany; Warsaw University, Poland; DESY, Germany; Russian Foundation for Basic Research [11-02-91345-DFG_a]; [1 P03B 04529] FX supported by the US Department of Energy; supported by the Italian National Institute for Nuclear Physics (INFN); supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05 H09PDF; supported by the Science and Technology Facilities Council, UK; supported by an FRGS grant from the Malaysian government; supported by the US National Science Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.; supported by the Polish Ministry of Science and Higher Education as a scientific project No. DPN/N188/DESY/2009; supported by the Polish Ministry of Science and Higher Education and its grants for Scientific Research; supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05h09GUF, and the SFB 676 of the Deutsche Forschungsgemeinschaft (DFG); supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research; supported by the Korean Ministry of Education and Korea Science and Engineering, Foundation; supported by FNRS and its associated funds (HSN and FRIA) and by an Inter-University Attraction Poles Programme subsidised by the Belgian Federal Science Policy Office; supported by the Spanish Ministry of Education and Science through funds provided by CICYT; supported by the Natural Sciences and Engineering Research Council of Canada (NSERC); supported by RE Presidential grant N 4142.2010.2 for Leading Scientific Schools, by the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics and wider contract No.02.740.11.0244; supported by the Netherlands Foundation for Research on Matter (FOM); support by the Israel Science Foundation; also funded by Max Planck Institute for Physics, Munich, Germany; supported by the research grant No. 1 P03B 04529 (2005-2008); partially supported by Warsaw University, Poland; supported by DESY, Germany; partly supported by the Russian Foundation for Basic Research, grant 11-02-91345-DFG_a NR 95 TC 0 Z9 0 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2012 IS 3 AR 020 DI 10.1007/JHEP03(2012)020 PG 31 WC Physics, Particles & Fields SC Physics GA 920NM UT WOS:000302412100020 ER PT J AU Carena, M Gori, S Shah, NR Wagner, CEM AF Carena, Marcela Gori, Stefania Shah, Nausheen R. Wagner, Carlos E. M. TI A 125 GeV SM-like Higgs in the MSSM and the gamma gamma rate SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID SUPERSYMMETRIC STANDARD MODEL; BOSON MASS; UNIFICATION; LHC; PHYSICS AB We consider the possibility of a Standard Model (SM)-like Higgs in the context of the Minimal Supersymmetric Standard Model (MSSM), with a mass of about 125 GeV and with a production times decay rate into two photons which is similar or somewhat larger than the SM one. The relatively large value of the SM-like Higgs mass demands stops in the several hundred GeV mass range with somewhat large mixing, or a large hierarchy between the two stop masses in the case that one of the two stops is light. We find that, in general, if the heaviest stop mass is smaller than a few TeV, the rate of gluon fusion production of Higgs bosons decaying into two photons tends to be somewhat suppressed with respect to the SM one in this region of parameters. However, we show that an enhancement of the photon decay rate may be obtained for light third generation sleptons with large mixing, which can be naturally obtained for large values of tan beta and sizable values of the Higgsino mass parameter. C1 [Carena, Marcela; Gori, Stefania; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carena, Marcela; Shah, Nausheen R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Gori, Stefania; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Carena, M (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM carena@fnal.gov; goris@uchicago.edu; nausheen@fnal.gov; cwagner@hep.anl.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy; U.S. Department of Energy (DOE), Div. of HEP [DE-AC02-06CH11357]; DOE under Task TeV [DE-FG02-96-ER40956] FX Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Work at ANL is supported in part by the U.S. Department of Energy (DOE), Div. of HEP, Contract DE-AC02-06CH11357. This work was supported in part by the DOE under Task TeV of contract DE-FG02-96-ER40956. NR 57 TC 189 Z9 189 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2012 IS 3 AR 014 DI 10.1007/JHEP03(2012)014 PG 15 WC Physics, Particles & Fields SC Physics GA 920NM UT WOS:000302412100014 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hoch, M Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, S Benucci, L Cornelis, T Wolf, EA Janssen, X Luyckx, S Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Leonard, A Marage, PE Thomas, L Vander Velde, C Vanlaer, P Wickens, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Ceard, L De Jeneret, JD Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Martins, MC Damiao, DD Martins, T Pol, ME Souza, MHG Aida, WL Carvalho, W Custodio, A Da Costa, EM Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Jorge, LS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Karadzhinova, A Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, S Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, S Zhu, B Zou, W Cabrera, A Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamer, AE Khali, S Mahmoud, MA Radi, A Hektor, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Azzolini, V Eerola, P Fedi, G Voutilainen, M Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Daci, N Dahms, T Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Juillot, P Karim, M Le Bihan, AC Van Hove, P Fassi, F Mercier, D Baty, C Beauceron, S Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Falkiewicz, A Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Viret, S Lomidze, D Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Erdmann, M Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Lingemann, J Magass, C Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Weber, M Bontenackels, M Cherepanov, V Davids, M Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Olzem, J Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Tomaszewska, J Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Erfle, J Gebbert, U Gorner, M Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Stadie, H Steinbruck, G Thomsen, J Barth, C Berger, J Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Guthoff, M Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Katkov, I Komaragiri, JR Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Peiffer, T Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Renz, M Rocker, S Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schmanau, M Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Weiler, T Zeise, M Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Hajdu, C Hidas, P Horvath, D Kapusi, A Krajczar, K Sikler, F Veszpremi, V Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, J Singh, SP Ahuja, S Choudhary, BC Kumar, A Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Choudhury, RK Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Romano, F Selvaggi, G Silvestris, L Singh, G Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Berzano, U Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Santocchia, A Taroni, S Valdata, M Azzurri, P Bagliesi, G Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Rizzi, A Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Heo, SG Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Ro, SR Son, DC Kim, JY Kim, ZJ Song, S Jo, HY Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Seo, E Sim, KS Choi, M Kang, S Kim, H Kim, JH Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Brona, G Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Bialkowska, H Boimska, B Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PCF Gallinaro, M Musella, P Nayak, A Pela, J Ribeiro, PQ Seixas, J Varela, J Vischia, P Afanasiev, S Belotelov, I Bunin, P Golutvin, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Krokhotin, A Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bernet, C Bialas, W Bianchi, G Bloch, P Bocci, A Breuker, H Bunkowski, K Camporesi, T Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Georgiou, G Gerwig, H Giffels, M Gigi, D Gill, K Giordano, D Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Guiducci, L Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Hoffmann, HF Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lenzi, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Mavromanolakis, G Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Cortezon, EP Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stoye, M Tsirou, A Veres, GI Vichoudis, P Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Chen, Z Deisher, A Dissertori, G Dittmar, M Dunser, M Eugster, J Freudenreich, K Grab, C Lecomte, P Lustermann, W del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Snoek, H Verzetti, M Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Hos, I Kangal, EE Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Deliomeroglu, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Levchuk, L Bostock, F Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardle, N Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Henderson, C Avetisyan, A Bose, T Jarrin, EC Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Bhattacharya, S Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Caulfield, M Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Robles, J Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Andreev, V Arisaka, K Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sfiligoi, I Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Cooper, W Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jensen, H Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Leonidopoulos, C Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Pivarski, J Pordes, R Prokofyev, O Schwarz, T Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Snowball, M Wang, D Yelton, J Zakaria, M Gaultney, V Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kunde, GJ Lacroix, F Malek, M O'Brien, C Silkworth, C Silvestre, C Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Griffiths, S Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Bonato, A Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Iii, RPK Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Peterman, A Rossato, K Rumerio, P Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Hahn, KA Kim, Y Klute, M Lee, YJ Li, W Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Cushman, P Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rekovic, V Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Jindal, P Keller, J Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Ziegler, J Bylsma, B Durkin, LS Hill, C Killewald, P Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hegeman, J Hunt, A Laird, E Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Petrillo, G Sakumoto, W Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Atramentov, O Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Park, M Patel, R Richards, A Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Bardak, C Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Appelt, E Brownson, E Engh, D Florez, C Gabella, W Gurrola, A Issah, M Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Conetti, S Cox, B Francis, B Goadhouse, S Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Belknap, D Bellinger, JN Bernardini, J Borrello, L Carlsmith, D Cepeda, M Dasu, S Efron, J Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, S. Benucci, L. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Leonard, A. Marage, P. E. Thomas, L. Vander Velde, C. Vanlaer, P. Wickens, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Ceard, L. De Jeneret, J. De Favereau Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Correa Martins Junior, M. De Jesus Damiao, D. Martins, T. Pol, M. E. Souza, M. H. G. Aida Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Soares Jorge, L. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Karadzhinova, A. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, S. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, S. Zhu, B. Zou, W. Cabrera, A. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kamer, A. Ellithi Khali, S. Mahmoud, M. A. Radi, A. Hektor, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Azzolini, V. Eerola, P. Fedi, G. Voutilainen, M. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Daci, N. Dahms, T. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Karim, M. Le Bihan, A. -C. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beauceron, S. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Falkiewicz, A. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Viret, S. Lomidze, D. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Erdmann, M. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Weber, M. Bontenackels, M. Cherepanov, V. Davids, M. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Olzem, J. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Tomaszewska, J. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Stadie, H. Steinbrueck, G. Thomsen, J. Barth, C. Berger, J. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Guthoff, M. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Katkov, I. Komaragiri, J. R. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Renz, M. Roecker, S. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schmanau, M. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Weiler, T. Zeise, M. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Hajdu, C. Hidas, P. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Veszpremi, V. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. Singh, S. P. Ahuja, S. Choudhary, B. C. Kumar, A. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, S. Jain, S. Khurana, R. Sarkar, S. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Romano, F. Selvaggi, G. Silvestris, L. Singh, G. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Berzano, U. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Santocchia, A. Taroni, S. Valdata, M. Azzurri, P. Bagliesi, G. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Rizzi, A. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Heo, S. G. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Jo, H. Y. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Seo, E. Sim, K. S. Choi, M. Kang, S. Kim, H. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Brona, G. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Bialkowska, H. Boimska, B. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. C. Gallinaro, M. Musella, P. Nayak, A. Pela, J. Ribeiro, P. Q. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Belotelov, I. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bernet, C. Bialas, W. Bianchi, G. Bloch, P. Bocci, A. Breuker, H. Bunkowski, K. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Georgiou, G. Gerwig, H. Giffels, M. Gigi, D. Gill, K. Giordano, D. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Guiducci, L. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Hoffmann, H. F. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lenzi, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Mavromanolakis, G. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoye, M. Tsirou, A. Veres, G. I. Vichoudis, P. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Chen, Z. Deisher, A. Dissertori, G. Dittmar, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Lecomte, P. Lustermann, W. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. -C. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Verzetti, M. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Hos, I. Kangal, E. E. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bostock, F. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Henderson, C. Avetisyan, A. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Bhattacharya, S. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Caulfield, M. Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Robles, J. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Andreev, V. Arisaka, K. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sfiligoi, I. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cooper, W. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jensen, H. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Pivarski, J. Pordes, R. Prokofyev, O. Schwarz, T. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Gaultney, V. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kunde, G. J. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Silvestre, C. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Griffiths, S. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Bonato, A. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Iii, R. P. Kenny Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Peterman, A. Rossato, K. Rumerio, P. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Jindal, P. Keller, J. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Ziegler, J. Bylsma, B. Durkin, L. S. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Laird, E. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Petrillo, G. Sakumoto, W. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Atramentov, O. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Richards, A. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Bardak, C. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Gurrola, A. Issah, M. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Conetti, S. Cox, B. Francis, B. Goadhouse, S. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. Bellinger, J. N. Bernardini, J. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Efron, J. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for the standard model Higgs boson in the H -> ZZ -> 2l2v channel in pp collisions at root s=7 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID PARTON DISTRIBUTIONS; HADRON COLLIDERS; ELECTROWEAK CORRECTIONS; MASSLESS PARTICLES; BROKEN SYMMETRIES; LHC; QCD; DECAYS; MASSES AB A search for the standard model Higgs boson in the H -> ZZ -> 2l2v decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 fb(-1). No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440GeV range is excluded at 95% confidence level. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Benucci, L.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Leonard, A.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Ceard, L.; De Jeneret, J. De Favereau; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Aida Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, S.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamer, A. Ellithi; Khali, S.; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS, Inst Pluridisciplinaire Hubert Curien,IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Erdmann, M.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Davids, M.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Stadie, H.; Steinbrueck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Roecker, S.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schmanau, M.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Choudhary, B. C.; Kumar, A.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, S.; Jain, S.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Romano, F.; Selvaggi, G.; Silvestris, L.; Singh, G.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Selvaggi, G.; Singh, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Berzano, U.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Meridiani, P.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Longo, E.; Organtini, G.; Pandolfi, F.; Rahatlou, S.; Rovelli, C.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; Marone, M.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Jo, H. Y.] Konkuk Univ, Seoul, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Seo, E.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kang, S.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. C.; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Hammer, J.; Genchev, V.; Iaydjiev, P.; Puljak, I.; Chierici, R.; Jung, H.; Guthoff, M.; Foudas, C.; Hajdu, C.; Sikler, F.; Sharma, A.; Mohanty, A. K.; De Filippis, N.; Fasanella, D.; Tropiano, A.; Benaglia, A.; Gennai, S.; Massironi, A.; Montoya, C. A. Carrillo; Iorio, A. O. M.; Bacchetta, N.; Nespolo, M.; Tosi, M.; Lucaroni, A.; Taroni, S.; Tonelli, G.; Venturi, A.; Del Re, D.; Grassi, M.; Mariotti, C.; Montanino, D.; Pela, J.; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bernet, C.; Bialas, W.; Bianchi, G.; Bloch, P.; Bocci, A.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Guiducci, L.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Hoffmann, H. F.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lenzi, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Mavromanolakis, G.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.; Kovalskyi, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Chen, Z.; Deisher, A.; Dissertori, G.; Dittmar, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Lecomte, P.; Lustermann, W.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Henderson, C.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Caulfield, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Robles, J.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Felcini, M.; Arisaka, K.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sfiligoi, I.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Schwarz, T.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Bonato, A.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Iii, R. P. Kenny; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Peterman, A.; Rossato, K.; Rumerio, P.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Li, W.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Lee, Y. -J.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Shipkowski, S. P.; Smith, K.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Schmitt, M.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Atramentov, O.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Richards, A.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Gurrola, A.; Issah, M.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Conetti, S.; Cox, B.; Francis, B.; Goadhouse, S.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Bernardini, J.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Efron, J.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamer, A. Ellithi] Cairo Univ, Cairo, Egypt. [Khali, S.; Radi, A.] British Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.] Brandenburg Tech Univ Cottbus, D-03044 Cottbus, Germany. [Krajczar, K.; Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Kunde, G. J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Matorras, Francisco/I-4983-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Hektor, Andi/G-1804-2011; Grandi, Claudio/B-5654-2015; Sen, Sercan/C-6473-2014; vilar, rocio/P-8480-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; Liu, Sheng/K-2815-2013; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dogangun, Oktay/L-9252-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Petrushanko, Sergey/D-6880-2012; Mercadante, Pedro/K-1918-2012; Della Ricca, Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Tinti, Gemma/I-5886-2013; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Tinoco Mendes, Andre David/D-4314-2011; Fruhwirth, Rudolf/H-2529-2012; Chen, Jie/H-6210-2011; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Lokhtin, Igor/D-7004-2012; Perfilov, Maxim/E-1064-2012; Belyaev, Andrey/E-1540-2012; Dudko, Lev/D-7127-2012; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Tomei, Thiago/E-7091-2012; Focardi, Ettore/E-7376-2012; Raidal, Martti/F-4436-2012; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Lujan Center, LANL/G-4896-2012 OI Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Paganoni, Marco/0000-0003-2461-275X; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Hektor, Andi/0000-0001-7873-8118; Grandi, Claudio/0000-0001-5998-3070; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Wimpenny, Stephen/0000-0003-0505-4908; Dogangun, Oktay/0000-0002-1255-2211; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Della Ricca, Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Tinoco Mendes, Andre David/0000-0001-5854-7699; Azzi, Patrizia/0000-0002-3129-828X; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Dudko, Lev/0000-0002-4462-3192; Tomei, Thiago/0000-0002-1809-5226; Focardi, Ettore/0000-0002-3763-5267; Novaes, Sergio/0000-0003-0471-8549; FU FMSR (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP (Brazil); MES (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09; ERDF (Estonia); Academy of Finland; MEC; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU (Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE; NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON; RosAtom; RAS; RFBR (Russia); MSTD (Serbia); MICINN; CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK; TAEK (Turkey); STFC (United Kingdom); DOE; NSF (U.S.A.); Marie-Curie programme; European Research Council (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Council of Science and Industrial Research, India; Foundation for Polish Science; European Union FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 69 TC 13 Z9 13 U1 1 U2 49 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2012 IS 3 AR 040 DI 10.1007/JHEP03(2012)040 PG 32 WC Physics, Particles & Fields SC Physics GA 920NM UT WOS:000302412100040 ER PT J AU Harnish, RA Johnson, GE McMichael, GA Hughes, MS Ebberts, BD AF Harnish, Ryan A. Johnson, Gary E. McMichael, Geoffrey A. Hughes, Michael S. Ebberts, Blaine D. TI Effect of Migration Pathway on Travel Time and Survival of Acoustic-Tagged Juvenile Salmonids in the Columbia River Estuary SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID PASSIVE INTEGRATED TRANSPONDERS; CHINOOK SALMON; ONCORHYNCHUS-TSHAWYTSCHA; CASPIAN TERNS; DELAYED MORTALITY; AVIAN PREDATION; PACIFIC SALMON; COHO SALMON; OREGON; MODEL AB We applied acoustic telemetry methods to characterize migration pathways and estimate associated travel times and survival probabilities for juvenile Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss migrating downstream through the Columbia River estuary (from river kilometer [rkm] 86 to rkm 8). Acoustic-tagged fish were detected as migrating in the navigation channel and in off-channel areas at each of the estuarine reaches we examined during May-August 2010. However, the majority of fish traveled in the main navigation channel from rkm 86 to rkm 37, at which point most fish left the river-influenced navigation channel; crossed a broad, shallow tidal flat; and migrated the final 37 km in a secondary channel, which was characterized as having greater tidal transport than the navigation channel. The pathway used by acoustic-tagged smolts to migrate through the estuary affected their rate of travel. In most reaches, navigation channel migrants traveled significantly faster than fish that migrated through off-channel areas. Contrary to observations from previous studies, smolts that migrated through off-channel areas at a slower rate did not experience lower survival than their cohorts that used the navigation channel. Although no significant differences in survival probability were observed between navigation channel migrants and off-channel migrants, areas of high mortality were identified between rkm 37 and rkm 8. Dispersion of juvenile salmonids into multiple pathways during downstream migration can be beneficial in terms of increased expression of life history diversity and resiliency to environmental perturbations. Our results, which document juvenile salmon migration pathways and associated travel time and survival through a large estuary, can be used to focus future research and management activities in areas identified as having high mortality and therefore can be used to aid in the recovery of Endangered Species Act-listed salmon populations. C1 [Harnish, Ryan A.; McMichael, Geoffrey A.; Hughes, Michael S.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. [Johnson, Gary E.] Pacific NW Natl Lab, Coastal Ecosyst Res Grp, Portland, OR 97204 USA. [Ebberts, Blaine D.] USA, Corps Engineers, Portland, OR 97204 USA. RP Harnish, RA (reprint author), Pacific NW Natl Lab, Ecol Grp, POB 999, Richland, WA 99352 USA. EM ryan.harnish@pnl.gov FU U.S. Army Corps of Engineers (USACE) Portland District FX We thank the U.S. Army Corps of Engineers (USACE) Portland District for funding this research. Brad Eppard (USACE Portland District) provided excellent oversight in the use of the JSATS as it relates to survival and dam passage and was instrumental in standardizing telemetry equipment and protocols for USACE-funded research in the Columbia River basin. Cindy Studebaker (USACEPortland District) was the technical lead for USACE during most of this work; Liz Smock (USACE Portland District) was very helpful in coordinating receiver deployment and channel maintenance activities. Dave Nichols (Ilwaco Fuel Dock) was a great host and provided support for our shore-based operations in Ilwaco. We thank the Pacific Northwest National Laboratory (PNNL) North Bonneville crew that collected and tagged fish at John Day Dam and provided tagging data; we sincerely appreciate the hard work and help provided by PNNL North Bonneville staff, including Mark Weiland, Gene Ploskey, James Hughes, Shon Zimmerman, and Eric Fischer. We are grateful to the following PNNL staff for their assistance: Rich Brown and Kate Deters for surgery training; Eric Choi, Brian LaMarche, Daniel Deng, Thomas Seim, and Thomas Carlson for JSATS development; Brian Bellgraph, Lori Ortega, KateDeters, Jayson Martinez, Tao Fu, and Noel Tavan for receiver testing; Kate Hall and Scott Titzler for receiver deployment; Kenneth Ham, Jina Kim, and Donna Trott for data processing; SaraKallio for map production; and Andrea Currie for manuscript editing. NR 68 TC 18 Z9 18 U1 2 U2 25 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0002-8487 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD MAR PY 2012 VL 141 IS 2 BP 507 EP 519 DI 10.1080/00028487.2012.670576 PG 13 WC Fisheries SC Fisheries GA 936MB UT WOS:000303593400023 ER PT J AU Pflugrath, BD Brown, RS Carlson, TJ AF Pflugrath, Brett D. Brown, Richard S. Carlson, Thomas J. TI Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID HYDRO-TURBINE PASSAGE; ATLANTIC SALMON; COLUMBIA RIVER; TRANSMITTERS; DECOMPRESSION; COMPENSATION; BAROTRAUMA AB This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. The depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations-the increased excess mass test and the swim bladder rupture test. In the increased excess mass test, weights were surgically added to the exterior of the fish, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. The swim bladder rupture test entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7 m (range=4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system. C1 [Pflugrath, Brett D.; Brown, Richard S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Carlson, Thomas J.] Marine Sci Lab, Pacific NW Natl Lab, Sequim, WA 98382 USA. RP Pflugrath, BD (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM brett.pflugrath@pnnl.gov FU U.S. Army Corps of Engineers (USACE), Portland District; U.S. Department of Energy [DE-AC05-76RL01830] FX Funding for this research was provided by the U.S. Army Corps of Engineers (USACE), Portland District. The authors thank USACE staff, including Mike Langeslay, Martin Ahmann, Blaine Ebberts, Robert Johnson, Dan Feil, Brad Eppard, and the USACE Turbine Survival Technical Team, for their commitment, assistance, and oversight.; This research required the assistance of many. The authors thank Piper Benjamin, Scott Carpenter, Alison Colotelo, Gayle Dirkes, Marybeth Gay, Andrew Gingerich, David Geist, Jill Janak, Kasey Knox, Andy LeBarge, Timothy Linley, and Ricardo Walker of the Pacific Northwest National Laboratory (PNNL). We appreciate the editing assistance of Andrea Currie of the PNNL.; The PNNL animal facilities used in this research are Association for Assessment and Accreditation of Laboratory Animal Care certified; fish were handled in accordance with federal guidelines for the care and use of laboratory animals, and protocols for our study were approved by the Institutional Animal Care and Use Committee at Battelle-Pacific Northwest Division. The PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 27 TC 9 Z9 9 U1 3 U2 16 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0002-8487 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD MAR PY 2012 VL 141 IS 2 BP 520 EP 525 DI 10.1080/00028487.2012.670187 PG 6 WC Fisheries SC Fisheries GA 936MB UT WOS:000303593400024 ER PT J AU Damski, B Marecki, P AF Damski, Bogdan Marecki, Piotr TI ON THE QUANTUM COULOMB FIELD SO ACTA PHYSICA POLONICA B LA English DT Article ID ELECTRIC CHARGE; BOUND-STATE; INFRARED PROBLEM; ELECTRODYNAMICS; EXISTENCE; MECHANICS; PROOF; QUANTIZATION; ALGEBRA; PHASE AB The quantum theory of the Coulomb field has been developed by Andrzej Staruszkiewicz in the long series of papers. This theory explains the universality and quantization of the electric charge observed in Nature. Moreover, the efforts have been made to determine the value of the elementary charge from its mathematical structure. Nonetheless, no other immediate applications of this theory have been proposed. We make such an attempt by (i) considering the classical energy operator and defining its counterpart in the quantum theory of the Coulomb field; (ii) determining the eigenstates of the energy operator and assigning energy to the excitations of the theory; and (iii) proposing a simple theoretical scheme to estimate the effect of the quantum fluctuations of the Coulomb field on the energy levels of hydrogen-like atoms. We argue that the recent experimental advances in hydrogen and muonic-hydrogen spectroscopy may provide the unique window of opportunity for the verification of the Staruszkiewicz theory. C1 [Damski, Bogdan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Marecki, Piotr] Univ Duisburg Essen, Fak Phys, D-47057 Duisburg, Germany. RP Damski, B (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Damski, Bogdan/E-3027-2013 FU U.S. Department of Energy through the LANL/LDRD; Deutsche Forschungsgemeinschaft [MA4851/1-1] FX This work is supported by U.S. Department of Energy through the LANL/LDRD Program (B.D.) and by the project MA4851/1-1 of the Deutsche Forschungsgemeinschaft (P.M.). We thank Dr. Malcolm Boshier for drawing our attention to Ref. [11] and for useful discussions. We thank Prof. Andrzej Staruszkiewicz and Dr. Andrzej Herdegen for insightful comments about the theory of the quantum Coulomb field. NR 31 TC 0 Z9 0 U1 0 U2 3 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR PY 2012 VL 43 IS 3 BP 381 EP 395 DI 10.5506/APhysPolB.43.381 PG 15 WC Physics, Multidisciplinary SC Physics GA 932BD UT WOS:000303264000002 ER PT J AU Ramachandran, R Maskey, M Kulkarni, A Conover, H Nair, US Movva, S AF Ramachandran, Rahul Maskey, Manil Kulkarni, Ajinkya Conover, Helen Nair, U. S. Movva, Sunil TI Talkoot: software tool to create collaboratories for earth science SO EARTH SCIENCE INFORMATICS LA English DT Article DE Collaboratory; Workflows; Data mining; Knowledge management AB "Open science," where researchers share and publish every element of their research process in addition to the final results, can foster novel ways of collaboration among researchers and has the potential to spontaneously create new virtual research collaborations. Based on scientific interest, these new virtual research collaborations can cut across traditional boundaries such as institutions and organizations. Advances in technology allow for software tools that can be used by different research groups and institutions to build and support virtual collaborations and infuse open science. This paper describes Talkoot, a software toolkit designed and developed by the authors to provide Earth Science researchers a ready-to-use knowledge management environment and an online platform for collaboration. Talkoot allows Earth Science researchers a means to systematically gather, tag and share their data, analysis workflows and research notes. These Talkoot features are designed to foster rapid knowledge sharing within a virtual community. Talkoot can be utilized by small to medium sized groups and research centers, as well as large enterprises such a national laboratories and federal agencies. C1 [Ramachandran, Rahul; Maskey, Manil; Kulkarni, Ajinkya; Conover, Helen; Nair, U. S.] Univ Alabama, Huntsville, AL 35899 USA. [Movva, Sunil] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Ramachandran, R (reprint author), Univ Alabama, Huntsville, AL 35899 USA. EM ramachr@uah.edu FU NASA ACCESS [NNX08AT90A] FX This work has been funded by NASA ACCESS Grant # NNX08AT90A. NR 24 TC 2 Z9 2 U1 1 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD MAR PY 2012 VL 5 IS 1 BP 33 EP 41 DI 10.1007/s12145-012-0094-y PG 9 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 933RP UT WOS:000303380300004 ER PT J AU Smith, H Narasimhulu, DM Greene, H Gottimukkala, S Marina, O Frimer, M Hebert, T Einstein, M Mourant, J AF Smith, H. Narasimhulu, D. Maheswari Greene, H. Gottimukkala, S. Marina, O. Frimer, M. Hebert, T. Einstein, M. Mourant, J. TI Elastic light scattering spectroscopy versus standard colposcopy in patients with abnormal cervical cytology SO GYNECOLOGIC ONCOLOGY LA English DT Meeting Abstract C1 [Smith, H.; Narasimhulu, D. Maheswari; Gottimukkala, S.; Frimer, M.; Hebert, T.; Einstein, M.] Albert Einstein Coll Med, Montefiore Med Ctr, Bronx, NY 10467 USA. [Greene, H.] Univ New Mexico, Albuquerque, NM 87131 USA. [Marina, O.; Mourant, J.] Los Alamos Natl Labs, Biosci Div, Los Alamos, NM USA. OI Narasimhulu, deepa maheswari/0000-0002-1443-2731 NR 0 TC 0 Z9 0 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-8258 J9 GYNECOL ONCOL JI Gynecol. Oncol. PD MAR PY 2012 VL 125 SU 1 MA 128 BP S54 EP S54 DI 10.1016/j.ygyno.2011.12.129 PG 1 WC Oncology; Obstetrics & Gynecology SC Oncology; Obstetrics & Gynecology GA 931NW UT WOS:000303227600129 ER PT J AU Zhou, XB Lakkaraju, VR Apple, M Dobeck, LM Gullickson, K Shaw, JA Cunningham, AB Wielopolski, L Spangler, LH AF Zhou, Xiaobing Lakkaraju, Venkata R. Apple, Martha Dobeck, Laura M. Gullickson, Kadie Shaw, Joseph A. Cunningham, Alfred B. Wielopolski, Lucian Spangler, Lee H. TI Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO2 leakage SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 monitoring; CO2 leakage; CO2 sequestration; Soil electrical conductivity; Rainfall; Soil moisture; Carbon cycling; Magnetic and electrical methods ID CARBON-DIOXIDE SEQUESTRATION; VOLCANIC ASH SOILS; GEOLOGICAL STORAGE; NITROGEN MINERALIZATION; DISSOLUTION KINETICS; SHALLOW GROUNDWATER; CLIMATE-CHANGE; GAS-MIGRATION; WATER-CONTENT; RESISTIVITY AB Experimental observations of signature changes of bulk soil electrical conductivity (EC) due to CO2 leakage were carried out at a field site at Bozeman, Montana, to investigate the change of soil geophysical properties in response to possible leakage of geologically sequestered CO2. The dynamic evolution of bulk soil EC was measured during an engineered surface leakage of CO2 through in situ continuous monitoring of bulk soil EC, soil moisture, soil temperature, rainfall rate, and soil CO2 concentration to investigate the response of soil bulk EC signature to CO2 leakage. Observations show that: (1) high soil CO2 concentration due to CO2 leakage enhances the dependence of bulk soil EC on soil moisture. The bulk soil EC is a linear multivariate function of soil moisture and soil temperature, the coefficient for soil moisture increased from 2.111 dS for the non-leaking phase to 4.589 dS for the CO2 leaking phase; and the coefficient for temperature increased from 0.003 dS/degrees C for the non-leaking phase to 0.008 dS/degrees C for the CO2 leaking phase. The dependence of bulk soil EC on soil temperature is generally weak, but leaked CO2 enhances the dependence, (2) after the CO2 release, the relationship between soil bulk EC and soil CO2 concentration observes three distinct CO2 decay modes. Rainfall events result in sudden changes of soil moisture and are believed to be the driving forcing for these decay modes, and (3) within each mode, increasing soil CO2 concentration results in higher bulk soil EC. Comparing the first 2 decay modes, it is found that the dependence of soil EC on soil CO2 concentration is weaker for the first decay mode than the second decay mode. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhou, Xiaobing; Lakkaraju, Venkata R.] Univ Montana, Dept Geophys Engn, Montana Tech, Butte, MT USA. [Apple, Martha] Univ Montana, Dept Biol Sci, Montana Tech, Butte, MT 59701 USA. [Dobeck, Laura M.; Gullickson, Kadie; Spangler, Lee H.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Shaw, Joseph A.] Montana State Univ, Dept Elect & Comp Engn, Bozeman, MT 59717 USA. [Cunningham, Alfred B.] Montana State Univ, Dept Civil Engn, Bozeman, MT 59717 USA. [Wielopolski, Lucian] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Zhou, XB (reprint author), Univ Montana, Dept Geophys Engn, Montana Tech, 1300 W Pk St, Butte, MT USA. EM xzhou@mtech.edu OI Spangler, Lee/0000-0002-3870-6696 FU US Department of Energy EPSCoR [DE-FG02-08ER46527]; DOE [DE-FC26-04NT42262] FX This work was funded by the US Department of Energy EPSCoR program under grant number DE-FG02-08ER46527 and the Zero Emissions Research and Technology (ZERT) program (DOE award no. DE-FC26-04NT42262). NR 68 TC 9 Z9 9 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2012 VL 7 BP 20 EP 29 DI 10.1016/j.ijggc.2011.12.006 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 932KO UT WOS:000303290200003 ER PT J AU Lewicki, JL Hilley, GE AF Lewicki, Jennifer L. Hilley, George E. TI Eddy covariance network design for mapping and quantification of surface CO2 leakage fluxes SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Eddy covariance network; Carbon dioxide flux; Leakage monitoring; Least-squares inversion; Geologic carbon sequestration; Natural analog ID SHALLOW SUBSURFACE; MAMMOTH MOUNTAIN; RELEASE TEST; CALIFORNIA; EMISSIONS; TRANSPORT AB We develop a method to design an eddy covariance (EC) network to enhance monitoring of the spatial distribution and magnitude of a surface CO2 flux leakage signal. Integrated and distributed estimates of CO2 surface flux inferred using the network are used to assess trade-offs between number and location of stations, and the determination of the surface flux distribution. We applied this method to a surface CO2 flux leakage signal generated by a controlled CO2 release conducted in the shallow subsurface in Bozeman, MT. At this site, three EC stations provide definition of the spatial distribution of this CO2 leakage signal, and quantify total CO2 leakage discharge. Results provide a means of designing experiments to map the spatio-temporal distribution of CO2 leakage fluxes and quantify total leakage rate in areas where a priori information may be used to infer likely scenarios for surface flux distributions. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Lewicki, Jennifer L.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hilley, George E.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. RP Lewicki, JL (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jllewicki@lbl.gov FU Stanford University; ZERT, Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the U.S. Dept. of Energy [DE-AC02-05CH11231] FX We thank C.M. Oldenburg and two anonymous reviewers for constructive manuscript review and H.P. Schmid for the FSAM source code. G.E. Hilley acknowledges support from the Terman Fellowship provided by Stanford University. This work was also funded by the ZERT Project, Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 6 Z9 6 U1 1 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2012 VL 7 BP 137 EP 144 DI 10.1016/j.ijggc.2012.01.010 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 932KO UT WOS:000303290200015 ER PT J AU Liu, FY Lu, P Griffith, C Hedges, SW Soong, Y Hellevang, H Zhu, C AF Liu, Faye Lu, Peng Griffith, Craig Hedges, Sheila W. Soong, Yee Hellevang, Helge Zhu, Chen TI CO2-brine-caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Review DE Eau Claire shale; Geological carbon sequestration; Caprock reactivity experiments; CO2; Review ID NATURAL-GAS RESERVOIRS; CARBON-DIOXIDE STORAGE; CLAYEY CAP-ROCK; CO2 STORAGE; SUPERCRITICAL CO2; SEDIMENTARY BASINS; GEOLOGICAL MEDIA; SEALING EFFICIENCY; PRESSURE BUILDUP; GREENHOUSE GASES AB Long term containment of stored CO2 in deep geological reservoirs will depend on the performance of the caprock to prevent the buoyant CO2 from escaping to shallow drinking water aquifers or the ground surface. Here we report new laboratory experiments on CO2-brine-caprock interactions and a review of the relevant literature. The Eau Claire Formation is the caprock overlying the Mount Simon sandstone formation, one of the target geological CO2 storage reservoirs in the Midwest USA region. Batch experiments of Eau Claire shale dissolution in brine were conducted at 200 degrees C and 300 bars to test the extent of fluid-rock reactions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis indicate minor dissolution of K-feldspar and anhydrite, and precipitation of pore-filling and pore-bridging illite and/or smectite, and siderite in the vicinity of pyrite. We also reviewed relevant reactivity experiments, modeling work, and field observations in the literature in an attempt to help define the framework for future studies on the geochemical systems of the caprock overlain on geological CO2 storage formations. Reactivity of the caprock is generally shown to be low and limited to the vicinity of the CO2-caprock interface, and is related to the original caprock mineralogical and petrophysical properties. Stable isotope studies indicate that CO2 exists in both free phase and dissolved phase within the caprock. Carbonate and feldspar dissolution is reported in most studies, along with clay and secondary carbonate precipitation. Currently, research is mainly focused on the micro-fracture scale geochemistry of the shaly caprock. More attention is required on the potential pore scale reactions that may become significant given the long time scale associated with geological carbon storage. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Liu, Faye; Lu, Peng; Zhu, Chen] Indiana Univ, Dept Geol Sci, Bloomington, IN 47408 USA. [Griffith, Craig; Hedges, Sheila W.; Soong, Yee] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Hellevang, Helge] Univ Oslo, Dept Geosci, N-0316 Oslo, Norway. RP Liu, FY (reprint author), Indiana Univ, Dept Geol Sci, Bloomington, IN 47408 USA. EM liu60@indiana.edu RI Liu, Yifei/J-9530-2015; Zhu, Chen/A-5356-2010 OI Zhu, Chen/0000-0001-5374-6787 FU China Scholarship Council; ORISE; U.S. Department of Energy [DE-FE0004381]; Norwegian Center of Excellence; Fulbright scholarship; agency of the United States Government FX Faye Liu would like to thank Dr. Juergen Schieber at Indiana University for the assistance with the SEM analysis. China Scholarship Council is thanked for the fellowship support during Faye's study. CZ acknowledges the support from ORISE, the U.S. Department of Energy award DE-FE0004381, the Norwegian Center of Excellence Subsurface CO2 storage - Critical Elements and Superior Strategy (SUCCESS) V, and a Fulbright scholarship to Norway. We cordially acknowledge Poonam Giri for the collation work. Although the work was partly sponsored by an agency of the United States Government, the views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 113 TC 48 Z9 50 U1 5 U2 99 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2012 VL 7 BP 153 EP 167 DI 10.1016/j.ijggc.2012.01.012 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 932KO UT WOS:000303290200017 ER PT J AU Birkholzer, JT Cihan, A Zhou, QL AF Birkholzer, Jens T. Cihan, Abdullah Zhou, Quanlin TI Impact-driven pressure management via targeted brine extraction-Conceptual studies of CO2 storage in saline formations SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Pressure management; Storage capacity; Brine extraction ID GEOLOGIC STORAGE; CARBON-DIOXIDE; SCALE; INJECTION; CAPACITY; AQUIFERS; BASIN; SEQUESTRATION; CAPTURE; SYSTEMS AB Large-scale pressure buildup in response to carbon dioxide (CO2) injection in the subsurface may limit the dynamic storage capacity of suitable formations, because elevated pressure can impact caprock integrity, induce reactivation of critically stressed faults, drive CO2 and/or brine through conductive features into shallow groundwater resources, or may affect existing subsurface activities such as oil and gas production. It has been suggested that pressure management involving the extraction of native fluids from storage formations can be used to control subsurface pressure increases caused by CO2 injection and storage, thereby limiting the possibility of unwanted effects. In this study, we introduce the concept of "impact-driven pressure management (IDPM)," which involves optimization of fluid extraction to meet local (not global) performance criteria (i.e., the goal is to limit pressure increases primarily where environmental impact is a concern). We evaluate the feasibility of IDPM for a hypothetical CO2 storage operation in an idealized multi-formation system containing a critically stressed fault zone. Using a newly developed analytical solution, we assess alternative fluid extraction schemes and test whether a predefined performance criterion can be achieved, in this case the maximum allowable pressure near the fault zone. Alternative strategies for well placement are evaluated, comparing near-injection arrays of extraction wells with near-impact arrays. Extraction options include active extraction wells and (passive) pressure relief wells, as well as combinations of both, with and without reinjection into the subsurface. Our results suggest that strategic well placement and optimization of extraction may allow for a significant reduction in the brine extraction volumes. Additional work is required in the future to test the general concept of IDPM for more complex and realistic CO2 storage scenarios. Published by Elsevier Ltd. C1 [Birkholzer, Jens T.; Cihan, Abdullah; Zhou, Quanlin] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Birkholzer, JT (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. EM JTBirkholzer@lbl.gov RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011; Cihan, Abdullah/D-3704-2015 OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912; FU Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank two anonymous reviewers and Yoojin Jung of Lawrence Berkeley National Laboratory for careful reviews of the manuscript and many excellent suggestions for improvement. This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 29 TC 39 Z9 40 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2012 VL 7 BP 168 EP 180 DI 10.1016/j.ijggc.2012.01.001 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 932KO UT WOS:000303290200018 ER PT J AU Zheng, LG Apps, JA Spycher, N Birkholzer, JT Kharaka, YK Thordsen, J Beers, SR Herkelrath, WN Kakouros, E Trautz, RC AF Zheng, Liange Apps, John A. Spycher, Nicolas Birkholzer, Jens T. Kharaka, Yousif K. Thordsen, James Beers, Sarah R. Herkelrath, William N. Kakouros, Evangelos Trautz, Robert C. TI Geochemical modeling of changes in shallow groundwater chemistry observed during the MSU-ZERT CO2 injection experiment SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2; Groundwater; Geochemistry; ZERT; Risk assessment ID CALCITE DISSOLUTION KINETICS; FRESH-WATER RESOURCES; ROCK INTERACTIONS; CARBON-DIOXIDE; HYDROTHERMAL SYSTEMS; CATION-EXCHANGE; SEQUESTRATION; TRANSPORT; GAS; AQUIFERS AB A field experiment involving the release of carbon dioxide (CO2) into a shallow aquifer was conducted near Bozeman, Montana, during the summer of 2008, to investigate the potential groundwater quality impacts in the case of leakage of CO2 from deep geological storage. As an essential part of the Montana State University Zero Emission Research and Technology (MSU-ZERT) field program, food-grade CO2 was injected over a 30 day period into a horizontal perforated pipe a few feet below the water table of a shallow aquifer. The impact of elevated CO2 concentrations on groundwater quality was investigated by analyzing water samples taken before, during, and following CO2 injection, from observation wells located in the vicinity of the injection pipe, and from two distant monitoring wells. Field measurements and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of naturally occurring major and trace element species. The geochemical data were evaluated using principal component analysis (PCA) to (1) understand potential correlations between aqueous species, and (2) to identify minerals controlling the chemical composition of the groundwater prior to CO2 injection. These evaluations were used to assess possible geochemical processes responsible for the observed increases in the concentrations of dissolved constituents, and to simulate these processes using a multicomponent reaction path model. Reasonable agreement between observed and modeled data suggests that (1) calcite dissolution was the primary pH buffer, yielding increased Ca+2 concentrations in the groundwater, (2) increases in the concentrations of most major and trace metal cations except Fe could be a result of Ce+2-driven exchange reactions, (3) the release of anions from adsorption sites due to competitive adsorption of carbonate could explain the observed trends of most anions, and (4) the dissolution of reactive Fe minerals (presumed ferrihydrite and fougerite, from thermodynamic analyses) could explain increases in total Fe concentration. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zheng, Liange; Apps, John A.; Spycher, Nicolas; Birkholzer, Jens T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kharaka, Yousif K.; Thordsen, James; Beers, Sarah R.; Herkelrath, William N.; Kakouros, Evangelos] US Geol Survey, Menlo Pk, CA 94205 USA. [Trautz, Robert C.] EPRI, Palo Alto, CA 94304 USA. RP Zheng, LG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM lzheng@lbl.gov RI Birkholzer, Jens/C-6783-2011; zheng, liange/B-9748-2011; Spycher, Nicolas/E-6899-2010 OI Birkholzer, Jens/0000-0002-7989-1912; zheng, liange/0000-0002-9376-2535; FU Electric Power Research Institute, EPRI FX This research was conducted within the MSU-ZERT project directed by Lee Spangler and managed by Laura Dobeck, MSU, Bozeman, MT. We thank the entire MSU-ZERT team and participating organizations for creating a supportive and exciting research environment. We also thank Toby Day of the Montana State University Extension Service for drawing our attention to precipitation records at the Bozeman airport. This research was funded primarily by the Electric Power Research Institute, EPRI. NR 56 TC 63 Z9 67 U1 4 U2 41 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2012 VL 7 BP 202 EP 217 DI 10.1016/j.ijggc.2011.10.003 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 932KO UT WOS:000303290200021 ER PT J AU Dooley, JJ Malone, EL Bradbury, J AF Dooley, James J. Malone, Elizabeth L. Bradbury, Judith TI Response to "The value of CCS public opinion research" by Fleishman et al. (2011) SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Letter DE Carbon dioxide capture and storage; Stakeholder involvement; Public attitudes; Polling; Surveys ID RISK C1 [Dooley, James J.; Malone, Elizabeth L.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Bradbury, Judith] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dooley, JJ (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM jj.dooley@pnnl.gov OI Dooley, James/0000-0002-2824-4344 NR 5 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2012 VL 7 BP 267 EP 267 DI 10.1016/j.ijggc.2011.09.003 PG 1 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 932KO UT WOS:000303290200030 ER PT J AU Buscheck, TA Sun, YW Chen, MJ Hao, Y Wolery, TJ Bourcier, WL Court, B Celia, MA Friedmann, SJ Aines, RD AF Buscheck, Thomas A. Sun, Yunwei Chen, Mingjie Hao, Yue Wolery, Thomas J. Bourcier, William L. Court, Benjamin Celia, Michael A. Friedmann, S. Julio Aines, Roger D. TI Active CO2 reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity (vol 6, pg 230, 2012) SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Correction C1 [Buscheck, Thomas A.; Sun, Yunwei; Chen, Mingjie; Hao, Yue; Wolery, Thomas J.; Bourcier, William L.; Friedmann, S. Julio; Aines, Roger D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Court, Benjamin; Celia, Michael A.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. RP Buscheck, TA (reprint author), Lawrence Livermore Natl Lab, POB 808,L-223, Livermore, CA 94551 USA. EM buscheck1@llnl.gov RI Aines, Roger/A-2013-2013; Sun, Yunwei/C-9751-2010 NR 1 TC 0 Z9 0 U1 0 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2012 VL 7 BP 268 EP 268 DI 10.1016/j.ijggc.2012.01.006 PG 1 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 932KO UT WOS:000303290200031 ER PT J AU Tallent, SM Kotewicz, KM Strain, EA Bennett, RW AF Tallent, Sandra M. Kotewicz, Kristin M. Strain, Errol A. Bennett, Reginald W. TI Efficient Isolation and Identification of Bacillus cereus Group SO JOURNAL OF AOAC INTERNATIONAL LA English DT Article ID CULTURE-MEDIA; ENUMERATION; FOODS; STANDARD AB Bacillus cereus is a group of ubiquitous facultative anaerobic sporeforming Gram-positive rods commonly found in soil. The spores frequently contaminate a variety of foods, including produce, meat, eggs, and dairy products. Foodborne illnesses associated with toxins produced by B. cereus can result in self-limiting diarrhea or vomiting. Plate enumeration methods recommended by recognized food authorities to detect the presence of B. cereus in potentially contaminated food products do not inhibit other Gram-positive competitive bacteria. This study evaluated the use of Bacara, a new chromogenic agar, as an efficient method to identify and enumerate B. cereus group from food matrixes, even in the presence of background flora. Inclusivity and exclusivity testing was performed using four different selective and differential media for B. cereus, including Mannitol Egg Yolk Polymyxin (MYP), Polymyxin Pyruvate Egg-Yolk Mannitol Bromothymol Blue Agar, Bacillus Chromogenic Media, Brilliance, and Bacara. MYP and Bacara were also used in plate enumeration studies to isolate B. cereus from artificially contaminated foods. C1 [Tallent, Sandra M.; Strain, Errol A.; Bennett, Reginald W.] US FDA, Ctr Food Safety & Appl Nutr, College Pk, MD 20740 USA. [Kotewicz, Kristin M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Tallent, SM (reprint author), US FDA, Ctr Food Safety & Appl Nutr, 5100 Paint Branch Pkwy, College Pk, MD 20740 USA. EM Sandra.Tallent@fda.hhs.gov NR 12 TC 15 Z9 15 U1 5 U2 37 PU AOAC INT PI GAITHERSBURG PA 481 N FREDRICK AVE, STE 500, GAITHERSBURG, MD 20877-2504 USA SN 1060-3271 J9 J AOAC INT JI J. AOAC Int. PD MAR-APR PY 2012 VL 95 IS 2 BP 446 EP 451 DI 10.5740/jaoacint.11-251 PG 6 WC Chemistry, Analytical; Food Science & Technology SC Chemistry; Food Science & Technology GA 929TK UT WOS:000303088400032 PM 22649932 ER PT J AU Appleby, S Linder, EV AF Appleby, Stephen Linder, Eric V. TI The paths of gravity in galileon cosmology SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark energy theory; modified gravity ID 2ND-ORDER FIELD-EQUATIONS; TESTS; BRANE AB Galileon gravity offers a robust gravitational theory for explaining cosmic acceleration, having a rich phenomenology of testable behaviors. We explore three classes of Galileon models - standard uncoupled, and linearly or derivatively coupled to matter - investigating the expansion history with particular attention to early time and late time attractors, as well as the linear perturbations. From the relativistic and nonrelativistic Poisson equations we calculate the generalizations of the gravitational strength (Newton's constant), deriving its early and late time behavior. By scanning through the parameters we derive distributions of the gravitational strength at various epochs and trace the paths of gravity in its evolution. Using ghost-free and stability criteria we restrict the allowed parameter space, finding in particular that the linear and derivative coupled models are severely constrained by classical instabilities in the early universe. C1 [Appleby, Stephen; Linder, Eric V.] Ewha Womans Univ, Inst Early Universe WCU, Seoul, South Korea. [Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Appleby, S (reprint author), Ewha Womans Univ, Inst Early Universe WCU, Seoul, South Korea. EM stephen.appleby@ewha.ac.kr; evlinder@lbl.gov FU World Class University through National Research Foundation [R32-2009-000-10130-0]; Ministry of Education, Science and Technology of Korea; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work has been supported by World Class University grant R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea, and in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Claudia de Rham, Giulia Gubitosi, Andrew Tolley and Michael Kopp for helpful discussions. NR 58 TC 31 Z9 31 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAR PY 2012 IS 3 AR 043 DI 10.1088/1475-7516/2012/03/043 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 927ZQ UT WOS:000302949600043 ER PT J AU Bertone, G Jackson, CB Shaughnessy, G Tait, TMP Vallinotto, A AF Bertone, Gianfranco Jackson, C. B. Shaughnessy, Gabe Tait, Tim M. P. Vallinotto, Alberto TI Gamma ray lines from a universal extra dimension SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; gamma ray theory; cosmological applications of theories with extra dimensions ID DARK-MATTER HALOS; NEUTRALINO ANNIHILATION; GALACTIC-CENTER; 2 PHOTONS; MODEL; CONTRACTION; CONSTRAINTS; PARTICLE AB Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza-Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into gamma gamma, but we extend these results to include gamma Z and gamma H final states. We find that these spectral lines are subdominant compared to the predicted gamma gamma signal, but they would be important as follow-up signals in the event of the observation of the gamma gamma line, in order to distinguish the 5d UED model from other theoretical scenarios. C1 [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Bertone, Gianfranco] Univ P&M Curie, CNRS, UMR 7095, IAP, F-75014 Paris, France. [Jackson, C. B.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Shaughnessy, Gabe] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Shaughnessy, Gabe] Northwestern Univ, Evanston, IL 60208 USA. [Tait, Tim M. P.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Vallinotto, Alberto] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Bertone, G (reprint author), Univ Zurich, Inst Theoret Phys, Winterthurerst 190, CH-8057 Zurich, Switzerland. EM G.Bertone@uva.nl; cbjackson@uta.edu; gshau@hep.wisc.edu; ttait@uci.edu; avallino@gmail.com FU NSF [PHY-0970171]; Department of Energy [DE-AC02-06CH11357, DE-FG02-91ER40684]; DOE at Fermilab FX T. Tait is grateful to the SLAC theory group for their extraordinary generosity during his many visits and is partially supported by NSF grant PHY-0970171. Research at Argonne National Laboratory is supported in part by the Department of Energy under contract DE-AC02-06CH11357. G.S. is also supported in part by the Department of Energy under contract DE-FG02-91ER40684. A.V. is supported by DOE at Fermilab. A.V. thanks Fermilab Center for Particle Astrophysics for hospitality during the final stages of this work. NR 74 TC 14 Z9 14 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAR PY 2012 IS 3 AR 020 DI 10.1088/1475-7516/2012/03/020 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 927ZQ UT WOS:000302949600020 ER PT J AU Kopp, J Schwetz, T Zupan, J AF Kopp, Joachim Schwetz, Thomas Zupan, Jure TI Light dark matter in the light of CRESST-II SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; dark matter experiments ID NAI(TL); SCINTILLATION; SEARCH; DETECTOR; RECOILS; COGENT AB Recently the CRESST collaboration has published the long anticipated results of their direct Dark Matter (DM) detection experiment with a CaWO4 target. The number of observed events exceeds known backgrounds at more than 4 sigma significance, and this excess could potentially be due to DM scattering. We confront this interpretation with null results from other direct detection experiments for a number of theoretical models, and find that consistency is achieved in non-minimal models such as inelastic DM and isospin-violating DM. In both cases mild tension with constraints remain. The CRESST data can, however, not be reconciled with the null results and with the positive signals from DAMA and CoGeNT simultaneously in any of the models we study. C1 [Kopp, Joachim] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Zupan, Jure] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. RP Kopp, J (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM jkopp@fnal.gov; schwetz@mpi-hd.mpg.de; jure.zupan@cern.de RI Kopp, Joachim/B-5866-2013 FU Transregio Sonderforschungsbereich "Neutrinos and Beyond" der Deutschen Forschungsgemeinschaft [TR27]; United States Department of Energy [DE-AC02-07CH11359] FX We thank Patrick Huff, Josef Jochum, and Jens Schmaler for helpful discussions on the CRESST data, Sunkee Kim and Seung Cheon Kim for useful communication regarding the KIMS analysis and Ethan Neil for providing a Python implementation of the chi2 distribution. The work of T.S. was partly supported by the Transregio Sonderforschungsbereich TR27 "Neutrinos and Beyond" der Deutschen Forschungsgemeinschaft. Fermilab is operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the United States Department of Energy. NR 83 TC 30 Z9 30 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAR PY 2012 IS 3 AR 001 DI 10.1088/1475-7516/2012/03/001 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 927ZQ UT WOS:000302949600001 ER PT J AU Seljak, U AF Seljak, Uros TI Bias, redshift space distortions and primordial nongaussianity of nonlinear transformations: application to Ly-alpha forest SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE power spectrum; redshift surveys; Lyman alpha forest; cosmological perturbation theory ID LARGE-SCALE STRUCTURE; INTERGALACTIC MEDIUM; POWER SPECTRUM; FLUX DISTRIBUTION; FLUCTUATIONS; UNIVERSE; TEMPERATURE; MASS AB On large scales a nonlinear transformation of matter density field can be viewed as a biased tracer of the density field itself. A nonlinear transformation also modifies the redshift space distortions in the same limit, giving rise to a velocity bias. In models with primordial nongaussianity a nonlinear transformation generates a scale dependent bias on large scales. We derive analytic expressions for the large scale bias, the velocity bias and the redshift space distortion (RSD) parameter beta, as well as the scale dependent bias from primordial nongaussianity for a general nonlinear transformation. These biases can be expressed entirely in terms of the one point distribution function (PDF) of the final field and the parameters of the transformation. The analysis shows that one can view the large scale bias different from unity and primordial nongaussianity bias as a consequence of converting higher order correlations in density into 2-point correlations of its nonlinear transform. Our analysis allows one to devise nonlinear transformations with nearly arbitrary bias properties, which can be used to increase the signal in the large scale clustering limit. We apply the results to the ionizing equilibrium model of Lyman-alpha forest, in which Lyman-alpha flux F is related to the density perturbation delta via a nonlinear transformation. Velocity bias can be expressed as an average over the Lyman-alpha flux PDF. At z = 2: 4 we predict the velocity bias of -0.1, compared to the observed value of -0.13 +/- 0.03. Bias and primordial nongaussianity bias depend on the parameters of the transformation. Measurements of bias can thus be used to constrain these parameters, and for reasonable values of the ionizing background intensity we can match the predictions to observations. Matching to the observed values we predict the ratio of primordial nongaussianity bias to bias to have the opposite sign and lower magnitude than the corresponding values for the highly biased galaxies, but this depends on the model parameters and can also vanish or change the sign. C1 [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Dept Astron, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Zurich, Inst Theoret Phys, CH-8001 Zurich, Switzerland. [Seljak, Uros] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. RP Seljak, U (reprint author), Univ Calif Berkeley, Dept Phys, Dept Astron, Berkeley, CA 94720 USA. EM useljak@berkeley.edu FU DOE; Swiss National Foundation [200021-116696/1]; WCU [R32-10130] FX This work is supported by the DOE, the Swiss National Foundation under contract 200021-116696/1 and WCU grant R32-10130. I thank Pat McDonald and Matteo Viel for providing Lyman-alpha forest PDFs in data form. I also thank Tobias Baldauf, Vincent Desjacques, Andreu Font, Nico Hamaus, Shirley Ho, Pat McDonald and Anze Slosar for useful discussions. NR 33 TC 13 Z9 13 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAR PY 2012 IS 3 AR 004 DI 10.1088/1475-7516/2012/03/004 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 927ZQ UT WOS:000302949600004 ER PT J AU Masciola, MD Nahon, M Driscoll, FR AF Masciola, Marco D. Nahon, Meyer Driscoll, Frederick R. TI Static Analysis of the Lumped Mass Cable Model Using a Shooting Algorithm SO JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE LA English DT Article DE Lumped mass cable model; Finite element; Cable; Dynamic relaxation; Shooting method; Static analysis ID SYSTEMS AB This paper focuses on a method to solve the static configuration for a lumped mass cable system. The method demonstrated here is intended to be used prior to performing a dynamics simulation of the cable. Conventional static analysis approaches resort to dynamics relaxation methods or root-finding algorithms (such as the Newton-Raphson method) to find the equilibrium profile. The alternative method demonstrated here is general enough for most cable configurations (slack or taut) and ranges of cable elasticity. The forces acting on the cable are attributable to elasticity, weight, buoyancy, and hydrodynamics. For the three-dimensional problem, the initial cable profile is obtained by solving three equations, regardless of the cable discretization resolution. This analysis discusses regions and circumstances under which failures in the method are encountered. DOI: 10.1061/(ASCE)WW.1943-5460.0000117. (C) 2012 American Society of Civil Engineers. C1 [Masciola, Marco D.; Nahon, Meyer] McGill Univ, Dept Mech Engn, Montreal, PQ H3A 2K6, Canada. [Driscoll, Frederick R.] Marine & Hydrokinet Technol, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Masciola, MD (reprint author), McGill Univ, Dept Mech Engn, Montreal, PQ H3A 2K6, Canada. EM marco.masciola@mail.mcgill.ca NR 24 TC 2 Z9 2 U1 2 U2 7 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-950X J9 J WATERW PORT C-ASCE JI J. Waterw. Port Coast. Ocean Eng.-ASCE PD MAR-APR PY 2012 VL 138 IS 2 BP 164 EP 171 DI 10.1061/(ASCE)WW.1943-5460.0000117 PG 8 WC Engineering, Civil; Engineering, Ocean; Water Resources SC Engineering; Water Resources GA 918AE UT WOS:000302220400009 ER PT J AU Novikov, SV Yu, KM Levander, AX Liliental-Weber, Z dos Reis, R Kent, AJ Tseng, A Dubon, OD Wu, J Denlinger, J Walukiewicz, W Luckert, F Edwards, PR Martin, RW Foxon, CT AF Novikov, S. V. Yu, K. M. Levander, A. X. Liliental-Weber, Z. dos Reis, R. Kent, A. J. Tseng, A. Dubon, O. D. Wu, J. Denlinger, J. Walukiewicz, W. Luckert, F. Edwards, P. R. Martin, R. W. Foxon, C. T. TI Molecular beam epitaxy of GaN1-xBix alloys with high bismuth content SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article DE molecular beam epitaxy; nitrides; semiconducting III-V materials ID GAAS1-XBIX AB We have analysed bismuth incorporation into GaN layers using plasma-assisted molecular beam epitaxy (PA-MBE) at extremely low growth temperatures of less than similar to 100 degrees C under both Ga-rich and N-rich growth conditions. The formation of amorphous GaN1-xBix alloys is promoted by growth under Ga-rich conditions. The amorphous matrix has a short-range order resembling random crystalline GaN1-xBix alloys. We have observed the formation of small crystalline clusters embedded into amorphous GaN1-xBix alloys. Despite the fact that the films are pseudo-amorphous we observe a well defined optical absorption edges that rapidly shift to very low energy of similar to 1 eV. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Novikov, S. V.; Kent, A. J.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Yu, K. M.; Levander, A. X.; Liliental-Weber, Z.; dos Reis, R.; Tseng, A.; Dubon, O. D.; Wu, J.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Levander, A. X.; Tseng, A.; Dubon, O. D.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [dos Reis, R.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Denlinger, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Luckert, F.; Edwards, P. R.; Martin, R. W.] Univ Strathclyde, SUPA, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. RP Novikov, SV (reprint author), Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. EM sergei.novikov@nottingham.ac.uk RI Wu, Junqiao/G-7840-2011; dos Reis, Roberto/E-9486-2012; Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012; martin, rob/A-7127-2010; Edwards, Paul/C-1594-2009 OI Novikov, Sergei/0000-0002-3725-2565; Wu, Junqiao/0000-0002-1498-0148; dos Reis, Roberto/0000-0002-6011-6078; Kent, Anthony/0000-0002-2391-6869; Yu, Kin Man/0000-0003-1350-9642; martin, rob/0000-0002-6119-764X; Edwards, Paul/0000-0001-7671-7698 FU EPSRC [EP/I004203/1, EP/I00467X/1, EP/G046867/1, EP/G030634/1]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was undertaken in the UK with support from the EPSRC (EP/I004203/1, EP/I00467X/1, EP/G046867/1 and EP/G030634/1). The characterization work performed at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 12 TC 5 Z9 5 U1 0 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1862-6300 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD MAR PY 2012 VL 209 IS 3 BP 419 EP 423 DI 10.1002/pssa.201100312 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 933SV UT WOS:000303383900002 ER PT J AU Selezenev, AA Aleinikov, AY Ermakov, PV Ganchuk, NS Ganchuk, SN Jones, RE AF Selezenev, A. A. Aleinikov, A. Yu. Ermakov, P. V. Ganchuk, N. S. Ganchuk, S. N. Jones, R. E. TI Molecular-Dynamics Calculation of the Thermal Conductivity Coefficient of the Germanium Single Crystal SO PHYSICS OF THE SOLID STATE LA English DT Article ID SILICON; SIMULATION AB The thermal conductivity coefficient of the germanium crystal lattice has been calculated by molecular dynamics simulation. Calculations have been performed for both the perfect crystal lattice and the crystal lattice with defects such as monovacancies. For the perfect germanium single crystal, the dependence of the thermal conductivity coefficient on the lattice temperature has been obtained in the temperature range of 150-1000 K. The thermal conductivity coefficient of the germanium lattice has been calculated as a function of the monovacancy concentration. C1 [Selezenev, A. A.; Aleinikov, A. Yu.; Ermakov, P. V.; Ganchuk, N. S.; Ganchuk, S. N.] Joint Stock Co, Sarov Labs, Sarov 607200, Nizhni Novgorod, Russia. [Jones, R. E.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Selezenev, AA (reprint author), Joint Stock Co, Sarov Labs, Varlaamskoe Sh 23-16, Sarov 607200, Nizhni Novgorod, Russia. EM sel@socc.ru FU Sandia National Laboratories [908489] FX This study was supported by the Sandia National Laboratories (contract no. 908489). NR 17 TC 5 Z9 5 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7834 J9 PHYS SOLID STATE+ JI Phys. Solid State PD MAR PY 2012 VL 54 IS 3 BP 462 EP 467 DI 10.1134/S1063783412030286 PG 6 WC Physics, Condensed Matter SC Physics GA 928DS UT WOS:000302961800005 ER PT J AU Nag, A Monine, M Perelson, AS Goldstein, B AF Nag, Ambarish Monine, Michael Perelson, Alan S. Goldstein, Byron TI Modeling and Simulation of Aggregation of Membrane Protein LAT with Molecular Variability in the Number of Binding Sites for Cytosolic Grb2-SOS1-Grb2 SO PLOS ONE LA English DT Article ID MAST-CELL ACTIVATION; FC-EPSILON-RI; RECEPTOR TYROSINE KINASES; ADAPTER PROTEIN; T-CELLS; STOCHASTIC SIMULATION; SIGNAL-TRANSDUCTION; ANTIGEN RECEPTOR; DISTAL TYROSINES; SH3 DOMAIN AB The linker for activation of T cells (LAT), the linker for activation of B cells (LAB), and the linker for activation of X cells (LAX) form a family of transmembrane adaptor proteins widely expressed in lymphocytes. These scaffolding proteins have multiple binding motifs that, when phosphorylated, bind the SH2 domain of the cytosolic adaptor Grb2. Thus, the valence of LAT, LAB and LAX for Grb2 is variable, depending on the strength of receptor activation that initiates phosphorylation. During signaling, the LAT population will exhibit a time-varying distribution of Grb2 valences from zero to three. In the cytosol, Grb2 forms 1:1 and 2:1 complexes with the guanine nucleotide exchange factor SOS1. The 2:1 complex can bridge two LAT molecules when each Grb2, through their SH2 domains, binds to a phosphorylated site on a separate LAT. In T cells and mast cells, after receptor engagement, receptor phosphoyrlation is rapidly followed by LAT phosphorylation and aggregation. In mast cells, aggregates containing more than one hundred LAT molecules have been detected. Previously we considered a homogeneous population of trivalent LAT molecules and showed that for a range of Grb2, SOS1 and LAT concentrations, an equilibrium theory for LAT aggregation predicts the formation of a gel-like phase comprising a very large aggregate (superaggregate). We now extend this theory to investigate the effects of a distribution of Grb2 valence in the LAT population on the formation of LAT aggregates and superaggregate and use stochastic simulations to calculate the fraction of the total LAT population in the superaggregate. C1 [Nag, Ambarish; Monine, Michael; Perelson, Alan S.; Goldstein, Byron] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM USA. [Monine, Michael] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Nag, A (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO USA. EM ambarish.nag@nrel.gov FU Department of Energy [W-7405-ENG-36]; National Institutes of Health [R37-GM035556, R37-AI028433, R01-RR006555, P01-AI071195] FX This work was supported by the Department of Energy through contract W-7405-ENG-36, and National Institutes of Health grants R37-GM035556 (BG), R37-AI028433 (ASP), R01-RR006555 (ASP) and P01-AI071195 (ASP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 50 TC 6 Z9 6 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 1 PY 2012 VL 7 IS 3 AR e28758 DI 10.1371/journal.pone.0028758 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 928SU UT WOS:000303005000002 PM 22396725 ER PT J AU Van Dyk, MM Kullan, ARK Mizrachi, E Hefer, CA Van Rensburg, LJ Newman, D Coetzer, N Tschaplinski, TJ Cushman, KC Engle, NE Tuskan, GA Jones, N Kanzler, A Bayley, A Myburg, AA AF Van Dyk, M. M. Kullan, A. R. K. Mizrachi, E. Hefer, C. A. Van Rensburg, L. Jansen Newman, D. Coetzer, N. Tschaplinski, T. J. Cushman, K. C. Engle, N. E. Tuskan, G. A. Jones, N. Kanzler, A. Bayley, A. Myburg, A. A. TI Identifying genomic regions involved in growth, wood property, transcript and metabolite variation in an F-2 pseudo-backcross pedigree of Eucalyptus grandis x Eucalyptus urophylla SO SOUTH AFRICAN JOURNAL OF BOTANY LA English DT Meeting Abstract C1 [Van Dyk, M. M.; Kullan, A. R. K.; Mizrachi, E.; Hefer, C. A.; Van Rensburg, L. Jansen; Myburg, A. A.] Univ Pretoria, Dept Genet, FABI, ZA-0002 Pretoria, South Africa. [Newman, D.] Univ Pretoria, Dept Plant Sci, ZA-0002 Pretoria, South Africa. [Coetzer, N.] Univ Pretoria, Bioinformat & Computat Biol Unit, Dept Biochem, ZA-0002 Pretoria, South Africa. [Tschaplinski, T. J.; Cushman, K. C.; Engle, N. E.; Tuskan, G. A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Jones, N.; Kanzler, A.] Sappi Forests Res, Shaw Res Ctr, ZA-3290 Howick, South Africa. [Bayley, A.] Sappi Technol Ctr, ZA-0087 Pretoria, South Africa. RI van Dyk, Maria/F-3584-2011; Holladay, Susan/D-9472-2013; Tuskan, Gerald/A-6225-2011 OI Holladay, Susan/0000-0003-4625-3022; Tuskan, Gerald/0000-0003-0106-1289 NR 0 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0254-6299 J9 S AFR J BOT JI S. Afr. J. Bot. PD MAR PY 2012 VL 79 BP 218 EP 218 PG 1 WC Plant Sciences SC Plant Sciences GA 928JL UT WOS:000302978900155 ER PT J AU Cho, JY Ye, Z Tessema, MM Waldo, RA Salvador, JR Yang, J Cai, W Wang, H AF Cho, J. Y. Ye, Z. Tessema, M. M. Waldo, R. A. Salvador, J. R. Yang, J. Cai, W. Wang, H. TI Thermoelectric properties of p-type skutterudites YbxFe3.5Ni0.5Sb12 (0.8 <= x <= 1) SO ACTA MATERIALIA LA English DT Article DE Thermoelectrics; Skutterudites; Electron transport; Phonon transport ID FILLED SKUTTERUDITES; TRANSPORT-PROPERTIES; POWER-GENERATION; HIGH FIGURE; MERIT; ANTIMONIDES AB p-Type skutterudites, with nominal compositions YbxFe3.5Ni0.5Sb12 (0.8 <= x <= 1), have been synthesized by induction melting with subsequent annealing, and their thermoelectric properties evaluated from 3.5 to 745 K to assess their suitability for thermoelectric-based waste heat recovery applications. We report results for the synthesis and measurements of Seebeck coefficient (S), electrical resistivity (rho), thermal conductivity (kappa), Hall coefficient (R-H) and effective mass (m*/m(0)) of YbxFe3.5Ni0.5Sb12 (0.8 <= x <= 1). Powder X-ray diffraction and electron probe microanalysis show that this system has a narrow filling fraction range of x similar to 0.84-0.86 for Yb in the crystallographic voids. All samples show positive R-H for the entire temperature range studied, with carrier concentrations ranging from 9.6 x 10(20) to 2.8 x 10(21) cm(-3) at room temperature. Relatively high values of S result in high power factors up to 17 mu W cm(-1) K-2 at room temperature. However, large values of kappa and a sharp reduction in the S at high temperature due to bipolar conduction prevent the attainment of high thermoelectric figure of merit. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Yang, J.] GM R&D Ctr, Electrochem Energy Res Lab, Warren, MI 48090 USA. [Cho, J. Y.; Ye, Z.; Tessema, M. M.; Waldo, R. A.; Salvador, J. R.] GM R&D Ctr, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA. [Cai, W.; Wang, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yang, J (reprint author), GM R&D Ctr, Electrochem Energy Res Lab, Warren, MI 48090 USA. EM jihuiy@uw.edu RI Yang, Jihui/A-3109-2009; Wang, Hsin/A-1942-2013 OI Wang, Hsin/0000-0003-2426-9867 FU GM; DOE [DE-FC26-04NT42278]; Oak Ridge National Laboratory [DE-AC05000OR22725]; CAS/SAFEA FX J.Y.C., Z.Y. and J.R.S. thank J.F. Herbst and M.W. Verbrugge for their continued support and encouragement. The work is supported by GM and by DOE under corporate agreement DE-FC26-04NT42278. It is also supported by the Oak Ridge National Laboratory, managed by the UT-Battelle LLC, for the Department of Energy under Contract DE-AC05000OR22725; by the CAS/SAFEA International Partnership Program for Creative Research Teams. NR 28 TC 28 Z9 28 U1 0 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAR PY 2012 VL 60 IS 5 BP 2104 EP 2110 DI 10.1016/j.actamat.2011.12.022 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 926MN UT WOS:000302835300021 ER PT J AU Mompiou, F Legros, M Radetic, T Dahmen, U Gianola, DS Hemker, KJ AF Mompiou, F. Legros, M. Radetic, T. Dahmen, U. Gianola, D. S. Hemker, K. J. TI In situ TEM observation of grain annihilation in tricrystalline aluminum films SO ACTA MATERIALIA LA English DT Article DE Grain boundary; Surface tension stress; Tricrystal; Shear-migration coupling; In situ TEM ID MOLECULAR-DYNAMICS SIMULATION; BOUNDARY MOTION; INSITU OBSERVATIONS; SHEAR DEFORMATION; VAPOR-DEPOSITION; THIN-FILMS; NANOCRYSTALLINE; MIGRATION; GROWTH; DISLOCATIONS AB Capillarity-driven grain boundary (GB) motion in Al tricrystalline thin films has been investigated by in situ transmission electron microscopy at intermediate temperatures. The GBs were observed to move erratically, with alternating periods of motion and stagnation, followed by rapid shrinkage of the grain and eventual annihilation accompanied by the emission of dislocations. The absence of measured deformation and grain rotation during the GB motion suggests that it is not associated with shear migration coupling. This is in contrast to observations on the stress-driven motion of planar GBs. The present results can be interpreted by the absence of deformation associated with low internal applied stress or alternatively by a low shear migration coupling factor. In both cases, a large amount of atomic shuffling is needed to account for the migration of grain boundaries. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Mompiou, F.; Legros, M.] CEMES CNRS, F-31055 Toulouse 5, France. [Radetic, T.; Dahmen, U.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Gianola, D. S.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Hemker, K. J.] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. RP Mompiou, F (reprint author), CEMES CNRS, 29 Rue J Marvig, F-31055 Toulouse 5, France. EM mompiou@cemes.fr; legros@cemes.fr; TRadetic@lbl.gov; udahmen@lbl.gov; gianola@seas.upenn.edu; hemker@jhu.edu NR 39 TC 19 Z9 19 U1 4 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAR PY 2012 VL 60 IS 5 BP 2209 EP 2218 DI 10.1016/j.actamat.2011.12.013 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 926MN UT WOS:000302835300031 ER PT J AU Chisholm, C Bei, H Lowry, MB Oh, J Asif, SAS Warren, OL Shan, ZW George, EP Minor, AM AF Chisholm, C. Bei, H. Lowry, M. B. Oh, J. Asif, S. A. Syed Warren, O. L. Shan, Z. W. George, E. P. Minor, A. M. TI Dislocation starvation and exhaustion hardening in Mo alloy nanofibers SO ACTA MATERIALIA LA English DT Article DE In situ transmission electron microscopy; Tensile testing; Digital image correlation; Exhaustion hardening; Dislocation starvation ID MICRO-PILLAR PLASTICITY; CRYSTAL PLASTICITY; SINGLE-CRYSTAL; FCC METALS; DEFORMATION; SIMULATIONS; COMPRESSION; NANOPILLARS; MECHANISMS; STRENGTH AB The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to similar to 1.6 x 10(14) m(-2) were studied using an in situ "push-to-pull" device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ("smaller is stronger") are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Chisholm, C.; Lowry, M. B.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chisholm, C.; Lowry, M. B.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Bei, H.; George, E. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Oh, J.; Asif, S. A. Syed; Warren, O. L.; Shan, Z. W.] Hysitron Inc, Minneapolis, MN 55344 USA. [Shan, Z. W.] Xi An Jiao Tong Univ, Ctr Advancing Mat Performance Nanoscale, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [George, E. P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Minor, AM (reprint author), 1 Cyclotron Rd,MS 72, Berkeley, CA 94720 USA. EM aminor@berkeley.edu RI Bei, Hongbin/I-6576-2012; Shan, Zhiwei/B-8799-2014; George, Easo/L-5434-2014; xjtu, campnano/Q-1904-2015; Chisholm, Claire/I-3566-2016; OI Chisholm, Claire/0000-0002-8114-5994; Bei, Hongbin/0000-0003-0283-7990 FU Center for Defect Physics, an Energy Frontier Research Center; US Department of Energy, Office of Science, Basic Energy Sciences; US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; DOE SBIR [DE-FG02-07ER84813]; US Department of Energy [DE-AC02-05CH11231]; NSFC [50925104]; 973 program of China [2010CB631003] FX This work was supported by the Center for Defect Physics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences. H.B. was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. PTP device development was funded by a DOE SBIR Phase II grant (DE-FG02-07ER84813) awarded to Hysitron Inc. The in situ TEM work was performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank M. Mills for thoughtful discussions and C. Eberl for sharing his expertise on using DIC analysis. Z.W.S. was also supported by the NSFC (50925104) and the 973 program of China (2010CB631003). NR 30 TC 44 Z9 45 U1 9 U2 96 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAR PY 2012 VL 60 IS 5 BP 2258 EP 2264 DI 10.1016/j.actamat.2011.12.027 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 926MN UT WOS:000302835300036 ER PT J AU Carbajal, L del-Castillo-Negrete, D Martinell, JJ AF Carbajal, L. del-Castillo-Negrete, D. Martinell, J. J. TI Dynamics and transport in mean-field coupled, many degrees-of-freedom, area-preserving nontwist maps SO CHAOS LA English DT Article ID NONLINEAR DYNAMICS; HAMILTONIAN MODEL; CHAOTIC TRANSPORT; PLASMAS; SHEAR AB Area-preserving nontwist maps, i.e., maps that violate the twist condition, arise in the study of degenerate Hamiltonian systems for which the standard version of the Kolmogorov-Arnold-Moser (KAM) theorem fails to apply. These maps have found applications in several areas including plasma physics, fluid mechanics, and condensed matter physics. Previous work has limited attention to maps in 2-dimensional phase space. Going beyond these studies, in this paper, we study nontwist maps with many-degrees-of-freedom. We propose a model in which the different degrees of freedom are coupled through a mean-field that evolves self-consistently. Based on the linear stability of period-one and period-two orbits of the coupled maps, we construct coherent states in which the degrees of freedom are synchronized and the mean-field stays nearly fixed. Nontwist systems exhibit global bifurcations in phase space known as separatrix reconnection. Here, we show that the mean-field coupling leads to dynamic, self-consistent reconnection in which transport across invariant curves can take place in the absence of chaos due to changes in the topology of the separatrices. In the context of self-consistent chaotic transport, we study two novel problems: suppression of diffusion and breakup of the shearless curve. For both problems, we construct a macroscopic effective diffusion model with time-dependent diffusivity. Self-consistent transport near criticality is also studied, and it is shown that the threshold for global transport as function of time is a fat-fractal Cantor-type set. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694129] C1 [Carbajal, L.; Martinell, J. J.] Univ Nacl Autonoma Mexico, Inst Nucl Sci, Mexico City 04510, DF, Mexico. [del-Castillo-Negrete, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Carbajal, L (reprint author), Univ Nacl Autonoma Mexico, Inst Nucl Sci, Mexico City 04510, DF, Mexico. OI Martinell, Julio J/0000-0002-2728-220X; del-Castillo-Negrete, Diego/0000-0001-7183-801X FU CONACyT; DGAPA-UNAM [IN119408, IN106911]; UNAM PAEP; ORNL Fusion Energy Division; Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX L.C. and J.J.M. acknowledge support from CONACyT mixed fellowships program, the DGAPA-UNAM projects IN119408 and IN106911, and the UNAM PAEP program. L.C. acknowledges the hospitality and support of the ORNL Fusion Energy Division during the elaboration of this work. D.d.-C.-N. thanks Alex Wurm for valuable discussions during the early stages of this research. D.d.-C.-N. was sponsored by the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 17 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1054-1500 J9 CHAOS JI Chaos PD MAR PY 2012 VL 22 IS 1 AR 013137 DI 10.1063/1.3694129 PG 15 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 922VP UT WOS:000302576900037 PM 22463013 ER PT J AU Regmi, M More, K Eres, G AF Regmi, Murari More, Karren Eres, Gyula TI A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition SO DIAMOND AND RELATED MATERIALS LA English DT Article DE CVD diamond; Diamond heteroepitaxy; Bias enhanced nucleation; Narrow process window ID TRANSMISSION ELECTRON-MICROSCOPY; ENHANCED NUCLEATION; CVD DIAMOND; TEXTURED GROWTH; BUFFER LAYERS; IRIDIUM; FILMS; HETEROEPITAXY; IR(001); SILICON AB We present a comprehensive study of the parameter space for biasing the Ir(100) surface to determine the optimal conditions for high density heteroepitaxial diamond nucleation. The nucleation density was determined in a bias voltage range from 0 to 225 V. and methane concentration range from 0 to 10% using scanning electron microscopy imaging. These data show that high density nucleation exceeding 10(11) cm(-2) occurs only in a narrow bias voltage range from 125 to 175 V and a narrow methane concentration range from 1.5 to 3%. At bias voltages and methane concentrations outside of these windows epitaxial diamond nucleation densities fall abruptly to near zero. Using the conditions for high density epitaxial diamond nucleation 80 nm thick featureless continuous diamond films grow already after 20 min. In several microns thick films the misfit dislocations are confined within a narrow band of 1 mu m near the diamond-Ir interface showing low residual stress according to x-ray diffraction measurements. (C) 2012 Elsevier B.V. All rights reserved. C1 [Regmi, Murari; More, Karren; Eres, Gyula] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Eres, G (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM eresg@ornl.gov RI More, Karren/A-8097-2016; Eres, Gyula/C-4656-2017 OI More, Karren/0000-0001-5223-9097; Eres, Gyula/0000-0003-2690-5214 FU U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability; Oak Ridge National Laboratory's SHaRE User Facility; Scientific User Facilities Division, Office of Science, U.S. Department of Energy FX Work at ORNL is supported by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Smart Grid R&D-Power Electronics Program. Microscopy research supported in part by Oak Ridge National Laboratory's SHaRE User Facility, which is sponsored by the Scientific User Facilities Division, Office of Science, U.S. Department of Energy. NR 38 TC 5 Z9 7 U1 3 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD MAR PY 2012 VL 23 BP 28 EP 33 DI 10.1016/j.diamond.2012.01.008 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 927DQ UT WOS:000302887600006 ER PT J AU Swenson, NG Stegen, JC Davies, SJ Erickson, DL Forero-Montana, J Hurlbert, AH Kress, WJ Thompson, J Uriarte, M Wright, SJ Zimmerman, JK AF Swenson, Nathan G. Stegen, James C. Davies, Stuart J. Erickson, David L. Forero-Montana, Jimena Hurlbert, Allen H. Kress, W. John Thompson, Jill Uriarte, Maria Wright, S. Joseph Zimmerman, Jess K. TI Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity SO ECOLOGY LA English DT Article DE beta diversity; community dynamics; community phylogenetics; functional ecology; functional traits; neutral theory; Panama; Puerto Rico; tropical forest ID NEOTROPICAL FOREST; LAND-USE; DIVERSITY; PATTERNS; TRAITS; MAINTENANCE; MECHANISMS; WORLDWIDE; ALIGNMENT; DYNAMICS AB The degree to which turnover in biological communities is structured by deterministic or stochastic factors and the identities of influential deterministic factors are fundamental, yet unresolved, questions in ecology. Answers to these questions are particularly important for projecting the fate of forests with diverse disturbance histories worldwide. To uncover the processes governing turnover we use species-level molecular phylogenies and functional trait data sets for two long-term tropical forest plots with contrasting disturbance histories: one forest is older-growth, and one was recently disturbed. Having both phylogenetic and functional information further allows us to parse out the deterministic influences of different ecological filters. With the use of null models we find that compositional turnover was random with respect to phylogeny on average, but highly nonrandom with respect to measured functional traits. Furthermore, as predicted by a deterministic assembly process, the older-growth and disturbed forests were characterized by less than and greater than expected functional turnover, respectively. These results suggest that the abiotic environment, which changes due to succession in the disturbed forest, strongly governs the temporal dynamics of disturbed and undisturbed tropical forests. Predicting future changes in the composition of disturbed and undisturbed forests may therefore be tractable when using a functional-trait-based approach. C1 [Swenson, Nathan G.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Stegen, James C.; Hurlbert, Allen H.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA. [Stegen, James C.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Biol Sci, Richland, WA 99352 USA. [Davies, Stuart J.] Harvard Univ, Ctr Trop Forest Sci, Cambridge, MA 02138 USA. [Davies, Stuart J.; Wright, S. Joseph] Smithsonian Trop Res Inst, Balboa Ancon, Panama. [Erickson, David L.; Kress, W. John] Smithsonian Inst, Natl Museum Nat Hist, Dept Bot, Washington, DC 20013 USA. [Forero-Montana, Jimena; Thompson, Jill; Zimmerman, Jess K.] Univ Puerto Rico, Inst Trop Ecosyst Studies, Rio Piedras, PR 00931 USA. [Thompson, Jill] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland. [Uriarte, Maria] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA. RP Swenson, NG (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM swensonn@msu.edu RI Thompson, Jill/K-2200-2012; Wright, Stuart/M-3311-2013; Swenson, Nathan/A-3514-2012; Stegen, James/Q-3078-2016; Uriarte, Maria/L-8944-2013 OI Thompson, Jill/0000-0002-4370-2593; Wright, Stuart/0000-0003-4260-5676; Swenson, Nathan/0000-0003-3819-9767; Stegen, James/0000-0001-9135-7424; FU F. H. Levinson Fund; Center for Tropical Forest Science; Smithsonian Institution; National Science Foundation [BSR-9015961, DEB-0516066, BSR-88111902, DEB-9411973, DEB-008538]; Mellon Foundation; Smithsonian Tropical Research Institute; John D. and Catherine T. MacArthur Foundation; Celera Foundation; National Science Foundation. [DEB-0218039, DEB-0620910, DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, DBI-0906005] FX N. G. Swenson and J. C. Stegen contributed equally to this paper. We thank R. Condit for discussions regarding the dynamics of the BCI forest dynamics plot. The collection of plant material for DNA sequencing and trait quantification was funded by the F. H. Levinson Fund for BCI and a Center for Tropical Forest Science research grant awarded to N. G. Swenson for Luquillo. DNA barcode sequencing and analyses were supported by funds from the Smithsonian Institution Global Earth Observatories project. The Luquillo forest plot has been supported by National Science Foundation grants (BSR-9015961 and DEB-0516066) and from the Mellon Foundation. National Science Foundation funds to the Luquillo Long-Term Ecology Research Site (BSR-88111902, DEB-9411973, DEB-008538, DEB-0218039, and DEB-0620910) also supported this work. The BCI forest dynamics research project was made possible by National Science Foundation grants to Stephen P. Hubbell: DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-9615226, DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, support from the Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation, the Mellon Foundation, the Celera Foundation, numerous private individuals, and through the hard work of over 100 people from 10 countries over the past two decades. Both forest plots are part of the Center for Tropical Forest Science, a global network of large-scale demographic tree plots. J. C. Stegen was supported by an NSF Postdoctoral Fellowship in Bioinformatics (DBI-0906005). NR 39 TC 50 Z9 53 U1 8 U2 112 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 J9 ECOLOGY JI Ecology PD MAR PY 2012 VL 93 IS 3 BP 490 EP 499 PG 10 WC Ecology SC Environmental Sciences & Ecology GA 928CJ UT WOS:000302957300007 PM 22624204 ER PT J AU Iacovides, D Johnson, A Gray, J AF Iacovides, D. Johnson, A. Gray, J. TI Biomarker Discovery and Evaluation of Response to Anti-cancer Therapeutics in Breast Cancer Using a Novel Nanofluidic Immunoassay SO EUROPEAN JOURNAL OF CANCER LA English DT Meeting Abstract CT 8th European Breast Cancer Conference (EBCC) CY MAR 21-24, 2012 CL Vienna, AUSTRIA SP European Canc Org (ECCO) C1 [Iacovides, D.; Johnson, A.; Gray, J.] Lawrence Berkeley Natl Lab, San Francisco, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-8049 J9 EUR J CANCER JI Eur. J. Cancer PD MAR PY 2012 VL 48 SU 1 BP S129 EP S129 PG 1 WC Oncology SC Oncology GA 926AV UT WOS:000302804600307 ER PT J AU Allain, JP Youchison, DL Sawan, ME AF Allain, Jean Paul Youchison, Dennis L. Sawan, Mohamed E. TI Special Issue on Symposium on Fusion Engineering SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Editorial Material C1 [Allain, Jean Paul] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Youchison, Dennis L.] Sandia Natl Labs, Fus Technol Dept, Albuquerque, NM 87185 USA. [Sawan, Mohamed E.] Univ Wisconsin Madison, Fus Technol Inst, Madison, WI 53706 USA. RP Allain, JP (reprint author), Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. OI Allain, Jean Paul/0000-0003-1348-262X; Youchison, Dennis/0000-0002-7366-1710 NR 0 TC 0 Z9 0 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAR PY 2012 VL 40 IS 3 SI SI BP 550 EP 551 DI 10.1109/TPS.2012.2185873 PN 1 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 908UY UT WOS:000301519500001 ER PT J AU Carlson, L Tillack, M Najmabadi, F Kessel, C AF Carlson, Lane Tillack, Mark Najmabadi, Farrokh Kessel, Charles TI Development, Visualization, and Application of the ARIES Systems Code SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Fusion Engineering CY JUN 25-30, 2011 CL Chicago, IL DE ARIES; fusion power plant; systems code; tokamak; Visual ARIES Systems Scanning Tool (VASST); visualization tool ID DESIGN POINT; SELECTION AB The ARIES research program has utilized its comprehensive ARIES systems code (ASC) and a new graphical user interface for visualizing the parameter space as important tools in its analysis of fusion power plant designs. Recently, the ASC has undergone modifications to accommodate different divertor designs, each having unique pumping powers, helium and liquid-metal pump thermal heat recovery, and the latest material, fabrication, and costing algorithms. The modifications and changes made to the code have been documented and verified by members of the ARIES team to ensure accuracy of implementation and self-consistency of design. The code has also been modified to display a wider range of input and output files, formulas, and algorithms for a greater degree of transparency and verification. After the changes to the code were completed and the version was locked, the ASC was employed to scan the physics and technology operating space for relevant power plant designs. Four corners of aggressiveness and conservativeness in both physics and technology serve as the boundaries for the scans within which a range of possible tokamaks exist. The Visual ARIES Systems Scanning Tool (VASST) has been used in parallel with the ASC scans to visualize the tremendous amounts of data resulting from these detailed systems scans. Displaying the data in a colorful and intuitive visual environment and giving the user explorative and visual interaction have helped extract meaningful relationships and trends from the data. Initially, broad scans from the ASC and VASST indicated areas of interest where additional detail was needed. Further scans of higher fidelity helped enhance and further refine the database. After the final scans were completed, VASST facilitated in displaying and filtering the large database to choose two "strawmen" data points at two of the four corners of the aggressive/conservative operating space. These points now serve as reference designs, so more detailed design and calculations can be done. The results of the in-depth designs assist the ASC by feeding back information into the code that can then be generalized for a wider range of operating scenarios relevant to the scanning range. This substantiates the ASC and helps mesh simple formulas with detailed design. C1 [Carlson, Lane; Tillack, Mark; Najmabadi, Farrokh] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Kessel, Charles] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Carlson, L (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. EM lcarlson@ucsd.edu; mtillack@ucsd.edu; fnajmabadi@ucsd.edu; ckessel@pppl.gov FU U.S. Department of Energy [DE-FG02-04ER54757] FX Manuscript received July 29, 2011; accepted September 20, 2011. Date of publication October 21, 2011; date of current version March 9, 2012. This work was supported by the U.S. Department of Energy under Grant DE-FG02-04ER54757. NR 5 TC 3 Z9 3 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAR PY 2012 VL 40 IS 3 SI SI BP 552 EP 556 DI 10.1109/TPS.2011.2169990 PN 1 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 908UY UT WOS:000301519500002 ER PT J AU Youchison, DL Ulrickson, MA Bullock, JH AF Youchison, Dennis L. Ulrickson, Michael A. Bullock, James H. TI Effects of Hypervapotron Geometry on Thermalhydraulic Performance SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Fusion Engineering CY JUN 25-30, 2011 CL Chicago, IL DE Computational fluid dynamics (CFD); critical heat flux (CHF); first wall; hypervapotron; two phase ID COMPUTATIONAL FLUID-DYNAMICS; PLASMA-FACING COMPONENTS; CRITICAL HEAT-FLUX; ITER AB Plasma disruptions and edge localized modes can result in transient heat fluxes as high as 5 MW/m(2) on portions of a tokamak reactor first wall (FW). To accommodate these heat loads, the FW will likely use water-cooled hypervapotron heatsinks to enhance the heat transfer. In this article, we present the results of a computational fluid dynamics (CFD) study using 70 degrees C inlet water at 2.7 MPa to investigate the tooth height and backchannel depth of 50-mm-wide hypervapotrons with 6-mm-pitch and 3-mm side slots. We compare a popular design with 4-mm-high teeth and a 5-mm backchannel to a more optimal case with 2-mm-high teeth and a 3-mm backchannel under nominal heat loads (0.5 MW/m(2)) on a 100-mm-heated length and under single-phase flow conditions. Better heat transfer in the latter case and the smaller backchannel permit a factor of two reduction in the required mass flow while maintaining the same beryllium armor surface temperatures near 130 degrees C. The shallow teeth and smaller backchannel allow the 40 fingers in a typical panel to flow in parallel and simplify the water circuit. A comparison of the two hypervapotron designs during off-normal loading (5.0 MW/m(2)) and two-phase flow then follows. The design with 2-mm teeth has a 3.5% higher beryllium surface temperature of 648 degrees C and reduces the critical heat flux (CHF) by similar to 2%. Hypervapotron width also plays a role in heat transfer and CHF. CFD results for 36 and 70 mm wide hypervapotrons compared to the 50-mm case reveal similar thermal performance at low heat flux, but a reduction in CHF with increasing width. This study highlights the necessary compromise between design margin during transient events, effective heat transfer under nominal conditions, limitations on finger width, and the simplicity needed in the water circuit design. C1 [Youchison, Dennis L.; Ulrickson, Michael A.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Bullock, James H.] LMATA Govt Serv LLC, Albuquerque, NM 87123 USA. RP Youchison, DL (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM dlyouch@sandia.gov; maulric@sandia.gov; jbulloc@sandia.gov OI Youchison, Dennis/0000-0002-7366-1710 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Manuscript received August 13, 2011; revised December 6, 2011; accepted December 10, 2011. Date of publication January 27, 2012; date of current version March 9, 2012. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 8 TC 7 Z9 7 U1 2 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAR PY 2012 VL 40 IS 3 SI SI BP 653 EP 658 DI 10.1109/TPS.2011.2180931 PN 1 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 908UY UT WOS:000301519500018 ER PT J AU Kwak, JG Oh, YK Kim, KP Kim, SW Hong, SH Chu, Y Lee, HJ Kim, YO Kim, J Park, SL Hahn, SH Park, MK Kim, HK Bak, JG Bae, YS Ko, WH Lee, SG Lee, JH Jung, JI Lee, KD Nam, YU Jeon, YM Yoon, SW England, A Kim, WC Park, KL Na, HK Yang, HL Kwon, M Takahiro, S Leuer, JA Eidietis, NW Hyatt, AW Walker, M Mueller, D Grisham, LR Park, JK Park, YS Sabbagh, SA AF Kwak, Jong-Gu Oh, Y. K. Kim, K. P. Kim, S. W. Hong, S. H. Chu, Y. Lee, H. J. Kim, Y. O. Kim, J. Park, S. L. Hahn, S. H. Park, M. K. Kim, H. K. Bak, J. G. Bae, Y. S. Ko, W. H. Lee, S. G. Lee, J. H. Jung, J. I. Lee, K. D. Nam, Y. U. Jeon, Y. M. Yoon, S. W. England, A. Kim, W. C. Park, K. L. Na, H. K. Yang, H. L. Kwon, M. Takahiro, S. Leuer, J. A. Eidietis, N. W. Hyatt, A. W. Walker, M. Mueller, D. Grisham, L. R. Park, J. K. Park, Y. S. Sabbagh, S. A. TI Key Features in the Operation of KSTAR SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Fusion Engineering CY JUN 25-30, 2011 CL Chicago, IL DE Incoloy; in-vessel control coils (IVCC); Korea superconducting tokamak advanced research (KSTAR); superconducting ID TOKAMAKS AB The Korea Superconducting Tokamak Advanced Research (KSTAR) device is aimed at advanced tokamak (AT) research. Three years have passed since it achieved its first plasma in 2008. Because it is a superconducting machine and is working toward AT research, it has unique features in terms of the machine engineering and operation. The toroidal field (TF) magnet coils are made of Nb3Sn, which provide high TFs up to 3.5 T, and have been fully tested. The poloidal field (PF) magnet coils, consisting of both Nb3Sn and NbTi, which have a maximum current of 25 kA in their design, were tested up to 15 kA. A thermal hydraulic analysis is being conducted for PF magnet coil operation. All plasma-facing components (PFCs) are equipped with water cooled graphite tiles and have the capability of being baked up to 350 degrees C. A startup scenario, which considered both the effect of the ferromagnetic material in the cable in conduit conductor jacket of the magnet coils as well as a nonferromagnetic up-down asymmetry in the cryostat structure, was developed and demonstrated its effectiveness by the last two year's reliable operations. Passive stabilizers and in-vessel control coils (IVCCs) are key components to realize AT operation in KSTAR. The segmented IVCC coils were connected to form circular coils for internal vertical control in 2010, and diverted plasmas with high elongation (kappa similar to 1.8, delta > 0.6) were achieved. A neutral beam injection (NBI) system was developed aiming at 2 MW, 300 s per ion source which meets the long-pulse requirement of KSTAR. An NBI ion source with a power of 1.7 MW at 100 kV has been commissioned for 10 s. Finally, ELMy H-modes were successfully produced with 1.3-MW NBI power at a plasma current of 0.6 MA in the 2010 campaign. The first H-mode discharge (#4200) in KSTAR was achieved one year earlier than officially planned and was done at B-T = 2T with I-p = 0.6 MA in a well-balanced double null configuration after boronization on the PFC. Successful operations in the early days of KSTAR including H-mode experiments revealed the capability of advanced and steady-state operation which is essential for the international thermonuclear experimental reactor (ITER) and future fusion reactors. C1 [Kwak, Jong-Gu; Oh, Y. K.; Kim, K. P.; Kim, S. W.; Hong, S. H.; Chu, Y.; Lee, H. J.; Kim, Y. O.; Kim, J.; Park, S. L.; Hahn, S. H.; Park, M. K.; Kim, H. K.; Bak, J. G.; Bae, Y. S.; Ko, W. H.; Lee, S. G.; Lee, J. H.; Jung, J. I.; Lee, K. D.; Nam, Y. U.; Jeon, Y. M.; Yoon, S. W.; England, A.; Kim, W. C.; Park, K. L.; Na, H. K.; Yang, H. L.; Kwon, M.] Natl Fus Res Inst, Taejon 305806, South Korea. [Takahiro, S.] Japan Atom Energy Agcy, Ibaraki 3191184, Japan. [Leuer, J. A.; Eidietis, N. W.; Hyatt, A. W.; Walker, M.] Gen Atom, San Diego, CA USA. [Mueller, D.; Grisham, L. R.; Park, J. K.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Park, Y. S.; Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA. RP Kwak, JG (reprint author), Natl Fus Res Inst, Taejon 305806, South Korea. EM jgkwak@nfri.re.kr OI Walker, Michael/0000-0002-4341-994X FU Ministry of Education, Science and Technology (MEST) FX Manuscript received August 13, 2011; revised December 5, 2011; accepted December 17, 2011. Date of publication February 3, 2012; date of current version March 9, 2012. The KSTAR research is supported by Ministry of Education, Science and Technology (MEST). NR 15 TC 3 Z9 3 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAR PY 2012 VL 40 IS 3 SI SI BP 697 EP 704 DI 10.1109/TPS.2011.2181958 PN 1 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 908UY UT WOS:000301519500024 ER PT J AU Heim, B Gonderman, S Taylor, CN Allain, JP Yang, ZC Gonzalez, M Collins, E Skinner, CH Ellis, B Blanchard, W Roquemore, L Kugel, HW Martin, R Kaita, R AF Heim, Bryan Gonderman, S. Taylor, C. N. Allain, J. P. Yang, Z. C. Gonzalez, M. Collins, E. Skinner, C. H. Ellis, B. Blanchard, W. Roquemore, L. Kugel, H. W. Martin, R. Kaita, R. TI The Materials Analysis Particle Probe (MAPP) Diagnostic System in NSTX SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Fusion Engineering CY JUN 25-30, 2011 CL Chicago, IL DE Lithiated graphite; plasma material interactions; plasma-surface interactions AB Lithium conditioning of plasma-facing surfaces has been implemented in National Spherical Torus Experiment (NSTX) leading to improvements in plasma performance such as reduced D recycling and a reduction in edge localized modes. Analysis of postmortem tiles and offline experiments along with atomistic modeling has identified interactions between Li-O-D and Li-C-D as chemical channels for deuterium retention in ATJ graphite. However, previous surface chemistry analysis of NSTX tiles were conducted postmortem (i.e., after a completed annual campaign), and it was not possible to correlate the performance of particular discharges with the state of the material surface at the time. Materials Analysis Particle Probe (MAPP) is the first in-vacuo surface analysis diagnostic directly integrated into a tokamak and capable of chemical surface analysis of plasma facing samples retrieved from the vessel in between discharges. It uses X-ray photoelectron spectroscopy, direct recoil spectroscopy, low energy ion surface spectroscopy, and thermal desorption spectroscopy to investigate the chemical functionalities between D and lithiated graphite at both the near surface (5-10 nm) and top surface layer (0.3-0.6 nm), respectively. MAPP will correlate plasma facing component surface chemistry with plasma performance and lead the way to improved understanding of plasma-surface interactions and their effect on global plasma performance. Remote operation and data acquisition, integrated into NSTX diagnostic and interlocks, make MAPP an advanced PMI diagnostic with stringent engineering constraints. C1 [Heim, Bryan; Gonderman, S.; Taylor, C. N.; Allain, J. P.; Yang, Z. C.; Gonzalez, M.; Collins, E.] Purdue Univ, W Lafayette, IN 47907 USA. [Skinner, C. H.; Ellis, B.; Blanchard, W.; Roquemore, L.; Kugel, H. W.; Martin, R.; Kaita, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Heim, B (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM bheim@purdue.edu RI Yang, Zhangcan/A-7530-2013; Skinner, Charles/C-2314-2013; OI Allain, Jean Paul/0000-0003-1348-262X NR 16 TC 4 Z9 4 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAR PY 2012 VL 40 IS 3 SI SI BP 735 EP 739 DI 10.1109/TPS.2011.2182062 PN 1 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 908UY UT WOS:000301519500030 ER PT J AU Barham, M Steigmann, DJ White, D AF Barham, M. Steigmann, D. J. White, D. TI Magnetoelasticity of highly deformable thin films: Theory and simulation SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS LA English DT Article DE Magnetoelasticity; Thin films; Dynamic relaxation ID MEMBRANES; ELASTOMERS; DEFORMATIONS; FIELD AB A non-linear two-dimensional theory is developed for thin magnetoelastic films capable of large deformations. This is derived directly from the three-dimensional theory. Significant simplifications emerge in the descent from three dimensions to two, permitting the self-field generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers and numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic field. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Barham, M.; Steigmann, D. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Barham, M.; White, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Steigmann, DJ (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM steigman@me.berkeley.edu FU U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; University of California, Berkeley FX This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. It was conducted during the tenure of a Lawrence Scholarship held by M. Barham from 2008 to 2011 in support of graduate studies at the University of California, Berkeley. NR 35 TC 9 Z9 9 U1 3 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7462 J9 INT J NONLIN MECH JI Int. J. Non-Linear Mech. PD MAR PY 2012 VL 47 IS 2 SI SI BP 185 EP 196 DI 10.1016/j.ijnonlinmec.2011.05.004 PG 12 WC Mechanics SC Mechanics GA 928KH UT WOS:000302981100013 ER PT J AU Chu, HJ Pan, E Wang, J Beyerlein, IJ AF Chu, H. J. Pan, E. Wang, J. Beyerlein, I. J. TI Elastic Displacement and Stress Fields Induced by a Dislocation of Polygonal Shape in an Anisotropic Elastic Half-Space SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article DE polygonal dislocation; displacement and stress fields; Green's function; anisotropic half-space ID ENERGY; LOOPS AB The elastic displacement and stress fields due to a polygonal dislocation within an anisotropic homogeneous half-space are studied in this paper. Simple line integrals from 0 to pi for the elastic fields are derived by applying the point-force Green's functions in the corresponding half-space. Notably, the geometry of the polygonal dislocation is included entirely in the integrand easing integration for any arbitrarily shaped dislocation. We apply the proposed method to a hexagonal shaped dislocation loop with Burgers vector along [(1) over bar 1 0] lying on the crystallographic (1 1 1) slip plane within a half-space of a copper crystal. It is demonstrated numerically that the displacement jump condition on the dislocation loop surface and the traction-free condition on the surface of the half-space are both satisfied. On the free surface of the half-space, it is shown that the distributions of the hydrostatic stress (sigma(11) + sigma(22))/2 and pseudohydrostatic displacement (u(1) + u(2))/2 are both anti-symmetric, while the biaxial stress (sigma(11) - sigma(22))/2 and pseudobiaxial displacement (u(1) - u(2))/2 are both symmetric. [DOI: 10.1115/1.4005554] C1 [Chu, H. J.; Pan, E.] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA. [Chu, H. J.] Yanzhou Univ, Res Grp Mech, Yangzhou 225009, Peoples R China. [Wang, J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Div, Los Alamos, NM 87545 USA. RP Pan, E (reprint author), Univ Akron, Dept Civil Engn, Akron, OH 44325 USA. EM pan2@uakron.edu RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU National Natural Science Foundation [10602050]; Jiangsu Government; Los Alamos National Laboratory Directed Research and Development (LDRD) [DR20110029, ER20110573]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the National Natural Science Foundation (10602050) and Jiangsu Government Scholarship for overseas studies. J. Wang and I. J. Beyerlein acknowledge support provided by Los Alamos National Laboratory Directed Research and Development (LDRD) Project No. DR20110029. J. Wang also acknowledges support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and a Los Alamos National Laboratory Directed Research and Development (LDRD) Project No. ER20110573. The authors further sincerely thank Professor John Hirth for his comments on the dislocation singularity issue. NR 27 TC 5 Z9 5 U1 0 U2 5 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD MAR PY 2012 VL 79 IS 2 AR 021011 DI 10.1115/1.4005554 PG 9 WC Mechanics SC Mechanics GA 922WU UT WOS:000302580000011 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hoch, M Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, S Benucci, L Cornelis, T De Wolf, EA Janssen, X Luyckx, S Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Leonard, A Marage, PE Thomas, L Vander Velde, C Vanlaer, P Wickens, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Ceard, L De Jeneret, JD Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Martins, MC Damiao, DD Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Jorge, LS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Karadzhinova, A Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, S Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, S Zhu, B Zou, W Cabrera, A Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamel, AE Khalil, S Mahmoud, MA Radi, A Hektor, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Azzolini, V Eerola, P Fedi, G Voutilainen, M Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Daci, N Dahms, T Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Juillot, P Karim, M Le Bihan, AC Van Hove, P Fassi, F Mercier, D Baty, C Beauceron, S Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Falkiewicz, A Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Viret, S Lomidze, D Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Erdmann, M Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Lingemann, J Magass, C Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Weber, M Bontenackels, M Cherepanov, V Davids, M Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Olzem, J Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Tomaszewska, J Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Erfle, J Gebbert, U Goerner, M Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Stadie, H Steinbruck, G Thomsen, J Barth, C Berger, J Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Guthoff, M Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Katkov, I Komaragiri, JR Kuhr, T Martschei, D Mueller, S Mueller, T Niegel, M Nuernberg, A Oberst, O Oehler, A Ott, J Peiffer, T Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Renz, M Rocker, S Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schmanau, M Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Weiler, T Zeise, M Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Hajdu, C Hidas, P Horvath, D Kapusi, A Krajczar, K Sikler, F Veszpremi, V Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, J Singh, SP Ahuja, S Choudhary, BC Kumar, A Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Choudhury, RK Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Romano, F Selvaggi, G Silvestris, L Singh, G Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Berzano, U Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Santocchia, A Taroni, S Valdata, M Azzurri, P Bagliesi, G Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Rizzi, A Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Heo, SG Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Ro, SR Son, DC Kim, JY Kim, ZJ Song, S Jo, HY Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Seo, E Sim, KS Choi, M Kang, S Kim, H Kim, JH Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Brona, G Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Bialkowska, H Boimska, B Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Nayak, A Pela, J Ribeiro, PQ Seixas, J Varela, J Vischia, P Afanasiev, S Belotelov, I Bunin, P Golutvin, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Krokhotin, A Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Ray, EAF Auzinger, G Baillon, P Ball, AH Barney, D Bernet, C Bialas, W Bianchi, G Bloch, P Bocci, A Breuker, H Bunkowski, K Camporesi, T Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Georgiou, G Gerwig, H Giffels, M Gigi, D Gill, K Giordano, D Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Guiducci, L Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Hoffmann, HF Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lenzi, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Mavromanolakis, G Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Cortezon, EP Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stoye, M Tsirou, A Veres, GI Vichoudis, P Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Chen, Z Deisher, A Dissertori, G Dittmar, M Dunser, M Eugster, J Freudenreich, K Grab, C Lecomte, P Lustermann, W del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Snoek, H Verzetti, M Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Hos, I Kangal, EE Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Deliomeroglu, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Levchuk, L Bostock, F Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardle, N Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Henderson, C Avetisyan, A Bose, T Jarrin, EC Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Bhattacharya, S Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Caulfield, M Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Robles, J Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Andreev, V Arisaka, K Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Ligoi, ISF Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Cooper, W Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jensen, H Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Leonidopoulos, C Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Pivarski, J Pordes, R Prokofyev, O Schwarz, T Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Snowball, M Wang, D Yelton, J Zakaria, M Gaultney, V Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kunde, GJ Lacroix, F Malek, M O'Brien, C Silkworth, C Silvestre, C Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Griffiths, S Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Bonato, A Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Iii, RPK Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Peterman, A Rossato, K Rumerio, P Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Hahn, KA Kim, Y Klute, M Lee, YJ Li, W Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Cushman, P Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rekovic, V Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Jindal, P Keller, J Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Ziegler, J Bylsma, B Durkin, LS Hill, C Killewald, P Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hegeman, J Hunt, A Laird, E Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Petrillo, G Sakumoto, W Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Atramentov, O Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Park, M Patel, R Richards, A Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Bardak, C Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Appelt, E Brownson, E Engh, D Florez, C Gabella, W Gurrola, A Issah, M Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Conetti, S Cox, B Francis, B Goadhouse, S Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Belknap, D Bellinger, JN Bernardini, J Borrello, L Carlsmith, D Cepeda, M Dasu, S Efron, J Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, S. Benucci, L. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Leonard, A. Marage, P. E. Thomas, L. Vander Velde, C. Vanlaer, P. Wickens, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Ceard, L. De Jeneret, J. De Favereau Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Correa Martins Junior, M. De Jesus Damiao, D. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Soares Jorge, L. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Karadzhinova, A. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, S. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, S. Zhu, B. Zou, W. Cabrera, A. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Khalil, S. Mahmoud, M. A. Radi, A. Hektor, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Azzolini, V. Eerola, P. Fedi, G. Voutilainen, M. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Daci, N. Dahms, T. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Karim, M. Le Bihan, A. -C. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beauceron, S. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Falkiewicz, A. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Viret, S. Lomidze, D. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Erdmann, M. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Weber, M. Bontenackels, M. Cherepanov, V. Davids, M. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Olzem, J. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Tomaszewska, J. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Stadie, H. Steinbrueck, G. Thomsen, J. Barth, C. Berger, J. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Guthoff, M. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Katkov, I. Komaragiri, J. R. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Renz, M. Roecker, S. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schmanau, M. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Weiler, T. Zeise, M. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Hajdu, C. Hidas, P. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Veszpremi, V. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. Singh, S. P. Ahuja, S. Choudhary, B. C. Kumar, A. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, S. Jain, S. Khurana, R. Sarkar, S. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Romano, F. Selvaggi, G. Silvestris, L. Singh, G. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Berzano, U. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Santocchia, A. Taroni, S. Valdata, M. Azzurri, P. Bagliesi, G. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Rizzi, A. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Heo, S. G. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Jo, H. Y. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Seo, E. Sim, K. S. Choi, M. Kang, S. Kim, H. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Brona, G. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Bialkowska, H. Boimska, B. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Musella, P. Nayak, A. Pela, J. Ribeiro, P. Q. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Belotelov, I. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An Andreev, Yu Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Garcia, J. M. Vizan Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Ray, E. Au Ff Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bernet, C. Bialas, W. Bianchi, G. Bloch, P. Bocci, A. Breuker, H. Bunkowski, K. Camporesi, T. Cerminara, G. Christiansen, T. Coarasa Perez, J. A. Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Georgiou, G. Gerwig, H. Giffels, M. Gigi, D. Gill, K. Giordano, D. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Guiducci, L. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Hoffmann, H. F. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lenzi, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Mavromanolakis, G. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoye, M. Tsirou, A. Veres, G. I. Vichoudis, P. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Chen, Z. Deisher, A. Dissertori, G. Dittmar, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Lecomte, P. Lustermann, W. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. -C. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Verzetti, M. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Hos, I. Kangal, E. E. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bostock, F. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Henderson, C. Avetisyan, A. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Bhattacharya, S. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Caulfield, M. Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Robles, J. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Andreev, V. Arisaka, K. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Ligoi, I. S. Fi Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cooper, W. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jensen, H. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Pivarski, J. Pordes, R. Prokofyev, O. Schwarz, T. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Gaultney, V. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kunde, G. J. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Silvestre, C. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Griffiths, S. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Bonato, A. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Iii, R. P. Kenny Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Peterman, A. Rossato, K. Rumerio, P. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Jindal, P. Keller, J. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Ziegler, J. Bylsma, B. Durkin, L. S. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Laird, E. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Petrillo, G. Sakumoto, W. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Atramentov, O. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Richards, A. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Bardak, C. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Gurrola, A. Issah, M. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Conetti, S. Cox, B. Francis, B. Goadhouse, S. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. Bellinger, J. N. Bernardini, J. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Efron, J. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for the standard model Higgs boson in the H -> ZZ -> l(+)l(-)tau(+)tau(-) decay channel in pp collisions at root s=7 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID HADRON COLLIDERS; ELECTROWEAK CORRECTIONS; MASSLESS PARTICLES; BROKEN SYMMETRIES; LHC; QCD AB A search is reported for the standard model Higgs boson in the H -> ZZ -> l(+)l(-)tau(+)tau(-) decay mode, where l = mu or e, in proton-proton collisions at root s = 7 TeV, corresponding to an integrated luminosity of 4.7 fb(-1) collected with the CMS detector at the LHC. No evidence is found for a significant deviation from the background expectation. An upper limit four to twelve times larger than the predicted value is set at 95% confidence level for the product of the standard model Higgs boson production cross section and decay branching fraction in the mass range 190 < m(H) < 600 GeV. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Benucci, L.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Leonard, A.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Ceard, L.; De Jeneret, J. De Favereau; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, S.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] IN2P3 CNRS, Lab Annecy le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Erdmann, M.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.] Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Davids, M.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Zoeller, M. H.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Stadie, H.; Steinbrueck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Roecker, S.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schmanau, M.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, S.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Romano, F.; Selvaggi, G.; Silvestris, L.; Singh, G.; Tupputi, S.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Selvaggi, G.; Singh, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Musenich, R.] INFN Sez Genova, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [De Cosa, A.; Dogangun, O.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Berzano, U.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Adler, V.; Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] INFN Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Meridiani, P.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Rovelli, C.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Longo, E.; Organtini, G.; Pandolfi, F.; Rahatlou, S.; Rovelli, C.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.] INFN Sez Trieste, Trieste, Italy. [Della Ricca, G.; Marone, M.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Jo, H. Y.] Konkuk Univ, Seoul, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Seo, E.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Garcia, J. M. Vizan] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Hammer, J.; Genchev, V.; Iaydjiev, P.; Puljak, I.; Chierici, R.; Jung, H.; Guthoff, M.; Foudas, C.; Hajdu, C.; Sikler, F.; Mohanty, A. K.; De Filippis, N.; Fasanella, D.; Tropiano, A.; Benaglia, A.; Gennai, S.; Massironi, A.; Montoya, C. A. Carrillo; Iorio, A. O. M.; Bacchetta, N.; Nespolo, M.; Tosi, M.; Lucaroni, A.; Taroni, S.; Tonelli, G.; Venturi, A.; Del Re, D.; Grassi, M.; Mariotti, C.; Montanino, D.; Pela, J.; Kossov, M.; Grishin, V.; Abbaneo, D.; Ray, E. Au Ff; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bernet, C.; Bialas, W.; Bianchi, G.; Bloch, P.; Bocci, A.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Guiducci, L.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Hoffmann, H. F.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lenzi, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Mavromanolakis, G.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.; Kovalskyi, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Chen, Z.; Deisher, A.; Dissertori, G.; Dittmar, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Lecomte, P.; Lustermann, W.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Ctr Nat Sci, UA-310108 Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Henderson, C.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Caulfield, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Robles, J.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Ligoi, I. S. Fi; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Schwarz, T.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Strom, D.; Varelas, N.] Univ Illinois Chicago UIC, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Bonato, A.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Iii, R. P. Kenny; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Peterman, A.; Rossato, K.; Rumerio, P.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Atramentov, O.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Richards, A.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Gurrola, A.; Issah, M.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Conetti, S.; Cox, B.; Francis, B.; Goadhouse, S.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Bernardini, J.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Efron, J.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Khalil, S.; Radi, A.] British Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Krajczar, K.; Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Kunde, G. J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Dahms, Torsten/A-8453-2015; Hektor, Andi/G-1804-2011; Grandi, Claudio/B-5654-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; vilar, rocio/P-8480-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; Russ, James/P-3092-2014; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dogangun, Oktay/L-9252-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Mercadante, Pedro/K-1918-2012; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Tinti, Gemma/I-5886-2013; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Liu, Sheng/K-2815-2013; Lujan Center, LANL/G-4896-2012; Tinoco Mendes, Andre David/D-4314-2011; Fruhwirth, Rudolf/H-2529-2012; Chen, Jie/H-6210-2011; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; Focardi, Ettore/E-7376-2012; Raidal, Martti/F-4436-2012; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Savrin, Victor/D-6213-2012; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Belyaev, Andrey/E-1540-2012; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Tomei, Thiago/E-7091-2012 OI Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Ragazzi, Stefano/0000-0001-8219-2074; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Dahms, Torsten/0000-0003-4274-5476; Hektor, Andi/0000-0001-7873-8118; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Wimpenny, Stephen/0000-0003-0505-4908; Dogangun, Oktay/0000-0002-1255-2211; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Tinoco Mendes, Andre David/0000-0001-5854-7699; Azzi, Patrizia/0000-0002-3129-828X; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Focardi, Ettore/0000-0002-3763-5267; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Tomei, Thiago/0000-0002-1809-5226 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER (Estonia) [SF0690030s09]; ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); WCU (Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MSTD (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Council of Science and Industrial Research, India; HOMING PLUS of the Foundation for Polish Science; European Union FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 60 TC 9 Z9 9 U1 1 U2 49 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2012 IS 3 AR 081 DI 10.1007/JHEP03(2012)081 PG 30 WC Physics, Particles & Fields SC Physics GA 920NP UT WOS:000302412400026 ER PT J AU Gainer, JS Huo, R Wagner, CEM AF Gainer, James S. Huo, Ran Wagner, Carlos E. M. TI An alternative Yukawa unified SUSY scenario SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID SUPERSYMMETRIC STANDARD MODEL; ELECTROWEAK SYMMETRY-BREAKING; MISSING TRANSVERSE-MOMENTUM; PROTON-PROTON COLLISIONS; LEPTON-FLAVOR VIOLATION; TOP-QUARK-MASS; NEUTRINO MASSES; UNIFICATION; SO(10); HIGGS AB Supersymmetric SO(10) Grand Unified Theories with Yukawa unification represent an appealing possibility for physics beyond the Standard Model. However Yukawa unification is made difficult by large threshold corrections to the bottom mass. Generally one is led to consider models where the sfermion masses are large in order to suppress these corrections. Here we present another possibility, in which the top and bottom GUT scale Yukawa couplings are equal to a component of the charged lepton Yukawa matrix at the GUT scale in a basis where this matrix is not diagonal. Physically, this weak eigenstate Yukawa unification scenario corresponds to the case where the charged leptons that are in the 1 6 of SO(10) containing the top and bottom quarks mix with their counterparts in another SO(10) multiplet. Diagonalizing the resulting Yukawa matrix introduces mixings in the neutrino sector. Specifically we find that for a large region of parameter space with relatively light sparticles, and which has not been ruled out by current LHC or other data, the mixing induced in the neutrino sector is such that sin(2) 20(23) approximate to 1, in agreement with data. The phenomenological implications are analyzed in some detail. C1 [Gainer, James S.; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Gainer, James S.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Huo, Ran; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Gainer, JS (reprint author), Argonne Natl Lab, HEP Div, 9700 Cass Ave, Argonne, IL 60439 USA. EM j-gainer@northwestern.edu; huor@uchicago.edu; cwagner@hep.anl.gov OI Gainer, James/0000-0002-8872-0664 FU U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-91ER40684, DE-FGO2-96-ER40956] FX We would like to acknowledge useful conversations with Arjun Menon, Pedro Schwaller, and Lian-Tao Wang. This work is supported in part by the U.S. Department of Energy under contract numbers DE-AC02-06CH11357, DE-FG02-91ER40684, and DE-FGO2-96-ER40956. NR 133 TC 6 Z9 6 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2012 IS 3 AR 097 DI 10.1007/JHEP03(2012)097 PG 30 WC Physics, Particles & Fields SC Physics GA 920NP UT WOS:000302412400042 ER PT J AU Soler, MAG Paterno, LG Sinnecker, JP Wen, JG Sinnecker, EHCP Neumann, RF Bahiana, M Novak, MA Morais, PC AF Soler, M. A. G. Paterno, L. G. Sinnecker, J. P. Wen, J. G. Sinnecker, E. H. C. P. Neumann, R. F. Bahiana, M. Novak, M. A. Morais, P. C. TI Assembly of gamma-Fe2O3/polyaniline nanofilms with tuned dipolar interaction SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Nanoparticle assembly; Maghemite; Polyaniline; Layer-by-layer; Dipolar interaction; Magnetic film ID MAGNETIC NANOPARTICLES; PARTICLE-SIZE; RELAXATION; FILMS; POLYANILINE; DERIVATIVES; POLYMERS; DYNAMICS; SYSTEMS AB The internal morphology and magnetic properties of layer-by-layer assembled nanofilms of polyaniline (PANI) and maghemite (gamma-Fe2O3-7.5-nm diameter) were probed with cross-sectional transmission electron microscopy (TEM) and magnetization measurements (magnetic hysteresis loops, magnetization using zero-field cooled/field-cooled protocols, and ac magnetic susceptibility). Additionally, simulations of the as-produced samples were performed to assess both the nanofilm's morphology and the corresponding magnetic signatures using the cell dynamic system (CDS) approach and Monte Carlo (MC) through the standard Metropolis algorithm, respectively. Fine control of the film thickness and average maghemite particle-particle within this magnetic structure was accomplished by varying the number of bilayers (PANI/gamma-Fe2O3) deposited onto silicon substrates or through changing the concentration of the maghemite particles suspended within the colloidal dispersion sample used for film fabrication. PANI/gamma-Fe2O3 nanofilms comprising 5, 10, 25 and 50 deposited bilayers displayed, respectively, blocking temperatures (T-B) of 30, 35, 39 and 40 K and effective energy barriers (Delta E/k(B)) of 1.0 x 10(3), 2.3 x 10(3), 2.8 x 10(3) and 2.9 x 10(3) K. Simulation of magnetic nanofilms using the CDS model provided the internal morphology to carry on MC simulation of the magnetic properties of the system taking into account the particle-particle dipolar interaction. The simulated (using CDS) surface-surface particle distance of 0.5, 2.5 and 4.5 nm was obtained for nanofilms with thicknesses of 36.0, 33.9 and 27.1 nm, respectively. The simulated (using MC) T-B values were 33.0, 30.2 and 29.5 K for nanofilms with thicknesses of 36.0, 33.9 and 27.1 nm, respectively. We found the experimental (TEM and magnetic measurements) and the simulated data (CDS and MC) in very good agreement, falling within the same range and displaying the same systematic trend. Our findings open up new perspectives for fabrication of magnetic nanofilms with pre-established (simulated) morphology and magnetic properties. C1 [Soler, M. A. G.; Paterno, L. G.; Morais, P. C.] Univ Brasilia, Inst Fis, BR-70910900 Brasilia, DF, Brazil. [Sinnecker, J. P.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Wen, J. G.] Argonne Natl Lab, Div Mat Sci, Electron Microscopy Ctr, Argonne, IL 60439 USA. [Sinnecker, E. H. C. P.; Neumann, R. F.; Bahiana, M.; Novak, M. A.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil. RP Soler, MAG (reprint author), Univ Brasilia, Inst Fis, BR-70910900 Brasilia, DF, Brazil. EM soler@unb.br RI Novak, Miguel/J-7640-2012; Sinnecker, Joao Paulo/A-7498-2010; Neumann, Rodrigo/D-8111-2013; Sinnecker, Elis/D-6036-2015 OI Sinnecker, Joao Paulo/0000-0001-5211-901X; Neumann, Rodrigo/0000-0003-4435-0507; FU CAPES; FAPERJ; MCT-CNPq FX Maria A. G. Soler thanks Professor Steve Granick (Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA) for the hospitality in the period April-June, 2009, and CAPES-Brazil (4410-08-4). We are grateful to Dr. Wacek Swiech, Dr. Michael Marshall and Dr. Changhui Lei (Frederick Seitz Materials Research Laboratory, USA) for the support in the cross-sectional TEM measurements, Dr. Emilia C. D. Lima (Universidade Federal de Goias, Brazil) for supplying the magnetic fluid samples and the Brazilian agencies CAPES, FAPERJ and MCT-CNPq for supporting this work. NR 46 TC 8 Z9 8 U1 0 U2 34 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD MAR PY 2012 VL 14 IS 3 DI 10.1007/s11051-011-0653-z PG 10 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 923SO UT WOS:000302639600002 ER PT J AU Yang, XL Miley, GH Flippo, KA Hora, H AF Yang, Xiaoling Miley, George H. Flippo, Kirk A. Hora, Heinrich TI Hot spot heating process estimate using a laser-accelerated quasi-Maxwellian deuteron beam SO LASER AND PARTICLE BEAMS LA English DT Article DE Bonus energy; Deuteron beam; Fast ignition; Hot spot; Inertial Confinement Fusion ID FAST IGNITION; ION-ACCELERATION; PROTON-BEAMS; DRIVEN; DENSITY; TARGETS; FUSION AB The hot spot heating process by an assumed deuteron beam is evaluated in order to estimate the contribution of the energy produced by the deuteron beam-target fusion to the heating process. The deuteron beam energy versus the number of deuterons is evaluated through the experimentally achieved proton beam energy distribution using the TRIDENT short pulse laser at the Los Alamos National Laboratory (LANL). The corresponding hot spot heating is then calculated using this assumed deuteron beam spectrum. The resulting first order heating dynamics is employed in the expanded "bonus" energy calculation, and a 12.73% extra energy from deuteron beam-target fusion was found with the assumed deuteron spectrum when rho r(b) = 4.5 g/cm(2) is considered, where. is the fuel density, and r(b) is the ion beam focusing radius on the target. The results provide further insight into the contribution of the extra heat produced by deuteron beam-target fusion to the hot spot ignition process. A further analysis of how a converter foil using ultra-high-density cluster materials can help to achieve the yield requirements for ignition is presented. C1 [Yang, Xiaoling; Miley, George H.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Flippo, Kirk A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Hora, Heinrich] Univ New S Wales, Sydney, NSW, Australia. RP Yang, XL (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. EM xlyang@illinois.edu RI Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 FU NPL Associate INC Plasma Physics; LANL LDRD under DOE [DE-AC52-06NA25396]; New York Community Trust FX Support for parts of the work by a NPL Associate INC Plasma Physics grant and by the New York Community Trust was essential to the effort. Kirk A. Flippo is funded through LANL LDRD under DOE contract number DE-AC52-06NA25396. NR 39 TC 2 Z9 2 U1 0 U2 6 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD MAR PY 2012 VL 30 IS 1 BP 31 EP 38 DI 10.1017/S0263034611000656 PG 8 WC Physics, Applied SC Physics GA 919ZR UT WOS:000302371200005 ER PT J AU Zastrau, U Burian, T Chalupsky, J Doppner, T Dzelzainis, TWJ Faustlin, RR Fortmann, C Galtier, E Glenzer, SH Gregori, G Juha, L Lee, HJ Lee, RW Lewis, CLS Medvedev, N Nagler, B Nelson, AJ Riley, D Rosmej, FB Toleikis, S Tschentscher, T Uschmann, I Vinko, SM Wark, JS Whitcher, T Forster, E AF Zastrau, U. Burian, T. Chalupsky, J. Doeppner, T. Dzelzainis, T. W. J. Faeustlin, R. R. Fortmann, C. Galtier, E. Glenzer, S. H. Gregori, G. Juha, L. Lee, H. J. Lee, R. W. Lewis, C. L. S. Medvedev, N. Nagler, B. Nelson, A. J. Riley, D. Rosmej, F. B. Toleikis, S. Tschentscher, T. Uschmann, I. Vinko, S. M. Wark, J. S. Whitcher, T. Foerster, E. TI XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH SO LASER AND PARTICLE BEAMS LA English DT Article DE Free-electron lasers; Plasma diagnostics; Warm dense matter; XUV spectroscopy ID RAY THOMSON SCATTERING; EQUATION-OF-STATE; X-RAY; ABSORPTION; AUGER; IRRADIATION; SPECTRUM; HYDROGEN; MATTER; PULSES AB We report on experiments aimed at the generation and characterization of solid density plasmas at the free-electron laser FLASH in Hamburg. Aluminum samples were irradiated with XUV pulses at 13.5 nm wavelength (92 eV photon energy). The pulses with duration of a few tens of femtoseconds and pulse energy up to 100 mu J are focused to intensities ranging between 10(13) and 10(17) W/cm(2). We investigate the absorption and temporal evolution of the sample under irradiation by use of XUV and optical spectroscopy. We discuss the origin of saturable absorption, radiative decay, bremsstrahlung and atomic and ionic line emission. Our experimental results are in good agreement with simulations. C1 [Zastrau, U.; Uschmann, I.; Foerster, E.] Univ Jena, Inst Opt & Quantenelekt, D-07743 Jena, Germany. [Zastrau, U.; Uschmann, I.; Foerster, E.] Helmholtz Inst Jena, Jena, Germany. [Burian, T.; Chalupsky, J.] Inst Phys ASCR, Prague, Czech Republic. [Doeppner, T.; Fortmann, C.; Glenzer, S. H.; Lee, R. W.; Nelson, A. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Dzelzainis, T. W. J.; Lewis, C. L. S.; Riley, D.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Faeustlin, R. R.; Medvedev, N.; Toleikis, S.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Galtier, E.; Lee, H. J.; Lee, R. W.; Nagler, B.] Natl Accelerator Lab, SLAC, Menlo Pk, CA USA. [Galtier, E.; Rosmej, F. B.] Univ Paris 04, LULI, UMR 7605, Paris, France. [Gregori, G.; Vinko, S. M.; Wark, J. S.; Whitcher, T.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Rosmej, F. B.] Ecole Polytech, Lab Utilisat Lasers Intenses, PAPD, Palaiseau, France. [Tschentscher, T.] European XFEL GmbH, Hamburg, Germany. RP Zastrau, U (reprint author), Univ Jena, Inst Opt & Quantenelekt, Max Wien Pl 1, D-07743 Jena, Germany. EM ulf.zastrau@uni-jena.de RI Vinko, Sam/I-4845-2013; Chalupsky, Jaromir/H-2079-2014; Burian, Tomas/H-3236-2014; Medvedev, Nikita/F-4089-2011 OI Vinko, Sam/0000-0003-1016-0975; Burian, Tomas/0000-0003-3982-9978; Medvedev, Nikita/0000-0003-0491-1090 FU German Helmholtz association via the Virtual Institute [VH-VI-104]; Helmholtz Institute Jena; German Federal Ministry for Education and Research [FSP 301-FLASH]; Deutsche Forschungsgemeinschaft DFG [Sonderforschungsbereich SFB 652]; UK EPSRC [EP/F020449/1, EP/H035877/1, EP/G007187/1]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Grant [11-ER-050] FX We thankfully acknowledge financial support by the German Helmholtz association via the Virtual Institute VH-VI-104 and the Helmholtz Institute Jena, the German Federal Ministry for Education and Research via project FSP 301-FLASH, and the Deutsche Forschungsgemeinschaft DFG via the Sonderforschungsbereich SFB 652. S.M.V., T. W., and J.S.W. are grateful to the UK EPSRC for funding under grant numbers EP/F020449/1, EP/H035877/1 and EP/G007187/1. Work of T.D., C.F., S.H.G., R.W.L., and A.J.N. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported by Laboratory Directed Research and Development Grant No. 11-ER-050. Further, we thank the Czech Ministry of Education via projects LC510, LC528, ME10046, and LA08024, Czech Science Foundation via projects 208/10/2302, 108/11/1312 and 205/11/0571 and Czech Academy of Sciences via project AV0Z10100523, IAAX00100903, and KAN300100702. Finally, the authors are greatly indebted to the machine operators, run coordinators, scientific and technical teams of the FLASH facility for enabling an outstanding performance. NR 53 TC 17 Z9 17 U1 1 U2 25 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD MAR PY 2012 VL 30 IS 1 BP 45 EP 56 DI 10.1017/S026303461100067X PG 12 WC Physics, Applied SC Physics GA 919ZR UT WOS:000302371200007 ER PT J AU Radetic, T Popovic, M Romhanji, E AF Radetic, Tamara Popovic, Miljana Romhanji, Endre TI Microstructure evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment SO MATERIALS CHARACTERIZATION LA English DT Article DE AA5083 alloy; Homogenization; Microsegregation; Al-6(Mn,Fe) precipitates; nu-Al-11(Mn,Cr)(4) dispersoids; Al18Mg3(Mn,Cr)(2) dispersoids ID AL-MG ALLOY; MN SYSTEM; SOLIDIFICATION; BEHAVIOR; SI; RECRYSTALLIZATION; ZR AB The microstructure evolution of the industrially cast AA5083 modified aluminum alloy during the multistage homogenization treatment was investigated by means of optical, SEM and TEM imaging and microanalysis techniques. The effect of microsegregations on the precipitates structure was evaluated. Eutectic constituent Al-6(Fe,Mn) and Mg2Si particles form in interdendritic regions, while nu-Al-11(Mn,Cr)(4) dispersoids were observed in the dendrite cores. Homogenization treatments lead to a partial dissolution of the precipitates present in the as-cast state and formation of the new phases: rod-shaped Al-6(Mn,Fe) and Al18Mg3(Mn,Cr)(2) dispersoids in the dendrite cores. Published by Elsevier Inc. C1 [Radetic, Tamara; Popovic, Miljana; Romhanji, Endre] Univ Belgrade, Fac Technol & Met, Dept Met Engn, Belgrade 11120, Serbia. [Radetic, Tamara] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Radetic, T (reprint author), Univ Belgrade, Fac Technol & Met, Dept Met Engn, Karnegijeva 4,POB 35-03, Belgrade 11120, Serbia. EM tamara.m.radetic@gmail.com FU Ministry of Education and Science, Republic of Serbia; Impol-Seval Aluminum Mill, Sevojno [TR 34018, E!4569]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to the Ministry of Education and Science, Republic of Serbia, and Impol-Seval Aluminum Mill, Sevojno, for the financial support provided under contract number TR 34018 and E!4569. Part of this work was performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 13 Z9 13 U1 1 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 EI 1873-4189 J9 MATER CHARACT JI Mater. Charact. PD MAR PY 2012 VL 65 BP 16 EP 27 DI 10.1016/j.matchar.2011.12.006 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA 922YG UT WOS:000302584200003 ER PT J AU Bellei, C Foord, ME Bartal, T Key, MH McLean, HS Patel, PK Stephens, RB Beg, FN AF Bellei, C. Foord, M. E. Bartal, T. Key, M. H. McLean, H. S. Patel, P. K. Stephens, R. B. Beg, F. N. TI Electron and ion dynamics during the expansion of a laser-heated plasma under vacuum SO PHYSICS OF PLASMAS LA English DT Article ID SOLID INTERACTIONS; PROTON-BEAMS; TARGETS; ACCELERATION; GENERATION; PULSE; BUNCH AB The trajectories of electrons and ions when a hot plasma expands under vacuum are studied in detail from a theoretical point of view and with the aid of numerical simulations. Exact analytic solutions are obtained in multi-dimensions, starting from the solution for the expansion of a quasi-neutral, Gaussian, collisionless plasma in vacuum [D. S. Dorozhkina and V. E. Semenov, Phys. Rev. Lett. 81, 2691 (1998)]. Focusing of laser-accelerated ions with concave targets is investigated with the hybrid particle-in-cell code Lsp. For a given laser energy and pulse duration, a larger laser focal spot is found to be beneficial to focus the ion beam to a smaller focal spot, due both to a geometric effect and to the decrease in the transverse gradient of the hot electron pressure. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696003] C1 [Bellei, C.; Bartal, T.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Bellei, C.; Foord, M. E.; Key, M. H.; McLean, H. S.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Stephens, R. B.] Gen Atom Co, San Diego, CA 92121 USA. RP Bellei, C (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. EM bellei1@llnl.gov RI Patel, Pravesh/E-1400-2011; OI Stephens, Richard/0000-0002-7034-6141 FU U. S. Department of Energy [DE-SC0001265] FX C.B. acknowledges useful discussions with A. Kemp. This work was partially supported by the U. S. Department of Energy Grant DE-SC0001265. NR 28 TC 7 Z9 7 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2012 VL 19 IS 3 AR 033109 DI 10.1063/1.3696003 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 918CJ UT WOS:000302226500072 ER PT J AU Chen, M Esarey, E Schroeder, CB Geddes, CGR Leemans, WP AF Chen, M. Esarey, E. Schroeder, C. B. Geddes, C. G. R. Leemans, W. P. TI Theory of ionization-induced trapping in laser-plasma accelerators SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON INJECTION; PULSES; WAKEFIELD; DRIVEN; QUALITY; PHYSICS; REGIME; WAVES; GASES; BEAM AB Ionization injection in a laser-plasma accelerator is studied analytically and by multi-dimensional particle-in-cell (PIC) simulations. To enable the production of low energy spread beams, we consider a short region containing a high atomic number gas (e.g., nitrogen) for ionization-induced trapping, followed by a longer region using a low atomic number gas (e.g., hydrogen), that is, free of additional trapping, for post acceleration. For a broad laser pulse, ionization injection requires a minimum normalized laser field of a(0) similar or equal to 1.7, assuming a resonant Gaussian laser pulse. Effects of gas mix parameters, including species, concentration, and length of the mixture region, on the final electron injection number and beam quality are studied. The minimum energy spread is determined by the spread in initial ionized phases of the electrons in the wakefield due to the tunneling ionization process within the laser pulse. Laser polarization and intensity effects on injection number and final electron emittance are examined. Two-dimensional PIC simulations are used to study the ionization injection process and the transverse beam structure. With proper laser-plasma parameters, mono-energetic electron beams with 10 pC charge, a central energy at GeV level, and energy spread less than 1% can be produced in a mixed gas with ionized electron density of 10(18) cm(-3). Lower density can give a higher final accelerated beam energy and reduce the final relative energy spread even further. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3689922] C1 [Chen, M.; Esarey, E.; Schroeder, C. B.; Geddes, C. G. R.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Chen, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM EHEsarey@lbl.gov RI Chen, Min/A-9955-2010; OI Chen, Min/0000-0002-4290-9330; Schroeder, Carl/0000-0002-9610-0166 FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0935197] FX The authors would like to thank Lule Yu, Carlo Benedetti, and Stepan Bulanov for useful discussions. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the National Science Foundation under Grant No. PHY-0935197. Computational resources of the National Energy Research Scientific Computing Center were used to perform the simulations. NR 42 TC 64 Z9 65 U1 1 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2012 VL 19 IS 3 AR 033101 DI 10.1063/1.3689922 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 918CJ UT WOS:000302226500064 ER PT J AU Hakim, AH Rognlien, TD Groebner, RJ Carlsson, J Cary, JR Kruger, SE Miah, M Pankin, A Pletzer, A Shasharina, S Vadlamani, S Cohen, R Epperly, T AF Hakim, A. H. Rognlien, T. D. Groebner, R. J. Carlsson, J. Cary, J. R. Kruger, S. E. Miah, M. Pankin, A. Pletzer, A. Shasharina, S. Vadlamani, S. Cohen, R. Epperly, T. TI Coupled core-edge simulations of H-mode buildup using the Fusion Application for Core-Edge Transport Simulations (FACETS) code SO PHYSICS OF PLASMAS LA English DT Article ID DIII-D; TOKAMAK; PLASMAS; PARTICLES AB Coupled simulations of core and edge transport in the DIII-D shot number 118897, after the L-H transition but before the first edge localized mode (ELM), are presented. For the plasma core transport, a set of one dimensional transport equations are solved using the FACETS: Core solver. The fluxes in this region are calculated using the GLF23 anomalous transport model and Chang-Hinton neoclassical model. For the plasma edge transport, two-dimensional transport equations are solved using the UEDGE code. Fluxes in the edge region use static diffusivity profiles based on an interpretive analysis of the experimental profiles. Simulations are used to study the range of validity of the selected models and sensitivity to neutral fueling. It has been demonstrated that the increase of neutral influx to the level that exceeds the level of neutral influx obtained from analysis simulations with the UEDGE code by a factor of two results in increased plasma density pedestal heights and plasma density levels in the scrape-off-layer region. However, the additional neutral influx has relatively weak effect on the pedestal width and plasma density profiles in the plasma core for the DIII-D discharge studied in this research. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3693148] C1 [Hakim, A. H.; Carlsson, J.; Cary, J. R.; Kruger, S. E.; Miah, M.; Pankin, A.; Pletzer, A.; Shasharina, S.; Vadlamani, S.] Tech X Corp, Boulder, CO 80305 USA. [Hakim, A. H.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Rognlien, T. D.; Cohen, R.; Epperly, T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Groebner, R. J.] Gen Atom Co, San Diego, CA 92186 USA. RP Hakim, AH (reprint author), Tech X Corp, 5621 Arapahoe Ave,Suite A, Boulder, CO 80305 USA. EM ammar@princeton.edu OI Carlsson, Johan/0000-0003-4614-8150 FU US DOE [DE-FC02-07ER54907, DE-AC52-07NA27344, DE-FC02-04ER54698] FX The authors would like to thank to Dr. Lois McInnes and Dr. Hong Zhang for help with the UEDGE code. This work was partially supported by the US DOE under DE-FC02-07ER54907, DE-AC52-07NA27344, and DE-FC02-04ER54698. NR 17 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2012 VL 19 IS 3 AR 032505 DI 10.1063/1.3693148 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 918CJ UT WOS:000302226500046 ER PT J AU Holcomb, CT Ferron, JR Luce, TC DeBoo, JC Park, JM White, AE Turco, F Rhodes, TL Doyle, EJ Schmitz, L Van Zeeland, MA McKee, GR AF Holcomb, C. T. Ferron, J. R. Luce, T. C. DeBoo, J. C. Park, J. M. White, A. E. Turco, F. Rhodes, T. L. Doyle, E. J. Schmitz, L. Van Zeeland, M. A. McKee, G. R. TI The effect of safety factor profile on transport in steady-state, high-performance scenarios SO PHYSICS OF PLASMAS LA English DT Article ID FINITE ASPECT RATIO; DIII-D; PLASMA-CONFINEMENT; CHAPTER 2; TOKAMAK; TURBULENCE; MODES AB An analysis of the dependence of transport on the safety factor profile in high-performance, steady-state scenario discharges is presented. This is based on experimental scans of q(95) and q(min) taken with fixed beta(N), toroidal field, double-null plasma shape, divertor pumping, and electron cyclotron current drive input. The temperature and thermal diffusivity profiles were found to vary considerably with the q-profile, and these variations were significantly different for electrons and ions. With fixed q(95), both temperature profiles increase and broaden as q(min) is increased and the magnetic shear becomes low or negative in the inner half radius, but these temperature profile changes are stronger for the electrons. Power balance calculations show the peak in the ion thermal diffusivity (chi(i)) at rho = 0.6 - 0.8 increases with q(95) or q(min). In contrast, the peak in the electron diffusivity (chi(e)) decreases as q(min) is raised from similar to 1 to 1.5, and it is insensitive to q(95). This is important for fully non-inductive scenario development because it demonstrates that elevated q(min) and weak or reversed shear allow larger electron temperature gradients and, therefore, increased bootstrap current density to exist at rho = 0.6 - 0.8. Chord-averaged measurements of long wavelength density fluctuation amplitudes ((n) over tilde) are shown, and these have roughly the same dependence on q-profile as chi(i). This data set provides an opportunity for testing whether theory based transport models can provide insight into the underlying transport physics of high performance scenarios and if they can reproduce observed experimental trends. To this end, we applied the trapped gyro-Landau fluid (TGLF) code to calculate the linear stability of drift waves and found that the resulting variation of growth rates with q-profile are mostly inconsistent with the observed trends of chi(i), chi(e), and (n) over tilde with q-profile. TGLF simulations of the temperature profiles consistent with heating sources also have mixed agreement with the measured profiles, such that the simulated electron and ion heat flux in low q(min) discharges are too low and heat fluxes in high q(min) discharges are too high. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691646] C1 [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Ferron, J. R.; Luce, T. C.; DeBoo, J. C.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [White, A. E.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Turco, F.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Rhodes, T. L.; Doyle, E. J.; Schmitz, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [McKee, G. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Holcomb, CT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM holcomb@fusion.gat.com FU U.S. Department of Energy [DE-AC52-07NA27344, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC05-06OR23100, DE-FG020-8ER54984, DE-FG02-89ER53296] FX This work was supported by the U.S. Department of Energy under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC05-06OR23100, DE-FG020-8ER54984, and DE-FG02-89ER53296. NR 29 TC 3 Z9 3 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2012 VL 19 IS 3 AR 032501 DI 10.1063/1.3691646 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 918CJ UT WOS:000302226500042 ER PT J AU Shafer, MW Fonck, RJ McKee, GR Holland, C White, AE Schlossberg, DJ AF Shafer, M. W. Fonck, R. J. McKee, G. R. Holland, C. White, A. E. Schlossberg, D. J. TI 2D properties of core turbulence on DIII-D and comparison to gyrokinetic simulations SO PHYSICS OF PLASMAS LA English DT Article ID FLUCTUATION MEASUREMENTS; BEAM EMISSION; TRANSPORT; TOKAMAK; PLASMA; WAVES; TFTR AB Quantitative 2D characteristics of localized density fluctuations are presented over the range of 0.3 < r/a < 0.9 in L-mode plasmas on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. Broadband density fluctuations increase in amplitude from (n) over tilde /n < 0.5% in the deep core to (n) over tilde /n similar to 2.5% near the outer region. The observed Doppler-shift due to the E x B velocity matches well with the measured turbulence group and phase velocities (in toroidally rotating neutral beam heated plasmas). Turbulence decorrelation rates are found to be similar to 200 kHz at the edge and to decrease toward the core (0.45 < r/a < 0.9) where they approach the E x B shearing rate (similar to 50 kHz). Radial and poloidal correlation lengths are found to scale with the ion gyroradius and exhibit an asymmetric poloidally elongated eddy structure. The ensemble-averaged turbulent eddy structure changes its tilt with respect to the radial-poloidal coordinates in the core, consistent with an E x B shear mechanism. The 2D spatial correlation and wavenumber spectra [S(k(r); k(theta))] are presented and compared to nonlinear flux-tube GYRO simulations at two radii, r/a = 0.5 and r/a = 0.75, showing reasonable overall agreement, but the GYRO spectrum exhibits a peak at finite kr for r/a = 0.75 that is not observed experimentally; E x B shear may cause this discrepancy. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691965] C1 [Shafer, M. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Fonck, R. J.; McKee, G. R.; Schlossberg, D. J.] Univ Wisconsin, Madison, WI 53706 USA. [Holland, C.] Univ Calif San Diego, San Diego, CA 92093 USA. [White, A. E.] MIT, Cambridge, MA 02139 USA. RP Shafer, MW (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy [DE-FG02-08ER54999, DE-FG02-89ER53296, DE-FG02-07ER54917, DE-AC05-06OR23100, DE-FC02-04ER54698]; DIII-D FX The authors thank K. Burrell, R. Waltz, and J. Candy for useful discussions, and the DIII-D program for its support of this collaborative research program. This work supported in part by the U.S. Department of Energy under DE-FG02-08ER54999, DE-FG02-89ER53296, DE-FG02-07ER54917, DE-AC05-06OR23100, and DE-FC02-04ER54698. NR 30 TC 24 Z9 24 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2012 VL 19 IS 3 AR 032504 DI 10.1063/1.3691965 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 918CJ UT WOS:000302226500045 ER PT J AU Zier, JC Gilgenbach, RM Chalenski, DA Lau, YY French, DM Gomez, MR Patel, SG Rittersdorf, IM Steiner, AM Weis, M Zhang, P Mazarakis, M Cuneo, ME Lopez, M AF Zier, J. C. Gilgenbach, R. M. Chalenski, D. A. Lau, Y. Y. French, D. M. Gomez, M. R. Patel, S. G. Rittersdorf, I. M. Steiner, A. M. Weis, M. Zhang, P. Mazarakis, M. Cuneo, M. E. Lopez, M. TI Magneto-Rayleigh-Taylor experiments on a MegaAmpere linear transformer driver SO PHYSICS OF PLASMAS LA English DT Article ID FIELD-REVERSED CONFIGURATION; ARRAY Z-PINCHES; TARGET FUSION; PLASMA DYNAMICS AB Experiments have been performed on a nominal 100 ns rise time, MegaAmpere (MA)-class linear transformer driver to explore the magneto-Rayleigh-Taylor (MRT) instability in planar geometry. Plasma loads consisted of ablated 400 nm-thick, 1 cm-wide aluminum foils located between two parallel-plate return-current electrodes. Plasma acceleration was adjusted by offsetting the position of the foil (cathode) between the anode plates. Diagnostics included double-pulse, sub-ns laser shadowgraphy, and machine current B-dot loops. Experimental growth rates for MRT on both sides of the ablated aluminum plasma slab were comparable for centered-foils. The MRT growth rate was fastest (98 ns e-folding time) for the foil-offset case where there was a larger magnetic field to accelerate the plasma. Other cases showed slower growth rates with e-folding times of about similar to 106 ns. An interpretation of the experimental data in terms of an analytic MRT model is attempted. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3690088] C1 [Zier, J. C.; Gilgenbach, R. M.; Chalenski, D. A.; Lau, Y. Y.; French, D. M.; Gomez, M. R.; Patel, S. G.; Rittersdorf, I. M.; Steiner, A. M.; Weis, M.; Zhang, P.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Mazarakis, M.; Cuneo, M. E.; Lopez, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Gilgenbach, RM (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM rongilg@umich.edu RI Zhang, Peng/C-8257-2011 OI Zhang, Peng/0000-0003-0606-6855 FU DoE [DE-SC0002590]; NSF [PHY 0903340]; US DoE through Sandia National Labs [240985, 76822]; US DoE's NNSA [DE-AC04-94AL85000]; NPSC through Sandia National Laboratories; SSGF through NNSA; NDSEG FX We acknowledge fruitful discussions with Steve Slutz, Edmund Yu, Sasha Velikovich, Bruce Kusse, Dimitri Ryutov, and Kyle Peterson. This work was supported by DoE Award number DE-SC0002590, NSF Grant number PHY 0903340, and by US DoE through Sandia National Labs award numbers 240985 and 76822 to the University of Michigan. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DoE's NNSA under Contract DE-AC04-94AL85000. J. C. Zier and S. G. Patel were supported by NPSC fellowships through Sandia National Laboratories, M. R. Gomez was supported by a SSGF fellowship through NNSA, and D. M. French was supported by a NDSEG fellowship. NR 19 TC 14 Z9 14 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2012 VL 19 IS 3 AR 032701 DI 10.1063/1.3690088 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 918CJ UT WOS:000302226500053 ER PT J AU Shultzaberger, RK Maerkl, SJ Kirsch, JF Eisen, MB AF Shultzaberger, Ryan K. Maerkl, Sebastian J. Kirsch, Jack F. Eisen, Michael B. TI Probing the Informational and Regulatory Plasticity of a Transcription Factor DNA-Binding Domain SO PLOS GENETICS LA English DT Article ID ESCHERICHIA-COLI; SEQUENCE LOGOS; PHYSICAL CONSTRAINTS; EVOLUTION; PROTEIN; SITES; MARA; ACTIVATION; RESISTANCE; INITIATION AB Transcription factors have two functional constraints on their evolution: (1) their binding sites must have enough information to be distinguishable from all other sequences in the genome, and (2) they must bind these sites with an affinity that appropriately modulates the rate of transcription. Since both are determined by the biophysical properties of the DNA-binding domain, selection on one will ultimately affect the other. We were interested in understanding how plastic the informational and regulatory properties of a transcription factor are and how transcription factors evolve to balance these constraints. To study this, we developed an in vivo selection system in Escherichia coli to identify variants of the helix-turn-helix transcription factor MarA that bind different sets of binding sites with varying degrees of degeneracy. Unlike previous in vitro methods used to identify novel DNA binders and to probe the plasticity of the binding domain, our selections were done within the context of the initiation complex, selecting for both specific binding within the genome and for a physiologically significant strength of interaction to maintain function of the factor. Using MITOMI, quantitative PCR, and a binding site fitness assay, we characterized the binding, function, and fitness of some of these variants. We observed that a large range of binding preferences, information contents, and activities could be accessed with a few mutations, suggesting that transcriptional regulatory networks are highly adaptable and expandable. C1 [Shultzaberger, Ryan K.; Kirsch, Jack F.; Eisen, Michael B.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Maerkl, Sebastian J.] Ecole Polytech Fed Lausanne, Sch Engn, Inst Bioengn, Lausanne, Switzerland. [Eisen, Michael B.] Ernest Orlando Lawrence Berkeley Natl Lab, Dept Genome Sci, Genom Div, Berkeley, CA USA. [Eisen, Michael B.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Shultzaberger, RK (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM mbeisen@berkeley.edu RI Maerkl, Sebastian J./C-5438-2008; OI Maerkl, Sebastian J./0000-0003-1917-5268; Eisen, Michael/0000-0002-7528-738X FU National Human Genome Research Institute [HG002779]; National Institutes of Health (NIH) [GM35393] FX This work was supported by National Human Genome Research Institute grant HG002779 (MBE) and was partially funded by the National Institutes of Health (NIH) grant GM35393 (JFK). MBE is an investigator of the Howard Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 53 TC 10 Z9 10 U1 1 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD MAR PY 2012 VL 8 IS 3 AR e1002614 DI 10.1371/journal.pgen.1002614 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 918MV UT WOS:000302254800085 PM 22496663 ER PT J AU Park, JH Guan, WH Reed, MA Krstic, PS AF Park, Jae Hyun Guan, Weihua Reed, Mark A. Krstic, Predrag S. TI Tunable Aqueous Virtual Micropore SO SMALL LA English DT Article DE aqueous virtual pores; electrophoresis; modeling; microfluidics; molecular devices ID DNA; BIOPARTICLES; SEPARATION; PARTICLES; PROTEIN; CHARGE AB A charged microparticle can be trapped in an aqueous environment by forming a narrow virtual porea cylindrical space region in which the particle motion in the radial direction is limited by forces emerging from dynamical interactions of the particle charge and dipole moment with an external radiofrequency quadrupole electric field. If the particle satisfies the trap stability criteria, its mean motion is reduced exponentially with time due to the viscosity of the aqueous environment; thereafter the long-time motion of particle is subject only to random, Brownian fluctuations, whose magnitude, influenced by the electrophoretic and dielectrophoretic effects and added to the particle size, determines the radius of the virtual pore, which is demonstrated by comparison of computer simulations and experiment. The measured size of the virtual nanopore could be utilized to estimate the charge of a trapped micro-object. C1 [Park, Jae Hyun; Krstic, Predrag S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Guan, Weihua; Reed, Mark A.] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. [Reed, Mark A.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. RP Krstic, PS (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008,Bldg 6010, Oak Ridge, TN 37831 USA. EM krsticp@ornl.gov RI Guan, Weihua/C-5030-2008 OI Guan, Weihua/0000-0002-8435-9672 FU US National Human Genome Research Institute of the National Institutes of Health [1R21HG004764-02]; US Department of Energy at ORNL; US DOE [DEAC05-00OR22725]; National Science Foundation FX This research was supported by the US National Human Genome Research Institute of the National Institutes of Health under grant No 1R21HG004764-02. PSK acknowledges partial support of the US Department of Energy at ORNL managed by a UT-Battelle for the US DOE under contract No DEAC05-00OR22725. JHP acknowledges support through ORNL Postdoctoral Program, administered by ORISE. The computations were performed on Kraken (a Cray XT5) at the National Institute for Computational Sciences (http://www.nics.tennessee.edu/), supported by the National Science Foundation. NR 26 TC 5 Z9 5 U1 0 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1613-6810 EI 1613-6829 J9 SMALL JI Small PD MAR PY 2012 VL 8 IS 6 BP 907 EP 912 DI 10.1002/smll.201101739 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 911LR UT WOS:000301718800017 PM 22271580 ER PT J AU Ginley, D Kamiya, T Shigesato, Y Hosono, H AF Ginley, David Kamiya, Toshio Shigesato, Yuzo Hosono, Hideo TI Special Issue: 7th International Symposium on Transparent Oxide Thin Films for Electronics and Optics (TOEO-7) Preface SO THIN SOLID FILMS LA English DT Editorial Material C1 [Kamiya, Toshio; Hosono, Hideo] Tokyo Tech, Tokyo, Japan. [Ginley, David] NREL, Golden, CO USA. [Shigesato, Yuzo] Aoyama Gakuin U, Tokyo, Japan. RP Hosono, H (reprint author), Tokyo Tech, Tokyo, Japan. EM hosono@msl.titech.ac.jp RI Kamiya, Toshio/E-8615-2014 OI Kamiya, Toshio/0000-0002-8358-240X NR 0 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAR 1 PY 2012 VL 520 IS 10 SI SI BP 3713 EP 3713 DI 10.1016/j.tsf.2011.10.045 PG 1 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 928HI UT WOS:000302973400001 ER PT J AU Widjonarko, NE Ratcliff, EL Perkins, CL Sigdel, AK Zakutayev, A Ndione, PF Gillaspie, DT Ginley, DS Olson, DC Berry, JJ AF Widjonarko, N. Edwin Ratcliff, Erin L. Perkins, Craig L. Sigdel, Ajaya K. Zakutayev, Andriy Ndione, Paul F. Gillaspie, Dane T. Ginley, David S. Olson, Dana C. Berry, Joseph J. TI Sputtered nickel oxide thin film for efficient hole transport layer in polymer-fullerene bulk-heterojunction organic solar cell SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 7th International Symposium on Transparent Oxide Thin Films for Electronics and Optics (TOEO) CY MAR 14-15, 2011 CL Tokyo, JAPAN DE Nickel oxide; Organic solar cells; Hole transport layer; Selective interlayer; Work-function; Organic-oxide interface ID PHOTOVOLTAIC CELLS; STABILITY; NIO; BLENDS; GROWTH AB Bulk-heterojunction (BHJ) organic photovoltaics (OPV) are very promising thin film renewable energy conversion technologies due to low production cost by high-throughput roll-to-roll manufacturing, an expansive list of compatible materials, and flexible device fabrication. An important aspect of OPV device efficiency is good contact engineering. The use of oxide thin films for this application offers increased design flexibility and improved chemical stability. Here we present our investigation of radio frequency magnetron sputtered nickel oxide (NiOx) deposited from oxide targets as an efficient, easily scalable hole transport layer (HTL) with variable work-function, ranging from 4.8 to 5.8 eV. Differences in HTL work-function were not found to result in statistically significant changes in open circuit voltage (V-oc) for poly(3-hexylthiophene):[6,6]-phenyl-C-61-butyric acid methyl ester (P3HT:PCBM) BHJ device. Ultraviolet photoemission spectroscopy (UPS) characterization of the NiOx film and its interface with the polymer shows Fermi level alignment of the polymer with the NiOx film. UPS of the blend also demonstrates Fermi level alignment of the organic active layer with the HTL, consistent with the lack of correlation between V-oc and HTL work-function. Instead, trends in j(sc), V-oc, and thus overall device performance are related to the surface treatment of the HTL prior to active layer deposition through changes in active layer thickness. (C) 2011 Elsevier B.V. All rights reserved. C1 [Widjonarko, N. Edwin] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Widjonarko, N. Edwin; Perkins, Craig L.; Sigdel, Ajaya K.; Zakutayev, Andriy; Ndione, Paul F.; Gillaspie, Dane T.; Ginley, David S.; Olson, Dana C.; Berry, Joseph J.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Ratcliff, Erin L.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Sigdel, Ajaya K.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. RP Widjonarko, NE (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM nicodemus.widjonarko@colorado.edu; joseph.berry@nrel.gov RI Zakutayev, Andriy/C-6243-2008; Ndione, Paul/O-6152-2015 OI Zakutayev, Andriy/0000-0002-3054-5525; Ndione, Paul/0000-0003-4444-2938 FU Center for Interface Science: Solar-Electric Materials (CIS:SEM), an Energy Frontier Research Center; U.S. Department of Energy, Office of Basic Sciences [DE-SC0001084]; Center for Energy Efficient Materials, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001009]; U.S. Department of Energy [DOE-AC36-08GO28308]; National Renewable Energy Laboratory DOE SETP through the National Center for Photovoltaics FX We received support for this work:; 1. as part of the Center for Interface Science: Solar-Electric Materials (CIS:SEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Sciences, under Award No. DE-SC0001084 (for surface science investigations of the interfacial energetics as well as device fabrication/characterization),; 2. as part of the Center for Energy Efficient Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001009 (for optical characterization of HTL materials), and; 3. U.S. Department of Energy under Contract No. DOE-AC36-08GO28308 with the National Renewable Energy Laboratory DOE SETP program through the National Center for Photovoltaics (for initial materials and device process development, measurement infrastructure and work performed by Dane T. Gillaspie, and Craig L. Perkins). NR 37 TC 11 Z9 11 U1 1 U2 57 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAR 1 PY 2012 VL 520 IS 10 SI SI BP 3813 EP 3818 DI 10.1016/j.tsf.2011.10.059 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 928HI UT WOS:000302973400022 ER PT J AU Gross, E Krier, JM Heinke, L Somorjai, GA AF Gross, Elad Krier, James M. Heinke, Lars Somorjai, Gabor A. TI Building Bridges in Catalysis Science. Monodispersed Metallic Nanoparticles for Homogeneous Catalysis and Atomic Scale Characterization of Catalysts Under Reaction Conditions SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT American-Chemical-Society Gabor A. Somorjai Award Symposium CY MAR 28-29, 2011 CL Anaheim, CA DE Converting homogeneous to heterogenous catalysis; Monodispersed metal nanoparticles; SFG and STM characterization of catalysts; Characterization under reaction conditions ID SUM-FREQUENCY GENERATION; SCANNING-TUNNELING-MICROSCOPY; SINGLE-CRYSTAL SURFACES; VIBRATIONAL SPECTROSCOPY; PYRROLE HYDROGENATION; MESOPOROUS SILICA; CYCLOHEXENE HYDROGENATION; PLATINUM NANOPARTICLES; ETHYLENE HYDROGENATION; STRUCTURE SENSITIVITY AB The reactivity of small (<1.5 nm), highly oxidized metallic nanoparticles and the utilization of Sum Frequency Generation spectroscopy (SFG) and Scanning Tunneling Microscopy (STM) for investigations of catalysts under reaction conditions are discussed in this review paper. Batch and flow reactor studies were carried out using highly oxidized 40 atom clusters (Pt, Pd and Rh) to measure reaction rate and product distribution of electrophilic reactions, using toluene as a solvent. These heterogeneous catalysts show reactivity which is similar and sometimes even higher than the homogeneous catalysts. The combination of an in situ SFG and STM measurements facilitate a detection of the surface structure and reaction intermediates under reaction conditions. While the STM detects the surface reconstruction and the mobility of products and reactants molecules, the SFG can correlate the reactivity and more importantly the selectivity, to the active surface intermediates. The recent developments in these two research areas are detailed in this review paper. C1 [Gross, Elad; Krier, James M.; Heinke, Lars; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem, Berkeley, CA 94720 USA. [Gross, Elad; Krier, James M.; Heinke, Lars; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Gross, Elad; Krier, James M.; Heinke, Lars; Somorjai, Gabor A.] Univ Calif Berkeley, Div Chem, Berkeley, CA 94720 USA. [Gross, Elad; Krier, James M.; Heinke, Lars; Somorjai, Gabor A.] Univ Calif Berkeley, Div Mat Sci, Dept Chem, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu OI Heinke, Lars/0000-0002-1439-9695 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 16 Z9 16 U1 4 U2 68 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAR PY 2012 VL 55 IS 1-2 BP 13 EP 23 DI 10.1007/s11244-012-9780-8 PG 11 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 928OG UT WOS:000302991800003 ER PT J AU Zhao, HB Brown, HM Holladay, JE Zhang, ZC AF Zhao, Haibo Brown, Heather M. Holladay, Johnathan E. Zhang, Z. Conrad TI Prominent Roles of Impurities in Ionic Liquid for Catalytic Conversion of Carbohydrates SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT American-Chemical-Society Gabor A. Somorjai Award Symposium CY MAR 28-29, 2011 CL Anaheim, CA DE Ionic liquid; 1-ethyl-3-methyl-imidazolium chloride; Cellulose; Cellulose conversion; Purity; Impurities; Catalysis; Catalyst ID FRUCTOSE; CHLORIDE AB Impurities present in commercially available ionic liquids display prominent catalytic functions toward carbohydrate conversion. Little conversion was observed at 180 degrees C with high purity [EMIM]Cl ionic liquid whereas significant conversion was observed for ionic liquids of lower purity levels. Addition of metal halides to high purity [EMIM] Cl catalyze cellulose conversion with drastically different product selectivities dependent on the metal ions. CuCl2 is an active catalyst for hydrolyzing cellulose and further degrading the products. CrCl2 is an active and a selective catalyst for the formation of 5-hydroxymethylfurfural (5-HMF). CrCl2 also helps stabilize the 5-HMF product. FeCl2 does not show catalytic activity. Metal impurities in ionic liquid correlate to the activities observed when similar metals were added to high purity ionic liquids. C1 [Zhang, Z. Conrad] KiOR Inc, Pasadena, TX 77507 USA. [Zhao, Haibo] Huntsman LLC, The Woodlands, TX 77380 USA. [Brown, Heather M.; Holladay, Johnathan E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, ZC (reprint author), KiOR Inc, Pasadena, TX 77507 USA. EM conrad.zhang@kior.com FU Pacific Northwest National Laboratory (PNNL); Battelle for the U.S. DOE [DE-AC06-76RL01830] FX This work was supported by the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the U.S. DOE under contract no. DE-AC06-76RL01830. NR 16 TC 16 Z9 17 U1 2 U2 27 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAR PY 2012 VL 55 IS 1-2 BP 33 EP 37 DI 10.1007/s11244-012-9772-8 PG 5 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 928OG UT WOS:000302991800005 ER PT J AU Dietrich, PJ Lobo-Lapidus, RJ Wu, TP Sumer, A Akatay, MC Fingland, BR Guo, N Dumesic, JA Marshall, CL Stach, E Jellinek, J Delgass, WN Ribeiro, FH Miller, JT AF Dietrich, Paul J. Lobo-Lapidus, Rodrigo J. Wu, Tianpin Sumer, Aslihan Akatay, M. Cem Fingland, Bradley R. Guo, Neng Dumesic, James A. Marshall, Christopher L. Stach, Eric Jellinek, Julius Delgass, W. Nicholas Ribeiro, Fabio H. Miller, Jeffrey T. TI Aqueous Phase Glycerol Reforming by PtMo Bimetallic Nano-Particle Catalyst: Product Selectivity and Structural Characterization SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT American-Chemical-Society Gabor A. Somorjai Award Symposium CY MAR 28-29, 2011 CL Anaheim, CA DE Aqueous glycerol reforming; Biomass reforming; PtMo nano-particles; Operando XAS; Density functional theory of bimetallic nano-particles ID SUPPORTED PLATINUM CATALYSTS; X-RAY PHOTOEMISSION; WATER-GAS SHIFT; RHENIUM CATALYSTS; ETHYLENE-GLYCOL; OXYGENATED HYDROCARBONS; ALLOY CLUSTERS; HYDROGEN; BIOMASS; CONVERSION AB A carbon supported PtMo aqueous phase reforming catalyst for producing hydrogen from glycerol was characterized by analysis of the reaction products and pathway, TEM, XPS and XAS spectroscopy. Operando X-ray absorption spectroscopy (XAS) indicates the catalyst consists of bimetallic nano-particles with a Pt rich core and a Mo rich surface. XAS of adsorbed CO indicates that approximately 25% of the surface atoms are Pt. X-ray photoelectron spectroscopy indicates that there is unreduced and partially reduced Mo oxide (MoO3 and MoO2), and Pt-rich PtMo bimetallic nano-particles. The average size measured by transmission electron microscopy of the fresh PtMo nano-particles is about 2 nm, which increases in size to 5 nm after 30 days of glycerol reforming at 31 bar and 503 K. The catalyst structure differs from the most energetically stable structure predicted by density functional theory (DFT) calculations for metallic Pt and Mo atoms. However, DFT indicates that for nano-particles composed of metallic Pt and Mo oxide, the Mo oxide is at the particle surface. Subsequent reduction would lead to the experimentally observed structure. The aqueous phase reforming reaction products and intermediates are consistent with both C-C and C-OH bond cleavage to generate H-2/CO2 or the side product CH4. While the H-2 selectivity at low conversion is about 75%, cleavage of C-OH bonds leads to liquid products with saturated carbon atoms. At high conversions (to gas), these will produced additional CH4 reducing the H-2 yield and selectivity. C1 [Dietrich, Paul J.; Fingland, Bradley R.; Delgass, W. Nicholas; Ribeiro, Fabio H.] Purdue Univ, Dept Chem Engn, W Lafayette, IN 47907 USA. [Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Sumer, Aslihan; Guo, Neng; Marshall, Christopher L.; Jellinek, Julius; Miller, Jeffrey T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Akatay, M. Cem] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI USA. [Stach, Eric] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ribeiro, FH (reprint author), Purdue Univ, Dept Chem Engn, W Lafayette, IN 47907 USA. EM fabio@purdue.edu; millerjt@anl.gov RI Stach, Eric/D-8545-2011; Guo, Neng/A-3223-2013; ID, MRCAT/G-7586-2011; Marshall, Christopher/D-1493-2015; OI Stach, Eric/0000-0002-3366-2153; Marshall, Christopher/0000-0002-1285-7648; Ribeiro, Fabio/0000-0001-7752-461X FU Institute for Atom-efficient Chemical Transformations (IACT); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, U.S. Department of Energy [DE-AC02-06CH11357]; Laboratory Computing Resource Center (Fusion/LCRC) at Argonne National Laboratory; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. J.J. was also supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This research used the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and of the Laboratory Computing Resource Center (Fusion/LCRC) at Argonne National Laboratory. EAS acknowledges support the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 37 TC 36 Z9 36 U1 6 U2 125 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAR PY 2012 VL 55 IS 1-2 BP 53 EP 69 DI 10.1007/s11244-012-9775-5 PG 17 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 928OG UT WOS:000302991800007 ER PT J AU Kwak, JH Kim, DH Szanyi, J Cho, SJ Peden, CHF AF Kwak, Ja Hun Kim, Do Heui Szanyi, Janos Cho, Sung June Peden, Charles H. F. TI Enhanced High Temperature Performance of MgAl2O4-Supported Pt-BaO Lean NOx Trap Catalysts SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT American-Chemical-Society Gabor A. Somorjai Award Symposium CY MAR 28-29, 2011 CL Anaheim, CA DE Magnesium aluminate; LNT; Pt cluster; Barium oxide; NOx ID PT/BAO/AL2O3 CATALYSTS; STORAGE PERFORMANCE; REDUCTION; MECHANISM; H-2; REGENERATION; DISPERSION; OXIDATION; BAO/AL2O3; PT/AL2O3 AB The structural and chemical characteristics of Pt/BaO lean NOx trap (LNT) catalysts supported on gamma-Al2O3 and MgAl2O4 are compared in this study. The Pt-BaO/MgAl2O4 sample shows relatively low NOx uptake at temperatures below 300 degrees C, and the temperature of maximum NOx uptake (T-max) is shifted to 350 degrees C in comparison to that of Pt-BaO/Al2O3 (T-max similar to 250 degrees C). More importantly, the NOx uptake over the MgAl2O4-supported catalyst at 350 degrees C is twice that of the alumina-based one. The shift toward the higher temperature NOx uptake is explained by the larger interfacial area between Pt and BaO, due to smaller Pt clusters as evidenced by TEM and Pt L3 EXAFS. In situ TR-XRD results demonstrate that the formation of a BaAl2O4 phase in the BaO/MgAl2O4 LNT catalyst occurs at a temperature about 100 degrees C higher than on BaO/Al2O3, which may also represent a beneficial attribute of the BaO/MgAl2O4 LNT with respect to catalyst stability. C1 [Kim, Do Heui] Seoul Natl Univ, Sch Chem & Biol Engn, Inst Chem Proc, Seoul 151742, South Korea. [Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. [Cho, Sung June] Chonnam Natl Univ, Dept Appl Chem Engn, Ctr Funct Nano Fine Chem, Program BK21, Kwangju 500757, South Korea. RP Kim, DH (reprint author), Seoul Natl Univ, Sch Chem & Biol Engn, Inst Chem Proc, Seoul 151742, South Korea. EM dohkim@snu.ac.kr RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy (DOE); Office of Freedom Car and Vehicle Technologies; U.S. DOE's Office of Biological and Environmental Research; U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX Financial support was provided by the U.S. Department of Energy (DOE), Office of Freedom Car and Vehicle Technologies. The authors thank Dr. Chongmin Wang for obtaining the TEM images. The work was performed in the Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility and supported by the U.S. DOE's Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 24 TC 7 Z9 9 U1 1 U2 17 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAR PY 2012 VL 55 IS 1-2 BP 70 EP 77 DI 10.1007/s11244-012-9779-1 PG 8 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 928OG UT WOS:000302991800008 ER PT J AU Stair, PC AF Stair, Peter C. TI Synthesis of Supported Catalysts by Atomic Layer Deposition SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT American-Chemical-Society Gabor A. Somorjai Award Symposium CY MAR 28-29, 2011 CL Anaheim, CA DE Atomic layer epitaxy; Oxide and metal atomic layers; High surface area catalytic materials ID OXIDATIVE DEHYDROGENATION; HETEROGENEOUS CATALYSTS; RAMAN-SPECTROSCOPY; VANADIA CATALYSTS; OXIDE SUPPORTS; GROWTH; FILMS; ALUMINA; SILICA; NANOPARTICLES AB A promising new method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition wherein metals, oxides and other materials are deposited on surfaces via a sequence (usually binary) of self-limiting reactions. The self-limiting character of the reactions makes it possible to achieve uniform deposits on high-surface-area porous solids and, hence, produce practical catalytic materials. The ability to deposit uniform layers in a sequence makes it possible to fabricate the support and then construct the catalytic metal and/or metal oxide species and add modifier layers in any desired order. This article will provide a short introduction to the technique of ALD and its application to the synthesis of supported catalytic metal nanoparticles and oxide monolayers. C1 [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM pstair@northwestern.edu FU U.S. Department of Energy, BES-HFI, Chemical Sciences [DE-AC-02-06CH11357]; Dow Chemical Company FX The work at Argonne National Laboratory was supported by the U.S. Department of Energy, BES-HFI, Chemical Sciences under Contract DE-AC-02-06CH11357. The work at Northwestern University was financially supported by The Dow Chemical Company under the Dow Methane Challenge Award. NR 36 TC 15 Z9 15 U1 3 U2 53 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAR PY 2012 VL 55 IS 1-2 BP 93 EP 98 DI 10.1007/s11244-012-9776-4 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 928OG UT WOS:000302991800011 ER PT J AU Jensen, BJ Luo, SN Hooks, DE Fezzaa, K Ramos, KJ Yeager, JD Kwiatkowski, K Shimada, T Dattelbaum, DM AF Jensen, B. J. Luo, S. N. Hooks, D. E. Fezzaa, K. Ramos, K. J. Yeager, J. D. Kwiatkowski, K. Shimada, T. Dattelbaum, D. M. TI Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation SO AIP ADVANCES LA English DT Article ID X-RAY AB Understanding the dynamic response of materials at extreme conditions requires diagnostics that can provide real-time, in situ, spatially resolved measurements on the nanosecond timescale. The development of methods such as phase contrast imaging (PCI) typically used at synchrotron sources offer unique opportunities to examine dynamic material response. In this work, we report ultrafast, high-resolution, dynamic PCI measurements of shock compressed materials with 3 mu m spatial resolution using a single 60 ps synchrotron X-ray bunch. These results firmly establish the use of PCI to examine dynamic phenomena at ns to mu s timescales. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.3696041] C1 [Jensen, B. J.; Luo, S. N.; Hooks, D. E.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.; Dattelbaum, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fezzaa, K.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jensen, BJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bjjensen@lanl.gov RI Luo, Sheng-Nian /D-2257-2010; OI Luo, Sheng-Nian /0000-0002-7538-0541; Yeager, John/0000-0002-3121-6053 FU U.S. DOE [DE-AC02-06CH11357] FX This work was performed at Argonne National Laboratory. Jim Esparza, Chuck Owens, and Alex Deriy are gratefully acknowledged for their help with experimental setup and shot execution. T. Schaedler and W. Carter (HRL, Santa Barbara, CA) are both thanked for supplying the foam for one of the experiments. Use of the Advanced Photon Source, a user facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We are grateful for the support from the NR 17 TC 18 Z9 18 U1 5 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAR PY 2012 VL 2 IS 1 AR 012170 DI 10.1063/1.3696041 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 918CA UT WOS:000302225400088 ER PT J AU Wiley, TS Haraldsen, JT AF Wiley, Teresa S. Haraldsen, Jason T. TI The theory of modulated hormone therapy for the treatment of breast cancer in pre- and post-menopausal women SO AIP ADVANCES LA English DT Article ID ESTROGEN PLUS PROGESTIN; MENSTRUAL-CYCLE; MOLECULAR-MECHANISMS; REPLACEMENT THERAPY; G1 ARREST; RISK; EXPRESSION; ESTRADIOL; TAMOXIFEN; CELLS AB We present a theory that questions the standard of care for pre- and post-menopausal women with breast cancer. Through the use of modulated hormones to mimic the natural multiphasic fluctuations of estrogen and progesterone cycles of healthy young women, it can be expected that patients will not only exhibit increased quality of life such as better sleep, well-being, and libido, but also memory improvement and less joint pain. Additionally, this regimen may engage genetic pathways that protect women in youth from breast cancers. We present a mathematical basis for the coupling of the hormone cycles through the use of Gaussian curves that provides the foundation of a new format of hormone replacement in women. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.3699052] C1 [Wiley, Teresa S.] Wiley Syst, Santa Fe, NM 87505 USA. [Haraldsen, Jason T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Haraldsen, Jason T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Wiley, TS (reprint author), Wiley Syst, Santa Fe, NM 87505 USA. RI Haraldsen, Jason/B-9809-2012 OI Haraldsen, Jason/0000-0002-8641-5412 FU Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX We would like to acknowledge useful discussions with J. Taguchi, C. Ridley, J. & N. & M. & A. Raden, and B. Formby. JTH acknowledges funding from the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Note: TSW acknowledges her previous work for The Wiley Protocol. For more information, please see http://www.thewileyprotocol.com. NR 43 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAR PY 2012 VL 2 IS 1 AR 011206 DI 10.1063/1.3699052 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 918CA UT WOS:000302225400014 ER PT J AU Collins, DH Huzurbazar, AV AF Collins, David H. Huzurbazar, Aparna V. TI Prognostic models based on statistical flowgraphs SO APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY LA English DT Article DE prognostics and health management; hierarchical modeling; semi-Markov process; empirical transform; Laplace transform inversion ID MULTISTATE MODELS; AIRCRAFT; FATIGUE; FAILURE; SYSTEMS AB We present a framework for developing hierarchical models for predicting system health (e.g. probability of failure within a given mission duration), based on component-level reliability and degradation models. Component models may be specified as parametric probability distributions or nonparametrically as empirical distribution functions. Flowgraph methods are then used to predict the system failure time distribution. We illustrate with an application to aircraft maintenance. Copyright (c) 2011 John Wiley & Sons, Ltd. C1 [Collins, David H.; Huzurbazar, Aparna V.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Collins, DH (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663,MS-F600, Los Alamos, NM 87545 USA. EM dcollins@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; Los Alamos National Laboratory FX The authors thank the referees for their constructive comments, particularly in pointing out issues requiring discussion, resulting in improvements to the paper. The work of the authors was performed under the auspices of the Los Alamos National Laboratory, an affirmative action/equal opportunity employer, operated by the Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 40 TC 6 Z9 6 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1524-1904 EI 1526-4025 J9 APPL STOCH MODEL BUS JI Appl. Stoch. Models. Bus. Ind. PD MAR-APR PY 2012 VL 28 IS 2 SI SI BP 141 EP 151 DI 10.1002/asmb.884 PG 11 WC Operations Research & Management Science; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Operations Research & Management Science; Mathematics GA 923FY UT WOS:000302606100007 ER PT J AU Campbell, CG Kirvel, RD Love, AH Bailey, CG Miles, R Schweickert, J Sutton, M Raber, E AF Campbell, Chris G. Kirvel, Robert D. Love, Adam H. Bailey, Christopher G. Miles, Robin Schweickert, Jerry Sutton, Mark Raber, Ellen TI DECONTAMINATION AFTER A RELEASE OF B. ANTHRACIS SPORES SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Article ID BIOLOGICAL WARFARE AGENTS; DRINKING-WATER SYSTEM; BACILLUS-ANTHRACIS; HYDROGEN-PEROXIDE; METHYL-BROMIDE; MAIL FACILITY; CLEAN ENOUGH; INACTIVATION; SUBTILIS; PERSISTENCE AB Decontaminating civilian facilities or large urban areas following an attack with Bacillus anthracis poses daunting challenges because of the lack of resources and proven technologies. Nevertheless, lessons learned from the 2001 cleanups together with advances derived from recent research have improved our understanding of what is required for effective decontamination. This article reviews current decontamination technologies appropriate for use in outdoor environments, on material surfaces, within large enclosed spaces, in water, and on waste contaminated with aerosolized B. anthracis spores. C1 [Campbell, Chris G.; Bailey, Christopher G.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA. [Miles, Robin] Lawrence Livermore Natl Lab, Ctr Micro & Nano Technol, Livermore, CA 94551 USA. [Sutton, Mark] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA. [Raber, Ellen] Lawrence Livermore Natl Lab, Global Secur Principal Directorate, Livermore, CA 94551 USA. [Love, Adam H.] Johnson Wright Inc, Lafayette, CA USA. RP Campbell, CG (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, POB 808,L-627, Livermore, CA 94551 USA. EM campbell48@llnl.gov NR 82 TC 11 Z9 11 U1 3 U2 16 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD MAR PY 2012 VL 10 IS 1 BP 108 EP 122 DI 10.1089/bsp.2011.0095 PG 15 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 917ZU UT WOS:000302219400011 PM 22352747 ER PT J AU Corley, CD Lancaster, MJ Brigantic, RT Chung, JS Walters, RA Arthur, RR Bruckner-Lea, CJ Calapristi, A Dowling, G Hartley, DM Kennedy, S Kircher, A Klucking, S Lee, EK McKenzie, T Nelson, NP Olsen, J Pancerella, C Quitugua, TN Reed, JT Thomas, CS AF Corley, Courtney D. Lancaster, Mary J. Brigantic, Robert T. Chung, James S. Walters, Ronald A. Arthur, Ray R. Bruckner-Lea, Cynthia J. Calapristi, Augustin Dowling, Glenn Hartley, David M. Kennedy, Shaun Kircher, Amy Klucking, Sara Lee, Eva K. McKenzie, Taylor Nelson, Noele P. Olsen, Jennifer Pancerella, Carmen Quitugua, Teresa N. Reed, Jeremy Todd Thomas, Carla S. TI ASSESSING THE CONTINUUM OF EVENT-BASED BIOSURVEILLANCE THROUGH AN OPERATIONAL LENS SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Article ID PUBLIC-HEALTH SURVEILLANCE; DISEASE OUTBREAK DETECTION; SYNDROMIC SURVEILLANCE; WEB; EPIDEMICS; FEVER; FLU; REGULATIONS AB This research follows the Updated Guidelines for Evaluating Public Health Surveillance Systems, Recommendations from the Guidelines Working Group, published by the Centers for Disease Control and Prevention nearly a decade ago. Since then, models have been developed and complex systems have evolved with a breadth of disparate data to detect or forecast chemical, biological, and radiological events that have a significant impact on the One Health landscape. How the attributes identified in 2001 relate to the new range of event-based biosurveillance technologies is unclear. This article frames the continuum of event-based biosurveillance systems (that fuse media reports from the internet), models (ie, computational that forecast disease occurrence), and constructs (ie, descriptive analytical reports) through an operational lens (ie, aspects and attributes associated with operational considerations in the development, testing, and validation of the event-based biosurveillance methods and models and their use in an operational environment). A workshop was held in 2010 to scientifically identify, develop, and vet a set of attributes for event-based biosurveillance. Subject matter experts were invited from 7 federal government agencies and 6 different academic institutions pursuing research in biosurveillance event detection. We describe 8 attribute families for the characterization of event-based biosurveillance: event, readiness, operational aspects, geographic coverage, population coverage, input data, output, and cost. Ultimately, the analyses provide a framework from which the broad scope, complexity, and relevant issues germane to event-based biosurveillance useful in an operational environment can be characterized. C1 [Corley, Courtney D.; Lancaster, Mary J.; Brigantic, Robert T.; Chung, James S.; Walters, Ronald A.; Calapristi, Augustin; McKenzie, Taylor] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. [Arthur, Ray R.] CDC, Global Dis Detect Operat Ctr, Div Global Dis Detect & Emergency Response, Ctr Global Hlth, Atlanta, GA 30333 USA. [Dowling, Glenn] Natl Ctr Med Intelligence, Off Chief Scientist, Ft Detrick, MD USA. [Hartley, David M.] Georgetown Univ, Med Ctr, Dept Microbiol & Immunol, Washington, DC 20007 USA. [Nelson, Noele P.] Georgetown Univ, Med Ctr, Dept Pediat, Washington, DC 20007 USA. [Kennedy, Shaun] Univ Minnesota, Natl Ctr Food Protect & Def, Minneapolis, MN USA. [Kircher, Amy] US Dept Def, US No Command, Peterson AFB, CO USA. [Klucking, Sara] US DHS, Threat Characterizat & Attribut Branch, Chem & Biol Def Div, Sci & Technol Directorate, Washington, DC USA. [Quitugua, Teresa N.] US DHS, Natl Biosurveillance Integrat Ctr, Off Hlth Affairs, Washington, DC USA. [Lee, Eva K.] Georgia Inst Technol, Ctr Operat Res Med & HealthCare, Atlanta, GA 30332 USA. [Olsen, Jennifer] US DHHS, Fus Branch, Off Assistant Secretary Preparedness & Response, Washington, DC USA. [Reed, Jeremy Todd] USDA, Food Safety & Inspect Serv, Analyt Design Branch, Data Anal & Integrat Grp, Washington, DC 20250 USA. [Thomas, Carla S.] Univ Calif Davis, Natl Plant Diagnost Network, Dept Plant Pathol, Davis, CA 95616 USA. RP Corley, CD (reprint author), Pacific NW Natl Lab, Natl Secur Directorate, 902 Battelle BLVD,POB 999,MSIN K7-28, Richland, WA 99352 USA. EM court@pnl.gov RI Lancaster, Mary/A-5065-2015; OI Hartley, David/0000-0001-5202-6278; Lancaster, Mary/0000-0002-2530-7004; , David/0000-0003-2589-2538 NR 47 TC 8 Z9 8 U1 1 U2 10 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD MAR PY 2012 VL 10 IS 1 BP 131 EP 141 DI 10.1089/bsp.2011.0096 PG 11 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 917ZU UT WOS:000302219400013 PM 22320664 ER PT J AU Nybo, K Hendrickson, WA AF Nybo, Kristie Hendrickson, Wayne A. TI Definitive answers SO BIOTECHNIQUES LA English DT Editorial Material C1 [Hendrickson, Wayne A.] Columbia Univ, New York, NY 10027 USA. [Hendrickson, Wayne A.] Howard Hughes Med Inst, Chevy Chase, MD USA. [Hendrickson, Wayne A.] New York Struct Biol Ctr, New York, NY USA. [Hendrickson, Wayne A.] Brookhaven Natl Lab, Photon Sci Directorate, New York, NY USA. [Hendrickson, Wayne A.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU BIOTECHNIQUES OFFICE PI NEW YORK PA 52 VANDERBILT AVE, NEW YORK, NY 10017 USA SN 0736-6205 J9 BIOTECHNIQUES JI Biotechniques PD MAR PY 2012 VL 52 IS 3 BP 129 EP 129 DI 10.2144/000113815 PG 1 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 925FY UT WOS:000302747500002 ER PT J AU Costanza, R van der Leeuw, S Hibbard, K Aulenbach, S Brewer, S Burek, M Cornell, S Crumley, C Dearing, J Folke, C Graumlich, L Hegmon, M Heckbert, S Jackson, ST Kubiszewski, I Scarborough, V Sinclair, P Sorlin, S Steffen, W AF Costanza, Robert van der Leeuw, Sander Hibbard, Kathy Aulenbach, Steve Brewer, Simon Burek, Michael Cornell, Sarah Crumley, Carole Dearing, John Folke, Carl Graumlich, Lisa Hegmon, Michelle Heckbert, Scott Jackson, Stephen T. Kubiszewski, Ida Scarborough, Vernon Sinclair, Paul Sorlin, Sverker Steffen, Will TI Developing an Integrated History and future of People on Earth (IHOPE) SO CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY LA English DT Article ID SAFE OPERATING SPACE; ANCIENT MAYA; ENVIRONMENTAL-CHANGE; ERHAI CATCHMENT; LAND-USE; SUSTAINABILITY; CHINA; PERSPECTIVES; RESILIENCE; LANDSCAPE AB The Integrated History and future of People on Earth (IHOPE) initiative is a global network of researchers and research projects with its International Program Office (IPO) now based at the Stockholm Resilience Center (SRC), Uppsala University, Arizona State University, Portland State University, and the Australian National University. Research linked to IHOPE demonstrates that Earth system changes in the past have been strongly associated with changes in the coupled human-environment system. IHOPE supports integrating knowledge and resources from the biophysical and the social sciences and the humanities to address analytical and interpretive issues associated with coupled human-earth system dynamics. This integration of human history and Earth system history is a timely and important task. Until recently, however, there have been few attempts at such integration. IHOPE will create frameworks that can be used to help achieve this integration. The overarching goal is to produce a rich understanding of the relationships between environmental and human processes over the past millennia. HOPE recognizes that one major challenge for reaching this goal is developing 'workable' terminology that can be accepted by scholars of all disciplines. The specific objectives for IHOPE are to identify slow and rapidly moving features of complex social-ecological systems, on local to continental spatial scales, which induce resilience, stress, or collapse in linked systems of humans in nature. These objectives will be reached by exploring innovative ways of conducting interdisciplinary and transdisciplinary science, including theory, case studies, and integrated modeling. Examples of projects underway to implement this initiative are briefly discussed. C1 [Costanza, Robert; Heckbert, Scott; Kubiszewski, Ida] Portland State Univ, Inst Sustainable Solut, Portland, OR 97201 USA. [van der Leeuw, Sander; Hegmon, Michelle] Arizona State Univ, Sch Sustainabil, Tempe, AZ 85287 USA. [van der Leeuw, Sander; Hegmon, Michelle] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85287 USA. [Hibbard, Kathy] Pacific NW Natl Lab, Richland, WA 99352 USA. [Aulenbach, Steve] NEON Inc, Boulder, CO 80301 USA. [Brewer, Simon] Univ Utah, Dept Geog, Salt Lake City, UT USA. [Burek, Michael] NCAR, Computat & Informat Syst Lab, Boulder, CO 80307 USA. [Cornell, Sarah; Crumley, Carole; Folke, Carl; Sorlin, Sverker] Stockholm Univ, Stockholm Resilience Ctr, S-10691 Stockholm, Sweden. [Dearing, John] Univ Southampton, Sch Geog, Southampton, Hants, England. [Graumlich, Lisa] Univ Washington, Coll Environm, Seattle, WA 98195 USA. [Jackson, Stephen T.] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA. [Scarborough, Vernon] Univ Cincinnati, Dept Anthropol, Cincinnati, OH 45221 USA. [Sinclair, Paul] Uppsala Univ, Dept Archeol & Ancient Hist, Uppsala, Sweden. [Sorlin, Sverker] Royal Inst Technol, Div Hist Sci & Technol, Stockholm, Sweden. [Steffen, Will] Australian Natl Univ, ANU Climate Change Inst, Canberra, ACT 0200, Australia. RP Costanza, R (reprint author), Portland State Univ, Inst Sustainable Solut, Portland, OR 97201 USA. EM robert.costanza@pdx.edu RI Cornell, Sarah/A-6502-2011; Dearing, John/E-4206-2010; Steffen, Will/C-7651-2011; Costanza, Robert/A-4912-2008; Cornell, Sarah/F-7003-2014; Kubiszewski, Ida/A-5146-2012; OI Brewer, Simon/0000-0002-6810-1911; Cornell, Sarah/0000-0003-4367-1296; Costanza, Robert/0000-0001-6348-8734; Cornell, Sarah/0000-0003-4367-1296; Kubiszewski, Ida/0000-0003-3264-7899; Aulenbach, Steve/0000-0002-0172-6538 FU National Center for Ecological Analysis and Synthesis (NCEAS); Stockholm Resilience Center; QUEST at the University of Bristol; University of Uppsala; Arizona State University; Institute for Sustainable Solutions at Portland State University; Australian National University; Dahlem Foundation; National Center for Atmospheric Research (NCAR); Pacific Northwest National Laboratory (PNRL) FX The I HOPEinitiative has received support from several sources, including: the National Center for Ecological Analysis and Synthesis (NCEAS), the Stockholm Resilience Center, the QUEST project at the University of Bristol, the University of Uppsala, Arizona State University, the Institute for Sustainable Solutions at Portland State University, the Australian National University, the Dahlem Foundation, the National Center for Atmospheric Research (NCAR), and the Pacific Northwest National Laboratory (PNRL). We also thank two anonymous reviewers for their helpful comments on earlier drafts. NR 69 TC 18 Z9 18 U1 3 U2 60 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1877-3435 J9 CURR OPIN ENV SUST JI Curr. Opin. Environ. Sustain. PD MAR PY 2012 VL 4 IS 1 BP 106 EP 114 DI 10.1016/j.cosust.2012.01.010 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 921WA UT WOS:000302507600013 ER PT J AU Sanquist, TF Orr, H Shui, B Bittner, AC AF Sanquist, Thomas F. Orr, Heather Shui, Bin Bittner, Alvah C. TI Lifestyle factors in U.S. residential electricity consumption SO ENERGY POLICY LA English DT Article DE Lifestyle; Residential electricity consumption; Segmentation ID HOUSEHOLD ENERGY USE; SUSTAINABLE CONSUMPTION; UNITED-STATES; BEHAVIOR; DEMAND; POLICY; ELASTICITIES; DETERMINANTS; CONSERVATION; SECTOR AB A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral patterns associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed similar to 1% unique variance to the models, indicating that lifestyle factors reflecting social and behavioral patterns better account for consumption differences than income. Geographic segmentation of factor scores shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Sanquist, Thomas F.] Pacific NW Natl Lab, Battelle Seattle Res Ctr, Seattle, WA 98109 USA. [Orr, Heather] Pacific NW Natl Lab, Corvallis, OR 97330 USA. [Shui, Bin] Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Sanquist, TF (reprint author), Pacific NW Natl Lab, Battelle Seattle Res Ctr, 1100 Dexter Ave,Suite 400, Seattle, WA 98109 USA. EM Sanquist@pnl.gov NR 70 TC 42 Z9 44 U1 11 U2 54 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD MAR PY 2012 VL 42 BP 354 EP 364 DI 10.1016/j.enpol.2011.11.092 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 910CY UT WOS:000301616000035 ER PT J AU Bolinger, M Wiser, R AF Bolinger, Mark Wiser, Ryan TI Understanding wind turbine price trends in the U.S. over the past decade SO ENERGY POLICY LA English DT Article DE Wind turbines; Cost trends; Learning curves ID LIFE-CYCLE ASSESSMENT; LEARNING-CURVE; COSTS; ELECTRICITY; ENERGY AB On a $/kW basis, wind turbine prices in the U.S. have declined by nearly one-third on average since 2008, after having previously doubled over the period from 2002 through 2008. These two substantial and opposing trends over the past decade - and particularly the earlier price doubling - run counter to the smooth, gradually declining cost trajectories predicted by standard learning curve theory. Taking a bottom-up approach, we examine seven possible drivers of wind turbine prices in the U.S., with the goal of estimating the degree to which each contributed to the doubling in turbine prices from 2002 through 2008, as well as the subsequent decline in prices through 2010. In aggregate, these seven drivers - which include changes in labor costs, warranty provisions, manufacturer profitability, turbine scaling, raw materials prices, energy prices, and foreign exchange rates - explain from 70% to 90% (depending on the year) of empirically observed wind turbine price movements in the U.S. through 2010. Turbine scaling is found to have been the largest single contributor to the price doubling through 2008, although the incremental cost of scaling has been justified by greater energy capture, resulting in a lower cost of wind generation. Published by Elsevier Ltd. C1 [Bolinger, Mark; Wiser, Ryan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bolinger, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, MS 90-4000,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MABolinger@lbl.gov FU U.S. Department of Energy within the Office of Energy Efficiency and Renewable Energy [DE-AC02-05CH11231] FX The work described in this article was funded by the U.S. Department of Energy's Wind & Water Power Program, within the Office of Energy Efficiency and Renewable Energy, under Contract no. DE-AC02-05CH11231. NR 54 TC 18 Z9 18 U1 4 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD MAR PY 2012 VL 42 BP 628 EP 641 DI 10.1016/j.enpol.2011.12.036 PG 14 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 910CY UT WOS:000301616000062 ER PT J AU Drury, E Miller, M Macal, CM Graziano, DJ Heimiller, D Ozik, J Perry, TD AF Drury, Easan Miller, Mackay Macal, Charles M. Graziano, Diane J. Heimiller, Donna Ozik, Jonathan Perry, Thomas D. TI The transformation of southern California's residential photovoltaics market through third-party ownership SO ENERGY POLICY LA English DT Article DE Third-party PV ownership; PV adoption barriers; PV incentives ID SOLAR-POWER-SYSTEMS; BEHAVIOR AB Third-party photovoltaics (PV) ownership is a rapidly growing market trend, where commercial companies own and operate customer-sited PV systems and lease PV equipment or sell PV electricity to the building occupant. Third-party PV companies can reduce or eliminate up-front adoption costs, reduce technology risk and complexity by monitoring system performance, and can repackage the PV value proposition by showing cost savings in the first month of ownership rather than payback times on the order of a decade. We find that the entrance of third-party business models in southern California residential PV markets has enticed a new demographic to adopt PV systems that is more highly correlated to younger, less affluent, and less educated populations than the demographics correlated to purchasing PV systems. By enticing new demographics to adopt PV, we find that third-party PV products are likely increasing total PV demand rather than gaining market share entirely at the expense of existing customer owned PV demand. We also find that mean population demographics are good predictors of third-party and customer owned PV adoption, and mean voting trends on California carbon policy (Proposition 23) are poor predictors of PV adoption. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Drury, Easan; Miller, Mackay; Heimiller, Donna; Perry, Thomas D.] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. [Macal, Charles M.; Graziano, Diane J.; Ozik, Jonathan] Argonne Natl Lab, Ctr Complex Adapt Agent Syst Simulat, Argonne, IL 60439 USA. RP Drury, E (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 1617 Cole Blvd,RSF 300, Golden, CO 80401 USA. EM easan.drury@nrel.gov FU US Department of Energy [DE-AC36-08GO28308, DE-AC02-06CH11357] FX We thank Pamela Gray-Hann for GIS analysis, and Galen Barbose, Paul Denholm, Alan Goodrich, Robert Margolis, James Newcomb, Daniel Steinberg and Ryan Wiser for comments and input. This work was partially supported by the US Department of Energy under contract numbers DE-AC36-08GO28308 and DE-AC02-06CH11357. NR 32 TC 38 Z9 38 U1 1 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD MAR PY 2012 VL 42 BP 681 EP 690 DI 10.1016/j.enpol.2011.12.047 PG 10 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 910CY UT WOS:000301616000067 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TP Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MDO De Pedisa, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duehrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Dueren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfar, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, M Joseph, J Jovin, T Ju, X Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maennerc, R Maeno, T Maettig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maurer, J Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Moret-Tini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoyd, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Cas-Tanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tian, F Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van der Leeuw, R Van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmazc, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhaob, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedisa, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfar, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, M. Joseph, J. Jovin, T. Ju, X. Juranek, V. Jussel, P. Juste Rozas, A. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maennerc, R. Maeno, T. Maettig, P. Maettig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maurer, J. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Moret-Tini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoyd, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Cas-Tanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. Van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmazc, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhaob, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID ELECTROMAGNETIC CALORIMETER; MODULE-0 AB Detailed measurements of the electron performance of the ATLAS detector at the LHC are reported, using decays of the Z, W and J/psi particles. Data collected in 2010 at root s = 7 TeV are used, corresponding to an integrated luminosity of almost 40 pb(-1). The inter-alignment of the inner detector and the electromagnetic calorimeter, the determination of the electron energy scale and resolution, and the performance in terms of response uniformity and linearity are discussed. The electron identification, reconstruction and trigger efficiencies, as well as the charge misidentification probability, are also presented. C1 [Aad, G.; Ahles, F.; Ahmad, A.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, Hs.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoyd, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Vivarelli, I.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Denis, R. D. St.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Vivarelli, I.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, High Energy Phys Div, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Neves, R. M.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Joseph, J.; Korn, A.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Varouchas, D.; Virzi, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Mikenberg, G.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. Fed Univ Juiz Fora UFJF, Juiz De Fora, Brazil. Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Vivarelli, I.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Clifft, R. W.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.; ATLAS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Wang, H.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhaob, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Feng, C.; Ge, P.; He, M.; Liu, D.; Meng, Z.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Belenguer, M. Jimenez; Karnevskiy, M.; Katzy, J.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Medinnis, M.; Mijovic, L.; Moenig, K.; Nozicka, M.; Petschull, D.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Viti, M.; Vivarelli, I.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 04, Dortmund, Germany. [Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] INFN Lab Nazl Frascati, Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Moret-Tini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, INFN Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Huth, J.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Vivarelli, I.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maennerc, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Heidelberg, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Ekelof, T.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis Plata, La Plata, Argentina. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, INFN Sez Lecce, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Cas-Tanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Dept Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfar, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, INFN Sez Milano, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Guler, H.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, INFN Sez Napol, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; Van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; Van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, INFN Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, INFN Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Vivarelli, I.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, M.; Lopes, L.; Miguens, J. Machado; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedisa, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, INFN Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Univ Roma Tre, INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Cherkaoui El Moursli, R.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondament Univ, Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Zhang, Z.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Zhang, Z.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] INFN Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Amorim, A.; Gomes, A.; Jorge, M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Amorim, A.; Gomes, A.; Jorge, M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Fiolhais, M. C. N.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Wolter, Marcin/A-7412-2012; Ferrando, James/A-9192-2012; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; de Groot, Nicolo/A-2675-2009; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Ishikawa, Akimasa/G-6916-2012; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Takai, Helio/C-3301-2012; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Gutierrez, Phillip/C-1161-2011; Doyle, Anthony/C-5889-2009; Li, Xuefei/C-3861-2012; Moorhead, Gareth/B-6634-2009; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Sivoklokov, Sergey/D-8150-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Kramarenko, Victor/E-1781-2012; valente, paolo/A-6640-2010; Alexa, Calin/F-6345-2010; Grinstein, Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Juste, Aurelio/I-2531-2015; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Fullana Torregrosa, Esteban/A-7305-2016; Grancagnolo, Francesco/K-2857-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; OI Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Ferrando, James/0000-0002-1007-7816; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Vos, Marcel/0000-0001-8474-5357; Casadei, Diego/0000-0002-3343-3529; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Farrington, Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson, Aidan/0000-0002-1659-8284; Canelli, Florencia/0000-0001-6361-2117; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Della Volpe, Domenico/0000-0001-8530-7447; Cranmer, Kyle/0000-0002-5769-7094; Klinkby, Esben Bryndt/0000-0002-1908-5644; Pomarede, Daniel/0000-0003-2038-0488; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Takai, Helio/0000-0001-9253-8307; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Doyle, Anthony/0000-0001-6322-6195; Moorhead, Gareth/0000-0002-9299-9549; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; valente, paolo/0000-0002-5413-0068; Grinstein, Sebastian/0000-0002-6460-8694; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Adye, Tim/0000-0003-0627-5059; Santos, Helena/0000-0003-1710-9291; Evans, Harold/0000-0003-2183-3127; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Dell'Asta, Lidia/0000-0002-9601-4225; Chen, Hucheng/0000-0002-9936-0115; Cataldi, Gabriella/0000-0001-8066-7718; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Mincer, Allen/0000-0002-6307-1418; Troncon, Clara/0000-0002-7997-8524; Bailey, David C/0000-0002-7970-7839; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Thomson, Mark/0000-0002-2654-9005; Nielsen, Jason/0000-0002-9175-4419; Grancagnolo, Francesco/0000-0002-9367-3380; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Quinonez Granados, Fernando Andres/0000-0002-0153-6160; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM; Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 38 TC 26 Z9 26 U1 5 U2 75 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2012 VL 72 IS 3 AR 1909 DI 10.1140/epjc/s10052-012-1909-1 PG 46 WC Physics, Particles & Fields SC Physics GA 922IG UT WOS:000302540000044 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Gonzalez, BA Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andreia, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, A Bee, P Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Caminada, LM Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Colas, J Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lotto, B de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De VivieDeRegie, JB Dean, S Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Haller, J Hamacher, K Hamal, P Hamer, M Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, AD Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Imbault, D Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ippolito, V Quiles, AI Isaksson, C Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keeler, R Kehoe, R Keil, M Kekelidze, GD Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maennerc, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS de Andrade, LM Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maurer, J Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL Mc-Carthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Nadal, J Nagai, K Nagano, K Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Neep, TJ Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olariu, A Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, A Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, J Price, LE Price, MJ Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romano, M Romanov, VM Romeo, G Adam, ER Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumiantsev, V Rumyantsev, L Runge, K Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Scott, WG Searcy, J Sedov, G Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stevenson, K Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoyd, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tanasijczuk, AJ Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Viegas, FJTA Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vanadia, M Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpinia, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xella, S Xiao, M Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andreia, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, A. Bee, P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Caminada, L. M. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lotto, B. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De VivieDeRegie, J. B. Dean, S. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Parra, G. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Haller, J. Hamacher, K. Hamal, P. Hamer, M. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Imbault, D. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Rozas, A. Juste Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maennerc, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. de Andrade Filho, L. Manhaes Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maurer, J. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. Mc-Carthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, A. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, J. Price, L. E. Price, M. J. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romano, M. Romanov, V. M. Romeo, G. Romero Adam, E. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumiantsev, V. Rumyantsev, L. Runge, K. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoyd, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vanadia, M. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpinia, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Rapidity gap cross sections measured with the ATLAS detector in pp collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DEEP-INELASTIC SCATTERING; DOUBLE-POMERON-EXCHANGE; DUAL PARTON MODEL; IN-BEAM TESTS; DIFFRACTION DISSOCIATION; ELASTIC-SCATTERING; TRIPLE-REGGE; HARD; CALORIMETER; HERA AB Pseudorapidity gap distributions in proton-proton collisions at root s = 7 TeV are studied using a minimum bias data sample with an integrated luminosity of 7.1 mu b(-1). Cross sections are measured differentially in terms of Delta eta(F), the larger of the pseudorapidity regions extending to the limits of the ATLAS sensitivity, at eta = +/- 4.9, in which no final state particles are produced above a transverse momentum threshold p(T)(cut). The measurements span the region 0 < Delta eta(F) < 8 for 200 MeV < p(T)(cut) < 800 MeV. At small Delta eta(F), the data test the reliability of hadronisation models in describing rapidity and transverse momentum fluctuations in final state particle production. The measurements at larger gap sizes are dominated by contributions from the single diffractive dissociation process (pp -> Xp), enhanced by double dissociation (pp -> XY) where the invariant mass of the lighter of the two dissociation systems satisfies M-Y less than or similar to 7 GeV. The resulting cross section is ds sigma/d Delta eta(F) approximate to 1 mb for Delta eta(F) greater than or similar to 3. The large rapidity gap data are used to constrain the value of the Pomeron intercept appropriate to triple Regge models of soft diffraction. The cross section integrated over all gap sizes is compared with other LHC inelastic cross section measurements. C1 [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Dhullipudi, R.; Ernst, J.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; Farbin, A.; Hernandez, C. M.; Sarkisyan-Grinbaum, E.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Le Menedeu, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Newman, P. R.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Hazen, E.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Coura Torres, R.; Da Silva, P. V. M.; Maidantchik, C.; de Andrade Filho, L. Manhaes; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Caramarcu, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Gillberg, D.; Koffas, T.; Liu, C.; Marchand, J. F.; Mc-Carthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Jonsson, O.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Kollar, D.; Kotamaeki, M. J.; Lamanna, M.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pauly, T.; Pengo, R.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Canelli, F.; Feng, C.; Ge, P.; He, M.; Li, H.; Miao, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Coll Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Sedov, G.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Sedov, G.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Selbach, K. E.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andreia, V.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Kasieczka, G.; Narayan, R.; Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maennerc, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Krumnack, N.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, London, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Dobson, E.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Klinger, J. A.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, P.; Benchouk, C.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, P.; Benchouk, C.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpinia, G.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Guler, H.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Bronner, J.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Sch Sci, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; Breton, D.; De la Taille, C.; De VivieDeRegie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, A.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; Breton, D.; De la Taille, C.; De VivieDeRegie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, A.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hall, D.; Hawes, B. M.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kogan, L. A.; Korn, A.; Kundu, N.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rossi, E.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Techn Nucl, Rabat, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Mal, P.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xiao, M.; Xu, C.] CEA Saclay Comm Energie Atom, DSM IRFU Inst Rech Lois Fondament Univers, Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Mockett, P.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Kim, H.; Klimek, P.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Kim, H.; Klimek, P.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Beauchemin, P. H.; Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bondioli, M.; Ciobotaru, M. D.; Deng, J.; Eschrich, I. Gough; Hawkins, D.; Lankford, A. J.; Nelson, A.; Okawa, H.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Coll Udine, Udine, Italy. [Acharya, B. S.; De Sanctis, U.; Pinamonti, M.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; Del Papa, C.; Giordani, M. P.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Coccaro, A.; Di Mattia, A.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Amorim, A.; Gomes, A.; Lopes, L.; Maio, A.; Pina, J.; Pinto, B.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Lopes, L.; Maio, A.; Pina, J.; Pinto, B.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Apolle, R.; Bawa, H. S.; Davies, E.; Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Canelli, F.; Li, H.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Greenwood, Z. D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Moorhead, Gareth/B-6634-2009; Takai, Helio/C-3301-2012; Doyle, Anthony/C-5889-2009; Li, Xuefei/C-3861-2012; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Kramarenko, Victor/E-1781-2012; valente, paolo/A-6640-2010; Alexa, Calin/F-6345-2010; Gutierrez, Phillip/C-1161-2011; La Rosa, Alessandro/I-1856-2013; Ishikawa, Akimasa/G-6916-2012; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Wolter, Marcin/A-7412-2012; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014 OI Moorhead, Gareth/0000-0002-9299-9549; Takai, Helio/0000-0001-9253-8307; Doyle, Anthony/0000-0001-6322-6195; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; valente, paolo/0000-0002-5413-0068; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Coccaro, Andrea/0000-0003-2368-4559; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; la rotonda, laura/0000-0002-6780-5829; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Villaplana Perez, Miguel/0000-0002-0048-4602; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS; ERC; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM; Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 89 TC 23 Z9 23 U1 5 U2 67 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2012 VL 72 IS 3 AR 1926 DI 10.1140/epjc/s10052-012-1926-0 PG 31 WC Physics, Particles & Fields SC Physics GA 922IG UT WOS:000302540000042 ER PT J AU Airapetian, A Akopov, N Akopov, Z Aschenauer, EC Augustyniak, W Avakian, R Avetissian, A Avetisyan, E Belostotski, S Bianchi, N Blok, HP Borissov, A Bowles, J Bryzgalov, V Burns, J Capiluppi, M Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Leo, R De Nardo, L De Sanctis, E Diefenthaler, M Di Nezza, P Duren, M Ehrenfried, M Elbakian, G Ellinghaus, F Fantoni, A Felawka, L Frullani, S Gabbert, D Gapienko, G Gapienko, V Garibaldi, F Gavrilov, G Gharibyan, V Giordano, F Gliske, S Golembiovskaya, M Hadjidakis, C Hartig, M Hasch, D Hillenbrand, A Hoek, M Holler, Y Hristova, I Imazu, Y Ivanilov, A Jackson, HE Jo, HS Joosten, S Kaiser, R Karyan, G Keri, T Kinney, E Kisselev, A Korotkov, V Kozlov, V Kravchenko, P Krivokhijine, VG Lagamba, L Lapikas, L Lehmann, I Lenisa, P Ruiz, AL Lorenzon, W Ma, BQ Mahon, D Makins, NCR Manaenkov, SI Manfre, L Mao, Y Marianski, B de la Ossa, AM Marukyan, H Miller, CA Miyachi, Y Movsisyan, A Muccifora, V Murray, M Mussgiller, A Nappi, E Naryshkin, Y Nass, A Negodaev, M Nowak, WD Pappalardo, LL Perez-Benito, R Petrosyan, A Reimer, PE Reolon, AR Riedl, C Rith, K Rosner, G Rostomyan, A Rubin, J Ryckbosch, D Salomatin, Y Sanftl, F Schafer, A Schnell, G Schuler, KP Seitz, B Shibata, TA Shutov, V Stancari, M Statera, M Steffens, E Steijger, JJM Stewart, J Stinzing, F Taroian, S Terkulov, A Truty, R Trzcinski, A Tytgat, M Vandenbroucke, A Van Haarlem, Y Van Hulse, C Veretennikov, D Vikhrov, V Vilardi, I Wang, S Yaschenko, S Ye, Z Yen, S Zagrebelnyy, V Zeiler, D Zihlmann, B Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Aschenauer, E. C. Augustyniak, W. Avakian, R. Avetissian, A. Avetisyan, E. Belostotski, S. Bianchi, N. Blok, H. P. Borissov, A. Bowles, J. Bryzgalov, V. Burns, J. Capiluppi, M. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Leo, R. De Nardo, L. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dueren, M. Ehrenfried, M. Elbakian, G. Ellinghaus, F. Fantoni, A. Felawka, L. Frullani, S. Gabbert, D. Gapienko, G. Gapienko, V. Garibaldi, F. Gavrilov, G. Gharibyan, V. Giordano, F. Gliske, S. Golembiovskaya, M. Hadjidakis, C. Hartig, M. Hasch, D. Hillenbrand, A. Hoek, M. Holler, Y. Hristova, I. Imazu, Y. Ivanilov, A. Jackson, H. E. Jo, H. S. Joosten, S. Kaiser, R. Karyan, G. Keri, T. Kinney, E. Kisselev, A. Korotkov, V. Kozlov, V. Kravchenko, P. Krivokhijine, V. G. Lagamba, L. Lapikas, L. Lehmann, I. Lenisa, P. Ruiz, A. Loez Lorenzon, W. Ma, B. -Q. Mahon, D. Makins, N. C. R. Manaenkov, S. I. Manfre, L. Mao, Y. Marianski, B. de la Ossa, A. Martinez Marukyan, H. Miller, C. A. Miyachi, Y. Movsisyan, A. Muccifora, V. Murray, M. Mussgiller, A. Nappi, E. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W. -D. Pappalardo, L. L. Perez-Benito, R. Petrosyan, A. Reimer, P. E. Reolon, A. R. Riedl, C. Rith, K. Rosner, G. Rostomyan, A. Rubin, J. Ryckbosch, D. Salomatin, Y. Sanftl, F. Schaefer, A. Schnell, G. Schueler, K. P. Seitz, B. Shibata, T. -A. Shutov, V. Stancari, M. Statera, M. Steffens, E. Steijger, J. J. M. Stewart, J. Stinzing, F. Taroian, S. Terkulov, A. Truty, R. Trzcinski, A. Tytgat, M. Vandenbroucke, A. Van Haarlem, Y. Van Hulse, C. Veretennikov, D. Vikhrov, V. Vilardi, I. Wang, S. Yaschenko, S. Ye, Z. Yen, S. Zagrebelnyy, V. Zeiler, D. Zihlmann, B. Zupranski, P. CA HERMES Collaboration TI Measurement of the virtual-photon asymmetry A(2) and the spin-structure function g(2) of the proton SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DEEP-INELASTIC-SCATTERING; ELECTRON STORAGE-RING; SUM-RULES; HERA; POLARIZATION; POLARIMETER; TARGET AB A measurement of the virtual-photon asymmetry A(2)(x, Q(2)) and of the spin-structure function g(2)(x, Q(2)) of the proton are presented for the kinematic range 0.004 < x < 0.9 and 0.18 GeV2 < Q(2) < 20 GeV2. The data were collected by the HERMES experiment at the HERA storage ring at DESY while studying inclusive deep-inelastic scattering of 27.6 GeV longitudinally polarized leptons off a transversely polarized hydrogen gas target. The results are consistent with previous experimental data from CERN and SLAC. For the x-range covered, the measured integral of g(2)(x) converges to the null result of the Burkhardt-Cottingham sum rule. The x(2) moment of the twist-3 contribution to g(2)(x) is found to be compatible with zero. C1 [Airapetian, A.; Dueren, M.; Ehrenfried, M.; Keri, T.; Perez-Benito, R.; Zagrebelnyy, V.] Univ Giessen, Phys Inst, D-35392 Giessen, Germany. [Jackson, H. E.; Reimer, P. E.; Rubin, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy. [Ma, B. -Q.; Mao, Y.; Wang, S.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Ellinghaus, F.; Kinney, E.; de la Ossa, A. Martinez] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. [Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; De Nardo, L.; Gavrilov, G.; Giordano, F.; Hartig, M.; Holler, Y.; de la Ossa, A. Martinez; Mussgiller, A.; Rostomyan, A.; Schueler, K. P.; Ye, Z.; Zagrebelnyy, V.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany. [Aschenauer, E. C.; Gabbert, D.; Golembiovskaya, M.; Hillenbrand, A.; Hristova, I.; Negodaev, M.; Nowak, W. -D.; Riedl, C.; Schnell, G.; Stewart, J.; Yaschenko, S.] DESY, D-15738 Zeuthen, Germany. [Krivokhijine, V. G.; Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Diefenthaler, M.; Kravchenko, P.; Mussgiller, A.; Nass, A.; Rith, K.; Steffens, E.; Stinzing, F.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Bianchi, N.; Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [De Nardo, L.; Jo, H. S.; Ruiz, A. Loez; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Bowles, J.; Burns, J.; Hoek, M.; Kaiser, R.; Keri, T.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Diefenthaler, M.; Joosten, S.; Makins, N. C. R.; Rubin, J.; Truty, R.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapetian, A.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Blok, H. P.; Lapikas, L.; Steijger, J. J. M.] Natl Inst Subatom Phys Nikhef, NL-1009 DB Amsterdam, Netherlands. [Belostotski, S.; Gavrilov, G.; Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regio, Russia. [Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, Protvino 188300, Moscow Region, Russia. [Sanftl, F.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Nazl Fis Nucl, Sez Roma, Grp Collegato Sanita, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Nazl Fis Nucl, Ist Super Sanita, I-00161 Rome, Italy. [Felawka, L.; Gavrilov, G.; Miller, C. A.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Imazu, Y.; Miyachi, Y.; Sanftl, F.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Natl Ctr Nucl Res, PL-00689 Warsaw, Poland. [Akopov, N.; Avakian, R.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Petrosyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Airapetian, A (reprint author), Univ Giessen, Phys Inst, D-35392 Giessen, Germany. EM gunar.schnell@desy.de RI Gavrilov, Gennady/C-6260-2013; Reimer, Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Taroian, Sarkis/E-1668-2014; Kozlov, Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015; Cisbani, Evaristo/C-9249-2011; OI Cisbani, Evaristo/0000-0002-6774-8473; Lagamba, Luigi/0000-0002-0233-9812; Deconinck, Wouter/0000-0003-4033-6716 FU DESY management; Ministry of Economy; Ministry of Education and Science of Armenia; FWO-Flanders; IWT, Belgium; Natural Sciences and Engineering Research Council of Canada; National Natural Science Foundation of China; Alexander von Humboldt Stiftung; German Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Italian Istituto Nazionale di Fisica Nucleare (INFN); MEXT; JSPS; G-COE of Japan; Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); Russian Academy of Science; Russian Federal Agency for Science and Innovations; UK Engineering and Physical Sciences Research Council; Science and Technology Facilities Council; Scottish Universities Physics Alliance; US Department of Energy (DOE); National Science Foundation (NSF); Basque Foundation for Science (IKERBASQUE); UPV/EHU [UFI 11/55]; European Community [227431] FX We gratefully acknowledge the DESY management for its support and the staff at DESY and the collaborating institutions for their significant effort. This work was supported by the Ministry of Economy and the Ministry of Education and Science of Armenia; the FWO-Flanders and IWT, Belgium; the Natural Sciences and Engineering Research Council of Canada; the National Natural Science Foundation of China; the Alexander von Humboldt Stiftung, the German Bundesministerium fur Bildung und Forschung (BMBF), and the Deutsche Forschungsgemeinschaft (DFG); the Italian Istituto Nazionale di Fisica Nucleare (INFN); the MEXT, JSPS, and G-COE of Japan; the Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); the Russian Academy of Science and the Russian Federal Agency for Science and Innovations; the UK Engineering and Physical Sciences Research Council, the Science and Technology Facilities Council, and the Scottish Universities Physics Alliance; the US Department of Energy (DOE) and the National Science Foundation (NSF); the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under program UFI 11/55; and the European Community Research Infrastructure Integrating Activity under the FP7 Study of strongly interacting matter (HadronPhysics2, Grant Agreement number 227431). NR 32 TC 12 Z9 12 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2012 VL 72 IS 3 AR 1921 DI 10.1140/epjc/s10052-012-1921-5 PG 7 WC Physics, Particles & Fields SC Physics GA 922IG UT WOS:000302540000040 ER PT J AU Arbey, A Battaglia, M Mahmoudi, F AF Arbey, A. Battaglia, M. Mahmoudi, F. TI Constraints on the MSSM from the Higgs sector A pMSSM study of Higgs searches, B-s(0) -> mu(+)mu(-) and dark matter direct detection SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; BOSON PRODUCTION; STANDARD MODEL; LHC; PROGRAM; DECAYS; MASS; SUPERISO; SPECTRA; ANATOMY AB We discuss the constraints on supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h(0) and the CP-odd A(0) bosons from these searches are covering a larger fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination for the lightest Higgs boson in the range 123 < M-h < 127 GeV, inspired by the intriguing hints reported by the ATLAS and CMS Collaborations, as well as those of a non-observation of the lightest Higgs boson for MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches. C1 [Arbey, A.] Univ Lyon 1, CNRS IN2P3, UMR IPNL 5822, F-69622 Villeurbanne, France. [Arbey, A.; Battaglia, M.; Mahmoudi, F.] CERN, CH-1211 Geneva 23, Switzerland. [Arbey, A.] CNRS, Observ Lyon, CRAL Ecole Normale Super Lyon, UMR 5574, F-69561 St Genis Laval, France. [Battaglia, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Battaglia, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mahmoudi, F.] Univ Clermont Ferrand, Clermont Univ, LPC, CNRS IN2P3, F-63000 Clermont Ferrand, France. RP Arbey, A (reprint author), Univ Lyon 1, CNRS IN2P3, UMR IPNL 5822, F-69622 Villeurbanne, France. EM MBattaglia@lbl.gov NR 56 TC 71 Z9 71 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2012 VL 72 IS 3 AR 1906 DI 10.1140/epjc/s10052-012-1906-4 PG 13 WC Physics, Particles & Fields SC Physics GA 922IG UT WOS:000302540000051 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hoch, M Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, S Benucci, L Cornelis, T De Wolf, EA Janssen, X Luyckx, S Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Leonard, A Marage, PE Thomas, L Velde, CV Vanlaer, P Wickens, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Ceard, L De Jeneret, JD Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Damiao, DD Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Jorge, LS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Karadzhinova, A Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, S Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, S Zhu, B Zou, W Cabrera, A Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamel, AE Khalil, S Mahmoud, MA Radi, A Hektor, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Azzolini, V Eerola, P Fedi, G Voutilainen, M Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Daci, N Dahms, T Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Van Hove, P Fassi, F Mercier, D Baty, C Beauceron, S Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Falkiewicz, A Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Viret, S Lomidze, D Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Erdmann, M Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Lingemann, J Magass, C Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Weber, M Bontenackels, M Cherepanov, V Davids, M Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Olzem, J Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Tomaszewska, J Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Erfle, J Gebbert, U Gorner, M Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Stadie, H Steinbruck, G Thomsen, J Barth, C Berger, J Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Guthoff, M Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Katkov, I Komaragiri, JR Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Renz, M Rocker, S Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schmanau, M Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Weiler, T Zeise, M Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Hajdu, C Hidas, P Horvath, D Kapusi, A Krajczar, K Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, J Singh, SP Ahuja, S Choudhary, BC Kumar, A Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Choudhury, RK Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Romano, F Selvaggi, G Silvestris, L Singh, G Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Michelotto, M Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Ratti, SP Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Santocchia, A Taroni, S Valdata, M Azzurri, P Bagliesi, G Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Rizzi, A Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Franci, D Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demari, N Graziano, A Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Heo, SG Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Ro, SR Son, DC Kim, JY Kim, ZJ Song, S Jo, HY Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Seo, E Sim, KS Choi, M Kang, S Kim, H Kim, JH Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Brona, G Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Bialkowska, H Boimska, B Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Nayak, A Pela, J Ribeiro, PQ Seixas, J Varela, J Vischia, P Afanasiev, S Belotelov, I Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Krokhotin, A Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Ershov, A Gribushin, A Kodolova, O Korotkikh, V Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Vardanyan, I Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bernet, C Bialas, W Bianchi, G Bloch, P Bocci, A Breuker, H Bunkowski, K Camporesi, T Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Georgiou, G Gerwig, H Giffels, M Gigi, D Gill, K Giordano, D Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Guiducci, L Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Hoffmann, HF Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lenzi, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Mavromanolakis, G Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Cortezon, EP Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stoye, M Tsirou, A Veres, GI Vichoudis, P Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Chen, Z Deisher, A Dissertori, G Dittmar, M Dunser, M Eugster, J Freudenreich, K Grab, C Lecomte, P Lustermann, W del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI MillanMejias, B Otiougova, P Robmann, P Snoek, H Verzetti, M Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Hos, I Kangal, EE Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Deliomeroglu, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Levchuk, L Bostock, F Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardle, N Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Henderson, C Avetisyan, A Bose, T Jarrin, EC Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Bhattacharya, S Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Caulfield, M Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Robles, J Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Andreev, V Arisaka, K Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sfiligoi, I Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Puigh, D Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Cooper, W Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jensen, H Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Leonidopoulos, C Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Pivarski, J Pordes, R Prokofyev, O Schwarz, T Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Snowball, M Wang, D Yelton, J Zakaria, M Gaultney, V Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kunde, GJ Lacroix, F Malek, M O'Brien, C Silkworth, C Silvestre, C Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Griffiths, S Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Iii, RPK Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Mignerey, AC Peterman, A Rossato, K Rumerio, P Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Hahn, KA Kim, Y Klute, M Lee, YJ Li, W Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Cushman, P Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rekovic, V Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Jindal, P Keller, J Kravchenko, I Lazoflores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Ziegler, J Bylsma, B Durkin, LS Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Vuosalo, C Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hegeman, J Hunt, A Laird, E Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Benedetti, D Bolla, G Borrello, L Bortoletto, D De Mattia, M Everett, A Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Petrillo, G Sakumoto, W Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Atramentov, O Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Park, M Patel, R Richards, A Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Bardak, C Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Appelt, E Brownson, E Engh, D Florez, C Gabella, W Gurrola, A Issah, M Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Conetti, S Cox, B Francis, B Goadhouse, S Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Belknap, D Bellinger, JN Bernardini, J Carlsmith, D Cepeda, M Dasu, S Efron, J Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C-E Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, S. Benucci, L. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Leonard, A. Marage, P. E. Thomas, L. Velde, C. Vander Vanlaer, P. Wickens, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Ceard, L. De Jeneret, J. De Favereau Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. De Jesus Damiao, D. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Soares Jorge, L. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, S. S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Karadzhinova, A. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, S. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, S. Zhu, B. Zou, W. Cabrera, A. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Khalil, S. Mahmoud, M. A. Radi, A. Hektor, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Azzolini, V. Eerola, P. Fedi, G. Voutilainen, M. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Daci, N. Dahms, T. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Veelken, C. Zabi, A. Agram, J-L Andrea, J. Bloch, D. Bodin, D. Brom, J-M Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J-C Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A-C Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beauceron, S. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Falkiewicz, A. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Viret, S. Lomidze, D. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Erdmann, M. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Weber, M. Bontenackels, M. Cherepanov, V. Davids, M. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I-A Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Olzem, J. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Tomaszewska, J. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Stadie, H. Steinbrueck, G. Thomsen, J. Barth, C. Berger, J. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Guthoff, M. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Katkov, I. Komaragiri, J. R. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Renz, M. Roecker, S. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F-P. Schmanau, M. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Weiler, T. Zeise, M. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Hajdu, C. Hidas, P. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. Singh, S. P. Ahuja, S. Choudhary, B. C. Kumar, A. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, S. Jain, S. Khurana, R. Sarkar, S. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Romano, F. Selvaggi, G. Silvestris, L. Singh, G. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Michelotto, M. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Santocchia, A. Taroni, S. Valdata, M. Azzurri, P. Bagliesi, G. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Rizzi, A. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Franci, D. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demari, N. Graziano, A. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Heo, S. G. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Kim, J. Y. Kim, Z. J. Song, S. Jo, H. Y. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Seo, E. Sim, K. S. Choi, M. Kang, S. Kim, H. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Brona, G. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Bialkowska, H. Boimska, B. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Musella, P. Nayak, A. Pela, J. Ribeiro, P. Q. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Belotelov, I. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An Andreev, Yu Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Ershov, A. Gribushin, A. Kodolova, O. Korotkikh, V. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Vardanyan, I. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Gomez, J. Piedra Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bernet, C. Bialas, W. Bianchi, G. Bloch, P. Bocci, A. Breuker, H. Bunkowski, K. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Georgiou, G. Gerwig, H. Giffels, M. Gigi, D. Gill, K. Giordano, D. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Guiducci, L. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Hoffmann, H. F. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lenzi, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Mavromanolakis, G. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoye, M. Tsirou, A. Veres, G. I. Vichoudis, P. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Chen, Z. Deisher, A. Dissertori, G. Dittmar, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Lecomte, P. Lustermann, W. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M-C Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova MillanMejias, B. Otiougova, P. Robmann, P. Snoek, H. Verzetti, M. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W-S Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R-S Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Hos, I. Kangal, E. E. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Guelmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bostock, F. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A-M Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Henderson, C. Avetisyan, A. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Bhattacharya, S. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Caulfield, M. Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Robles, J. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Andreev, V. Arisaka, K. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sfiligoi, I. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cooper, W. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jensen, H. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Pivarski, J. Pordes, R. Prokofyev, O. Schwarz, T. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Gaultney, V. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kunde, G. J. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Silvestre, C. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Griffiths, S. Lae, C. K. McCliment, E. Merlo, J-P Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Iii, R. P. Kenny Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Mignerey, A. C. Peterman, A. Rossato, K. Rumerio, P. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Kim, Y. Klute, M. Lee, Y-J. Li, W. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Jindal, P. Keller, J. Kravchenko, I. Lazoflores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Ziegler, J. Bylsma, B. Durkin, L. S. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Vuosalo, C. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Laird, E. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Borrello, L. Bortoletto, D. De Mattia, M. Everett, A. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Petrillo, G. Sakumoto, W. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Atramentov, O. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Richards, A. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Bardak, C. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Gurrola, A. Issah, M. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Conetti, S. Cox, B. Francis, B. Goadhouse, S. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. Bellinger, J. N. Bernardini, J. Carlsmith, D. Cepeda, M. Dasu, S. Efron, J. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA Collaboration, C TI Study of high-p(T) charged particle suppression in PbPb compared to pp collisions at root s(NN)=2.76 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA; COLLABORATION; PERSPECTIVE AB The transverse momentum spectra of charged particles have been measured in pp and PbPb collisions at root s(NN) = 2.76 TeV by the CMS experiment at the LHC. In the transverse momentum range p(T) = 5-10 GeV/c, the charged particle yield in the most central PbPb collisions is suppressed by up to a factor of 7 compared to the pp yield scaled by the number of incoherent nucleon-nucleon collisions. At higher p(T), this suppression is significantly reduced, approaching roughly a factor of 2 for particles with p(T) in the range p(T) = 40-100 GeV/c. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C-E] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Benucci, L.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Leonard, A.; Marage, P. E.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Ceard, L.; De Jeneret, J. De Favereau; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, S. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, S.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] IN2P3 CNRS, Lab Annecy le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Veelken, C.; Zabi, A.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. [Agram, J-L; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J-M; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J-C; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A-C; Van Hove, P.] Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, Univ Strasbourg, CNRS IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules IN2P3, Villeurbanne, France. [Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, Villeurbanne, France. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Erdmann, M.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Davids, M.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I-A; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.] Deutsch Elekt Synchrotron, Hamburg, Germany. [Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Stadie, H.; Steinbrueck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Roecker, S.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F-P.; Schmanau, M.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Choudhary, B. C.; Kumar, A.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, S.; Jain, S.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Bombay 400005, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Romano, F.; Selvaggi, G.; Silvestris, L.; Singh, G.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Selvaggi, G.; Singh, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bar, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Michelotto, M.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Lazzizzera, I.] Univ Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Franci, D.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Franci, D.; Longo, E.; Organtini, G.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demari, N.; Graziano, A.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; Marone, M.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Z. J.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Jo, H. Y.] Konkuk Univ, Seoul, South Korea. [Jo, H. Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Seo, E.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] Ctr Invest Estudios & Avanzados IPN, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Warsaw Univ, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Vardanyan, I.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.] Univ Belgrade, Fac Phys, YU-11001 Belgrade, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Gomez, J. Piedra; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, Inst Fis Cantabria IFCA, CSIC, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bernet, C.; Bialas, W.; Bianchi, G.; Bloch, P.; Bocci, A.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Guiducci, L.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Hoffmann, H. F.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lenzi, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Mavromanolakis, G.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Chen, Z.; Deisher, A.; Dissertori, G.; Dittmar, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Lecomte, P.; Lustermann, W.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M-C; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; MillanMejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W-S; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R-S; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Guelmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A-M; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Henderson, C.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Caulfield, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Robles, J.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sfiligoi, I.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Schwarz, T.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Lae, C. K.; McCliment, E.; Merlo, J-P; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Iii, R. P. Kenny; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Peterman, A.; Rossato, K.; Rumerio, P.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Lee, Y-J.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kravchenko, I.; Lazoflores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Vuosalo, C.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Borrello, L.; Bortoletto, D.; De Mattia, M.; Everett, A.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Atramentov, O.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Richards, A.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Gurrola, A.; Issah, M.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Conetti, S.; Cox, B.; Francis, B.; Goadhouse, S.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Bernardini, J.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Efron, J.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Genchev, V.; Iaydjiev, P.; Puljak, I.; Chierici, R.; Guthoff, M.; Hajdu, C.; Sikler, F.; Mohanty, A. K.; De Filippis, N.; Fasanella, D.; Benaglia, A.; Gennai, S.; Massironi, A.; Montoya, C. A. Carrillo; Iorio, A. O. M.; Bacchetta, N.; Nespolo, M.; Tosi, M.; Lucaroni, A.; Taroni, S.; Tonelli, G.; Venturi, A.; Del Re, D.; Grassi, M.; Mariotti, C.; Montanino, D.; Kossov, M.; Grishin, V.; Kovalskyi, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Giammanco, A.] NICPB, Tallinn, Estonia. [Anjos, T. S.; Bernardes, C. A.] Univ Fed ABC, Santo Andre, Brazil. [Dias, F. A.; Spiropulu, M.] CALTECH, Pasadena, CA 91125 USA. [Plestina, R.; Bernet, C.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Khalil, S.; Radi, A.] British Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Bluj, M.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Agram, J-L; Conte, E.; Drouhin, F.; Fontaine, J-C; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Krajczar, K.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Guchait, M.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Adzic, P.; Krpic, D.] Univ Belgrade, Fac Phys, YU-11001 Belgrade, Serbia. [Felcini, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Gomez, J. Piedra] Univ Florida, Gainesville, FL USA. [Rolandi, G.] Scuola Normale Super Pisa, INFN, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Worm, S. D.; Newbold, D. M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Ozturk, S.] Univ Iowa, Iowa City, IA USA. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Belyaev, A.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Belyaev, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Milenovic, P.] Univ Belgrade, Fac Phys, YU-11001 Belgrade, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Kunde, G. J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Lujan Center, LANL/G-4896-2012; Tinoco Mendes, Andre David/D-4314-2011; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Savrin, Victor/D-6213-2012; Padula, Sandra /G-3560-2012; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Perfilov, Maxim/E-1064-2012; Belyaev, Andrey/E-1540-2012; Katkov, Igor/E-2627-2012; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Tomei, Thiago/E-7091-2012; Focardi, Ettore/E-7376-2012; Raidal, Martti/F-4436-2012; Novaes, Sergio/D-3532-2012; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Bedoya, Cristina/K-8066-2014; Marco, Jesus/B-8735-2008; Michelotto, Michele/A-9571-2013; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Hektor, Andi/G-1804-2011; Grandi, Claudio/B-5654-2015; Bernardes, Cesar Augusto/D-2408-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; Petrushanko, Sergey/D-6880-2012; Vardanyan, Irina/K-7981-2012; Mercadante, Pedro/K-1918-2012; Della Ricca, Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Tinti, Gemma/I-5886-2013; Ivanov, Andrew/A-7982-2013; Liu, Sheng/K-2815-2013; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dogangun, Oktay/L-9252-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014 OI Tinoco Mendes, Andre David/0000-0001-5854-7699; Azzi, Patrizia/0000-0002-3129-828X; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Katkov, Igor/0000-0003-3064-0466; Tomei, Thiago/0000-0002-1809-5226; Focardi, Ettore/0000-0002-3763-5267; Novaes, Sergio/0000-0003-0471-8549; Heath, Helen/0000-0001-6576-9740; Fassi, Farida/0000-0002-6423-7213; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Bedoya, Cristina/0000-0001-8057-9152; Marco, Jesus/0000-0001-7914-8494; Michelotto, Michele/0000-0001-6644-987X; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Hektor, Andi/0000-0001-7873-8118; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Della Ricca, Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Wimpenny, Stephen/0000-0003-0505-4908; Dogangun, Oktay/0000-0002-1255-2211; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691 FU Austrian Federal Ministry of Science and Research; Belgium Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agency CNPq; Brazilian Funding Agency CAPES; Brazilian Funding Agency FAPERJ; Brazilian Funding Agency FAPERJ, and FAPESP; Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Research Promotion Foundation, Cyprus; Ministry of Education and Research [SF0690030s09]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules/CNRS; Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation; National Office for Research and Technology, Hungary; Department of Atomic Energy; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology; NRF, Korea; Lithuanian Academy of Sciences; Mexican Funding Agency CINVESTAV; Mexican Funding Agency CONACYT; Mexican Funding Agency SEP; Mexican Funding Agency UASLP-FAI; Ministry of Science and Innovation, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Science and Technological Development of Serbia; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Swiss Funding Agency ETH Board; Swiss Funding Agency ETH Zurich; Swiss Funding Agency PSI; Swiss Funding Agency SNF; Swiss Funding Agency UniZH; Swiss Funding Agency Canton Zurich; Swiss Funding Agency SER; National Science Council, Taipei; Scientific and Technical Re-search Council of Turkey; Turkish Atomic Energy Authority; Science and Technology Facilities Council, UK; US Department of Energy; US National Science Foundation; Marie-Curie programme; European Research Council (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Council of Science and Industrial Research, India; HOMING PLUS of Foundation for Polish Science; European Union FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Re-search Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 37 TC 126 Z9 126 U1 1 U2 71 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2012 VL 72 IS 3 AR 1945 DI 10.1140/epjc/s10052-012-1945-x PG 22 WC Physics, Particles & Fields SC Physics GA 922IG UT WOS:000302540000003 ER PT J AU Czaplewski, DA Ocola, LE AF Czaplewski, David A. Ocola, Leonidas E. TI 100 keV electron backscattered range and coefficient for silicon SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID PROXIMITY EFFECT CORRECTION; BEAM LITHOGRAPHY; HYDROGEN SILSESQUIOXANE; NANOLITHOGRAPHY AB The authors have measured the range and intensity of backscattered electrons in silicon from a 100 keV source using a process independent method. Backscattered electrons contributed to the total dose of features written in a negative tone electron beam resist. Instead of measuring the height of the resist and using a contrast curve to convert the resist height to dose, the heights of the features were made equal by adjusting the backscattered contribution through dose assignments. Creating features of equal height eliminated the need to use a contrast curve to convert from resist height to total dose. Also, it allowed for measurements of the backscattered contribution from larger distances. Using a circularly symmetric torus pattern, the three-dimensional backscatter problem was reduced to a 1-dimensional Gaussian form. The authors measured the range of the backscattered electrons, beta, to be 31.08 +/- 0.06 mu m. By varying the writing dose of the pattern, we determined the backscatter coefficient, eta, to be 0.63 +/- 0.03. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.3693985] C1 [Czaplewski, David A.; Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Czaplewski, DA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dczaplewski@anl.gov OI Ocola, Leonidas/0000-0003-4990-1064 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory. This work was performed at the Center for Nanoscale Materials, Argonne National Laboratory. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 14 TC 3 Z9 3 U1 0 U2 3 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR PY 2012 VL 30 IS 2 AR 021604 DI 10.1116/1.3693985 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 917ZV UT WOS:000302219500045 ER PT J AU Taylor, RM Huber, DL Monson, TC Esch, V Sillerud, LO AF Taylor, Robert M. Huber, Dale L. Monson, Todd C. Esch, Victor Sillerud, Laurel O. TI Structural and magnetic characterization of superparamagnetic iron platinum nanoparticle contrast agents for magnetic resonance imaging SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID FEPT NANOPARTICLES; NANOCRYSTALS AB The authors report the synthesis, from simple salts, and the physical characterization of superparamagnetic iron platinum nanoparticles (SIPPs) suitable for use as contrast agents in magnetic resonance imaging. The properties of these particles were determined by means of transmission electron microscopy (TEM), thermogravimetric analysis, inductively coupled plasma-optical emission spectroscopy (ICP-OES), superconducting quantum interference device (SQUID) magnetometry, and nuclear magnetic resonance relaxivity at 4.7 T. TEM showed that the diameters of the particles ranged from 9.3 to 10 nm, depending on the mole ratio of iron to platinum precursors, and on the concentration of octadecylamine (ODA) used in their preparation. The iron to platinum stoichiometry determined by ICP-OES varied from 1.4:1 to 3.7:1 and was similarly dependent on the initial mole ratios of iron and platinum salts, as well as on the concentration of ODA in the reaction. SQUID magnetometry showed that the SIPPs were superparamagnetic and had magnetic moments that increased with increasing iron content from 62 to 72 A.m(2)/kg Fe. The measured relaxivities of the SIPPs at 4.7 T were higher than commercially available superparamagnetic iron oxide nanoparticles, suggesting that these particles may be superior contrast agents in T-2-weighted magnetic resonance imaging. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.3692250] C1 [Taylor, Robert M.; Sillerud, Laurel O.] Univ New Mexico, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. [Taylor, Robert M.] New Mexico Canc Nanosci & Microsyst Training Ctr, Albuquerque, NM 87106 USA. [Huber, Dale L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87111 USA. [Monson, Todd C.] Sandia Natl Labs, Nanomat Sci Dept, Albuquerque, NM 87185 USA. [Esch, Victor] NanoMR Inc, Albuquerque, NM 87106 USA. [Sillerud, Laurel O.] UNM Canc Ctr, Albuquerque, NM 87106 USA. RP Taylor, RM (reprint author), Univ New Mexico, Dept Biochem & Mol Biol, MSC08 4670,1 Univ New Mexico, Albuquerque, NM 87131 USA. EM rmtaylor@salud.unm.edu RI Huber, Dale/A-6006-2008; OI Huber, Dale/0000-0001-6872-8469; Sillerud, Laurel/0000-0002-5115-4339; Monson, Todd/0000-0002-9782-7084 FU NIH [5RO1CA123194]; NCI New Mexico Cancer Nanotechnology Training Center [NIH R25CA153825]; nanoMR, Inc.; US Department of Energy [DE-AC04-94AL85000] FX This research was supported in part by funding from NIH (5RO1CA123194 to Laurel O. Sillerud), the NCI New Mexico Cancer Nanotechnology Training Center (NIH R25CA153825 supporting Robert M. Taylor), and by nanoMR, Inc. (Victor Esch). Portions of this work were performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences, user facility. Sandia National Laboratories is a multiprogram laboratory operated by The Sandia Corporation, a Lockheed-Martin Company, for the US Department of Energy under Contract No. DE-AC04-94AL85000. MRI relaxivities were measured at the BRaIN Imaging Center, Albuquerque, NM. We gratefully acknowledge the assistance of Medhi Ali of the Earth and Planetary Sciences Department at UNM, for the ICP-OES analyses, and of Stephen Jett of the UNM Electron Microscopy Facility. NR 17 TC 6 Z9 6 U1 1 U2 24 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR PY 2012 VL 30 IS 2 AR 02C101 DI 10.1116/1.3692250 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 917ZV UT WOS:000302219500030 PM 22872817 ER PT J AU Yang, CYP Yang, EL Steinhaus, CA Liu, CC Nealey, PF Skinner, JL AF Yang, C. Y. Peter Yang, Elaine L. Steinhaus, Chip A. Liu, Chi-Chun Nealey, Paul F. Skinner, Jack L. TI Planar-localized surface plasmon resonance device by block-copolymer and nanoimprint lithography fabrication methods SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ENHANCED RAMAN-SCATTERING; SUBWAVELENGTH HOLE ARRAYS; OPTICAL-TRANSMISSION; GOLD-FILMS; SPECTROSCOPY; SENSITIVITY; DEPENDENCE; SPECTRA; SIZE AB The authors report on the integration of delocalized surface plasmon resonances (SPRs) and localized surface plasmon resonances (LSPRs) on a single device. The submicron SPR device was fabricated with nanoimprint lithography (NIL). Gold nanoparticles for LSPR generation were created and deposited via three methods and analyzed with rhodamine 6 G and surface-enhanced Raman spectroscopy (SERS). Compared to drop-cast and thin film annealing methods, gold nanoparticles fabricated from a diblock-copolymer NIL template produced the most significant effect on the charge-transfer component of the SERS enhancement mechanism due to near-field interactions at the 10 nm inter-particle separation region. The authors also report a 26% enhancement of optical resonance with an integrated SPR-LSPR plasmonic device consisting of a two-dimensional submicron aluminum grating fully coupled with gold nanoparticles measuring 20.4 nm in diameter in a water medium. If the 2D aluminum grating were coupled to an optimized nanoparticle SERS device fabricated from a DBCP NIL template, the coupled nanoparticle-grating device could exhibit an even higher enhancement and optical resonance performance. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3683475] C1 [Yang, C. Y. Peter; Yang, Elaine L.; Steinhaus, Chip A.; Skinner, Jack L.] Sandia Natl Labs, Livermore, CA 94550 USA. [Liu, Chi-Chun; Nealey, Paul F.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. RP Yang, CYP (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM petyang@sandia.gov FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX A portion of this work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 34 TC 2 Z9 2 U1 1 U2 37 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR PY 2012 VL 30 IS 2 AR 026801 DI 10.1116/1.3683475 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 917ZV UT WOS:000302219500062 ER PT J AU Ginley, DS Robinson, AL Taub, A AF Ginley, David S. Robinson, Arthur L. Taub, Alan TI The shift to advanced materials: GM's Alan Taub surveys future of the auto industry SO MRS BULLETIN LA English DT Editorial Material C1 [Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Taub, Alan] Gen Motors Co, Global Res & Dev, Seven Worldwide Sci Labs, New York, NY USA. [Taub, Alan] Gen Motors Co, Major Corp Innovat Programs, New York, NY USA. [Taub, Alan] Gen Motors Co, Global Technol Collaborat Network, New York, NY USA. RP Ginley, DS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM lewie@artmary.net NR 0 TC 0 Z9 0 U1 0 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD MAR PY 2012 VL 37 IS 3 BP 196 EP 203 DI 10.1557/mrs.2012.63 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 921IS UT WOS:000302471900011 ER PT J AU Rondinelli, JM May, SJ Freeland, JW AF Rondinelli, James M. May, Steven J. Freeland, John W. TI Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery SO MRS BULLETIN LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; GROUP-THEORETICAL ANALYSIS; THIN-FILMS; CHARGE DISPROPORTIONATION; PHASE-TRANSITIONS; DISTORTIONS; STRAIN; MANGANITES; TRANSPORT; BIFEO3 AB Research in ABO(3) perovskite oxides ranges from fundamental scientific studies in superconductivity and magnetism to technologies for advanced low-power electronics, energy storage, and conversion. The breadth in functionalities observed in this versatile materials class originates, in part, from the ability to control the local and extended crystallographic structure of corner-connected octahedral units. While an established paradigm exists to alter the size, shape, and connectivity of the octahedral building blocks in bulk materials, these approaches are often limited to certain subsets of the allowed perovskite archetypes and chemistries. In this article, we describe emerging routes in thin films and multilayer superlattices enabled by epitaxial synthesis aimed at engineering the octahedral connectivity-rotational magnitudes and patterns-to reach unexplored portions of the crystallographic structure-property phase space for rational materials design. We review three promising chemistry-independent strategies that provide a handle to tune the octahedral connectivity: epitaxial strain, interfacial control at perovskite/perovskite heterojunctions, and rotation engineering in short-period superlattices. Finally, we touch upon potential new functionalities that could be attained by extending these approaches to static and dynamic manipulation of the perovskite structure through external fields and highlight unresolved questions for the deterministic control of octahedral rotations in perovskite-structured materials. C1 [Rondinelli, James M.; May, Steven J.] Drexel Univ, Mat Sci & Engn Dept, Philadelphia, PA 19104 USA. [Freeland, John W.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Rondinelli, JM (reprint author), Drexel Univ, Mat Sci & Engn Dept, Philadelphia, PA 19104 USA. EM jrondinelli@coe.drexel.edu; smay@coe.drexel.edu; freeland@anl.gov RI May, Steven/D-8563-2011; Rondinelli, James/A-2071-2009 OI May, Steven/0000-0002-8097-1549; Rondinelli, James/0000-0003-0508-2175 FU Office of Naval Research (ONR) [N00014-11-1-0664]; U.S. DOE, Basic Energy Sciences, under U.S. DOE, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to acknowledge fruitful discussions with K.R. Poeppelmeier, C.J. Fennie, P. M. Woodward, D. D. Fong, P.J. Ryan, and A.Y. Borisevich. S.J.M. and J.M.R. gratefully acknowledge support from the Office of Naval Research (ONR N00014-11-1-0664). J.W.F. was supported by the U.S. DOE, Basic Energy Sciences, under U.S. DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 104 TC 140 Z9 140 U1 18 U2 159 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD MAR PY 2012 VL 37 IS 3 BP 261 EP 270 DI 10.1557/mrs.2012.49 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 921IS UT WOS:000302471900019 ER PT J AU Cun, HY Wang, YL Du, SX Zhang, L Zhang, LZ Yang, B He, XB Wang, Y Zhu, XY Yuan, QZ Zhao, YP Ouyang, M Hofer, WA Pennycook, SJ Gao, HJ AF Cun, Huanyao Wang, Yeliang Du, Shixuan Zhang, Lei Zhang, Lizhi Yang, Bing He, Xiaobo Wang, Yue Zhu, Xueyan Yuan, Quanzi Zhao, Ya-Pu Ouyang, Min Hofer, Werner A. Pennycook, Stephen J. Gao, Hong-jun TI Tuning Structural and Mechanical Properties of Two-Dimensional Molecular Crystals: The Roles of Carbon Side Chains SO NANO LETTERS LA English DT Article DE Two-dimensional molecular crystal; molecular side chain; elastic properties; self-assembly; scanning tunneling microscopy ID QUINACRIDONE DERIVATIVES; SURFACES; ELECTRONICS; NETWORKS; SOLIDS AB A key requirement for the future applicability of molecular electronics devices is a resilience of their properties to mechanical deformation. At present, however, there is no fundamental understanding of the origins of mechanical properties of molecular films. Here we use quinacridone, which possesses flexible carbon side chains, as a model molecular system to address this issue. Eight molecular configurations with different molecular coverage are identified by scanning tunneling microscopy. Theoretical calculations reveal quantitatively the roles of different molecule-molecule and molecule-substrate interactions and predict the observed sequence of configurations. Remarkably, we find that a single Young's modulus applies for all configurations, the magnitude of which is controlled by side chain length, suggesting a versatile avenue for tuning not only the physical and chemical properties of molecular films but also their elastic properties. C1 [Cun, Huanyao; Wang, Yeliang; Du, Shixuan; Zhang, Lei; Zhang, Lizhi; Yang, Bing; He, Xiaobo; Gao, Hong-jun] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Wang, Yue] Jilin Univ, Key Lab Supramol Struct & Mat, Changchun 130023, Peoples R China. [Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China. [Ouyang, Min] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Hofer, Werner A.] Univ Liverpool, Stephenson Inst Renewable Energy, Liverpool L69 3BX, Merseyside, England. [Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wang, YL (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. EM ylwang@iphy.ac.cn; sxdu@iphy.ac.cn RI Yang, Bai/F-6483-2012; He, Xiaobo/G-5435-2012; Yuan, Quanzi/D-6781-2012; IoP, Nano Lab/B-9663-2013; Du, Shixuan/K-7145-2012; WANG, Yeliang/D-9643-2012; Yang, Bing/A-3779-2010 OI Du, Shixuan/0000-0001-9323-1307; Yang, Bing/0000-0001-9476-9934 FU NSFC; MOST; CAS; SSC in China; U.S. National Science Foundation; Royal Society London; U.S. Dept. of Energy, Office of Science, Materials Sciences and Engineering Division FX The authors thank L. Bartels and K-H. Ernst for fruitful discussions. This works supported by NSFC, MOST, CAS, and SSC in China. M.O. acknowledges support from U.S. National Science Foundation (Career Award). W.A.H. thanks the Royal Society London for support. S.J.P. was supported by the U.S. Dept. of Energy, Office of Science, Materials Sciences and Engineering Division. NR 35 TC 12 Z9 12 U1 4 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1229 EP 1234 DI 10.1021/nl203591t PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800019 PM 22375560 ER PT J AU Altoe, V Martin, F Katan, A Salmeron, M Aloni, S AF Altoe, Virginia Martin, Florent Katan, Allard Salmeron, Miguel Aloni, Shaul TI Electron Microscopy Reveals Structure and Morphology of One Molecule Thin Organic Films SO NANO LETTERS LA English DT Article DE Organic monolayer; electron diffraction; scanning transmission electron microscopy; low-dose; polythiopene; Langmuir-Blodgett ID DIFFRACTION; RESOLUTION; MONOLAYERS; TRANSPORT; OLIGOMERS; STEM AB Transmission electron microscopy was used to determine the structure of molecular films of self-assembled monolayers of pentathiophene derivatives supported on various electron transparent substrates. Despite the extreme beam sensitivity of the monolayers, structural crystallographic maps were obtained that revealed the nanoscale structure of the film. The image resolution is determined by the minimum beam diameter that the radiation hardness of the monolayer can support, which in our case is about 90 nm for a beam current of 5 X 10(6) e(-)/s. Electron diffraction patterns were collected while scanning a parallel electron beam over the film. These maps contain uncompromised information of the size, symmetry and orientation of the unit cell, orientation and structure of the domains, degree of crystallinity, and their variation on the micrometer scale, which are crucial to understand the electrical transport properties of the organic films. This information allowed us to track small changes in the unit cell size driven by the chemical modification of the support film. C1 [Altoe, Virginia; Salmeron, Miguel; Aloni, Shaul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Martin, Florent; Katan, Allard; Salmeron, Miguel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Martin, Florent; Salmeron, Miguel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM MBSalmeron@lbl.gov; SAloni@lbl.gov RI Katan, Allard/B-9670-2008 OI Katan, Allard/0000-0002-7185-6274 FU Office of Science, Office of Basic Energy Sciences of the DOE [DE-AC02-05CH11231] FX This work was performed at the Molecular Foundry at LBNL and was supported by the Office of Science, Office of Basic Energy Sciences of the DOE under contract no. DE-AC02-05CH11231. NR 25 TC 9 Z9 9 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1295 EP 1299 DI 10.1021/nl203776n PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800030 PM 22339758 ER PT J AU Ford, AC Kumar, SB Kapadia, R Guo, J Javey, A AF Ford, Alexandra C. Kumar, S. Bala Kapadia, Rehan Guo, Jing Javey, Ali TI Observation of Degenerate One-Dimensional Sub-Bands in Cylindrical In As Nanowires SO NANO LETTERS LA English DT Article DE Sub-bands; nanowires; quantum confinement; quantization; electron transport ID INAS NANOWIRES; TRANSPORT-PROPERTIES; ELECTRON-MOBILITY; HETEROSTRUCTURES; DEVICES; SEMICONDUCTOR AB One-dimensional (1D) sub-bands in cylindrical InAs nanowires (NWs) are electrically mapped as a function of NW diameter in the range of 15-35 nm. At low temperatures, stepwise current increases with the gate voltage are clearly observed and attributed to the electron transport through individual ID sub-bands. The 2-fold degeneracy in certain sub-band energies predicted by simulation due to structural symmetry is experimentally observed for the first time. The experimentally obtained sub-band energies match the simulated results, shedding light on both the energies of the sub-bands as well as the number of sub-bands populated per given gate voltage and diameter. This work serves to provide better insight into the electrical transport behavior of 1D semiconductors. C1 [Ford, Alexandra C.; Kapadia, Rehan; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Ford, Alexandra C.; Kapadia, Rehan; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kumar, S. Bala; Guo, Jing] Univ Florida, Gainesville, FL 32611 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI kumar, s. bala/E-4615-2011; Kapadia, Rehan/B-4100-2013; Javey, Ali/B-4818-2013 OI Kapadia, Rehan/0000-0002-7611-0551; FU Intel, FCRP/MSD Focus Center; NSF E3S Center; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Sunchon National University FX This work was funded by Intel, FCRP/MSD Focus Center and NSF E3S Center. The materials synthesis and characterization part of this work was partially supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.J. acknowledges a Sloan Research Fellowship, NSF CAREER Award, and support from the World Class University program at Sunchon National University. A.C.F. acknowledges an Intel Graduate Fellowship. R.K. acknowledges an NSF Graduate Fellowship. J.G. acknowledges support form NSF and SRC. NR 27 TC 39 Z9 39 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1340 EP 1343 DI 10.1021/nl203895x PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800038 PM 22268516 ER PT J AU Karki, K Epstein, E Cho, JH Jia, Z Li, T Picraux, ST Wang, CS Cumings, J AF Karki, Khim Epstein, Eric Cho, Jeong-Hyun Jia, Zheng Li, Teng Picraux, S. Tom Wang, Chunsheng Cumings, John TI Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes SO NANO LETTERS LA English DT Article DE Silicon nanowires; welding; self-healing; interfacial lithium diffusivity; in situ TEM; lithium-ion battery ID IN-SITU MEASUREMENTS; LI-ION BATTERY; ANODE MATERIAL; SECONDARY BATTERIES; ROOM-TEMPERATURE; ALLOY ANODE; THIN-FILMS; INSERTION; FRACTURE; PERFORMANCE AB From in situ transmission electron microscopy (TEM) observations, we present direct evidence of lithium-assisted welding between physically contacted silicon nanowires (SiNWs) induced by electrochemical lithiation and delithiation. This electrochemical weld between two SiNWs demonstrates facile transport of lithium ions and electrons across the interface. From our in situ observations, we estimate the shear strength of the welded region after delithiation to be approximately 200 MPa, indicating that a strong bond is formed at the junction of two SiNWs. This welding phenomenon could help address the issue of capacity fade in nanostructured silicon battery electrodes, which is typically caused by fracture and detachment of active materials from the current collector. The process could provide for more robust battery performance either through self-healing components that remain in contact or through the formation of a multiconnected network architecture. C1 [Wang, Chunsheng] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. [Karki, Khim; Epstein, Eric; Cumings, John] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Cho, Jeong-Hyun; Picraux, S. Tom] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Jia, Zheng; Li, Teng] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. RP Wang, CS (reprint author), Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. EM cswang@umd.edu; cumings@umd.edu RI Karki, Khim/B-2271-2012; Cumings, John/A-3595-2012; Li, Teng/B-1585-2008; Wang, Chunsheng/H-5767-2011; Jia, Zheng/H-4894-2013 OI Karki, Khim/0000-0002-0999-3964; Li, Teng/0000-0001-6252-561X; Wang, Chunsheng/0000-0002-8626-6381; Jia, Zheng/0000-0001-8459-515X FU Science of Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; NSF MRSEC [DMR 05-20471]; NSF [0856540, 0928278]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported as part of the Science of Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The support of the Maryland Nano Center and shared experimental facilities support from the NSF MRSEC under Grant DMR 05-20471 are also gratefully acknowledged. T.L. and Z.J. acknowledge the support of NSF under Grants 0856540 and 0928278. Work at Los Alamos National Laboratory was performed under U.S. Department of Energy contract DE-AC52-06NA25396. This research was performed, in part, at the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility NR 40 TC 52 Z9 52 U1 14 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1392 EP 1397 DI 10.1021/nl204063u PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800047 PM 22339576 ER PT J AU Blackburn, JL Holt, JM Irurzun, VM Resasco, DE Rumbles, G AF Blackburn, Jeffrey L. Holt, Josh M. Irurzun, Veronica M. Resasco, Daniel E. Rumbles, Garry TI Confirmation of K-Momentum Dark Exciton Vibronic Sidebands Using C-13-labeled, Highly Enriched (6,5) Single-walled Carbon Nanotubes SO NANO LETTERS LA English DT Article DE Single-walled carbon nanotubes; vibronic; phonon; dark exciton; emission ID DENSITY DIFFERENTIATION; SEPARATION; COMPOSITES; NETWORKS AB A detailed knowledge of the manifold of both bright and dark excitons in single-walled carbon nanotubes (SWCNTs) is critical to understanding radiative and non-radiative recombination processes. Exciton-phonon coupling opens up additional absorption and emission channels, some of which may "brighten" the sidebands of optically forbidden (dark) excitonic transitions in optical spectra. In this report, we compare C-12 and C-13-labeled SWCNTs that are highly enriched in the (6,5) species to identify both absorptive and emissive vibronic transitions. We find two vibronic sidebands near the bright E-1(11) singlet exciton, one absorptive sideband similar to 200 meV above, and one emissive sideband similar to 140 meV below, the bright singlet exciton. Both sidebands demonstrate a similar to 50 cm(-1) isotope-induced shift, which is commensurate with exciton-phonon coupling involving phonons of A(1) symmetry (D band, omega similar to 1330 cm(-1)). Independent analysis of each sideband indicates that both sidebands arise from the same dark exciton level, which lies at an energy approximately 25 meV above the bright singlet exciton. Our observations support the recent prediction of, and mounting experimental evidence for, the dark K-momentum singlet exciton lying similar to 25 meV (for the (6,5) SWCNT) above the bright Gamma-momentum singlet. This study represents the first use of C-13-labeled SWCNTs highly enriched in a single nanotube species to unequivocally confirm these sidebands as vibronic sidebands of the dark K-momentum singlet exciton. C1 [Blackburn, Jeffrey L.; Holt, Josh M.; Rumbles, Garry] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Irurzun, Veronica M.; Resasco, Daniel E.] Univ Oklahoma, Sarkeys Energy Ctr, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. RP Blackburn, JL (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. RI Blackburn, Jeffrey/D-7344-2012; Rumbles, Garry/A-3045-2014; OI Rumbles, Garry/0000-0003-0776-1462 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308] FX We thank Ross Larsen for helpful discussions. Raw CoMoCAT SWCNTs were produced by the University of Oklahoma. SWCNT separation and spectroscopy was performed at NREL and was supported by the Solar Photochemistry program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 28 TC 24 Z9 24 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1398 EP 1403 DI 10.1021/nl204072x PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800048 PM 22313425 ER PT J AU Xin, HLL Zheng, HM AF Xin, Huolin L. Zheng, Haimei TI In Situ Observation of Oscillatory Growth of Bismuth Nanoparticles SO NANO LETTERS LA English DT Article DE Liquid cell TEM; in situ TEM; colloidal nanocrystal growth; Ostwald ripening; digestive ripening; depletion zone ID ELECTRON-MICROSCOPY; NANOCRYSTAL GROWTH; LIQUID; MECHANISM AB We study the growth of Bi nanoparticles in an engineered precursor-scarce environment in a liquid cell at an elevated temperature (180 degrees C) using transmission electron microscopy. Observation reveals dynamics of oscillatory growth of individual nanoparticles, pairwise Ostwald ripening and anti-Ostwald ripening and a global collective oscillation. The experimental results suggest a mass-transport zone is present around each particle, which couples to the observed growth kinetics. This study shed light on a new route for system engineering to reverse particle coursing by Ostwald ripening. C1 [Xin, Huolin L.; Zheng, Haimei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zheng, HM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM hmzheng@lbl.gov RI Xin, Huolin/E-2747-2010 OI Xin, Huolin/0000-0002-6521-868X FU U.S. Department of Energy [DE-AC02-05CH11231]; LBNL FX This study was performed using the facility at National Center for Electron Microscopy, Lawrence Berkeley National Laboratory (LBNL), which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank the LDRD funding support from LBNL. NR 15 TC 39 Z9 39 U1 6 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1470 EP 1474 DI 10.1021/nl2041854 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800060 PM 22313455 ER PT J AU Liu, M Yin, XB Zhang, X AF Liu, Ming Yin, Xiaobo Zhang, Xiang TI Double-Layer Graphene Optical Modulator SO NANO LETTERS LA English DT Article DE Graphene; optical modulator; double layer; optoelectronics AB Here we report a high-performance double-layer graphene optical modulator. By using two graphene layers and an oxide layer in between to form a p-oxide-n like junction, this modulator operates at 1 GHz with a high modulation depth (similar to 0.16 dB/mu m) at a moderate drive voltage (similar to 5 V). Benefited from the symmetrical band structure of graphene near Dirac point, such design eliminates the optical loss widely existing in silicon photonics and has advantages including small footprint, low energy consumption, and low insertion loss. C1 [Liu, Ming; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Yin, Xiaobo/A-4142-2011; Zhang, Xiang/F-6905-2011 FU National Science Foundation Nano-scale Science and Engineering Center (NSF-NSEC) for Scalable and Integrated Nano Manufacturing (SINAM) [CMMI-0751621] FX This work was supported by the National Science Foundation Nano-scale Science and Engineering Center (NSF-NSEC) for Scalable and Integrated Nano Manufacturing (SINAM) (grant no. CMMI-0751621). NR 21 TC 246 Z9 253 U1 27 U2 175 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1482 EP 1485 DI 10.1021/nl204202k PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800062 PM 22332750 ER PT J AU Zhu, ZW Tao, F Zheng, F Chang, R Li, YM Heinke, L Liu, Z Salmeron, M Somorjai, GA AF Zhu, Zhongwei Tao, Franklin (Feng) Zheng, Fan Chang, Rui Li, Yimin Heinke, Lars Liu, Zhi Salmeron, Miquel Somorjai, Gabor A. TI Formation of Nanometer-Sized Surface Platinum Oxide Clusters on a Stepped Pt(557) Single Crystal Surface Induced by Oxygen: A High-Pressure STM and Ambient-Pressure XPS Study SO NANO LETTERS LA English DT Article DE Stepped Pt single crystal; HP-STM; AP-XPS; surface oxide ID SCANNING-TUNNELING-MICROSCOPY; RAY PHOTOELECTRON-SPECTROSCOPY; HIGH-COVERAGE STRUCTURES; PT(111) SURFACE; ATOMIC OXYGEN; CO OXIDATION; ADSORPTION; LEVEL; GAP; SELECTIVITY AB We studied the oxygen-induced restructuring process on a stepped Pt(557) single crystal surface using high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at O-2 pressures up to 1 Torr. HP-STM has revealed that nanometer-sized clusters are created on Pt(557) at 1 Torr of O-2 and at room temperature. These clusters are identified as surface Pt oxide by AP-XPS. The appearance of clusters is preceded by the formation of 1D chain structures at the step edges. By using a Pt(111) surface as a reference, it was found that the step sites are the nucleation centers for the formation of surface oxide clusters. These surface oxide clusters disappear and the stepped structure is restored on Pt(557) after evacuating O-2 to 10(-8) Torr. Changes in the surface oxide concentration in response to variations in the O-2 gas pressure are repeatable for several cycles. Our results that small clusters are initiated at step sites at high pressures demonstrate the importance of performing in situ characterization of stepped Pt catalysts under reaction conditions. C1 [Zhu, Zhongwei; Li, Yimin; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Zhu, Zhongwei; Zheng, Fan; Li, Yimin; Heinke, Lars; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tao, Franklin (Feng)] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Chang, Rui; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Li, Yimin/F-5817-2012; chang, rui/H-2787-2012; Li, Yimin/F-5821-2012; Liu, Zhi/B-3642-2009; OI Liu, Zhi/0000-0002-8973-6561; Heinke, Lars/0000-0002-1439-9695 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We acknowledge Dr. Simon Beaumont, Dr. Vladimir Pushkarev, Yu Shi, and Xiaofeng Feng for helpful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 55 TC 47 Z9 47 U1 8 U2 169 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1491 EP 1497 DI 10.1021/nl204242s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800064 PM 22300373 ER PT J AU Tirumala, VR Stafford, CM Ocola, LE Douglas, JF Mahadevan, L AF Tirumala, Vijay R. Stafford, Christopher M. Ocola, Leonidas E. Douglas, Jack F. Mahadevan, L. TI Geometric Control of Rippling in Supported Polymer Nanolines SO NANO LETTERS LA English DT Article DE Rippling; polymer; line gratings; hydrogels; nanostructures ID VOLUME-PHASE-TRANSITIONS; THIN-FILMS; HYDROGELS; POLY(N-ISOPROPYLACRYLAMIDE); DEFORMATION; LITHOGRAPHY; INSTABILITY; MECHANICS; BEHAVIOR; GELS AB We study the swelling behavior of finlike polymer line gratings supported on a rigid substrate and show that the edge-supported polymer laminae undergo a rippling instability with a well-defined ripple wavelength A transverse to the plane of the solid supporting substrate and a ripple amplitude that monotonically decreases from its maximum at the free-edge. These ripple patterns develop due to inhomogeneous compressive strains that arise from the geometric constraints that progressively suppress swelling near the supporting substrate where the laminae are clamped. By experimentally examining the influence of swelling strain and pattern geometry on the observed rippling instability, we find that the ripple wavelength lambda scales with line width w for sufficiently long gratings, which is consistent with a simple theory. These trends were validated for polymer nanoline test patterns having w between (50 to 250) nm and a height-to-width aspect-ratio in the range 0.5 to 5. Our results suggest that line geometry, rather than material properties, governs the onset of rippling and suggest simple rules for their control. C1 [Tirumala, Vijay R.; Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Stafford, Christopher M.; Douglas, Jack F.] NIST, Div Polymers, Gaithersburg, MD 20899 USA. [Mahadevan, L.] Harvard Univ, Dept Phys, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Tirumala, VR (reprint author), Cabot Corp, 157 Concord Rd, Billerica, MA 01821 USA. EM vijay.r.tirumala@gmail.com; lm@seas.harvard.edu OI Ocola, Leonidas/0000-0003-4990-1064 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Harvard-NSF MRSEC; Kavli NanoBio Science and Technology Institute at Harvard; MacArthur Foundation FX We are grateful to Dr. Ralu Divan for helping with nanofabrication and Dr. Derrick Mancini for useful discussions. Use of nanofabrication facilities at the Center for Nanoscale Materials is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Additional support was provided by the Harvard-NSF MRSEC, the Kavli NanoBio Science and Technology Institute at Harvard and the MacArthur Foundation (L.M.). NR 35 TC 6 Z9 6 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1516 EP 1521 DI 10.1021/nl204306q PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800068 PM 22352905 ER PT J AU Wang, C Chien, JC Takei, K Takahashi, T Nah, J Niknejad, AM Javey, A AF Wang, Chuan Chien, Jun-Chau Takei, Kuniharu Takahashi, Toshitake Nah, Junghyo Niknejad, Ali M. Javey, Ali TI Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube Networks for Digital, Analog, and Radio-Frequency Applications SO NANO LETTERS LA English DT Article DE Flexible electronics; thin-film transistors; semiconducting nanotube networks; integrated circuits; radio frequency applications ID FIELD-EFFECT TRANSISTORS; ORGANIC TRANSISTORS; RADIO-FREQUENCY; ELECTRONICS AB Solution-processed thin-films of semiconducting carbon nanotubes as the channel material for flexible electronics simultaneously offers high performance, low cost, and ambient stability, which significantly outruns the organic semiconductor materials. In this work, we report the use of semiconductor-enriched carbon nanotubes for high-performance integrated circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The as-obtained thin-film transistors (TFTs) exhibit highly uniform device performance with on-current and transconductance up to 15 mu A/mu m and 4 mu S/mu m. By performing capacitance voltage measurements, the gate capacitance of the nanotube TFT is precisely extracted and the corresponding peak effective device mobility is evaluated to be around 50 cm(2)V(-1)s(-1). Wing such devices, digital logic gates including inverters, NAND, and NOR gates with superior bending stability have been demonstrated. Moreover, radio frequency measurements show that cutoff frequency of 170 MHz can be achieved in devices with a relatively long channel length of 4 mu m, which is sufficient for certain wireless communication applications. This proof-of-concept demonstration indicates that our platform can serve as a foundation for scalable, low-cost, high-performance flexible electronics. C1 [Wang, Chuan; Takei, Kuniharu; Takahashi, Toshitake; Nah, Junghyo; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Wang, Chuan; Takei, Kuniharu; Takahashi, Toshitake; Nah, Junghyo; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Wang, Chuan/B-3649-2011; Javey, Ali/B-4818-2013; Nah, Junghyo/P-3761-2015 OI Nah, Junghyo/0000-0001-9975-239X FU NSF COINS; NSF; DARPA/DSO Maximum Mobility and Manipulation; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; World Class University at Sunchon National University; Sloan Fellowship FX This work was partially funded by NSF COINS, NSF CAREER Award, and DARPA/DSO Maximum Mobility and Manipulation. The materials characterization part of this work was partially supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.J. acknowledges support from the World Class University program at Sunchon National University and a Sloan Fellowship. NR 30 TC 147 Z9 147 U1 9 U2 146 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1527 EP 1533 DI 10.1021/nl2043375 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800070 PM 22313389 ER PT J AU Yu, J Liu, GX Sumant, AV Goyal, V Balandin, AA AF Yu, Jie Liu, Guanxiong Sumant, Anirudha V. Goyal, Vivek Balandin, Alexander A. TI Graphene-on-Diamond Devices with Increased Current-Carrying Capacity: Carbon sp(2)-on-sp(3) Technology SO NANO LETTERS LA English DT Article DE Graphene; graphene-on-diamond; breakdown current; UNCD; graphene transistors ID FIELD-EFFECT TRANSISTORS; CURRENT SATURATION; THIN-FILMS; ULTRANANOCRYSTALLINE AB Graphene demonstrated potential for practical applications owing to its excellent electronic and thermal properties. Typical graphene field-effect transistors and interconnects built on conventional. SiO2/Si substrates reveal the breakdown current density on the order of 1 mu A/nm(2) (i.e., 10(8) A/cm(2)), which is similar to 100x larger than the fundamental limit for the metals but still smaller than the maximum achieved in carbon nanotubes. We show that by replacing SiO2 with synthetic diamond, one can substantially increase the current-carrying capacity of graphene to as high as similar to 18 mu A/nm(2) even at ambient conditions. Our results indicate that graphene's current-induced breakdown is thermally activated. We also found that the current carrying capacity of graphene can be improved not only on the single-crystal diamond substrates but also on an inexpensive ultrananocrystalline diamond, which can be produced in a process compatible with a conventional Si technology. The latter was attributed to the decreased thermal resistance of the ultrananocrystalline diamond layer at elevated temperatures. The obtained results are important for graphene's applications in high-frequency transistors, interconnects, and transparent electrodes and can lead to the new planar sp(2)-on-sp(3) carbon-on-carbon technology. C1 [Sumant, Anirudha V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Yu, Jie; Liu, Guanxiong; Goyal, Vivek; Balandin, Alexander A.] Univ Calif Riverside, Nanodevice Lab, Dept Elect Engn & Mat Sci, Riverside, CA 92521 USA. [Yu, Jie; Liu, Guanxiong; Goyal, Vivek; Balandin, Alexander A.] Univ Calif Riverside, Engn Program, Riverside, CA 92521 USA. RP Sumant, AV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sumant@anl.gov; balandin@ee.ucr.edu RI Yu, Jie/F-7086-2014; Liu, Guanxiong/E-2052-2016 FU Office of Naval Research (ONR) [N00014-10-1-0224]; Semiconductor Research Corporation (SRC); DARPA Defense Microelectronics Activity (DMEA) [H94003-10-2-1003]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Defense Advanced Research Project Agency (DARPA) through FCRP Center on Functional Engineered Nano Architectonics (FENA) FX The work at UCR was supported by the Office of Naval Research (ONR) through award N00014-10-1-0224, Semiconductor Research Corporation (SRC) and Defense Advanced Research Project Agency (DARPA) through FCRP Center on Functional Engineered Nano Architectonics (FENA), and DARPA Defense Microelectronics Activity (DMEA) under agreement number H94003-10-2-1003. The use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NEXAFS studies were performed at the University of Wisconsin Synchrotron Radiation Center. A.A.B. coordinated the project, led the graphene device data analysis, and wrote the manuscript; A.V.S. developed diamond growth and polishing processes, performed diamond characterization, and contributed to data analysis and manuscript writing; J.Y. performed graphene device fabrication and Raman and electrical measurements; G.L. performed graphene device fabrication and contributed to data analysis; and V.G. performed thermal measurements. NR 40 TC 59 Z9 61 U1 8 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1603 EP 1608 DI 10.1021/nl204545q PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800084 PM 22329428 ER PT J AU Wang, CM Li, XL Wang, ZG Xu, W Liu, J Gao, F Kovarik, L Zhang, JG Howe, J Burton, DJ Liu, ZY Xiao, XC Thevuthasan, S Baer, DR AF Wang, Chong-Min Li, Xiaolin Wang, Zhiguo Xu, Wu Liu, Jun Gao, Fei Kovarik, Libor Zhang, Ji-Guang Howe, Jane Burton, David J. Liu, Zhongyi Xiao, Xingcheng Thevuthasan, Suntharampillai Baer, Donald R. TI In Situ TEM Investigation of Congruent Phase Transition and Structural Evolution of Nanostructured Silicon/Carbon Anode for Lithium Ion Batteries SO NANO LETTERS LA English DT Article DE Si-coated carbon nanofiber anode; Li-ion battery; in situ TEM; DFT-MD; congruent phase transition ID TRANSMISSION ELECTRON-MICROSCOPY; HIGH-CAPACITY; ELECTROCHEMICAL LITHIATION; SNO2 NANOWIRE; LI; STORAGE; ALLOYS AB It is well-known that upon lithiation, both crystalline and amorphous Si transform to an armorphous LixSi phase, which subsequently crystallizes to a (Li, Si) crystalline compound, either Li15Si4 or Li22Si5. Presently, the detailed atornistic mechanism of this phase transformation and the degradation process in nanostructured Si are not fully understood. Here, we report the phase transformation characteristic and microstructural evolution of a specially designed amorphous silicon (a-Si) coated carbon nanofiber (CNF) composite during the charge/discharge process using in situ transmission electron microscopy and density function theory,molecular dynamic calculation. We found the crystallization of Li15Si4 from amorphous LixSi is a spontaneous, congruent phase transition process without phase separation or large-scale atomic motion, which is drastically different from what is expected from a classic nucleation and growth process. The a-Si layer is strongly bonded to the CNF and no spallation or cracking is observed during the early stages of cyclic charge/discharge. Reversible volume expansion/contraction upon charge/discharge is fully accommodated along the radial direction. However, with progressive cycling, damage in the form of surface roughness was gradually accumulated on the coating layer, which is believed to be the mechanism for the eventual capacity fade of the composite anode during long-term charge/discharge cycling. C1 [Wang, Chong-Min; Kovarik, Libor; Thevuthasan, Suntharampillai; Baer, Donald R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Li, Xiaolin; Wang, Zhiguo; Liu, Jun; Gao, Fei] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Xu, Wu; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Howe, Jane] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Burton, David J.] Appl Sci Inc, Cedarville, OH 45014 USA. [Liu, Zhongyi] Gen Motors Global R&D Ctr, Electrochem Energy Res Lab, Warren, MI 48090 USA. [Xiao, Xingcheng] Gen Motors Global R&D Ctr, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM Chongmin.Wang@pnnl.gov; Fei.Gao@pnnl.gov RI Gao, Fei/H-3045-2012; Baer, Donald/J-6191-2013; Wang, Zhiguo/B-7132-2009; Howe, Jane/G-2890-2011; Kovarik, Libor/L-7139-2016; OI Baer, Donald/0000-0003-0875-5961; Xu, Wu/0000-0002-2685-8684 FU Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830]; Vehicle Technologies for the Office of Energy Efficiency and Renewable Energy [DE-AC05-00OR22725] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program of the Pacific Northwest National Laboratory (PNNL). The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. The work at Oak Ridge National Laboratory, managed by U.T. Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 was sponsored by the Vehicle Technologies program for the Office of Energy Efficiency and Renewable Energy. NR 45 TC 132 Z9 134 U1 33 U2 338 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1624 EP 1632 DI 10.1021/nl204559u PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800088 PM 22385150 ER PT J AU Hwang, YJ Wu, CH Hahn, C Jeong, HE Yang, PD AF Hwang, Yun Jeong Wu, Cheng Hao Hahn, Chris Jeong, Hoon Eui Yang, Peidong TI Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties SO NANO LETTERS LA English DT Article DE Hierarchical nanostructure; inGaN nanowire; Si wire; photoanode; solar water splitting ID FERMI-LEVEL; WATER; GAN; INGAN; CELLS; GENERATION; EFFICIENCY; LIGHT; FILMS AB Three-dimensional hierarchical nanostructures were synthesized by the halide chemical vapor deposition of InGaN nanowires on Si wire arrays. Single phase InGaN nanowires grew vertically on the sidewalls of Si wires and acted as a high surface area photoanode for solar water splitting. Electrochemical measurements showed that the photocurrent density with hierarchical Si/InGaN nanowire arrays increased by 5 times compared to the photocurrent density with InGaN nanowire arrays grown on planar Si (1.23 V vs RHE). High-resolution transmission electron microscopy showed that InGaN nanowires are stable after 15 h of illumination. These measurements show that Si/InGaN hierarchical nanostructures are a viable high surface area electrode geometry for solar water splitting. C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Wu, Cheng Hao/C-9565-2014 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 128 Z9 130 U1 10 U2 171 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1678 EP 1682 DI 10.1021/nl3001138 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800097 PM 22369381 ER PT J AU Lohmuller, T Iversen, L Schmidt, M Rhodes, C Tu, HL Lin, WC Groves, JT AF Lohmueller, T. Iversen, L. Schmidt, M. Rhodes, C. Tu, H. -L. Lin, W. -C. Groves, J. T. TI Single Molecule Tracking on Supported Membranes with Arrays of Optical Nanoantennas SO NANO LETTERS LA English DT Article DE Lipid membranes; nanoantennas; fluorescence enhancement; Raman spectroscopy ID LIPID-BILAYERS; NANOSPHERE LITHOGRAPHY; NANOSTRUCTURES; SPECTROSCOPY; ELECTRODE AB Coupling of the localized surface plasmons between two closely apposed gold nanoparticles (nanoantenna) can cause strong enhancements of fluorescence or Raman signal intensity from molecules in the plasmonic "hot-spot". Harnessing these properties for practical applications is challenging due to the need to fabricate gold particle arrays with well-defined nanometer spacing and a means of delivering functional molecules to the hot-spot. We report fabrication of billions of plasmon-coupled nanostructures on a single substrate by a combination of colloid lithography and plasma processing. Controlled spacing of the nanoantenna gaps is achieved by taking advantage of the fact that polystyrene particles melt together at their contact point during plasma processing. The resulting polymer thread shadows a gap of well-defined spacing between each pair of gold triangles in the final array. Confocal surface-enhanced Raman spectroscopy imaging confirms the array is functionally uniform.. Furthermore, a fully intact supported membrane can be formed on the intervening substrate by vesicle fusion. Trajectories of freely diffusing individual proteins are traced as they sequentially pass through, and are enhanced by, multiple gaps. The nanoantenna array thus enables enhanced observation of a fluid membrane system without static entrapment of the molecules. C1 [Lohmueller, T.; Iversen, L.; Rhodes, C.; Tu, H. -L.; Lin, W. -C.; Groves, J. T.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. [Lohmueller, T.; Groves, J. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Lohmueller, T.; Groves, J. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schmidt, M.] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. EM jtgroves@lbl.gov RI Iversen, Lars/C-5298-2011; Lohmueller, Theobald/J-2754-2014 OI Iversen, Lars/0000-0002-1314-130X; Lohmueller, Theobald/0000-0003-2699-7067 FU Deutsche Forschungsgemeinschaft (DFG); Danish Council for Independent Research, Natural Sciences; Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. DOE [DE-AC02-05CH11231]; National Cancer Institute (NCI) [U54 CA143836] FX The authors would like to thank Jodi Gureasko and John Kuriyan for providing Ras and SOScat and P. James Schuck, Adam Schwartzberg, and Alexander Weber-Bargioni for fruitful discussions. Theobald Lohmuller was supported by a postdoc fellowship from the Deutsche Forschungsgemeinschaft (DFG). Lars Iversen was supported by a postdoc fellowship from the Danish Council for Independent Research, Natural Sciences. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy (DOE) under contract no. DE-AC02-05CH11231. Some work was performed at the Molecular Foundry and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory (LBNL), and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. DOE under contract no. DE-AC02-05CH11231. Additional support provided by Award U54 CA143836 from the National Cancer Institute (NCI) beginning in 2009. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NCI or the National Institutes of Health. NR 32 TC 37 Z9 37 U1 4 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2012 VL 12 IS 3 BP 1717 EP 1721 DI 10.1021/nl300294b PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 907GW UT WOS:000301406800104 PM 22352856 ER PT J AU Meyers, CA Schulz, AS AF Meyers, Carol A. Schulz, Andreas S. TI The Complexity of Welfare Maximization in Congestion Games SO NETWORKS LA English DT Article DE congestion games; network optimization; multicommodity flows; computational complexity ID NETWORK; EQUILIBRIUM; ALLOCATION; PRICE; FLOWS AB We investigate issues of complexity related to welfare maximization in congestion games. In particular, we provide a full classification of complexity results for the problem of finding a minimum cost solution to a congestion game, under the model of Rosenthal. We consider both network and general congestion games, and we examine several variants of the problem concerning the structure of the game and the properties of its associated cost functions. Many of these problem variants turn out to be NP-hard, and some are hard to approximate to within any finite factor, unless P = NP. We also identify several versions of the problem that are solvable in polynomial time. (C) 2011 Wiley Periodicals, Inc. NETWORKS, Vol. 59(2), 252-260 2012 C1 Lawrence Livermore Natl Lab, Syst & Intelligence Anal Sect, Livermore, CA 94550 USA. [Schulz, Andreas S.] MIT, Alfred P Sloan Sch Management, Cambridge, MA 02142 USA. MIT, Ctr Operat Res, Cambridge, MA 02142 USA. RP Meyers, CA (reprint author), Lawrence Livermore Natl Lab, Syst & Intelligence Anal Sect, L-153,7000 East Ave, Livermore, CA 94550 USA. EM meyers14@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; Lawrence Livermore Laboratory [LLNL-JRNL-410585]; Office of Naval Research [N000141110056] FX Contract grant sponsor: U.S. Department of Energy; Contract grant number: DE-AC52-07NA27344; Contract grant sponsor: Lawrence Livermore Laboratory; Contract grant number: LLNL-JRNL-410585; Contract grant sponsor: Office of Naval Research; Contract grant number: N000141110056 NR 25 TC 3 Z9 3 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-3045 J9 NETWORKS JI Networks PD MAR PY 2012 VL 59 IS 2 BP 252 EP 260 DI 10.1002/net.20439 PG 9 WC Computer Science, Hardware & Architecture; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA 923JY UT WOS:000302616800006 ER PT J AU Kutchesfahani, SZ AF Kutchesfahani, Sara Z. TI Cross-border connections SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Editorial Material RP Kutchesfahani, SZ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD MAR PY 2012 VL 57 IS 692 BP 38 EP 38 PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 919MV UT WOS:000302332900021 ER PT J AU Toner, BM Marcus, MA Edwards, KJ Rouxel, O German, CR AF Toner, Brandy M. Marcus, Matthew A. Edwards, Katrina J. Rouxel, Olivier German, Christopher R. TI Measuring the Form of Iron in Hydrothermal Plume Particles SO OCEANOGRAPHY LA English DT Article ID PACIFIC-OCEAN; VENTS; FE; RIDGE C1 [Toner, Brandy M.] Univ Minnesota Twin Cities, Dept Soil Water & Climate, St Paul, MN USA. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Edwards, Katrina J.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. [Edwards, Katrina J.] Univ So Calif, Dept Earth Sci, Los Angeles, CA USA. [Rouxel, Olivier] IFREMER, Dept Marine Geosci, Technopole Brest Iroise, France. [German, Christopher R.] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA. RP Toner, BM (reprint author), Univ Minnesota Twin Cities, Dept Soil Water & Climate, St Paul, MN USA. EM toner@umn.edu RI Rouxel, Olivier/F-3954-2014; Toner, Brandy/N-7911-2016 OI Toner, Brandy/0000-0002-3681-3455 FU Woods Hole Oceanographic Institution Deep Ocean Exploration Institute; National Science Foundation; Gordon and Betty Moore Foundation; Office of Science, Office of Basic Energy Sciences, of US Department of Energy [DE-AC02-05CH11231] FX We thank Diane Adams for inspiration in using sediment trap deployments at the EPR for plume biogeochemistry; EPR cruise principal investigators Jim Cowen, Karen Von Damm, and Lauren Mullineaux for access to the EPR; the Woods Hole Oceanographic Institution Deep Ocean Exploration Institute, the National Science Foundation Ridge 2000 Program, and the Gordon and Betty Moore Foundation for funding; Steve Manganini, Maureen Raymo, Sirine Fakra, and Jeffry Sorensen for research support; and Breea Govenar, Stace Beaulieu, Susan Mills, Tim Shank, and Dan Fornari for trap deployments and recovery. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract DE-AC02-05CH11231. NR 19 TC 26 Z9 26 U1 1 U2 27 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD MAR PY 2012 VL 25 IS 1 SI SI BP 209 EP 212 PG 4 WC Oceanography SC Oceanography GA 903DC UT WOS:000301095200022 ER PT J AU Miloslavina, Y Lambrev, PH Javorfi, T Varkonyi, Z Karlicky, V Wall, JS Hind, G Garab, G AF Miloslavina, Yuliya Lambrev, Petar H. Javorfi, Tamas Varkonyi, Zsuzsanna Karlicky, Vaclav Wall, Joseph S. Hind, Geoffrey Garab, Gyozo TI Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of LHCII SO PHOTOSYNTHESIS RESEARCH LA English DT Article DE Anisotropic circular dichroism; Magnetic circular dichroism; Psi-type circular dichroism; Thylakoid membranes; Grana patches; Light-harvesting complexes ID LIGHT-HARVESTING-COMPLEX; PIGMENT-PROTEIN COMPLEXES; CHLOROPHYLL A/B COMPLEX; LINEAR-DICHROISM; PHOTOSYSTEM-II; DIFFERENTIAL SCATTERING; STRUCTURAL FLEXIBILITY; FLUORESCENCE EMISSION; OPTICAL SPECTROSCOPY; REVERSIBLE CHANGES AB In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment-pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while "psi-type'' CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face-and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra) molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an organization, leading to the discovery of a novel crystalline structure in macroaggregates of LHCII. C1 [Miloslavina, Yuliya; Lambrev, Petar H.; Varkonyi, Zsuzsanna; Karlicky, Vaclav; Garab, Gyozo] Hungarian Acad Sci, Inst Plant Biol, Biol Res Ctr, H-6701 Szeged, Hungary. [Javorfi, Tamas] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Wall, Joseph S.; Hind, Geoffrey] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Garab, G (reprint author), Hungarian Acad Sci, Inst Plant Biol, Biol Res Ctr, POB 521, H-6701 Szeged, Hungary. EM gyozo@brc.hu RI Karlicky, Vaclav/F-2950-2014; Lambrev, Petar/D-3071-2017 OI Lambrev, Petar/0000-0001-5147-153X FU EC Marie Curie Training Network (ITN) "HARVEST'' [238017]; NKTH CNK [80345, GOP-1.1.2-07/1-2008-0007]; US-NIH; US-DOE; US-DOE, Office of Basic Energy Sciences, Division of Energy Biosciences FX This study was supported by the EC Marie Curie Training Network (ITN) "HARVEST'' (No. 238017) and the Hungarian Scientific Research Fund, OTKA/NKTH CNK 80345 to G. G. and GOP-1.1.2-07/1-2008-0007 to P. L. The authors thank Hans-Georg Kuball for his helpful advice, Laszlo Kovacs for the preparation of BBY and LHCII, Beth Lin for the STEM sample preparation and Martha Simon for the STEM operation. US-NIH and US-DOE provided financial support to the STEM Facility. GH received support from US-DOE, Office of Basic Energy Sciences, Division of Energy Biosciences. NR 56 TC 9 Z9 9 U1 2 U2 36 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 J9 PHOTOSYNTH RES JI Photosynth. Res. PD MAR PY 2012 VL 111 IS 1-2 BP 29 EP 39 DI 10.1007/s11120-011-9664-y PG 11 WC Plant Sciences SC Plant Sciences GA 925NR UT WOS:000302768500004 PM 21667227 ER PT J AU Frankfurt, L Guzey, V Strikman, M AF Frankfurt, L. Guzey, V. Strikman, M. TI Leading twist nuclear shadowing phenomena in hard processes with nuclei SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review ID DEEP-INELASTIC-SCATTERING; VIRTUAL-COMPTON-SCATTERING; GENERALIZED PARTON DISTRIBUTIONS; STRUCTURE-FUNCTION RATIOS; HIGH-ENERGY SCATTERING; DEUTERON STRUCTURE FUNCTIONS; PROTON STRUCTURE-FUNCTION; COLOR GLASS CONDENSATE; VECTOR-MESON-DOMINANCE; HEAVY-ION COLLISIONS AB We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of the Gribov-Glauber theory, QCD factorization theorems, and the HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei - inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We also analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and in certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at the Relativistic Heavy Ion Collider (RHIC). Detailed tests will be possible at an Electron-Ion Collider (EIC) in the USA and at the Large Hadron-Electron Collider (LHeC) at CERN. (C) 2012 Elsevier B.V. All rights reserved. C1 [Guzey, V.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Frankfurt, L.] Tel Aviv Univ, Sch Phys & Astron, Dept Nucl Phys, IL-69978 Tel Aviv, Israel. [Strikman, M.] Penn State Univ, Dept Phys, State Coll, PA 16802 USA. RP Guzey, V (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. EM frankfur@tauphy.tau.ac.il; vguzey@jlab.org; strikman@phys.psu.edu OI Guzey, Vadim/0000-0002-2393-8507 FU BSF; DOE; Jefferson Science Associates, LLC under U.S. DOE [DE-AC05-06OR23177] FX This research was partially supported by the BSF (LF and MS) and DOE (MS).; Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. NR 315 TC 56 Z9 56 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD MAR PY 2012 VL 512 IS 4-5 BP 255 EP 393 DI 10.1016/j.physrep.2011.12.002 PG 139 WC Physics, Multidisciplinary SC Physics GA 921CC UT WOS:000302454600001 ER PT J AU Singh, JP Whitford, PC Hayre, NR Onuchic, J Cox, DL AF Singh, Jesse P. Whitford, Paul C. Hayre, N. R. Onuchic, Jose Cox, Daniel L. TI Massive conformation change in the prion protein: Using dual-basin structure-based models to find misfolding pathways SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE left-handed; beta-helix; protein folding; structure-based; disulfide ID MOLECULAR-DYNAMICS SIMULATIONS; AMYLOID FIBRILS; DISULFIDE BONDS; AGGREGATION; SCRAPIE; DIFFRACTION; LANDSCAPE; HELICES; DOMAIN; CORE AB We employ all-atom structure-based models with a force field with multiple energetic basins for the C-terminal (residues 166226) of the mammalian prion protein. One basin represents the known alpha-helical (aH) structure while the other represents the same residues in a left-handed beta-helical (LHBH) conformation. The LHBH structure has been proposed to help describe one class of in vitro grown fibrils, as well as possibly self-templating the conversion of normal cellular prion protein to the infectious form. Yet, it is unclear how the protein may make this global rearrangement. Our results demonstrate that the conformation changes are not strongly limited by large-scale geometry modification and that there may exist an overall preference for the LHBH conformation. Furthermore, our model presents novel intermediate trapping conformations with twisted LHBH structure. Proteins 2012; (c) 2012 Wiley Periodicals, Inc. C1 [Singh, Jesse P.; Hayre, N. R.; Cox, Daniel L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Singh, Jesse P.; Hayre, N. R.; Cox, Daniel L.] Univ Calif Davis, Inst Complex Adapt Matter ICAM I2CAM, Davis, CA 95616 USA. [Whitford, Paul C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Onuchic, Jose] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA. RP Singh, JP (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM jsingh@physics.ucdavis.edu FU NSF [PHY0822283, NSFMCB0543906, NSFMCB0744732, PHY-0822283, MCB-1051438]; LANL; Institute for Complex Adaptive Matter [ICAM-ICAM2]; US National Science Foundation ICAM [DMR-0456669] FX Grant sponsor: NSF; Grant numbers: PHY0822283, NSFMCB0543906, NSFMCB0744732; PCW is funded by LANL Director's Postdoctoral Fellowship. The Center for Theoretical Biological Physics is sponsored by the NSF (Grant PHY-0822283 and MCB-1051438). JPS and NRH would like to acknowledge support received during part of this project rom the Institute for Complex Adaptive Matter (ICAM-ICAM2) through the ICAM Branches Cost Sharing Fund and the US National Science Foundation ICAM Award, Grant DMR-0456669. JPS would also like to acknowledge Dr. Rajiv Singh for useful discussions regarding protein folding thermodynamics. NR 41 TC 4 Z9 4 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD MAR PY 2012 VL 80 IS 5 BP 1299 EP 1307 DI 10.1002/prot.24026 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 922IZ UT WOS:000302541900004 PM 22274922 ER PT J AU Ciovati, G Anlage, SM Baldwin, C Cheng, G Flood, R Jordan, K Kneisel, P Morrone, M Nemes, G Turlington, L Wang, H Wilson, K Zhang, S AF Ciovati, G. Anlage, Steven M. Baldwin, C. Cheng, G. Flood, R. Jordan, K. Kneisel, P. Morrone, M. Nemes, G. Turlington, L. Wang, H. Wilson, K. Zhang, S. TI Low temperature laser scanning microscopy of a superconducting radio-frequency cavity SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ELECTRON-MICROSCOPY; NIOBIUM AB An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of similar to 1 mu Omega at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694570] C1 [Ciovati, G.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Anlage, Steven M.] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Nemes, G.] ASTiGMATTM, Sacramento, CA 95827 USA. RP Ciovati, G (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM gciovati@jlab.org FU U.S. Department of Energy (DOE) [DE-PS02-09ER09-05, DESC 0004950]; U.S. Government; UMD/ONR Applied Electromagnetics Center [D10 (N000140911190)]; Maryland Center for Nanophysics and Advanced Materials FX The authors would like to acknowledge P. Kushnick and B. Clemens from Jefferson Lab for cryogenic support and electron-beam welding of the Nb cavity and Professor A. Gurevich from Old Dominion University for many valuable discussions. This manuscript has been authored by Jefferson Science Associates, LLC under U.S. Department of Energy (DOE) Contract No. DE-PS02-09ER09-05. Additional support for this work was provided by the U.S. Government Presidential Early Career Award for Scientists and Engineers. The U.S. Government retains a non-exclusive, paidup, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. S.M.A. acknowledges support from U.S. Department of Energy (DOE) (DESC 0004950) and the UMD/ONR Applied Electromagnetics Center, task D10 (N000140911190), and the Maryland Center for Nanophysics and Advanced Materials. NR 26 TC 5 Z9 5 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2012 VL 83 IS 3 AR 034704 DI 10.1063/1.3694570 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 918CU UT WOS:000302227700047 PM 22462945 ER PT J AU Islam, Z Capatina, D Ruff, JPC Das, RK Trakhtenberg, E Nojiri, H Narumi, Y Welp, U Canfield, PC AF Islam, Zahirul Capatina, Dana Ruff, Jacob P. C. Das, Ritesh K. Trakhtenberg, Emil Nojiri, Hiroyuki Narumi, Yasuo Welp, Ulrich Canfield, Paul C. TI A single-solenoid pulsed-magnet system for single-crystal scattering studies SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID X-RAY-DIFFRACTION; SYNCHROTRON-RADIATION; NEUTRON-DIFFRACTION; FIELD; TEMPERATURE; TRANSITION; PHASE AB We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to similar to 30 T with a zero-to-peak-field rise time of similar to 2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (similar to 23.6 degrees) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688251] C1 [Islam, Zahirul; Ruff, Jacob P. C.; Das, Ritesh K.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Capatina, Dana; Trakhtenberg, Emil] Argonne Natl Lab, APS Engn Support Div, Adv Photon Source, Argonne, IL 60439 USA. [Nojiri, Hiroyuki; Narumi, Yasuo] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan. [Welp, Ulrich] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Canfield, Paul C.] Iowa State Univ, Ames Lab, Dept Phys & Astron, Ames, IA 50010 USA. RP Islam, Z (reprint author), Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Nojiri, Hiroyuki/B-3688-2011; Canfield, Paul/H-2698-2014; Narumi, Yasuo/B-4030-2015 FU DOE, Office of Science [DE-AC02-06CH11357]; International Collaboration Center at the Institute for Materials Research (ICC-IMR) at Tohoku University; KAKENHI from MEXT [23224009]; Natural Sciences and Engineering Research Council (NSERC) of Canada; DOE, Office of Basic Energy Science, Division of Materials Sciences and Engineering; DOE by Iowa State University [DE-AC02-07CH11358] FX We have benefitted from discussions with C. Swenson of LANL and from comments on the design of the system by J. Schlueter, Y. Ren, and B. Brajuskovic of ANL. We thank J. C. Lang (ANL) for a critical reading of the manuscript. Use of the APS is supported by DOE, Office of Science, (Contract No. DE-AC02-06CH11357). A part of this work was supported by International Collaboration Center at the Institute for Materials Research (ICC-IMR) at Tohoku University. H.N. acknowledges KAKENHI (Grant No. 23224009) from MEXT. J.P.C.R. acknowledges the support of Natural Sciences and Engineering Research Council (NSERC) of Canada. Work at Ames Laboratory was supported by DOE, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the DOE by Iowa State University (Contract No. DE-AC02-07CH11358). NR 34 TC 8 Z9 8 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2012 VL 83 IS 3 AR 035101 DI 10.1063/1.3688251 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 918CU UT WOS:000302227700056 PM 22462954 ER PT J AU Manginell, RP Moorman, MW Rejent, JA Vianco, PT Grazier, MJ Wroblewski, BD Mowry, CD Achyuthan, KE AF Manginell, Ronald P. Moorman, Matthew W. Rejent, Jerome A. Vianco, Paul T. Grazier, Mark J. Wroblewski, Brian D. Mowry, Curtis D. Achyuthan, Komandoor E. TI Invited Article: A materials investigation of a phase-change micro-valve for greenhouse gas collection and other potential applications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CARIBIC PASSENGER AIRCRAFT; NONMETHANE HYDROCARBONS; ATMOSPHERIC CO2; ENERGY STORAGE; CARBON-DIOXIDE; SYSTEM; EMISSIONS; ACCURACY AB The deleterious consequences of climate change are well documented. Future climate treaties might mandate greenhouse gas (GHG) emissions measurement from signatories in order to verify compliance. The acquisition of atmospheric chemistry would benefit from low cost, small size/weight/power of microsystems. In this paper, we investigated several key materials science aspects of a phase-change microvalve (PC mu V) technology with low power/size/weight/cost for ubiquitous GHG sampling. The novel design, based on phase-change material low-melting-point eutectic metal alloys (indium-bismuth, InBi and tin-lead, SnPb), could be actuated at temperatures as low as 72 degrees C. Valve manufacturing was based on standard thick and thin-film processes and solder technologies that are commonly used in industry, enabling low-cost, high-volume fabrication. Aging studies showed that it was feasible to batch fabricate the PC mu Vs and store them for future use, especially in the case of SnPb alloys. Hermetic sealing of the valve prototypes was demonstrated through helium leak testing, and Mil spec leak rates less than 1 x 10(-9) atm cm(3)/s were achieved. This confirms that the sample capture and analysis interval can be greatly expanded, easing the logistical burdens of ubiquitous GHG monitoring. Highly conservative and hypothetical CO2 bias due to valve actuation at altitude in 1 cm(3) microsamplers would be significantly below 1.0 and 2.2 ppmv for heat-treated InBi and SnPb solders, respectively. The CO2 bias from the PC mu V scales well, as a doubling of sampler volume halved the bias. We estimated the shelf life of the SnPb PC mu Vs to be at least 2.8 years. These efforts will enable the development of low cost, low dead volume, small size/weight microsystems for monitoring GHGs and volatile organic compounds. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688856] C1 [Manginell, Ronald P.; Moorman, Matthew W.] Sandia Natl Labs, Microsyst Enabled Detect Dept, Albuquerque, NM 87185 USA. [Rejent, Jerome A.; Vianco, Paul T.; Grazier, Mark J.] Sandia Natl Labs, Multiscale Met S&T Dept, Albuquerque, NM 87185 USA. [Wroblewski, Brian D.] Sandia Natl Labs, Adv Prototyping S&T Dept, Albuquerque, NM 87185 USA. [Mowry, Curtis D.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. [Achyuthan, Komandoor E.] Sandia Natl Labs, Biosensors & Nanomat Dept, Albuquerque, NM 87185 USA. RP Manginell, RP (reprint author), Sandia Natl Labs, Microsyst Enabled Detect Dept, POB 5800, Albuquerque, NM 87185 USA. FU U. S. Department of Energy (DOE) [DE-AC04-94AL85000]; Sandia's Laboratory Directed Research and Development (LDRD) [149403] FX We thank Dr. W. Kent Schubert and Dr. Wahid Hermina for support and Dr. Ethan Blansett for invaluable discussions. We thank Randy Montoya and Neal Singer for photographing the microsamplers and for helping to get this work published. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy (DOE) under Contract DE-AC04-94AL85000. These investigations were supported by Sandia's Laboratory Directed Research and Development (LDRD) project # 149403. NR 49 TC 4 Z9 4 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2012 VL 83 IS 3 AR 031301 DI 10.1063/1.3688856 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 918CU UT WOS:000302227700001 PM 22462899 ER PT J AU Merritt, EC Lynn, AG Gilmore, MA Hsu, SC AF Merritt, Elizabeth C. Lynn, Alan G. Gilmore, Mark A. Hsu, Scott C. TI Multi-chord fiber-coupled interferometer with a long coherence length laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 10(15)-10(18) cm(-2). Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce mu s-, cm-, and Mbarscale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 x 10(15) cm(-2). (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697731] C1 [Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hsu, Scott C.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Merritt, EC (reprint author), Univ New Mexico, Albuquerque, NM 87131 USA. EM gilmore@ece.unm.edu OI Hsu, Scott/0000-0002-6737-4934 FU Office of Fusion Energy Sciences of the U.S. Department of Energy FX The authors would like to acknowledge the contributions from their colleagues Andrew Case, Sarah Messer, and Samuel Brockington at HyperV Technologies, Jason Cassibry at the University of Alabama in Huntsville, John Dunn, Colin Adams, and Josh Davis at Los Alamos National Laboratory, and Thomas Awe now at Sandia National Laboratories. This work was supported by the Office of Fusion Energy Sciences of the U.S. Department of Energy. NR 11 TC 8 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2012 VL 83 IS 3 AR 033506 DI 10.1063/1.3697731 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 918CU UT WOS:000302227700023 PM 22462921 ER PT J AU Podesta, M Bell, RE AF Podesta, M. Bell, R. E. TI A real-time velocity diagnostic for NSTX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB A new system for fast measurements of the plasma toroidal velocity has been installed on the National Spherical Torus Experiment, NSTX [M. Ono et al., Nucl. Fusion 40, 557 ( 2000)]. The diagnostic, based on active charge-exchange recombination spectroscopy, can measure at up to six radial locations with maximum sampling rate of 5 kHz. The system is interfaced in real time with the NSTX plasma control system, in order to feed back on plasma velocity by means of actuators such as neutral beams and external coils. The paper describes the design criteria and implementation of the diagnostic. Examples from the initial tests of the system during neon glows are also discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692752] C1 [Podesta, M.; Bell, R. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Podesta, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy (DOE) [DE-AC02-09CH11466] FX The authors would like to thank R. E. Feder, J. M. Carson, and C. B. McLaughlin for their help in the design and implementation of the RTV system. Discussions with Dr. S. A. Sabbagh (Columbia University, NY - USA) and with the NSTX Control Group are gratefully acknowledged. Work supported by U.S. Department of Energy (DOE) (Contract No. DE-AC02-09CH11466). NR 16 TC 4 Z9 4 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2012 VL 83 IS 3 AR 033503 DI 10.1063/1.3692752 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 918CU UT WOS:000302227700020 PM 22462918 ER PT J AU Smither, RK Graber, TJ Fernandez, PB Mills, DM AF Smither, R. K. Graber, T. J. Fernandez, P. B. Mills, D. M. TI Asymmetric-cut variable-incident-angle monochromator SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID INCLINED-CRYSTAL MONOCHROMATOR; X-RAYS; SYNCHROTRON-RADIATION; DIFFRACTION; PERFORMANCE; SIMULATION; UNDULATOR; OPTICS; BEAM AB A novel asymmetric-cut variable-incident-angle monochromator was constructed and tested in 1997 at the Advanced Photon Source of Argonne National Laboratory. The monochromator was originally designed as a high heat load monochromator capable of handling 5-10 kW beams from a wiggler source. This was accomplished by spreading the x-ray beam out on the surface an asymmetric-cut crystal and by using liquid metal cooling of the first crystal. The monochromator turned out to be a highly versatile monochromator that could perform many different types of experiments. The monochromator consisted of two 18 degrees asymmetrically cut Si crystals that could be rotated about 3 independent axes. The first stage (Phi) rotates the crystal around an axis perpendicular to the diffraction plane. This rotation changes the angle of the incident beam with the surface of the crystal without changing the Bragg angle. The second rotation (Psi) is perpendicular to the first and is used to control the shape of the beam footprint on the crystal. The third rotation (Theta) controls the Bragg angle. Besides the high heat load application, the use of asymmetrically cut crystals allows one to increase or decrease the acceptance angle for crystal diffraction of a monochromatic x-ray beam and allows one to increase or decrease the wavelength bandwidth of the diffraction of a continuum source like a bending-magnet beam or a normal x-ray-tube source. When the monochromator is used in the doubly expanding mode, it is possible to expand the vertical size of the double-diffracted beam by a factor of 10-15. When this was combined with a bending magnet source, it was possible to generate an 8 keV area beam, 16 mm wide by 26 mm high with a uniform intensity and parallel to 1.2 arc sec that could be applied in imaging experiments. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3685614] C1 [Smither, R. K.; Fernandez, P. B.; Mills, D. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Graber, T. J.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. RP Smither, RK (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM rks@aps.anl.gov FU U.S. Department of Energy (DOE), BES-Material Sciences [W-31-109-Eng-38] FX The authors wish to thank Al Paugys for his considerable assistance in the construction of this monochromator and his assistance during this experiment. This work supported by U.S. Department of Energy (DOE), BES-Material Sciences, under Contract No. W-31-109-Eng-38. NR 30 TC 0 Z9 0 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2012 VL 83 IS 3 AR 035107 DI 10.1063/1.3685614 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 918CU UT WOS:000302227700062 PM 22462960 ER PT J AU Vine, DJ Williams, GJ Clark, JN Putkunz, CT Pfeifer, MA Legnini, D Roehrig, C Wrobel, E Huwald, E van Riessen, G Abbey, B Beetz, T Irwin, J Feser, M Hornberger, B McNulty, I Nugent, KA Peele, AG AF Vine, D. J. Williams, G. J. Clark, J. N. Putkunz, C. T. Pfeifer, M. A. Legnini, D. Roehrig, C. Wrobel, E. Huwald, E. van Riessen, G. Abbey, B. Beetz, T. Irwin, J. Feser, M. Hornberger, B. McNulty, I. Nugent, K. A. Peele, A. G. TI An in-vacuum x-ray diffraction microscope for use in the 0.7-2.9 keV range SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID PHASE RETRIEVAL; COHERENT; CALIFORNICA AB A dedicated in-vacuum coherent x-ray diffraction microscope was installed at the 2-ID-B beamline of the Advanced Photon Source for use with 0.7-2.9 keV x-rays. The instrument can accommodate three common implementations of diffractive imaging; plane wave illumination; defocused-probe (Fresnel diffractive imaging) and scanning (ptychography) using either a pinhole, focused or defocused probe. The microscope design includes active feedback to limit motion of the optics with respect to the sample. Upper bounds on the relative optics-to-sample displacement have been measured to be 5.8 nm(v) and 4.4 nm(h) rms/h using capacitance micrometry and 27 nm/h using x-ray point projection imaging. The stability of the measurement platform and in-vacuum operation allows for long exposure times, high signal-to-noise and large dynamic range two-dimensional intensity measurements to be acquired. Finally, we illustrate the microscope's stability with a recent experimental result. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688655] C1 [Vine, D. J.; Putkunz, C. T.; Abbey, B.; Nugent, K. A.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Vine, D. J.; Legnini, D.; Roehrig, C.; Wrobel, E.; McNulty, I.] Argonne Natl Lab, Argonne, IL 60439 USA. [Williams, G. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Clark, J. N.; Huwald, E.; van Riessen, G.; Peele, A. G.] La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. [Clark, J. N.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Pfeifer, M. A.] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14850 USA. [Beetz, T.; Irwin, J.; Feser, M.; Hornberger, B.] Xradia Inc, Pleasanton, CA 94588 USA. EM dvine@aps.anl.gov RI Nugent, Keith/J-2699-2012; Abbey, Brian/D-3274-2011; Nugent, Keith/I-4154-2016; Williams, Garth/H-1606-2012 OI Nugent, Keith/0000-0003-1522-8991; Abbey, Brian/0000-0001-6504-0503; Nugent, Keith/0000-0002-4281-3478; NR 22 TC 12 Z9 12 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2012 VL 83 IS 3 AR 033703 DI 10.1063/1.3688655 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 918CU UT WOS:000302227700027 PM 22462925 ER PT J AU Markutsya, S Kholod, YA Devarajan, A Windus, TL Gordon, MS Lamm, MH AF Markutsya, Sergiy Kholod, Yana A. Devarajan, Ajitha Windus, Theresa L. Gordon, Mark S. Lamm, Monica H. TI A coarse-grained model for beta-D-glucose based on force matching SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article DE Coarse-grain force fields; Glucose; Glucopyranose; Molecular dynamics simulation ID MOLECULAR-DYNAMICS; SIMULATIONS; POTENTIALS; SYSTEMS; MESOSCALE; WATER; FIELD; BACK AB Cellulosic ethanol production is a two-stage process that involves the hydrolysis of cellulose to form simple sugars and the fermentation of these sugars to ethanol. Hydrolysis of cellulose is the rate-limiting step, and there is a great need to characterize the process with numerical simulations to better understand the complex mechanisms involved. The ultimate goal is to generate accurate coarse-grained molecular models that are capable of predicting the structure of lignocellulose before and after pretreatment so that subsequent ab initio calculations can be performed to probe the degradation pathways. As a first step toward that goal, the force-matching method is used to derive coarse-grained models for beta-D-glucose molecules in aqueous solution. Using the same reference, an all-atom molecular dynamics simulation trajectory, two sets of three-and six-site coarse-grained models of beta-D-glucose are developed using two definitions of the coarse-grained center site location: center of mass (CG-CM) and geometric center (CG-GC). The performance of these coarse-grained models is evaluated by comparing the coarse-grained predictions for bond-length distributions and radial distribution functions to those obtained from the all-atom reference simulation. The six-site coarse-grained models retain more structural details than the three-site coarse-grained models. Comparison between center site definitions shows that CG-CM models generally predict local ordering better, while CG-GC models predict long-range structure better. C1 [Markutsya, Sergiy; Kholod, Yana A.; Devarajan, Ajitha; Windus, Theresa L.; Gordon, Mark S.; Lamm, Monica H.] Ames Lab, Ames, IA 50011 USA. [Markutsya, Sergiy; Lamm, Monica H.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA USA. [Kholod, Yana A.; Devarajan, Ajitha; Windus, Theresa L.; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA USA. RP Gordon, MS (reprint author), Ames Lab, Ames, IA 50011 USA. EM mark@si.fi.ameslab.gov FU U.S. Department of Energy's (USDOE) through USDOE's Office of Advanced Scientific Computing Research (ASCR); Biological and Environmental Research (BER); U.S. Department of Energy [DE-AC02-07CH11358] FX This research is sponsored by U.S. Department of Energy's (USDOE) Scientific Discovery through Advanced Computing (SciDAC) program through USDOE's Office of Advanced Scientific Computing Research (ASCR) and Biological and Environmental Research (BER), and performed at the Ames Laboratory, FWP AL-08-330-039. Ames Laboratory is managed by Iowa State University for the U.S. Department of Energy under contract DE-AC02-07CH11358. The authors thank Professor G. A. Voth for providing the multiscale coarse-graining (MS-CG) software developed by his research group. NR 32 TC 7 Z9 7 U1 3 U2 37 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD MAR PY 2012 VL 131 IS 3 AR 1162 DI 10.1007/s00214-012-1162-6 PG 15 WC Chemistry, Physical SC Chemistry GA 919BM UT WOS:000302295600061 ER PT J AU Chareyre, B Cortis, A Catalano, E Barthelemy, E AF Chareyre, Bruno Cortis, Andrea Catalano, Emanuele Barthelemy, Eric TI Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Viscous flow; Granular material; Solid fluid coupling; Pore-network; Finite volumes ID NETWORK MODEL; POROUS-MEDIA; NUMERICAL-SIMULATION; GRANULAR ASSEMBLIES; FLUIDIZED-BEDS; TRIANGULATIONS; PERMEABILITY; DYNAMICS AB We propose a method for effectively upscaling incompressible viscous flow in large random polydispersed sphere packings: the emphasis of this method is on the determination of the forces applied on the solid particles by the fluid. Pore bodies and their connections are defined locally through a regular Delaunay triangulation of the packings. Viscous flow equations are upscaled at the pore level, and approximated with a finite volume numerical scheme. We compare numerical simulations of the proposed method to detailed finite element simulations of the Stokes equations for assemblies of 8-200 spheres. A good agreement is found both in terms of forces exerted on the solid particles and effective permeability coefficients. C1 [Chareyre, Bruno; Catalano, Emanuele; Barthelemy, Eric] Grenoble INP, UMR CNRS 5519, LEGI, F-38041 Grenoble 9, France. [Cortis, Andrea] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94806 USA. RP Chareyre, B (reprint author), Grenoble INP, UMR CNRS 5519, LEGI, BP 53, F-38041 Grenoble 9, France. EM bruno.chareyre@grenoble-inp.fr RI chareyre, bruno/A-5822-2010; OI Chareyre, Bruno/0000-0001-8505-8540 FU Grenoble Institute of Technology through BQR; U.S. Department of Energy [DE-AC02-05CH11231] FX This study and PhD grant of E. Catalano was supported by Grenoble Institute of Technology through BQR-2008 program. A. Cortis' work was supported, in part, by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 11 Z9 11 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2012 VL 92 IS 2 BP 473 EP 493 DI 10.1007/s11242-011-9915-6 PG 21 WC Engineering, Chemical SC Engineering GA 919AW UT WOS:000302294000014 ER PT J AU Sun, Y Tong, C Duan, Q Buscheck, TA Blink, JA AF Sun, Y. Tong, C. Duan, Q. Buscheck, T. A. Blink, J. A. TI Combining Simulation and Emulation for Calibrating Sequentially Reactive Transport Systems SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Simulation; Emulation; Transport; First-order; Reaction kinetics ID IN-GROUND WATER; COMPUTER CODE; FIELD; MODEL; BIODEGRADATION; AQUIFER; ETHENE; RATES AB Reaction rates are usually identified at laboratory scale, by comparing measured concentrations with those of the corresponding mathematical models. However, laboratory-scale reaction rates may not necessarily reflect the reactive transport scenarios at the field scale. Thus, a major challenge for field-scale modeling is the determination of reaction kinetics and rates. The conventional inversion of reaction rates relies on optimization approaches that require expensive computation to obtain the gradient of objective functions. In this manuscript, we present a combined simulation-emulation approach for calibrating the first-order reaction rates at the field scale. A number of sample points are adaptively selected to represent the high-dimensional parametric space including dimensions of reaction rates. Correspondingly, reactive transport models are generated and executed for constructing response surfaces of objective functions. Taking the advantage of smooth response surfaces, optimization of reaction rates is efficiently performed. For several benchmark cases, the advantage of using global sensitivity analysis and uncertainty quantification of the objective functions in terms of uncertain reaction rates is demonstrated. C1 [Sun, Y.; Tong, C.; Buscheck, T. A.; Blink, J. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Duan, Q.] Beijing Normal Univ, Beijing 100875, Peoples R China. RP Sun, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM sun4@llnl.gov RI Sun, Yunwei/C-9751-2010; Duan, Qingyun/C-7652-2011 OI Duan, Qingyun/0000-0001-9955-1512 FU U.S. Department of Energy; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to thank Kayyum Mansoor and Andrew F. B. Tompson of Lawrence Livermore National Laboratory, and anonymous reviewers for their careful review and helpful comments that helped to improve the manuscript. This research was funded by the program of advanced simulation capability for environmental management (ASCEM), U.S. Department of Energy and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 48 TC 8 Z9 9 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 EI 1573-1634 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2012 VL 92 IS 2 BP 509 EP 526 DI 10.1007/s11242-011-9917-4 PG 18 WC Engineering, Chemical SC Engineering GA 919AW UT WOS:000302294000016 ER PT J AU Hotchkiss, PJ Jones, SC Paniagua, SA Sharma, A Kippelen, B Armstrong, NR Marder, SR AF Hotchkiss, Peter J. Jones, Simon C. Paniagua, Sergio A. Sharma, Asha Kippelen, Bernard Armstrong, Neal R. Marder, Seth R. TI The Modification of Indium Tin Oxide with Phosphonic Acids: Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic Electronic Applications SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID SELF-ASSEMBLED MONOLAYERS; LIGHT-EMITTING-DIODES; COUPLING MOLECULES; HOLE-INJECTION; CHARGE INJECTION; HYBRID MATERIALS; ITO; ADSORPTION; DEVICES; TITANIA AB Transparent metal oxides, In particular, indium tin oxide (ITO), are I critical transparent contact materials for applications in next-generation organic electronics, including organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs). Understanding and controlling the surface properties of ITO allows for the molecular engineering of the ITO organic interface, resulting in fine control of the interfacial chemistries and electronics. In particular, both surface energy matching and work function compatibility at material interfaces can result in marked improvement in OLED and OPV performance. Although there are numerous ways to change the surface properties of ITO, one of the more successful surface modifications is the use of monolayers based on organic molecules with widely variable end functional groups. Phosphonic acids (PAs) are known to bind strongly to metal oxides and form robust monolayers on many different metal oxide materials. They also demonstrate several advantages over other functionalizing moieties such as silanes or carboxylic acids. Most notably, PAs can be stored in ambient conditions without degradation, and the surface modification procedures This Account focuses on our research studying PA binding to ITO, are typically robust and easy to employ. the tunable properties of the resulting surfaces, and subsequent effects on the performance of organic electronic devices. We have used surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and infrared reflection adsorption spectroscopy (IRRAS) to determine that PAs bind to ITO in a predominantly bidentate fashion (where two of three oxygen atoms from the PA are involved in surface binding). Modification of the functional R-groups on PAs allows us to control and tune the surface energy and work function of the ITO surface. In one study using fluorinated benzyl PM, we can keep the surface energy of ITO relatively low and constant but tune the surface work function. PA modification of ITO has resulted in materials that are more stable and more compatible with subsequently deposited organic materials, an effective work function that can be tuned by over 1 eV, and energy barriers to hole injection (OLED) or hole-harvesting (OPV) that can be well matched to the frontier orbital energies of the organic active layers, leading to better overall device properties. C1 [Hotchkiss, Peter J.; Jones, Simon C.; Paniagua, Sergio A.; Marder, Seth R.] Georgia Inst Technol, Sch Chem & Biochem, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA. [Sharma, Asha; Kippelen, Bernard] Georgia Inst Technol, Sch Elect & Comp Engn, Ctr Organ Photon & Elect, Atlanta, GA USA. [Armstrong, Neal R.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. RP Hotchkiss, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pjhotch@sandia.gov; nra@email.arizona.edu; seth.marder@chemistry.gatech.edu RI Kippelen, Bernard/I-4058-2013 OI Kippelen, Bernard/0000-0002-8417-7051 FU Solvay S.A.; STC of the National Science Foundation [DMR-0120967]; Office of Naval Research; Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001084] FX This material is based upon work supported in part by Solvay S.A. (P.J.H., S.C.J., S.A.P., A.S., B.K., S.R.M.), by the STC Program of the National Science Foundation under Agreement Number DMR-0120967 (P.J.H., S.C.J., S.A.P., A.S., B.K, S.R.M.), by the Office of Naval Research (P.J.H., S.C.J., B.K., S.R.M.), and as part of the Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001084 (N.R.A). NR 56 TC 110 Z9 110 U1 23 U2 269 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD MAR PY 2012 VL 45 IS 3 BP 337 EP 346 DI 10.1021/ar200119g PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 915NB UT WOS:000302033000003 PM 22011002 ER PT J AU Flaherty, DW Hahn, NT May, RA Berglund, SP Lin, YM Stevenson, KJ Dohnalek, Z Kay, BD Mullins, CB AF Flaherty, David W. Hahn, Nathan T. May, R. Alan Berglund, Sean P. Lin, Yong-Mao Stevenson, Keith J. Dohnalek, Zdenek Kay, Bruce D. Mullins, C. Buddie TI Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID THIN-FILMS; TITANIUM CARBIDE; MOLECULAR-BEAMS; WATER; LITHIUM; NANOMATERIALS; ARCHITECTURES; GROWTH AB Porous, high surface area materials have critical roles in applications including catalysis, photochemistry, and energy storage. In these fields, researchers have demonstrated that the nanometer-scale structure modifies mechanical, optical, and electrical properties of the material, greatly influencing its behavior and performance. Such complex chemical systems can involve several distinct processes occurring in series or parallel. Understanding the influence of size and structure on the properties of these materials requires techniques for producing clean, simple model systems. In the fields of photoelectrochemistry and lithium storage, for example, researchers need to evaluate the effects of changing the electrode structure of a single material or producing electrodes of many different candidate materials while maintaining a distinctly favorable morphology. In this Account, we introduce our studies of the formation and characterization of high surface area, porous thin films synthesized by a process called reactive ballistic deposition (RBD). RBD is a simple method that provides control of the morphology, porosity, and surface area of thin films by manipulating the angle at which a metal vapor flux impinges on the substrate during deposition. This approach is largely independent of the identity of the deposited material and relies upon limited surface diffusion during synthesis, which enables the formation of kinetically trapped structures. Here, we review our results for the deposition of films from a number of semiconductive materials that are important for applications such as photoelectrochemical water oxidation and lithium ion storage. The use of RBD has enabled us to systematically control individual aspects of both the structure and composition of thin film electrodes in order to probe the effects of each on the performance of the material. We have evaluated the performance of several materials for potential use in these applications and have identified processes that limit their performance. Use of model systems, such as these, for fundamental studies or materials screening processes likely will prove useful in developing new high-performance electrodes. C1 [Flaherty, David W.; Hahn, Nathan T.; May, R. Alan; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Mullins, C. Buddie] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Flaherty, David W.; Hahn, Nathan T.; May, R. Alan; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Mullins, C. Buddie] Univ Texas Austin, Dept Chem, Ctr Nano & Mol Sci & Technol, Ctr Electrochem, Austin, TX 78712 USA. [Flaherty, David W.; Hahn, Nathan T.; May, R. Alan; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Mullins, C. Buddie] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [May, R. Alan; Dohnalek, Zdenek; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental Sci Directorate, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Mullins, CB (reprint author), Univ Texas Austin, Dept Chem Engn, 1 Univ CO400, Austin, TX 78712 USA. RI May, Robert/B-3188-2013; OI Dohnalek, Zdenek/0000-0002-5999-7867 FU Welch Foundation [F-1436, F-1529]; U.S. Army Research Office [W911NF-09-1-0130]; U.S. Department of Energy [DE-FG02-09ER16119]; National Science Foundation [CHE-0934450, CHE-0809770]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences FX C.B.M. acknowledges the Welch Foundation (Grant F-1436), U.S. Army Research Office (Grant W911NF-09-1-0130), U.S. Department of Energy (Grant DE-FG02-09ER16119) for doped-hematite, and the National Science Foundation (Grant CHE-0934450) for hematite and BiVO4. K.J.S. acknowledges the generous support of the National Science Foundation (Grant CHE-0809770) and the Welch Foundation (Grant F-1529). Z.D. and B.D.K. were supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences. NR 33 TC 23 Z9 23 U1 4 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD MAR PY 2012 VL 45 IS 3 BP 434 EP 443 DI 10.1021/ar200164u PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 915NB UT WOS:000302033000012 PM 22017522 ER PT J AU Toshner, SB Zhu, ZH Kosilkin, IV Leger, JM AF Toshner, Samuel B. Zhu, Zihua Kosilkin, Ilya V. Leger, Janelle M. TI Characterization of Ion Profiles in Light-Emitting Electrochemical Cells by Secondary Ion Mass Spectrometry SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE polymer light-emitting electrochemical cell (LEC); organic electronics; electrochemical doping; conjugated polymers; secondary ion beam mass spectrometry ID I-N JUNCTION; TRANSITION-METAL-COMPLEXES; ELECTROLUMINESCENT DEVICES; OPTOELECTRONIC DEVICES; POLYMERS; POLYFLUORENE; PERFORMANCE; STABILITY; KINETICS; DIODES AB Ion profiles in polymer light-emitting electrochemical cells are known to significantly affect performance and stability, but are not easily measured. Here, secondary ion mass spectrometry is used to investigate ion profiles in both dynamic and chemically fixed junction devices. Results indicate lower reversibility of dynamic junctions and a more significant time delay for ion redistribution than previously expected, but confirm the complete immobilization of ions in chemically fixed junction devices. When compared with prier studies analyzing the electric field profiles in similar devices, these results help to elucidate the roles of ion distribution and electrochemical doping in LECs. C1 [Toshner, Samuel B.; Leger, Janelle M.] Western Washington Univ, Dept Phys & Astron, Bellingham, WA 98225 USA. [Zhu, Zihua] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Kosilkin, Ilya V.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Leger, JM (reprint author), Western Washington Univ, Dept Phys & Astron, Bellingham, WA 98225 USA. EM janelle.leger@wwu.edu RI Zhu, Zihua/K-7652-2012 FU Research Corporation Cottrell College; National Science Foundation [CHE-0935920, DMR-1057209]; Western Washington University; Department of Energy's Office of Biological and Environmental Research FX The authors gratefully acknowledge the Research Corporation Cottrell College Science Award, the National Science Foundation (CHE-0935920 and DMR-1057209), and Western Washington University for supporting this research. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The authors thank Drs. Laxmikant Saraf, Bruce Arey and the staff of EMSL for their assistance. NR 44 TC 10 Z9 10 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD MAR PY 2012 VL 4 IS 3 BP 1149 EP 1153 DI 10.1021/am201469t PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 914RD UT WOS:000301968400001 PM 22387346 ER PT J AU Jeon, B Sankaranarayanan, SKRS van Duin, ACT Ramanathan, S AF Jeon, Byoungseon Sankaranarayanan, Subramanian K. R. S. van Duin, Adri C. T. Ramanathan, Shriram TI Reactive Molecular Dynamics Study of Chloride Ion Interaction with Copper Oxide Surfaces in Aqueous Media SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE ReaxFF; reactive molecular dynamics; aqueous corrosion; copper oxide; pitting; chloride ID ELECTRONEGATIVITY EQUALIZATION METHOD; FORCE-FIELD; PITTING CORROSION; LOCALIZED CORROSION; WATER; REAXFF; CU; INHIBITOR; FILMS; ALLOY AB Using reactive force-field (ReaxFF) and molecular dynamics simulation, we study atomistic scale chloride ion adsorption and transport through copper oxide thin films under aqueous conditions. The surface condition of passive oxide film plays a key role in chloride ion adsorption and facilitates initial adsorption when surface corrosion resistance is low. Using implemented surface defects, the structural evolution of the copper oxide film from thinning to breakdown is investigated. In addition to chemical thinning of passive film, extended defects in the metal substrate are observed, at high concentration of adsorbed chloride ions. The initial stage of breakdown is associated with rapid depletion of adjacent chloride ions, which creates a locally deficient environment of chloride ions in the solution. The dissolved copper cations gain higher charge upon interaction with chloride ions. Owing to the increased Coulomb interactions resulted from dissolved copper ions and locally low density of chloride ions, far-field chloride ions would diffuse into the local corrosion sites, thereby promoting further corrosion. C1 [Jeon, Byoungseon; Ramanathan, Shriram] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [van Duin, Adri C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. RP Jeon, B (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM bjeon@seas.harvard.edu RI Jeon, ByoungSeon/D-2281-2012 FU Office of Naval Research [N00014-10-1-0346]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work has been supported by the Office of Naval Research with contract No. N00014-10-1-0346. The computational facilities have been provided by the Center for Nanoscale Materials (CNM) of Argonne National laboratory and Center for Nanoscale Systems (CNS) - National Nanotechnology Infrastructure Network (NNIN) at Harvard University. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We thank Dr. Bo-Kuai Lai for valuable discussion regarding the configuration of corrosion systems. NR 56 TC 9 Z9 9 U1 5 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 EI 1944-8252 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD MAR PY 2012 VL 4 IS 3 BP 1225 EP 1232 DI 10.1021/am201345v PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 914RD UT WOS:000301968400014 PM 22373345 ER PT J AU Vemuri, RS Engelhard, MH Ramana, CV AF Vemuri, R. S. Engelhard, M. H. Ramana, C. V. TI Correlation between Surface Chemistry, Density, and Band Gap in Nanocrystalline WO3 Thin Films SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE WO3 thin films; surface chemistry; XPS density; X-ray reflectivity; spectrophotometry; optical properties; band gap ID TUNGSTEN-OXIDE; ELECTRICAL-CONDUCTIVITY; SENSING CHARACTERISTICS; PHASE-TRANSITIONS; XPS; TRIOXIDE; ELECTROCHROMISM; STOICHIOMETRY; NANOPARTICLES; DEPENDENCE AB Nanocrystalline WO3 thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO3 films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultramicrostructure was significant on the optical properties of WO3 films. The XPS analyses indicate the formation of stoichiometric WO3 with tungsten existing in fully oxidized valence state (W6+). However, WO3 films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations based on isotropic WO3 film-SiO2 interface-Si substrate modeling indicate that the density of WO3 films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with increasing oxygen. The band gap of these films increases from 2.78 to 3.25 eV with increasing oxygen. A direct correlation between the film density and band gap in nanocrystalline WO3 films is established on the basis of the observed results. C1 [Vemuri, R. S.; Ramana, C. V.] Univ Texas El Paso, Dept Mech Engn, El Paso, TX 79968 USA. [Vemuri, R. S.; Ramana, C. V.] Univ Texas El Paso, Dept Mat Sci & Engn, El Paso, TX 79968 USA. [Vemuri, R. S.; Engelhard, M. H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Ramana, CV (reprint author), Univ Texas El Paso, Dept Mech Engn, El Paso, TX 79968 USA. EM rvchintalapalle@utep.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 FU Department of Energy [DE-PS26-08NT00198-00]; Department of Energy's Office of Biological and Environmental Research FX This material is based on the work supported by the Department of Energy under Award DE-PS26-08NT00198-00. A portion of the research presented in this manuscript was performed using Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 59 TC 34 Z9 34 U1 6 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD MAR PY 2012 VL 4 IS 3 BP 1371 EP 1377 DI 10.1021/am2016409 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 914RD UT WOS:000301968400033 PM 22332637 ER PT J AU Barnes, TM Reese, MO Bergeson, JD Larsen, BA Blackburn, JL Beard, MC Bult, J van de Lagemaat, J AF Barnes, Teresa M. Reese, Matthew O. Bergeson, Jeremy D. Larsen, Brian A. Blackburn, Jeffrey L. Beard, Matthew C. Bult, Justin van de Lagemaat, Jao TI Comparing the Fundamental Physics and Device Performance of Transparent, Conductive Nanostructured Networks with Conventional Transparent Conducting Oxides SO ADVANCED ENERGY MATERIALS LA English DT Article DE nanostructures; semiconductors; solar cells; thin films; transparent contacts ID CARBON-NANOTUBE FILMS; REDUCED GRAPHENE OXIDE; ORGANIC SOLAR-CELLS; LARGE-AREA; ELECTRODES; PERCOLATION; COATINGS; FIGURE; MERIT; METAL AB Networks made of single-walled carbon nanotubes (SWNTs) and metallic nanowire networks, graphene, and ultra-thin metal films have all been proposed as replacements for transparent conducting oxides (TCOs) in photovoltaic and other applications. However, only limited comparisons of nanostructured networks and TCOs are available. Several common figures of merit that are often used to compare the electrical and optical performance of the transparent contacts are evaluated here, and the merits of each method of comparison are discussed. Calculating the current loss due to absorption in the TCO is the most useful metric for evaluating new materials for use in solar cells with well-defined sheet resistance requirements and known quantum efficiencies. The Haacke figure of merit, FH, correlates fairly well with current loss and is a good metric for evaluating electro-optical performance for more general applications. The analyses presented here demonstrate that silver nanowire networks are much closer to achieving optimal electrical and optical properties than carbon-based networks. C1 [Barnes, Teresa M.; Reese, Matthew O.; Bergeson, Jeremy D.; Larsen, Brian A.; Blackburn, Jeffrey L.; Beard, Matthew C.; Bult, Justin; van de Lagemaat, Jao] NREL, Golden, CO 80401 USA. RP Barnes, TM (reprint author), NREL, 1617 Cole Blvd, Golden, CO 80401 USA. EM teresa.barnes@nrel.gov RI Blackburn, Jeffrey/D-7344-2012; Larsen, Brian/B-4807-2008; van de Lagemaat, Jao/J-9431-2012; OI BEARD, MATTHEW/0000-0002-2711-1355 FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; Center for Advanced Solar Photophysics, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors thank the NREL Laboratory Director's Research and Development program and the NREL PV Seed Fund for support. MCB acknowledges funding from the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 52 TC 51 Z9 51 U1 4 U2 104 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD MAR PY 2012 VL 2 IS 3 BP 353 EP 360 DI 10.1002/aenm.201100608 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 907OT UT WOS:000301427900011 ER PT J AU Degenkolb, T Aghcheh, RK Dieckmann, R Neuhof, T Baker, SE Druzhinina, IS Kubicek, CP Bruckner, H von Dohren, H AF Degenkolb, Thomas Aghcheh, Razieh Karimi Dieckmann, Ralf Neuhof, Torsten Baker, Scott E. Druzhinina, Irina S. Kubicek, Christian P. Brueckner, Hans von Doehren, Hans TI The Production of Multiple Small Peptaibol Families by Single 14-Module Peptide Synthetases in Trichoderma/Hypocrea SO CHEMISTRY & BIODIVERSITY LA English DT Article DE Peptaibiotics; Peptide synthetases; Trichoderma species; Hypocrea species; Nonribosomal peptide synthetases ID POLYPEPTIDE ANTIBIOTICS PEPTAIBIOTICS; ADENYLATION DOMAINS; MASS-SPECTROMETRY; STRUCTURAL ELUCIDATION; 11-RESIDUE PEPTAIBOL; FUNGAL METABOLITES; HYPOCREA-JECORINA; REESEI; HARZIANUM; SPECIFICITY AB The most common sequences of peptaibiotics are 11-residue peptaibols found widely distributed in the genus Trichoderma/Hypocrea. Frequently associated are 14-residue peptaibols sharing partial sequence identity. Genome sequencing projects of three Trichoderma strains of the major clades reveal the presence of up to three types of nonribosomal peptide synthetases with 7, 14, or 1820 amino acid-adding modules. Here, we provide evidence that the 14-module NRPS type found in T. virens, T. reesei (teleomorph Hypocrea jecorina), and T. atroviride produces both 11- and 14-residue peptaibols based on the disruption of the respective NRPS gene of T. reesei, and bioinformatic analysis of their amino acid-activating domains and modules. The sequences of these peptides may be predicted from the gene sequences and have been confirmed by analysis of families of 11- and 14-residue peptaibols from the strain 618, termed hypojecorins A (23 sequences determined, 4 new) and B (3 sequences determined, 2 new), and the recently established trichovirins A from T. virens. The distribution of 11- and 14-residue products is strain-specific and depends on growth conditions as well. Possible mechanisms of module skipping are discussed. C1 [Aghcheh, Razieh Karimi; Druzhinina, Irina S.; Kubicek, Christian P.] Vienna Univ Technol, Inst Chem Engn, A-1060 Vienna, Austria. [Degenkolb, Thomas; Brueckner, Hans] Univ Giessen, Inst Nutr Sci, Interdisciplinary Res Ctr BioSyst Land Use & Nutr, Dept Food Sci, D-35392 Giessen, Germany. [Dieckmann, Ralf; Neuhof, Torsten; von Doehren, Hans] Tech Univ Berlin, Inst Chem, Biochem & Mol Biol OE 2, D-10587 Berlin, Germany. [Baker, Scott E.] Pacific NW Natl Lab, Fungal Biotechnol Team, Chem & Biol Proc Dev Grp, Energy & Environm Directorate, Richland, WA 99352 USA. RP Kubicek, CP (reprint author), Vienna Univ Technol, Inst Chem Engn, Getreidemarkt 9-166, A-1060 Vienna, Austria. EM thomas.degenkolb@ernaehrung.uni-giessen.de; karimi.razieh@gmail.com; ralf.dieckmann@bfr.bund.de; t.neuhof@gmx.de; druzhini@zserv.tuwien.ac.at; ckubicek@mail.zserv.tuwien.ac.at; hans.brueckner@ernaehrung.uni-giessen.de; doehren@chem.tu-berlin.de FU Erwin-Stein-Stiftung (D-Giessen) FX The financial support by the Erwin-Stein-Stiftung (D-Giessen) with a habilitation grant to T. D. is gratefully acknowledged. NR 58 TC 29 Z9 30 U1 2 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1612-1872 J9 CHEM BIODIVERS JI Chem. Biodivers. PD MAR PY 2012 VL 9 IS 3 BP 499 EP 535 DI 10.1002/cbdv.201100212 PG 37 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA 909PO UT WOS:000301576900003 PM 22422521 ER PT J AU John, H Blum, MM AF John, Harald Blum, Marc-Michael TI Editorial: Analysis of drugs for the therapy of anticholinesterase poisoning SO DRUG TESTING AND ANALYSIS LA English DT Editorial Material C1 [John, Harald] Bundeswehr Inst Pharmacol & Toxicol, Munich, Germany. [Blum, Marc-Michael] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP John, H (reprint author), Bundeswehr Inst Pharmacol & Toxicol, Munich, Germany. EM HaraldJohn@bundeswehr.org RI Blum, Marc-Michael/M-7691-2014 OI Blum, Marc-Michael/0000-0003-1856-2071 NR 15 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1942-7603 EI 1942-7611 J9 DRUG TEST ANAL JI Drug Test. Anal. PD MAR-APR PY 2012 VL 4 IS 3-4 SI SI BP 167 EP 168 DI 10.1002/dta.412 PG 2 WC Biochemical Research Methods; Chemistry, Analytical; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Chemistry; Pharmacology & Pharmacy GA 917DR UT WOS:000302153200001 PM 22467252 ER PT J AU John, H Blum, MM AF John, Harald Blum, Marc-Michael TI Review of UV spectroscopic, chromatographic, and electrophoretic methods for the cholinesterase reactivating antidote pralidoxime (2-PAM) SO DRUG TESTING AND ANALYSIS LA English DT Article DE 2-PAM; antidote; column chromatography; mass spectrometry; paper chromatography; oxime ID PERFUSED RAT LIVER; LIGAND-EXCHANGE CHROMATOGRAPHY; PERFORMANCE LIQUID-CHROMATOGRAPHY; ORGANOPHOSPHORUS POISONED PATIENTS; COPPER(II)-MODIFIED SILICA-GEL; METHANE SULPHONATE P2S; INTRAMUSCULAR INJECTION; PYRIDINIUM ALDOXIMES; PLASMA-LEVELS; METHYLSULFATE CONTRATHION((R)) AB Pralidoxime (2-PAM) belongs to the class of monopyridinium oximes with reactivating potency on cholinesterases inhibited by phosphylating organophosphorus compounds (OPC), for example, pesticides and nerve agents. 2-PAM represents an established antidote for the therapy of anticholinesterase poisoning since the late 1950s. Quite high therapeutic concentrations in human plasma (about 13 mu g/ml) lead to concentrations in urine being about 100 times higher allowing the use of less sensitive analytical techniques that were used especially in the early years after 2-PAM was introduced. In this time (mid-1950s until the end of the 1970s) 2-PAM was most often analyzed by either paper chromatography or simple UV spectroscopic techniques omitting any sample separation step. These methods were displaced completely after the establishment of column liquid chromatography in the early 1980s. Since then, diverse techniques including cation exchange, size-exclusion, reversed-phase, and ligand-exchange chromatography have been introduced. Today, the most popular method for 2-PAM quantification is ion pair chromatography often combined with UV detection representing more than 50% of all column chromatographic procedures published. Furthermore, electrophoretic approaches by paper and capillary zone electrophoresis have been successfully used but are seldom applied. This review provides a commentary and exhaustive summary of analytical techniques applied to detect 2-PAM in pharmaceutical formulations and biological samples to characterize stability and pharmacokinetics as well as decomposition and biotransformation products. Separation techniques as well as diverse detectors are discussed in appropriate detail allowing comparison of individual preferences and limitations. In addition, novel data on mass spectrometric fragmentation of 2-PAM are provided. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [John, Harald] Bundeswehr Inst Pharmacol & Toxicol, D-80937 Munich, Germany. [Blum, Marc-Michael] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP John, H (reprint author), Bundeswehr Inst Pharmacol & Toxicol, Neuherbergstr 11, D-80937 Munich, Germany. EM HaraldJohn@bundeswehr.org RI Blum, Marc-Michael/M-7691-2014 OI Blum, Marc-Michael/0000-0003-1856-2071 NR 94 TC 9 Z9 9 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1942-7603 J9 DRUG TEST ANAL JI Drug Test. Anal. PD MAR-APR PY 2012 VL 4 IS 3-4 SI SI BP 179 EP 193 DI 10.1002/dta.327 PG 15 WC Biochemical Research Methods; Chemistry, Analytical; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Chemistry; Pharmacology & Pharmacy GA 917DR UT WOS:000302153200003 PM 21953823 ER PT J AU Melzer, M Heidenreich, A Dorandeu, F Gab, J Kehe, K Thiermann, H Letzel, T Blum, MM AF Melzer, Marco Heidenreich, Anne Dorandeu, Frederic Gaeb, Juergen Kehe, Kai Thiermann, Horst Letzel, Thomas Blum, Marc-Michael TI In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase) SO DRUG TESTING AND ANALYSIS LA English DT Article DE PEGylation; bioscavenger; nerve agents; enzymes; ESI-TOF-MS ID LOLIGO-VULGARIS; THERAPEUTIC PROTEINS; DIISOPROPYLFLUOROPHOSPHATASE; PHOSPHOTRIESTERASE; SOMAN; ACETYLCHOLINESTERASE; ORGANOPHOSPHATES; DIFFRACTION; TOXICITY; NEUTRON AB Highly toxic organophosphorus compounds that irreversibly inhibit the enzyme acetycholinesterase (AChE), including nerve agents like tabun, sarin, or soman, still pose a credible threat to civilian populations and military personnel. New therapeutics that can be used as a pretreatment or after poisoning with these compounds, complementing existing treatment schemes such as the use of atropine and AChE reactivating oximes, are currently the subject of intense research. A prominent role among potential candidates is taken by enzymes that can detoxify nerve agents by hydrolysis. Diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris is known to effectively hydrolyze DFP and the range of G-type nerve agents including sarin and soman. In the present work, DFPase was PEGylated to increase biological half-life, and to lower or avoid an immunogenic reaction and proteolytic digest. Addition of linear polyethylene glycol (PEG) chains was achieved using mPEG-NHS esters and conjugates were characterized by electrospray ionization time of flight mass specrometry (ESI-ToF-MS). PEGylated wildtype DFPase and a mutant selective for the more toxic stereoisomers of the agents were tested in vivo with rats that were challenged with a subcutaneous 3x LD50 dose of soman. While wildtype DFPase prevented death only at extremely high doses, the mutant was able keep the animals alive and to minimize or totally avoid symptoms of poisoning. The results serve as a proof of principle that engineered variants of DFPase are potential candidates for in vivo use if substrate affinity can be improved or the turnover rate enhanced to lower the required enzyme dose. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Blum, Marc-Michael] Los Alamos Natl Lab, Biosci Div, LA UR 11 04147, Los Alamos, NM 87454 USA. [Melzer, Marco; Heidenreich, Anne; Gaeb, Juergen; Blum, Marc-Michael] Blum Sci Serv, D-22301 Hamburg, Germany. [Melzer, Marco] Johannes Gutenberg Univ Mainz, Inst Pathol, D-55101 Mainz, Germany. [Dorandeu, Frederic] Inst Rech Biomed Armees CRSSA, Dept Toxicol & Risques Chim, F-38702 La Tronche, France. [Dorandeu, Frederic] Ecole Val de Grace, F-75230 Paris, France. [Gaeb, Juergen] Univ Marburg, Dept Pharmaceut Chem, D-35032 Marburg, Germany. [Kehe, Kai; Thiermann, Horst] Bundeswehr Inst Pharmacol & Toxicol, D-80937 Munich, Germany. [Kehe, Kai] Bundeswehr Med Off, Sect X 5, D-80637 Munich, Germany. [Letzel, Thomas] Tech Univ Munich, Competence Pool Weihenstephan CPW, D-85354 Freising Weihenstephan, Germany. RP Blum, MM (reprint author), Los Alamos Natl Lab, Biosci Div, LA UR 11 04147, POB 1663,Mailstop G758, Los Alamos, NM 87454 USA. EM mmblum@lanl.gov RI Lujan Center, LANL/G-4896-2012; Blum, Marc-Michael/M-7691-2014; OI Blum, Marc-Michael/0000-0003-1856-2071; Kehe, Kai/0000-0003-3253-857X FU German Ministry of Defense [E/UR3G/6 G115/6A801]; US Department of Energy; Los Alamos National Laboratory [LA-UR 11-04147] FX This work was partly supported the German Ministry of Defense under contract number E/UR3G/6 G115/6A801. Part of this work was carried out by M. Melzer in partial fulfillment of the requirements for a medical doctoral degree at the Johannes Gutenberg University, Mainz, Germany. Ms Annie Foquin's technical skills are greatly acknowledged for the in vivo experiments performed at CRSSA. M. M. Blum acknowledges the US Department of Energy and Los Alamos National Security for a Director's Fellowship at the Los Alamos National Laboratory. (LA-UR 11-04147) NR 41 TC 4 Z9 4 U1 2 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1942-7603 J9 DRUG TEST ANAL JI Drug Test. Anal. PD MAR-APR PY 2012 VL 4 IS 3-4 SI SI BP 262 EP 270 DI 10.1002/dta.363 PG 9 WC Biochemical Research Methods; Chemistry, Analytical; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Chemistry; Pharmacology & Pharmacy GA 917DR UT WOS:000302153200013 PM 22174192 ER PT J AU Blum, MM John, H AF Blum, Marc-Michael John, Harald TI Historical perspective and modern applications of Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR) SO DRUG TESTING AND ANALYSIS LA English DT Article DE FTIR; ATR; ATR-FTIR ID DIISOPROPYL FLUOROPHOSPHATASE; ANALYTICAL TECHNOLOGY; IR SPECTROSCOPY; QUANTIFICATION; HYDROLYSIS; CHEMISTRY; SPECTRA AB Vibrational spectroscopy has a long history as an important spectroscopic method in chemical and pharmaceutical analysis. Instrumentation for infrared (IR) spectroscopy was revolutionized by the introduction of Fourier Transform Infrared (FTIR) spectrometers. In addition, easier sampling combined with better sample-to-sample reproducibility and user-to-user spectral variation became available with attenuated total reflectance (ATR) probes and their application for in situ IR spectroscopy. These innovations allow many new applications in chemical and pharmaceutical analysis, such as the use of IR spectroscopy in Process Analytical Chemistry (PAC), the quantitation of drugs in complex matrix formulations, the analysis of protein binding and function and in combination with IR microscopy to the emergence of IR imaging technologies. The use of ATR-FTIR instruments in forensics and first response to white powder incidents is also discussed. A short overview is given in this perspective article with the aim to renew and intensify interest in IR spectroscopy. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Blum, Marc-Michael] Los Alamos Natl Lab, Biosci Div, LA UR 11 05609, Los Alamos, NM 87454 USA. [John, Harald] Bundeswehr Inst Pharmacol & Toxicol, D-80937 Munich, Germany. RP Blum, MM (reprint author), Los Alamos Natl Lab, Biosci Div, LA UR 11 05609, POB 1663,Mailstop G758, Los Alamos, NM 87454 USA. EM mmblum@lanl.gov RI Blum, Marc-Michael/M-7691-2014 OI Blum, Marc-Michael/0000-0003-1856-2071 FU US Department of Energy; Los Alamos National Laboratory FX M.M. Blum acknowledges the US Department of Energy and Los Alamos National Security for a Director's Fellowship at the Los Alamos National Laboratory. NR 29 TC 9 Z9 9 U1 8 U2 53 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1942-7603 J9 DRUG TEST ANAL JI Drug Test. Anal. PD MAR-APR PY 2012 VL 4 IS 3-4 SI SI BP 298 EP 302 DI 10.1002/dta.374 PG 5 WC Biochemical Research Methods; Chemistry, Analytical; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Chemistry; Pharmacology & Pharmacy GA 917DR UT WOS:000302153200017 PM 22113892 ER PT J AU Unkefer, CJ Martinez, RA AF Unkefer, Clifford J. Martinez, Rodolfo A. TI The use of stable isotope labelling for the analytical chemistry of drugs SO DRUG TESTING AND ANALYSIS LA English DT Article DE Stable Isotope Labelling; Drug Metabolism; Mass Spectrometry; NMR Spectroscopy ID MASS-SPECTROMETRY; METABOLITE-IDENTIFICATION; REACTIVE METABOLITES; NMR; BIOSYNTHESIS; MS; QUINONE; PATTERN; PROTEIN; ORIGIN AB This perspective reviews the potential for stable isotope labelling to examine the metabolic transformations of drugs. The increased sensitivity and widespread availability of modern nuclear magnetic resonance (NMR) and high-resolution mass spectrometers will increase the application of stable isotopes to study drug metabolism. Creating mass doublets by mixing a natural isotopic abundance compound with a labelled isotopomer and applying stable isotope filtering to high resolution mass spectrometry allows one to rapidly identify drug metabolites in very complex samples, such as blood or urine. Applying this approach to drug metabolism will require a significant synthesis effort. The relatively small number of 13C, 15N, or 17,18O-labelled precursors exacerbates this problem, making the synthesis of the labelled drug often more difficult than that of the parent compound. We have developed new strategies for stable isotope labelling of complex molecules based on the rich chemistry of [13C]methyl phenyl sulfide, where the phenylthio group acts as a stable, non-volatile carrier for the valuable 13C-label. For example we have used [13C]methyl phenyl sulfide to prepare the three possible 13C-isotopomers ([1-13C]-, [2-13C]-, [1,2-13C2]) of the two carbon precursors, ethyl 2-(phenylthio) acetate and ethyl N,N-dimethyl oxamate. In each case, these two-carbon labelling precursors are asymmetric and the differential reactivity of the carbons allows for either/or 13C-labelling in the products. We demonstrate the utility of these two carbon precursors in the synthesis of aromatic ring-labelled N-(4-hydroxyphenyl)acetamide (acetaminophen or paracetamol). Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Unkefer, Clifford J.; Martinez, Rodolfo A.] Los Alamos Natl Lab, Natl Stable Isotope Resource, Los Alamos, NM 87545 USA. [Martinez, Rodolfo A.] New Mexico Highlands Univ, Las Vegas, NM USA. RP Unkefer, CJ (reprint author), Los Alamos Natl Lab, Natl Stable Isotope Resource, B-8 MS E529, Los Alamos, NM 87545 USA. EM cju@lanl.gov NR 28 TC 4 Z9 4 U1 2 U2 32 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1942-7603 J9 DRUG TEST ANAL JI Drug Test. Anal. PD MAR-APR PY 2012 VL 4 IS 3-4 SI SI BP 303 EP 307 DI 10.1002/dta.361 PG 5 WC Biochemical Research Methods; Chemistry, Analytical; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Chemistry; Pharmacology & Pharmacy GA 917DR UT WOS:000302153200018 PM 22170639 ER PT J AU Siebert, J Badro, J Antonangeli, D Ryerson, FJ AF Siebert, Julien Badro, James Antonangeli, Daniele Ryerson, Frederick J. TI Metal-silicate partitioning of Ni and Co in a deep magma ocean SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Earth's core formation; magma ocean; siderophile elements; light elements; laser-heated diamond anvil cell ID DIAMOND-ANVIL CELL; EARTHS OUTER CORE; HIGH-PRESSURE; OXYGEN FUGACITY; OXIDATION-STATE; LOWER-MANTLE; IRON; MELT; TEMPERATURE; NICKEL AB The pattern of siderophile (iron-loving) element abundance in the silicate portion of the Earth is a consequence of metal separation during core formation. The apparent excess of nickel and cobalt in mantle-derived rocks has been attributed to metal-silicate equilibration in a deep terrestrial magma ocean. Based on the extrapolation of phase equilibria and metal-silicate partitioning results obtained at lower pressure (P) and temperature (T), previous estimates of the P-T of equilibration are all greater than 25 GPa and 3000 K. Using the laser-heated diamond anvil cell, we have extended metal-silicate partitioning measurements for Ni and Co to 75 GPa and 4400 K, exceeding the liquidus temperatures for both metal and silicate (basalt or peridotite) and, therefore, achieving thermodynamic conditions directly comparable to those of the magma ocean. The metal-silicate partition coefficients of nickel and cobalt decrease with increasing pressure and reach the values required to yield present mantle concentrations at similar to 50 GPa. At these conditions, silicon and oxygen concentrations measured in the metallic liquid allow to solve the seismically constrained core density deficit. Above 60 GPa, the partition coefficients become too low, resulting in an overabundance of Ni and Co in the silicate mantle. Our data therefore support the paradigm of core formation in a deep mama ocean, providing an upper bound for the depth at which Earth's core may have formed, and explaining the main geophysical (density) and geochemical (excess siderophile elements) observables. (C) 2012 Elsevier B.V. All rights reserved. C1 [Siebert, Julien; Antonangeli, Daniele] Univ Paris 06, CNRS, Inst Mineral & Phys Milieux Condenses, Inst Phys Globe Paris,UMR 7590, Paris, France. [Ryerson, Frederick J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Siebert, J (reprint author), CNRS, UMR 7590, IMPMC, 4 Pl Jussieu,Campus Jussieu,Boite Courrier 115, F-75252 Paris 05, France. EM julien.siebert@impmc.jussieu.fr RI Siebert, Julien/A-8336-2014; Badro, James/A-6003-2011 OI Siebert, Julien/0000-0001-9972-6239; FU European Research Council under the European Community [207467]; US Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Basic Energy Sciences; Region Ile de France [I-07-593/R]; INSU-CNRS; Institut de Physique (INP)-CNRS; University Pierre et Marie Curie-Paris 6; French National Research Agency (ANR) [ANR-07-BLAN-0124-01] FX The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 207467. This work was performed under the auspices of the US Department of Energy, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Office of Basic Energy Sciences, Geosciences Research Program (FJR). the Focused Ion Beam (FIB) facility of the IMPMC is supported by Region Ile de France grant SESAME 2006 No I-07-593/R, INSU-CNRS, Institut de Physique (INP)-CNRS, University Pierre et Marie Curie-Paris 6, and by the French National Research Agency (ANR) grant ANR-07-BLAN-0124-01. We also thank Imene Esteve for assistance during sample preparation with the FIB. We thank T. M. Harrison for editorial handling and M.J. Walter for helpful comments that improved the manuscript. NR 51 TC 48 Z9 49 U1 7 U2 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAR 1 PY 2012 VL 321 BP 189 EP 197 DI 10.1016/j.epsl.2012.01.013 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 913WX UT WOS:000301909200019 ER PT J AU Van Wagenen, J Miller, TW Hobbs, S Hook, P Crowe, B Huesemann, M AF Van Wagenen, Jon Miller, Tyler W. Hobbs, Sam Hook, Paul Crowe, Braden Huesemann, Michael TI Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina SO ENERGIES LA English DT Article DE algae; biofuels; climate; fatty acid; Nannochloropsis salina ID LIPID-COMPOSITION; MICROALGAE; FEEDSTOCKS; BIODIESEL; ALGAE AB Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the environment, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 mu mol m(-2) s(-1)) and temperature (13-40 degrees C) and its exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day(-1) at 23 degrees C and 250 mu mol m(-2) s(-1). Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAMEs). A sharp increase in TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoic acids (C20:5 omega 3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1 omega 9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. These data will improve prediction of fatty acid characteristics and yields relevant to biofuel production. C1 [Van Wagenen, Jon; Miller, Tyler W.; Hobbs, Sam; Hook, Paul; Crowe, Braden; Huesemann, Michael] Pacific NW Natl Lab, Sequim, WA 98382 USA. RP Huesemann, M (reprint author), Pacific NW Natl Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM jonathan.vanwagenen@pnnl.gov; tylerandariana@gmail.com; samuelhobbs1@gmail.com; pwh124@gmail.com; braden.crowe@pnnl.gov; Michael.huesemann@pnnl.gov OI Hobbs, Samuel/0000-0002-4282-8813 FU US Department of Energy [DE-EE0003046] FX Li-Jung Kuo helped greatly by developing the FAME analysis method. The authors would like to acknowledge funding of this work by the US Department of Energy under contract DE-EE0003046 awarded to the National Alliance for Advanced Biofuels and Bioproducts and support to Sam Hobbs, Paul Hook and Tyler Miller via the U.S. DOE SULI program. NR 26 TC 36 Z9 37 U1 2 U2 81 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD MAR PY 2012 VL 5 IS 3 BP 731 EP 740 DI 10.3390/en5030731 PG 10 WC Energy & Fuels SC Energy & Fuels GA 917DX UT WOS:000302153800013 ER PT J AU Bouskill, NJ Eveillard, D Chien, D Jayakumar, A Ward, BB AF Bouskill, Nicholas J. Eveillard, Damien Chien, Diana Jayakumar, Amal Ward, Bess B. TI Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID OXYGEN-DEFICIENT WATERS; NITROGEN-CYCLE; NITRIFYING ARCHAEA; RELATIVE ABUNDANCE; COMMUNITY COMPOSITION; NITRITE REDUCTASE; MESOPELAGIC OCEAN; MINIMUM ZONES; SOUTH-PACIFIC; ARABIAN SEA AB Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in bridging the input of fixed nitrogen, through N-fixation and remineralization, to its loss by denitrification and anammox. Yet the major environmental factors determining AOB and AOA population dynamics are little understood, despite both groups having a wide environmental distribution. This study examined the relative abundance of both groups of ammonia-oxidizing organisms (AOO) and the diversity of AOA across large-scale gradients in temperature, salinity and substrate concentration and dissolved oxygen. The relative abundance of AOB and AOA varied across environments, with AOB dominating in the freshwater region of the Chesapeake Bay and AOA more abundant in the water column of the coastal and open ocean. The highest abundance of the AOA amoA gene was recorded in the oxygen minimum zones (OMZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea (AS). The ratio of AOA : AOB varied from 0.7 in the Chesapeake Bay to 1600 in the Sargasso Sea. Relative abundance of both groups strongly correlated with ammonium concentrations. AOA diversity, as determined by phylogenetic analysis of clone library sequences and archetype analysis from a functional gene DNA microarray, detected broad phylogenetic differences across the study sites. However, phylogenetic diversity within physicochemically congruent stations was more similar than would be expected by chance. This suggests that the prevailing geochemistry, rather than localized dispersal, is the major driving factor determining OTU distribution. C1 [Bouskill, Nicholas J.; Chien, Diana; Jayakumar, Amal; Ward, Bess B.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Eveillard, Damien] Univ Nantes, Computat Biol Grp, LINA, CNRS,UMR 6241, F-44300 Nantes, France. RP Bouskill, NJ (reprint author), Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94702 USA. EM njbouskill@lbl.gov RI Bouskill, Nick/G-2390-2015; OI , /0000-0002-3297-3312; eveillard, damien/0000-0002-8162-7360 FU NSF FX We thank M.J. Perry, T. Rynearson and N. Briggs, who collected the North Atlantic samples and provided the accompanying metadata for those samples. The microarray was printed by Donna Storton (Princeton University) and we gratefully acknowledge the Princeton University Microarray Facility. This work was supported by NSF grants to B.B.W. NR 71 TC 54 Z9 57 U1 7 U2 114 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD MAR PY 2012 VL 14 IS 3 BP 714 EP 729 DI 10.1111/j.1462-2920.2011.02623.x PG 16 WC Microbiology SC Microbiology GA 922IF UT WOS:000302539900014 PM 22050634 ER PT J AU Chathoth, SM Mamontov, E Dai, S Wang, X Fulvio, PF Wesolowski, DJ AF Chathoth, S. M. Mamontov, E. Dai, S. Wang, X. Fulvio, P. F. Wesolowski, D. J. TI Fast diffusion in a room temperature ionic liquid confined in mesoporous carbon SO EPL LA English DT Article ID ALKYL CHAIN-LENGTH; MOLECULAR-DYNAMICS; NEUTRON-SCATTERING; HEXAFLUOROPHOSPHATE; NANOPORE; WATER; HETEROGENEITY; CAPACITANCE; SIMULATION; HYDRATION AB We report a quasielastic neutron scattering study in the temperature range of 290 to 350K of a room temperature ionic liquid, [bmim(+)][Tf2N-], in the bulk form and confined in the 8.8 +/- 2.1 nm diameter pores of a mesoporous carbon matrix. In both bulk and confined liquids, our measurements, which are sensitive to the dynamics of the hydrogen-bearing cations, detect two distinct relaxation processes related to the diffusion of the cations. We have found that the cations that do not become immobilized near the pore walls exhibit an enhanced rather than suppressed diffusivity compared to the cation diffusivity in bulk liquid. Our results provide first experimental observation of molecular diffusion in a room temperature ionic liquid in confinement which is faster than diffusion in the bulk liquid. Copyright (C) EPLA, 2012 C1 [Chathoth, S. M.; Mamontov, E.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Dai, S.; Wang, X.; Fulvio, P. F.; Wesolowski, D. J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Chathoth, SM (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM mavilachaths@ornl.gov RI Mavila Chathoth, Suresh/E-7560-2010; Wang, Xiqing/E-3062-2010; Fulvio, Pasquale/B-2968-2014; Mamontov, Eugene/Q-1003-2015; Dai, Sheng/K-8411-2015 OI Mavila Chathoth, Suresh/0000-0002-4120-6959; Wang, Xiqing/0000-0002-1843-008X; Fulvio, Pasquale/0000-0001-7580-727X; Mamontov, Eugene/0000-0002-5684-2675; Dai, Sheng/0000-0002-8046-3931 FU Fluid interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. Oak Ridge National Laboratory [DE-AC05-00OR22725] FX This research is based upon work supported as part of the Fluid interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors are thankful to HUIMIN LUO, Gary Baker, and PATRICK HILLESHEIM for their help with samples preparation. The neutron scattering studies were conducted with support from the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. DOE under Contract No. DE-AC05-00OR22725. NR 36 TC 17 Z9 17 U1 1 U2 59 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAR PY 2012 VL 97 IS 6 AR 66004 DI 10.1209/0295-5075/97/66004 PG 6 WC Physics, Multidisciplinary SC Physics GA 914MD UT WOS:000301953300022 ER PT J AU Goldman, T Sharp, DH AF Goldman, T. Sharp, D. H. TI Order from disorder in closed systems via time-reversal violation SO EPL LA English DT Article ID BARYOGENESIS; UNIVERSE AB Definitions of entropy usually assume time-reversal (T) invariance of interactions, yet microscopically T is known to be violated. We present a detailed computational example of (uncharged) particle species separation (Maxwell demon) using an interaction that violates both parity (P) and T so that PT is preserved, consistent with the CPT invariance required in quantum field theory (C is charge conjugation). This illustrates how T-violating forces can produce more organized states from disorganized ones, contrary to expectations based on increase of entropy. We also outline several scenarios in which T-violating forces could lead to an organized state in the early Universe, starting from a still earlier disorganized state. Copyright (C) EPLA, 2012 C1 [Goldman, T.; Sharp, D. H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Goldman, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM tjgoldman@post.harvard.edu FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was carried out in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We have benefitted from discussions on this topic with H. Rose, C. OLSEN REICHARDT, C. REICHARDT, D. HOLZ and S. HABIB NR 17 TC 3 Z9 3 U1 0 U2 4 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAR PY 2012 VL 97 IS 6 AR 61003 DI 10.1209/0295-5075/97/61003 PG 6 WC Physics, Multidisciplinary SC Physics GA 914MD UT WOS:000301953300008 ER PT J AU Porebski, PJ Klimecka, M Chruszcz, M Nicholls, RA Murzyn, K Cuff, ME Xu, XH Cymborowski, M Murshudov, GN Savchenko, A Edwards, A Minor, W AF Porebski, Przemyslaw J. Klimecka, Maria Chruszcz, Maksymilian Nicholls, Robert A. Murzyn, Krzysztof Cuff, Marianne E. Xu, Xiaohui Cymborowski, Marcin Murshudov, Garib N. Savchenko, Alexei Edwards, Aled Minor, Wladek TI Structural characterization of Helicobacter pylori dethiobiotin synthetase reveals differences between family members SO FEBS JOURNAL LA English DT Article DE adenosine binding; biotin synthesis pathway; crystal structure; dethiobiotin synthesis; nucleotide recognition ID AUTOMATED STRUCTURE SOLUTION; ATP-DEPENDENT CARBOXYLASE; MULTIPLE PROTEIN-SEQUENCE; X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE; STRUCTURE ALIGNMENTS; DENSITY MODIFICATION; BIOTIN BIOSYNTHESIS; MODEL; ACID AB Dethiobiotin synthetase (DTBS) is involved in the biosynthesis of biotin in bacteria, fungi, and plants. As humans lack this pathway, DTBS is a promising antimicrobial drug target. We determined structures of DTBS from Helicobacter pylori (hpDTBS) bound with cofactors and a substrate analog, and described its unique characteristics relative to other DTBS proteins. Comparison with bacterial DTBS orthologs revealed considerable structural differences in nucleotide recognition. The C-terminal region of DTBS proteins, which contains two nucleotide-recognition motifs, differs greatly among DTBS proteins from different species. The structure of hpDTBS revealed that this protein is unique and does not contain a C-terminal region containing one of the motifs. The single nucleotide-binding motif in hpDTBS is similar to its counterpart in GTPases; however, isothermal titration calorimetry binding studies showed that hpDTBS has a strong preference for ATP. The structural determinants of ATP specificity were assessed with X-ray crystallographic studies of hpDTBS center dot ATP and hpDTBS center dot GTP complexes. The unique mode of nucleotide recognition in hpDTBS makes this protein a good target for H. pylori-specific inhibitors of the biotin synthesis pathway. C1 [Porebski, Przemyslaw J.; Klimecka, Maria; Chruszcz, Maksymilian; Nicholls, Robert A.; Murzyn, Krzysztof; Cymborowski, Marcin; Minor, Wladek] Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA. [Porebski, Przemyslaw J.; Murzyn, Krzysztof] Jagiellonian Univ, Dept Computat Biophys & Bioinformat, Krakow, Poland. [Nicholls, Robert A.] Univ York, York Struct Biol Lab, Dept Chem, York YO10 5DD, N Yorkshire, England. [Cuff, Marianne E.] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Xu, Xiaohui; Savchenko, Alexei; Edwards, Aled] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5S 1A1, Canada. [Murshudov, Garib N.] MRC Lab Mol Biol, Struct Studies Div, Cambridge, England. RP Minor, W (reprint author), Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA. EM wladek@iwonka.med.virginia.edu RI Murzyn, Krzysztof/A-4744-2014; Minor, Wladek/F-3096-2014; OI Chruszcz, Maksymilian/0000-0001-7521-5485; Nicholls, Robert/0000-0002-8577-8617; Minor, Wladek/0000-0001-7075-7090 FU NIH PSI [GM074942]; US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX The authors would like thank M. D. Zimmerman for valuable discussions. We thank I. Shumilin for help with ITC experiments. The work described in this article was supported by NIH PSI grant GM074942. The results reported in this article are derived from work performed at Argonne National Laboratory, at the Structural Biology Center of the Advanced Photon Source. Argonne is operated by the University of Chicago Argonne, LLC, for the US Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357. NR 51 TC 5 Z9 5 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X J9 FEBS J JI FEBS J. PD MAR PY 2012 VL 279 IS 6 BP 1093 EP 1105 DI 10.1111/j.1742-4658.2012.08506.x PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 906HW UT WOS:000301336800017 PM 22284390 ER PT J AU Brown, V Hoversten, M Key, K Chen, JS AF Brown, Vanessa Hoversten, Mike Key, Kerry Chen, Jinsong TI Resolution of reservoir scale electrical anisotropy from marine CSEM data SO GEOPHYSICS LA English DT Article ID ELECTROMAGNETIC INVERSION; HALF-SPACE; RESPONSES; MODEL; FIELD AB A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electric anisotropy located in a deep-water exploration reservoir target. Because strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examined how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling indicated that the sensitivity to reservoir level anisotropy is very low compared with the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We found that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. This' effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries. C1 [Brown, Vanessa] Inst Phys Globe, Paris, France. [Hoversten, Mike; Key, Kerry] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Hoversten, Mike] Chevron Energy Technol Co, San Ramon, CA USA. [Chen, Jinsong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Brown, V (reprint author), Inst Phys Globe, Paris, France. EM brown@ipgp.fr; hovg@chevron.com; kkey@ucsd.edu; jchen@lbl.com RI Chen, Jinsong/A-1374-2009; Key, Kerry/B-1092-2008 FU Chevron Energy Technology Company; Seafloor Electromagnetic Methods Consortium at Scripps Institution of Oceanography; U.S. Department of Energy; LBNL [DE-AC02-05CH11231] FX We are grateful to Chevron Energy Technology Company for support and permission to publish this work. Brown and Key acknowledge funding support from the Seafloor Electromagnetic Methods Consortium at Scripps Institution of Oceanography. This work was also partially supported by the U.S. Department of Energy and LBNL under Contract No. DE-AC02-05CH11231. NR 32 TC 16 Z9 19 U1 0 U2 15 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD MAR-APR PY 2012 VL 77 IS 2 BP E147 EP E158 DI 10.1190/GEO2011-0159.1 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 917QD UT WOS:000302192800014 ER PT J AU Um, ES Commer, M Newman, GA AF Um, Evan Schankee Commer, Michael Newman, Gregory A. TI Iterative finite-difference solution analysis of acoustic wave equation in the Laplace-Fourier domain SO GEOPHYSICS LA English DT Article ID ABSORBING BOUNDARY-CONDITIONS; FORM INVERSION; ACCURACY; SOLVER AB We have investigated numerical characteristics of iterative solutions to the acoustic wave equation in the Laplace-Fourier (LF) domain. We transformed the time-domain acoustic wave equation into the LF domain; the transformed equation was discretized with finite differences and was solved with iterative methods. Finite-difference modeling experiments demonstrate that iterative methods require an infinitesimal stopping tolerance to accurately compute the pressure field especially at long offsets. To understand the requirement for such infinitesimal tolerance values, we analyzed the evolution of intermediate solution vectors, residual vectors, and search direction vectors during the iteration. The analysis showed that the requirement arises from the fact that in the solution space, the amplitude of the pressure field varies more than sixty orders of magnitude on the common log scale. Accordingly, we propose a rule of thumb for choosing a proper stopping tolerance Value. We also examined numerical dispersion errors in terms of the grid sampling resolutions per skin depth and wavelength. We found that despite the similarity of the form of the acoustic wave and electromagnetic diffusion equations, the former is different from the latter due to the fact that in the LF domain, the skin depth of the acoustic wave equation is decoupled from its wavelength. This aspect requires that in the LF domain, its grid size be determined by considering the minimum grid sampling resolutions based not only the wavelength but also the skin depth. C1 [Um, Evan Schankee; Commer, Michael; Newman, Gregory A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Geophys, Berkeley, CA 94720 USA. RP Um, ES (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Geophys, Berkeley, CA 94720 USA. EM evanum@gmail.com; mcommer@lbl.gov; ganewman@lbl.gov RI Newman, Gregory/G-2813-2015; Commer, Michael/G-3350-2015; Um, Evan/E-9414-2015 OI Commer, Michael/0000-0003-0015-9217; FU U.S. Department of Energy Office of Science [DE-AC02-05CH11231]; Geothermal Program Office [GT-480010-19823-10] FX This work was carried out at Lawrence Berkeley Laboratory with funding provided by the U.S. Department of Energy Office of Science and the Geothermal Program Office, under respective contract numbers DE-AC02-05CH11231 and GT-480010-19823-10. We thank Jonas D. De Basabe, two other anonymous reviewers, and editors for their useful suggestions to improve this paper. NR 24 TC 6 Z9 6 U1 2 U2 12 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD MAR-APR PY 2012 VL 77 IS 2 BP T29 EP T36 DI 10.1190/GEO2011-0220.1 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 917QD UT WOS:000302192800034 ER PT J AU Lee, H Rahn, T Throop, HL AF Lee, Hanna Rahn, Thom Throop, Heather L. TI An accounting of C-based trace gas release during abiotic plant litter degradation SO GLOBAL CHANGE BIOLOGY LA English DT Article DE CH4; CO; CO2; litter decomposition; photodegradation; thermal degradation ID ULTRAVIOLET-B RADIATION; NUCLEAR-MAGNETIC-RESONANCE; AEROSOL OPTICAL DEPTH; ORGANIC-MATTER; UV-B; TERRESTRIAL ECOSYSTEMS; CARBON-MONOXIDE; DECOMPOSITION; PHOTODEGRADATION; LIGNIN AB Recent studies showed that photochemical breakdown (photodegradation) of plant material accounts for a substantial portion of litter decomposition and subsequent trace gas release in ecosystems under high radiative load and low precipitation. In the absence of solar radiation, thermal degradation may also cause trace gas release at temperatures below the ignition point. These observations suggest that the abiotic processes of photodegradation and thermal degradation of plant litter may be important in understanding global trace gas budgets. In a laboratory incubation study, we performed a simultaneous carbon (C) accounting of CO2, CO, and CH4 produced as a byproduct of photodegradation and thermal degradation of six different plant litter types that varied in chemical composition. The patterns of trace gas release during photodegradation and thermal degradation differed considerably across the six plant materials, suggesting that chemical composition of litter may influence the rates of abiotic degradation. There was a strong positive correlation between the rates of trace gas release during photodegradation and temperature. A significant portion of trace gases were produced during low temperature (13C-NMR analysis. NR 52 TC 27 Z9 27 U1 3 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD MAR PY 2012 VL 18 IS 3 BP 1185 EP 1195 DI 10.1111/j.1365-2486.2011.02579.x PG 11 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 897RD UT WOS:000300671600032 ER PT J AU Aulicino, PC Gomez-Carrillo, M Bello, G Rocco, C Mangano, A Carr, J Sen, L Foley, B AF Aulicino, Paula C. Gomez-Carrillo, Manuel Bello, Gonzalo Rocco, Carlos Mangano, Andrea Carr, Jean Sen, Luisa Foley, Brian TI Characterization of full-length HIV-1 CRF17_BF genomes and comparison to the prototype CRF12_BF strains SO INFECTION GENETICS AND EVOLUTION LA English DT Article DE HIV-1 subtypes; Argentina; BF recombinants; HIV diversity; Molecular epidemiology; CRF17_BF ID IDENTIFICATION; VIRUS AB The aim of this work is to characterize the full-length intersubtype recombinant structure of the HIV-1 Circulating Recombinant Form CRF17_BF. A single genome of CRF17_BF was originally described in 2001 as being largely similar to CRF12_BF. Since then, more genomes of CRF17_BF have been sequenced but not adequately described in publications. Here we describe CRF17_BF as a genuine CRF, and analyze its recombination pattern based on bootscan analyses, subtype signature patterns, and phylogenetic reconstruction of subtype-delimited segments. We show that CRF17_BF can be distinguished from CRF12_BF in several regions of the genome, including vpu, pol, env and nef. A complete and accurate characterization and description of recombination breakpoints in CRFs is required for a proper surveillance of HIV-1 genotypes, and important for epidemiological purposes. (C) 2012 Elsevier B.V. All rights reserved. C1 [Aulicino, Paula C.; Rocco, Carlos; Mangano, Andrea; Sen, Luisa] Hosp Pediat JP Garrahan, Lab Biol Celular & Retrovirus, CONICET, RA-1245 Buenos Aires, DF, Argentina. [Gomez-Carrillo, Manuel] Univ Buenos Aires, Sch Med, Dept Microbiol, Natl Reference Ctr AIDS, Buenos Aires, DF, Argentina. [Bello, Gonzalo] Fiocruz MS, Inst Oswaldo Cruz, Lab AIDS & Imunol Mol, BR-21045900 Rio De Janeiro, Brazil. [Carr, Jean] Univ Maryland, Sch Med, Inst Human Virol, Dept Epidemiol & Prevent, Baltimore, MD 21201 USA. [Foley, Brian] Los Alamos Natl Lab, Theoret Biol Grp, Los Alamos, NM 87545 USA. RP Aulicino, PC (reprint author), Hosp Pediat JP Garrahan, Lab Biol Celular & Retrovirus, CONICET, Combate Pozos 1881, RA-1245 Buenos Aires, DF, Argentina. EM pauauli@gmail.com RI Ghartouchent, malek/B-9088-2012; Bello, Gonzalo/E-6842-2013; OI Foley, Brian/0000-0002-1086-0296; Bello Bentancor, Gonzalo Jose/0000-0002-2724-2793 FU NIAID NIH HHS [Y01 AI8309] NR 14 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1348 J9 INFECT GENET EVOL JI Infect. Genet. Evol. PD MAR PY 2012 VL 12 IS 2 BP 443 EP 447 DI 10.1016/j.meegid.2012.01.003 PG 5 WC Infectious Diseases SC Infectious Diseases GA 921XT UT WOS:000302512100032 PM 22266022 ER PT J AU Saha, D Zacharia, R Lafi, L Cossement, D Chahine, R AF Saha, Dipendu Zacharia, Renju Lafi, Lyubou Cossement, Daniel Chahine, Richard TI Synthesis, characterization and hydrogen adsorption properties of metal-organic framework Al-TCBPB SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Metal-organic framework; Al-TCBPB; Pore texture; Hydrogen adsorption ID ALUMINUM TEREPHTHALATE MIL-53; MOF-177; PYROMELLITATE; EQUILIBRIUM; TEMPERATURE; KINETICS; ENTHALPY; MIL-100; STORAGE; CHAINS AB In this work, a new metal organic framework (MOF) was synthesized by using a large organic ligand 1,3,5-tris[4'-carboxy(1,1'-biphenyl)-4-yl] benzene (abbreviated as TCBPB) and aluminum as the metal that forms the secondary building unit (SBU) by solvothermal method. The MOF, named as Al-TCBPB, was characterized with pore textural properties, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Raman and FT-IR spectroscopy. Hydrogen adsorption was measured volumetrically at ambient pressure and temperatures of 77, 88 and 298 K and at high pressure (up to 9 MPa) for temperatures 77 and 298 K. Pore textural properties revealed a high BET surface area of 2311 m(2)/g, narrow bimodal pore widths of 11.8 angstrom and 20 angstrom and a total pore volume of 0.80 cm(3)/g. PXRD identified the crystal structure as monoclinic with space group c2/m. This MOF adsorbs 1.53 and 0.83 wt.% of hydrogen at 77 and 88 K, respectively, and pressures up to ambient conditions. At higher pressure of 9 MPa, it demonstrated an excess adsorption of 4.8 and 1.4 wt.% at 77 and 298 K, respectively; these high-pressure data fit well with modified Dubinin-Astakov (D-A) analytical model. The heat of adsorption values of Al-TCBPB vary between 5.9 and 4.9 kJ/mol for the hydrogen adsorption loading of 0.1-0.8 wt.% and decreases monotonically to approximately 2 kJ/mol when the adsorption loading becomes 4.8 wt%. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Saha, Dipendu; Zacharia, Renju; Lafi, Lyubou; Cossement, Daniel; Chahine, Richard] Univ Quebec, Inst Rech Hydrogene, Trois Rivieres, PQ G9A 5H7, Canada. RP Saha, D (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Lab, 1 Bethel Valley Rd,MS 6053, Oak Ridge, TN 37831 USA. EM dipendus@gmail.com RI Zacharia, Renju/M-3527-2015 OI Zacharia, Renju/0000-0002-8485-5676 FU NSERC; NSERC Strategic Network H2CAN; Natural Resources Canada (NRCAN) FX The authors greatly appreciate the support provided by NSERC Industrial Research Chair, NSERC Strategic Network H2CAN, and Natural Resources Canada (NRCAN). NR 33 TC 5 Z9 5 U1 6 U2 68 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2012 VL 37 IS 6 BP 5100 EP 5107 DI 10.1016/j.ijhydene.2011.12.072 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 914YP UT WOS:000301990100037 ER PT J AU Yang, YX Voskuilen, TG Pourpoint, TL Guildenbecher, DR Gore, JP AF Yang, Yuxin Voskuilen, Tyler G. Pourpoint, Timothee L. Guildenbecher, Daniel R. Gore, Jay P. TI Determination of the thermal transport properties of ammonia borane and its thermolysis product (polyiminoborane) using the transient plane source technique SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Ammonia borane; Transient plane source; Thermal diffusivity; Thermal conductivity; Hydrogen storage ID WHEAT-FLOUR; CONDUCTIVITY; DIFFUSIVITY; TEMPERATURE; SANDS; FOOD AB Reliable thermal property data are necessary to improve the fidelity of chemical hydride thermal decomposition models. The thermal diffusivity and conductivity of ammonia borane (NH3BH3) and its partial thermolysis product (polyiminoborane) were measured at various packing densities using a transient plane source technique under ambient conditions. The particle size of the ammonia borane powder was between 200 and 600 mu m, while the particle size of the polyiminoborane powder was between 10 and 30 mu m. The thermal diffusivity and conductivity of the ammonia borane increased from 0.17 to 0.24 mm(2)/s and 0.19 to 0.44 W/m K (+/-10%), respectively, when its packing density was increased from 0.37 to 0.58 g/cm(3). The increase in thermal conductivity is due to the increase in contact area between particles and the increase in the thermal diffusivity is related to an increase in density and volumetric heat capacity caused by compaction. The thermal conductivity of the polyiminoborane powder was approximately three times lower, likely due to its higher porosity. The thermal diffusivity and conductivity of this product changed from 0.21 to 0.12 mm(2)/s and 0.068 to 0.23 W/m K (+/-10%), respectively, when its packing density was increased from 0.13 to 0.96 g/cm(3). Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Pourpoint, Timothee L.] Purdue Univ, Sch Aeronaut & Astronaut Engn, W Lafayette, IN 47907 USA. [Yang, Yuxin] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47906 USA. [Voskuilen, Tyler G.; Guildenbecher, Daniel R.; Gore, Jay P.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Voskuilen, Tyler G.; Pourpoint, Timothee L.; Guildenbecher, Daniel R.; Gore, Jay P.] Purdue Univ, Energy Ctr Discovery Pk, W Lafayette, IN 47907 USA. [Pourpoint, Timothee L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pourpoint, TL (reprint author), Purdue Univ, Sch Aeronaut & Astronaut Engn, 500 Allison Rd, W Lafayette, IN 47907 USA. EM timothee@purdue.edu FU Department of Energy [DE-FG36-06GO86050] FX Part of this work was made possible with financial support from the Department of Energy under contract DE-FG36-06GO86050 with Dr. Grace Ordaz as program manager. The authors would also like to thank Dr. P. V. Ramachandran and his research group for their contribution in providing some of the ammonia borane used in this study. We also acknowledge Dr. S. F. Son for the use of the digital microscope. NR 36 TC 1 Z9 1 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2012 VL 37 IS 6 BP 5128 EP 5136 DI 10.1016/j.ijhydene.2011.12.011 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 914YP UT WOS:000301990100041 ER PT J AU Lopes, T Chlistunoff, J Sansinena, JM Garzon, FH AF Lopes, Thiago Chlistunoff, Jerzy Sansinena, Jose-Maria Garzon, Fernando H. TI Oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of trace quantities of ammonium ions: An RRDE study SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE ORR kinetics; Ammonia; Contaminant; PEMFCs ID RING-DISK ELECTRODE; PERCHLORIC-ACID; PERFORMANCE; PLATINUM; PT(111); METALS; CHARGE AB The effect of trace quantities of ammonia on oxygen reduction reaction (ORR) on carbon-supported platinum catalysts in perchloric acid solutions is assessed using rotating ring disk electrode (RRDE) technique. The study demonstrates that ammonia has detrimental effects on ORR. The most significant effect takes place in the potential region above 0.7 V vs RHE. The effect is explained by the electrochemical oxidation of ammonia, which blocks Pt active sites and increases the formation of H2O2. This leads to losses in the disk currents and increments in the ring currents. The apparent losses in ORR currents may occur in two ways, namely, through the blocking of the active sites for ORR as well as by generating a small anodic current, which is believed to have a lower contribution. In addition, a detrimental effect of sodium cations in the potential range below 0.75 V vs RHE was demonstrated. This effect is most likely due to the co-adsorption of sodium cations and perchlorate anions on the Pt surface. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Lopes, Thiago; Chlistunoff, Jerzy; Sansinena, Jose-Maria; Garzon, Fernando H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lopes, Thiago] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil. RP Garzon, FH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM garzon@lanl.gov RI Lopes, Thiago/F-5797-2012; Lopes, Thiago/I-6350-2013 OI Lopes, Thiago/0000-0002-1049-4679 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; government agency CAPES [1151-08-8] FX The authors would like to acknowledge the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cell and Infrastructure Program for support of this research. Thiago Lopes also thanks his government agency CAPES, process number 1151-08-8, for granting him a one-year fellowship at Los Alamos National Laboratory. NR 28 TC 16 Z9 16 U1 2 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2012 VL 37 IS 6 BP 5202 EP 5207 DI 10.1016/j.ijhydene.2011.12.040 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 914YP UT WOS:000301990100049 ER PT J AU Long, CN McFarlane, SA AF Long, Charles N. McFarlane, Sally A. TI Quantification of the Impact of Nauru Island on ARM Measurements SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID SATELLITE-OBSERVATIONS; CLOUD AB Nauru Island at times generates low clouds that impact low-level cloud statistics and downwelling short-wave radiation measurements made at the Atmospheric Radiation Measurement Program (ARM) site. This study uses five years of Nauru data to quantify the island impact on the site measurements. The results indicate that the solar-heating-produced Nauru island effect occurs about 11% of the time during daylight hours. The island effect increases the 500-1000-m cloud base occurrence by 15%-20% when clouds occur, but because the island effect only occurs 11% of the time the overall increase in daylight low-cloud statistics is 2%, or 1% for 24-h statistics. In a similar way, the island effect produces a reduction of about 17% in the downwelling shortwave (SW) radiation across the daylight hours during the 11% of the time it occurs, an overall 2% daylight (or 1% for 24 h) average reduction. The island effect produces frequent positive downwelling SW cloud effects, in particular during the morning, which tend to somewhat mitigate the overall decrease in downwelling SW radiation that is due to clouds. This produces 17 W m(-2) less daylight average SW cloud effect relative to non-island-effect times, in particular for the convectively suppressed regime that typifies island-effect-producing conditions. For long-term overall statistical studies such as model and satellite comparisons, the 2% daylight (or 1% per 24 h) average increase in low-level cloud occurrence and decrease in downwelling SW are not of large concern as long as researchers are aware of them. For shorter-term studies, however, or those that separate data by conditions such as convectively active/suppressed regimes, the Nauru island effect can have significant impacts. C1 [Long, Charles N.; McFarlane, Sally A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Long, CN (reprint author), Pacific NW Natl Lab, POB 999,MSIN K4-28, Richland, WA 99352 USA. EM chuck.long@pnl.gov FU Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE); DOE [DE-AC06-76RLO 1830] FX This work has been supported by the Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the ARM and Atmospheric Systems Research (ASR) programs. The Pacific Northwest National Laboratory is operated by Battelle for the DOE under Contract DE-AC06-76RLO 1830. Recognition is also extended to those responsible for the operation and maintenance of the instruments that produced the data used in this study; their diligent and dedicated efforts are often underappreciated. We also thank the anonymous reviewers whose suggestions and comments have improved the content and presentation of this paper. NR 15 TC 2 Z9 2 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAR PY 2012 VL 51 IS 3 BP 628 EP 636 DI 10.1175/JAMC-D-11-0174.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910XT UT WOS:000301682600013 ER PT J AU Akdogan, EK Savkliyildiz, I Berke, B Zhong, Z Wang, L Weidner, D Croft, MC Tsakalakos, T AF Akdogan, E. K. Savkliyildiz, I. Berke, B. Zhong, Z. Wang, L. Weidner, D. Croft, M. C. Tsakalakos, T. TI Pressure effects on phase equilibria and solid solubility in MgO-Y2O3 nanocomposites SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELASTIC-CONSTANTS; MAGNESIUM-OXIDE; VACANCY DEFECTS; MGO; YTTRIA; ELECTROSTRICTION; DEFORMATION; ENERGETICS; CERAMICS; CRYSTALS AB We study the temperature and pressure dependence of phase evolution in the 0.5MgO-0.5Y(2)O(3) nanocomposite system using a diamond anvil apparatus in conjunction with in situ synchrotron energy dispersive x-ray diffraction at 7 GPa hydrostatic pressure. At (298 K, 7.0 GPa), structural transformations in the Y2O3 phase are observed, giving rise to the co-existence of its cubic, hexagonal, and monoclinic polymorphs together with cubic MgO. An increase in temperature to 1273K causes the crystallinity of the Y2O3 hexagonal and monoclinic phases to increase. Isothermal and isobaric hold at (1273 K, 7.0 GPa) for 60 min results in yttrium dissolution in cubic MgO, causing similar to 1.0% expansive volumetric lattice strain despite the large differences in the ionic radii of the cations. Cooling the nanocomposite to (298 K, 0 GPa) after a 60min soak yields four phase co-existence among cubic MgO and cubic, hexagonal, and monoclinic Y2O3. The residual MgO unit cell volume expansion is 0.69% at 298 K, indicating solid solution formation at room temperature despite large differences in the ionic radii of Mg2+ and Y3+. The macroscopic shrinkage due to densification is 3% by volume. Thermodynamic considerations suggest that the relative molar partial volume of Y3+ in MgO is a negative quantity, indicating that the partial molar volume of Y3+ in the solid solution is smaller than its molar volume in the pure state. Aging of the nanocomposites for 240 h does not change the observed 4 phase co-existence. We propose a crystallographic model in which the observed volumetric expansion of the MgO unit cell is primarily attributed to two hydrostatic expansive strain components accompanying solid solution formation: (i) Coulomb repulsion among O2- ions in the immediate vicinity of Mg2+ vacancies, and (ii) misfit strain due to differences in ionic radii upon Y3+ substitution on Mg2+ sites. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691219] C1 [Akdogan, E. K.; Savkliyildiz, I.; Berke, B.; Tsakalakos, T.] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA. [Zhong, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Wang, L.; Weidner, D.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Croft, M. C.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Akdogan, EK (reprint author), Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA. EM eka@rci.rutgers.edu FU Office of Naval Research (ONR) [N00014-10-1-042]; COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under NSF [EAR 06-49658]; U.S. Department of Energy, Division of Material Sciences and Division of Chemical Sciences [DE-AC02-76CH00016] FX The authors wish to express their gratitude for the financial support provided by the Office of Naval Research (ONR) under Contract No. N00014-10-1-042. The authors wish to thank Dr. L. Kabacoff of the ONR for his valuable technical feedback and support of this project. This research was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under NSF Cooperative Agreement No. EAR 06-49658. This research was carried out in part at the NSLS, which is supported by the U.S. Department of Energy, Division of Material Sciences and Division of Chemical Sciences, under Contract No. DE-AC02-76CH00016. NR 48 TC 3 Z9 3 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 053506 DI 10.1063/1.3691219 PG 7 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200027 ER PT J AU Alvine, KJ Tyagi, M Brown, CM Udovic, TJ Jenkins, T Pitman, SG AF Alvine, K. J. Tyagi, M. Brown, C. M. Udovic, T. J. Jenkins, T. Pitman, S. G. TI Hydrogen species motion in piezoelectrics: A quasi-elastic neutron scattering study SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ZIRCONATE-TITANATE CERAMICS; FERROELECTRIC-FILMS; INDUCED DEGRADATION; SPECTROMETER; CAPACITORS; ELECTRODE; PB(ZR; NIST AB Hydrogen is known to damage or degrade piezoelectric materials, at low pressure for ferroelectric random access memory applications, and at high pressure for hydrogen-powered vehicle applications. The piezoelectric degradation is in part governed by the motion of hydrogen species within the piezoelectric materials. We present here quasi-elastic neutron scattering (QENS) measurements of the local hydrogen species motion within lead zirconate titanate (PZT) and barium titanate (BTO) on samples charged by exposure to high-pressure gaseous hydrogen (approximate to 17 MPa). Neutron vibrational spectroscopy (NVS) studies of the hydrogen-enhanced vibrational modes are presented as well. Results are discussed in the context of theoretically predicted interstitial hydrogen lattice sites and compared to comparable bulk diffusion studies of hydrogen diffusion in lead zirconate titanate. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691114] C1 [Alvine, K. J.; Pitman, S. G.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Tyagi, M.; Brown, C. M.; Udovic, T. J.; Jenkins, T.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Tyagi, M.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Alvine, KJ (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM kyle.alvine@pnl.gov; mtyagi@nist.gov RI Tyagi, Madhu Sudan/M-4693-2014; Brown, Craig/B-5430-2009 OI Tyagi, Madhu Sudan/0000-0002-4364-7176; Brown, Craig/0000-0002-9637-9355 FU DOE [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research; National Institute of Standards and Technology, U.S. Department of Commerce; National Science Foundation [DMR-0944772] FX This research was supported under DOE Contract No. DE-AC05-76RL01830. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772. NR 30 TC 3 Z9 3 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 053505 DI 10.1063/1.3691114 PG 7 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200026 ER PT J AU An, Q Han, WZ Luo, SN Germann, TC Tonks, DL Goddard, WA AF An, Q. Han, W. Z. Luo, S. N. Germann, T. C. Tonks, D. L. Goddard, W. A., III TI Left-right loading dependence of shock response of (111)//(112) Cu bicrystals: Deformation and spallation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; GRAIN-BOUNDARIES; COPPER; WAVES AB We investigate with molecular dynamics the dynamic response of Cu bicrystals with a special asymmetric grain boundary (GB), (111)//(112) < 110 >, and its dependence on the loading directions. Shock loading is applied along the GB normal either from the left or right to the GB. Due to the structure asymmetry, the bicrystals demonstrate overall strong left-right loading dependence of its shock response, including compression wave features, compression and tensile plasticity, damage characteristics (e. g., spall strength), effective wave speeds and structure changes, except that spallation remains dominated by the GB damage regardless of the loading directions. The presence or absence of transient microtwinning also depends on the loading directions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692079] C1 [Han, W. Z.; Luo, S. N.; Germann, T. C.; Tonks, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [An, Q.; Goddard, W. A., III] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. RP Luo, SN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sluo@lanl.gov RI Han, Weizhong/C-9963-2011; Luo, Sheng-Nian /D-2257-2010; An, Qi/I-6985-2012; OI Luo, Sheng-Nian /0000-0002-7538-0541; Germann, Timothy/0000-0002-6813-238X FU Advanced Simulation and Computation; LANL; PSAAP at Caltech; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Advanced Simulation and Computation, and Laboratory-Directed Research and Development programs at LANL, and the PSAAP program at Caltech. LANL is operated by Los Alamos National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 26 TC 4 Z9 4 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 053525 DI 10.1063/1.3692079 PG 4 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200046 ER PT J AU Anders, A Ni, P Rauch, A AF Anders, Andre Ni, Pavel Rauch, Albert TI Drifting localization of ionization runaway: Unraveling the nature of anomalous transport in high power impulse magnetron sputtering SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHYSICAL VAPOR-DEPOSITION; HOLLOW-CATHODE DISCHARGE; PLASMA-OSCILLATIONS; INSTABILITY; ELECTRONS; TARGET; ENERGY; FIELD AB The plasma over a magnetron's erosion "racetrack" is not azimuthally uniform but concentrated in distinct dense ionization zones which move in the E x B direction with about 10% of the electron E x B/B-2 drift velocity. The ionization zones are investigated with a gated camera working in concert with a streak camera for Al, Nb, Cu, and W targets in Ar or Kr background gas. It is found that each ionization zone has a high plasma density edge, which is the origin of a plasma-generating electron jet leaving the target zone. Each region of strong azimuthal plasma density gradient generates an azimuthal electric field, which promotes the escape of magnetized electrons and the formation of electron jets and plasma flares. The phenomena are proposed to be caused by an ionization instability where each dense plasma zone exhibits a high stopping power for drifting high energy electrons, thereby enhancing itself. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692978] C1 [Anders, Andre; Ni, Pavel; Rauch, Albert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Austrian Marshall Plan Foundation; Office of Building Technology of U.S. Department of Energy (DOE) FX We gratefully acknowledge the use of the gate and streak cameras offered by the Fusion Science and Ion Beam Technology Program. Technical support was provided by J. Wallig. A. R. thanks the Austrian Marshall Plan Foundation (www.marshallplan.at) for funding a scholarship. A. A. acknowledges support by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology of the U.S. Department of Energy (DOE). This work was done at Lawrence Berkeley National Laboratory with support by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. NR 62 TC 71 Z9 72 U1 1 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 053304 DI 10.1063/1.3692978 PG 13 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200018 ER PT J AU Chen, YT Hu, HB Tang, TG Ren, GW Li, QZ Wang, RB Buttler, WT AF Chen, Yongtao Hu, Haibo Tang, Tiegang Ren, Guowu Li, Qingzhong Wang, Rongbo Buttler, William T. TI Experimental study of ejecta from shock melted lead SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACES; METALS; DAMAGE; SPALL AB This effort investigates the dynamic properties of ejecta from explosively shocked, melted Pb targets. The study shows that the ejecta cloud that expands beyond the shocked surface is characterized by a high density and low velocity fragment layer between the free-surface and the high velocity micro-jetting particle cloud. This slow, dense ejecta layer is liquid micro-spall. The properties of micro-spall layer, such as the mass, density and velocity, were diagnosed in a novel application of an Asay window, while micro-jetting particles by lithium niobate piezoelectric pins and high speed photography. The total mass-velocity distribution of ejecta, including micro-spall fragments and micro-jetting particles, is presented. Furthermore, the sensitivity of ejecta production to slight variations in the shockwave drive using the Asay foil is studied. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692570] C1 [Chen, Yongtao; Hu, Haibo; Tang, Tiegang; Ren, Guowu; Li, Qingzhong; Wang, Rongbo] CAEP, Lab Shock Wave, Mianyang 621900, Sichuan, Peoples R China. [Chen, Yongtao; Hu, Haibo; Tang, Tiegang; Ren, Guowu; Li, Qingzhong; Wang, Rongbo] CAEP, Detonat Phys Res Inst Fluid Phys, Mianyang 621900, Sichuan, Peoples R China. [Buttler, William T.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Chen, YT (reprint author), CAEP, Lab Shock Wave, Mianyang 621900, Sichuan, Peoples R China. EM cythit@yahoo.cn FU Science and Technology Foundation of CAEP [2010A0201008] FX Support was provided by the Science and Technology Foundation of CAEP under Grant No. 2010A0201008. NR 27 TC 24 Z9 25 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 053509 DI 10.1063/1.3692570 PG 8 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200030 ER PT J AU Hurley, DH Reese, SJ Farzbod, F AF Hurley, David H. Reese, Stephen J. Farzbod, Farhad TI Application of laser-based resonant ultrasound spectroscopy to study texture in copper SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY; SHEETS; METALS; MICROSTRUCTURE; ANISOTROPY AB Two copper specimens with distinct grain microstructures are investigated using laser resonant ultrasound spectroscopy (LRUS). One consists of randomly oriented crystallites and exhibits isotropic elastic behavior (two elastic constants), and the other has been highly textured by rolling and exhibits anisotropic elastic behavior (three elastic constants). The elastic constants are measured using electron backscatter diffraction, LRUS, and time domain laser ultrasound (LU). The elastic constants of the isotropic sample obtained via electron backscatter diffraction (EBSD), LU, and LRUS agree closely. However, for the anisotropic sample, there is considerable disagreement between results obtained using LRUS and results obtained using LU and EBSD. Analysis reveals that increasing the dimensionality of the modulus space leads to a questions of whether the LRUS results are unique to within experimental error. The consequence is that for anisotropic materials, small measurement uncertainties can lead to large uncertainties in the measured elastic constants. This observation has important implications for the use of LRUS to measure the elastic constants of thin texture samples. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692386] C1 [Hurley, David H.; Reese, Stephen J.; Farzbod, Farhad] Idaho Natl Lab, Dept Mat Sci, Idaho Falls, ID 83415 USA. RP Hurley, DH (reprint author), Idaho Natl Lab, Dept Mat Sci, Idaho Falls, ID 83415 USA. EM david.hurley@inl.gov OI Reese, Stephen/0000-0003-1390-292X NR 27 TC 8 Z9 8 U1 5 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 053527 DI 10.1063/1.3692386 PG 6 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200048 ER PT J AU Kang, K Wang, J Beyerlein, IJ AF Kang, K. Wang, J. Beyerlein, I. J. TI Atomic structure variations of mechanically stable fcc-bcc interfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID INTERATOMIC POTENTIALS APPROPRIATE; NANOLAYERED COMPOSITES; DEFORMATION MECHANISMS; METALLIC MULTILAYERS; LAYERED COMPOSITES; RADIATION-DAMAGE; GRAIN-BOUNDARY; DEFECTS; CU; DISLOCATION AB It has recently been shown that under severe plastic deformation processing bi-metal fcc/bcc composites develop a mechanically stable heterophase interface that joins the {112}fcc//{112}bcc planes in the Kurdjumov-Sachs orientation relationship. In this article, we study variations in the relaxed equilibrium atomic structure of this interface with changes in fcc stacking fault energy (SFE) and lattice mismatch between the two crystals. Using molecular statics/dynamics simulations for three fcc/bcc systems, Cu-Nb, Al-Fe, and Al-Nb, we find that the number of distinct sets of intrinsic interfacial dislocations and their core structures vary significantly among these three systems. The impact of these atomic-scale structural differences on interfacial properties is demonstrated through their interactions with point defects. The interfaces studied here are shown to exhibit a wide variation in ability, ranging from being a poor to an excellent sink for vacancies. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3693015] C1 [Wang, J.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Kang, K.; Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012; OI Wang, Jian/0000-0001-5130-300X; Kang, Keonwook/0000-0002-8428-8288 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; Los Alamos National Laboratory Directed Research and Development (LDRD) [DR20110029, ER20110573]; Leading Foreign Research Institute through the National Research Foundation of Korea; Ministry of Education, Science and Technology [2011-0030065] FX The authors would like to acknowledge support by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2008LANL1026. J.W. acknowledges support provided by the Los Alamos National Laboratory Directed Research and Development (LDRD) Projects Nos. DR20110029 and ER20110573. K. K. acknowledges partial support from the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-0030065). NR 50 TC 34 Z9 34 U1 2 U2 52 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 053531 DI 10.1063/1.3693015 PG 10 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200052 ER PT J AU Song, SQ Bohuslav, G Capitano, A Du, J Taniguchi, K Cai, ZH Sun, L AF Song, Shuangqi Bohuslav, Greg Capitano, Adam Du, Jun Taniguchi, Karen Cai, Zhonghou Sun, Li TI Experimental characterization of electrochemical synthesized Fe nanowires for biomedical applications SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TEMPLATE SYNTHESIS; GOLD NANORODS; NANOPARTICLES; GROWTH; FABRICATION; ARRAYS AB Fe based nanomaterials have shown extensive application promises in medical diagnosis and treatment due to their biocompatibility. Using template assisted electrodeposition, iron based nanowires with controllable size, aspect ratio, and magnetic anisotropy have been fabricated. In situ synchrotron diffraction technique has been used to reveal the nanowire growth mechanism and provide real time compositional and crystallographic information. Biocompatibility of the nanowires with Rat-2 fibroblast cells has been evaluated and compared with magnetite nanoparticles. Using an external magnetic field, cell manipulation through the use of these magnetic nanowires has been demonstrated. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692068] C1 [Song, Shuangqi; Bohuslav, Greg; Capitano, Adam; Taniguchi, Karen; Sun, Li] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA. [Song, Shuangqi; Bohuslav, Greg; Capitano, Adam; Taniguchi, Karen; Sun, Li] Univ Houston, Texas Ctr Superconduct TcSUH, Houston, TX 77204 USA. [Du, Jun] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Du, Jun] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Cai, Zhonghou] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Sun, L (reprint author), Univ Houston, Dept Mech Engn, Houston, TX 77204 USA. EM lsun4@uh.edu FU DOD 213 TATRC through the Alliance for Nano Health [W81XWH-09-2-0139]; NSF [CMMI-0800866]; U.S. Department of Energy Sciences, Office of Science [W-31-109-ENG-38] FX Financial support from DOD 213 TATRC award W81XWH-09-2-0139 through the Alliance for Nano Health and NSF award CMMI-0800866 are gratefully acknowledged. Use of the Advanced Photon Source is supported by the U. S. Department of Energy Sciences, Office of Science, under contract No. W-31-109-ENG-38. L. S. also wants to thank Nanjing University for hosting his faculty development leave. NR 22 TC 6 Z9 6 U1 3 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 056103 DI 10.1063/1.3692068 PG 3 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200167 ER PT J AU Tanaka, T Sueishi, T Saito, K Guo, QX Nishio, M Yu, KM Walukiewicz, W AF Tanaka, Tooru Sueishi, Tatsuya Saito, Katsuhiko Guo, Qixin Nishio, Mitsuhiro Yu, Kin M. Walukiewicz, Wladek TI Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SOLAR-CELLS; SPECTROSCOPY; TRANSPORT; ABSORBER AB The composition dependence of the electrical properties of Cu2ZnSnSe4 thin films synthesized by coevaporation and the results of phase analyses are reported. We found that the hole concentration depends on the Cu/(Zn + Sn) ratio and is on the order of 10(17) cm(-3) for the ratio of 0.7 and increases to over 10(20) cm(-3) when the ratio exceeds 0.9. Raman spectra indicate the coexistence of semimetallic Cu2Se second phase in the thin films with Cu/(Zn + Sn) ratio above 0.9. In order to remove the Cu2Se phase selectively, we attempted a KCN etching. After the KCN etching for 30 min, the Raman peak attributed to the Cu2Se phase disappeared, and the hole concentration decreased to about 10(18) cm(-3). (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691964] C1 [Tanaka, Tooru; Sueishi, Tatsuya; Nishio, Mitsuhiro] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan. [Saito, Katsuhiko; Guo, Qixin] Saga Univ, Synchrotron Light Applicat Ctr, Saga 8408502, Japan. [Yu, Kin M.; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Tanaka, T (reprint author), Saga Univ, Dept Elect & Elect Engn, 1 Honjo, Saga 8408502, Japan. RI Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Tanaka, Tooru/0000-0001-5747-1717 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work performed at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 38 Z9 39 U1 8 U2 46 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 053522 DI 10.1063/1.3691964 PG 4 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200043 ER PT J AU Tang, V Grant, CD McCarrick, JF Zaug, JM Glascoe, EA Wang, H AF Tang, V. Grant, C. D. McCarrick, J. F. Zaug, J. M. Glascoe, E. A. Wang, H. TI Spatiotemporal temperature and density characterization of high-power atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THERMAL-DECOMPOSITION; SPARK DISCHARGES; NITRATE ESTERS; PRESSURE; AIR; SPECTROSCOPY; SIMULATION; NANOSCALE; CHEMISTRY AB A flashover arc source that delivered up to 200 mJ on the 100s-of-ns time-scale to the arc and a user-selected dielectric surface was characterized for studying high-explosive kinetics under plasma conditions. The flashover was driven over thin pentaerythritol tetranitrate (PETN) and poly(methyl methacrylate) (PMMA) dielectric films and the resultant plasma was characterized in detail. Time-and space-resolved temperatures and electron densities of the plasma were obtained using atomic emission spectroscopy. The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for any chemical alterations. Time-resolved infrared spectroscopy (TRIR) provided PETN depletion data during the plasma discharge. For both types of films, temperatures of 1.6-1.7 eV and electron densities of similar to 7-8 x 10(17)/cm(3) similar to 570 ns after the start of the discharge were observed with temperatures of 0.6-0.7 eV persisting out to 15 mu s. At 1.2 mu s, spatial characterization showed flat temperature and density profiles of 1.1-1.3 eV and 2-2.8 x 10(17)/cm(3) for PETN and PMMA films, respectively. Images of the plasma showed an expanding hot kernel starting from radii of similar to 0.2 mm at similar to 50 ns and reaching similar to 1.1 mm at similar to 600 ns. The thin films ablated or reacted several hundred nm of material in response to the discharge. First TRIR data showing the in situ reaction or depletion of PETN in response to the flashover arc were successfully obtained, and a 2-mu s, 1/e decay constant was measured. Preliminary 1 D simulations compared reasonably well with the experimentally determined plasma radii and temperatures. These results complete the first steps to resolving arc-driven PETN reaction pathways and their associated kinetic rates using in situ spectroscopy techniques. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3689167] C1 [Tang, V.; Grant, C. D.; McCarrick, J. F.; Zaug, J. M.; Glascoe, E. A.; Wang, H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Tang, V (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tang23@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development at LLNL [09-ERD-042] FX The authors thank J. C. Crowhurst and M. Armstrong for providing experimental assistance and helpful discussions and P. F. Pagoria for providing PETN powders. We thank M. Ong and T. Houck for providing the ICCD fast imaging camera, D. Hahn for assisting in setting up the HSFC Pro, and J. Maienschein for time-sharing his camera. We also thank John Chesser for assisting with film thickness measurement and for Troy Barbee allowing us the use of his DekTak instrumentation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (09-ERD-042) at LLNL. NR 30 TC 5 Z9 5 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 053303 DI 10.1063/1.3689167 PG 12 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200017 ER PT J AU Toledo, NG Friedman, DJ Farrell, RM Perl, EE Lin, CT Bowers, JE Speck, JS Mishra, UK AF Toledo, Nikholas G. Friedman, Daniel J. Farrell, Robert M. Perl, Emmett E. Lin, Chieh-Ting (Tony) Bowers, John E. Speck, James S. Mishra, Umesh K. TI Design of integrated III-nitride/non-III-nitride tandem photovoltaic devices SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FUNDAMENTAL-BAND GAP; SOLAR-CELLS; ENERGY-GAP; INN; ABSORPTION; SINGLE; FILMS AB The integration of III-nitride and non-III-nitride materials for tandem solar cell applications can improve the efficiency of the photovoltaic device due to the added power contributed by the III-nitride top cell to that of high-efficiency multi-junction non-III-nitride solar cells if the device components are properly designed and optimized. The proposed tandem solar cell is comprised of a III-nitride top cell bonded to a non-III-nitride, series-constrained, multi-junction subcell. The top cell is electrically isolated, but optically coupled to the underlying subcell. The use of a III-nitride top cell is potentially beneficial when the top junction of a stand-alone non-III-nitride subcell generates more photocurrent than the limiting current of the non-III-nitride subcell. Light producing this excess current can either be redirected to the III-nitride top cell through high energy photon absorption, redirected to the lower junctions through layer thickness optimization, or a combination of both, resulting in improved total efficiency. When the non-III-nitride cell's top junction is the limiting junction, the minimum power conversion efficiency that the III-nitride top cell must contribute should compensate for the spectrum filtered from the multi-junction subcell for this design to be useful. As the III-nitride absorption edge wavelength, lambda(N), increases, the performance of the multi-junction subcell decreases due to spectral filtering. In the most common spectra of interest (AM1.5 G, AM1.5 D, and AM0), the technology to grow InGaN cells with lambda(N) < 520 nm is found to be sufficient for III-nitride top cell applications. The external quantum efficiency performance, however, of state-of-the-art InGaN solar cells still needs to be improved. The effects of surface/interface reflections are also presented. The management of these reflection issues determines the feasibility of the integrated III-nitride/non-III-nitride design to improve overall cell efficiency. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3690907] C1 [Toledo, Nikholas G.; Perl, Emmett E.; Lin, Chieh-Ting (Tony); Bowers, John E.; Mishra, Umesh K.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. [Friedman, Daniel J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Farrell, Robert M.; Speck, James S.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Toledo, NG (reprint author), Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. EM nik@ece.ucsb.edu RI Bowers, John/B-3486-2012 OI Bowers, John/0000-0003-4270-8296 FU DARPA [HR0011-10-1-0049]; California Advanced Solar Technologies Institute (CAST); Center for Energy Efficient Materials, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001009]; National Science Foundation [DGE-1144085] FX This work was supported by the DARPA High Performance InGaN-Based Solar Cells Program under Grant No. HR0011-10-1-0049 and by the California Advanced Solar Technologies Institute (CAST). D.J.F., E.E.P., C.T.L., and J.E.B. were supported as part of the Center for Energy Efficient Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001009. E.E.P. was also supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144085. NR 29 TC 16 Z9 16 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2012 VL 111 IS 5 AR 054503 DI 10.1063/1.3690907 PG 8 WC Physics, Applied SC Physics GA 911OW UT WOS:000301729200134 ER PT J AU Seaver, SMD Henry, CS Hanson, AD AF Seaver, Samuel M. D. Henry, Christopher S. Hanson, Andrew D. TI Frontiers in metabolic reconstruction and modeling of plant genomes SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Review DE Comparative genomics; gap-filling; genome-scale models; metabolite repair; undiscovered genome content ID NETWORK-BASED PREDICTION; FLUX BALANCE ANALYSIS; RELATIVE GROWTH-RATE; ESCHERICHIA-COLI; GENE CLUSTERS; SCALE; ARABIDOPSIS; DATABASE; PATHWAY; SEQUENCE AB A major goal of post-genomic biology is to reconstruct and model in silico the metabolic networks of entire organisms. Work on bacteria is well advanced, and is now under way for plants and other eukaryotes. Genome-scale modelling in plants is much more challenging than in bacteria. The challenges come from features characteristic of higher organisms (subcellular compartmentation, tissue differentiation) and also from the particular severity in plants of a general problem: genome content whose functions remain undiscovered. This problem results in thousands of genes for which no function is known ('undiscovered genome content') and hundreds of enzymatic and transport functions for which no gene is yet identified. The severity of the undiscovered genome content problem in plants reflects their genome size and complexity. To bring the challenges of plant genome-scale modelling into focus, we first summarize the current status of plant genome-scale models. We then highlight the challenges - and ways to address them - in three areas: identifying genes for missing processes, modelling tissues as opposed to single cells, and finding metabolic functions encoded by undiscovered genome content. We also discuss the emerging view that a significant fraction of undiscovered genome content encodes functions that counter damage to metabolites inflicted by spontaneous chemical reactions or enzymatic mistakes. C1 [Hanson, Andrew D.] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA. [Seaver, Samuel M. D.; Henry, Christopher S.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Seaver, Samuel M. D.; Henry, Christopher S.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. RP Hanson, AD (reprint author), Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA. EM adha@ufl.edu FU National Science Foundation [IOS-1025398]; CV Griffin Sr Foundation FX This work was supported in part by National Science Foundation grant number IOS-1025398 and by an endowment from the CV Griffin Sr Foundation. We thank Drs RG Ratcliffe and NJ Kruger for stimulating comments on metabolite repair. NR 114 TC 36 Z9 36 U1 0 U2 21 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 J9 J EXP BOT JI J. Exp. Bot. PD MAR PY 2012 VL 63 IS 6 SI SI BP 2247 EP 2258 DI 10.1093/jxb/err371 PG 12 WC Plant Sciences SC Plant Sciences GA 919EI UT WOS:000302304400002 PM 22238452 ER PT J AU O'Grady, J Schwender, J Shachar-Hill, Y Morgan, JA AF O'Grady, John Schwender, Joerg Shachar-Hill, Yair Morgan, John A. TI Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Review DE Compartmentation; isotopic labelling; metabolic flux analysis; metabolic modelling; oilseed metabolism ID BRASSICA-NAPUS EMBRYOS; FATTY-ACID SYNTHESIS; ELECTROPHORESIS-MASS-SPECTROMETRY; MAIZE ROOT-TIPS; HETEROTROPHIC ARABIDOPSIS CELLS; CENTRAL CARBOHYDRATE-METABOLISM; NUCLEAR-MAGNETIC-RESONANCE; PENTOSE-PHOSPHATE PATHWAY; OILSEED RAPE EMBRYOS; STEADY-STATE AB For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (CO2)-C-13 dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future. C1 [O'Grady, John; Morgan, John A.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Schwender, Joerg] Brookhaven Natl Lab, Upton, NY 11973 USA. [Shachar-Hill, Yair] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Morgan, JA (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. EM jamorgan@purdue.edu RI Shachar-Hill, Yair/B-6165-2013; Schwender, Jorg/P-2282-2014 OI Shachar-Hill, Yair/0000-0001-8793-5084; Schwender, Jorg/0000-0003-1350-4171 FU ARPA-E; National Science Foundation; US Department of Energy (Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences) [BO-133] FX JO and JAM would like thank ARPA-E and the National Science Foundation for support. Funding from the US Department of Energy (Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, Field Work Proposal BO-133) to JS is greatly acknowledged. NR 121 TC 45 Z9 45 U1 2 U2 39 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD MAR PY 2012 VL 63 IS 6 SI SI BP 2293 EP 2308 DI 10.1093/jxb/ers032 PG 16 WC Plant Sciences SC Plant Sciences GA 919EI UT WOS:000302304400005 PM 22371075 ER PT J AU Krumholz, EW Yang, H Weisenhorn, P Henry, CS Libourel, IGL AF Krumholz, Elias W. Yang, Hong Weisenhorn, Pamela Henry, Christopher S. Libourel, Igor G. L. TI Genome-wide metabolic network reconstruction of the picoalga Ostreococcus SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Gap-filling; metabolic network; network reconstruction; Ostreococcus ID FLUX BALANCE ANALYSIS; CHLAMYDOMONAS-REINHARDTII; ARABIDOPSIS; ANNOTATION; GENERATION; FEATURES; TOOLBOX; MODELS AB The green picoalga Ostreococcus is emerging as a simple plant model organism, and two species, O. lucimarinus and O. tauri, have now been sequenced and annotated manually. To evaluate the completeness of the metabolic annotation of both species, metabolic networks of O. lucimarinus and O. tauri were reconstructed from the KEGG database, thermodynamically constrained, elementally balanced, and functionally evaluated. The draft networks contained extensive gaps and, in the case of O. tauri, no biomass components could be produced due to an incomplete Calvin cycle. To find and remove gaps from the networks, an extensive reference biochemical reaction database was assembled using a stepwise approach that minimized the inclusion of microbial reactions. Gaps were then removed from both Ostreococcus networks using two existing gap-filling methodologies. In the first method, a bottom-up approach, a minimal list of reactions was added to each model to enable the production of all metabolites included in our biomass equation. In the second method, a top-down approach, all reactions in the reference database were added to the target networks and subsequently trimmed away based on the sequence alignment scores of identified orthologues. Because current gap-filling methods do not produce unique solutions, a quality metric that includes a weighting for phylogenetic distance and sequence similarity was developed to distinguish between gap-filling results automatically. The draft O. lucimarinus and O. tauri networks required the addition of 56 and 70 reactions, respectively, in order to produce the same biomass precursor metabolites that were produced by our plant reference database. C1 [Krumholz, Elias W.; Yang, Hong; Weisenhorn, Pamela; Libourel, Igor G. L.] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA. [Weisenhorn, Pamela] Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. [Henry, Christopher S.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Libourel, IGL (reprint author), Univ Minnesota, Dept Plant Biol, 1500 Gortner Ave, St Paul, MN 55108 USA. EM libourel@umn.edu FU NSF MCB [1042335] FX The authors wish to express their gratitude to George Weiblen (university of Minnesota) for supplying the phylogenetic relationship between plant clades and aiding in the interpretation of the phylogenetic distance estimates. We are grateful for the assistance from Zhengjin Tu for setting up high throughput sequence comparison, and the Minnesota Supercomputing Institute for providing the computational infrastructure to make this work possible. Above all, we value the help we received from Ron Milo, Avi Flamholz, and Elad Noor (Weizmann Institute) in determining the flux directionality based on group contribution calculations. HY and IGLL are supported by NSF MCB award 1042335. NR 37 TC 19 Z9 19 U1 0 U2 27 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 J9 J EXP BOT JI J. Exp. Bot. PD MAR PY 2012 VL 63 IS 6 SI SI BP 2353 EP 2362 DI 10.1093/jxb/err407 PG 10 WC Plant Sciences SC Plant Sciences GA 919EI UT WOS:000302304400009 PM 22207618 ER PT J AU Teisseyre, TZ Paulsen, JL Bajaj, VS Halpern-Manners, NW Pines, A AF Teisseyre, Thomas Z. Paulsen, Jeffrey L. Bajaj, Vikram S. Halpern-Manners, Nicholas W. Pines, Alexander TI Compressive sampling with prior information in remotely detected MRI of microfluidic devices SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE Compressed sensing; MRI; Remote detection; Microfluidics ID HIGH-RESOLUTION NMR; MAGNETIC-RESONANCE; FLOW DYNAMICS; PACKED-BEDS; RECONSTRUCTION; VELOCIMETRY; PLATFORM; PROBE AB The design and operation of microfluidic analytical devices depends critically on tools to probe microscale chemistry and flow dynamics. Magnetic resonance imaging (MRI) seems ideally suited to this task, but its sensitivity is compromised because the fluid-containing channels in "lab on a chip" devices occupy only a small fraction of the enclosing detector's volume; as a result, the few microfluidic applications of NMR have required custom-designed chips harboring many detectors at specific points of interest. To overcome this limitation, we have developed remotely detected microfluidic MRI, in which an MR image is stored in the phase and intensity of each analyte's NMR signal and sensitively detected by a single, volume-matched detector at the device outflow, and combined it with compressed sensing for rapid image acquisition. Here, we build upon our previous work and introduce a method that incorporates our prior knowledge of the microfluidic device geometry to further decrease acquisition times. We demonstrate its use in multidimensional velocimetric imaging of a microfluidic mixer, acquiring microscopically detailed images 128 times faster than is possible with conventional sampling. This prior information also informs our choice of sampling schedule, resulting in a scheme that is optimized for a specific flow geometry. Finally, we test our approach in synthetic data and explore potential reconstruction errors as a function of optimization and reconstruction parameters. (C) 2011 Elsevier Inc. All rights reserved. C1 [Teisseyre, Thomas Z.; Bajaj, Vikram S.; Pines, Alexander] Univ Calif Berkeley, Grad Program Bioengn, Berkeley, CA 94720 USA. [Teisseyre, Thomas Z.; Pines, Alexander] Univ Calif San Francisco, San Francisco, CA 94143 USA. [Teisseyre, Thomas Z.; Paulsen, Jeffrey L.; Bajaj, Vikram S.; Halpern-Manners, Nicholas W.; Pines, Alexander] EO Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Paulsen, Jeffrey L.; Bajaj, Vikram S.; Halpern-Manners, Nicholas W.; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bajaj, VS (reprint author), Univ Calif Berkeley, Grad Program Bioengn, Berkeley, CA 94720 USA. EM vikbajaj@gmail.com OI Paulsen, Jeffrey/0000-0003-1031-4858 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation; Schlumberger-Doll Research; Agilent Foundation; Chevron FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. TZT gratefully acknowledges support from the National Science Foundation Graduate Research Fellowship. The authors thank Professor Michael Lustig for helpful discussions and acknowledge Schlumberger-Doll Research, the Agilent Foundation, and Chevron for their generous and unrestricted support of our research. NR 40 TC 6 Z9 6 U1 0 U2 30 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 J9 J MAGN RESON JI J. Magn. Reson. PD MAR PY 2012 VL 216 BP 13 EP 20 DI 10.1016/j.jmr.2011.10.001 PG 8 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 919OR UT WOS:000302338200002 PM 22386645 ER PT J AU Sundaram, SK McCloy, JS Riley, BJ Murphy, MK Qiao, HA Windisch, CF Walter, ED Crum, JV Golovchak, R Shpotyuk, O AF Sundaram, Shanmugavelayutham K. McCloy, John S. Riley, Brian J. Murphy, Mark K. Qiao, Hong A. Windisch, Charles F., Jr. Walter, Eric D. Crum, Jarrod V. Golovchak, Roman Shpotyuk, Oleh TI Gamma Radiation Effects on Physical, Optical, and Structural Properties of Binary As-S Glasses SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID VITREOUS CHALCOGENIDE SEMICONDUCTORS; NANOSCALE PHASE-SEPARATION; SULFIDE GLASSES; INDUCED DEFECTS; IRRADIATION; AS2S3; RELAXATION; DIFFRACTION; MODEL; INDEX AB Gamma radiation is known to induce changes in physical, optical, and structural properties in chalcogenide glasses, but previous research has focused on As2S3 and families of glasses containing Ge. For the first time, we present composition and dose dependent data on the AsS binary glass series. Binary AsxS100-x (x = 30, 33, 36, 40, and 42) glasses were irradiated with gamma radiation using a 60Co source at 2.8 Gy/s to accumulated doses of 1, 2, 3, and 4 MGy. The irradiated samples were characterized at each dose level for density, refractive index, X-ray diffraction (XRD), and Raman spectrum. We report an initial increase in density followed by a decrease as a function of dose that contradicts the expected compositional dependence of molar volume of these glasses. This unusual behavior is explained based on microvoid formation and nanoscale phase-separation induced by the irradiation. XRD, Raman, and electron spin resonance data provide supporting evidence, underscoring the importance of optimally- or overly constrained structures for stability under irradiation. C1 [Sundaram, Shanmugavelayutham K.] Alfred Univ, Kazuo Inamori Sch Engn, New York State Coll Ceram, Alfred, NY 14802 USA. [McCloy, John S.; Riley, Brian J.; Murphy, Mark K.; Qiao, Hong A.; Windisch, Charles F., Jr.; Walter, Eric D.; Crum, Jarrod V.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Golovchak, Roman; Shpotyuk, Oleh] Lviv Sci Res Inst Mat SRC Carat, UA-79031 Lvov, Ukraine. [Golovchak, Roman; Shpotyuk, Oleh] Jan Dlugosz Univ, Inst Phys, PL-42200 Czestochowa, Poland. RP Sundaram, SK (reprint author), Alfred Univ, Kazuo Inamori Sch Engn, New York State Coll Ceram, Alfred, NY 14802 USA. EM sundaram@alfred.edu RI Golovchak, Roman/A-4098-2009; McCloy, John/D-3630-2013; Walter, Eric/P-9329-2016; OI McCloy, John/0000-0001-7476-7771; Riley, Brian/0000-0002-7745-6730 FU Defense Threat Reduction Agency, U.S. Department of Defense [IACRO 10-4951I]; United States Department of Energy [DE-AC06-76RLO 1830]; DOE's Office of Biological and Environmental Research and located at PNNL FX This study was supported by the Defense Threat Reduction Agency, U.S. Department of Defense, IACRO 10-4951I. Pacific Northwest National Laboratory (PNNL) is a multi-program national laboratory operated by Battelle Memorial Institute for the United States Department of Energy under DE-AC06-76RLO 1830. A portion of the research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 59 TC 7 Z9 7 U1 1 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAR PY 2012 VL 95 IS 3 BP 1048 EP 1055 DI 10.1111/j.1551-2916.2011.04938.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 903IL UT WOS:000301109700034 ER PT J AU Williams, PT AF Williams, Paul T. TI Low High-Density Lipoprotein 3 Reduces the Odds of Men Surviving to Age 85 During 53-Year Follow-Up SO JOURNAL OF THE AMERICAN GERIATRICS SOCIETY LA English DT Article DE lipoprotein; longevity; epidemiology ID CORONARY-HEART-DISEASE; REVERSE CHOLESTEROL TRANSPORT; GRADIENT GEL-ELECTROPHORESIS; ALCOHOL INTAKE; EXCEPTIONAL LONGEVITY; RISK-FACTORS; A-II; HDL; SUBFRACTIONS; ASSOCIATIONS AB OBJECTIVES: To identify high-density lipoprotein (HDL) subfractions associated with longevity in men. DESIGN: Fifty-three-year prospective follow-up of Gofman's Livermore Cohort between 1954 and 2008. SETTING: Lawrence Livermore National Laboratory. PARTICIPANTS: One thousand one hundred forty-four men who consented to the study, had analytic ultracentrifuge measurements of lipoprotein subfractions at baseline, and were old enough at baseline to have survived to age 85 during follow-up. MEASUREMENTS: Survival was determined according to participant contact, Social Security Death Index, and National Death Index. RESULTS: Three hundred ninety men survived to 85 years old (34.1%). Survivors were less likely than nonsurvivors to be in the lowest HDL3 (% (standard error) 18.5% (2.0%) vs 27.3% (1.6%), P < .001) and HDL2 (22.1% (2.1%) vs 27.7% (1.6%), P =.04) quartiles. Logistic regression analyses showed that the lowest HDL3 quartile significantly predicted shorter longevity (P =.002), whereas the linear increases per mg/dL of HDL3 did not (P =.38), suggesting a risk threshold proximal to the 25th percentile. Men who were above the 25th HDL3 percentile had 70% greater odds of surviving until age 85 than those below this level, which persisted when adjusted for HDL2, very low-density lipoprotein (LDL), and standard risk factors. Proportional hazard analyses of survival before age 85 showed that being in the lowest HDL3 quartile increased age-adjusted cancer risk by 39% (P = .05) and noncancer risk by 23% (P =.04) when adjusted for other risk factors. Survivors also smoked less (mean +/- SD 0.31 +/- 0.48 vs 0.57 +/- 0.56 packs/d, P < .001), had lower systolic (118.36 +/- 11.08 vs 122.81 +/- 13.55 mmHg, P < .001) and diastolic (70.61 +/- 8.59 vs 73.14 +/- 9.22 mmHg, P <.001) blood pressures and lower LDL mass (359.55 +/- 80.42 vs 374.37 +/- 86.10 mg/dL, P =.009) and total cholesterol concentrations (229.51 +/- 43.21 vs 235.89 +/- 45.40 mg/dL, P = .04) than nonsurvivors. CONCLUSION: Low HDL3 reduces the odds of extended survival in men, independent of HDL2, other lipoproteins, and standard risk factors. J Am Geriatr Soc 60:430-436, 2012. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU National Institute of Aging (NIA) [AG72110] FX Supported by Grant AG72110 from the National Institute of Aging (NIA). The author has no other conflicts of interest to report. NR 40 TC 8 Z9 8 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-8614 J9 J AM GERIATR SOC JI J. Am. Geriatr. Soc. PD MAR PY 2012 VL 60 IS 3 BP 430 EP 436 DI 10.1111/j.1532-5415.2011.03851.x PG 7 WC Geriatrics & Gerontology; Gerontology SC Geriatrics & Gerontology GA 906KM UT WOS:000301344000004 PM 22329432 ER PT J AU Mayer, BP Albo, RLF Hok, S Valdez, CA AF Mayer, Brian P. Albo, Rebecca L. F. Hok, Saphon Valdez, Carlos A. TI NMR spectroscopic investigation of inclusion complexes between cyclodextrins and the neurotoxin tetramethylenedisulfotetramine SO MAGNETIC RESONANCE IN CHEMISTRY LA English DT Article DE NMR; 1H; cyclodextrins; TETS; inclusion complex; Job plot; ROESY ID CHROMATOGRAPHY-MASS SPECTROMETRY; SOLID-PHASE MICROEXTRACTION; BETA-CYCLODEXTRIN; TETRAMETHYLENE DISULFOTETRAMINE; CAVITY SIZE; DERIVATIVES; TETRAMINE; H-1-NMR; RAT; TETRAMETHYLENEDISULPHOTETRAMINE AB The binding stoichiometry, strength and structure of inclusion complexes formed between the neurotoxin tetramethylenedisulfotetramine (TETS) and both native and modified cyclodextrins (CyDs) were investigated using nuclear magnetic resonance (NMR) spectroscopy. Of all six examined cases, native beta-cyclodextrin (beta-CyD) and its chemically modified counterpart heptakis-(2,3,6-tris-(2-hydroxypropyl))-beta-cyclodextrin (2HP-beta-CyD) were found to associate most strongly with TETS as reflected in the magnitude of their binding constants (K?=?537 +/- 26?M-1 for beta-CyD and K?=?514 +/- 49?M-1 for 2HP-beta-CyD). Two-dimensional rotating-frame Overhauser effect spectroscopy NMR experiments confirm close proximity of the TETS molecule to both beta-CyD and 2HP-beta-CyD as intermolecular, through-space interactions between the H3 and H5 protons located in the interior of the CyD cavity and the methylene protons of TETS were identified. Copyright (C) 2012 John Wiley & Sons, Ltd. C1 [Mayer, Brian P.; Albo, Rebecca L. F.; Hok, Saphon; Valdez, Carlos A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Mayer, Brian P.; Albo, Rebecca L. F.; Hok, Saphon; Valdez, Carlos A.] Lawrence Livermore Natl Lab, Forens Sci Ctr, Livermore, CA 94550 USA. RP Valdez, CA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave,L-091, Livermore, CA 94550 USA. EM valdez11@llnl.gov FU US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 42 TC 3 Z9 3 U1 1 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0749-1581 J9 MAGN RESON CHEM JI Magn. Reson. Chem. PD MAR PY 2012 VL 50 IS 3 BP 229 EP 235 DI 10.1002/mrc.3803 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 917CJ UT WOS:000302149600008 PM 22383439 ER PT J AU Chao, S Ma, BH Liu, SS Narayanan, M Balachandran, U AF Chao, Sheng Ma, Beihai Liu, Shanshan Narayanan, Manoj Balachandran, Uthamalingam TI Effects of pyrolysis conditions on dielectric properties of PLZT films derived from a polyvinylpyrrolidone-modified sol-gel process SO MATERIALS RESEARCH BULLETIN LA English DT Article DE Thin films; Sol-gel chemistry; Microstructure; Electrical properties; Energy storage ID CRITICAL THICKNESS; THIN-FILMS; ORIENTATION AB Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films were deposited on platinized silicon substrates (Pt/Si) using a polyvinylpyrrolidone (PVP) modified sol-gel method. Pyrolysis of the green films was conducted via two methods: rapid thermal annealing (RTA) and a step-wise preheat treatment (SPT). Microstructure analysis and dielectric property characterization were performed on samples treated by these two methods. Results showed that the SPT-pyrolyzed films exhibited much better dielectric properties when compared with the RTA-pyrolyzed films. The differences in dielectric properties were correlated to microstructural features caused by the different pyrolysis conditions. High-quality PLZT films with high dielectric constant (approximate to 860 at zero bias) and high breakdown strength (approximate to 2.1 MV/cm) were fabricated under controlled pyrolysis conditions. This work demonstrated the potential application of this material for power electronics in electric drive vehicles. (C) 2011 Published by Elsevier Ltd. C1 [Chao, Sheng; Ma, Beihai; Liu, Shanshan; Narayanan, Manoj; Balachandran, Uthamalingam] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Chao, S (reprint author), Kennametal Inc, Corp Technol, Latrobe, PA 15650 USA. EM Sheng.Chao@kennametal.com RI Liu, Shanshan/A-6143-2012; Narayanan, Manoj/A-4622-2011; Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Vehicle Technologies [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; This work was funded by the U.S. Department of Energy, Office of Vehicle Technologies Program, under Contract DE-AC02-06CH11357. We thank Dr. R.E. Koritala for her help with the SEM measurements. This study was benefited from the use of the 4 5 Electron Microscopy Center (EMC) at Argonne National Laboratory. NR 14 TC 10 Z9 10 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 J9 MATER RES BULL JI Mater. Res. Bull. PD MAR PY 2012 VL 47 IS 3 BP 907 EP 911 DI 10.1016/j.materresbull.2011.09.012 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 915AA UT WOS:000301994100065 ER PT J AU Sj, CPO Sj, GJC Safarik, DJ Britt, DT AF Sj, C. P. Opeil Sj, G. J. Consolmagno Safarik, D. J. Britt, D. T. TI Stony meteorite thermal properties and their relationship with meteorite chemical and physical states SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID MAGNETIC-SUSCEPTIBILITY; MARTIAN METEORITE; LOS-ANGELES; CHONDRITES; POROSITY; DENSITY; TEMPERATURE; ENSTATITE AB In our ongoing survey of meteorite physical properties, we have to date measured the thermal conductivity for seventeen stony meteorites at temperatures ranging from 5 K to 300 K. Here, we report new results for nine ordinary chondrites, one enstatite chondrite, and the basaltic achondrites Frankfort (howardite) and Los Angeles (shergottite). We find that thermal conductivity is significantly lower than would be expected from averaging the laboratory conductivities of their constituent minerals, with a dependence on temperature different from the expected conductivity of pure minerals. In addition, we find a linear relationship between the inverse of the porosity of the samples measured and their thermal conductivity, regardless of meteorite composition or type. We conclude that thermal conductivity is controlled by the presence of shock-induced microcracks within the meteorites, which provide a barrier to the transmission of thermal energy via phonons. In contrast to conductivity, our first measurement of heat capacity as a function of temperature (on Los Angeles) suggests that heat capacity is primarily a function of oxide composition and is not strongly affected by the physical state of the sample. C1 [Sj, G. J. Consolmagno] Specola Vaticana, I-00120 Vatican City, Vatican. [Sj, C. P. Opeil] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Safarik, D. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Britt, D. T.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. RP Sj, GJC (reprint author), Specola Vaticana, I-00120 Vatican City, Vatican. EM gjc@specola.va OI Safarik, Douglas/0000-0001-8648-9377 FU Trustees of Boston College; NASA [NX09AD91G, NNG06GG62G] FX CO acknowledges support from the Trustees of Boston College and DTB was supported by NASA Grants NX09AD91G and NNG06GG62G from the Planetary Geology and Geophysics Program. We thank Jason Lanshley at the Los Alamos National Laboratory for his assistance with the heat capacity measurements of the Los Angeles meteorite. NR 18 TC 0 Z9 0 U1 1 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2012 VL 47 IS 3 BP 319 EP 329 DI 10.1111/j.1945-5100.2012.01331.x PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 916CC UT WOS:000302073300001 ER PT J AU Burton, AS Elsila, JE Callahan, MP Martin, MG Glavin, DP Johnson, NM Dworkin, JP AF Burton, Aaron S. Elsila, Jamie E. Callahan, Michael P. Martin, Mildred G. Glavin, Daniel P. Johnson, Natasha M. Dworkin, Jason P. TI A propensity for n-omega-amino acids in thermally altered Antarctic meteorites SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EARLY SOLAR-SYSTEM; CARBON-ISOTOPE COMPOSITION; PARENT BODY PROCESSES; ORGANIC-COMPOUNDS; MURCHISON METEORITE; CHONDRITIC MATERIAL; UREILITES; DECARBOXYLATION; FRACTIONATION; DECOMPOSITION AB Asteroids and their fragments have impacted the Earth for the last 4.5 Gyr. Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites ranged from 300 to 3200 parts-per-billion (ppb), generally much less abundant than in amino acid-rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low-temperature aqueously altered meteorites that show complete structural diversity in amino acids formed predominantly by Streckercyanohydrin synthesis, the thermally altered meteorites studied here are dominated by small, straight-chain, amine terminal (n-?-amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n-?-amino acids measured in one of the CV chondrites (d13C approximately -25 parts per thousand) are consistent with 13C-depletions observed previously in hydrocarbons produced by Fischer-Tropsch type reactions. The predominance of n-?-amino acid isomers in thermally altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids. C1 [Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.] Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [Burton, Aaron S.] Oak Ridge Associated Univ, NASA, Postdoctoral Program Adm, Oak Ridge, TN 37831 USA. [Martin, Mildred G.] Catholic Univ Amer, Washington, DC 20064 USA. RP Burton, AS (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM aaron.s.burton@nasa.gov RI Callahan, Michael/D-3630-2012; Burton, Aaron/H-2212-2011; Elsila, Jamie/C-9952-2012; Johnson, Natasha/E-3093-2012; Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012 OI Burton, Aaron/0000-0002-7137-1605; Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997 FU NASA; NASA Astrobiology Institute; Goddard Center for Astrobiology FX A. S. B. acknowledges support from the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. The authors acknowledge funding support from the NASA Astrobiology Institute and the Goddard Center for Astrobiology and the NASA Cosmochemistry Program. We thank K. Righter (NASA Johnson Space Center) for providing the Antarctic meteorites and for helpful discussions; the 2006 ANSMET team for providing the Antarctic ice sample; G. Matrajt for providing the sample of Allende; and an anonynmous reviewer and Z. Martins for helpful comments and criticisms of the manuscript. NR 58 TC 19 Z9 19 U1 4 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2012 VL 47 IS 3 BP 374 EP 386 DI 10.1111/j.1945-5100.2012.01341.x PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 916CC UT WOS:000302073300005 ER PT J AU Bennett, ME Hirschi, R Pignatari, M Diehl, S Fryer, C Herwig, F Hungerford, A Nomoto, K Rockefeller, G Timmes, FX Wiescher, M AF Bennett, M. E. Hirschi, R. Pignatari, M. Diehl, S. Fryer, C. Herwig, F. Hungerford, A. Nomoto, K. Rockefeller, G. Timmes, F. X. Wiescher, M. TI The effect of C-12+C-12 rate uncertainties on the evolution and nucleosynthesis of massive stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; stars: abundances; stars: evolution ID S-PROCESS NUCLEOSYNTHESIS; NEUTRON-CAPTURE NUCLEOSYNTHESIS; THERMONUCLEAR REACTION-RATES; STATISTICAL-MODEL CALCULATIONS; ASTROPHYSICAL REACTION-RATES; STELLAR EVOLUTION; SOLAR METALLICITY; CORE HELIUM; WEAK COMPONENT; CROSS-SECTIONS AB Over the last 40 years, the 12C +12C fusion reaction has been the subject of considerable experimental efforts to constrain uncertainties at temperatures relevant for stellar nucleosynthesis. Recent studies have indicated that the reaction rate may be higher than that currently used in stellar models. In order to investigate the effect of an enhanced carbon-burning rate on massive star structure and nucleosynthesis, new stellar evolution models and their yields are presented exploring the impact of three different 12C +12C reaction rates. Non-rotating stellar models considering five different initial masses, 15, 20, 25, 32 and 60 M-circle dot, at solar metallicity, were generated using the Geneva Stellar Evolution Code (genec) and were later post-processed with the NuGrid Multi-zone Post-Processing Network tool (mppnp). A dynamic nuclear reaction network of similar to 1100 isotopes was used to track the s-process nucleosynthesis. An enhanced 12C +12C reaction rate causes core carbon burning to be ignited more promptly and at lower temperature. This reduces the neutrino losses, which increases the core carbon-burning lifetime. An increased carbon-burning rate also increases the upper initial mass limit for which a star exhibits a convective carbon core (rather than a radiative one). Carbon-shell burning is also affected, with fewer convective-shell episodes and convection zones that tend to be larger in mass. Consequently, the chance of an overlap between the ashes of carbon-core burning and the following carbon shell convection zones is increased, which can cause a portion of the ashes of carbon-core burning to be included in the carbon shell. Therefore, during the supernova explosion, the ejecta will be enriched by s-process nuclides synthesized from the carbon-core s-process. The yields were used to estimate the weak s-process component in order to compare with the Solar system abundance distribution. The enhanced rate models were found to produce a significant proportion of Kr, Sr, Y, Zr, Mo, Ru, Pd and Cd in the weak component, which is primarily the signature of the carbon-core s-process. Consequently, it is shown that the production of isotopes in the KrSr region can be used to constrain the 12C +12C rate using the current branching ratio for a- and p-exit channels. C1 [Bennett, M. E.; Hirschi, R.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Hirschi, R.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778582, Japan. [Pignatari, M.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Diehl, S.] LANL, Theoret Astrophys T 6, Los Alamos, NM 87545 USA. [Fryer, C.; Hungerford, A.; Rockefeller, G.] LANL, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA. [Herwig, F.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Nomoto, K.] Univ Tokyo, Inst Phys & Math Univ, Kashiwa, Chiba 2778583, Japan. [Timmes, F. X.; Wiescher, M.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Timmes, F. X.] Univ Arizona, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Bennett, ME (reprint author), Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. EM meb@astro.keele.ac.uk RI Rockefeller, Gabriel/G-2920-2010; Nomoto, Ken'ichi/A-4393-2011 OI Rockefeller, Gabriel/0000-0002-9029-5097; FU NSF [PHY0922648]; EU [MIRG-CT-2006-046520]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; STFC (UK); SNSF (Switzerland); EUROCORE Eurogenesis programme; NSERC; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory; CFI (Canada); [DE-AC52-06NA25396] FX NuGrid acknowledges significant support from NSF grant PHY0922648 (Joint Institute for Nuclear Astrophysics, JINA) and EU MIRG-CT-2006-046520. KN and RH acknowledge support from the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. RH acknowledges support from the STFC (UK). MP acknowledges support from the Ambizione grant of the SNSF (Switzerland). RH and MP also acknowledge support from the EUROCORE Eurogenesis programme. FH acknowledges NSERC Discovery Grant funding. The work of CF and GR was funded in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by Contract No. DE-AC52-06NA25396. Computations were performed at the Arizona State University's Fulton High-performance Computing Center (USA), the high-performance computer KHAOS at EPSAM Institute at Keele University (UK) and the CFI (Canada) funded computing resources at the Department of Physics and Astronomy at the University of Victoria. This work used the SE library (LA-CC-08-057) developed at Los Alamos National Laboratory as part of the NuGrid collaboration; the SE library makes use of the HDF5 library, which was developed by The HDF Group and by the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign. NR 91 TC 19 Z9 19 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 420 IS 4 BP 3047 EP 3070 DI 10.1111/j.1365-2966.2012.20193.x PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 901AW UT WOS:000300935100025 ER PT J AU Nakajima, R Mandelbaum, R Seljak, U Cohn, JD Reyes, R Cool, R AF Nakajima, R. Mandelbaum, R. Seljak, U. Cohn, J. D. Reyes, R. Cool, R. TI Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: data analysis; galaxies: distances and redshifts; cosmology: observations ID DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; ARTIFICIAL NEURAL-NETWORKS; EVOLUTION SURVEY COSMOS; CFHT LEGACY SURVEY; EARLY DATA RELEASE; DARK-MATTER HALOS; VLT DEEP SURVEY; LUMINOSITY FUNCTION; STELLAR MASS AB Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxygalaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code zebra on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (similar to 9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find sigma(Delta z/(1+ z)) = 0.096 and 0.113 for the lens and source catalogues, with flux limits of r = 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z similar to 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and therefore the normalization of the surface mass density) to within 2 and 4 per cent, respectively. C1 [Nakajima, R.; Seljak, U.; Cohn, J. D.] Univ Calif Berkeley, Dept Phys, Space Sci Lab, Berkeley, CA 94720 USA. [Nakajima, R.; Seljak, U.; Cohn, J. D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nakajima, R.; Seljak, U.; Cohn, J. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nakajima, R.; Seljak, U.] Ewha Womans Univ, Inst Early Universe, Seoul 230, South Korea. [Mandelbaum, R.; Reyes, R.; Cool, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Seljak, U.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. RP Nakajima, R (reprint author), Univ Calif Berkeley, Dept Phys, Space Sci Lab, Berkeley, CA 94720 USA. EM rnakajima@ewha.ac.kr RI Mandelbaum, Rachel/N-8955-2014 OI Mandelbaum, Rachel/0000-0003-2271-1527 FU NASA LTSA [NNG04GC90G, NNG04GC89G]; World Class University through National Research Foundation, Ministry of Education, Science and Technology of Korea [R32-2009-000-10130-0]; NSF [AST-0607701, 0908246, 0908442, 0908354, AST95-09298, AST-0071048, AST-0071198, AST-0507428, AST-0507483]; NASA [08-ADP08-0019]; W. M. Keck Foundation; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We thank Carlos Cunha, Pascal Oesch, Alex Szalay, Istvan Csabai, Tamas Budavari, Jeff Newman, Feng Dong, Jim Gunn, Yen-Ting Lin, Michael Blanton and Robert Feldmann for useful discussions. RN was supported in part by NASA LTSA grant NNG04GC90G. This work has been supported in part by World Class University grant R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea.; We thank the PRIMUS team for sharing their redshift catalogue, and thank Alison Coil and John Moustakas for help with using the PRIMUS data set. Funding for PRIMUS has been provided by NSF grants AST-0607701, 0908246, 0908442, 0908354, and NASA grant 08-ADP08-0019. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.; Funding for the DEEP2 survey has been provided by NSF grants AST95-09298, AST-0071048, AST-0071198, AST-0507428 and AST-0507483 as well as NASA LTSA grant NNG04GC89G. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The DEEP2 team and Keck Observatory acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community and appreciate the opportunity to conduct observations from this mountain.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 91 TC 26 Z9 26 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 420 IS 4 BP 3240 EP 3263 DI 10.1111/j.1365-2966.2011.20249.x PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 901AW UT WOS:000300935100037 ER PT J AU Balasubramanian, S Orlicz, GC Prestridge, KP Balakumar, BJ AF Balasubramanian, S. Orlicz, G. C. Prestridge, K. P. Balakumar, B. J. TI Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock SO PHYSICS OF FLUIDS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; NUMERICAL SIMULATIONS; PERTURBATIONS; RESOLUTION; LAYERS; FLUID AB We present an experimental study on the dependence of initial condition parameters, namely, the amplitude delta and wavenumber kappa (kappa = 2 pi/lambda, where lambda is the wavelength) of perturbations, on turbulence and mixing in shock-accelerated Richtmyer-Meshkov (R-M) unstable fluid layers. A single mode, membrane-free varicose heavy gas curtain (air-SF6-air) at a shock Mach number M = 1.2 was used in our experiments. The density (concentration) and velocity fields for this initial configuration were measured using planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV). In order to understand the effects of multi-mode initial conditions on shock-accelerated mixing, the evolving fluid interface formed during the incident shock (M = 1.2) was shocked again by a reflected shock wave at various times using a movable wall, thus enabling us to change both delta and kappa simultaneously. A dimensionless length-scale defined as eta = kappa delta is proposed to parametrically link the initial condition dependence to late-time mixing. It was observed experimentally that high wavenumber (short wavelength) modes enhance the mixing and transition to turbulence in these flows. Statistics such as power spectral density, density self-correlation, turbulent kinetic energy, and the rms of velocity fluctuations were measured using simultaneous PLIF-PIV to quantify the amount of mixing for varying values of eta. The results indicate a dependence of initial condition parameters on mixing at late times. The results of this study present an opportunity to predict and "design" late-time turbulent mixing that has applications in inertial confinement fusion and general fluid mixing processes. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3693152] C1 [Balasubramanian, S.; Orlicz, G. C.; Prestridge, K. P.; Balakumar, B. J.] Los Alamos Natl Lab, Extreme Fluids Team, Div Phys, Los Alamos, NM 87545 USA. RP Balasubramanian, S (reprint author), Los Alamos Natl Lab, Extreme Fluids Team, Div Phys, P-23, Los Alamos, NM 87545 USA. EM kpp@lanl.gov RI Prestridge, Kathy/C-1137-2012 OI Prestridge, Kathy/0000-0003-2425-5086 FU Los Alamos Laboratory Directed Research and Development through Directed Research (LDRD-DR) FX This work is supported by Los Alamos Laboratory Directed Research and Development Program through Directed Research (LDRD-DR). Authors would like to thank the collaborators J. R. Ristorcelli, A. A. Gowardhan, F. F. Grinstein, M. J. Andrews, R. A. Gore, and D. Livescu for useful insights and discussions towards this research. The help rendered by Gavin R. Friedman, a former post baccalaureate student on our team, during data acquisition is gratefully acknowledged. NR 30 TC 25 Z9 29 U1 3 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2012 VL 24 IS 3 AR 034103 DI 10.1063/1.3693152 PG 14 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 918BT UT WOS:000302224600023 ER PT J AU Iversen, CM Murphy, MT Allen, MF Childs, J Eissenstat, DM Lilleskov, EA Sarjala, TM Sloan, VL Sullivan, PF AF Iversen, C. M. Murphy, M. T. Allen, M. F. Childs, J. Eissenstat, D. M. Lilleskov, E. A. Sarjala, T. M. Sloan, V. L. Sullivan, P. F. TI Advancing the use of minirhizotrons in wetlands SO PLANT AND SOIL LA English DT Review DE Fine roots; Minirhizotron; Wetlands; Peatlands; Methodology ID NET PRIMARY PRODUCTION; FINE-ROOT DYNAMICS; NORTH-AMERICAN WETLANDS; BLACK SPRUCE FORESTS; WHITE-CEDAR WETLANDS; WATER-TABLE; NUTRIENT AVAILABILITY; ERIOPHORUM-VAGINATUM; MYCORRHIZAL STATUS; NITROGEN DYNAMICS AB Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions The appropriate use of minirhizotron technology to examine relatively understudied fine-root dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems. C1 [Iversen, C. M.; Childs, J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Murphy, M. T.] McGill Univ, Dept Geog, Montreal, PQ, Canada. [Allen, M. F.] Univ Calif Riverside, Ctr Conservat Biol, Riverside, CA 92521 USA. [Eissenstat, D. M.] Penn State Univ, Dept Hort, University Pk, PA 16802 USA. [Lilleskov, E. A.] USDA Forest Serv, No Res Stn, Houghton, MI USA. [Sarjala, T. M.] Finnish Forest Res Inst, Parkano, Finland. [Sloan, V. L.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. [Sullivan, P. F.] Univ Alaska Anchorage, Environm & Nat Resources Inst, Anchorage, AK USA. [Sullivan, P. F.] Univ Alaska Anchorage, Dept Biol Sci, Anchorage, AK USA. RP Iversen, CM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM iversencm@ornl.gov FU New Phytologist Trust; U.S. Department of Energy, Office of Science, Biological and Environmental Research; United States Department of Energy [DE-AC05-00OR22725] FX This paper was developed from a workshop held at Oak Ridge National Laboratory in October, 2010 to facilitate discussion on minirhizotron use to examine fine-root dynamics in wetlands. The authors do not have a financial interest in the commercial products discussed here. We thank the New Phytologist Trust and the U.S. Department of Energy, Office of Science, Biological and Environmental Research for sponsoring the workshop. We also thank R. Norby and anonymous reviewers for comments that improved the manuscript. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the United States Department of Energy under contract DE-AC05-00OR22725. NR 94 TC 14 Z9 15 U1 8 U2 84 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0032-079X J9 PLANT SOIL JI Plant Soil PD MAR PY 2012 VL 352 IS 1-2 BP 23 EP 39 DI 10.1007/s11104-011-0953-1 PG 17 WC Agronomy; Plant Sciences; Soil Science SC Agriculture; Plant Sciences GA 920QG UT WOS:000302421300002 ER PT J AU Stefano, G Renna, L Moss, T Mcnew, JA Brandizzi, F AF Stefano, Giovanni Renna, Luciana Moss, Tyler McNew, James A. Brandizzi, Federica TI In Arabidopsis, the spatial and dynamic organization of the endoplasmic reticulum and Golgi apparatus is influenced by the integrity of the C-terminal domain of RHD3, a non-essential GTPase SO PLANT JOURNAL LA English DT Article DE RHD3; GTPase; Arabidopsis thaliana; endoplasmic reticulum; Golgi movement ID TUBULAR ER NETWORK; FLUORESCENT PROTEIN; MISSENSE MUTATION; MEMBRANE; TRANSPORT; PLANTS; CELLS; CYTOSKELETON; GENERATION; ATLASTIN AB The mechanisms underlying the organization and dynamics of plant endomembranes are largely unknown. Arabidopsis RHD3, a distant member of the dynamin superfamily, has recently been implicated in plant ER morphology and Golgi movement through analyses of dominant-negative mutants of the putative GTPase domain in a heterologous system. Whether RHD3 is indispensable for ER architecture and what role regions other than the putative GTPase domain play in RHD3 function are unanswered questions. Here we characterized an EMS mutant, gom8, with disrupted Golgi movement and positioning and compromised ER shape and dynamics. gom8 mapped to a missense mutation in the RHD3 hairpin loop domain, causing accumulation of the mutant protein into large structures, a markedly different distribution compared with wild-type RHD3 over the ER network. Despite the GOM8 distribution, tubules fused in the peripheral ER of the gom8 mutant. These data imply that integrity of the hairpin region is important for the subcellular distribution of RHD3, and that reduced availability of RHD3 over the ER can cause ER morphology defects, but does not prevent peripheral fusion between tubules. This was confirmed by evidence that gom8 was phenocopied in an RHD3 null background. Furthermore, we established that the region encompassing the RHD3 hairpin domain and the C-terminal cytosolic domain is necessary for RHD3 function. We conclude that RHD3 is important in ER morphology, but is dispensable for peripheral ER tubulation in an endogenous context, and that its activity relies on the C-terminal region in addition to the GTPase domain. C1 [Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Moss, Tyler; McNew, James A.] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA. [Brandizzi, Federica] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM fb@msu.edu RI STEFANO, GIOVANNI/A-8264-2011; OI STEFANO, GIOVANNI/0000-0002-2744-0052; Moss, Tyler/0000-0001-7140-9987; Renna, Luciana/0000-0001-8738-2408; McNew, James/0000-0001-8459-3664 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-91ER20021]; US National Science Foundation [MCB 0948584] FX We thank Eileen Morey for editing the manuscript. We thank Andrew Goulet, Alyssa Burkhardt and Frederique Breuer for technical assistance. We are grateful to Professor A. Nebenfuhr (University of Tennessee) for the gift of the GA-YK and ER-YK seeds, and the Arabidopsis Biological Resource Center for the rhd3-7 line. We acknowledge support by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (award number DE-FG02-91ER20021) and the US National Science Foundation (MCB 0948584) (to F.B.). NR 46 TC 28 Z9 29 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD MAR PY 2012 VL 69 IS 6 BP 957 EP 966 DI 10.1111/j.1365-313X.2011.04846.x PG 10 WC Plant Sciences SC Plant Sciences GA 909QD UT WOS:000301578400004 PM 22082223 ER PT J AU Graw, F Regoes, RR AF Graw, Frederik Regoes, Roland R. TI Influence of the Fibroblastic Reticular Network on Cell-Cell Interactions in Lymphoid Organs SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID ANTIVIRAL IMMUNE-RESPONSES; DENDRITIC CELLS; T-CELLS; IN-VIVO; MIGRATION; NODE; SYSTEM; LYMPHOCYTES; MOTILITY; TRAFFICKING AB Secondary lymphoid organs (SLO), such as lymph nodes and the spleen, display a complex micro-architecture. In the T cell zone the micro-architecture is provided by a network of fibroblastic reticular cells (FRC) and their filaments. The FRC network is thought to enhance the interaction between immune cells and their cognate antigen. However, the effect of the FRC network on cell interaction cannot be quantified to date because of limitations in immunological methodology. We use computational models to study the influence of different densities of FRC networks on the probability that two cells meet. We developed a 3D cellular automaton model to simulate cell movements and interactions along the FRC network inside lymphatic tissue. We show that the FRC network density has only a small effect on the probability of a cell to come into contact with a static or motile target. However, damage caused by a disruption of the FRC network is greatest at FRC densities corresponding to densities observed in the spleen of naive mice. Our analysis suggests that the FRC network as a guiding structure for moving T cells has only a minor effect on the probability to find a corresponding dendritic cell. We propose alternative hypotheses by which the FRC network might influence the functionality of immune responses in a more significant way. C1 [Graw, Frederik; Regoes, Roland R.] Swiss Fed Inst Technol, Inst Integrat Biol, Zurich, Switzerland. RP Graw, F (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM frederik.graw@t-online.de; roland.regoes@env.ethz.ch RI Regoes, Roland/A-6538-2008 FU Swiss National Science Foundation (SNF) [315200-114148] FX Both authors gratefully acknowledge the financial support of the Swiss National Science Foundation (SNF-grant 315200-114148). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 43 TC 17 Z9 17 U1 1 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD MAR PY 2012 VL 8 IS 3 AR e1002436 DI 10.1371/journal.pcbi.1002436 PG 9 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 918IY UT WOS:000302244000043 PM 22457613 ER PT J AU Perera, R Riley, C Isaac, G Hopf-Jannasch, AS Moore, RJ Weitz, KW Pasa-Tolic, L Metz, TO Adamec, J Kuhn, RJ AF Perera, Rushika Riley, Catherine Isaac, Giorgis Hopf-Jannasch, Amber S. Moore, Ronald J. Weitz, Karl W. Pasa-Tolic, Ljiljana Metz, Thomas O. Adamec, Jiri Kuhn, Richard J. TI Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells SO PLOS PATHOGENS LA English DT Article ID AEDES-ALBOPICTUS CELLS; FATTY-ACID SYNTHESIS; QUANTITATIVE-ANALYSIS; MASS-SPECTROMETRY; HIGH-THROUGHPUT; SPHINGOLIPID METABOLISM; ENDOPLASMIC-RETICULUM; REPLICATION COMPLEX; VIRAL REPLICATION; RNA REPLICATION AB Dengue virus causes similar to 50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture. C1 [Perera, Rushika; Riley, Catherine; Kuhn, Richard J.] Purdue Univ, Markey Ctr Struct Biol, Dept Biol Sci, W Lafayette, IN 47907 USA. [Isaac, Giorgis; Moore, Ronald J.; Weitz, Karl W.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Hopf-Jannasch, Amber S.; Adamec, Jiri; Kuhn, Richard J.] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA. [Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Perera, R (reprint author), Purdue Univ, Markey Ctr Struct Biol, Dept Biol Sci, W Lafayette, IN 47907 USA. EM kuhnr@purdue.edu RI Perera, Rushika/E-7183-2017; OI Perera, Rushika/0000-0001-6798-2537; Metz, Tom/0000-0001-6049-3968 FU NIH [P01 AIO55672, R21 AI083984]; U. S. Department of Energy (DOE) Office of Biological and Environmental Research; DOE [DE-AC06-76RLO-1830] FX This work was supported by the NIH P01 AIO55672 to R. J.K. and NIH R21 AI083984 to R. J.K. from the National Institute of Allergy and Infectious Diseases. Portions of this research were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by the U. S. Department of Energy (DOE) Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under Contract No. DE-AC06-76RLO-1830. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 64 TC 77 Z9 80 U1 6 U2 19 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD MAR PY 2012 VL 8 IS 3 AR e1002584 DI 10.1371/journal.ppat.1002584 PG 18 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 918CC UT WOS:000302225600037 PM 22457619 ER PT J AU Park, J Zheng, HM Lee, WC Geissler, PL Rabani, E Alivisatos, AP AF Park, Jungwon Zheng, Haimei Lee, Won Chul Geissler, Phillip L. Rabani, Eran Alivisatos, A. Paul TI Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy SO ACS NANO LA English DT Article DE nanoparticle; self-assembly; in situ liquid cell TEM; platinum; coarse-grained modeling ID NANOCRYSTAL SUPERLATTICES; ORIENTATIONAL ORDER; SELF-ORGANIZATION; PHASE; PARTICLES; CRYSTALS; GROWTH; CRYSTALLIZATION; MONOLAYERS; SEPARATION AB Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them Into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the addition of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit. C1 [Park, Jungwon; Geissler, Phillip L.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Park, Jungwon; Zheng, Haimei; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lee, Won Chul] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Rabani, Eran] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM APAlivisatos@lbl.gov RI Rabani, Eran/M-1263-2013; Alivisatos , Paul /N-8863-2015; Park, Jungwon/O-1153-2016 OI Rabani, Eran/0000-0003-2031-3525; Alivisatos , Paul /0000-0001-6895-9048; Park, Jungwon/0000-0003-2927-4331 FU Physical Chemistry of Semiconductor Nanocrystals Program [KC3105]; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231]; FP7Marie Curie IOF project HJSC; Miller Institute for Basic Research in Science at UC Berkeley; Lawrence Berkeley National Lab; U.S. Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy; Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work on platinum nanocrystal synthesis, fabrication of liquid TEM cells, and TEM experiment and analysis was supported by the Physical Chemistry of Semiconductor Nanocrystals Program, KC3105, Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract DE-AC02-05CH11231. E. Rabani thanks the FP7Marie Curie IOF project HJSC and the Miller Institute for Basic Research in Science at UC Berkeley for financial support via a Visiting Miller Professorship. H. Zheng thanks the funding support of Laboratory Directed Research Program at Lawrence Berkeley National Lab, funded by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 for support for her work on liquid cell fabrication and paper revision. We acknowledge the support of National Center for Electron Microscopy, which are funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank D. Grauer and A. Widmer-Cooper for useful discussion. NR 44 TC 66 Z9 66 U1 16 U2 163 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2012 VL 6 IS 3 BP 2078 EP 2085 DI 10.1021/nn203837m PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 914JM UT WOS:000301945900021 PM 22360715 ER PT J AU Ashley, CE Carnes, EC Epler, KE Padilla, DP Phillips, GK Castillo, RE Wilkinson, DC Wilkinson, BS Burgard, CA Kalinich, RM Townson, JL Chackerian, B Willman, CL Peabody, DS Wharton, W Brinker, CJ AF Ashley, Carlee E. Carnes, Eric C. Epler, Katharine E. Padilla, David P. Phillips, Genevieve K. Castillo, Robert E. Wilkinson, Dan C. Wilkinson, Brian S. Burgard, Cameron A. Kalinich, Robin M. Townson, Jason L. Chackerian, Bryce Willman, Cheryl L. Peabody, David S. Wharton, Walker Brinker, C. Jeffrey TI Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers SO ACS NANO LA English DT Article DE mesoporous silica nanoparticle; supported lipid bilayer; lipid nanoparticle; targeted delivery; peptide ligand; small interfering RNA; cancer ID OVERCOME DRUG-RESISTANCE; GENE DELIVERY; SIRNA DELIVERY; CANCER-CELLS; IN-VITRO; ENDOSOMAL ESCAPE; CATIONIC LIPIDS; TUMOR; THERAPEUTICS; DOXORUBICIN AB The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or "protocells") exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides. C1 [Ashley, Carlee E.] Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA. [Carnes, Eric C.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Carnes, Eric C.; Epler, Katharine E.; Padilla, David P.; Castillo, Robert E.; Wilkinson, Dan C.; Wilkinson, Brian S.; Burgard, Cameron A.; Townson, Jason L.; Brinker, C. Jeffrey] Univ New Mexico, Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Ashley, Carlee E.; Carnes, Eric C.; Phillips, Genevieve K.; Chackerian, Bryce; Willman, Cheryl L.; Peabody, David S.; Wharton, Walker; Brinker, C. Jeffrey] Univ New Mexico, Hlth Sci Ctr, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. [Kalinich, Robin M.] Sandia Natl Labs, Ceram Proc & Inorgan Mat Dept, Albuquerque, NM 87185 USA. [Willman, Cheryl L.; Wharton, Walker] Univ New Mexico, Hlth Sci Ctr, Dept Pathol, Albuquerque, NM 87131 USA. [Chackerian, Bryce; Peabody, David S.; Brinker, C. Jeffrey] Univ New Mexico, Hlth Sci Ctr, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA. [Brinker, C. Jeffrey] Sandia Natl Labs, Self Assembled Mat Dept, Albuquerque, NM 87185 USA. RP Ashley, CE (reprint author), Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA. EM ceashle@sandia.gov; cjbrink@sandia.gov FU NIH/Roadmap for Medical Research [PHS 2 PN2 EV01657013]; NCI [1U01CA151792-01]; Air Force Office of Scientific Research [FA 9550-07-1-0054/9550-10-1-0054]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Sandia National Laboratories' Laboratory Directed Research and Development (LORD); UCLA Center for Nanobiology and Predictive Toxicology (NIEHS) [1U19ES019528-01]; NSF ERC Center for Environmental Implications of Nanotechnology at UCLA [NSF:EF-0820117]; IGERT [NSF DGE-0504276]; Sandia National Laboratories; NSF IGERT [DGE-0549500]; NCRR; NSF; NCI; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the NIH/Roadmap for Medical Research under grant PHS 2 PN2 EV01657013; NCI Cancer Nanotechnology Platform Partnership grant 1U01CA151792-01; the Air Force Office of Scientific Research grant FA 9550-07-1-0054/9550-10-1-0054; the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Sandia National Laboratories' Laboratory Directed Research and Development (LORD) program; the UCLA Center for Nanobiology and Predictive Toxicology (NIEHS grant 1U19ES019528-01); and the NSF ERC Center for Environmental Implications of Nanotechnology at UCLA (NSF:EF-0820117). C.E.A. was supported by IGERT Fellowship Grant NSF DGE-0504276 and the President Harry S. Truman Fellowship in National Security Science and Engineering at Sandia National Laboratories. E.C.C. was supported by NSF IGERT grant DGE-0549500. We thank Nick Carroll and Dimiter Petsev for their assistance with nanoparticle synthesis, Darren Dunphy for his help with nanoparticle characterization, Mona Aragon for generating the schematic, and Carol Ashley for performing final edits of the manuscript. Images in this paper were generated in the University of New Mexico Cancer Center Fluorescence Microscopy Facility, supported by NCRR, NSF, and NCI as detailed at http://hsc.unm.edu/crtc/microscopy/Facility.html. Data were generated in the Flow Cytometry Shared Resource Center supported by the University of New Mexico Health Sciences Center and the University of New Mexico Cancer Center. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 62 TC 100 Z9 105 U1 10 U2 218 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2012 VL 6 IS 3 BP 2174 EP 2188 DI 10.1021/nn204102q PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 914JM UT WOS:000301945900031 PM 22309035 ER PT J AU Morelos-Gomez, A Vega-Diaz, SM Gonzalez, VJ Tristan-Lopez, F Cruz-Silva, R Fujisawa, K Muramatsu, H Hayashi, T Mi, X Shi, YF Sakamoto, H Khoerunnisa, F Kaneko, K Sumpter, BG Kim, YA Meunier, V Endo, M Munoz-Sandoval, E Terrones, M AF Morelos-Gomez, Aaron Vega-Diaz, Sofia Magdalena Jehova Gonzalez, Viviana Tristan-Lopez, Ferdinando Cruz-Silva, Rodolfo Fujisawa, Kazunori Muramatsu, Hiroyuki Hayashi, Takuya Mi, Xi Shi, Yunfeng Sakamoto, Hirotoshi Khoerunnisa, Fitri Kaneko, Katsumi Sumpter, Bobby G. Kim, Yoong Ahm Meunier, Vincent Endo, Morinobu Munoz-Sandoval, Emilio Terrones, Mauricio TI Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges SO ACS NANO LA English DT Article DE carbon nanoribbon; carbon nanotube; molecular expansion; nitrogen-doped; unzipping ID MULTIWALLED CARBON NANOTUBES; FUNCTIONAL-GROUPS; OXIDE; GRAPHITE; ACID; INTERCALATION; EXFOLIATION; ELECTROLYTE; ADSORPTION; DIFFUSION AB We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N-2 gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N-2 molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS2, WS2, etc. C1 [Vega-Diaz, Sofia Magdalena; Tristan-Lopez, Ferdinando; Cruz-Silva, Rodolfo; Sakamoto, Hirotoshi; Khoerunnisa, Fitri; Kaneko, Katsumi; Endo, Morinobu; Terrones, Mauricio] Shinshu Univ, Res Ctr Exot Nanocarbons JST, Nagano 380853, Japan. [Morelos-Gomez, Aaron; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu] Shinshu Univ, Fac Engn, Nagano 380853, Japan. [Jehova Gonzalez, Viviana] Univ Carlos III Madrid, Dept Ciencia & Ingn Mat & Ingn Quim, Madrid 28911, Spain. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Mi, Xi; Shi, Yunfeng; Meunier, Vincent] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. [Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Munoz-Sandoval, Emilio] CNM CSIC, IMM, Tres Cantos, Spain. [Terrones, Mauricio] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Terrones, Mauricio] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Terrones, Mauricio] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. RP Terrones, M (reprint author), Shinshu Univ, Res Ctr Exot Nanocarbons JST, 4-17-1 Wakasato, Nagano 380853, Japan. EM mut11@psu.edu RI Munoz-Sandoval, Emilio/N-1059-2014; Cruz-Silva, Rodolfo/A-2149-2012; Muramatsu, Hiroyuki/B-8800-2011; Shi, Yunfeng/B-3278-2008; Sumpter, Bobby/C-9459-2013; Microelectronica de Madrid, Instituto de/D-5173-2013; Meunier, Vincent/F-9391-2010; Mi, Xi/G-9726-2013; Terrones, Mauricio/B-3829-2014 OI Munoz-Sandoval, Emilio/0000-0002-6095-4119; Cruz-Silva, Rodolfo/0000-0002-6120-9524; Muramatsu, Hiroyuki/0000-0003-0332-6703; Shi, Yunfeng/0000-0003-1700-6049; Sumpter, Bobby/0000-0001-6341-0355; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045; Meunier, Vincent/0000-0002-7013-179X; Mi, Xi/0000-0002-5992-4019; FU Ministry of Education, Culture, Sports, Science and Technology of Japan; Research Center for Exotic Nanocarbons, JST; Center for Nanophase Materials Sciences; Office of Basic Energy Sciences at Oak Ridge National Laboratory, U.S. Department of Energy FX We acknowledge the support from the Program for Fostering Regional Innovation in Nagano from the Ministry of Education, Culture, Sports, Science and Technology of Japan. M.T., S.V.-D., F.T.-L., R.C.-S., and M.E. acknowledge support from the Research Center for Exotic Nanocarbons, Japan regional Innovation Strategy Program by the Excellence, JST. A.M.-G. acknowledges support from CONACYT for post-doctoral visit. B.G.S. was supported by the Center for Nanophase Materials Sciences, which is sponsored by the Office of Basic Energy Sciences at Oak Ridge National Laboratory, U.S. Department of Energy. Some of the calculations were performed using resources of the Oak Ridge Leadership Computing Facility and the National Center for Computational Sciences. NR 53 TC 31 Z9 31 U1 10 U2 146 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2012 VL 6 IS 3 BP 2261 EP 2272 DI 10.1021/nn2043252 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 914JM UT WOS:000301945900039 PM 22360783 ER PT J AU Manner, VW Koposov, AY Szymanski, P Klimov, VI Sykora, M AF Manner, Virginia W. Koposov, Alexey Y. Szymanski, Paul Klimov, Victor I. Sykora, Milan TI Role of Solvent-Oxygen Ion Pairs in Photooxidation of CdSe Nanocrystal Quantum Dots SO ACS NANO LA English DT Article DE nanocrystals; quantum dots; oxidation; photooxidation; degradation; photochemistry ID SINGLET OXYGEN; SEMICONDUCTOR NANOCRYSTALS; MOLECULAR-OXYGEN; CORE/SHELL NANOCRYSTALS; ABSORPTION-BAND; SURFACE-STATES; PHOTOLUMINESCENCE; EXCITATION; CHARGE; PHOTOIONIZATION AB Understanding the mechanisms for photodegradation of nanocrystal quantum dots Is an important step toward their application in real-world technologies. A usual assumption is that photochemical modifications in nanocrystals, such as their photo-oxidation, are triggered by absorption of a photon in the dot itself. Here, we demonstrate that, contrary to this commonly accepted picture, nanocrystal oxidation can be initiated by photoexcitation of solvent-oxygen ion pairs that relax to produce singlet oxygen, which then reacts with the nanocrystals. We make this conclusion on the basis of photolysis studies of solutions of CdSe nanocrystals. Our measurements indicate a sharp spectral onset for photooxidation, which depends on solvent identity and is 4.8 eV for hexane and 3.4 eV for toluene. Importantly, the photooxidation onset correlates with the position of a new optical absorption feature, which develops in a neat solvent upon its exposure to oxygen. This provides direct evidence that nanocrystal photooxidation is mediated by excitation of solvent-oxygen pairs and suggests that the stability of the nanocrystals is defined by not only the properties of their surfaces (as has been commonly believed) but also the properties of their environment, that is, of the surrounding solvent or matrix. C1 [Manner, Virginia W.; Koposov, Alexey Y.; Szymanski, Paul; Klimov, Victor I.; Sykora, Milan] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM klimov@lanl.gov; sykoram@lanl.gov RI Koposov, Alexey/R-9423-2016; OI Koposov, Alexey/0000-0001-5898-3204; Klimov, Victor/0000-0003-1158-3179 FU Los Alamos Directed Research and Development Funds; Center for Advanced Solar Photophysics; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX V.W.M., A.Y.K., P.S., and M.S. acknowledge support of the Los Alamos Directed Research and Development Funds. V.I.K. is supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. We thank Dr. David Thorn for helpful discussions. NR 35 TC 14 Z9 14 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2012 VL 6 IS 3 BP 2371 EP 2377 DI 10.1021/nn2046289 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 914JM UT WOS:000301945900051 PM 22381115 ER PT J AU Florea, I Demortiere, A Petit, C Bulou, H Hirlimann, C Ersen, O AF Florea, Ileana Demortiere, Arnaud Petit, Christophe Bulou, Herve Hirlimann, Charles Ersen, Ovidiu TI 3D Quantitative Analysis of Platinum Nanocrystal Superlattices by Electron Tomography SO ACS NANO LA English DT Article DE platinum nanocrystals; nanocrystal superlattices; 3D stacking; long-range order; electron tomography; pair distribution function ID ELECTROMAGNETIC ENERGY-TRANSPORT; SUPRA-CRYSTALS; NANOPARTICLES; MICROSCOPY; RECONSTRUCTION; RESOLUTION; CATALYST AB The work reported herein focuses on the 3D relative arrangement of individual platinum nano-crystals with a size of about 5 nm, and on the structure of the superlattices, they spontaneously form. Electron tomography was systematically used in this study because it allows obtaining quantitative 3D information in real space. Performing tomography in the bright-field TEM mode allowed Investigating the short and long-range orderings of the nanoparticles packed as self-organized supercrystals. Systematic fcc pilings were observed with a mean lattice parameter measured to be 195 nm, the nature of the arrangement being controlled by the truncated octahedral morphology of platinum nanocrystals and the associated steric effects. A numerical 3D quantitative analysis of the ordering characteristics of the superlattice with a nanometer resolution has been performed that, for the first time, showed a direct correlation between single entities characteristics and their ordering in periodic arrays. It has been shown that the lattice parameter is different in two orthogonal directions of the fcc structure, which indicates the presence of a slightly compressed superlattice. Inside the superstructure, vacancies and axial defects were observed that would blur the occurrence of potential collective effects from the supercrystals. C1 [Florea, Ileana; Bulou, Herve; Hirlimann, Charles; Ersen, Ovidiu] CNRS UdS, UMR 7504, Inst Phys & Chim Mat Strasbourg, F-67034 Strasbourg 2, France. [Demortiere, Arnaud; Petit, Christophe] CNRS UPMC, UMR 7070, Lab Mat Mesoscop & Nanometr, F-75252 Paris 05, France. [Demortiere, Arnaud] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Ersen, O (reprint author), CNRS UdS, UMR 7504, Inst Phys & Chim Mat Strasbourg, 23 Rue Lss,BP43, F-67034 Strasbourg 2, France. EM ovidiu.ersen@ipcms.u-strasbg.fr RI Bulou, Herve/I-1495-2016; Ersen, Ovidiu/I-1983-2016 OI Bulou, Herve/0000-0002-3365-6394; NR 35 TC 16 Z9 16 U1 4 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2012 VL 6 IS 3 BP 2574 EP 2581 DI 10.1021/nn205029s PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 914JM UT WOS:000301945900074 PM 22335360 ER PT J AU Ostrowski, AD Chan, EM Gargas, DJ Katz, EM Han, G Schuck, PJ Milliron, DJ Cohen, BE AF Ostrowski, Alexis D. Chan, Emory M. Gargas, Daniel J. Katz, Elan M. Han, Gang Schuck, P. James Milliron, Delia J. Cohen, Bruce E. TI Controlled Synthesis and Single-Particle Imaging of Bright, Sub-10 nm Lanthanide-Doped Upconverting Nanocrystals SO ACS NANO LA English DT Article DE upconverting nanoparticles; lanthanides; phosphorescence nanocrystal synthesis ID UP-CONVERSION NANOPARTICLES; EARTH FLUORIDE NANOCRYSTALS; NAYF4 NANOCRYSTALS; YTTRIUM FLUORIDE; QUANTUM DOTS; SIZE; PHASE; LUMINESCENCE; ULTRASMALL; SHAPE AB Phosphorescent nanoaystals that upconvert near-infrared light to emit at higher energies in the visible have shown promise as photostable, nonblinking, and background-free probes for biological imaging. However, synthetic control over upconverting nanocrystal size has been difficult, particularly for the brightest system, Yb3+- and Er3+-doped beta-phase NaYF4, for which there have been no reports of methods capable of producing sub-10 nm nanoaystals. Here we describe conditions for the controlled synthesis of protein-sized beta-phase NaYF4: 20% Yb3+, 2% Er3+ nanocrystals, from 43 to 15 nm In diameter. The size of the nanoaystals was modulated by varying the concentration of basic surfactants, Y3+:F- ratio, and reaction temperature, variables that also affected their crystalline phase. Increased reaction times favor formation of the desired beta-phase nanoaystals while having only a modest effect on nanocrystal size. Core/shell beta-phase NaYF4: 20% Yb3+, 2% Er3+/NaYF4 nanopartides less than 10 nm in total diameter exhibit higher luminescence quantum yields than comparable >25 nm diameter core nanopartides. Single-partide imaging of 9 nm core/shell nanopartides also demonstrates that they exhibit no measurable photobleaching or blinking. These results establish that small lanthanide-doped upconverting nanopartides can be synthesized without sacrificing brightness or stability, and these sub-10 nm nanopartides are ideally suited for single-particle imaging. C1 [Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.; Katz, Elan M.; Han, Gang; Schuck, P. James; Milliron, Delia J.; Cohen, Bruce E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Cohen, BE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM becohen@lbl.gov RI Milliron, Delia/D-6002-2012; han, gang/B-7274-2013 OI han, gang/0000-0002-2300-5862 FU Office of Science, Office of Basic Energy Sciences, of U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Virginia Altoe for help with electron microscopy. This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 42 TC 137 Z9 139 U1 17 U2 183 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2012 VL 6 IS 3 BP 2686 EP 2692 DI 10.1021/nn3000737 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 914JM UT WOS:000301945900086 PM 22339653 ER PT J AU French, WR Iacovella, CR Cummings, PT AF French, William R. Iacovella, Christopher R. Cummings, Peter T. TI Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions SO ACS NANO LA English DT Article DE molecular junction; molecular wire; molecular electronics; molecular simulation; mechanically controllable break junction; electron transport; single-molecule conductance; gold nanowire; benzenedithiol ID CHARGE-TRANSPORT; GOLD NANOWIRES; ELECTRONIC TRANSPORT; CONDUCTANCE; DYNAMICS; BENZENEDITHIOL; ELONGATION; MECHANISM; PARALLEL; CONDUCTIVITY AB Using an updated simulation tool, we examine molecular junctions composed of benzene-1, 4-dithiolate bonded between gold nanotips, focusing on the importance of environmental factors and interelectrode distance on the formation and structure of bridged molecules. We Investigate the complex relationship between monolayer density and tip separation, finding that the formation of multimolecule junctions is favored at low monolayer density, while single-molecule junctions are favored at high density. We demonstrate that tip geometry and monolayer interactions, two factors that are often neglected in simulation, affect the bonding geometry and tilt angle of bridged molecules. We further show that the structures of bridged molecules at 298 and 77 K are similar. C1 [French, William R.; Iacovella, Christopher R.; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37212 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Cummings, PT (reprint author), Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37212 USA. EM peter.cummings@vanderbilt.edu RI Iacovella, Christopher/D-2050-2011; Cummings, Peter/B-8762-2013; French, William/D-4164-2013 OI Cummings, Peter/0000-0002-9766-2216; French, William/0000-0003-2927-0234 FU U.S. Department of Education [P200A090323]; U.S. Department of Energy [DEFG0203ER46096]; National Science Foundation [CBET-1028374] FX We thank Kane Jennings for valuable discussion. W.R.F. acknowledges support from the U.S. Department of Education for a Graduate Assistance in Areas of National Need (GAANN) Fellowship under grant number P200A090323, as well as the U.S. Department of Energy under grant number DEFG0203ER46096. C.R.I. and P.T.C. acknowledge support from the National Science Foundation through grant CBET-1028374. NR 66 TC 15 Z9 15 U1 3 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2012 VL 6 IS 3 BP 2779 EP 2789 DI 10.1021/nn300276m PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 914JM UT WOS:000301945900097 PM 22335340 ER PT J AU Kang, YJ Qi, L Li, M Diaz, RE Su, D Adzic, RR Stach, E Li, J Murray, CB AF Kang, Yijin Qi, Liang Li, Meng Diaz, Rosa E. Su, Dong Adzic, Radoslav R. Stach, Eric Li, Ju Murray, Christopher B. TI Highly Active Pt3Pb and Core-Shell Pt3Pb-Pt Electrocatalysts for Formic Acid Oxidation SO ACS NANO LA English DT Article DE platinum; lead; electrocatalysis; formic acid oxidation; core-shell; nanostructure; nanocrystal ID FOREIGN METAL MONOLAYERS; FUEL-CELLS; BOROHYDRIDE REDUCTION; PLATINUM-ELECTRODES; 1ST PRINCIPLES; NANOPARTICLES; PTPB; ELECTROOXIDATION; METHANOL; NANOCRYSTALS AB Formic acid is a promising chemical fuel for fuel cell applications. However, due to the dominance of the indirect reaction pathway and strong poisoning effects, the development of direct formic acid fuel cells has been impeded by the low activity of existing electrocatalysts at desirable operating voltage. We report the first synthesis of Pt3Pb nanocrystals through solution phase synthesis and show they are highly efficient formic acid oxidation electrocatalysts. The activity can be further improved by manipulating the Pt3Pb-Pt core-shell structure. Combined experimental and theoretical studies suggest that the high activity from Pt3Pb and the Pt-Pb core-shell nanocrystals results from the elimination of CO poisoning and decreased barriers for the dehydrogenation steps. Therefore, the Pt3Pb and Pt-Pb core-shell nanocrystals can improve the performance of direct formic acid fuel cells at desired operating voltage to enable their practical application. C1 [Kang, Yijin; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Qi, Liang; Li, Ju; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Li, Meng; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Diaz, Rosa E.; Su, Dong; Stach, Eric] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Murray, CB (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. EM cbmurray@sas.upenn.edu RI Kang, Yijin/E-7767-2012; Li, Ju/A-2993-2008; Stach, Eric/D-8545-2011; Su, Dong/A-8233-2013; Qi, Liang/A-3851-2010; Li, Meng/L-8507-2013 OI Li, Ju/0000-0002-7841-8058; Stach, Eric/0000-0002-3366-2153; Su, Dong/0000-0002-1921-6683; Qi, Liang/0000-0002-0201-9333; FU U.S. Army Research Office (ARO) [MURI W911NF-08-1-0364]; Nano/Bio Interface Center through the National Science Foundation NSEC [DMR08-32802]; NSF [DMR-1120901]; AFOSR [FA9550-08-1-0325]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX C.B.M. and YJ.K. acknowledge partial support from the U.S. Army Research Office (ARO) under award number MURI W911NF-08-1-0364. Y.J.K.'s development of catalytic NCs was partially supported by the Nano/Bio Interface Center through the National Science Foundation NSEC DMR08-32802. C.B.M. thanks the Richard Perry University Professorship for the support of his supervisor role. L.Q. and J.L. acknowledge support by NSF grant DMR-1120901 and AFOSR grant FA9550-08-1-0325. Research was carried out in part at the Center for Functional Nanomaterials (CFN) and Department of Chemistry, Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We thank Charles Black and Fernando Camino at CFN for their assistance, Jin-Yi Wang at Fudan University for valuable discussion, and David Vann at Department of Earth and Environmental Science (University of Pennsylvania) for assistance in ICP-OES. NR 49 TC 87 Z9 88 U1 15 U2 130 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2012 VL 6 IS 3 BP 2818 EP 2825 DI 10.1021/nn3003373 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 914JM UT WOS:000301945900101 PM 22385261 ER PT J AU Toliver, DK Larson, JA Roberts, RK English, BC Ugarte, DGD West, TO AF Toliver, Dustin K. Larson, James A. Roberts, Roland K. English, Burton C. Ugarte, Daniel G. De La Torre West, Tristram O. TI Effects of No-Till on Yields as Influenced by Crop and Environmental Factors SO AGRONOMY JOURNAL LA English DT Article ID WINTER-WHEAT; CONSERVATION TILLAGE; CORN PRODUCTION; GRAIN-SORGHUM; RISK ANALYSIS; SYSTEMS; MANAGEMENT; ROTATION; GROWTH; PERFORMANCE AB This research evaluated differences in yields and associated downside risk from using no-till and tillage practices. Yields from 442 paired tillage experiments across the United States were evaluated with respect to six crops and environmental factors including geographic location, annual precipitation, soil texture, and time since conversion from tillage to no-till. Results indicated that mean yields for sorghum [Sorghum bicolor (L.) Moench] and wheat (Triticum aestivum L.) with no-till were greater than with tillage. In addition, no-till tended to produce similar or greater mean yields than tillage for crops grown on loamy soils in the Southern Seaboard and Mississippi Portal regions. A warmer and more humid climate and warmer soils in these regions relative to the Heartland, Basin and Range, and Fruitful Rim regions appear to favor no-till on loamy soils. With the exception of corn (Zea mays L.) and cotton (Gossypium hirsutum L.) in the Southern Seaboard region, no-till performed poorly on sandy soils. Crops grown in the Southern Seaboard were less likely to have lower no-till yields than tillage yields on loamy soils and thus had lower downside yield risk than other farm resource regions. Consistent with mean yield results, soybean [Glycine max (L.) Merr] and wheat grown on sandy soils in the Southern Seaboard region using no-till had larger downside yield risks than when produced with no-till on loamy soils. The key findings of this study support the hypothesis that soil and climate factors impact no-till yields relative to tillage yields and may be an important factor influencing risk and expected return and the adoption of the practice by farmers. C1 [Toliver, Dustin K.; Larson, James A.; Roberts, Roland K.; English, Burton C.; Ugarte, Daniel G. De La Torre] Univ Tennessee, Agr & Resource Econ Dep, Knoxville, TN 37996 USA. [West, Tristram O.] Pacific NW Natl Lab, Richland, WA 99352 USA. [West, Tristram O.] Univ Maryland, Global Change Res Inst, College Pk, MD 20742 USA. RP Toliver, DK (reprint author), Univ Tennessee, Agr & Resource Econ Dep, Knoxville, TN 37996 USA. EM dtoliver@utk.edu RI West, Tristram/C-5699-2013 OI West, Tristram/0000-0001-7859-0125 NR 77 TC 17 Z9 17 U1 3 U2 27 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0002-1962 J9 AGRON J JI Agron. J. PD MAR-APR PY 2012 VL 104 IS 2 BP 530 EP 541 DI 10.2134/agronj2011.0291 PG 12 WC Agronomy SC Agriculture GA 914OS UT WOS:000301961400036 ER PT J AU Liang, C Jesus, ED Duncan, DS Jackson, RD Tiedje, JM Balser, TC AF Liang, Chao Jesus, Ederson da C. Duncan, David S. Jackson, Randall D. Tiedje, James M. Balser, Teri C. TI Soil microbial communities under model biofuel cropping systems in southern Wisconsin, USA: Impact of crop species and soil properties SO APPLIED SOIL ECOLOGY LA English DT Article DE Lipid; Microbial biomass and community; Biofuel crop; Soil property ID FATTY-ACID PROFILES; PLANT DIVERSITY; BACTERIAL; BIOMASS; GRASSLAND; CARBON; MANAGEMENT; TILLAGE; FOREST; AGROECOSYSTEMS AB Biofuel-induced landscape change will have an enormous impact on terrestrial ecosystems in the near future due to globally escalating energy demands, but investigations into the biological properties of soil under potential biofuel crops have not been well documented. The soil microbiota plays a significant role in ecosystem services and especially their regulation of carbon and nutrient cycles. To improve our knowledge about the structure of soil microbial community and the factors that influence it, we analyzed microbial lipids and various soil physicochemical factors under model biofuel cropping systems of corn, switchgrass and mixed prairie in southern Wisconsin, USA. Principal component analysis of lipid biomarkers from soil microbial communities indicated that there were consistent differences among the crop species. Microbial biomass was significantly lower in corn than prairie soils, with switchgrass intermediate to these systems. An increase in fungi to bacteria ratio was coinciding with a net growth in fungal biomass when converting conventionally managed corn system to perennial systems, which indicates the microbial community change could be affected by the creation or expansion of niches for certain functional groups, rather than rebalancing of competitive interactions among these groups. The soil microbial community structure under corn was distinct from the perennial systems with markers indicative of greater in situ stress in annual corn sites and a reduced proportional abundance of arbuscular mycorrhizal fungi and an increased of gram-positive bacteria. Redundancy analysis (RDA) using 21 lipid biomarkers concurrently with 17 physicochemical indices showed that these properties correlated with different subsets of the microbial communities. We conclude that the cropping system shifted the microbial community composition at this regional scale, which may also affect the microbial processes associated with these differing communities. This may be significant when scaled up from regional to national, continental or global scales. Published by Elsevier B.V. C1 [Liang, Chao; Balser, Teri C.] Univ Wisconsin, Dept Soil Sci, Madison, WI 53706 USA. [Liang, Chao; Jesus, Ederson da C.; Jackson, Randall D.; Tiedje, James M.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Duncan, David S.; Jackson, Randall D.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Jesus, Ederson da C.; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Balser, Teri C.] Univ Florida, Dept Soil & Water Sci, Gainesville, FL 32611 USA. RP Liang, C (reprint author), Univ Wisconsin, Dept Soil Sci, Observ Dr, Madison, WI 53706 USA. EM chaoliang@wisc.edu RI Jesus, Ederson/D-1690-2010; OI Duncan, David/0000-0002-2867-0378 FU DOE-Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830] FX We thank Dr. Tim Meehan and Hannah Gaines for the assistance with field sampling and useful discussions, Dr. Harry Read for analyzing lipid biomarkers, Dr. Guangsheng Chen for creating GIS sampling map, Dr. Masayuki Ushio and Dr. Jinsong Zhao for statistical expertise. This work was funded by the DOE-Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494 and DOE OBP Office of Energy Efficiency and Renewable Energy DE-AC05-76RL01830). NR 46 TC 30 Z9 31 U1 3 U2 115 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0929-1393 J9 APPL SOIL ECOL JI Appl. Soil Ecol. PD MAR PY 2012 VL 54 BP 24 EP 31 DI 10.1016/j.apsoil.2011.11.015 PG 8 WC Soil Science SC Agriculture GA 916NQ UT WOS:000302110900004 ER PT J AU Myles, L Heuer, MW Meyers, TP Hoyett, ZJ AF Myles, LaToya Heuer, Mark W. Meyers, Tilden P. Hoyett, Zakiya J. TI A comparison of observed and parameterized SO2 dry deposition over a grassy clearing in Duke Forest SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Sulfur dioxide; Flux-gradient technique; Biosphere/atmosphere interactions; Canopy resistance ID SULFUR-DIOXIDE; ACIDIC DEPOSITION; AIR; VEGETATION; MODEL; VELOCITIES; PRECIPITATION; ATMOSPHERE; EXCHANGE; REMOVAL AB Deposition of trace gases, such as sulfur dioxide (SO2), can affect plant and soil chemistry in different ecosystems. Measurements over a complex ecosystem, like a forest clearing, are necessary to determine more accurate deposition rates that can be used to improve parameterizations and models. The flux-gradient technique was used to determine SO2 fluxes over grass in a clearing at Duke Forest, North Carolina, USA on 25 June - 2 July 2008. The mean flux was -0.037 +/- 0.024 mu g m(-2) s(-1). Dew on the canopy enhanced the uptake of SO2, which increased deposition rates. Deposition velocities (V-d) fluctuated greatly with a mean of 1.00 +/- 0.48 cm s(-1). The large variation in V-d was not fully captured by estimates determined from a multilayer model (MLM) and a big-leaf model (BLM). Mean deposition velocities derived from the MLM and BLM were 1.25 +/- 0.21 cm s(-1) and 0.63 +/- 0.12 cm s(-1), respectively. The model estimations of V-d in this study were probably affected by uncertainties associated with canopy resistance, particularly with stomatal and non-stomatal processes. Published by Elsevier Ltd. C1 [Myles, LaToya; Heuer, Mark W.; Meyers, Tilden P.] NOAA, Air Resources Lab, Atmospher Turbulence & Diffus Div, Oak Ridge, TN 37830 USA. [Heuer, Mark W.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. [Hoyett, Zakiya J.] NOAA, Educ Partnership Program, Silver Spring, MD 20910 USA. RP Myles, L (reprint author), NOAA, Air Resources Lab, Atmospher Turbulence & Diffus Div, 456 S Illinois Ave, Oak Ridge, TN 37830 USA. EM LaToya.Myles@noaa.gov RI Myles, LaToya/Q-2470-2015; Meyers, Tilden/C-6633-2016 FU U.S. Department of Agriculture CSREES [35112]; NOAA FX This study was partially funded by U.S. Department of Agriculture CSREES Air Quality Program Grant # 35112 and by the NOAA Health of the Atmosphere Program. Z. Hoyett is grateful for support from the NOAA Educational Partnership Program Undergraduate Scholarship Program. The authors thank John Walker for site logistics and operation and Simone Klemenz for sample analysis. This work is a contribution to the NOAA Air Quality Program. NR 58 TC 4 Z9 4 U1 0 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAR PY 2012 VL 49 BP 212 EP 218 DI 10.1016/j.atmosenv.2011.11.059 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 909HB UT WOS:000301553500024 ER PT J AU Barone, TL Storey, JME Youngquist, AD Szybist, JP AF Barone, Teresa L. Storey, John M. E. Youngquist, Adam D. Szybist, James P. TI An analysis of direct-injection spark-ignition (DISI) soot morphology SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Nanoparticles; Morphology; Transmission electron microscopy; Gasoline exhaust; Emissions ID ENGINE OPERATING-CONDITIONS; DIESEL-ENGINE; ELECTROSTATIC PRECIPITATOR; ULTRAFINE PARTICLES; OXIDATIVE STRESS; FRACTAL GEOMETRY; SIZE; LIGHT; TEM; MICROSTRUCTURE AB We have characterized particle emissions produced by a 4-cylinder, 2.0 L DISI engine using transmission electron microscopy (TEM) and image analysis. Analyses of soot morphology provide insight to particle formation mechanisms and strategies for prevention. Particle emissions generated by two fueling strategies were investigated, early injection and injection modified for low particle number concentration emissions. A blend of 20% ethanol and 80% emissions certification gasoline was used for the study given the likelihood of increased ethanol content in widely available fuel. In total, about 200 particles and 3000 primary soot spherules were individually measured. For the fuel injection strategy which produced low particle number concentration emissions, we found a prevalence of single solid sub-25 nm particles and fractal-like aggregates. The modal diameter of single solid particles and aggregate primary particles was between 10 and 15 nm. Solid particles as small as 6 nm were present. Although nanoparticle aggregates had fractal-like morphology similar to diesel soot, the average primary particle diameter per aggregate had a much wider range that spanned from 7 to 60 nm. For the early fuel injection strategy, liquid droplets were prevalent, and the modal average primary particle diameter was between 20 and 25 nm. The presence of liquid droplets may have been the result of unburned fuel and/or lubricating oil originating from fuel impingement on the piston or cylinder wall; the larger modal aggregate primary particle diameter suggests greater fuel-rich zones in-cylinder than for the low particle number concentration point. However, both conditions produced aggregates with a wide range of primary particle diameters, which indicates heterogeneous fuel and air mixing. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Barone, Teresa L.; Storey, John M. E.; Youngquist, Adam D.; Szybist, James P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Barone, TL (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, NTRC Bldg,2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM baronetl@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725]; Office of Basic Energy Sciences, U.S. Department of Energy FX The authors thank Keith Confer, Matthew Foster and Wayne Moore of Delphi Automotive Systems for providing equipment for the study and their helpful discussions. We thank Dr. Karren More and Dr. Chad Parish of Oak Ridge National Laboratory for help with TEM analysis. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Microscopy research was supported by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 43 TC 34 Z9 34 U1 4 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAR PY 2012 VL 49 BP 268 EP 274 DI 10.1016/j.atmosenv.2011.11.047 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 909HB UT WOS:000301553500030 ER PT J AU Jin, YS Cate, JHD AF Jin, Yong-Su Cate, Jamie H. D. TI Model-guided strain improvement: Simultaneous hydrolysis and co-fermentation of cellulosic sugars SO BIOTECHNOLOGY JOURNAL LA English DT Editorial Material DE beta-Glucosidase; Cellodextrin transporter; Cellulosic ethanol; Simulation AB The production of ethanol from starch or sugarcane-based substrates has been practiced at large scales for decades. Yet, despite tremendous effort, no economical production of ethanol from the abundant plant biomass in plant cell walls has been implemented. Two of the many outstanding problems in the cellulosic ethanol industry that must be resolved include the economic saccharification of recalcitrant plant cell walls and the efficient fermentation of mixed sugars (glucose and xylose) prevalent in cellulosic hydrolysates. In other words, the industry needs better celluloytic enzymes and better fermenting microbes to produce cellulosic ethanol. In this issue of Biotechnology Journal, a comprehensive model of cellulose hydrolysis and fermentation of prevalent sugars in lignocellulosic hydrolysates has been developed to evaluate the performance of cellulase enzymes and fermenting microbes in various ethanol production scenarios. This model will prove useful in guiding the engineering of cellulase enzymes and fermenting microbes for producing cellulosic ethanol economically. C1 [Jin, Yong-Su] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61822 USA. [Jin, Yong-Su] Univ Illinois, Inst Genom Biol, Urbana, IL 61822 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Jin, YS (reprint author), Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61822 USA. EM ysjin@illinois.edu; jcate@lbl.gov RI Jin, Yong-Su/L-4530-2013 NR 6 TC 2 Z9 2 U1 1 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1860-6768 J9 BIOTECHNOL J JI Biotechnol. J. PD MAR PY 2012 VL 7 IS 3 SI SI BP 328 EP 329 DI 10.1002/biot.201100489 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 915KN UT WOS:000302023600005 PM 22383191 ER PT J AU Soong, Y Dilmore, RM Hedges, SW Howard, BH Romanov, V AF Soong, Yee Dilmore, Robert M. Hedges, Sheila W. Howard, Bret H. Romanov, Vyacheslav TI Utilization of Multiple Waste Streams for Acid Gas Sequestration and Multi-Pollutant Control SO CHEMICAL ENGINEERING & TECHNOLOGY LA English DT Article DE Bauxite residue; Brine; CO2; Sequestration; SO2 ID BAUXITE RESIDUE; RED MUD; SALINE AQUIFERS; CO2; BRINE; NEUTRALIZATION; WATER; FORM AB A novel CO2 sequestration concept is reported that combines SO2 removal and CO2 capture and sequestration, using a bauxite-processing residue which is a waste product and with waste brine water from oil/gas production. The bauxite residue/brine mixture of 46/54v/v exhibited a CO2 sequestration capacity of >?0.078molL1 when exposed to pure CO2 at 20 degrees C and 2.73?MPa. At a higher temperature of 140?degrees C, a bauxite residue/brine mixture of 80/20v/v indicated a CO2 sequestration capacity of >0.094molL1 when exposed to pure CO2 at 3.85MPa. Under the same reaction conditions, an identical ratio of reaction mixture exposed to simulated flue gas at a similar initial pressure was capable of sequestering 0.16mol of CO2 and >99.9?% of the applied SO2. Calcite formation was verified as a product of bauxite/brine mixture carbonation. The caustic bauxite residues (pH 12.513.5) and acidic wastewater brine (pH 35) are also effectively neutralized after participating as reactive reagents in the conceptual process. C1 [Soong, Yee; Dilmore, Robert M.; Hedges, Sheila W.; Howard, Bret H.; Romanov, Vyacheslav] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Soong, Y (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM soong@netl.doe.gov RI Romanov, Vyacheslav/C-6467-2008 OI Romanov, Vyacheslav/0000-0002-8850-3539 NR 28 TC 3 Z9 3 U1 1 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0930-7516 EI 1521-4125 J9 CHEM ENG TECHNOL JI Chem. Eng. Technol. PD MAR PY 2012 VL 35 IS 3 SI SI BP 473 EP 481 DI 10.1002/ceat.201100341 PG 9 WC Engineering, Chemical SC Engineering GA 898UQ UT WOS:000300768200016 ER PT J AU Xu, ZJ AF Xu Zhi-Jie TI Homogenization and Upscaling for Diffusion, Heat Conduction, and Wave Propagation in Heterogeneous Materials SO COMMUNICATIONS IN THEORETICAL PHYSICS LA English DT Article DE diffusion; conduction; wave; homogenization; multi-scale; dispersion; upscaling; heterogeneous ID EFFECTIVE MACROSCOPIC DESCRIPTION; FINITE-DIFFERENCE METHOD; COMPUTATIONAL HOMOGENIZATION; ASYMPTOTIC HOMOGENIZATION; VELOCITY-STRESS; POROUS-MEDIA; MODEL AB We present a general homogenization method for diffusion, heat conduction, and wave propagation in a periodic heterogeneous material with piecewise constants. The method is relevant to the frequently encountered upscaling issues for heterogeneous materials. The dispersion relation for each problem is first expressed in the general form where the frequency omega (or wavenumber k) is expanded in terms of the wavenumber k (or frequency omega). A general homogenization model can be directly obtained with any given dispersion relation. Next step we study the unit cell of the heterogeneous material and derive the exact dispersion relation. The final homogenized equations include both leading order terms (effective properties) and high order contributions that represent the effect of the microscopic heterogeneity on the macroscopic behavior. That effect can be lumped into a single dimensionless heterogeneity parameter beta, which is bounded between -1/12 <= beta <= 0 and has a universal expression for all three problems. Numerical examples validate the proposed method and demonstrate a significant computational saving. C1 [Xu Zhi-Jie] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Xu Zhi-Jie] Pacific NW Natl Lab, Computat Math Grp, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Xu, ZJ (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM zhijie.xu@pnnl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 NR 22 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0253-6102 J9 COMMUN THEOR PHYS JI Commun. Theor. Phys. PD MAR PY 2012 VL 57 IS 3 BP 348 EP 354 DI 10.1088/0253-6102/57/3/04 PG 7 WC Physics, Multidisciplinary SC Physics GA 914AL UT WOS:000301920000004 ER PT J AU Ma, XW Weng, HX Su, MH Pan, LH AF Ma, Xue-wen Weng, Huan-xin Su, Min-hua Pan, Lehua TI Drying sewage sludge using flue gas from power plants in China SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Sewage sludge; Sludge drying; Waste heat reuse; CO2 emission reduction ID COAL COMBUSTION AB A lot of energy is required for drying the sewage sludge produced during the wastewater treatment process in China; however, on the other hand, the thermal energy in flue gas from power plants is usually wasted as it discharges into the atmosphere. In this study, a new technique for sludge drying is introduced. The key component of the new technique is equipment of a two-stage drying and granulation that utilizes thermal energy contained in the flue gas from power plants and extends sludge contact time with flue gas during the constant-rate evaporation stage. The primary results of the implementation in the Kangshun sludge treatment plant (daily treatment capacity of 100 tons of wet sludge) show that the new drying technique is very effective economically and environmentally. The water content in the sludge was reduced from 78% to less than 30%. The resulted sludge could be used either to co-incinerate with coal in a circulating fluidized bed or to mix with clay to make better bricks. Besides the saving in the direct heating cost in the sludge drying processes by 80%, the saving in fossil fuel consumption due to reuse of the dried sludge is also significant. As a result of the implementation of the new technique in a sludge treatment plant at the scale of the Kangshun plant, about 16,440 tons of CO2 emission could also be reduced every year. C1 [Ma, Xue-wen; Weng, Huan-xin] Zhejiang Univ, Inst Environm & Biogeochem, Hangzhou 310027, Peoples R China. [Su, Min-hua] Hangzhou Xinyuan Environm Engn Co Ltd, Hangzhou 310012, Zhejiang, Peoples R China. [Pan, Lehua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Weng, HX (reprint author), Zhejiang Univ, Inst Environm & Biogeochem, Hangzhou 310027, Peoples R China. EM gswenghx@zju.edu.cn RI Pan, Lehua/G-2439-2015; 梁, 鑫晓/Q-1323-2015 FU Major High Technology & Development Program of Zhejiang Province [2005C13005]; Key Science & Research Program of Zhejiang Province [2005C23051] FX This research was supported by Major High Technology & Development Program of Zhejiang Province (No. 2005C13005) and Key Science & Research Program of Zhejiang Province (No. 2005C23051). NR 18 TC 10 Z9 13 U1 0 U2 39 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD MAR PY 2012 VL 65 IS 6 BP 1841 EP 1846 DI 10.1007/s12665-011-1166-x PG 6 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 898VS UT WOS:000300771100020 ER PT J AU Silva, GT Lobo, TP Mitri, FG AF Silva, G. T. Lobo, T. P. Mitri, F. G. TI Radiation torque produced by an arbitrary acoustic wave SO EPL LA English DT Article ID ORDER BESSEL BEAM; ULTRASONIC STANDING-WAVE; RIGID SPHERE; FORCE; SCATTERING; PRESSURE; EXAMPLE; CELLS AB Acoustic waves may force a suspended object in the wavepath to spin by exerting a radiation torque. Generally, this torque depends on how the incident wave is scattered and absorbed by the object. We derive a general formula for the Cartesian components of the acoustic radiation torque produced by an arbitrary incident beam on an object of any geometrical shape in a nonviscous fluid. To illustrate the method, we calculate the acoustic radiation torque produced by a zero- and a first-order Bessel beam on an absorbing sphere in the off-axis configuration. Unexpectedly, the results show that some radiation torque components reverse their directions depending on the beam offset and the sphere size factor. Copyright (C) EPLA, 2012 C1 [Silva, G. T.; Lobo, T. P.] Univ Fed Alagoas, Inst Fis, Phys Acoust Grp, BR-57072970 Maceio, AL, Brazil. [Mitri, F. G.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Acoust & Sensors Technol Team MS D429, Los Alamos, NM 87545 USA. RP Silva, GT (reprint author), Univ Fed Alagoas, Inst Fis, Phys Acoust Grp, BR-57072970 Maceio, AL, Brazil. EM glauber@pq.cnpq.br RI Silva, Glauber/B-3240-2008 OI Silva, Glauber/0000-0001-8911-5848 FU CNPq [06697/2010-6, 477653/2010-3]; CAPES [2163/2009-PNPD]; Los Alamos National Laboratory [LDRD-X9N9, 20100595PRD1] FX This work was supported by grants 06697/2010-6, 477653/2010-3 CNPq, 2163/2009-PNPD CAPES (Brazilian agencies), and LDRD-X9N9 Project 20100595PRD1 from the Los Alamos National Laboratory. This unclassified publication, with the following reference No. LA-UR 12-10098, has been approved for unlimited public release under DUSA ENSCI. NR 35 TC 30 Z9 30 U1 1 U2 13 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAR PY 2012 VL 97 IS 5 AR 54003 DI 10.1209/0295-5075/97/54003 PG 6 WC Physics, Multidisciplinary SC Physics GA 914LW UT WOS:000301952600016 ER PT J AU Zhu, JX Tobash, PH Bauer, ED Ronning, F Scott, BL Haule, K Kotliar, G Albers, RC Wills, JM AF Zhu, Jian-Xin Tobash, P. H. Bauer, E. D. Ronning, F. Scott, B. L. Haule, K. Kotliar, G. Albers, R. C. Wills, J. M. TI Electronic structure and correlation effects in PuCoIn5 as compared to PuCoGa5 SO EPL LA English DT Article ID DELTA-PLUTONIUM; SUPERCONDUCTIVITY; PRESSURE; VALENCE AB Since their discovery nearly a decade ago, plutonium-based superconductors have attracted considerable interest, which is now heightened by the latest discovery of superconductivity in PuCoIn5. In the framework of density functional theory (DFT) within the generalized gradient approximation (GGA) together with dynamical mean-field theory (DMFT), we present a comparative study of the electronic structure of superconducting PuCoIn5 with an expanded unit cell volume relative to its PuCoGa5 cousin. Overall, a similar GGA-based electronic structure, including the density of states, energy dispersion, and Fermi surface topology, was found for both compounds. The GGA Pu 5f band was narrower in PuCoIn5 than in PuCoGa5 due to the expanded lattice, resulting in an effective reduction of Kondo screening in the former system, as also shown by our DMFT calculations. editor's choice Copyright (C) EPLA, 2012 C1 [Zhu, Jian-Xin; Tobash, P. H.; Bauer, E. D.; Ronning, F.; Scott, B. L.; Albers, R. C.; Wills, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Haule, K.; Kotliar, G.] Rutgers State Univ, Piscataway, NJ 08854 USA. RP Zhu, JX (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jxzhu@lanl.gov RI Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937; Zhu, Jianxin/0000-0001-7991-3918 FU U.S. Department of Energy; U.S. DOE Office of Basic Energy Sciences; LANL LDRD; U.S. DOE BES [DE-FG02-99ER45761] FX We acknowledge useful discussions with M. GRAF, T. DURAKIEWICZ, J. J. JOYCE, and M. E. PEZZOLI. This work was performed at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy, the U.S. DOE Office of Basic Energy Sciences, and the LANL LDRD Program. KH and GK were supported by the U.S. DOE BES Grant DE-FG02-99ER45761. NR 37 TC 20 Z9 21 U1 1 U2 27 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAR PY 2012 VL 97 IS 5 AR 57001 DI 10.1209/0295-5075/97/57001 PG 5 WC Physics, Multidisciplinary SC Physics GA 914LW UT WOS:000301952600027 ER PT J AU Reda, I Zeng, JN Scheuch, J Hanssen, L Wilthan, B Myers, D Stoffel, T AF Reda, Ibrahim Zeng, Jinan Scheuch, Jonathan Hanssen, Leonard Wilthan, Boris Myers, Daryl Stoffel, Tom TI An absolute cavity pyrgeometer to measure the absolute outdoor longwave irradiance with traceability to international system of units, SI SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Pyrgeometer; Irradiance; Longwave; Infrared; Measurement equation; WISG; ACP ID SKY-SCANNING RADIOMETER; CALIBRATION AB This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180 degrees view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U-95) of +/- 3.96 W m(-2) with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m(2) lower than that measured by the two pyrgeometers that are traceable to WISG, with a standard deviation of +/- 0.7 W m(-2). These results suggest that the ACP design might be used for addressing the need to improve the international reference for broadband outdoor longwave irradiance measurements. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Reda, Ibrahim; Myers, Daryl; Stoffel, Tom] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Reda, I (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Ibrahim.reda@nrel.gov FU National Renewable Energy Laboratory; DOE; Optical Technology Division, Physical Measurement Lab, NIST, DOC FX We thank the National Renewable Energy Laboratory's Photovoltaic and Metrology programs, DOE-Atmospheric System Research Program, and Optical Technology Division, Physical Measurement Lab, NIST, DOC for providing the funds for this effort. We also thank Bev Kay and Preston Morse for their administrative help and instrument setup for the outdoor measurement. NR 13 TC 5 Z9 5 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD MAR PY 2012 VL 77 BP 132 EP 143 DI 10.1016/j.jastp.2011.12.011 PG 12 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 916MQ UT WOS:000302108300015 ER PT J AU Zhang, L Karim, AM Engelhard, MH Wei, ZH King, DL Wang, Y AF Zhang, Liang Karim, Ayman M. Engelhard, Mark H. Wei, Zhehao King, David L. Wang, Yong TI Correlation of Pt-Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol SO JOURNAL OF CATALYSIS LA English DT Article DE Aqueous-phase reforming; Surface acidity; Pt-Re/C catalyst; Pt-Re interactions; C-C bond cleavage; C-O bond cleavage; Re oxidation; Ammonia TPD ID PLATINUM-RHENIUM CATALYSTS; CARBON-SUPPORTED PLATINUM; GAS-SHIFT REACTION; ETHYLENE-GLYCOL; BIMETALLIC CATALYSTS; HYDROGEN-PRODUCTION; METAL-CATALYSTS; XPS; CO; PHOTOEMISSION AB The surface properties of Pt-Re catalytic nanoparticles supported on carbon following exposure to a hydrogen reducing environment and subsequent hydrothermal conditions have been studied using in situ X-ray photoelectron spectroscopy (XPS) and ammonia temperature-programmed desorption (TPD). These properties have been correlated with the catalyst selectivity for the aqueous-phase reforming of glycerol. We show that Pt in reduced Pt-Re/C becomes electron deficient, and a fraction of the Re becomes oxidized when the catalyst is subsequently exposed to hydrothermal reaction conditions. Oxidation of Pt-Re generates surface acidity, which drastically affects the reaction pathways. The acid site concentration, but not acid site strength, increases with Re loading. This acidity increase with Re addition favors C-O over C-C cleavage, which results in higher selectivity to liquid products and alkanes at the expense of hydrogen selectivity. We propose a model for the Pt-Re active site and the origin of acidity enhanced by the addition of Re. (C) 2011 Elsevier Inc. All rights reserved. C1 [Zhang, Liang; Karim, Ayman M.; Engelhard, Mark H.; King, David L.; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Wei, Zhehao; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP King, DL (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, 902 Battelle Blvd, Richland, WA 99352 USA. EM david.king@pnl.gov; yongwang@pnl.gov RI Engelhard, Mark/F-1317-2010; Wang, Yong/C-2344-2013; Karim, Ayman/G-6176-2012; Wei, Zhehao/L-2801-2013; OI Karim, Ayman/0000-0001-7449-542X; Wei, Zhehao/0000-0002-9670-4752; Engelhard, Mark/0000-0002-5543-0812 FU US Department of Energy, Office of Energy Efficiency and Renewable Energy FX The authors acknowledge financial support from the US Department of Energy, Office of Energy Efficiency and Renewable Energy. The XPS experiments were carried out at the Environmental and Molecular Sciences Laboratory, a user facility of the Department of Energy, of the Pacific Northwest National Laboratory. NR 34 TC 67 Z9 69 U1 3 U2 99 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD MAR PY 2012 VL 287 BP 37 EP 43 DI 10.1016/j.jcat.2011.11.015 PG 7 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 915RX UT WOS:000302046200005 ER PT J AU Lee, WS Akatay, MC Stach, EA Ribeiro, FH Delgass, WN AF Lee, Wen-Sheng Akatay, M. Cem Stach, Eric A. Ribeiro, Fabio H. Delgass, W. Nicholas TI Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene SO JOURNAL OF CATALYSIS LA English DT Article DE Propylene epoxidation; Au/TS-1; Catalyst preparation: effect of pH; Mixing time; Temperature; Gold clusters; Stability for PO reaction ID DENSITY-FUNCTIONAL THEORY; TEMPERATURE CO OXIDATION; GOLD-TITANIA CATALYSTS; MESOPOROUS TITANOSILICATES; PROPENE EPOXIDATION; HYDROGEN-PEROXIDE; AU NANOPARTICLES; MOLECULAR-SIEVES; O-2; H-2 AB A refined and reliable synthesis procedure for Au/TS-1(Si/Ti molar ratio 100) with high reaction rate for the direct gas phase epoxidation of propylene has been developed by studying the effects of pH of the gold slurry solution, mixing time, and preparation temperature for deposition precipitation (DP) of Au on TS-1 supports. Au/TS-1 catalysts prepared at optimal DP conditions (pH similar to 7.3, mixing for 9.5 h, room temperature) showed an average PO rate similar to 160 g(PO) h(-1) kg(Cat)(-1) at 200 degrees C at 1 atm. A reproducibility better than +/- 10% was demonstrated by nine independent samples prepared at the same conditions. These are the highest rates yet reported at 200 degrees C. No visible gold particles were observed by the HRTEM analysis in the fresh Au/TS-1 with gold loading up to similar to 0.1 wt%, indicating that the gold species were smaller than 1 nm. Additionally, the rate per gram of Au and the catalyst stability increased as the Au loading decreased, giving a maximum value of 500 g(PO) h(-1) g(Au)(-1), and Si/Ti molar ratios of similar to 100 gave the highest rates. (C) 2011 Elsevier Inc. All rights reserved. C1 [Akatay, M. Cem; Stach, Eric A.; Delgass, W. Nicholas] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Akatay, M. Cem; Stach, Eric A.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Delgass, WN (reprint author), Purdue Univ, Sch Mat Engn, Forney Hall Chem Engn,480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM delgass@purdue.edu RI Stach, Eric/D-8545-2011; OI Stach, Eric/0000-0002-3366-2153; Ribeiro, Fabio/0000-0001-7752-461X FU Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-FG02-03ER15408]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Support from the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, under Grant DE-FG02-03ER15408 is gratefully acknowledged. Electron microscopy carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 45 TC 35 Z9 35 U1 5 U2 89 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD MAR PY 2012 VL 287 BP 178 EP 189 DI 10.1016/j.jcat.2011.12.019 PG 12 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 915RX UT WOS:000302046200020 ER PT J AU Kwak, JH Tran, D Burton, SD Szanyi, J Lee, JH Peden, CHF AF Kwak, Ja Hun Tran, Diana Burton, Sarah D. Szanyi, Janos Lee, Jong H. Peden, Charles H. F. TI Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites SO JOURNAL OF CATALYSIS LA English DT Article DE Cu-SSZ-13; NH3-SCR; Hydrothermal aging; H-2-TPR; Solid state Al-27 NMR ID SELECTIVE CATALYTIC-REDUCTION; ZEOLITE; STABILITY; CU/ZSM-5; STATE; NH3; NO AB The effects of hydrothermal treatment on model Cu/zeolite catalysts were investigated to better understand the nature of Cu species for the selective catalytic reduction of NOx by NH3. After hydrothermal aging at 800 degrees C for 16 h, the NOx reduction performance of Cu-ZSM-5 and Cu-beta was significantly reduced at low temperatures, while that of Cu-SSZ-13 was not affected. When the zeolite framework aluminum species were probed using solid state Al-27 MASNMR, significant reduction in the intensities of the tetrahedral aluminum peak intensity was observed for Cu-ZSM-5 and Cu-beta, although no increase in the intensities of the octahedral aluminum peak was detected. When the redox behavior of Cu species was examined using H-2-TPR, it was found that Cu2+ could be reduced to Cu. and to Cu-0 for Cu-ZSM-5 and Cu-beta catalysts, while Cu2+ could be reduced only to Cu2+ in Cu-SSZ-13. After hydrothermal aging, CuO and Cu-aluminate species were found to form in Cu-ZSM-5 and Cu-beta, while little changes were observed for Cu-SSZ-13. (C) 2012 Elsevier Inc. All rights reserved. C1 [Kwak, Ja Hun; Tran, Diana; Burton, Sarah D.; Szanyi, Janos; Lee, Jong H.; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Kwak, JH (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM kwak@pnnl.gov; jong.lee@pnnl.gov; chuck.peden@pnnl.gov RI Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 FU US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy; DOE's Office of Biological and Environmental Research; US DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX We gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. NR 19 TC 132 Z9 140 U1 32 U2 211 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD MAR PY 2012 VL 287 BP 203 EP 209 DI 10.1016/j.jcat.2011.12.025 PG 7 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 915RX UT WOS:000302046200022 ER PT J AU Feng, G Jiang, DE Cummings, PT AF Feng, Guang Jiang, De-en Cummings, Peter T. TI Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID ONION-LIKE CARBON; DIFFERENTIAL CAPACITANCE; NANOPOROUS CARBON; LIQUIDS; SUPERCAPACITORS; TEMPERATURE; SURFACE; SIMULATIONS; NANOMATERIALS; ELECTROLYTE AB Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased :ion density per unit area of electrode surface as the OLC becomes smaller. C1 [Feng, Guang; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Cummings, PT (reprint author), Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM peter.cummings@vanderbilt.edu RI Jiang, De-en/D-9529-2011; Feng, Guang/D-8989-2011; Cummings, Peter/B-8762-2013; OI Jiang, De-en/0000-0001-5167-0731; Cummings, Peter/0000-0002-9766-2216; Feng, Guang/0000-0001-6659-9181 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61] FX This work is supported as part of the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under award number ERKCC61. The authors appreciate the Palmetto cluster at Clemson University and the National Energy Research Scientific Computing Center for providing computer time. G.F. gratefully acknowledges valuable discussions from Dr. Volker Presser at Drexel Un:.versity. NR 54 TC 54 Z9 54 U1 4 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAR PY 2012 VL 8 IS 3 BP 1058 EP 1063 DI 10.1021/ct200914j PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 907CV UT WOS:000301396300029 PM 26593366 ER PT J AU Panuwet, P Nguyen, JV Wade, EL D'Souza, PE Ryan, PB Barr, DB AF Panuwet, Parinya Nguyen, Johnny V. Wade, Erin L. D'Souza, Priya E. Ryan, P. Barry Barr, Dana Boyd TI Quantification of melamine in human urine using cation-exchange based high performance liquid chromatography tandem mass spectrometry SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE Melamine; Human urine; Biomonitoring; Isotope dilution technique; Tandem mass spectrometry; High performance liquid chromatography ID SPRAGUE-DAWLEY RATS; CYANURIC ACID; EXCRETION AB Melamine and cyanuric acid have been implicated as adulterants in baby formula in China and pet foods in North America. In China, the effect of melamine or melamine-cyanuric acid adulteration lead to kidney stone development and acute renal failure in thousands of Chinese infants. A selective and sensitive analytical method was developed to measure melamine in human urine in order to evaluate the extent of potential health implications resulting from the consumption of these types of adulterated products in the general US population. This method involves extracting melamine from human urine using cation-exchange solid-phase extraction, chromatographically separating it from its urinary matrix co-extractants on a silica-based, strong-cation exchange analytical column using high performance liquid chromatography, and analysis using positive mode electrospray ionization tandem mass spectrometry. Quantification was performed using modified, matrix-based isotope dilution calibration covering the concentration range of 0.50-100 ng/mL. The limit of detection, calculated using replicates of blank and low level spiked samples, was 0.66 ng/mL and the relative standard deviations were between 6.89 and 14.9%. The relative recovery of melamine was 101-106%. This method was tested for viability by analyzing samples collected from the general US population. Melamine was detected in 76% of the samples tested, with a geometric mean of 2.37 ng/mL, indicating that this method is suitable for reliably detecting background exposures to melamine or other chemicals from which it can be derived. (c) 2012 Elsevier B.V. All rights reserved. C1 [Panuwet, Parinya] Emory Univ, Dept Environm Hlth, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA. [Nguyen, Johnny V.] Fed Bur Invest, Washington, DC USA. [Wade, Erin L.] Oak Ridge Inst Sci & Educ, Atlanta, GA USA. RP Panuwet, P (reprint author), Emory Univ, Dept Environm Hlth, Rollins Sch Publ Hlth, 1518 Clifton Rd NE, Atlanta, GA 30322 USA. EM ppanuwe@emory.edu RI Barr, Dana/E-6369-2011; Barr, Dana/E-2276-2013 FU Oak Ridge Institute for Science and Education FX We thank the Oak Ridge Institute for Science and Education for providing a fellowship grant to Ms. Erin L. Wade. NR 26 TC 14 Z9 16 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-0232 J9 J CHROMATOGR B JI J. Chromatogr. B PD MAR 1 PY 2012 VL 887 BP 48 EP 54 DI 10.1016/j.jchromb.2012.01.007 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 915TF UT WOS:000302049600007 PM 22309774 ER PT J AU Ren, ZY Wang, SL Singer, MA AF Ren, Zhuyin Wang, Stephen L. Singer, Michael A. TI Modeling hemodynamics in an unoccluded and partially occluded inferior vena cava under rest and exercise conditions SO MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING LA English DT Article DE CFD; Filter; Thrombosis; Vena cava; Wall shear stress ID RENAL-VEIN INFLOW; TRAP EASE FILTERS; OPTIMAL POSITION; THROMBUS FORMATION; SHEAR-STRESS; BLOOD-FLOW; IMPACT; CELECT AB Pulmonary embolism is the third leading cause of death in hospitalized patients in the US. Vena cava filters are medical devices inserted into the inferior vena cava (IVC) and are designed to trap thrombi before they reach the lungs. Once trapped in a filter, however, thrombi disturb otherwise natural flow patterns, which may be clinically significant. The goal of this work is to use computational modeling to study the hemodynamics of an unoccluded and partially occluded IVC under rest and exercise conditions. A realistic, three-dimensional model of the IVC, iliac, and renal veins represents the vessel geometry and spherical clots represent thombi trapped by several conical filter designs. Inflow rates correspond to rest and exercise conditions, and a transitional turbulence model captures transitional flow features, if they are present. The flow equations are discretized and solved using a second-order finite-volume method. No significant regions of transitional flow are observed. Nonetheless, the volume of stagnant and recirculating flow increases with partial occlusion and exercise. For the partially occluded vessel, large wall shear stresses are observed on the IVC and on the model thrombus, especially under exercise conditions. These large wall shear stresses may have mixed clinical implications: thrombotic-like behavior may initiate on the vessel wall, which is undesirable; and thrombolysis may be accelerated, which is desirable. C1 [Singer, Michael A.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Wang, Stephen L.] Kaiser Permanente Santa Clara Med Ctr, Div Vasc & Intervent Radiol, Santa Clara, CA 95051 USA. [Ren, Zhuyin] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. RP Singer, MA (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, POB 808,L-422, Livermore, CA 94551 USA. EM msinger2006@gmail.com FU DOE National Nuclear Security Administration [DE-AC52-07NA27344] FX The authors thank Professor James E. Moore Jr. for providing the vessel geometry used in this study. LLNL is operated by Lawrence Livermore National Security, LLC, for the DOE National Nuclear Security Administration under Contract No. DE-AC52-07NA27344. NR 34 TC 4 Z9 4 U1 3 U2 11 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0140-0118 J9 MED BIOL ENG COMPUT JI Med. Biol. Eng. Comput. PD MAR PY 2012 VL 50 IS 3 BP 277 EP 287 DI 10.1007/s11517-012-0867-y PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Mathematical & Computational Biology; Medical Informatics SC Computer Science; Engineering; Mathematical & Computational Biology; Medical Informatics GA 918PQ UT WOS:000302263100008 PM 22354383 ER PT J AU Budiman, AS Shin, HAS Kim, BJ Hwang, SH Son, HY Suh, MS Chung, QH Byun, KY Tamura, N Kunz, M Joo, YC AF Budiman, A. S. Shin, H. -A. -S. Kim, B. -J. Hwang, S. -H. Son, H. -Y. Suh, M. -S. Chung, Q. -H. Byun, K. -Y. Tamura, N. Kunz, M. Joo, Y. -C. TI Measurement of stresses in Cu and Si around through-silicon via by synchrotron X-ray microdiffraction for 3-dimensional integrated circuits SO MICROELECTRONICS RELIABILITY LA English DT Article ID GRADIENT; LINES AB Through-silicon via (TSV) has been used for 3-dimentional integrated circuits. Mechanical stresses in Cu and Si around the TSV were measured using synchrotron X-ray microdiffraction. The hydrostatic stress in Cu TSV went from high tensile of 234 MPa in the as-fabricated state, to -196 MPa (compressive) during thermal annealing (in situ measurement), to 167 MPa in the post-annealed state. Due to this stress, the keep-away distance in Si was determined to be about 17 mu m. Our results suggest that Cu stress may lead to reliability as well as integration issues, while Si stress may lead to device performance concerns. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Budiman, A. S.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. [Shin, H. -A. -S.; Kim, B. -J.; Hwang, S. -H.; Joo, Y. -C.] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151, South Korea. [Tamura, N.; Kunz, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Budiman, AS (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, POB 1663, Los Alamos, NM 87545 USA. EM suriadi@stanfordalumni.org; ycjoo@snu.ac.kr RI Kunz, Martin/K-4491-2012 OI Kunz, Martin/0000-0001-9769-9900 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy at Lawrence Berkeley National Laboratory and University of California, Berkeley, California [DE-AC02-05CH11231]; NSF [0416243]; Los Alamos National Laboratory (LANL) [LDRD/X93V]; Ministry of Knowledge Economy, Korea FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and University of California, Berkeley, California. The move of the micro-diffraction program from ALS beamline 7.3.3 onto to the ALS superbend source 12.3.2 was enabled through the NSF Grant #0416243. One of the authors (ASB) is supported by the Director, Los Alamos National Laboratory (LANL), under the Director's Postdoctoral Research Fellowship program (LDRD/X93V). This Project was conducted through the Practical Application Project of Advanced Microsystems Packaging Program of Seoul Technopark, funded by the Ministry of Knowledge Economy, Korea. NR 22 TC 63 Z9 63 U1 3 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0026-2714 J9 MICROELECTRON RELIAB JI Microelectron. Reliab. PD MAR PY 2012 VL 52 IS 3 BP 530 EP 533 DI 10.1016/j.microrel.2011.10.016 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 915RP UT WOS:000302045400012 ER PT J AU Liu, CJ AF Liu, Chang-Jun TI Deciphering the Enigma of Lignification: Precursor Transport, Oxidation, and the Topochemistry of Lignin Assembly SO MOLECULAR PLANT LA English DT Review DE lignification; monolignol transport; ABC transporter; laccase; peroxidase ID ATP-BINDING CASSETTE; CELL-WALL-PEROXIDASE; PROTEIN-PROTEIN INTERACTIONS; PHENYLALANINE AMMONIA-LYASE; PICEA-ABIES SEEDLINGS; ARABIDOPSIS-THALIANA; BETA-GLUCOSIDASE; ABC-TRANSPORTER; LOBLOLLY-PINE; O-METHYLTRANSFERASE AB Plant lignification is a tightly regulated complex cellular process that occurs via three sequential steps: the synthesis of monolignols within the cytosol; the transport of monomeric precursors across plasma membrane; and the oxidative polymerization of monolignols to form lignin macromolecules within the cell wall. Although we have a reasonable understanding of monolignol biosynthesis, many aspects of lignin assembly remain elusive. These include the precursors' transport and oxidation, and the initiation of lignin polymerization. This review describes our current knowledge of the molecular mechanisms underlying monolignol transport and oxidation, discusses the intriguing yet least-understood aspects of lignin assembly, and highlights the technologies potentially aiding in clarifying the enigma of plant lignification. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM cliu@bnl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DEAC0298CH10886]; National Science Foundation [MCB-1051675]; Brookhaven National Laboratory [11-007]; CAS/SAFEA; National Science Foundation of China [31028003] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through Grant DEAC0298CH10886; the National Science Foundation through grant MCB-1051675; the Laboratory Directed Research and Development Program of Brookhaven National Laboratory (No 11-007); the CAS/SAFEA International Partnership Program for Creative Research Teams in Plant Metabolisms, and the National Science Foundation of China for Oversea Distinguished Young Scholars (31028003). No conflict of interest declared. NR 158 TC 46 Z9 46 U1 8 U2 66 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1674-2052 J9 MOL PLANT JI Mol. Plant. PD MAR PY 2012 VL 5 IS 2 BP 304 EP 317 DI 10.1093/mp/ssr121 PG 14 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 914XN UT WOS:000301986700004 PM 22307199 ER PT J AU Russ, TH Pramanik, A Khansari, ME Wong, BM Hossain, MA AF Russ, Tiffany H. Pramanik, Avijit Khansari, Maryam E. Wong, Bryan M. Hossain, Md. Alamgir TI A Quinoline Based bis-Urea Receptor for Anions: A Selective Receptor for Hydrogen Sulfate SO NATURAL PRODUCT COMMUNICATIONS LA English DT Article DE Urea receptor; Anion coordination; UV-Vis titrations; Host-guest complex; Anion selectivity ID RECOGNITION; COMPLEXATION; COORDINATION; MACROCYCLES; BINDING AB A dipodal bis-urea receptor has been synthesized from the reaction of 8-amino quinoline and 1,4-phenylene diisocyanate in dichloromethane, and the anion binding ability of the receptor has been studied using fluoride, chloride, bromide, iodide, perchlorate, nitrate, dihydrogen phosphate and hydrogen sulfate by UV-Vis titrations in DMSO. The results show that the receptor binds each of the anions with a 1:1 stoichiometry, showing high affinity and moderate selectivity for hydrogen sulfate among the anions studied. Ab initio calculations based on density functional theory (DFT) suggest that an anion (X-) is bonded within the cleft formed by the two arms of the receptor through two NH center dot center dot center dot X- and two aromatic CH center dot center dot center dot X- interactions. The results from solution and theoretical studies suggest that binding is predominantly influenced by hydrogen bonding interactions and the basicity of anions. C1 [Russ, Tiffany H.; Pramanik, Avijit; Khansari, Maryam E.; Hossain, Md. Alamgir] Jackson State Univ, Dept Chem & Biochem, Jackson, MS 39212 USA. [Wong, Bryan M.] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. RP Hossain, MA (reprint author), Jackson State Univ, Dept Chem & Biochem, 1400 JR Lynch St,POB 17910, Jackson, MS 39212 USA. EM alamgir@chem.jsums.edu RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU National Science Foundation [CHE-1056927, CHE-0821357]; National Institute of Health [G12RR013459] FX The National Science Foundation is acknowledged for a CAREER award (CHE-1056927) to MAH. The work was supported by the National Institute of Health (G12RR013459). The NMR instrument used for this work was funded by the National Science Foundation (CHE-0821357). NR 20 TC 11 Z9 11 U1 2 U2 9 PU NATURAL PRODUCTS INC PI WESTERVILLE PA 7963 ANDERSON PARK LN, WESTERVILLE, OH 43081 USA SN 1934-578X EI 1555-9475 J9 NAT PROD COMMUN JI Nat. Prod. Commun. PD MAR PY 2012 VL 7 IS 3 BP 301 EP 304 PG 4 WC Chemistry, Medicinal; Food Science & Technology SC Pharmacology & Pharmacy; Food Science & Technology GA 913SO UT WOS:000301897900007 PM 22545400 ER PT J AU Chae, J Kim, YC Cho, Y AF Chae, Jina Kim, Young Chang Cho, Yunje TI Crystal structure of the NurA-dAMP-Mn2+ complex SO NUCLEIC ACIDS RESEARCH LA English DT Article ID DOUBLE-STRAND BREAKS; DNA END-RESECTION; THERMOPHILIC ARCHAEA; ESCHERICHIA-COLI; SLICER ACTIVITY; MRE11 COMPLEX; PIWI PROTEIN; HAIRPIN DNA; RNASE-H; REPAIR AB Generation of the 3' overhang is a critical event during homologous recombination (HR) repair of DNA double strand breaks. A 5'-3' nuclease, NurA, plays an important role in generating 3' single-stranded DNA during archaeal HR, together with Mre11-Rad50 and HerA. We have determined the crystal structures of apo- and dAMP-Mn2+-bound NurA from Pyrococcus furiousus (Pf NurA) to provide the basis for its cleavage mechanism. Pf NurA forms a pyramid-shaped dimer containing a large central channel on one side, which becomes narrower towards the peak of the pyramid. The structure contains a PIWI domain with high similarity to argonaute, endoV nuclease and RNase H. The two active sites, each of which contains Mn2+ ion(s) and dAMP, are at the corners of the elliptical channel near the flat face of the dimer. The 3' OH group of the ribose ring is directed toward the channel entrance, explaining the 5'-3' nuclease activity of Pf NurA. We provide a DNA binding and cleavage model for Pf NurA. C1 [Chae, Jina; Cho, Yunje] Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, South Korea. [Kim, Young Chang] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. RP Cho, Y (reprint author), Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, South Korea. EM yunje@postech.ac.kr FU Ministry for Health and Welfare [1020280]; National Research Foundation of Korea (NRF); Korea government (MEST) [2010-0019706, 2010-0029766]; Ministry of Education FX Funding for open access charge: National R&D Program for Cancer Control, Ministry for Health and Welfare (1020280); National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0019706 and No. 2010-0029766); a rising star program (POSTECH) and the BK21 program (Ministry of Education). NR 38 TC 5 Z9 6 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD MAR PY 2012 VL 40 IS 5 BP 2258 EP 2270 DI 10.1093/nar/gkr999 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 915JG UT WOS:000302019900038 PM 22064858 ER PT J AU Kim, WC Ko, JH Han, KH AF Kim, Won-Chan Ko, Jae-Heung Han, Kyung-Hwan TI Identification of a cis-acting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis SO PLANT MOLECULAR BIOLOGY LA English DT Article DE cis-acting motif; MYB46; Secondary wall biosynthesis; Transcription factor ID ARABIDOPSIS MESOPHYLL PROTOPLASTS; CELL-WALL; CELLULOSE SYNTHESIS; GENES; EXPRESSION; GENOME; PLANTS; DIFFERENTIATION; GLUCURONOXYLAN; LIGNIFICATION AB While many aspects of primary cell wall have been extensively elucidated, our current understanding of secondary wall biosynthesis is limited. Recently, transcription factor MYB46 has been identified as a master regulator of secondary wall biosynthesis in Arabidopsis thaliana. To gain better understanding of this MYB46-mediated transcriptional regulation, we analyzed the promoter region of a direct target gene, AtC3H14, of MYB46 and identified a cis-acting regulatory motif that is recognized by MYB46. This MYB46-responsive cis-regulatory element (M46RE) was further characterized and shown to have an eight-nucleotide core motif, RKTWGGTR. We used electrophoretic mobility shift assay, transient transcriptional activation assay and chromatin immunoprecipitation analysis to show that the M46RE was necessary and sufficient for MYB46-responsive transcription. Genome-wide analysis identified that the frequency of M46RE in the promoters were highly enriched among the genes upregulated by MYB46, especially in the group of genes involved in secondary wall biosynthesis. C1 [Ko, Jae-Heung] Kyung Hee Univ, Dept Plant & Environm New Resources, Yongin, South Korea. [Kim, Won-Chan; Han, Kyung-Hwan] Michigan State Univ, Dept Hort, E Lansing, MI 48824 USA. [Kim, Won-Chan; Han, Kyung-Hwan] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA. [Kim, Won-Chan; Han, Kyung-Hwan] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Ko, Jae-Heung] Kyung Hee Univ, Bioenergy Ctr, Yongin, South Korea. [Han, Kyung-Hwan] Chonnam Natl Univ, Dept Bioenergy Sci & Technol, Kwangju 500757, South Korea. RP Ko, JH (reprint author), Kyung Hee Univ, Dept Plant & Environm New Resources, Yongin, South Korea. EM jhko@khu.ac.kr; hanky@msu.edu RI Han, Kyung-Hwan/G-6141-2012; Ko, Jae-Heung/A-3370-2013 OI Han, Kyung-Hwan/0000-0001-9481-4643; FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DR-FC02-07ER64494]; Michigan Agriculture Experiment Station; Ministry of Education, Science and Technology of Korea via the World Class University at Chonnam National University [R31-2009-000-20025-0]; National Research Foundation of Korea (NRF) [2011-0008840] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DR-FC02-07ER64494). This project was also funded in part by a grant from the Michigan Agriculture Experiment Station and by the Ministry of Education, Science and Technology of Korea via the World Class University Project at Chonnam National University (R31-2009-000-20025-0) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) (2011-0008840). NR 34 TC 37 Z9 41 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-4412 J9 PLANT MOL BIOL JI Plant Mol.Biol. PD MAR PY 2012 VL 78 IS 4-5 BP 489 EP 501 DI 10.1007/s11103-012-9880-7 PG 13 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 918LX UT WOS:000302252300013 PM 22271306 ER PT J AU Yu, ZH Li, CY Liu, HZ AF Yu, Z. H. Li, C. Y. Liu, H. Z. TI High pressure powder X-ray diffraction study of Cr2As and pressure-induced structural phase transition SO SOLID STATE COMMUNICATIONS LA English DT Article DE Magnetically ordered materials; Crystal structure and symmetry; Phase transitions; High pressure ID CRYSTAL-STRUCTURE; FE2P-TYPE AB Cr2As, which is an intermetallic compound of Cu2Sb-type with Strukturbericht designation C38 was studied under a pressure of up to 32.5 GPa at room temperature using in situ synchrotron X-ray powder diffraction with a diamond anvil cell. From the X-ray diffraction analysis, our results showed that the Cu2Sb (C38)-type phase of Cr2As undergoes a pressure-induced structural phase transition near 15.4 GPa. The high-pressure (HP) phase of Cr2As is suggested as an orthorhombic structure. No additional structural phase transition was observed up to 32.5 GPa, and the initial low-pressure (LP) Cu2Sb (C38)-type structure was recovered as the pressure was released, implying that the observed pressure-induced structural phase transformation was reversible. The pressure-volume data of Cr2As was fitted to a second-order Birch-Murnaghan equation of state, which yielded a bulk modulus of B-0 = 125(3) and 340 (12) GPa for the LP and the HP phases, respectively. Furthermore, the a axis is more compressible than the c axis for the LP phase of Cr2As. The anisotropic compressibility of the studied crystal is discussed in terms of the crystallography stacking. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yu, Z. H.; Li, C. Y.] Harbin Inst Technol, Ctr Condensed Matter Sci & Technol, Dept Phys, Harbin 150080, Peoples R China. [Yu, Z. H.] Argonne Natl Lab, Adv Photon Source, XSD, Argonne, IL 60439 USA. [Li, C. Y.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Liu, H. Z.] Harbin Inst Technol, Nat Sci Res Ctr, Harbin 150080, Peoples R China. RP Yu, ZH (reprint author), Harbin Inst Technol, Ctr Condensed Matter Sci & Technol, Dept Phys, Harbin 150080, Peoples R China. EM zhenhaiuy@gmail.com RI Liu, Haozhe/E-6169-2011 FU COMPRES; NSF of China; Harbin Institute of Technology; China Scholarship Council FX We would like to thank COMPRES for the support. This work was also partly supported by the NSF of China, the Excellent Team Program at the Harbin Institute of Technology and the China Scholarship Council. NR 26 TC 7 Z9 7 U1 2 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2012 VL 152 IS 6 BP 509 EP 512 DI 10.1016/j.ssc.2011.12.041 PG 4 WC Physics, Condensed Matter SC Physics GA 907EG UT WOS:000301400000017 ER PT J AU Johnson, SD Young, JR Zieve, RJ Cooley, JC AF Johnson, S. D. Young, J. R. Zieve, R. J. Cooley, J. C. TI Superconductivity in single-crystal YIn3 SO SOLID STATE COMMUNICATIONS LA English DT Article DE Superconductors; Filamentary superconductivity ID CRITICAL TEMPERATURE; VALENCE ELECTRONS; CU3AU-TYPE ALLOYS; NUMBER; DEPENDENCE; ORDER AB We measure the superconducting transition of YIn3 by resistivity, susceptibility, and specific heat. Despite using high-quality single-crystal samples, the transitions detected by the three techniques are shifted from each other in temperature, suggesting a region of filamentary superconductivity. We discuss the possible implications for filamentary superconductivity in unconventional superconductors. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Johnson, S. D.; Young, J. R.; Zieve, R. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Cooley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zieve, RJ (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. EM zieve@physics.ucdavis.edu RI Cooley, Jason/E-4163-2013 FU NSF [DMR-0454869]; REU [PHY-0649297] FX This work was funded by the NSF though grant DMR-0454869 and the REU grant PHY-0649297. NR 14 TC 4 Z9 4 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2012 VL 152 IS 6 BP 513 EP 515 DI 10.1016/j.ssc.2011.12.040 PG 3 WC Physics, Condensed Matter SC Physics GA 907EG UT WOS:000301400000018 ER PT J AU Tiemeijer, PC Bischoff, M Freitag, B Kisielowski, C AF Tiemeijer, P. C. Bischoff, M. Freitag, B. Kisielowski, C. TI Using a monochromator to improve the resolution in TEM to below 0.5 angstrom. Part I: Creating highly coherent monochromated illumination SO ULTRAMICROSCOPY LA English DT Article DE TEM; Monochromator; Brightness ID TRANSMISSION ELECTRON-MICROSCOPY; FOCUS-VARIATION; CHROMATIC ABERRATION; INFORMATION AB Chromatic aberration limits the resolution in spherical-aberration corrected Transmission Electron Microscopy to approximately 0.7 angstrom at 300 kV. The energy spread in the beam is the main contribution to the chromatic aberration. This spread can be reduced with a monochromator. Another limitation to the resolution in TEM can be the finite brightness of the source and the consequent partial spatial coherence of the illumination. This limitation becomes important when spherical aberration and/or defocus are present such as in uncorrected TEM or in focal-series reconstruction in TEM. We used a monochromator optimized for minimum brightness loss and a prototype 'high-brightness' gun, and obtained brightness after monochromation comparable to that of the standard Schottky FEG before monochromation. The images were acquired on the prototype TEAM 0.5 microscope, which was developed on a Titan platform by increasing its electrical and mechanical stability. (C) 2012 Elsevier B.V. All rights reserved. C1 [Tiemeijer, P. C.; Bischoff, M.; Freitag, B.] FEI Co, NL-5600 KA Eindhoven, Netherlands. [Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Tiemeijer, PC (reprint author), FEI Co, POB 80066, NL-5600 KA Eindhoven, Netherlands. EM p.tiemeijer@fei.com FU Department of Energy, Office of Science, Basic Energy Sciences; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX The TEAM project is supported by the Department of Energy, Office of Science, Basic Energy Sciences. Part of this work was performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Max. Haider and CEOS GmbH for their support on the Cs correctors. NR 47 TC 20 Z9 20 U1 4 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAR PY 2012 VL 114 BP 72 EP 81 DI 10.1016/j.ultramic.2012.01.008 PG 10 WC Microscopy SC Microscopy GA 914MN UT WOS:000301954300009 PM 22356791 ER PT J AU Falso, MJS Buchholz, BA White, RWD AF Falso, Miranda J. Sarachine Buchholz, Bruce A. White, Ralph W. Devere TI Stem-like Cells in Bladder Cancer Cell Lines with Differential Sensitivity to Cisplatin SO ANTICANCER RESEARCH LA English DT Article DE Bladder cancer; cell lines; aldehyde dehydrogenase; cisplatin; stem-like cells; T24; 5637; TCCSUP ID ALDEHYDE DEHYDROGENASE-ACTIVITY; TUMOR-INITIATING CELLS; PROSTATE-CANCER; IDENTIFICATION; STRATEGIES AB Background: Recurrence is a common problem in bladder cancer; this has been attributed to cancer stem cells. In this study, we characterized potential cancer stem cell populations isolated from three cell lines that demonstrate different responses to cisplatin. Materials and Methods: The ALDEFLUOR (R) assay was used to isolate cells from TCCSUP, T24, and 5637 cell lines, and these cells were evaluated for their ability to form colonies, differentiate, migrate and invade. Results: The cell lines demonstrate a spectrum of aldehyde dehydrogenase high (ALDH(High)) populations that correlate with resistance to cisplatin. In the two resistant cell lines, T24 and 5637, the ALDH(High) cells demonstrate increased colony formation, migration, invasion, and ability to differentiate. The resistant 724 and 5637 cell lines may serve as models to investigate alternative therapies for bladder cancer. C1 [Falso, Miranda J. Sarachine; Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [White, Ralph W. Devere] Univ Calif Davis, Sch Med, Dept Urol, Sacramento, CA 95817 USA. [White, Ralph W. Devere] Ctr Canc, Sacramento, CA USA. RP Falso, MJS (reprint author), L-397,7000 East Ave, Livermore, CA 94551 USA. EM falso1@llnl.gov RI Buchholz, Bruce/G-1356-2011 FU Lawrence Livermore National Laboratory (LLNL) [LDRD 10-LW-033]; National Center for Research Resources [5P41RR013461-14]; National Institute of General Medical Sciences; National Institutes of Health [8 P41 GM103483-14]; U.S. Department of Energy [DE-AC52-07NA27344] FX This project was supported by grants from Lawrence Livermore National Laboratory (LLNL) LDRD 10-LW-033 and the National Center for Research Resources (5P41RR013461-14) and the National Institute of General Medical Sciences (8 P41 GM103483-14) from the National Institutes of Health. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. We thank the University of California Davis Cancer Center Flow Cytometry Shared Resource for assistance with cell sorting, and analysis. We also thank Kristen Kulp for helpful comments in the writing of this article. NR 23 TC 20 Z9 23 U1 0 U2 6 PU INT INST ANTICANCER RESEARCH PI ATHENS PA EDITORIAL OFFICE 1ST KM KAPANDRITIOU-KALAMOU RD KAPANDRITI, PO BOX 22, ATHENS 19014, GREECE SN 0250-7005 J9 ANTICANCER RES JI Anticancer Res. PD MAR PY 2012 VL 32 IS 3 BP 733 EP 738 PG 6 WC Oncology SC Oncology GA 910EE UT WOS:000301619200003 PM 22399585 ER PT J AU Wilson, RL Frisz, JF Hanafin, WP Carpenter, KJ Hutcheon, ID Weber, PK Kraft, ML AF Wilson, Robert L. Frisz, Jessica F. Hanafin, William P. Carpenter, Kevin J. Hutcheon, Ian D. Weber, Peter K. Kraft, Mary L. TI Fluorinated Colloidal Gold Immunolabels for Imaging Select Proteins in Parallel with Lipids Using High-Resolution Secondary Ion Mass Spectrometry SO BIOCONJUGATE CHEMISTRY LA English DT Article ID CELL-MEMBRANES; TOF-SIMS; NANOPARTICLES; PHASE; HEMAGGLUTININ; SAMPLES; MODEL; SPECTROSCOPY; CHOLESTEROL; GANGLIOSIDE AB The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein's activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests to determine whether specific proteins colocalize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein colocalization with specific lipid species. C1 [Hanafin, William P.; Kraft, Mary L.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. [Wilson, Robert L.; Frisz, Jessica F.; Kraft, Mary L.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Carpenter, Kevin J.; Hutcheon, Ian D.; Weber, Peter K.] Lawrence Livermore Natl Lab, Glenn Seaborg Inst, Livermore, CA 94551 USA. RP Kraft, ML (reprint author), Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. EM mlkraft@illinois.edu FU Burroughs Wellcome Fund; U.S. Department of Energy (DOE) [DEFG02- 07ER46453, DE-FG02-07ER46471]; U.S. DOE [DE-AC52-07NA27344]; National Science Foundation [CHE - 1058809] FX We thank Joshua Zimmerberg for providing the Clone 15 cell line and primary antibodies to the corresponding strain of influenza hemagglutinin, and we thank C. Ramon for technical assistance. M.L.K. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. Portions of this work were carried out in the Frederick Seitz Materials Research Laboratory Central Facilities, Univ. of Illinois, which is partially supported by the U.S. Department of Energy (DOE) under grants DEFG02- 07ER46453 and DE-FG02-07ER46471. Work at LLNL was supported by the Laboratory Directed Research and Development funding and performed under the auspices of the U.S. DOE under contract DE-AC52-07NA27344. This material is based upon work supported by the National Science Foundation under CHE - 1058809. NR 56 TC 15 Z9 15 U1 2 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD MAR PY 2012 VL 23 IS 3 BP 450 EP 460 DI 10.1021/bc200482z PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 911EN UT WOS:000301700200016 PM 22284327 ER PT J AU Yarlagadda, VN Gupta, A Dodge, CJ Francis, AJ AF Yarlagadda, Venkata Nancharaiah Gupta, Ashutosh Dodge, Cleveland J. Francis, Arokiasamy J. TI Effect of exogenous electron shuttles on growth and fermentative metabolism in Clostridium sp BC1 SO BIORESOURCE TECHNOLOGY LA English DT Article DE Biobutanol; Bioethanol; Clostridium; Electron shuttles; Methyl viologen ID METHYL VIOLOGEN; IRON; MODULATION; BIOMASS; CARBON; GENES AB In this study, the influence exogenous electron shuttles on the growth and glucose fermentative metabolism of Clostridium sp. BC1 was investigated. Bicarbonate addition to mineral salts (MS) medium accelerated growth and glucose fermentation which shifted acidogenesis (acetic- and butyric-acids) towards solventogenesis (ethanol and butanol). Addition of ferrihydrite, anthraquinone disulfonate, and nicotinamide adenine dinucleotide in bicarbonate to growing culture showed no significant influence on fermentative metabolism. In contrast, methyl viologen (MV) enhanced ethanol- and butanol-production by 28- and 12-fold, respectively with concomitant decrease in hydrogen, acetic- and butyric-acids compared to MS medium. The results show that MV addition affects hydrogenase activity with a significant reduction in hydrogen production and a shift in the direction of electron flow towards enhanced production of ethanol and butanol. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yarlagadda, Venkata Nancharaiah] Bhabha Atom Res Ctr, Biofouling & Biofilm Proc Sect, Water & Steam Chem Div, Kalpakkam 603102, Tamil Nadu, India. [Yarlagadda, Venkata Nancharaiah; Gupta, Ashutosh; Dodge, Cleveland J.; Francis, Arokiasamy J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Francis, Arokiasamy J.] POSTECH, Div Adv Nucl Engn, Pohang, South Korea. RP Yarlagadda, VN (reprint author), Bhabha Atom Res Ctr, Biofouling & Biofilm Proc Sect, Water & Steam Chem Div, Kalpakkam 603102, Tamil Nadu, India. EM venkatany@gmail.com FU Brookhaven National Laboratory; Laboratory Directed Research and Development (LDRD) project; US Department of Energy [DE-AC02-98CH10886]; WCU (World Class University) through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31-30005]; American Society for Microbiology (ASM) FX This research was supported in part by Brookhaven National Laboratory, Laboratory Directed Research and Development (LDRD) project, US Department of Energy under contract No. DE-AC02-98CH10886, and by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-30005). YVN acknowledges American Society for Microbiology (ASM) for 2009 Indo-US Visiting Research Professorship Award. NR 15 TC 6 Z9 7 U1 3 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAR PY 2012 VL 108 BP 295 EP 299 DI 10.1016/j.biortech.2011.12.040 PG 5 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 912OV UT WOS:000301810400042 PM 22273516 ER PT J AU Huesemann, MH Kuo, LJ Urquhart, L Gill, GA Roesijadi, G AF Huesemann, Michael H. Kuo, Li-Jung Urquhart, Lindsay Gill, Gary A. Roesijadi, Guni TI Acetone-butanol fermentation of marine macroalgae SO BIORESOURCE TECHNOLOGY LA English DT Article DE Acetone-butanol fermentation; Clostridium acetobutylicum; Seaweed; Macroalgae; Biofuels ID CLOSTRIDIUM-BUTYRICUM; ETHANOL FERMENTATION; SEAWEED AB The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay; Gill, Gary A.; Roesijadi, Guni] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. RP Huesemann, MH (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM michael.huesemann@pnl.gov NR 18 TC 29 Z9 31 U1 2 U2 44 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAR PY 2012 VL 108 BP 305 EP 309 DI 10.1016/j.biortech.2011.12.148 PG 5 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 912OV UT WOS:000301810400044 PM 22277213 ER PT J AU Jiang, WQ Gu, SD Joseph, J Liu, DW Luk, KB Steiner, H Wang, Z Wu, Q AF Jiang Wen-Qi Gu Shu-Di Joseph, John Liu Da-Wei Luk, Kam-Biu Steiner, Herbert Wang Zheng Wu Qun TI Suppressing ringing caused by large photomultiplier tube signals SO CHINESE PHYSICS C LA English DT Article DE PMT; ringing; piezoelectric; Daya Bay; antineutrino AB We describe here the characteristic features of the ringing we observed following large PMT signals in the Daya Bay reactor antineutrino experiment. We conclude that the ceramic capacitors used in the circuitry of the PMT bases and the HV-signal decouplers are the primary cause for this ringing. We present some possible schemes to reduce the ringing when replacing these ceramic capacitors is not feasible. C1 [Jiang Wen-Qi] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Joseph, John; Liu Da-Wei; Luk, Kam-Biu; Steiner, Herbert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gu Shu-Di; Joseph, John; Wang Zheng] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Wu Qun] IIT, Chicago, IL 60616 USA. [Liu Da-Wei] Univ Illinois, Urbana, IL 61801 USA. RP Jiang, WQ (reprint author), Univ Sci & Technol China, Hefei 230026, Peoples R China. EM jiangwq@ihep.ac.cn FU Ministry of Science and Technology of People's Republic of China [2006CB808102]; United States Department of Energy [DE-AC02-05CH11231, DE-FG02-94ER40840] FX Supported by Ministry of Science and Technology of People's Republic of China (2006CB808102), United States Department of Energy (DE-AC02-05CH11231, DE-FG02-94ER40840) NR 3 TC 7 Z9 7 U1 0 U2 2 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAR PY 2012 VL 36 IS 3 BP 235 EP 240 DI 10.1088/1674-1137/36/3/008 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 907FQ UT WOS:000301403600008 ER PT J AU Harp, DR Vesselinov, VV AF Harp, Dylan R. Vesselinov, Velimir V. TI An agent-based approach to global uncertainty and sensitivity analysis SO COMPUTERS & GEOSCIENCES LA English DT Article DE Agent-based; Global uncertainty analysis ID MODELS; CALIBRATION; CONFIDENCE; PREDICTION; INTERVALS AB A novel sampling approach to global uncertainty and sensitivity analyses of modeling results utilizing concepts from agent-based modeling is presented (Agent-Based Analysis of Global Uncertainty and Sensitivity (ABAGUS)). A plausible model parameter space is discretized and sampled by a particle swarm where the particle locations represent unique model parameter sets. Particle locations are optimized based on a model-performance metric using a standard particle swarm optimization (PSO) algorithm. Locations producing a performance metric below a specified threshold are collected. In subsequent visits to the location, a modified value of the performance metric, proportionally increased above the acceptable threshold (i.e., convexities in the response surface become concavities), is provided to the PSO algorithm. As a result, the methodology promotes a global exploration of a plausible parameter space, and discourages, but does not prevent, reinvestigation of previously explored regions. This effectively alters the strategy of the PSO algorithm from optimization to a sampling approach providing global uncertainty and sensitivity analyses. The viability of the approach is demonstrated on 2D Griewank and Rosenbrock functions. This also demonstrates the set-based approach of ABAGUS as opposed to distribution-based approaches. The practical application of the approach is demonstrated on a 3D synthetic contaminant transport case study. The evaluation of global parametric uncertainty using ABAGUS is demonstrated on model parameters defining the source location and transverse/longitudinal dispersivities. The evaluation of predictive uncertainties using ABACUS is demonstrated for contaminant concentrations at proposed monitoring wells. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Harp, Dylan R.; Vesselinov, Velimir V.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Harp, DR (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM dharp@lanl.gov; vvv@lanl.gov RI Vesselinov, Velimir/P-4724-2016; OI Vesselinov, Velimir/0000-0002-6222-0530; Harp, Dylan/0000-0001-9777-8000 FU Environmental Programs Directorate of the Los Alamos National Laboratory FX This work was supported by various projects within the Environmental Programs Directorate of the Los Alamos National Laboratory. We thank the anonymous reviewers for providing insights and comments that improved the quality of the paper. NR 26 TC 6 Z9 6 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD MAR PY 2012 VL 40 BP 19 EP 27 DI 10.1016/j.cageo.2011.06.025 PG 9 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 910GG UT WOS:000301624600003 ER PT J AU Huang, TZ Wang, XJ Malmgren, T Mays, JW AF Huang, Tianzi Wang, Xiaojun Malmgren, Thomas Mays, Jimmy W. TI Enhancing stability of poly(1,3-cyclohexadiene)-based materials by bromination and dehydrobromination SO EUROPEAN POLYMER JOURNAL LA English DT Article DE Poly(cyclohexadiene); Bromination; Dehydrobromination; Thermal stability ID 1,3-CYCLOHEXADIENE POLYMERS; ANIONIC-POLYMERIZATION; BLOCK-COPOLYMERS; POLY-1,3-CYCLOHEXADIENE; AROMATIZATION; DEHYDROGENATION; POLYPHENYLENE; CHAIN AB In order to improve their thermal stability, poly(1,3-cyclohexadiene) (PCHD) homopolymer, diblock copolymer of PCHD with styrene (PCHD-b-PS), and crosslinked PCHD membranes were dehydrogenated by addition of bromine to the polymer in solution, followed by dehydrobromination using an isothermal treatment at elevated temperature. The brominated PCHD materials thus obtained were characterized via FT-IR and thermo-gravimetric analysis (TGA) before and after dehydrobromination. Dehydrobromination was performed inside a TGA instrument, allowing insight into thermal stability of the analytes to be obtained. The dehydrobrominated PCHD samples were characterized using elemental analysis, and it was found the dehydrogenation of PCHD to polyphenylene was not complete. Nevertheless, some aromatization did occur, and the thermal stability of the treated polymer was greatly enhanced as compared to its PCHD precursor. Such materials may thus be of interest as high carbon content, graphene-like films. Crosslinked PCHD membranes and PCHD-b-PS diblock copolymers were treated via the same bromination/pyrolysis process, which resulted in markedly improved thermal stabilities for these materials as well. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Huang, Tianzi; Wang, Xiaojun; Malmgren, Thomas; Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Mays, JW (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM jimmymays@utk.edu RI Wang, Xiaojun/E-5510-2012 FU U.S. Army Research Office [W911NF-10-1-0282]; U.S. National Science Foundation [NSF EPS-1004083] FX The authors are grateful for financial support from the U.S. Army Research Office (Contract # W911NF-10-1-0282) and the U.S. National Science Foundation (NSF EPS-1004083; TN Score Thrust 2). NR 18 TC 0 Z9 0 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0014-3057 J9 EUR POLYM J JI Eur. Polym. J. PD MAR PY 2012 VL 48 IS 3 BP 632 EP 636 DI 10.1016/j.eurpolymj.2012.01.003 PG 5 WC Polymer Science SC Polymer Science GA 910IE UT WOS:000301629600020 ER PT J AU Plett, JM Gibon, J Kohler, A Duffy, K Hoegger, PJ Velagapudi, R Han, J Kues, U Grigoriev, IV Martin, F AF Plett, Jonathan M. Gibon, Julien Kohler, Annegret Duffy, Kecia Hoegger, Patrik J. Velagapudi, Rajesh Han, James Kuees, Ursula Grigoriev, Igor V. Martin, Francis TI Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor SO FUNGAL GENETICS AND BIOLOGY LA English DT Article DE Transposable elements; Selection; Gene duplication; Symbiotic interface; MiSSPs; Host colonization; Hydrophobins; Ectomycorrhizal fungus; Colonization; Mycorrhizal root tip; Mutualism ID FUNGUS PAXILLUS-INVOLUTUS; OPHIOSTOMA-NOVO-ULMI; CELL-SURFACE PROTEIN; PISOLITHUS-TINCTORIUS; EUCALYPTUS-GLOBULUS; MAGNAPORTHE-GRISEA; CERATO-ULMIN; TRANSPOSABLE ELEMENTS; ASPERGILLUS-FUMIGATUS; DICTYONEMA-GLABRATUM AB Hydrophobins are morphogenetic, small secreted hydrophobic fungal proteins produced in response to changing development and environmental conditions. These proteins are important in the interaction between certain fungi and their hosts. In mutualistic ectomycorrhizal fungi several hydrophobins form a subclass of mycorrhizal-induced small secreted proteins that are likely to be critical in the formation of the symbiotic interface with host root cells. In this study, two genomes of the ectomycorrhizal basidiomycete Laccaria bicolor strains S238N-H82 (from North America) and 81306 (from Europe) were surveyed to construct a comprehensive genome-wide inventory of hydrophobins and to explore their characteristics and roles during host colonization. The S238N-H82 L bicolor hydrophobin gene family is composed of 12 genes while the 81306 strain encodes nine hydrophobins, all corresponding to class I hydrophobins. The three extra hydrophobin genes encoded by the S238N-H82 genome likely arose via gene duplication and are bordered by transposon rich regions. Expression profiles of the hydrophobin genes oft. bicolor varied greatly depending on life stage (e.g. free living mycelium vs. root colonization) and on the host root environment. We conclude from this study that the complex diversity and range of expression profiles of the Laccaria hydrophobin multi-gene family have likely been a selective advantage for this mutualist in colonizing a wide range of host plants. (C) 2012 Elsevier Inc. All rights reserved. C1 [Plett, Jonathan M.; Gibon, Julien; Kohler, Annegret; Martin, Francis] Univ Henri Poincare, INRA, UMR 1136, INRA Nancy, F-54280 Champenoux, France. [Duffy, Kecia; Han, James; Grigoriev, Igor V.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Hoegger, Patrik J.; Velagapudi, Rajesh; Kuees, Ursula] Univ Gottingen, Busgen Inst, D-37077 Gottingen, Germany. RP Plett, JM (reprint author), Univ Henri Poincare, INRA, UMR 1136, INRA Nancy, F-54280 Champenoux, France. EM jm.plett@nancy.inra.fr OI Plett, Jonathan/0000-0003-0514-8146; Kues, Ursula/0000-0001-9180-4079 FU French National Research Agency (ANR FungEffector); European Network of Excellence EVOLTREE [FP6-016322]; ENERGYPOPLAR [FP7-211917]; US Department of Energy, Office of Science, Biological and Environmental Research [DE-AC05-00OR22725]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Ministry of Education (MENESR); DBU (Deutsche Bundesstiftung Umwelt) FX This work was supported by the French National Research Agency (ANR FungEffector), the European Network of Excellence EVOLTREE (FP6-016322) and ENERGYPOPLAR (Grant No. FP7-211917). This research was also sponsored by a grant from the Genomic Science Program, US Department of Energy, Office of Science, Biological and Environmental Research under the Contract DE-AC05-00OR22725 (PMI SFA of Oak Ridge National Laboratory) to F.M. Sequencing and assembly of the L. bicolor 81306, genome finishing and re-annotation (v2.0) of L. bicolor S238N-H82 genome were conducted by the US Department of Energy Joint Genome Institute and supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. J.G. was funded by a PhD scholarship from the Ministry of Education (MENESR). The laboratory in Gottingen was supported by the DBU (Deutsche Bundesstiftung Umwelt). We would also like to thank K. Berry, P. Burlinson and C. Murat for technical support. NR 77 TC 13 Z9 13 U1 4 U2 31 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1087-1845 J9 FUNGAL GENET BIOL JI Fungal Genet. Biol. PD MAR PY 2012 VL 49 IS 3 BP 199 EP 209 DI 10.1016/j.fgb.2012.01.002 PG 11 WC Genetics & Heredity; Mycology SC Genetics & Heredity; Mycology GA 913MC UT WOS:000301881100002 PM 22293303 ER PT J AU Padamsee, M Kumar, TKA Riley, R Binder, M Boyd, A Calvo, AM Furukawa, K Hesse, C Hohmann, S James, TY LaButti, K Lapidus, A Lindquist, E Lucas, S Miller, K Shantappa, S Grigoriev, IV Hibbett, DS McLaughlin, DJ Spatafora, JW Aime, MC AF Padamsee, Mahajabeen Kumar, T. K. Arun Riley, Robert Binder, Manfred Boyd, Alex Calvo, Ana M. Furukawa, Kentaro Hesse, Cedar Hohmann, Stefan James, Tim Y. LaButti, Kurt Lapidus, Alla Lindquist, Erika Lucas, Susan Miller, Kari Shantappa, Sourabha Grigoriev, Igor V. Hibbett, David S. McLaughlin, David J. Spatafora, Joseph W. Aime, M. Catherine TI The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction SO FUNGAL GENETICS AND BIOLOGY LA English DT Article DE Aqua(glycero)porins; Electron microscopy; Halophile; Ion homeostasis; Solute accumulation; Xerophile ID MULTIPLE SEQUENCE ALIGNMENT; CONIDIUM ONTOGENY; FILAMENTOUS FUNGI; PROTEIN FAMILIES; GENUS WALLEMIA; TOOL; CLASSIFICATION; EVOLUTIONARY; AQUAPORINS; ANNOTATION AB Wallemia (Wallemiales, Wallemiomycetes) is a genus of xerophilic Fungi of uncertain phylogenetic position within Basidiomycota. Most commonly found as food contaminants, species of Wallemia have also been isolated from hypersaline environments. The ability to tolerate environments with reduced water activity is rare in Basidiomycota. We sequenced the genome of W. sebi in order to understand its adaptations for surviving in osmotically challenging environments, and we performed phylogenomic and ultrastructural analyses to address its systematic placement and reproductive biology. W. sebi has a compact genome (9.8 Mb), with few repeats and the largest fraction of genes with functional domains compared with other Basidiomycota. We applied several approaches to searching for osmotic stress-related proteins. In silico analyses identified 93 putative osmotic stress proteins; homology searches showed the HOG (High Osmolarity Glycerol) pathway to be mostly conserved. Despite the seemingly reduced genome, several gene family expansions and a high number of transporters (549) were found that also provide clues to the ability of W. sebi to colonize harsh environments. Phylogenetic analyses of a 71-protein dataset support the position of Wallemia as the earliest diverging lineage of Agaricomycotina, which is confirmed by septal pore ultrastructure that shows the septal pore apparatus as a variant of the Tremella-type. Mating type gene homologs were identified although we found no evidence of meiosis during conidiogenesis, suggesting there may be aspects of the life cycle of W. sebi that remain cryptic. (C) 2012 Elsevier Inc. All rights reserved. C1 [Padamsee, Mahajabeen; Aime, M. Catherine] Louisiana State Univ, Dept Plant Pathol & Crop Physiol, Ctr Agr, Baton Rouge, LA 70803 USA. [Kumar, T. K. Arun; Miller, Kari; McLaughlin, David J.] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA. [Riley, Robert; LaButti, Kurt; Lapidus, Alla; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Binder, Manfred; Hibbett, David S.] Clark Univ, Dept Biol, Worcester, MA 01610 USA. [Boyd, Alex; Hesse, Cedar; Spatafora, Joseph W.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Calvo, Ana M.; Shantappa, Sourabha] No Illinois Univ, Dept Biol Sci, De Kalb, IL 60115 USA. [Furukawa, Kentaro; Hohmann, Stefan] Univ Gothenburg, Dept Cell & Mol Biol Microbiol, S-40530 Gothenburg, Sweden. [James, Tim Y.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA. RP Aime, MC (reprint author), Louisiana State Univ, Dept Plant Pathol & Crop Physiol, Ctr Agr, Baton Rouge, LA 70803 USA. EM maime@agcenter.lsu.edu RI Binder, Manfred/C-8571-2013; Lapidus, Alla/I-4348-2013; OI Lapidus, Alla/0000-0003-0427-8731; Padamsee, Mahajabeen/0000-0002-0741-3014 FU National Science Foundation (NSF) [DEB 0732968, DEB 0732550]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Imaging Center, College of Biological Sciences, University of Minnesota FX We thank Francis Martin and Daniel Eastwood for their permission to use unpublished data from the genomes of Agaricus bisporus and Serpula lacrymans, respectively for the KEGG/KOG analyses. This study was supported by National Science Foundation Assembling the Tree of Life grants: (NSF DEB 0732968) to DSH & MCA and (NSF DEB 0732550) to DJM. The Wallemia sebi genome project was conducted by the U.S. Department of Energy Joint Genome Institute and supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. G. Celio and the Imaging Center, College of Biological Sciences, University of Minnesota, provided assistance with the ultrastructural work. We thank the Minnesota Supercomputer Institute for support of the AFTOL Structural and Biochemical Database development. Support was received from the Minnesota Agricultural Experiment Station for the University of Minnesota Mycological Culture Collection. R. Kaur, W.R. Pilcher, K. Stephenson, A. Rodriguez, and the Z. Chen Lab at LSU AgCenter provided valuable lab assistance. We thank C. Clark, K. Damann, and R. Schneider at LSU AgCenter for use of their equipment. NR 77 TC 32 Z9 34 U1 4 U2 31 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1087-1845 J9 FUNGAL GENET BIOL JI Fungal Genet. Biol. PD MAR PY 2012 VL 49 IS 3 BP 217 EP 226 DI 10.1016/j.fgb.2012.01.007 PG 10 WC Genetics & Heredity; Mycology SC Genetics & Heredity; Mycology GA 913MC UT WOS:000301881100004 PM 22326418 ER PT J AU Filippi, AM Bhaduri, BL Naughton, T King, AL Scott, SL Guneralp, I AF Filippi, Anthony M. Bhaduri, Budhendra L. Naughton, Thomas King, Amy L. Scott, Stephen L. Gueneralp, Inci TI Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach SO GISCIENCE & REMOTE SENSING LA English DT Article ID UNDERWATER SCALAR IRRADIANCE; SUSPENDED SEDIMENT; NEURAL-NETWORK; WATER-QUALITY; OPTICAL-PROPERTIES; ACCURATE MODEL; ALGORITHM; PHYTOPLANKTON; REFLECTANCE; IMAGERY AB For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required similar to 100 hours until termination, whereas a parallel approach required only similar to 2.5 hours (42 compute nodes)-a 40x speed-up. Tools developed for this parallel execution are discussed. C1 [Filippi, Anthony M.; Gueneralp, Inci] Texas A&M Univ, Dept Geog, College Stn, TX 77843 USA. [Bhaduri, Budhendra L.; Naughton, Thomas; King, Amy L.; Scott, Stephen L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Filippi, AM (reprint author), Texas A&M Univ, Dept Geog, 3147 TAMU, College Stn, TX 77843 USA. EM filippi@tamu.edu; naughtont@ornl.gov FU Oak Ridge Institute for Science and Education; U.S. Department of Energy (DOE) Higher Education Research Experiences (HERE) for Faculty at the Oak Ridge National Laboratory (ORNL); U.S. Department of Energy [DE-AC05-00OR22725] FX A. M. Filippi acknowledges that this research was supported in part by an appointment to the U.S. Department of Energy (DOE) Higher Education Research Experiences (HERE) for Faculty at the Oak Ridge National Laboratory (ORNL), administered by the Oak Ridge Institute for Science and Education. This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The authors are grateful for the very useful anonymous reviewer comments, which improved the quality of this article. NR 48 TC 4 Z9 4 U1 2 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1548-1603 J9 GISCI REMOTE SENS JI GISci. Remote Sens. PD MAR-APR PY 2012 VL 49 IS 2 BP 275 EP 298 DI 10.2747/1548-1603.49.2.275 PG 24 WC Geography, Physical; Remote Sensing SC Physical Geography; Remote Sensing GA 908OK UT WOS:000301499500006 ER PT J AU Solontoi, M Lvezic, Z Juric, M Becker, AC Jones, L West, AA Kent, S Lupton, RH Claire, M Knapp, GR Quinn, T Gunn, JE Schneider, DP AF Solontoi, Michael Lvezic, Zeljko Juric, Mario Becker, Andrew C. Jones, Lynne West, Andrew A. Kent, Steve Lupton, Robert H. Claire, Mark Knapp, Gillian R. Quinn, Tom Gunn, James E. Schneider, Donald P. TI Ensemble properties of comets in the Sloan Digital Sky Survey SO ICARUS LA English DT Article DE Comets; Photometry; Comets, Coma ID JUPITER-FAMILY COMETS; HUBBLE-SPACE-TELESCOPE; DATA RELEASE; DISTANT COMETS; KUIPER-BELT; CCD PHOTOMETRY; SURFACE BRIGHTNESS; SIZE DISTRIBUTION; TROJAN ASTEROIDS; SOLAR-SYSTEM AB We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u,g,r,i,z) photometry is used to determine the comets' colors, sizes, surface brightness profiles, and rates of dust production in terms of the Af rho formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(ASN>GLU>ASP>ARG. This examination encompasses a large, diverse set of unique Ag-Ab crystal structures that help explain the biological range and specificity of Ag-Ab interactions. This analysis may also provide a measure of the significance of individual amino acid residues in phage display analysis of Ag binding. (c) 2012 Elsevier B.V. All rights reserved. C1 [Ramaraj, Thiruvarangan; Mumey, Brendan] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA. [Angel, Thomas] Pacific NW Natl Lab, Richland, WA 99352 USA. [Dratz, Edward A.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Jesaitis, Algirdas J.] Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA. RP Mumey, B (reprint author), Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA. EM mumey@cs.montana.edu FU National Institutes of Health (NIH) [5R01AI026711-21, 3R01AI026711-21S1, R01 AI 64107, R01 GM 625471, 5P20RR024237] FX This work was supported by National Institutes of Health (NIH) Grants [5R01AI026711-21] and [3R01AI026711-21S1] (to A. J. J.) and [R01 AI 64107], [R01 GM 625471, and [5P20RR024237] (to E. A. D.). NR 62 TC 34 Z9 34 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-9639 J9 BBA-PROTEINS PROTEOM JI BBA-Proteins Proteomics PD MAR PY 2012 VL 1824 IS 3 BP 520 EP 532 DI 10.1016/j.bbapap.2011.12.007 PG 13 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 909JV UT WOS:000301561700014 PM 22246133 ER PT J AU Zhang, YF Varnum, SM AF Zhang, Yanfeng Varnum, Susan M. TI The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides SO BIOCHIMIE LA English DT Article DE Botulinum neurotoxin; BoNT/C; Botulism; Phosphoinositides; Membrane binding ID GANGLIOSIDE; TETANUS; SITES AB Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of similar to 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a "dual receptor" mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro domain. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides in both assays. Interactions with phosphoinositides may facilitate tighter binding between neuronal membranes and BoNT/C. (C) 2011 Elsevier Masson SAS. All rights reserved. C1 [Zhang, Yanfeng; Varnum, Susan M.] Pacific NW Natl Lab, Div Biol Sci, Cell Biol & Biochem Grp, Richland, WA 99352 USA. RP Varnum, SM (reprint author), Pacific NW Natl Lab, Div Biol Sci, Cell Biol & Biochem Grp, Richland, WA 99352 USA. EM susan.varnum@pnnl.gov FU National Institute of Allergy and Infectious Diseases (NIAID) [U01A1081895]; US DOE [AC06-76RL0 1830] FX This research was supported by the National Institute of Allergy and Infectious Diseases (NIAID) through award number U01A1081895. PNNL is operated by Battelle for the US DOE under contract (AC06-76RLO 1830). We would like to thank Dr. Cheryl Baird for helpful suggestions on preparation of liposomes. NR 19 TC 9 Z9 9 U1 2 U2 3 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 0300-9084 J9 BIOCHIMIE JI Biochimie PD MAR PY 2012 VL 94 IS 3 BP 920 EP 923 DI 10.1016/j.biochi.2011.11.004 PG 4 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 906GF UT WOS:000301332200040 PM 22120109 ER PT J AU McNair, K Bailey, BA Edwards, RA AF McNair, Katelyn Bailey, Barbara A. Edwards, Robert A. TI PHACTS, a computational approach to classifying the lifestyle of phages SO BIOINFORMATICS LA English DT Article ID EVOLUTIONARY RELATIONSHIPS; ESCHERICHIA-COLI; BACTERIOPHAGES; BACTERIA; TAXONOMY; SEQUENCE; VIRUSES AB Motivation: Bacteriophages have two distinct lifestyles: virulent and temperate. The virulent lifestyle has many implications for phage therapy, genomics and microbiology. Determining which lifestyle a newly sequenced phage falls into is currently determined using standard culturing techniques. Such laboratory work is not only costly and time consuming, but also cannot be used on phage genomes constructed from environmental sequencing. Therefore, a computational method that utilizes the sequence data of phage genomes is needed. Results: Phage Classification Tool Set (PHACTS) utilizes a novel similarity algorithm and a supervised Random Forest classifier to make a prediction whether the lifestyle of a phage, described by its proteome, is virulent or temperate. The similarity algorithm creates a training set from phages with known lifestyles and along with the lifestyle annotation, trains a Random Forest to classify the lifestyle of a phage. PHACTS predictions are shown to have a 99% precision rate. Availability and implementation: PHACTS was implemented in the PERL programming language and utilizes the FASTA program (Pearson and Lipman, 1988) and the R programming language library 'Random Forest' (Liaw and Weiner, 2010). The PHACTS software is open source and is available as downloadable stand-alone version or can be accessed online as a user-friendly web interface. The source code, help files and online version are available at http://www.phantome.org/PHACTS/. C1 [McNair, Katelyn; Edwards, Robert A.] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Bailey, Barbara A.] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA. [Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert A.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP McNair, K (reprint author), San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. EM katelyn@rohan.sdsu.edu; redwards@sciences.sdsu.edu FU National Science Foundation [DBI 0850356] FX Advances in Bioinformatics from the National Science Foundation (grant DBI 0850356). NR 19 TC 24 Z9 24 U1 0 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD MAR 1 PY 2012 VL 28 IS 5 BP 614 EP 618 DI 10.1093/bioinformatics/bts014 PG 5 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 901SH UT WOS:000300986600003 PM 22238260 ER PT J AU Syed, MH Karpinets, TV Parang, M Leuze, MR Park, BH Hyatt, D Brown, SD Moulton, S Galloway, MD Uberbacher, EC AF Syed, Mustafa H. Karpinets, Tatiana V. Parang, Morey Leuze, Michael R. Park, Byung H. Hyatt, Doug Brown, Steven D. Moulton, Steve Galloway, Michael D. Uberbacher, Edward C. TI BESC knowledgebase public portal SO BIOINFORMATICS LA English DT Article ID ETHANOL; DATABASE; BIOFUELS; TOOLS AB The BioEnergy Science Center (BESC) is undertaking large experimental campaigns to understand the biosynthesis and biodegradation of biomass and to develop biofuel solutions. BESC is generating large volumes of diverse data, including genome sequences, omics data and assay results. The purpose of the BESC Knowledgebase is to serve as a centralized repository for experimentally generated data and to provide an integrated, interactive and user-friendly analysis framework. The Portal makes available tools for visualization, integration and analysis of data either produced by BESC or obtained from external resources. C1 [Syed, Mustafa H.; Karpinets, Tatiana V.; Parang, Morey; Leuze, Michael R.; Park, Byung H.; Hyatt, Doug; Brown, Steven D.; Uberbacher, Edward C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Syed, Mustafa H.; Karpinets, Tatiana V.; Parang, Morey; Hyatt, Doug; Brown, Steven D.; Uberbacher, Edward C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Karpinets, Tatiana V.] Univ Tennessee, Dept Plant Sci, Knoxville, TN USA. [Leuze, Michael R.; Park, Byung H.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Moulton, Steve; Galloway, Michael D.] Oak Ridge Natl Lab, Informat Technol Serv Div, Oak Ridge, TN USA. RP Syed, MH (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. EM syedmh@ornl.gov RI Brown, Steven/A-6792-2011 OI Brown, Steven/0000-0002-9281-3898 FU Office of Biological and Environmental Research in the Department Of Energy Office of Science through the BioEnergy Science Center; Department Of Energy Bioenergy Research Center; Department Of Energy [DE-AC05-00OR22725] FX Office of Biological and Environmental Research in the Department Of Energy Office of Science through the BioEnergy Science Center, a Department Of Energy Bioenergy Research Center. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the Department Of Energy under Contract DE-AC05-00OR22725. NR 14 TC 4 Z9 4 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD MAR 1 PY 2012 VL 28 IS 5 BP 750 EP 751 DI 10.1093/bioinformatics/bts016 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 901SH UT WOS:000300986600031 PM 22238270 ER PT J AU Yanguas-Gil, A Elam, JW AF Yanguas-Gil, Angel Elam, Jeffrey W. TI Self-Limited Reaction-Diffusion in Nanostructured Substrates: Surface Coverage Dynamics and Analytic Approximations to ALD Saturation Times SO CHEMICAL VAPOR DEPOSITION LA English DT Article DE ALD modeling; ALD surface coverage dynamics; Nanostructured substrates ID ATOMIC LAYER DEPOSITION; SENSITIZED SOLAR-CELLS; CONFORMALITY; FILMS; OXIDE; ZNO; PRECURSORS; TRENCHES; DENSITY; GROWTH AB We present a general model based on a time-dependent, reactiondiffusion equation to determine the dosing times and coverage profiles in structured substrates during atomic layer deposition (ALD). We first derive expressions comprising a non-linear diffusionreaction equation coupled to a surface kinetic equation. In their non-dimensional forms, these equations show that coverage dynamics during ALD in nanostructured substrates depend only on two non-dimensional parameters, the Damkoler and precursor excess (number of molecules per surface site in the nanostructure) numbers. Using the assumptions of molecular flow in a circular pore, we derive a general, analytic equation to predict saturation exposure times. To demonstrate the utility of our model, we derive additional expressions incorporating a precursor loss term relevant to predicting exposure times during ozone-based ALD. Because our model makes no assumptions about the diffusion coefficient or sample geometry, it can easily be adapted to describe a broad range of ALD systems such as trenches and vias, anodized alumina, or aerogels under almost any conditions including molecular, viscous, and transition flow regimes C1 [Yanguas-Gil, Angel; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Yanguas-Gil, A (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov RI Yanguas-Gil, Angel/G-9630-2011 OI Yanguas-Gil, Angel/0000-0001-8207-3825 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [FWP-4902A]; Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; UChicago Argonne, LLC [DE-AC02-06CH11357] FX This work was supported in part by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program under FWP-4902A. Elam was supported by the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001059. Argonne is a U.S. Department of Energy Office of Science laboratory, and is operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 28 TC 8 Z9 8 U1 1 U2 36 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0948-1907 J9 CHEM VAPOR DEPOS JI Chem. Vapor Depos. PD MAR PY 2012 VL 18 IS 1-3 BP 46 EP 52 DI 10.1002/cvde.201106938 PG 7 WC Electrochemistry; Materials Science, Coatings & Films; Physics, Condensed Matter SC Electrochemistry; Materials Science; Physics GA 909OW UT WOS:000301575100010 ER PT J AU Elliott, J Franklin, M Foster, I Munson, T Loudermilk, M AF Elliott, Joshua Franklin, Meredith Foster, Ian Munson, Todd Loudermilk, Margaret TI Propagation of Data Error and Parametric Sensitivity in Computable General Equilibrium Models SO COMPUTATIONAL ECONOMICS LA English DT Article DE Computable General Equilibrium Models; Uncertainty; Sensitivity ID CLIMATE-CHANGE; ECONOMY; IMPACTS AB While computable general equilibrium (CGE) models are a well-established tool in economic analyses, it is often difficult to disentangle the effects of policies of interest from that of the assumptions made regarding the underlying calibration data and model parameters. To characterize the behavior of a CGE model of carbon output with respect to two of these assumptions, we perform a large-scale Monte Carlo experiment to examine its sensitivity to base year calibration data and elasticity of substitution parameters in the absence of a policy change. By examining a variety of output variables at different levels of economic and geographic aggregation, we assess how these forms of uncertainty impact the conclusions that can be drawn from the model simulations. We find greater sensitivity to uncertainty in the elasticity of substitution parameters than to uncertainty in the base-year data as the projection period increases. While many model simulations were conducted to generate large output samples, we find that few are required to capture the mean model response of the variables tested. However, characterizing standard errors and empirical probability distribution functions is not possible without a large number of simulations. C1 [Elliott, Joshua; Foster, Ian; Munson, Todd; Loudermilk, Margaret] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Elliott, Joshua; Franklin, Meredith; Foster, Ian; Munson, Todd; Loudermilk, Margaret] Argonne Natl Lab, Chicago, IL USA. RP Elliott, J (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM jelliott@ci.uchicago.edu FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; MacArthur Foundation; University of Chicago Energy Initiative; NSF [SES-0951576] FX This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, by grants from the MacArthur Foundation and the University of Chicago Energy Initiative, and by NSF grant SES-0951576. We thank Kenneth Judd for his advice during the preparation of this manuscript and Michael Wilde and Allan Espinosa for their help using the Swift parallel scripting system. Batches of simulations were performed on the TeraGrid (TG) and Open Science Grid (OSG) machines, including Firefly (University of Nebraska, OSG), QueenBee (Louisiana State University, TG), Ranger (Argonne National Laboratory, TG), TeraPort (University of Chicago Computation Institute, OSG), and Texas Advanced Computing Center (University of Texas, TG). NR 43 TC 3 Z9 3 U1 1 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0927-7099 J9 COMPUT ECON JI Comput. Econ. PD MAR PY 2012 VL 39 IS 3 BP 219 EP 241 DI 10.1007/s10614-010-9248-5 PG 23 WC Economics; Management; Mathematics, Interdisciplinary Applications SC Business & Economics; Mathematics GA 909VR UT WOS:000301594500001 ER PT J AU Patel, K Nogales, E Heald, R AF Patel, Kieren Nogales, Eva Heald, Rebecca TI Multiple domains of human CLASP contribute to microtubule dynamics and organization in vitro and in Xenopus egg extracts SO CYTOSKELETON LA English DT Article DE microtubule plus end-binding protein; cytoplasmic linker associated proteins; microtubule dynamics; mitotic spindle assembly; Xenopus egg extract ID PLUS-END DYNAMICS; CHROMOSOME SEGREGATION; PERSISTENT MOTILITY; DROSOPHILA CLASP; TOG DOMAINS; KINETOCHORE; SPINDLE; CELL; EB1; STABILIZATION AB Cytoplasmic linker associated proteins (CLASPs) comprise a class of microtubule (MT) plus end-binding proteins (+TIPs) that contribute to the dynamics and organization of MTs during many cellular processes, among them mitosis. Human CLASP proteins contain multiple MT-binding domains, including tumor over-expressed gene (TOG) domains, and a Ser-x-Ile-Pro (SxIP) motif known to target some +TIPs though interaction with end-binding protein 1 (EB1). However, how individual domains contribute to CLASP function is poorly understood. We generated full-length recombinant human CLASP1 and a series of truncation mutants and found that two N-terminal TOG domains make the strongest contribution to MT polymerization and bundling, but also identified a third TOG domain that further contributes to CLASP activity. Plus end tracking by CLASP requires the SxIP motif and interaction with EB1. The C-terminal coiled-coil domain mediates dimerization and association with many other factors, including the kinetochore motor centromere protein E (CENP-E), and the chromokinesin Xkid. Only the full-length protein was able to rescue spindle assembly in Xenopus egg extracts depleted of endogenous CLASP. Deletion of the C-terminal domain caused aberrant MT polymerization and dramatic spindle phenotypes, even with small amounts of added protein, indicating that proper localization of CLASP activity is essential to control MT polymerization during mitosis. (C) 2012 Wiley Periodicals, Inc C1 [Patel, Kieren; Nogales, Eva; Heald, Rebecca] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM enogales@lbl.gov; bheald@berkeley.edu OI Heald, Rebecca/0000-0001-6671-6528 FU NIGMS FX The authors acknowledge Isabelle Vernos for the kind gift of anti XKID antibody. They also thank Ann Fischer at the UC Berkeley tissue culture facility for providing SF9 cells for baculovirus amplification and protein expression, and Patricia Grob for EM technical support. This work was supported by grants from NIGMS (EN and RH). EN is a Howard Hughes Medical Institute investigator. NR 32 TC 18 Z9 19 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1949-3584 J9 CYTOSKELETON JI Cytoskeleton PD MAR PY 2012 VL 69 IS 3 BP 155 EP 165 DI 10.1002/cm.21005 PG 11 WC Cell Biology SC Cell Biology GA 910NM UT WOS:000301646500003 PM 22278908 ER PT J AU Sun, MX Zhang, XY Li, J Cui, XL Sun, DL Lin, YH AF Sun, Mingxuan Zhang, Xiaoyan Li, Jing Cui, Xiaoli Sun, Dalin Lin, Yuehe TI Thermal formation of silicon-doped TiO2 thin films with enhanced visible light photoelectrochemical response SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Titania; Si-doped; Thermal treatment; Visible light response; Photoelectrochemical ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; ANODIC TIO2; PHOTOELECTROCATALYTIC REACTION; PHOTOCATALYTIC ACTIVITY; TIO2/SIO2; CELLS AB Silicon-doped TiO2 thin films were fabricated by annealing titanium metal sheet embedded in SiO2 powders and characterized by X-ray photoemission spectroscopy and photoelectrochemical measurements. The results showed that the content of silicon in the doped TiO2 thin films was proportional to the annealing time and temperature. Enhanced visible light response, more negative flat band potential and higher carrier density were demonstrated by the electrochemical measurement. The technique proposed in this paper can be also applicable to fabricate other doped TiO2 thin films based on the corresponding oxide bath. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sun, Mingxuan; Zhang, Xiaoyan; Li, Jing; Cui, Xiaoli; Sun, Dalin] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. [Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cui, XL (reprint author), Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. EM xiaolicui@fudan.edu.cn RI Lin, Yuehe/D-9762-2011; Sun, Mingxuan/G-1330-2015; 张, 晓艳/A-8125-2016 OI Lin, Yuehe/0000-0003-3791-7587; Sun, Mingxuan/0000-0001-8681-8951; FU National Basic Research Program of China [2011CB933300, 2012CB934300]; Shanghai Science and Technology Commission [1052nm01800]; LDRD at Pacific Northwest National Laboratory (PNNL); US-DOE [DE-AC05-76RL01830] FX This work was supported by the National Basic Research Program of China (Nos. 2011CB933300, 2012CB934300) and the Shanghai Science and Technology Commission (No. 1052nm01800). Y. Lin acknowledges the financial support by a LDRD program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for US-DOE under Contract DE-AC05-76RL01830. We also appreciate the referee's very valuable comments, which have greatly improved the quality of the manuscript. NR 34 TC 18 Z9 20 U1 4 U2 58 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD MAR PY 2012 VL 16 IS 1 BP 26 EP 29 DI 10.1016/j.elecom.2011.12.015 PG 4 WC Electrochemistry SC Electrochemistry GA 910DK UT WOS:000301617200007 ER PT J AU Collins, ES Pantoya, ML Daniels, MA Prentice, DJ Steffler, ED D'Arche, SP AF Collins, Eric S. Pantoya, Michelle L. Daniels, Michael A. Prentice, Daniel J. Steffler, Eric D. D'Arche, Steven P. TI Heat Flux Analysis of a Reacting Thermite Spray Impingent on a Substrate SO ENERGY & FUELS LA English DT Article ID COMBUSTION; ALUMINUM; MIXTURES; FLAME AB Spray combustion from a thermite reaction is a new area of research relevant to localized energy generation applications, such as welding or cutting. In this study, we characterized the heat flux of combustion spray impinging on a target from a nozzle for three thermite mixtures. The reactions studied include aluminum (Al) with iron oxide (Fe2O3), Al with copper oxide (CuO), and Al with molybdenum oxide (MoO3). Several standoff distances (i.e., distance from the nozzle exit to the target) were analyzed. A fast response heat flux sensor was engineered for this purpose and is discussed in detail. Results correlated substrate damage to a threshold heat flux of 4550 W/cm(2) for a fixed-nozzle configuration. Also, higher gas-generating thermites were shown to produce a widely dispersed spray and be less effective at imparting kinetic energy damage to a target. These results provide an understanding of the role of thermal and physical properties (i.e., such as heat of combustion, gas generation, and particle size) on thermite spray combustion performance measured by damaging a target substrate. C1 [Collins, Eric S.; Pantoya, Michelle L.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. [Daniels, Michael A.; Prentice, Daniel J.; Steffler, Eric D.; D'Arche, Steven P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Collins, ES (reprint author), Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. EM eric.collins@ttu.edu FU Army Research Office [W911NF-11-1-0439] FX The authors Michelle L. Pantoya and Eric S. Collins are grateful for support from the Army Research Office (Contract W911NF-11-1-0439) and encouragement from our program manager, Dr. Ralph Anthenien. The authors are also grateful to Dr. Jerry Dunn for his helpful discussion, Billy Clark for providing all of the SEM images, and Troy Mills for machining torch nozzles. NR 25 TC 1 Z9 1 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2012 VL 26 IS 3 BP 1621 EP 1628 DI 10.1021/ef201954d PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 908SA UT WOS:000301509300015 ER PT J AU He, LL Melnichenko, YB Mastalerz, M Sakurovs, R Radlinski, AP Blach, T AF He, Lilin Melnichenko, Yuri B. Mastalerz, Maria Sakurovs, Richard Radlinski, Andrzej P. Blach, Tomas TI Pore Accessibility by Methane and Carbon Dioxide in Coal as Determined by Neutron Scattering SO ENERGY & FUELS LA English DT Article ID SMALL-ANGLE SCATTERING; VOLATILE BITUMINOUS COALS; SUPERCRITICAL CO2; SIZE DISTRIBUTION; GAS CONTENT; ADSORPTION; POROSITY; SEQUESTRATION; MICROSTRUCTURE; SORPTION AB Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between similar to 10 angstrom and similar to 5 mu m. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from similar to 13 to similar to 36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1-400 bar. The neutron scattering intensity from small pores with radii less than 35 A in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores. C1 [He, Lilin; Melnichenko, Yuri B.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Mastalerz, Maria; Radlinski, Andrzej P.] Indiana Univ, Bloomington, IN 47405 USA. [Sakurovs, Richard] CSIRO Energy Technol, Sydney, NSW 2113, Australia. [Radlinski, Andrzej P.; Blach, Tomas] Griffith Univ, Queensland Micro & Nanotechnol Ctr, Brisbane, Qld 4111, Australia. RP He, LL (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM hel3@ornl.gov OI He, Lilin/0000-0002-9560-8101 FU Laboratory Directed Research and Development Program; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; ORNL; Oak Ridge Institute for Science and Education; National Science Foundation [DMR-0454672] FX Research at Oak Ridge National Laboratory (ORNL)'s High Flux Isotope Reactor was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research was supported in part by an appointment to the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. The elements of this work using the BT-5 instrument at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) were supported in part by the National Science Foundation under agreement DMR-0454672. NR 53 TC 11 Z9 11 U1 5 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2012 VL 26 IS 3 BP 1975 EP 1983 DI 10.1021/ef201704t PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 908SA UT WOS:000301509300050 ER PT J AU LaLone, CA Villeneuve, DL Olmstead, AW Medlock, EK Kahl, MD Jensen, KM Durhan, EJ Makynen, EA Blanksma, CA Cavallin, JE Thomas, LM Seidl, SM Skolness, SY Wehmas, LC Johnson, RD Ankleyy, GT AF LaLone, Carlie A. Villeneuve, Daniel L. Olmstead, Allen W. Medlock, Elizabeth K. Kahl, Michael D. Jensen, Kathleen M. Durhan, Elizabeth J. Makynen, Elizabeth A. Blanksma, Chad A. Cavallin, Jenna E. Thomas, Linnea M. Seidl, Sara M. Skolness, Sarah Y. Wehmas, Leah C. Johnson, Rodney D. Ankleyy, Gerald T. TI Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Dexamethasone; Glucocorticoid; Glucocorticoid receptor; Fathead minnow ID DEPENDENT SEX DETERMINATION; PIMEPHALES-PROMELAS; MESSENGER-RNA; HUMAN PHARMACEUTICALS; FISH REPRODUCTION; AQUATIC ORGANISMS; TELEOST FISH; EXPRESSION; CORTISOL; STRESS AB Synthetic glucocorticoids are pharmaceutical compounds prescribed in human and veterinary medicine as anti-inflammatory agents and have the potential to contaminate natural watersheds via inputs from wastewater treatment facilities and confined animal-feeding operations. Despite this, few studies have examined the effects of this class of chemicals on aquatic vertebrates. To generate data to assess potential risk to the aquatic environment, we used fathead minnow 21-d reproduction and 29-d embryolarvae assays to determine reproductive toxicity and early-life-stage effects of dexamethasone. Exposure to 500 mu g dexamethasone/L in the 21-d test caused reductions in fathead minnow fecundity and female plasma estradiol concentrations and increased the occurrence of abnormally hatched fry. Female fish exposed to 500 mu g dexamethasone/L also displayed a significant increase in plasma vitellogenin protein levels, possibly because of decreased spawning. A decrease in vitellogenin messenger ribonucleic acid (mRNA) expression in liver tissue from females exposed to the high dexamethasone concentration lends support to this hypothesis. Histological results indicate that a 29-d embryolarval exposure to 500 mu g dexamethasone/L caused a significant increase in deformed gill opercula. Fry exposed to 500 mu g dexamethasone/L for 29?d also exhibited a significant reduction in weight and length compared with control fry. Taken together, these results indicate that nonlethal concentrations of a model glucocorticoid receptor agonist can impair fish reproduction, growth, and development. Environ. Toxicol. Chem. 2012;31:611622. (C) 2011 SETAC C1 [LaLone, Carlie A.; Villeneuve, Daniel L.; Olmstead, Allen W.; Kahl, Michael D.; Jensen, Kathleen M.; Durhan, Elizabeth J.; Makynen, Elizabeth A.; Thomas, Linnea M.; Seidl, Sara M.; Johnson, Rodney D.; Ankleyy, Gerald T.] US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div, Duluth, MN USA. [Medlock, Elizabeth K.] Depauw Univ, Dept Biochem, Greencastle, IN 46135 USA. [Blanksma, Chad A.; Cavallin, Jenna E.] US EPA, ORISE Res Participat Program, Off Res & Dev, Natl Hlth & Environm Effects Res Lab,Midcontinent, Duluth, MN USA. [Skolness, Sarah Y.] Univ Minnesota, Dept Biochem & Mol Biol, Duluth, MN 55812 USA. [Wehmas, Leah C.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. RP LaLone, CA (reprint author), US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div, Duluth, MN USA. EM LaLone.Carlie@epa.gov NR 47 TC 35 Z9 37 U1 0 U2 75 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0730-7268 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD MAR PY 2012 VL 31 IS 3 BP 611 EP 622 DI 10.1002/etc.1729 PG 12 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 898ED UT WOS:000300717800024 PM 22189798 ER PT J AU Rios, D Gibson, JK AF Rios, Daniel Gibson, John K. TI Activation of Gas-Phase Uranyl Diacetone Alcohol Coordination Complexes by Spectator Ligand Addition SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Actinides; Uranium; Gas-phase chemistry ID ROOM-TEMPERATURE KINETICS; ION-MOLECULE REACTIONS; METAL-IONS; DEHYDRATION; CHEMISTRY; DISSOCIATION; REACTIVITY; DEPENDENCE; CATALYSIS; PLUTONYL AB Gas-phase addition of a basic ligand to dipositive uranyl coordination complexes comprising diacetone alcohol (DAA) results in water-elimination, which indicates aldol dehydration of DAA to produce mesityl oxide. A novel attribute of the observed gas-phase chemistry is that a ligand exothermically associates to a coordination complex to provide the excitation required to induce chemistry in other ligands, with the added "spectator ligand" remaining intact in the product. Dehydration of DAA was observed for addition of tetrahydrofuran, acetone, and 2-propanol to uranyl complexes [UO2(DAA)(2)](2+) and [UO2(DAA)(acetone)(2)](2+). In contrast, [UO2(DAA)(2)(acetone)](2+) did not exhibit ligand-addition chemistry, which is attributed to a high degree of coordinative saturation at the uranium metal center. C1 [Rios, Daniel; Gibson, John K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Gibson, JK (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM jkgibson@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy at LBNL, under contract number DE-AC02-05CH11231. NR 36 TC 1 Z9 1 U1 1 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAR PY 2012 IS 7 BP 1054 EP 1060 DI 10.1002/ejic.201200024 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 908MD UT WOS:000301493600005 ER PT J AU Wilson, DJD Beavers, CM Richards, AF AF Wilson, David J. D. Beavers, Christine M. Richards, Anne F. TI Di-, Tetra-, Penta- and Polynuclear Zinc Complexes Supported by a Flexible Tetradentate Schiff Base Ligand SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Zinc; Halides; Multinuclear complexes; Schiff bases ID MOLECULAR-ORBITAL METHODS; VALENCE BASIS-SETS; STRUCTURAL DIVERSITY; CARBON-DIOXIDE; COORDINATION POLYMERS; CRYSTAL-STRUCTURES; 1ST-ROW ELEMENTS; POLYMERIZATION; TRANSITION; DINUCLEAR AB When treated with Et2Zn, the tetradentate Schiff base N,N'-ethylenebis(4-iminopentan-2-one) (H2L) led to the formation of dimers, [L2Zn2], a tetranuclear complex, [L4Zn4] (1) and a polymeric material [LZn(Et)](n) (2), thus highlighting the coordinative versatility of the ligand. Halogenation of 1 with SO2Cl2 or Br-2 afforded in moderate yield the dinuclear zinc complexes [LZn(thf)center dot ZnCl2] (3) and [LZn(thf)center dot ZnBr2] (4). [LZn center dot ZnI(mu-OEt)](2) (5) was isolated from the reaction of an in situ generated mixture of 1 and 2 with iodine. This product likely results from adventitious oxygen in the reaction mixture. This was seemingly confirmed by the diffusion of air into a solution of 2 in toluene, thereby resulting in a pentanuclear zinc complex, [(LZn center dot ZnEt)(2){Zn(mu-OEt)(4)}] (6). Complex 6 features a central Zn(OEt)(4) unit, in which the ethoxide groups bridge two dinuclear fragments. The identities of complexes 1-6 were conclusively identified by X-ray crystallography, thereby revealing similar structural features that were confirmed by spectroscopic data and, for 1-5, supported by DFT calculations. C1 [Wilson, David J. D.; Richards, Anne F.] La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem, Melbourne, Vic 3086, Australia. [Beavers, Christine M.] Berkeley Lab, Berkeley, CA 94720 USA. RP Richards, AF (reprint author), La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem, Melbourne, Vic 3086, Australia. RI Wilson, David/B-9372-2009; Beavers, Christine/C-3539-2009 OI Wilson, David/0000-0002-0007-4486; Beavers, Christine/0000-0001-8653-5513 FU Australian Research Council [FT100100003]; National Computational Infrastructure National Facility (NCI-NF); Victorian Partnership for Advanced Computing (VPAC); Victorian Life Science Computing Initiative (VLSCI); high-performance computing facility of La Trobe University FX A. F. R. acknowledges the Australian Research Council for the award of a Future Fellowship (FT100100003). D. J. D. W. acknowledges support from the National Computational Infrastructure National Facility (NCI-NF), Victorian Partnership for Advanced Computing (VPAC), Victorian Life Science Computing Initiative (VLSCI) and the high-performance computing facility of La Trobe University. NR 72 TC 9 Z9 9 U1 3 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAR PY 2012 IS 7 BP 1130 EP 1138 DI 10.1002/ejic.201101202 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 908MD UT WOS:000301493600013 ER PT J AU Neumuller, RA Wirtz-Peitz, F Lee, S Kwon, Y Buckner, M Hoskins, RA Venken, KJT Bellen, HJ Mohr, SE Perrimon, N AF Neumueller, Ralph A. Wirtz-Peitz, Frederik Lee, Stella Kwon, Young Buckner, Michael Hoskins, Roger A. Venken, Koen J. T. Bellen, Hugo J. Mohr, Stephanie E. Perrimon, Norbert TI Stringent Analysis of Gene Function and Protein-Protein Interactions Using Fluorescently Tagged Genes SO GENETICS LA English DT Article ID ASYMMETRIC CELL-DIVISION; DROSOPHILA-MELANOGASTER; TRANSGENIC RNAI; PAR COMPLEX; STEM-CELLS; IN-VIVO; SCREENS; GENOME; ELONGATION; EXPRESSION AB In Drosophila collections of green fluorescent protein (GFP) trap lines have been used to probe the endogenous expression patterns of trapped genes or the subcellular localization of their protein products. Here, we describe a method, based on nonoverlapping, highly specific, shRNA transgenes directed against GFP, that extends the utility of these collections to loss-of-function studies. Furthermore, we used a MiMIC transposon to generate GFP traps in Drosophila cell lines with distinct subcellular localization patterns, which will permit high-throughput screens using fluorescently tagged proteins. Finally, we show that fluorescent traps, paired with recombinant nanobodies and mass spectrometry, allow the study of endogenous protein complexes in Drosophila. C1 [Perrimon, Norbert] Harvard Univ, Sch Med, Dept Genet, HHMI, Boston, MA 02115 USA. [Lee, Stella; Mohr, Stephanie E.] Harvard Univ, Sch Med, Dept Genet, Drosophila RNAi Screening Ctr, Boston, MA 02115 USA. [Buckner, Michael; Perrimon, Norbert] Harvard Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02115 USA. [Hoskins, Roger A.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94702 USA. [Venken, Koen J. T.; Bellen, Hugo J.] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. [Bellen, Hugo J.] Baylor Univ, Howard Hughes Med Inst, Houston, TX 77030 USA. RP Perrimon, N (reprint author), Harvard Univ, Sch Med, Dept Genet, HHMI, Boston, MA 02115 USA. EM perrimon@receptor.med.harvard.edu RI Venken, Koen/B-9909-2013; OI Venken, Koen/0000-0003-0741-4698; Bellen, Hugo/0000-0001-5992-5989; Mohr, Stephanie/0000-0001-9639-7708 FU European Molecular Biology Organization (EMBO); Human Frontier Science Program (HFSP) Long-Term Fellowships; Damon Runyon Cancer Research Foundation; Dana-Farber/Harvard Cancer Center; [R01-GM067761]; [R01-GM084947]; [GM067761] FX We thank Allan Spradling, Tim Mitchison, Frank Schnorrer, and the Developmental Studies Hybridoma Bank for fly stocks and antibodies, Quentin Gilly, Christians Villata, and Rich Binari for technical assistance, Noah Dephoure, Robert Everley, and Steven Gygi for technical help with mass spectrometry, and Martha Evans-Holm and Joseph W. Carlson for assistance with mapping of transposon insertions. This work was supported by an European Molecular Biology Organization (EMBO) Long-Term Fellowship to R.A.N. and Human Frontier Science Program (HFSP) Long-Term Fellowships to R.A.N. and F. W. P. Y.K. is supported by the Damon Runyon Cancer Research Foundation. This work was supported in part by R01-GM067761 and R01-GM084947 to N.P. S. E. M. is supported by GM067761 with additional support from the Dana-Farber/Harvard Cancer Center. N.P. and H. B. are investigators of the Howard Hughes Medical Institute. NR 47 TC 31 Z9 32 U1 0 U2 4 PU GENETICS SOC AM PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 J9 GENETICS JI Genetics PD MAR PY 2012 VL 190 IS 3 BP 931 EP U127 DI 10.1534/genetics.111.136465 PG 18 WC Genetics & Heredity SC Genetics & Heredity GA 908ZP UT WOS:000301531900006 PM 22174071 ER PT J AU Kim, W Rowe, CA Hahm, IK AF Kim, Woohan Rowe, Charlotte A. Hahm, In-Kyeong TI Detailed one-dimensional seismic velocity profiles beneath the Himalayan collision zone: evidence for a double Moho? SO GEOSCIENCES JOURNAL LA English DT Article DE se ismicity in Himalaya; GA-MHYPO; one-dimensional P-velocity structure ID HYPOCENTRAL PARAMETERS; LOCAL EARTHQUAKES; CRUSTAL STRUCTURE; SOUTHERN TIBET; ANGLE; SUBDUCTION; PLATEAU AB Seismicity in the Himalaya indicates that relatively deep earthquakes (focal depth 40-100 km) occur in specific regions beneath the High Himalaya and Nepal. This study focuses on these specific regions to estimate the detailed velocity structure of the lower crust and upper mantle. We selected 202 earthquakes from the Himalaya Nepal Tibet Seismic Experiment (HIMNT) and relocated these earthquakes accurately by applying a genetic algorithm locator, GA-MHYPO (Kim et al., 2006). The detailed onedimensional P-velocity structure is estimated based on travel-time inversion using hypocentral parameters determined by GA-MHYPO. Computational results show two velocity anomalies exhibiting upper-mantle velocities at depth of about 45-50 and 60 km, respectively, beneath the High Himalayan region, whereas a single Moho exists at about 55 km depth beneath Nepal. To validate the stability of these results, a bootstrapping method was used for the inversion. C1 [Kim, Woohan] Gyeongsang Natl Univ, Dept Earth & Environm Sci, Jinju 660701, South Korea. [Kim, Woohan] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea. [Rowe, Charlotte A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hahm, In-Kyeong] Korea Meteorol Adm, Seoul 156720, South Korea. RP Kim, W (reprint author), Gyeongsang Natl Univ, Dept Earth & Environm Sci, Jinju 660701, South Korea. EM wookim@gnu.ac.kr OI Rowe, Charlotte/0000-0001-5803-0147 FU Korea Meteorological Administration Research and Development Program [CATER 2008-5108] FX We thank A. Sheehan of University of Colorado for providing us with a preliminary data set, and M. Begnaud of Los Alamos National Laboratory for database integration and uploading of relevant files. Support for this work was provided by the Korea Meteorological Administration Research and Development Program under CATER 2008-5108. This is Los Alamos publication # LAUR-09-07025. NR 20 TC 0 Z9 0 U1 2 U2 10 PU GEOLOGICAL SOCIETY KOREA PI SEOUL PA NEW BLD RM 813, KSTC, 835-4, YEOKSAM-DONG, KANGNAM-GU, SEOUL, 135-703, SOUTH KOREA SN 1226-4806 J9 GEOSCI J JI Geosci. J. PD MAR PY 2012 VL 16 IS 1 BP 59 EP 64 DI 10.1007/s12303-012-0003-x PG 6 WC Geosciences, Multidisciplinary SC Geology GA 909XO UT WOS:000301600600007 ER PT J AU Sokullu-Urkac, E Oztarhan, A Tihminlioglu, F Nikolaev, A Brown, I AF Sokullu-Urkac, Emel Oztarhan, Ahmet Tihminlioglu, Funda Nikolaev, Alexey Brown, Ian TI Oxidation Behavior of C- and Au-Ion-Implanted Biodegradable Polymers SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Biodegradable polymers; ion implantation; surface characterization; X-ray photoelectron spectroscopy (XPS) ID SWIFT HEAVY-IONS; HUMAN OSTEOBLASTS; PLASMA TREATMENT; TRACK FORMATION; BIOMATERIALS; SURFACES; SPIKE; POLY(LACTIDE-CO-GLYCOLIDE); INSULATORS; DESORPTION AB Biodegradable polymers are widely used in biomedical and tissue engineering applications due to their biocompatibility and hydrolysis properties in the body. However, their low surface energy and lack of functional groups to interact with the cellular environment have limited their applications for in vivo studies. Ion beam modification is a convenient method for improving the surface properties of polymeric materials for functional biomedical applications. In the work described here, vacuum arc metal ion implantation was used to modify the composition of the near-surface region of three kinds of polymers-poly(L-lactide), poly(D, L-lactide-co-glycolide), and poly(L-lactide/caprolactone)-chosen as representative of biodegradable polymers. X-ray photoelectron spectroscopy analysis was used to characterize the chemical effects of these polymers after implantation with C and with Au, and the results were compared with untreated control samples. We find that oxidation behavior is brought about for certain implantation fluences, resulting in improved surface hydrophilicity. C1 [Sokullu-Urkac, Emel] Harvard MIT Div Hlth Sci & Technol, BAMM Lab, Cambridge, MA 02139 USA. [Oztarhan, Ahmet] Ege Univ, TR-35100 Izmir, Turkey. [Tihminlioglu, Funda] Izmir Inst Technol, TR-35430 Izmir, Turkey. [Nikolaev, Alexey] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Brown, Ian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sokullu-Urkac, E (reprint author), Harvard MIT Div Hlth Sci & Technol, BAMM Lab, Cambridge, MA 02139 USA. EM emelsu@gmail.com; aoztarhan@hotmail.com; fundatihminlioglu@iyte.edu.tr; nik@opee.hcei.tsc.ru; igbrown@lbl.gov RI Nikolaev, Alexey/R-2154-2016 OI Nikolaev, Alexey/0000-0003-2724-3697 NR 36 TC 0 Z9 0 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAR PY 2012 VL 40 IS 3 BP 863 EP 869 DI 10.1109/TPS.2011.2179677 PN 2 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 908VN UT WOS:000301521200008 ER PT J AU Warne, LK Jorgenson, RE Martinez, LE Jojola, JM Coats, RS Merewether, KO AF Warne, Larry K. Jorgenson, Roy E. Martinez, Leonard E. Jojola, John M. Coats, Rebecca S. Merewether, Kimball O. TI Electrical Coupling of Lightning Through a Hole in a Metal Barrier SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Burnthrough; coupling; lightning AB This paper discusses the penetration and coupling of a lightning return stroke through a hole in a metal barrier to a conductor located behind the hole. Indirect field coupling (electric and magnetic) and direct discharges are considered both analytically and experimentally. Although here we consider the hole to be preexisting, one application of this work is lightning return stroke coupling through holes burned in metallic barriers by the continuing current component of lightning. The goal is to develop an understanding of the mechanisms and expected penetrant levels in lightning burnthrough. C1 [Warne, Larry K.; Jorgenson, Roy E.; Martinez, Leonard E.; Jojola, John M.; Coats, Rebecca S.; Merewether, Kimball O.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Warne, LK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM lkwarne@sandia.gov; rejorge@sandia.gov; leomart@sandia.gov; jmjojol@sandia.gov; rscoats@sandia.gov; komerew@sandia.gov FU U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000. NR 19 TC 0 Z9 1 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAR PY 2012 VL 40 IS 3 BP 925 EP 935 DI 10.1109/TPS.2011.2179067 PN 2 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 908VN UT WOS:000301521200016 ER PT J AU Yisgedu, TB Huang, ZG Chen, XN Lingam, HK King, G Highley, A Maharrey, S Woodward, PM Behrens, R Shore, SG Zhao, JC AF Yisgedu, Teshome B. Huang, Zhenguo Chen, Xuenian Lingam, Hima K. King, Graham Highley, Aaron Maharrey, Sean Woodward, Patrick M. Behrens, Richard Shore, Sheldon G. Zhao, Ji-Cheng TI The structural characterization of (NH4)(2)B10H10 and thermal decomposition studies of (NH4)(2)B10H10 and (NH4)(2)B12H12 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Dihydrogen bond; (NH4)(2)B10H10; (NH4)(2)B12H12; STMBMS; H-2; NH3 ID BEAM MASS-SPECTROMETRY; HYDROLYTIC HYDROGEN-RELEASE; AMMONIA-BORANE; OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE HMX; STORAGE; AMIDOBORANES; PYROLYSIS; CHEMISTRY; PRODUCTS; ALKALI AB The structure of (NH4)(2)B10H10 (1) was determined through powder XRD analysis. The thermal decomposition of 1 and (NH4)(2)B12H12 (2) was examined between 20 and 1000 degrees C using STMBMS methods. Between 200 and 400 degrees C a mixture of NH3 and H-2 evolves from both compounds; above 400 degrees C only H-2 evolves. The dihydrogen bonding interaction in 1 is much stronger than that in 2. The stronger dihydrogen bond in 1 resulted in a significant reduction by up to 60 degrees C, but with a corresponding 25% decrease in the yield of H-2 in the lower temperature region and a doubling of the yield of NH3. The decomposition of 1 follows a lower temperature exothermic reaction pathway that yields substantially more NH3 than the higher temperature endothermic pathway of 2. Heating of 1 at 250 degrees C resulted in partial conversion of B10H102- to B12H122-. Both 1 and 2 form an insoluble polymeric material after decomposition. The elements of the reaction network that control the release of H-2 from the B10H102- can be altered by conducting the experiment under conditions in which pressures of NH3 and H-2 are either near, or away from, their equilibrium values. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Chen, Xuenian; King, Graham; Woodward, Patrick M.; Shore, Sheldon G.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Yisgedu, Teshome B.; Huang, Zhenguo; Chen, Xuenian; Lingam, Hima K.; Zhao, Ji-Cheng] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Highley, Aaron; Maharrey, Sean; Behrens, Richard] Sandia Natl Labs, Livermore, CA 94550 USA. RP Woodward, PM (reprint author), Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. EM woodward@chemistry.ohio-state.edu; rbehren@sandia.gov; shore.1@osu.edu; zhao.199@osu.edu RI King, Graham/E-3632-2010; Zhao, Ji-Cheng (JC)/H-4387-2012; Huang, Zhenguo/F-4483-2016 OI King, Graham/0000-0003-1886-7254; Zhao, Ji-Cheng (JC)/0000-0002-4426-1080; FU US Department of Energy, the Office of Energy Efficiency and Renewable Energy (EERE), DOE Metal Hydride Center of Excellence [DE-FC3605GO15062]; U.S. DOE, Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the US Department of Energy, the Office of Energy Efficiency and Renewable Energy (EERE) under contract No. DE-FC3605GO15062 as part of the DOE Metal Hydride Center of Excellence. The work performed at Sandia National Laboratories was supported by the U.S. DOE, Office of Energy Efficiency and Renewable Energy in the Fuel Cell Technologies Program, and performed in conjunction with the DOE Metal Hydride Center of Excellence. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 38 TC 6 Z9 6 U1 5 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2012 VL 37 IS 5 BP 4267 EP 4273 DI 10.1016/j.ijhydene.2011.11.112 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 910CQ UT WOS:000301615200034 ER PT J AU Lo, WC Sposito, G Huang, YH AF Lo, Wei-Cheng Sposito, Garrison Huang, Yu-Han TI Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies SO JOURNAL OF APPLIED GEOPHYSICS LA English DT Article DE Seismic wave stimulation; Linearized increment of total fluid content; ICE; Poroelasticity ID DILATATIONAL WAVE-PROPAGATION; 2 IMMISCIBLE FLUIDS; OIL-RECOVERY; SCALE AB Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the ICE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lo, Wei-Cheng; Huang, Yu-Han] Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 70101, Taiwan. [Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Lo, WC (reprint author), Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 70101, Taiwan. EM lowc@mail.ncku.edu.tw FU National Science Council, Taiwan [NSC99-2116-M-006-011] FX Gratitude is expressed for financial support to the National Science Council, Taiwan under Contract No. NSC99-2116-M-006-011. Thanks also to Ernest Majer, Lawrence Berkeley National Laboratory, for introducing the authors to the problem of seismic stimulation and to Peter Roberts, Los Alamos National Laboratory, for helpful discussions of his seismic stimulation experiments. NR 23 TC 3 Z9 3 U1 6 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-9851 J9 J APPL GEOPHYS JI J. Appl. Geophys. PD MAR PY 2012 VL 78 SI SI BP 77 EP 84 DI 10.1016/j.jappgeo.2011.06.027 PG 8 WC Geosciences, Multidisciplinary; Mining & Mineral Processing SC Geology; Mining & Mineral Processing GA 910IU UT WOS:000301631200009 ER PT J AU Holland, MM Bailey, DA Briegleb, BP Light, B Hunke, E AF Holland, Marika M. Bailey, David A. Briegleb, Bruce P. Light, Bonnie Hunke, Elizabeth TI Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact of Melt Ponds and Aerosols on Arctic Sea Ice SO JOURNAL OF CLIMATE LA English DT Article ID SURFACE ALBEDO; THICKNESS DISTRIBUTION; CLIMATE; SNOW; MODEL; COVER; SENSITIVITY; ATMOSPHERE; EVOLUTION; EMISSIONS AB The Community Climate System Model, version 4 has revisions across all components. For sea ice, the most notable improvements are the incorporation of a new shortwave radiative transfer scheme and the capabilities that this enables. This scheme uses inherent optical properties to define scattering and absorption characteristics of snow, ice, and included shortwave absorbers and explicitly allows for melt ponds and aerosols. The deposition and cycling of aerosols in sea ice is now included, and a new parameterization derives ponded water from the surface meltwater flux. Taken together, this provides a more sophisticated, accurate, and complete treatment of sea ice radiative transfer. In preindustrial CO2 simulations, the radiative impact of ponds and aerosols on Arctic sea ice is 1.1 W m(-2) annually, with aerosols accounting for up to 8 W m-2 of enhanced June shortwave absorption in the Barents and Kara Seas and with ponds accounting for over 10 W m(-2) in shelf regions in July. In double CO2 (2XCO(2)) simulations with the same aerosol deposition, ponds have a larger effect, whereas aerosol effects are reduced, thereby modifying the surface albedo feedback. Although the direct forcing is modest, because aerosols and ponds influence the albedo, the response is amplified. In simulations with no ponds or aerosols in sea ice, the Arctic ice is over 1 m thicker and retains more summer ice cover. Diagnosis of a twentieth-century simulation indicates an increased radiative forcing from aerosols and melt ponds, which could play a role in twentieth-century Arctic sea ice reductions. In contrast, ponds and aerosol deposition have little effect on Antarctic sea ice for all climates considered. C1 [Holland, Marika M.; Bailey, David A.; Briegleb, Bruce P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Light, Bonnie] Univ Washington, Seattle, WA 98195 USA. [Hunke, Elizabeth] Los Alamos Natl Lab, Los Alamos, NM USA. RP Holland, MM (reprint author), 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM mholland@ucar.edu FU National Science Foundation; NSF [OPP-0902068, OPP-0902065, OPP-0908675, ATM-0454311]; Biological and Environmental Research division of the U.S. Department of Energy Office of Science; U.S. Department of Energy [DE-AC52-06NA25396]; Office of Science (BER) of the U.S. Department of Energy; National Science Foundation and other agencies FX The National Center for Atmospheric Research is sponsored by the National Science Foundation.; We thank the large community of scientists who contribute to the development of CCSM. We thank Steve Warren and two anonymous reviewers for constructive comments that improved our manuscript. MMH acknowledges support through NSF Grants OPP-0902068 and OPP-0902065. DAB was supported under NSF Grant OPP-0908675. ECH acknowledges funding from the Biological and Environmental Research division of the U.S. Department of Energy Office of Science; Los Alamos National Laboratory is operated by the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. BL acknowledges support for this work through the NSF Climate Dynamics Program SGER Grant ATM-0454311.; The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory (CISL), which is sponsored by the National Science Foundation and other agencies. This research was enabled by CISL compute and storage resources. Bluefire, a 4064-processor IBM Power6 resource with a peak of 77 TeraFLOPS provided more than 7.5 million computing hours, the GLADE high-speed disk resources provided 0.4 petabytes of dedicated disk, and CISL's 12-PB HPSS archive provided over 1 petabyte of storage in support of this research project. NR 58 TC 110 Z9 115 U1 1 U2 53 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR 1 PY 2012 VL 25 IS 5 BP 1413 EP 1430 DI 10.1175/JCLI-D-11-00078.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 905ZR UT WOS:000301315200003 ER PT J AU Jahn, A Sterling, K Holland, MM Kay, JE Maslanik, JA Bitz, CM Bailey, DA Stroeve, J Hunke, EC Lipscomb, WH Pollak, DA AF Jahn, Alexandra Sterling, Kara Holland, Marika M. Kay, Jennifer E. Maslanik, James A. Bitz, Cecilia M. Bailey, David A. Stroeve, Julienne Hunke, Elizabeth C. Lipscomb, William H. Pollak, Daniel A. TI Late-Twentieth-Century Simulation of Arctic Sea Ice and Ocean Properties in the CCSM4 SO JOURNAL OF CLIMATE LA English DT Article ID FRESH-WATER FLUX; THICKNESS DISTRIBUTION; BARENTS SEA; THERMODYNAMIC MODEL; LANCASTER SOUND; CLIMATE MODELS; NARES STRAIT; VARIABILITY; HEAT; ARCHIPELAGO AB To establish how well the new Community Climate System Model, version 4 (CCSM4) simulates the properties of the Arctic sea ice and ocean, results from six CCSM4 twentieth-century ensemble simulations are compared here with the available data. It is found that the CCSM4 simulations capture most of the important climatological features of the Arctic sea ice and ocean state well, among them the sea ice thickness distribution, fraction of multiyear sea ice, and sea ice edge. The strongest bias exists in the simulated spring-to-fall sea ice motion field, the location of the Beaufort Gyre, and the temperature of the deep Arctic Ocean (below 250 m), which are caused by deficiencies in the simulation of the Arctic sea level pressure field and the lack of deep-water formation on the Arctic shelves. The observed decrease in the sea ice extent and the multiyear ice cover is well captured by the CCSM4. It is important to note, however, that the temporal evolution of the simulated Arctic sea ice cover over the satellite era is strongly influenced by internal variability. For example, while one ensemble member shows an even larger decrease in the sea ice extent over 1981-2005 than that observed, two ensemble members show no statistically significant trend over the same period. It is therefore important to compare the observed sea ice extent trend not just with the ensemble mean or a multimodel ensemble mean, but also with individual ensemble members, because of the strong imprint of internal variability on these relatively short trends. C1 [Jahn, Alexandra; Holland, Marika M.; Kay, Jennifer E.; Bailey, David A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Sterling, Kara] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA. [Sterling, Kara] NOAA NWS W Coast & Alaska Tsunami Warning Ctr, Palmer, AK USA. [Maslanik, James A.] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA. [Bitz, Cecilia M.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Stroeve, Julienne] Univ Colorado, Cooperat Inst Res Environm Sci, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Hunke, Elizabeth C.; Lipscomb, William H.] Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling Program, Los Alamos, NM USA. [Pollak, Daniel A.] Penn State Univ, Coll Earth & Mineral Sci, University Pk, PA 16802 USA. RP Jahn, A (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM ajahn@ucar.edu RI Kay, Jennifer/C-6042-2012; Jahn, Alexandra/C-6545-2008; Bindoff, Nathaniel/C-8050-2011; Bitz, Cecilia/S-8423-2016 OI Jahn, Alexandra/0000-0002-6580-2579; Bindoff, Nathaniel/0000-0001-5662-9519; Bitz, Cecilia/0000-0002-9477-7499 FU National Science Foundation [OPP-0902068, ARC-0909313]; NCAR; Arctic Region Supercomputing Center at the University of Alaska Fairbanks (UAF); Department of Defense High Performance Computing Modernization Program; International Arctic Research Center (IARC), UAF; NASA [NNGO4GO51G, NNG06GB26G]; Biological and Environmental Research division of the U.S. Department of Energy Office of Science; National Science Foundation; Office of Science (BER) of the U.S. Department of Energy; National Science Foundation and other agencies FX The National Center for Atmospheric Research is sponsored by the National Science Foundation.; Special thanks to Igor V. Polyakov (IARC) and Uma S. Bhatt (IARC) for their advice on the analysis of the Atlantic water properties, to Clara Deser (NCAR) and Ron Kwok (JPL) for discussions, and to the reviewer and editor for comments on earlier versions of the manuscript. Alexandra Jahn was supported through a Postdoctoral Fellowship from the Advances Study Program at NCAR. Kara Sterling was supported in part by a grant of HPC resources from the Arctic Region Supercomputing Center at the University of Alaska Fairbanks (UAF) as part of the Department of Defense High Performance Computing Modernization Program and by the International Arctic Research Center (IARC), UAF. Marika Holland acknowledges support through NSF OPP-0902068. Cecilia M. Bitz acknowledges support through NSF Grant ARC-0909313. Julienne Stroeve acknowledges funding from NASA under Grants NNGO4GO51G and NNG06GB26G. Elizabeth Hunke and William Lipscomb acknowledge funding from the Biological and Environmental Research division of the U.S. Department of Energy Office of Science; Los Alamos National Laboratory is operated by the National Nuclear Security Administration of the U.S. Department of Energy under Contract DEAC52-06NA25396. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. The CMIP5 simulations used in this research were enabled by CISL computer and storage resources. Bluefire, a 4064-processor IBM Power6 resource with a peak of 77 TeraFLOPS provided more than 7.5 million computing hours, the GLADE high-speed disk resources provided 0.4 PB of dedicated disk, and CISL's 12-PB HPSS archive provided over 1 PB of storage in support of the research project. NR 81 TC 53 Z9 53 U1 0 U2 50 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAR 1 PY 2012 VL 25 IS 5 BP 1431 EP 1452 DI 10.1175/JCLI-D-11-00201.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 905ZR UT WOS:000301315200004 ER PT J AU Napier, B AF Napier, Bruce TI Estimation of internal radiation dose from both immediate releases and continued exposures to contaminated materials SO JOURNAL OF RADIOLOGICAL PROTECTION LA English DT Article AB A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, are discussed on the basis of a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from damaged reactors and also to the management of wastes that may be generated in both regional cleanup and decommissioning of the Fukushima nuclear power plant. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Napier, B (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Bruce.Napier@pnnl.gov NR 4 TC 1 Z9 1 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0952-4746 J9 J RADIOL PROT JI J. Radiol. Prot. PD MAR PY 2012 VL 32 IS 1 BP N47 EP N50 DI 10.1088/0952-4746/32/1/N47 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 906ND UT WOS:000301351200012 PM 22395282 ER PT J AU Liu, Y Huang, CX Bei, HB He, XY Hu, WP AF Liu, Yong Huang, Chongxiang Bei, Hongbin He, Xiaoyu Hu, Weiping TI Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys SO MATERIALS LETTERS LA English DT Article DE Nanocrystalline materials; Creep; Indentation and hardness ID INDENTATION SIZE; STRAIN-RATE; COPPER; FILMS; MODEL AB Nanoindentation creep tests were conducted on nanocrystalline Cu, Cu-2.3Al and Cu-7.2Al (at.%) alloys at room temperature. The stress exponents were calculated from the loading curves. Results show that the stress exponents are much higher than those in the diffusional creep process, ranging from 5 to 50. The stress exponents increase with the indentation load increasing. However, for Cu-Al alloys, the stress exponents are very high even at low loads. The mechanism for the room temperature creep is discussed in the framework of the dislocation dynamics. Grain boundaries may play an important role in the creep behavior. However, there is no clear correlation among the stress exponent, the alloy composition and the grain size. The dislocation histories and solute atoms may affect the creep behaviors, i.e. both the generation and the recovery of dislocations. (C) 2011 Elsevier B.V. All rights reserved. C1 [Liu, Yong] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. [Liu, Yong; Huang, Chongxiang; He, Xiaoyu; Hu, Weiping] Rhein Westfal TH Aachen, Inst Met Phys & Phys Met, D-52074 Aachen, Germany. [Bei, Hongbin] Oak Ridge Natl Lab, Dept Mat Sci & Engn, Oak Ridge, TN 37831 USA. [Huang, Chongxiang] Sichuan Univ, Dept Civil Engn & Mech, Chengdu 610065, Peoples R China. RP Liu, Y (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. EM yonliu11@yahoo.com.cn RI Bei, Hongbin/I-6576-2012; OI Bei, Hongbin/0000-0003-0283-7990 FU Alexander von Humboldt Fellowship; Natural National Science Foundation of China [51021063, 50823006] FX This work is supported by the Alexander von Humboldt Fellowship, and Natural National Science Foundation of China (No. 51021063 and 50823006). NR 15 TC 10 Z9 12 U1 3 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD MAR 1 PY 2012 VL 70 BP 26 EP 29 DI 10.1016/j.matlet.2011.11.119 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 900CR UT WOS:000300864700008 ER PT J AU Patwardhan, RP Hiatt, JB Witten, DM Kim, MJ Smith, RP May, D Lee, C Andrie, JM Lee, SI Cooper, GM Ahituv, N Pennacchio, LA Shendure, J AF Patwardhan, Rupali P. Hiatt, Joseph B. Witten, Daniela M. Kim, Mee J. Smith, Robin P. May, Dalit Lee, Choli Andrie, Jennifer M. Lee, Su-In Cooper, Gregory M. Ahituv, Nadav Pennacchio, Len A. Shendure, Jay TI Massively parallel functional dissection of mammalian enhancers in vivo SO NATURE BIOTECHNOLOGY LA English DT Article ID TRANSCRIPTION FACTOR-BINDING; ALDOLASE-B GENE; REGULATORY ELEMENTS; HUMAN GENOME; EXPRESSION; SEQUENCE; DNA; IDENTIFICATION; MUTAGENESIS; CONSTRAINT AB The functional consequences of genetic variation in mammalian regulatory elements are poorly understood. We report the in vivo dissection of three mammalian enhancers at single-nucleotide resolution through a massively parallel reporter assay. For each enhancer, we synthesized a library of >100,000 mutant haplotypes with 2-3% divergence from the wild-type sequence. Each haplotype was linked to a unique sequence tag embedded within a transcriptional cassette. We introduced each enhancer library into mouse liver and measured the relative activities of individual haplotypes en masse by sequencing the transcribed tags. Linear regression analysis yielded highly reproducible estimates of the effect of every possible single-nucleotide change on enhancer activity. The functional consequence of most mutations was modest, with similar to 22% affecting activity by >1.2-fold and similar to 3% by >2-fold. Several, but not all, positions with higher effects showed evidence for purifying selection, or co-localized with known liver-associated transcription factor binding sites, demonstrating the value of empirical high-resolution functional analysis. C1 [Patwardhan, Rupali P.; Hiatt, Joseph B.; Lee, Choli; Andrie, Jennifer M.; Lee, Su-In; Shendure, Jay] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. [Witten, Daniela M.] Univ Washington, Dept Biostat, Seattle, WA 98195 USA. [Kim, Mee J.; Smith, Robin P.; Ahituv, Nadav] Univ Calif San Francisco, Inst Human Genet, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. [May, Dalit; Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Lee, Su-In] Univ Washington, Dept Comp Sci, Seattle, WA 98195 USA. [Cooper, Gregory M.] HudsonAlpha Inst Biotechnol, Huntsville, AL USA. [Pennacchio, Len A.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. RP Shendure, J (reprint author), Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. EM nadav.ahituv@ucsf.edu; lapennacchio@lbl.gov; shendure@uw.edu OI Ahituv, Nadav/0000-0002-7434-8144; Shendure, Jay/0000-0002-1516-1865 FU National Human Genome Research Institute [HG003988]; US National Institutes of Health (NIH) [DP5OD009145]; National Institute of General Medical Sciences (NIGMS) [GM61390]; National Institute of Child Health and Human Development (NICHD) [R01HD059862]; University of California, San Francisco Liver Center [P30 DK026743]; National Institute on Aging [AG039173]; Achievement Rewards for College Scientists Foundation; NIH [T32 GM007175]; Amgen Research Excellence in Bioengineering and Therapeutic Sciences Fellowship; CIHR; Department of Energy, University of California [DE-AC02-05CH11231] FX We thank R. Qiu and J. Kitzman for advice on experimental strategies, and B. Cohen and D. Pe'er for helpful discussions. This work was supported in part by grants HG003988 from the National Human Genome Research Institute (L. A. P.), US National Institutes of Health (NIH) grant DP5OD009145 (D. M. W.), National Institute of General Medical Sciences (NIGMS) award number GM61390 (N.A.), National Institute of Child Health and Human Development (NICHD) grant number R01HD059862 (N.A.), the Pilot/Feasibility grant from the University of California, San Francisco Liver Center (P30 DK026743) (N.A.), AG039173 from the National Institute on Aging (J. B. H.) and a fellowship from the Achievement Rewards for College Scientists Foundation (J. B. H.). M. J. K. was supported in part by NIH Training grant T32 GM007175 and the Amgen Research Excellence in Bioengineering and Therapeutic Sciences Fellowship. R. P. S. is supported by a CIHR fellowship in the area of hepatology. Parts of the research were conducted at the E.O. Lawrence Berkeley National Laboratory and performed under Department of Energy Contract DE-AC02-05CH11231, University of California. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, NICHD, NHGRI or the NIGMS. NR 25 TC 168 Z9 169 U1 4 U2 26 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD MAR PY 2012 VL 30 IS 3 BP 265 EP + DI 10.1038/nbt.2136 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 905VI UT WOS:000301303800023 PM 22371081 ER PT J AU Hoffman, EN Vinson, DW Sindelar, RL Tallman, DJ Kohse, G Barsoum, MW AF Hoffman, E. N. Vinson, D. W. Sindelar, R. L. Tallman, D. J. Kohse, G. Barsoum, M. W. TI MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and neutron transmutation analysis SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID FATIGUE-CRACK GROWTH; FUSION APPLICATIONS; FRACTURE PROPERTIES; M(N+1)AX(N) PHASES; CORROSION BEHAVIOR; TEMPERATURE-RANGE; GRAINED TI3SIC2; COARSE; COMPOSITES; CERAMICS AB A family of ternary carbides and nitrides, known as MAX phases, combine attractive properties of both ceramics and metals, and has been suggested for potential nuclear reactor applications. The unirradiated materials properties of importance for in-core structural materials and as fuel pellet coatings for several leading MAX phase materials have been summarized from literature. The materials show high mechanical damage tolerance in terms of creep, thermal/mechanical fatigue and fracture resistance, and very good chemical compatibility with select coolants such as molten lead and sodium. Neutron activation has been calculated for commercial purity materials exposed to both idealized fast and thermal reactor neutron spectra for 10, 30, and 60 years of exposure. The specific activities of Ti3SiC2, Ti3AlC2, and Ti2AlC were compared to those of SiC and Alloy 617, two leading candidate materials for next generation reactor components. The specific activities of MAX phases were similar to SiC and three orders of magnitude less than Alloy 617 after 10-60 years decay for all three activation times in both the fast and thermal spectra. As with SiC, the main radioisotopes after a decay period of 10 years for all three activation times in the MAX phases are tritium and C-14. Neutron irradiation results of Ti3SiC2, Ti3AlC2, and Ti2AlC experimentally confirmed the neutron transmutation analysis. Published by Elsevier B.V. C1 [Hoffman, E. N.; Vinson, D. W.; Sindelar, R. L.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Tallman, D. J.; Barsoum, M. W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Kohse, G.] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA. RP Hoffman, EN (reprint author), Savannah River Site,773-A, Aiken, SC 29808 USA. EM Elizabeth.Hoffman@srnl.doe.gov NR 31 TC 46 Z9 48 U1 11 U2 127 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAR PY 2012 VL 244 BP 17 EP 24 DI 10.1016/j.nucengdes.2011.12.009 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 910CB UT WOS:000301613700002 ER PT J AU Sanami, T Iwamoto, Y Kajimoto, T Shigyo, N Hagiwara, M Lee, HS Ramberg, E Coleman, R Soha, A Jensen, D Leveling, A Mokhov, NV Boehnlein, D Vaziri, K Ishibashi, K Sakamoto, Y Nakashima, H AF Sanami, T. Iwamoto, Y. Kajimoto, T. Shigyo, N. Hagiwara, M. Lee, H. S. Ramberg, E. Coleman, R. Soha, A. Jensen, D. Leveling, A. Mokhov, N. V. Boehnlein, D. Vaziri, K. Ishibashi, K. Sakamoto, Y. Nakashima, H. TI Methodology for the neutron time of flight measurement of 120-GeV proton-induced reactions on a thick copper target SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Neutron spectrum; Time-of-flight method; 120-GeV proton; Copper target; NE213 liquid scintillator ID RANGE; BEAM AB A methodology for the time-of-flight measurement of the neutron energy spectrum for a high-energy proton-beam-induced reaction was established at the Fermilab Test Beam Facility of the Fermi National Accelerator Laboratory. The 120-GeV proton beam with 3 x 10(5) protons/spill was prepared for event-by-event counting of incident protons and emitted neutrons for time-of-flight energy determination. An NE213 organic liquid scintillator (12.7 cm in diameter by 12.7 cm in length) was employed with a veto plastic scintillator and a pulse-shape discrimination technique to identify neutrons. Raw waveforms of NE213, veto and beam detectors were recorded to discriminate the effects of multi-proton beam events by considering different time windows. The neutron energy spectrum ranging from 10 to 800 MeV was obtained for a 60-cm-long copper target at 90 degrees with respect to the beam axis. The obtained spectrum was consistent with that deduced employing the conventional unfolding technique as well as that obtained in a 40-GeV/c thin-target experiment. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sanami, T.; Hagiwara, M.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Iwamoto, Y.; Sakamoto, Y.; Nakashima, H.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Kajimoto, T.; Shigyo, N.; Ishibashi, K.] Kyushu Univ, Fukuoka 8190395, Japan. [Lee, H. S.] POSTECH, Pohang Accelerator Lab, Pohang 790784, Kyungbuk, South Korea. [Ramberg, E.; Coleman, R.; Soha, A.; Jensen, D.; Leveling, A.; Mokhov, N. V.; Boehnlein, D.; Vaziri, K.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Sanami, T (reprint author), High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. EM toshiya.sanami@kek.jp RI Iwamoto, Yosuke/G-5959-2012; OI Sanami, Toshiya/0000-0003-2255-8008 FU Ministry of Education of Japan [KAKENHI 20357464]; US Department of Energy Laboratory [DE-AC02-07CH11359]; Fermi Research Alliance, LLC FX This work is supported by a grant-in-aid from the Ministry of Education (KAKENHI 20357464) of Japan. Fermilab is a US Department of Energy Laboratory operated under contract DE-AC02-07CH11359 by the Fermi Research Alliance, LLC. NR 15 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAR 1 PY 2012 VL 274 BP 26 EP 35 DI 10.1016/j.nimb.2011.11.041 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 910BJ UT WOS:000301611900002 ER PT J AU Li, YH Wang, YQ Valdez, JA Tang, M Sickafus, KE AF Li, Y. H. Wang, Y. Q. Valdez, J. A. Tang, M. Sickafus, K. E. TI Swelling effects in Y2Ti2O7 pyrochlore irradiated with 400 keV Ne2+ ions SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Y2Ti2O7; Ion irradiation; Swelling effect; Amorphization ID CROSS-SECTIONAL TEM; RADIATION TOLERANCE; BEAM IMPLANTATION; OXIDES AB Polycrystalline pyrochlore Y2Ti2O7 compounds were irradiated with 400 keV Ne2+ ions at cryogenic temperature (similar to 77 K) at fluences ranging from 5 x 10(14) to 1 x 10(16) ions/cm(2), corresponding to a peak ballistic damage dose of similar to 0.17-3.4 displacements per atom (dpa). Irradiation-induced structural evolution was examined using grazing incidence X-ray diffraction at X-ray incident angles from 0.25 degrees to 3 degrees and cross-sectional transmission electron microscopy. An apparent swelling effect was observed on the irradiation layer prior to the irradiated layer being amorphized. The swelling effect increased with increasing ion irradiation fluence. At an ion induced damage of 1.7 dpa, the irradiated layer started to be amorphized. (C) 2011 Elsevier B.V. All rights reserved. C1 [Li, Y. H.] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. [Wang, Y. Q.; Valdez, J. A.; Tang, M.; Sickafus, K. E.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Li, YH (reprint author), Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. EM liyuhong@lzu.edu.cn FU National Natural Science Foundation of China [11175076, 10975065, 10775062, 91026021, 11075068, 10875054]; National Natural Science Foundation of Gansu [3ZS061-A25-006]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences (OBES) FX This work was supported by the National Natural Science Foundation of China (Nos. 11175076, 10975065, 10775062, 91026021, 11075068, and 10875054) and the National Natural Science Foundation of Gansu (3ZS061-A25-006). The work also was sponsored by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (OBES). NR 17 TC 6 Z9 6 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAR 1 PY 2012 VL 274 BP 182 EP 187 DI 10.1016/j.nimb.2011.11.012 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 910BJ UT WOS:000301611900029 ER PT J AU Kojo, T AF Kojo, Toru TI A (1+1)-dimensional example of Quarkyonic matter SO NUCLEAR PHYSICS A LA English DT Article DE Dense quark matter; Chiral symmetry breaking; Large N-c expansion ID GAUGE VECTOR-MESONS; CHIRAL-SYMMETRY-BREAKING; SINE-GORDON EQUATION; GROUND-STATE ENERGY; LARGE-N LIMIT; FINITE TEMPERATURE; PHASE-DIAGRAM; SKYRME MODEL; 2 DIMENSIONS; 2-DIMENSIONAL QCD AB We analyze the (1 + 1)-dimensional QCD (QCD(2)) at finite density to consider a number of qualitative issues: confinement in dense quark matter, the chiral symmetry breaking near the Fermi surface, the relation between chiral spirals and quark number density, and a possibility of the spontaneous flavor symmetry breaking. We argue that while the free energy is dominated by perturbative quarks, confined excitations at zero density can persist up to high density. So quark matter in QCD(2) is an example of Quarkyonic matter. The non-Abelian bosonization and associated charge-flavor-color separation are mainly used in order to clarify basic structures of QCD(2) at finite density. (C) 2011 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Kojo, T (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM torujj@quark.phy.bnl.gov FU DOE [DE-AC02-98CH10886]; RIKEN FX The author would like to give special thanks to Y. Hidaka, L. McLerran, R.D. Pisarski, and A.M. Tsvelik during the collaborations related to this work. He also acknowledges G. Basar, D. Blaschke, M. Buballa, A. Cherman, T. Cohen, G.V. Dunne, E.J. Ferrer, K. Fukushima, L.Y. Glozman, K. Hashimoto, T. Hatsuda, V. Incera, T. Izubuchi, D.B. Kaplan, H.K. Lee, S. Nakamura, J.M. Pawlowski, M. Rho, B.J. Schaefer, S.-J. Shin, E. Shuryak, D.T. Son, and I. Zahed for enlightening discussions and/or critical comments which have forced the author to reconsider many basic concepts of Quarkyonic matter. This research is supported under DOE Contract No. DE-AC02-98CH10886 and Postdoctoral Research Program of RIKEN. NR 82 TC 12 Z9 12 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD MAR 1 PY 2012 VL 877 BP 70 EP 94 DI 10.1016/j.nuclphysa.2011.12.002 PG 25 WC Physics, Nuclear SC Physics GA 910BO UT WOS:000301612400006 ER PT J AU Johnson, JS Everest, JD Leat, PT Golledge, NR Rood, DH Stuart, FM AF Johnson, Joanne S. Everest, Jeremy D. Leat, Philip T. Golledge, Nicholas R. Rood, Dylan H. Stuart, Finlay M. TI The deglacial history of NW Alexander Island, Antarctica, from surface exposure dating SO QUATERNARY RESEARCH LA English DT Article DE Cosmogenic nuclides; Erratics; Ice sheet; Refugia; Wilkins Ice Shelf; Last glacial maximum ID LAST GLACIAL MAXIMUM; PENINSULA ICE-SHEET; EARLY HOLOCENE; PRODUCTION-RATES; WEST ANTARCTICA; COSMOGENIC HE-3; MARGUERITE BAY; DRY VALLEYS; RETREAT; SHELF AB Recent changes along the margins of the Antarctic Peninsula, such as the collapse of the Wilkins Ice Shelf, have highlighted the effects of climatic warming on the Antarctic Peninsula Ice Sheet (APIS). However, such changes must be viewed in a long-term (millennial-scale) context if we are to understand their significance for future stability of the Antarctic ice sheets. To address this, we present nine new cosmogenic Be-10 exposure ages from sites on NW Alexander Island and Rothschild Island (adjacent to the Wilkins Ice Shelf) that provide constraints on the timing of thinning of the Alexander Island ice cap since the last glacial maximum. All but one of the Be-10 ages are in the range 10.2-21.7 ka, showing a general trend of progressive ice-sheet thinning since at least 22 ka until 10 ka. The data also provide a minimum estimate (490 m) for ice-cap thickness on NW Alexander Island at the last glacial maximum. Cosmogenic He-3 ages from a rare occurrence of mantle xenoliths on Rothschild Island yield variable ages up to 46 ka, probably reflecting exhumation by periglacial processes. (C) 2011 University of Washington. Published by Elsevier Inc. All rights reserved. C1 [Johnson, Joanne S.; Leat, Philip T.] British Antarctic Survey, Cambridge CB3 0ET, England. [Everest, Jeremy D.; Golledge, Nicholas R.] British Geol Survey, Edinburgh EH9 3LA, Midlothian, Scotland. [Golledge, Nicholas R.] Victoria Univ Wellington, Antarctic Res Ctr, Wellington 6140, New Zealand. [Rood, Dylan H.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Stuart, Finlay M.] Scottish Univ Environm Res Ctr, E Kilbride G75 0QF, Lanark, Scotland. RP Johnson, JS (reprint author), British Antarctic Survey, Madingley Rd, Cambridge CB3 0ET, England. EM jsj@bas.ac.uk OI Golledge, Nicholas/0000-0001-7676-8970 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Natural Environment Research Council; Antarctic Science Ltd FX We thank the Captain, Officers and crew of HMS Endurance, and BAS field assistants Mark Gorin and Roger Stilwell for their support during Antarctic fieldwork. BAS technicians Mike Tabecki and Hilary Blagbrough crushed the rock samples, Adrian Fox provided aerial photographs, and Lydia Gibson (University of Cambridge) donated the mantle xenoliths from her PhD project. The work was performed in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This paper is the result of a collaborative study between the British Geological Survey and the British Antarctic Survey as part of the BAS 'Polar Science for Planet Earth' programme, funded by the Natural Environment Research Council. The work was also supported by an Antarctic Science Ltd Bursary to JSJ. We thank Jim Knox, Alan Gillespie, Adam Lewis and an anonymous reviewer for their constructive comments. NR 44 TC 7 Z9 7 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 J9 QUATERNARY RES JI Quat. Res. PD MAR PY 2012 VL 77 IS 2 BP 273 EP 280 DI 10.1016/j.yqres.2011.11.012 PG 8 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 911BY UT WOS:000301693500008 ER PT J AU Rumiche, F Wang, HH Indacochea, JE AF Rumiche, F. Wang, H. H. Indacochea, J. E. TI Development of a fast-response/high-sensitivity double wall carbon nanotube nanostructured hydrogen sensor SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Hydrogen sensor; Double wall carbon nanotube; Palladium nanoparticle ID PALLADIUM NANOPARTICLES; HIGH-PERFORMANCE; FILMS; TRANSPORT; ECONOMY; CCVD AB A double wall carbon nanotube (DWNT)-based sensing device was fabricated and tested for hydrogen gas sensing. The DWNT devices have potential improvement in mechanical and thermal resistance due to their double layer structure. DWNTs were used to build a percolation pathway for charge transport and were decorated with a layer of palladium (Pd) nanoparticles of 1, 3, and 6 nm. The effect of nanotube content and Pd nanoparticle layer size on hydrogen sensing performance at room temperature was evaluated. The DWNTs and the nanostructured sensing element were characterized using high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy. DWNT-based nanostructures behave similar to SWNT-based hydrogen sensors despite the known ambipolar behavior that is absent in SWNT devices. (C) 2012 Elsevier B.V. All rights reserved. C1 [Wang, H. H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rumiche, F.; Indacochea, J. E.] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA. RP Wang, HH (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hau.wang@anl.gov FU National Science Foundation [CMS-0529320]; UChicago, Argonne, LLC, U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX The authors wish to recognize the financial support provided by the National Science Foundation in the conduction of this research (Grant #: CMS-0529320). Work at MSD, Argonne National Laboratory is supported by UChicago, Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 42 TC 22 Z9 22 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD MAR 1 PY 2012 VL 163 IS 1 BP 97 EP 106 DI 10.1016/j.snb.2012.01.015 PG 10 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 910GV UT WOS:000301626100013 ER PT J AU Ozlem, M Schwendeman, DW Kapila, AK Henshaw, WD AF Ozlem, M. Schwendeman, D. W. Kapila, A. K. Henshaw, W. D. TI A numerical study of shock-induced cavity collapse SO SHOCK WAVES LA English DT Article DE Shock waves; Multi-fluid flow; Jet formation; Euler equations; Godunov methods ID RESOLUTION GODUNOV METHOD; OVERLAPPING GRIDS; MANUFACTURED SOLUTIONS; REACTIVE FLOW; VERIFICATION; DIFFRACTION; SIMULATION; BUBBLE; MODEL AB The flow field resulting from the interaction between a planar incident shock in a solid and an embedded ellipsoidal gas cavity is examined computationally. The study is motivated by the need for improved understanding of the role of embedded cavities in the initiation of reaction in a heterogeneous explosive following the application of a shock. The system is modeled as a compressible multi-fluid flow with a sufficiently strong shock in the solid. A high-resolution, Godunov-type capturing scheme is employed to solve the governing equations numerically. The calculations are performed in parallel and use adaptive mesh refinement to obtain well-resolved solutions. The goal is to identify regions in which the shock-cavity interaction results in pressures that are substantially higher than the post-shock pressure that existed prior to the beginning of the interaction. Also of interest are the ways in which the magnitude of the elevated pressure, the extent and location of the regions where it develops, and the mechanisms that underlie such a development are influenced by the strength of the shock and the geometry of the cavity. C1 [Ozlem, M.; Schwendeman, D. W.; Kapila, A. K.] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA. [Henshaw, W. D.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Schwendeman, DW (reprint author), Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA. EM ozlemm@rpi.edu; schwed@rpi.edu; kapila@rpi.edu; henshaw1@llnl.gov FU National Science Foundation (NSF) [DMS-0609874, DMS-1016188, DMS-0532160]; Lawrence Livermore National Laboratory (LLNL) [B548468]; U.S. Department of Energy (DOE) by LLNL [DE-AC52-07NA27344]; ASCR of the DOE Office of Science FX The codes employed for this paper may be obtained online at https://computation.llnl.gov/casc/Overture/. Research support for MO was provided by the National Science Foundation (NSF) under grant DMS-0609874. Research support for DWS and AKK was provided by the NSF under grants DMS-0609874 and DMS-1016188. Additional support for DWS was given by Lawrence Livermore National Laboratory (LLNL) under subcontract B548468. The work of WDH was performed under the auspices of the U.S. Department of Energy (DOE) by LLNL under Contract DE-AC52-07NA27344 and with the support of the ASCR Applied Math Program of the DOE Office of Science. Numerical results were obtained using the Applied Math Cluster at RPI which was purchased in part using funds from the NSF grant DMS-0532160. NR 27 TC 5 Z9 6 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-1287 J9 SHOCK WAVES JI Shock Waves PD MAR PY 2012 VL 22 IS 2 BP 89 EP 117 DI 10.1007/s00193-011-0352-9 PG 29 WC Mechanics SC Mechanics GA 909LX UT WOS:000301567100001 ER PT J AU Pachoud, E Breard, Y Martin, C Maignan, A Abakumov, AM Suard, E Smith, RI Suchomel, MR AF Pachoud, E. Breard, Y. Martin, C. Maignan, A. Abakumov, A. M. Suard, E. Smith, R. I. Suchomel, M. R. TI Bi0.75Sr0.25FeO3-delta: Revealing order/disorder phenomena by combining diffraction techniques SO SOLID STATE COMMUNICATIONS LA English DT Article DE Magnetically ordered materials; Crystal structure and symmetry; Order-disorder effects ID MAGNETIC-PROPERTIES; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE; BISMUTH FERRITE; DOPED BIFEO3; PEROVSKITES; IONS AB The local and long range structure of polycrystalline samples of Bi0.75Sr0.25FeO3-delta has been probed by neutron and synchrotron X-ray diffraction coupled with transmission electron microscopy. It is found that the long range structure on average can be described by the cubic space group Pm-3m (a(p) congruent to 3.951 angstrom). However, the refinements revealed large atomic displacements for the (Bi, Sr) cations and the oxygen atoms from their ideal positions. The electron microscopy study indicates the existence of local phenomena like local ordering of oxygen vacancies, which are segregated at the randomly spaced parallel (FeO2-delta) planes, or the existence of region of different symmetry, probably R3c. At room temperature, the compound exhibits G-type antiferromagnetism (T-N congruent to 650 K) with a magnetic moment of congruent to 3.7 mu(B). (C) 2012 Elsevier Ltd. All rights reserved. C1 [Pachoud, E.; Breard, Y.; Martin, C.; Maignan, A.] UMR 6508 CNRS ENS CAEN, Lab CRISMAT, F-14050 Caen 4, France. [Abakumov, A. M.] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium. [Suard, E.] Inst Laue Paul Langevin, F-38042 Grenoble 9, France. [Smith, R. I.] Rutherford Appleton Lab, ISIS Facil, Chilton OX11 0QX, England. [Suchomel, M. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Pachoud, E (reprint author), UMR 6508 CNRS ENS CAEN, Lab CRISMAT, 6 Bd Marechal Juin, F-14050 Caen 4, France. EM elise.pachoud@ensicaen.fr RI SUARD, Emmanuelle/E-9579-2012; Suchomel, Matthew/C-5491-2015; OI SUARD, Emmanuelle/0000-0001-5966-5929; SUCHOMEL, Matthew/0000-0002-9500-5079 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; French Agence Nationale de la Recherche [ANR-08-BLAN-0005-01]; Hercules Foundation of the Flemish Government FX Xpress Access neutron beam time at ISIS was provided by the Science and Technology Facilities Council. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Financial support was partly provided by the French Agence Nationale de la Recherche (ANR-08-BLAN-0005-01). This work was also supported by funding from the Hercules Foundation of the Flemish Government. We appreciate discussions with G. Van Tendeloo (University of Antwerp). NR 29 TC 3 Z9 3 U1 1 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2012 VL 152 IS 5 BP 331 EP 336 DI 10.1016/j.ssc.2011.12.023 PG 6 WC Physics, Condensed Matter SC Physics GA 906FB UT WOS:000301329200001 ER PT J AU Choi, WS Yoon, JG AF Choi, Woo Seok Yoon, Jong-Gul TI Optical characterization of band gap graded ZnMgO films SO SOLID STATE COMMUNICATIONS LA English DT Article DE Band gap graded ZnMgO; Optical dielectric constant and band gap characterization; Graded band gap; Ellipsometry and simulation ID THIN-FILMS; SPECTROSCOPIC ELLIPSOMETRY; OXIDE; HETEROSTRUCTURES; CONSTANTS; ZNO AB We investigated the optical properties of compositionally graded Zn1-xMgxO (g-ZnMgO) films using spectroscopic ellipsometry. The g-ZnMgO and ZnO films were grown on Pt/Ti/SiO2/Si substrates by ultrasonic spray pyrolysis. We simulated a uniformly graded optical band gap layer on the Pt substrate to reproduce the experimental result. The band gap of the bottommost layer of the g-ZnMgO film was estimated to be similar to 3.22 eV, the same as the undoped ZnO film. Then vie considered a linearly increasing band gap with the film composition, and obtained a band gap of similar to 3.56 eV for the topmost layer of the film. In addition, the exciton peak showed a strong increase for the topmost layer of the film suggesting an important role of doping. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Choi, Woo Seok] Seoul Natl Univ, Dept Phys & Astron, ReCFI, Seoul 151747, South Korea. [Yoon, Jong-Gul] Univ Suwon, Dept Phys, Hwaseong 445743, South Korea. RP Choi, WS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM choiw@ornl.gov; jgyoon@suwon.ac.kr RI Choi, Woo Seok/G-8783-2014 FU National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology (MEST) [2010-0014488, 2010-0008341] FX This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Education, Science and Technology (MEST) (Grants Nos. 2010-0014488 and 2010-0008341). NR 13 TC 2 Z9 2 U1 1 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2012 VL 152 IS 5 BP 345 EP 348 DI 10.1016/j.ssc.2011.12.019 PG 4 WC Physics, Condensed Matter SC Physics GA 906FB UT WOS:000301329200004 ER PT J AU Rissi, EN Soignard, E McKiernan, KA Benmore, CJ Yarger, JL AF Rissi, Erin N. Soignard, Emmanuel McKiernan, Keri A. Benmore, Chris J. Yarger, Jeffery L. TI Pressure-induced crystallization of amorphous red phosphorus SO SOLID STATE COMMUNICATIONS LA English DT Article DE Disordered systems; Phase transitions ID INTERMEDIATE-RANGE ORDER; BLACK PHOSPHORUS; CRYSTAL-STRUCTURE; RAMAN-SCATTERING; STABILITY; DIFFRACTION; GPA; RECOMBINATION; TEMPERATURES; TRANSITION AB Structural transitions in amorphous red phosphorus were studied at ambient temperature and pressures up to 12 GPa. Amorphous (red) phosphorus was observed to transform into crystalline black phosphorus at 7.5 +/- 0.5 GPa using diamond anvil cell Raman spectroscopy, x-ray diffraction and a direct equation of state (EoS) measurement. The transition was found to be irreversible and the material recovered upon pressure cycling to 10 to 12 GPa was crystalline orthorhombic black phosphorus. A third order Birch-Murnaghan EoS was fit to the data and a bulk modulus (B0) of 11.2 GPa was measured for amorphous red phosphorus. Published by Elsevier Ltd C1 [Rissi, Erin N.; Soignard, Emmanuel; McKiernan, Keri A.; Yarger, Jeffery L.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Soignard, Emmanuel] Arizona State Univ, LeRoy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA. [Benmore, Chris J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Benmore, Chris J.; Yarger, Jeffery L.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Yarger, JL (reprint author), Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. EM jyarger@gmail.com RI Yarger, Jeff/L-8748-2014; OI Yarger, Jeff/0000-0002-7385-5400; Benmore, Chris/0000-0001-7007-7749 FU National Nuclear Security Administration Carnegie/DOE Alliance Center (NNSA CDAC); EFree, an Energy Frontier Research Center; DOE-BES [DE-SC0001057]; US department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The Raman spectroscopy work and E. Oelker were supported in part by the National Nuclear Security Administration Carnegie/DOE Alliance Center (NNSA CDAC). E. Soignard and the X-ray diffraction work were supported by the EFree, an Energy Frontier Research Center funded by DOE-BES under Award DE-SC0001057. Use of Sector 1 in the Advanced Photon Source at Argonne National Laboratory was supported by the US department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 39 TC 8 Z9 8 U1 3 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2012 VL 152 IS 5 BP 390 EP 394 DI 10.1016/j.ssc.2011.12.003 PG 5 WC Physics, Condensed Matter SC Physics GA 906FB UT WOS:000301329200014 ER PT J AU Ellern, A Kogerler, P AF Ellern, Arkady Koegerler, Paul TI [CoII4MoV12O28(OH)12(H2O)12]center dot 12H2O: facilitating single-crystal growth by deuteration SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS LA English DT Article ID KEPLERATE AB The structure of the neutral heterometal oxide cluster dodecaaqua-di-mu 3-hydroxido-deca-mu 2-hydroxido-octacosaoxidotetracobalt(II)dodecamolybdenum(V) dodecahydrate, [Mo12O28(mu 2-OH)10(mu 3-OH)2{Co(H2O)3}4], is virtually identical to the previously reported NiII analogue [Mo12O28(mu 2-OH)10(mu 3-OH)2{NiII(H2O)3}4] [Muller, Beugholt, Kogerler, Bogge, Budko & Luban (2000). Inorg. Chem.39, 51765177], the first molecular magnet to exhibit signs of magnetostriction. The formation kinetics of the neutral cluster species, which is insoluble in water, can be significantly slowed by the use of deuterated reactants in order to grow single crystals of sufficient size for single-crystal X-ray diffraction studies using standard diffractometers. One half of the main cluster and six solvent water molecules constitute the asymmetric unit. The main cluster is located on a mirror plane. C1 [Koegerler, Paul] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany. [Ellern, Arkady] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kogerler, P (reprint author), Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52074 Aachen, Germany. EM paul.koegerler@ac.rwth-aachen.de RI Kogerler, Paul/H-5866-2013 OI Kogerler, Paul/0000-0001-7831-3953 FU Department of Energy Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the Department of Energy Basic Energy Sciences under contract No. DE-AC02-07CH11358. NR 12 TC 2 Z9 2 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0108-2701 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun. PD MAR PY 2012 VL 68 BP I17 EP I19 DI 10.1107/S0108270112006014 PN 3 PG 3 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 902OL UT WOS:000301047700003 PM 22382530 ER PT J AU Foley, HC AF Foley, Henry C. TI Challenges and opportunities in engineered retrofits of buildings for improved energy efficiency and habitability SO AICHE JOURNAL LA English DT Article DE energy efficiency; buildings; distributed control; model-based design; business model ID MANAGEMENT; SYSTEMS; COMFORT; MODEL C1 [Foley, Henry C.] Penn State Univ, Off Vice President Res, University Pk, PA 16802 USA. [Foley, Henry C.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. RP Foley, HC (reprint author), Penn State Univ, Off Vice President Res, DOE HUB Energy Efficient Bldg, University Pk, PA 16802 USA. FU DOE [DE-EE0004261] FX The author would like to thank the DOE for its support of the Hub for Energy Efficient Buildings under Award Number DE-EE0004261. The author also thanks Dr. James Freihaut for many insightful discussions on the topic of retrofitting of buildings and Dr. Paul Hallacher for many help suggestions that enhanced this article. NR 39 TC 6 Z9 6 U1 2 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 J9 AICHE J JI AICHE J. PD MAR PY 2012 VL 58 IS 3 BP 658 EP 667 DI 10.1002/aic.13748 PG 10 WC Engineering, Chemical SC Engineering GA 904VE UT WOS:000301225500001 ER PT J AU Li, TW Guenther, C AF Li, Tingwen Guenther, Chris TI A CFD study of gas-solid jet in a CFB riser flow SO AICHE JOURNAL LA English DT Article DE computational fluid dynamics; circulating fluidized bed; gas-solid jet; flow hydrodynamics; mixing ID CIRCULATING FLUIDIZED-BED; SECONDARY AIR INJECTION; NUMERICAL-SIMULATION; COAL-GASIFICATION; HORIZONTAL GAS; KINETIC-THEORY; GRANULAR FLOW; GASIFIER; MODEL; PENETRATION AB Three-dimensional high-resolution numerical simulations of a gassolid jet in a high-density riser flow were conducted. The impact of gassolid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gassolid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gassolid jet were reasonably predicted compared with the experimental measurements made at NETL. Published 2011 American Institute of Chemical Engineers AIChE J, 2012 C1 [Li, Tingwen; Guenther, Chris] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Li, Tingwen] URS Corp, Morgantown, WV 26505 USA. RP Li, TW (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM tingwen.li@ur.netl.doe.gov RI Li, Tingwen/D-2173-2012 OI Li, Tingwen/0000-0002-1900-308X FU U.S. Department of Energy; RES [DE-FE0004000] FX The authors thank Drs. Lawrence Shadle, Christopher Ludlow, and James Spenik for providing detailed experimental data and useful discussions. This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in advanced multiphase flow simulation under the RES contract DE-FE0004000. This research was also supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administrated by the Oak Ridge Institute for Science and Education. NR 57 TC 10 Z9 10 U1 5 U2 40 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0001-1541 J9 AICHE J JI AICHE J. PD MAR PY 2012 VL 58 IS 3 BP 756 EP 769 DI 10.1002/aic.12619 PG 14 WC Engineering, Chemical SC Engineering GA 904VE UT WOS:000301225500009 ER PT J AU Saladini, F Foley, BT Rosi, A Vicenti, I Nannetti, G Meini, G Razzolini, F Zazzi, M AF Saladini, Francesco Foley, Brian T. Rosi, Andrea Vicenti, Ilaria Nannetti, Giulio Meini, Genny Razzolini, Francesca Zazzi, Maurizio TI Near Full-Length Sequence Analysis of HIV Type 1 BF Recombinants from Italy SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Article ID SUBTYPE-B; ARGENTINA; BRAZIL; IDENTIFICATION; PREVALENCE; DIVERSITY; SPREAD AB Recombination between HIV-1 subtypes B and F has generated several circulating and unique recombinant forms, particularly in Latin American areas. In Italy, subtype B is highly prevalent while subtype F is the most common pure non-B subtype. To investigate the recombination pattern in Italian BF recombinant viruses, we characterized full-length sequences derived from 15 adult patients, mostly Italian and infected by the heterosexual route. One of the BF mosaics was a CRF29, three sequences clustered with low bootstrap values with CRF39, CRF40, and CRF42. With the exception of the CRF29-like sequence, the other recombination patterns were unique, but two possible clusters were identified. Analysis of the gp120 V3 domain suggested a possible link with subtype F from Eastern Europe rather than from Latin America, favoring the hypothesis of local recombination between clade B and F viruses over that of import of BF recombinants from Latin America. HIV-1 subtypes B and F appear prone to generation of unique recombinants in Italy, warranting epidemiological surveillance and investigation of a possible clinical significance. C1 [Saladini, Francesco; Rosi, Andrea; Vicenti, Ilaria; Nannetti, Giulio; Meini, Genny; Razzolini, Francesca; Zazzi, Maurizio] Univ Siena, Dept Biotechnol, Microbiol Sect, I-53100 Siena, Italy. [Foley, Brian T.] Los Alamos Natl Lab, HIV Databases, Los Alamos, NM USA. RP Saladini, F (reprint author), Univ Siena, Dept Biotechnol, Microbiol Sect, Viale Bracci 1, I-53100 Siena, Italy. EM saladini6@unisi.it RI Ghartouchent, malek/B-9088-2012; Saladini, Francesco/D-5837-2015; Nannetti, Giulio /N-1215-2016; OI Saladini, Francesco/0000-0002-9934-377X; Nannetti, Giulio /0000-0003-3227-1537; vicenti, ilaria/0000-0002-4306-2960; Zazzi, Maurizio/0000-0002-0344-6281; Foley, Brian/0000-0002-1086-0296 FU Ministry of Health [200887SYZ5, 40h81]; European Community [223131] FX This work was supported by grants from the Italian Ministry of Health (PRIN Grant 200887SYZ5 and AIDS Program Grant 40h81) and from the European Community under the Seventh Framework Program (CHAIN project Grant 223131). NR 17 TC 2 Z9 2 U1 0 U2 0 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD MAR PY 2012 VL 28 IS 3 BP 299 EP 303 DI 10.1089/aid.2011.0002 PG 5 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 904VK UT WOS:000301226100013 PM 21740272 ER PT J AU Gao, XL Zhang, QB Meng, D Isaac, G Zhao, R Fillmore, TL Chu, RK Zhou, JY Tang, KQ Hu, ZP Moore, RJ Smith, RD Katze, MG Metz, TO AF Gao, Xiaoli Zhang, Qibin Meng, Da Isaac, Giorgis Zhao, Rui Fillmore, Thomas L. Chu, Rosey K. Zhou, Jianying Tang, Keqi Hu, Zeping Moore, Ronald J. Smith, Richard D. Katze, Michael G. Metz, Thomas O. TI A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Ultra-performance liquid chromatography (UPLC); Tandem mass spectrometry (MS/MS); Electrospray ionization (ESI); Top-down/bottom-up lipid profiling ID HUMAN PLASMA PROTEOME; NANOELECTROSPRAY IONIZATION; QUANTITATIVE-ANALYSIS; SHOTGUN LIPIDOMICS; DYNAMIC-RANGE; ACCURATE MASS; BLOOD-PLASMA; ELECTROSPRAY; IDENTIFICATION; PHOSPHOLIPIDS AB Lipidomics is a critical part of metabolomics and aims to study all the lipids within a living system. We present here the development and evaluation of a sensitive capillary UPLC-MS method for comprehensive top-down/bottom-up lipid profiling. Three different stationary phases were evaluated in terms of peak capacity, linearity, reproducibility, and limit of quantification (LOQ) using a mixture of lipid standards representative of the lipidome. The relative standard deviations of the retention times and peak abundances of the lipid standards were 0.29% and 7.7%, respectively, when using the optimized method. The linearity was acceptable at > 0.99 over 3 orders of magnitude, and the LOQs were sub-fmol. To demonstrate the performance of the method in the analysis of complex samples, we analyzed lipids extracted from a human cell line, rat plasma, and a model human skin tissue, identifying 446, 444, and 370 unique lipids, respectively. Overall, the method provided either higher coverage of the lipidome, greater measurement sensitivity, or both, when compared to other approaches of global, untargeted lipid profiling based on chromatography coupled with MS. C1 [Gao, Xiaoli; Zhang, Qibin; Meng, Da; Isaac, Giorgis; Zhou, Jianying; Tang, Keqi; Hu, Zeping; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Zhao, Rui; Fillmore, Thomas L.; Chu, Rosey K.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Katze, Michael G.] Univ Washington, Sch Med, Dept Microbiol, Seattle, WA 98195 USA. [Katze, Michael G.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. RP Metz, TO (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MS K8-98, Richland, WA 99352 USA. EM thomas.metz@pnnl.gov RI Zhou, Jian-Ying/D-1308-2012; Smith, Richard/J-3664-2012; Hu, Zeping/F-6205-2010; OI Smith, Richard/0000-0002-2381-2349; Metz, Tom/0000-0001-6049-3968 FU National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Department of Health and Human Services [HHSN272200800060C]; NIAID [U54AI081680]; Office of Science, U.S. Department of Energy (DOE); DOE [DE-AC05-76RLO 1830]; DOE's Office of Biological and Environmental Research FX This work was supported by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Department of Health and Human Services, under Contract Number HHSN272200800060C. Additional support was provided by the NIAID under Award Number U54AI081680 and by the Office of Science, U.S. Department of Energy (DOE), under the Low Dose Radiation Research Program. Work was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 66 TC 45 Z9 46 U1 3 U2 61 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD MAR PY 2012 VL 402 IS 9 BP 2923 EP 2933 DI 10.1007/s00216-012-5773-5 PG 11 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 904EX UT WOS:000301178000022 PM 22354571 ER PT J AU Medvedev, DG Mausner, LF Meinken, GE Kurczak, SO Schnakenberg, H Dodge, CJ Korach, EM Srivastava, SC AF Medvedev, Dmitri G. Mausner, Leonard F. Meinken, George E. Kurczak, Slawko O. Schnakenberg, Henry Dodge, Cleveland J. Korach, Elizabeth M. Srivastava, Suresh C. TI Development of a large scale production of Cu-67 from Zn-68 at the high energy proton accelerator: Closing the Zn-68 cycle SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Copper-67; Zinc-68; Radiotherapy; High energy reaction; BLIP; Chemical separation ID EXCITATION-FUNCTIONS; BLADDER-CANCER; ENRICHED ZN-70; ANTIBODY CHCE7; RADIOIMMUNOTHERAPY; COPPER-67; LYMPHOMA; THERAPY; CU-67-2IT-BAT-LYM-1; SEPARATION AB A number of research irradiations of Zn-68 was carried out at Brookhaven Linac Isotope Producer aiming to develop a practical approach to produce the radioisotope Cu-67 through the high energy Zn-68(p,2p)Cu-67 reaction. Disks of enriched zinc were prepared by electrodeposition of Zn-68 on aluminum or titanium substrate and isolated in the aluminum capsule for irradition. Irradiations were carried out with 128, 105 and 92 MeV protons for at least 24 h. After irradiation the disk was chemically processed to measure production yield and specific activity of Cu-67 and to reclaim the target material. The recovered Zn-68 was irradiated and processed again. The chemical procedure comprised BioRad cation exchange, Chelex-100 and anion exchange columns. Reduction of the oxidation degree of copper allowed for more efficient Cu/Coan separation on the anion exchange column. No radionuclides other than copper isotopes were detected in the final product. The chemical yield of 67Cu reached 92-95% under remote handling conditions in a hot box. Production yield of Cu-67 averaged 29.2 mu Ci/[mu A - h x g Zn-68] (1.08 MBq/[mu A-h x g Zn-68]) in 24 h irradiations. The best specific activity achieved was 18.6 mCi/mu g (688.2 MBq/mu g). (C) 2011 Elsevier Ltd. All rights reserved. C1 [Medvedev, Dmitri G.; Mausner, Leonard F.; Meinken, George E.; Kurczak, Slawko O.; Schnakenberg, Henry; Dodge, Cleveland J.; Korach, Elizabeth M.; Srivastava, Suresh C.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11793 USA. RP Medvedev, DG (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11793 USA. EM dmedvede@bnl.gov FU Brookhaven Science Associates, LLC [DE-AC02-98CH1-886]; US Department of Energy FX This manuscript has been authored by Brookhaven Science Associates, LLC under Contract no. DE-AC02-98CH1-886 with the US Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allows others to do so, for the United States Government purposes. NR 29 TC 16 Z9 16 U1 3 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD MAR PY 2012 VL 70 IS 3 BP 423 EP 429 DI 10.1016/j.apradiso.2011.10.007 PG 7 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 905YM UT WOS:000301312100001 PM 22142633 ER PT J AU Mamun, MA Farha, AH Er, AO Ufuktepe, Y Gu, D Elsayed-Ali, HE Elmustafa, AA AF Mamun, M. A. Farha, A. H. Er, A. O. Ufuktepe, Y. Gu, D. Elsayed-Ali, H. E. Elmustafa, A. A. TI Nanomechanical properties of NbN films prepared by pulsed laser deposition using nanoindendation SO APPLIED SURFACE SCIENCE LA English DT Article DE NbN; PLD; Nanoindentation; Hardness; Modulus; Nanomechanical properties; TEM; XRD; AFM ID THIN-FILMS; MECHANICAL-PROPERTIES; SUPERCONDUCTING PROPERTIES; NANOINDENTATION; INDENTATION; SILICON; ABLATION; HARDNESS; PHASE AB Structural and mechanical properties of niobium nitride thin films deposited by pulsed laser deposition were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. Niobium nitride was deposited on Si(1 0 0) by pulsed laser deposition (PLD) of Nb in nitrogen background. A Nanoindenter XP equipped with a dynamic contact module (DCM II) head was used in conjunction with the continuous stiffness method (CSM) in depth and load control modes to measure the hardness and modulus of the NbN thin films. NbN film reveals simple cubic delta-NbN structure with the corresponding reflections of (1 1 1), (2 0 0), and (2 2 0) planes. Highly textured NbN film shows a strong (1 1 1) preferred orientation. The NbN thin films depict polycrystalline structure, with a wide range of grain sizes that range from 15 to 40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420 +/- 60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases monotonically from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa. (C) 2012 Elsevier B.V. All rights reserved. C1 [Mamun, M. A.; Elmustafa, A. A.] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. [Farha, A. H.; Er, A. O.; Gu, D.; Elsayed-Ali, H. E.] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Ufuktepe, Y.] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. [Mamun, M. A.; Farha, A. H.; Gu, D.; Elsayed-Ali, H. E.; Elmustafa, A. A.] Jefferson Natl Accelerator Facil, Appl Res Ctr, Newport News, VA 23606 USA. RP Elmustafa, AA (reprint author), Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. EM aelmusta@odu.edu RI Mamun, Md Abdullah/E-2914-2014 OI Mamun, Md Abdullah/0000-0001-8019-448X FU U.S. DOE [DE-FG02-97ER45625]; National Science Foundation [DMR-9988669, MRI-0821180] FX We would like to thank Dr. Robert Pike of the College of William and Mary for giving us access to XRD. This work was partially supported by U.S. DOE DE-FG02-97ER45625 and by the National Science Foundation grant nos. DMR-9988669 and MRI-0821180. NR 41 TC 6 Z9 6 U1 0 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD MAR 1 PY 2012 VL 258 IS 10 BP 4308 EP 4313 DI 10.1016/j.apsusc.2011.12.089 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 901TZ UT WOS:000300991400015 ER PT J AU Dieckmann, J Cooperman, A Brodrick, J AF Dieckmann, John Cooperman, Alissa Brodrick, James TI Energy Efficiency in a Box Variable Air Volume Terminal Units SO ASHRAE JOURNAL LA English DT Article AB The terminal unit, or box, is the final piece of HVAC equipment in a variable air volume (VAV) system to handle, control, and monitor the conditioned air before it is delivered to the space to be conditioned. VAV HVAC systems are used to reduce the energy consumption by commercial buildings for space conditioning. In 2010, space heating for commercial buildings consumed 2.14 quads of site energy (25.1% of site energy), or 13.7% of total primary energy consumed by commercial buildings. Space cooling consumed 0.62 quads of site energy (7.3% of site energy), or 10.1% of primary energy consumed by commercial buildings.(1) C1 [Dieckmann, John; Cooperman, Alissa] TIAX LLC, Mech Syst Grp, Lexington, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Dieckmann, J (reprint author), TIAX LLC, Mech Syst Grp, Lexington, MA USA. NR 4 TC 0 Z9 0 U1 0 U2 5 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD MAR PY 2012 VL 54 IS 3 BP 88 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 907BV UT WOS:000301393700006 ER PT J AU Corsi, A Ofek, EO Gal-Yam, A Frail, DA Poznanski, D Mazzali, PA Kulkarni, SR Kasliwal, MM Arcavi, I Ben-Ami, S Cenko, SB Filippenko, AV Fox, DB Horesh, A Howell, JL Kleiser, IKW Nakar, E Rabinak, I Sari, R Silverman, JM Xu, D Bloom, JS Law, NM Nugent, PE Quimby, RM AF Corsi, A. Ofek, E. O. Gal-Yam, A. Frail, D. A. Poznanski, D. Mazzali, P. A. Kulkarni, S. R. Kasliwal, M. M. Arcavi, I. Ben-Ami, S. Cenko, S. B. Filippenko, A. V. Fox, D. B. Horesh, A. Howell, J. L. Kleiser, I. K. W. Nakar, E. Rabinak, I. Sari, R. Silverman, J. M. Xu, D. Bloom, J. S. Law, N. M. Nugent, P. E. Quimby, R. M. TI EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE supernovae: general; supernovae: individual (PTF 10vgv) ID CORE-COLLAPSE SUPERNOVAE; 25 APRIL 1998; STELLAR EVOLUTION; IB/C SUPERNOVAE; SHOCK BREAKOUT; IIB SUPERNOVA; LIGHT CURVES; STARS; EMISSION; MODELS AB We present the discovery of PTF 10vgv, a Type Ic supernova (SN) detected by the Palomar Transient Factory, using the Palomar 48 inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the SN emission from its very early phases (about two weeks before R-band maximum) and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R less than or similar to 4.5 R-circle dot (R less than or similar to 1 R-circle dot) on the radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I yields R less than or similar to 1/4 R-circle dot for the progenitor radius of this SN. C1 [Corsi, A.] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Ofek, E. O.; Gal-Yam, A.; Arcavi, I.; Ben-Ami, S.; Rabinak, I.; Xu, D.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Frail, D. A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Poznanski, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Mazzali, P. A.] INAF Osservatorio Astron, I-35122 Padua, Italy. [Mazzali, P. A.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Kulkarni, S. R.; Kasliwal, M. M.; Horesh, A.; Quimby, R. M.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Cenko, S. B.; Filippenko, A. V.; Kleiser, I. K. W.; Silverman, J. M.; Bloom, J. S.; Nugent, P. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Fox, D. B.; Howell, J. L.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Nakar, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Sari, R.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Law, N. M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. RP Corsi, A (reprint author), CALTECH, LIGO Lab, MS 100-36, Pasadena, CA 91125 USA. EM corsi@caltech.edu RI Horesh, Assaf/O-9873-2016; OI Horesh, Assaf/0000-0002-5936-1156; Gal-Yam, Avishay/0000-0002-3653-5598 FU DOE Office of Science; UT Austin; Pennsylvania State University; Stanford; Ludwig-Maximilians-Universitat Munchen; Georg-August-Universitat Gottingen; Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico; BSF; ISF; FP7/IRG; Minerva; Sieff Foundation; German-Israeli Fund (GIF); Gary & Cynthia Bengier; Richard & Rhoda Goldman Fund; TABASGO Foundation; NSF [AST-0908886, PHY-0757058]; LIGO; NASA/Swift [NNH10ZDA001N] FX We thank Boaz Katz and Eli Waxman for useful comments. PTF is a collaboration of Caltech, LCOGT, the Weizmann Institute, LBNL, Oxford, Columbia, IPAC, and UC Berkeley. Staff and computational resources were provided by NERSC, supported by the DOE Office of Science. Lick Observatory and the Kast spectrograph are operated by the University of California. HET and its LRS are supported by UT Austin, the Pennsylvania State University, Stanford, Ludwig-Maximilians-Universitat Munchen, Georg-August-Universitat Gottingen, and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. The EVLA is operated by NRAO for the NSF, under cooperative agreement by Associated Universities, Inc. We thank the staffs of the above observatories for their assistance. A. G. and S. R. K. acknowledge support from the BSF; A. G. further acknowledges support from the ISF, FP7/IRG, Minerva, the Sieff Foundation, and the German-Israeli Fund (GIF). A. V. F. and his group at UC Berkeley acknowledge generous financial assistance from Gary & Cynthia Bengier, the Richard & Rhoda Goldman Fund, the TABASGO Foundation, and NSF grant AST-0908886. A. C. acknowledges support from LIGO, which was constructed by Caltech and MIT with funding from the NSF under cooperative agreement PHY-0757058, and partial support from NASA/Swift grant NNH10ZDA001N. NR 50 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2012 VL 747 IS 1 AR L5 DI 10.1088/2041-8205/747/1/L5 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 904KB UT WOS:000301192800005 ER PT J AU Goldstein, A Burgess, JM Preece, RD Briggs, MS Guiriec, S van der Horst, AJ Connaughton, V Wilson-Hodge, CA Paciesas, WS Meegan, CA von Kienlin, A Bhat, PN Bissaldi, E Chaplin, V Diehl, R Fishman, GJ Fitzpatrick, G Foley, S Gibby, M Giles, M Greiner, J Gruber, D Kippen, RM Kouveliotou, C McBreen, S McGlynn, S Rau, A Tierney, D AF Goldstein, Adam Burgess, J. Michael Preece, Robert D. Briggs, Michael S. Guiriec, Sylvain van der Horst, Alexander J. Connaughton, Valerie Wilson-Hodge, Colleen A. Paciesas, William S. Meegan, Charles A. von Kienlin, Andreas Bhat, P. N. Bissaldi, Elisabetta Chaplin, Vandiver Diehl, Roland Fishman, Gerald J. Fitzpatrick, Gerard Foley, Suzanne Gibby, Melissa Giles, Misty Greiner, Jochen Gruber, David Kippen, R. Marc Kouveliotou, Chryssa McBreen, Sheila McGlynn, Sinead Rau, Arne Tierney, Dave TI THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: THE FIRST TWO YEARS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general; methods: data analysis ID PEAK ENERGY; BATSE OBSERVATIONS; MONITOR; TIME; SPECTROSCOPY AB We present systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center. C1 [Goldstein, Adam; Burgess, J. Michael; Preece, Robert D.; Briggs, Michael S.; Guiriec, Sylvain; Connaughton, Valerie; Paciesas, William S.; Bhat, P. N.; Chaplin, Vandiver] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [van der Horst, Alexander J.; Meegan, Charles A.] Univ Space Res Assoc, Huntsville, AL 35805 USA. [Wilson-Hodge, Colleen A.; Fishman, Gerald J.; Kouveliotou, Chryssa] NASA, Space Sci Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [von Kienlin, Andreas; Bissaldi, Elisabetta; Diehl, Roland; Foley, Suzanne; Greiner, Jochen; Gruber, David; McGlynn, Sinead; Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Fitzpatrick, Gerard; McBreen, Sheila; Tierney, Dave] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Gibby, Melissa; Giles, Misty] Jacobs Technol, Huntsville, AL 35806 USA. [Kippen, R. Marc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McGlynn, Sinead] Tech Univ Munich, Exzellenzcluster Univ, D-85748 Garching, Germany. RP Goldstein, A (reprint author), Univ Alabama, Dept Phys, 320 Sparkman Dr, Huntsville, AL 35805 USA. RI Diehl, Roland/K-4496-2016; Bissaldi, Elisabetta/K-7911-2016; OI Diehl, Roland/0000-0002-8337-9022; Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; McBreen, Sheila/0000-0002-1477-618X FU Graduate Student Researchers Program; NASA; European Union [PERG04-GA-2008-239176]; Irish Research Council for Science, Engineering, and Technology; Marie Curie Actions; German Bundesministeriums fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) [50 QV 0301, 50 OG 0502] FX A.G. acknowledges the support of the Graduate Student Researchers Program funded by NASA. S. M.B. acknowledges support of the European Union Marie Curie Reintegration Grant within the 7th Program under contract number PERG04-GA-2008-239176. S.F. acknowledges the support of the Irish Research Council for Science, Engineering, and Technology, co-funded by Marie Curie Actions under FP7. The GBM project is supported by the German Bundesministeriums fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) under the contract numbers 50 QV 0301 and 50 OG 0502. NR 36 TC 77 Z9 78 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2012 VL 199 IS 1 AR 19 DI 10.1088/0067-0049/199/1/19 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903ME UT WOS:000301119800019 ER PT J AU Paciesas, WS Meegan, CA von Kienlin, A Bhat, PN Bissaldi, E Briggs, MS Burgess, JM Chaplin, V Connaughton, V Diehl, R Fishman, GJ Fitzpatrick, G Foley, S Gibby, M Giles, M Goldstein, A Greiner, J Gruber, D Guiriec, S van der Horst, AJ Kippen, RM Kouveliotou, C Lichti, G Lin, L McBreen, S Preece, RD Rau, A Tierney, D Wilson-Hodge, C AF Paciesas, William S. Meegan, Charles A. von Kienlin, Andreas Bhat, P. N. Bissaldi, Elisabetta Briggs, Michael S. Burgess, J. Michael Chaplin, Vandiver Connaughton, Valerie Diehl, Roland Fishman, Gerald J. Fitzpatrick, Gerard Foley, Suzanne Gibby, Melissa Giles, Misty Goldstein, Adam Greiner, Jochen Gruber, David Guiriec, Sylvain van der Horst, Alexander J. Kippen, R. Marc Kouveliotou, Chryssa Lichti, Giselher Lin, Lin McBreen, Sheila Preece, Robert D. Rau, Arne Tierney, Dave Wilson-Hodge, Colleen TI THE FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST TWO YEARS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general ID SPECTRAL PROPERTIES; MONITOR; SPECTROSCOPY; BRIGHTEST; EVOLUTION; TRIGGER AB The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered GRBs, including their locations, durations, peak flux, and fluence. This catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center. C1 [Paciesas, William S.; Bhat, P. N.; Briggs, Michael S.; Burgess, J. Michael; Chaplin, Vandiver; Connaughton, Valerie; Goldstein, Adam; Guiriec, Sylvain; Lin, Lin; Preece, Robert D.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. [Meegan, Charles A.; van der Horst, Alexander J.] Univ Space Res Assoc, Huntsville, AL 35805 USA. [von Kienlin, Andreas; Diehl, Roland; Foley, Suzanne; Greiner, Jochen; Gruber, David; Lichti, Giselher; Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bissaldi, Elisabetta] Univ Innsbruck, Inst Astro & Particle Phys, A-6176 Innsbruck, Austria. [Fishman, Gerald J.; Kouveliotou, Chryssa; Wilson-Hodge, Colleen] NASA, Space Sci Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Fitzpatrick, Gerard; McBreen, Sheila; Tierney, Dave] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Gibby, Melissa; Giles, Misty] Jacobs Technol Inc, Huntsville, AL 35806 USA. [Kippen, R. Marc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Paciesas, WS (reprint author), Univ Alabama, Ctr Space Plasma & Aeron Res, 320 Sparkman Dr, Huntsville, AL 35805 USA. RI Diehl, Roland/K-4496-2016; Bissaldi, Elisabetta/K-7911-2016; OI Diehl, Roland/0000-0002-8337-9022; Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; McBreen, Sheila/0000-0002-1477-618X FU NASA; German Bundesministeriums fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) [50 QV 0301, 50 OG 0502]; European Union [PERG04-GA-2008-239176]; Irish Research Council for Science, Engineering, and Technology; Marie Curie Actions FX The GBM project is supported by NASA and by the German Bundesministeriums fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) under the contract numbers 50 QV 0301 and 50 OG 0502. A.G. acknowledges the support of the Graduate Student Researchers Program funded by NASA. S.M.B. acknowledges support of the European Union Marie Curie Reintegration Grant within the 7th Program under contract number PERG04-GA-2008-239176. S.F. acknowledges the support of the Irish Research Council for Science, Engineering, and Technology, co-funded by Marie Curie Actions under FP7. NR 22 TC 61 Z9 62 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2012 VL 199 IS 1 AR 18 DI 10.1088/0067-0049/199/1/18 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903ME UT WOS:000301119800018 ER PT J AU Ross, NP Myers, AD Sheldon, ES Yeche, C Strauss, MA Bovy, J Kirkpatrick, JA Richards, GT Aubourg, E Blanton, MR Brandt, WN Carithers, WC Croft, RAC da Silva, R Dawson, K Eisenstein, DJ Hennawi, JF Ho, S Hogg, DW Lee, KG Lundgren, B McMahon, RG Miralda-Escude, J Palanque-Delabrouille, N Paris, I Petitjean, P Pieri, MM Rich, J Roe, NA Schiminovich, D Schlegel, DJ Schneider, DP Slosar, A Suzuki, N Tinker, JL Weinberg, DH Weyant, A White, M Wood-Vasey, WM AF Ross, Nicholas P. Myers, Adam D. Sheldon, Erin S. Yeche, Christophe Strauss, Michael A. Bovy, Jo Kirkpatrick, Jessica A. Richards, Gordon T. Aubourg, Eric Blanton, Michael R. Brandt, W. N. Carithers, William C. Croft, Rupert A. C. da Silva, Robert Dawson, Kyle Eisenstein, Daniel J. Hennawi, Joseph F. Ho, Shirley Hogg, David W. Lee, Khee-Gan Lundgren, Britt McMahon, Richard G. Miralda-Escude, Jordi Palanque-Delabrouille, Nathalie Paris, Isabelle Petitjean, Patrick Pieri, Matthew M. Rich, James Roe, Natalie A. Schiminovich, David Schlegel, David J. Schneider, Donald P. Slosar, Anze Suzuki, Nao Tinker, Jeremy L. Weinberg, David H. Weyant, Anya White, Martin Wood-Vasey, W. Michael TI THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; intergalactic medium; quasars: absorption lines; quasars: general surveys; techniques: miscellaneous ID DIGITAL-SKY-SURVEY; LY-ALPHA FOREST; EFFICIENT PHOTOMETRIC SELECTION; LARGE-SCALE STRUCTURE; PROBING DARK ENERGY; QSO REDSHIFT SURVEY; WIDE-FIELD CAMERA; 7TH DATA RELEASE; LUMINOSITY FUNCTION; POWER-SPECTRUM AB The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg(2), achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Ly alpha absorption from the spectra of a sample of similar to 150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z approximate to 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg(-2) in this redshift range, with a goal of 20 out of 40 targets deg(-2) allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g <= 22.0 or r <= 21.85. While detection of the BAO signature in the distribution of Ly alpha absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg(-2), for which the selection efficiency is just over 50% (similar to 10 z > 2.20 quasars deg(-2)). This "CORE" subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg(-2), we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations based on these data, and we analyze the spectra obtained during the first year. During this year, 11,263 new z > 2.20 quasars were spectroscopically confirmed by BOSS, roughly double the number of previously known quasars with z > 2.20. Our current algorithms select an average of 15 z > 2.20 quasars deg(-2) from 40 targets deg(-2) using single-epoch SDSS imaging. Multi-epoch optical data and data at other wavelengths can further improve the efficiency and completeness of BOSS QTS. C1 [Ross, Nicholas P.; Kirkpatrick, Jessica A.; Carithers, William C.; Ho, Shirley; Roe, Natalie A.; Schlegel, David J.; Suzuki, Nao; White, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ross, Nicholas P.; Brandt, W. N.; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Myers, Adam D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Sheldon, Erin S.; Slosar, Anze] Brookhaven Natl Lab, Upton, NY 11375 USA. [Yeche, Christophe; Aubourg, Eric; Palanque-Delabrouille, Nathalie; Rich, James] CEA, IRFU, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Strauss, Michael A.; Lee, Khee-Gan] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bovy, Jo; Blanton, Michael R.; Hogg, David W.; Tinker, Jeremy L.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Kirkpatrick, Jessica A.; White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Aubourg, Eric] Univ Paris 07, CNRS, IN2P3, Observ Paris,APC,CEA, Paris, France. [Croft, Rupert A. C.] Carnegie Mellon Univ, Bruce & Astrid McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [da Silva, Robert] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dawson, Kyle] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Eisenstein, Daniel J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Eisenstein, Daniel J.] Harvard Coll Observ, Cambridge, MA 02138 USA. [Hennawi, Joseph F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lundgren, Britt] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [McMahon, Richard G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Miralda-Escude, Jordi] Inst Catalana Recerca & Estudis Avancats, Barcelona, Catalonia, Spain. [Miralda-Escude, Jordi] Univ Barcelona IEEC, Inst Ciencies Cosmos, Barcelona 08028, Catalonia, Spain. [Paris, Isabelle; Petitjean, Patrick] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Paris, Isabelle; Petitjean, Patrick] CNRS, F-75014 Paris, France. [Pieri, Matthew M.; Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Pieri, Matthew M.; Weinberg, David H.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Pieri, Matthew M.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Weyant, Anya; Wood-Vasey, W. Michael] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Ross, NP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM npross@lbl.gov RI Ho, Shirley/P-3682-2014; White, Martin/I-3880-2015; Brandt, William/N-2844-2015; Croft, Rupert/N-8707-2014; OI Ho, Shirley/0000-0002-1068-160X; White, Martin/0000-0001-9912-5070; Brandt, William/0000-0002-0167-2453; Croft, Rupert/0000-0003-0697-2583; Miralda-Escude, Jordi/0000-0002-2316-8370; Bovy, Jo/0000-0001-6855-442X; McMahon, Richard/0000-0001-8447-8869; Hogg, David/0000-0003-2866-9403 FU National Science Foundation [AST-0607634]; NASA [NNX08AJ28G, NNX08AJ48G]; NSF [AST-0908357, AST-0707266]; NOAO [2008B-0282]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy FX We kindly thank Nurten Filiz Ak for providing us with the variable BAL information and spectra shown in Figure 15. This work was partially supported by the National Science Foundation grant AST-0607634 (N.P.R. and D.P.S.). A.D.M. was partially supported by NASA (grant NNX08AJ28G) and is a research fellow of the Alexander von Humboldt Foundation. J.B. was partially supported by NASA (grant NNX08AJ48G) and the NSF (grant AST-0908357). M.A.S. acknowledges the support of NSF grant AST-0707266. N.P.R. thanks Gabor Worseck, Nick Mostek, and Anna Rosen for helpful discussions.; The observations reported here were obtained in part at the MMT Observatory, a facility operated jointly by the Smithsonian Institution and the University of Arizona. Some MMT telescope time was granted by NOAO (program 2008B-0282), through the Telescope System Instrumentation Program (TSIP). TSIP is funded by NSF.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy. The SDSS-III Web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 107 TC 120 Z9 120 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2012 VL 199 IS 1 AR 3 DI 10.1088/0067-0049/199/1/3 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903ME UT WOS:000301119800003 ER PT J AU Wakelam, V Herbst, E Loison, JC Smith, IWM Chandrasekaran, V Pavone, B Adams, NG Bacchus-Montabonel, MC Bergeat, A Beroff, K Bierbaum, VM Chabot, M Dalgarno, A van Dishoeck, EF Faure, A Geppert, WD Gerlich, D Galli, D Hebrard, E Hersant, F Hickson, KM Honvault, P Klippenstein, SJ Le Picard, S Nyman, G Pernot, P Schlemmer, S Selsis, F Sims, IR Talbi, D Tennyson, J Troe, J Wester, R Wiesenfeld, L AF Wakelam, V. Herbst, E. Loison, J. -C. Smith, I. W. M. Chandrasekaran, V. Pavone, B. Adams, N. G. Bacchus-Montabonel, M. -C. Bergeat, A. Beroff, K. Bierbaum, V. M. Chabot, M. Dalgarno, A. van Dishoeck, E. F. Faure, A. Geppert, W. D. Gerlich, D. Galli, D. Hebrard, E. Hersant, F. Hickson, K. M. Honvault, P. Klippenstein, S. J. Le Picard, S. Nyman, G. Pernot, P. Schlemmer, S. Selsis, F. Sims, I. R. Talbi, D. Tennyson, J. Troe, J. Wester, R. Wiesenfeld, L. TI A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE astrochemistry; astronomical databases: miscellaneous; ISM: abundances; ISM: molecules ID DENSE INTERSTELLAR CLOUDS; GAS-PHASE REACTIONS; ION-MOLECULE REACTIONS; ASSOCIATION RATE COEFFICIENTS; NEUTRAL-NEUTRAL REACTIONS; MONTE-CARLO SIMULATIONS; CARBON-CHAIN ANIONS; DISSOCIATIVE RECOMBINATION; RATE CONSTANTS; AB-INITIO AB We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of zero-dimensional and one-dimensional interstellar sources. C1 [Wakelam, V.; Pavone, B.; Hebrard, E.; Hersant, F.; Selsis, F.] Univ Bordeaux, LAB, UMR 5804, F-33270 Floirac, France. [Wakelam, V.; Pavone, B.; Hebrard, E.; Hersant, F.; Selsis, F.] CNRS, LAB, UMR 5804, F-33270 Floirac, France. [Herbst, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Herbst, E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Herbst, E.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Loison, J. -C.; Chandrasekaran, V.; Bergeat, A.; Hickson, K. M.] Univ Bordeaux, CNRS, ISM, UMR 5255, F-33400 Talence, France. [Smith, I. W. M.] Univ Cambridge, Chem Lab, Cambridge CB2 1EW, England. [Adams, N. G.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. [Bacchus-Montabonel, M. -C.] Univ Lyon 1, CNRS, LASIM, UMR5579, F-69622 Villeurbanne, France. [Beroff, K.] CNRS, Inst Sci Mol Orsay, F-91405 Orsay, France. [Pernot, P.] Univ Paris 11, Chim Phys Lab, CNRS, UMR 8000, F-91405 Orsay, France. [Herbst, E.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Bierbaum, V. M.] Univ Colorado, Dept Chem & Biochem, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Chabot, M.] IN2P3 CNRS, Intitut Phys Nucl Orsay, F-91406 Orsay, France. [Chabot, M.] Univ Paris 11, F-91406 Orsay, France. [Dalgarno, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [van Dishoeck, E. F.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Faure, A.; Wiesenfeld, L.] UJF Grenoble 1 CNRS, IPAG, UMR 5274, F-38041 Grenoble, France. [Geppert, W. D.] Univ Stockholm, Dept Phys, S-10691 Stockholm, Sweden. [Gerlich, D.] Tech Univ Chemnitz, Dept Phys, D-09107 Chemnitz, Germany. [Galli, D.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Honvault, P.] Univ Bourgogne, CNRS, Lab Interdisciplinaire Carnot Bourgogne, UMR 5209, F-21078 Dijon, France. [Honvault, P.] Univ Franche Compte, UFR Sci & Tech, F-25030 Besancon, France. [Klippenstein, S. J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Le Picard, S.; Sims, I. R.] Univ Rennes 1, Equipe Astrochim Expt, Inst Phys Rennes, CNRS,UMR 6251, F-35042 Rennes, France. [Nyman, G.] Univ Gothenburg, Dept Chem, S-41296 Gothenburg, Sweden. [Schlemmer, S.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Talbi, D.] Univ Montpellier 2, CNRS, GRAAL, UMR 5024, F-34095 Montpellier, France. [Tennyson, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Troe, J.] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany. [Troe, J.] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany. [Wester, R.] Univ Innsbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria. RP Wakelam, V (reprint author), Univ Bordeaux, LAB, UMR 5804, F-33270 Floirac, France. RI Bergeat, Astrid/K-6780-2016; Hickson, Kevin/A-2443-2012; Nyman, Gunnar/B-1705-2009; bacchus, marie christine/F-4020-2010; PERNOT, Pascal/C-2643-2008; Tennyson, Jonathan/I-2222-2012; Wester, Roland/J-6293-2012; HONVAULT, Pascal/B-2993-2010; Chandrasekaran, Vijayanand/E-7341-2011; HEBRARD, Eric/E-9257-2014; Sims, Ian/F-8989-2014; LE PICARD, Sebastien/N-1668-2014; Schlemmer, Stephan/E-2903-2015 OI Klippenstein, Stephen/0000-0001-6297-9187; Galli, Daniele/0000-0001-7706-6049; Wakelam, Valentine/0000-0001-9676-2605; Bergeat, Astrid/0000-0002-3961-5710; Hickson, Kevin/0000-0001-8317-2606; bacchus, marie christine/0000-0002-0958-2380; PERNOT, Pascal/0000-0001-8586-6222; Tennyson, Jonathan/0000-0002-4994-5238; Wester, Roland/0000-0001-7935-6066; HONVAULT, Pascal/0000-0001-6857-5511; Chandrasekaran, Vijayanand/0000-0002-8314-8611; HEBRARD, Eric/0000-0003-0770-7271; Sims, Ian/0000-0001-7870-1585; Schlemmer, Stephan/0000-0002-1421-7281 FU European Research Council (ERC) [209622: E3ARTHs]; Agence Nationale de la Recherche [ANR-JC08_311018: EMA:INC]; European program Astronet (CATS); VAMDC and EUROPLANET; Combination of Collaborative Projects and Coordination; Support Actions Funding Scheme of The Seventh Framework Program [Call topic: INFRA-2008-1.2.2, 239108]; EUROPLANET RI [228319]; NASA-PATM [NNH09AK24I] FX The KIDA team acknowledges various sources of funding, which have allowed us to develop this database. These sources include The University of Bordeaux, The "Institut de Physique Fondamentale de Bordeaux," the CNRS/INSU (PCMI, PNP, and ASOV), and The Observatoire Aquitain des Sciences de l'Univers. We acknowledge support from the European Research Council (ERC Grant 209622: E3ARTHs), the Agence Nationale de la Recherche (ANR-JC08_311018: EMA:INC), the European program Astronet (CATS project), and the European Seventh Framework Programme (FP7: VAMDC and EUROPLANET projects). VAMDC is funded under the Combination of Collaborative Projects and Coordination and Support Actions Funding Scheme of The Seventh Framework Program (Call topic: INFRA-2008-1.2.2, Grant Agreement number: 239108). The EUROPLANET RI (Research Infrastructure) is funded under the Grant Agreement number: 228319. The International Space Science Institute provided some of the KIDA team members with the opportunity to start this project in the context of the international team with the title " New generation of databases for interstellar chemical modeling in preparation for HSO and ALMA." V.W. and I.W.M.S. thank the Royal Society for its financial support of their collaboration. V.W. is grateful to all the participants of the project who helped design the data model of the database. V. W. also thanks Franck Le Petit for helpful discussions on the rate coefficients for photodissociation induced by cosmic rays. E.H. thanks the National Science Foundation (US) for his program in astrochemistry and NASA for the study of pre-planetary matter. N.G.A. thanks NASA for support of his experimental program. S.J.K. acknowledges support through NASA-PATM grant number NNH09AK24I. The anonymous referee is thanked for his/her useful comments, which helped to improve the quality of the paper. NR 146 TC 161 Z9 161 U1 9 U2 91 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2012 VL 199 IS 1 AR 21 DI 10.1088/0067-0049/199/1/21 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903ME UT WOS:000301119800021 ER PT J AU Satsoura, D Kucerka, N Shivakumar, S Pencer, J Griffiths, C Leber, B Andrews, DW Katsaras, J Fradin, C AF Satsoura, Dmitri Kucerka, Norbert Shivakumar, Sanjeevan Pencer, Jeremy Griffiths, Corrie Leber, Brian Andrews, David W. Katsaras, John Fradin, Cecile TI Interaction of the full-length Bax protein with biomimetic mitochondrial liposomes: A small-angle neutron scattering and fluorescence study SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Article DE Apoptosis; Bcl-2 family protein; Bax; FCS; FIDA; SANS ID MONTE-CARLO SIMULATIONS; CYTOCHROME-C RELEASE; BCL-2 FAMILY; CORRELATION SPECTROSCOPY; CONFORMATIONAL-CHANGE; LIPID-BILAYERS; PORE FORMATION; CELL-DEATH; ANTIMICROBIAL PEPTIDES; PHOSPHOLIPID-VESICLES AB In response to apoptotic stimuli, the pro-apoptotic protein Bax inserts in the outer mitochondrial membrane, resulting in the formation of pores and the release of several mitochondrial components, and sealing the cell's fate. To study the binding of Bax to membranes, we used an in vitro system consisting of 50 nm diameter liposomes prepared with a lipid composition mimicking that of mitochondrial membranes in which recombinant purified full-length Bax was inserted via activation with purified tBid. We detected the association of the protein with the membrane using fluorescence fluctuation methods, and found that it could well be described by an equilibrium between soluble and membrane-bound Box and that at a high protein-to-liposome ratio the binding seemed to saturate at about 15 Bax proteins per 50 nm diameter liposome. We then obtained structural data for samples in this saturated binding regime using small-angle neutron scattering under different contrast matching conditions. Utilizing a simple model to fit the neutron data, we observed that a significant amount of the protein mass protrudes above the membrane, in contrast to the conjecture that all of the membrane-associated Bax states are umbrella-like. Upon protein binding, we also observed a thinning of the lipid bilayer accompanied by an increase in liposome radius, an effect reminiscent of the action of antimicrobial peptides on membranes. (C) 2011 Elsevier B.V. All rights reserved. C1 [Fradin, Cecile] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Satsoura, Dmitri; Shivakumar, Sanjeevan; Griffiths, Corrie; Leber, Brian; Andrews, David W.; Fradin, Cecile] McMaster Univ, Hlth Sci Ctr, Dept Biochem & Biomed Sci, Hamilton, ON L8N 3Z5, Canada. [Kucerka, Norbert; Pencer, Jeremy; Katsaras, John] CNR, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1J0, Canada. [Leber, Brian] McMaster Univ, Dept Med, Hlth Sci Ctr, Hamilton, ON L8N 3Z5, Canada. [Katsaras, John] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Fradin, C (reprint author), McMaster Univ, Dept Phys & Astron, 1280 Main St W, Hamilton, ON L8S 4M1, Canada. EM fradin@physics.mcmaster.ca OI Pencer, Jeremy/0000-0002-1796-0230; Andrews, David/0000-0002-9266-7157; Katsaras, John/0000-0002-8937-4177 FU Canadian Institutes of Health Research (CIHR) [FRN-86657]; Natural Sciences and Engineering Research Council (NSERC) FX We thank Dr. Boualem Hammouda for help on the NG3 beamline at NIST, and Dr. William Heller for help on the Bio-SANS instrument at ORNL. This work was funded by the Canadian Institutes of Health Research (CIHR), grant FRN-86657. C.F. is the recipient of a Canada Research Chair funded by the Natural Sciences and Engineering Research Council (NSERC). D.W.A is the recipient of a Tier 1 Canada Research Chair funded by the CIHR. NR 89 TC 15 Z9 16 U1 1 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD MAR PY 2012 VL 1818 IS 3 BP 384 EP 401 DI 10.1016/j.bbamem.2011.10.007 PG 18 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 903XI UT WOS:000301155600005 PM 22037145 ER PT J AU Bazarov, AV Lee, WJ Bazarov, I Bosire, M Hines, WC Stankovich, B Chicas, A Lowe, SW Yaswen, P AF Bazarov, Alexey V. Lee, Won Jae Bazarov, Irina Bosire, Moses Hines, William C. Stankovich, Basha Chicas, Agustin Lowe, Scott W. Yaswen, Paul TI The specific role of pRb in p16(INK4A)-mediated arrest of normal and malignant human breast cells SO CELL CYCLE LA English DT Article DE breast cancer; senescence; retinoblastoma; p130; p107 ID MAMMARY EPITHELIAL-CELLS; CELLULAR SENESCENCE; RETINOBLASTOMA GENE; TUMOR-SUPPRESSOR; DNA-DAMAGE; IMMORTALIZATION; MECHANISMS; COMPOUND; PROTEINS; FAMILY AB RB family proteins pRb, p107 and p130 have similar structures and overlapping functions, enabling cell cycle arrest and cellular senescence. pRb, but not p107 or p130, is frequently mutated in human malignancies. In human fibroblasts acutely exposed to oncogenic ras, pRb has a specific role in suppressing DNA replication, and p107 or p130 cannot compensate for the loss of this function; however, a second p53/p21-dependent checkpoint prevents escape from growth arrest. This model of oncogene-induced senescence requires the additional loss of p53/p21 to explain selection for preferential loss of pRb function in human malignancies. We asked whether similar rules apply to the role of pRb in growth arrest of human epithelial cells, the source of most cancers. In two malignant human breast cancer cell lines, we found that individual RB family proteins were sufficient for the establishment of p16-initiated senescence, and that growth arrest in G 1 was not dependent on the presence of functional pRb or p53. However, senescence induction by endogenous p16 was delayed in primary normal human mammary epithelial cells with reduced pRb but not with reduced p107 or p130. Thus, under these circumstances, despite the presence of functional p53, p107 and p130 were unable to completely compensate for pRb in mediating senescence induction. We propose that early inactivation of pRb in pre-malignant breast cells can, by itself, extend proliferative lifespan, allowing acquisition of additional changes necessary for malignant transformation. C1 [Bazarov, Alexey V.; Lee, Won Jae; Bazarov, Irina; Bosire, Moses; Hines, William C.; Stankovich, Basha; Yaswen, Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Bazarov, Alexey V.] Univ Calif San Francisco, Dept Med, San Francisco, CA USA. [Chicas, Agustin; Lowe, Scott W.] Sloan Kettering Inst Canc Res, Canc Biol & Genet Program, New York, NY USA. RP Yaswen, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM P_Yaswen@lbl.gov FU Flight Attendant Medical Research Institute [032122]; Komen for the Cure [BCTR0707231]; Breast Cancer and the Environment Research Project [U01 ES019458]; Office of Energy Research, Office of Health and Biological Research, US Department of Energy [DEAC02-05CH11231] FX We thank Pfizer Inc., for providing the specific CDK4 inhibitor, PD-332991. This work was supported by Flight Attendant Medical Research Institute Young Clinical Investigator Award 032122 (A. V. B.), Komen for the Cure Research Grant BCTR0707231 (A. V. B.), Breast Cancer and the Environment Research Project U01 ES019458 (P.Y.), and the Office of Energy Research, Office of Health and Biological Research, US Department of Energy under Contract No. DEAC02-05CH11231 (P.Y.). NR 27 TC 16 Z9 16 U1 0 U2 7 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1538-4101 J9 CELL CYCLE JI Cell Cycle PD MAR 1 PY 2012 VL 11 IS 5 BP 1008 EP 1013 DI 10.4161/cc.11.5.19492 PG 6 WC Cell Biology SC Cell Biology GA 901TM UT WOS:000300989700029 PM 22333593 ER PT J AU Smith, RD AF Smith, Richard D. TI Mass Spectrometry in Biomarker Applications: From Untargeted Discovery to Targeted Verification, and Implications for Platform Convergence and Clinical Application SO CLINICAL CHEMISTRY LA English DT Article ID MS C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 7 TC 13 Z9 13 U1 0 U2 4 PU AMER ASSOC CLINICAL CHEMISTRY PI WASHINGTON PA 2101 L STREET NW, SUITE 202, WASHINGTON, DC 20037-1526 USA SN 0009-9147 J9 CLIN CHEM JI Clin. Chem. PD MAR PY 2012 VL 58 IS 3 BP 528 EP 530 DI 10.1373/clinchem.2011.180596 PG 3 WC Medical Laboratory Technology SC Medical Laboratory Technology GA 901AU UT WOS:000300934900011 PM 22194635 ER PT J AU Lunghi, E Soni, A AF Lunghi, Enrico Soni, Amarjit TI Demise of CKM and its aftermath SO COMPTES RENDUS PHYSIQUE LA English DT Article DE Flavour physics; LHCb; Super-B factories ID CP-VIOLATION; LEADING LOGARITHMS; MASS DIFFERENCE; QCD CORRECTIONS; STANDARD MODEL; DECAYS; PHYSICS; SIN(2-BETA); ASYMMETRIES; QUARK AB Using firmly established experimental inputs such as is an element of(K). Delta M-d. Delta Ms. Br(B -> tau v). gamma. V-cb along with corresponding lattice matrix elements which have been well studied and are in full QCD such as B-K. SU(3) breaking ratio xi, B-Bs and in particular without using V-ub or the pseudoscalar decay constants f(Bd) or f(Bs) from the lattice, we show that the CKM-paradigm now appears to be in serious conflict with the data. Specifically the SM predicted value of sin 2 beta seems too high compared to direct experimental measured value by over 3 sigma. Furthermore, our study shows that new physics predominantly effects B-mixings and B-d ->Psi K-s, and not primarily in kaon-mixing or in B -> tau v. Model independent operator analysis suggests the scale of underlying new physics, accompanied by a BSM CP-odd phase, responsible for breaking of the SM is less than a few TeV, possibly as low as a few hundred GeV. (C) 2011 Published by Elsevier Masson SAS on behalf of Academie des sciences. C1 [Lunghi, Enrico] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Lunghi, E (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. EM elunghi@indiana.edu; soni@bnl.gov FU U.S. DOE [DE-AC02-98CH10886] FX We want to thank Jean-Marie Frere, Maurizio Pierini, Yuval Grossman, Uli Haisch and Alexander Khodjamirian for discussions and suggestions. This research was supported in part by the U.S. DOE contract No. DE-AC02-98CH10886 (BNL). NR 49 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0705 EI 1878-1535 J9 CR PHYS JI C. R. Phys. PD MAR PY 2012 VL 13 IS 2 BP 152 EP 158 DI 10.1016/j.crhy.2011.11.007 PG 7 WC Astronomy & Astrophysics; Physics, Multidisciplinary SC Astronomy & Astrophysics; Physics GA 902KT UT WOS:000301037700010 ER PT J AU Lin, QY Li, QA Gray, KE Mitchell, JF AF Lin, Qiyin Li, Qing'an Gray, Kenneth E. Mitchell, John F. TI Vapor Growth and Chemical Delithiation of Stoichiometric LiCoO2 Crystals SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SINGLE-CRYSTALS; STRUCTURE REFINEMENT; ELECTRONIC-STRUCTURE; LITHIUM INSERTION/EXTRACTION; OXIDE CATHODES; SOLID-SOLUTION; LIXCOO2; CONDUCTIVITY; TRANSITION; DIFFRACTION AB Single crystals of LiCoO2 have been grown by a vapor transport method at high temperature and normal atmospheric pressure. The plate-like single crystals have large (00l) facets (up to 1 mm(2)) and thicknesses ranging from 5 to 50 mu m. A single-crystal X-ray diffraction study confirmed the trigonal R (3) over barm space group with lattice parameters a = 2.8150(3) angstrom and c = 14.0516(6) angstrom at room temperature. Electrical transport measurements indicated that as-grown crystals are highly insulating, with electrical resistivity in the order of T Omega cm at room temperature. This contrasts with the value of 5 Omega cm previously reported for a flux-grown crystal and suggests that vapor growth crystals may have fewer defects. Li-ion deintercalation of LiCoO2 crystals was carried out by a chemical extraction process. A quasi-in situ XRD approach was utilized to monitor the structural evolution during the Li-ion extraction process, which exhibited the progression of phases widely established for this system, but also shows evidence of inhomogeneous delithiation mechanism. Transport measurements confirm metallic behavior for delithiated LixCoO2 crystals (0.5 < x < 1.0) with anomalies in the temperature of 150-180 K. C1 [Lin, Qiyin; Li, Qing'an; Gray, Kenneth E.; Mitchell, John F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Lin, QY (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM linqiyin@gmail.com RI HU, Chenglin/A-5284-2010; Li, Qingan/L-3778-2013 FU U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH211357] FX This manuscript was created by UChicago Argonne, ILC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under contract no. DE-AC02-06CH211357. We thank Melanie Francisco for assistance with single-crystal diffraction. NR 37 TC 11 Z9 11 U1 0 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAR PY 2012 VL 12 IS 3 BP 1232 EP 1238 DI 10.1021/cg201238n PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 903EK UT WOS:000301098700027 ER PT J AU Banga, D Lensch-Falk, JL Medlin, DL Stavila, V Yang, NYC Robinson, DB Sharma, PA AF Banga, Dhego Lensch-Falk, Jessica L. Medlin, Douglas L. Stavila, Vitalie Yang, Nancy Y. C. Robinson, David B. Sharma, Peter A. TI Periodic Modulation of Sb Stoichiometry in Bi2Te3/Bi2-xSbxTe3 Multi layers Using Pulsed Electrodeposition SO CRYSTAL GROWTH & DESIGN LA English DT Article ID NANOWIRE ARRAYS; THIN-FILM; SUPERLATTICE NANOWIRES; BISMUTH TELLURIDE; BI2TE3; ALLOYS; SB2TE3; ELECTROCRYSTALLIZATION; THERMOELECTRICS; ELECTROLYTES AB Thin film Bi2Te3/Sb2Te3 multilayers are thought to possess a high thermoelectric figure of merit. Our work describes how multilayers can be fabricated using electrodeposition, an inexpensive and scalable synthesis route. We address the challenge of simultaneously maintaining satisfactory stoichiometry, crystallinity, and scalability for this complex structure. We have synthesized Bi2Te3/Bi2-xSbxTe3 multilayers by pulsed potentiostatic electrodeposition from a single bath of an acidic aqueous electrolyte over a cm(2) area. Cyclic voltammetry studies of the Bi/Sb/Te bath revealed two distinct potentials that resulted in the deposition of Bi2Te3 and (Bi1-xSbx)(2)Te-3. Scanning transmission electron microscopy for our multilayers shows layer periodicity in the 10-30 nm range. Grazing incidence X-ray diffraction measurements show that the multilayer films possessed a {015} texture across the entire cm(2) substrate. Proper choice of pulse parameters can significantly improve the stoichiometry, crystallography, and microstructure of our films. C1 [Banga, Dhego; Lensch-Falk, Jessica L.; Medlin, Douglas L.; Stavila, Vitalie; Yang, Nancy Y. C.; Robinson, David B.; Sharma, Peter A.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Sharma, PA (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM pasharm@sandia.gov RI Sharma, Peter/G-1917-2011; Stavila, Vitalie/B-6464-2008 OI Sharma, Peter/0000-0002-3071-7382; Stavila, Vitalie/0000-0003-0981-0432 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia LDRD Office FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Support was provided by the Sandia LDRD Office. NR 56 TC 13 Z9 13 U1 2 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAR PY 2012 VL 12 IS 3 BP 1347 EP 1353 DI 10.1021/cg2014418 PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 903EK UT WOS:000301098700040 ER PT J AU Hou, Y Rodriguez, MA Nyman, M AF Hou, Yu Rodriguez, Mark A. Nyman, May TI Cation-Bonding and Protonation of the Fe-4-Square Cluster SO CRYSTAL GROWTH & DESIGN LA English DT Article ID RARE-EARTH-ELEMENTS; MOLECULAR-STRUCTURE; MAGNETIC-PROPERTIES; AQUEOUS-SOLUTION; OXIDE SURFACES; ADSORPTION; POLYOXOCATION; COMPLEXES; IRON(III); OXO AB The synthesis and characterization of discrete, molecular iron-oxo clusters is pursued in the interest of molecular magnets, bioinspired materials and models for the geochemical aqueous-mineral interface. Iron-oxo clusters are challenging to synthesize in water, due to the extremely acidic and reactive nature of dissolved iron species, and thus require chelating ligands to passivate and neutralize the cluster surface. The 2-hydroxy-1,3-N,N,N',N'-diamino-propanetetraacetic acid (HPDTA) ligand has been used to isolate several Al and Fe cluster geometries, including the square clusters Fe-4(HPDTA)(2) and Al-4(HPDTA)(2). While prior reports on the Fe-4(HPDTA)(2) cluster have focused on the magnetic properties, no solution characterization has been carried out. Using electrospray ionization mass-spectrometry (ESI-MS) we show this anionic Fe-4(HPDTA)(2) cluster can be dissolved intact in water, and recrystallized with virtually any metal as a countercation. The bonding of the metal cation to the square face of the cluster trends with ionic radii of the cations, as shown by structural characterization of Fe-4(HPDTA)(2) with Li+, Na+, Cs+, Mg2+,Ba2+, La3+, Eu3+, and Zn2+. This trend is similar to that observed for association of cations on metal oxide surfaces in the environment. Furthermore, protonation of the bridging oxo ligands of this series of Fe-4(HPDTA)(2) clusters is variable (0, 1, or 2 protons), and structures as a function of protonation is discussed. This paper, largely structural in nature, sets the foundation for future aqueous phase studies of iron-oxo molecular clusters as models for the oxide-water interface in the natural aqueous environment. C1 [Hou, Yu; Rodriguez, Mark A.; Nyman, May] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nyman, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mdnyman@sandia.gov RI Hou, Yu/H-1121-2012 FU U.S. DOE; BES; Geosciences research; National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. DOE, BES, Geosciences research. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. We thank the Indiana University and Advanced Photon Source (APS) beamline 1S-1D B ChemMatCARS SCrAPS mail in service for data collection on Eu-Fe4, and La-Fe4. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 54 TC 4 Z9 4 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAR PY 2012 VL 12 IS 3 BP 1422 EP 1431 DI 10.1021/cg2015397 PG 10 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 903EK UT WOS:000301098700051 ER PT J AU Malaestean, IL Kutluca-Alici, M Ellern, A van Leusen, J Schilder, H Speldrich, M Baca, SG Kogerler, P AF Malaestean, Iurie L. Kutluca-Alici, Meliha Ellern, Arkady van Leusen, Jan Schilder, Helmut Speldrich, Manfred Baca, Svetlana G. Koegerler, Paul TI Linear, Zigzag, and Helical Cerium(III) Coordination Polymers SO CRYSTAL GROWTH & DESIGN LA English DT Article ID RARE-EARTH COMPLEXES; SADDLE-LIKE CORE; CRYSTAL-STRUCTURE; STRUCTURAL SYSTEMATICS; CORROSION-INHIBITORS; MAGNETIC-PROPERTIES; CE; CLUSTERS; ACETATES; FAMILY AB Five novel one-dimensional cerium(III) carboxylate coordination polymers, [Ce(O2CCH2CHMe2)(3)(EtOH)(2)](n) (1), {[Ce(O2CCH2Me)(3)(H2O)]center dot 0.5(4,4'-bpy)}(n) (2; 4,4'-bpy = 4,4'-bipyridine), {[Ce-2(O2CCHMe2)(6)(H2O)(3)]}(n) (3), {[Ce-3(O2CCHMe2)(9)(nPrOH)(4)]}(n) (4), and {[Ce-3(O2CCHMe2)(9)(HO2CCHMe2)(2-)(H2O)(2)]center dot 2Me(2)CHCO(2)H}(n) (5), showcase the surprisingly consistent tendency of Ce(III) coordination network structures to adopt one-dimensional connection modes. The type of carboxylate as well as the reaction solvents determines the exact bridging versus end-on coordination modes for the carboxylates and, in turn, discriminate between linear, zigzag, and helical arrangements. Detailed magnetochemical analyses reveal pronounced single-ion effects and the expected weak antiferromagnetic coupling. C1 [Malaestean, Iurie L.; Kutluca-Alici, Meliha; van Leusen, Jan; Schilder, Helmut; Speldrich, Manfred; Baca, Svetlana G.; Koegerler, Paul] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany. [Ellern, Arkady] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kogerler, P (reprint author), Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany. EM paul.koegerler@ac.rwth-aachen.de RI Baca, Svetlana/J-9336-2012; Speldrich, Manfred/P-3615-2016; Kogerler, Paul/H-5866-2013 OI Baca, Svetlana/0000-0002-2121-2091; Speldrich, Manfred/0000-0002-8626-6410; Kogerler, Paul/0000-0001-7831-3953 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX We thank Yutian Wang for collecting crystallographic data sets for compounds 1, 3, and S. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 44 TC 14 Z9 14 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD MAR PY 2012 VL 12 IS 3 BP 1593 EP 1602 DI 10.1021/cg2016337 PG 10 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 903EK UT WOS:000301098700071 ER PT J AU Goldsborough, SS Johnson, MV Zhu, GS Aggarwal, SK AF Goldsborough, S. S. Johnson, M. V. Zhu, G. S. Aggarwal, S. K. TI Fuel and diluent property effects during wet compression of a fuel aerosol under RCM conditions SO FUEL LA English DT Article DE Wet compression; Droplet evaporation; Aerosol RCM; Transient model; Diesel-surrogate ID EQUATION-OF-STATE; LIQUID N-HEPTANE; DROPLET EVAPORATION; THERMAL CONDUCTIVITY; DENSITY-MEASUREMENTS; BACKGROUND GAS; HCCI ENGINE; SHOCK-TUBE; COMBUSTION; PRESSURE AB Wet compression of fuel aerosols has been proposed as a means of creating gas-phase mixtures of involatile diesel-representative fuels and oxidizer + diluent gases for rapid compression machine (RCM) experiments. The intent of this study is to investigate the effects of fuel and diluent gas properties on the wet compression process, specifically to: (a) explore a range of fuels which could have applicability in aerosol RCM experiments, and illustrate important limitations due to fuel properties, and (b) fundamentally understand how fuel and diluent gas properties affect the wet compression process and assess which ones are most important. Insight gained from this work can be utilized to aid the design and successful operation of aerosol RCMs. A spherically-symmetric, single-droplet wet compression model is used where n-heptane, n-dodecane, 2,2,4,4,6,8,8-heptamethylnonane (isocetane), n-hexadecane (cetane) and n-eicosane are investigated as the diesel-representative fuels, while comparisons are made to water droplets. Nitrogen, neon and argon are selected as the gas-phase diluents while the oxidizer is considered to be oxygen at atmospheric concentrations. Initial droplet diameters of d(0) = 3 and 8 mu m are used based on results of previous studies where the overall compression time is set to 15.3 ms with the maximum volumetric compression ratio 13.4. An overall equivalence ratio of phi = 1.0 is used. It is shown that under these conditions, involatile fuels up to similar to n-hexadecane appear to be candidates for aerosol RCM experiments. However, the use of small droplets (d(0) < 5 mu m) will be necessary in order to ensure complete vaporization and adequate gas-phase mixing in advance of low temperature chemical reactivity. Fuels with higher boiling points might not be useable unless extremely small droplets (d(0) < 1 mu m) and low pressures (e. g., P-0 < 0.5 bar) are employed along with longer compression times. In addition, the boiling curve (i.e., saturation pressure) and L-f are found to be the dominant fuel properties while the density-weighted mass diffusivity, rho D-g(g), which controls the rate of gas phase mass diffusion, and thus compositional stratification, generally plays a secondary role. The heat capacity and molar mass are the dominant diluent properties that affect the near-droplet and 'far-field' conditions. The gas-phase mixture Lewis number (Le(g)) contributes to either greater compositional (Le(g) > 1) or thermal (Le(g) < 1) stratification. For large hydrocarbons and oxygenated hydrocarbons that are representative of diesel fuels Le(g) similar to 3-5, and therefore compositional stratification could be significant; this characteristic has the potential to complicate interpretation of ignition/oxidation data acquired from these machines. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Goldsborough, S. S.] Marquette Univ, Dept Mech Engn, Milwaukee, WI 53201 USA. [Johnson, M. V.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Zhu, G. S.] DTNA Detroit Diesel Corp, HDEP Performance & Emiss, Detroit, MI 48239 USA. [Aggarwal, S. K.] Univ Illinois, Engn Res Facil 1030, Dept Mech & Ind Engn, Chicago, IL 60607 USA. RP Goldsborough, SS (reprint author), Marquette Univ, Dept Mech Engn, POB 1881, Milwaukee, WI 53201 USA. EM scott.goldsborough@mu.edu FU NSF [OCI-0923037, CBET-0968080] FX Professor Rolf Reitz at the University of Wisconsin Engine Research Center is thanked for his assistance in locating a copy of the original source code for the transient droplet evaporation model. Funding for this work has been provided in part through NSF OCI-0923037 and CBET-0968080, where the simulations were conducted using Marquette University's Pere Computing Cluster. NR 59 TC 3 Z9 3 U1 2 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAR PY 2012 VL 93 IS 1 BP 454 EP 467 DI 10.1016/j.fuel.2011.06.027 PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 882DJ UT WOS:000299541400055 ER PT J AU Kook, S Pickett, LM AF Kook, Sanghoon Pickett, Lyle M. TI Liquid length and vapor penetration of conventional, Fischer-Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions SO FUEL LA English DT Article DE Jet fuel; Diesel engine; Liquid length; Vapor penetration; Spreading angle ID DIMETHYL ETHER; DIESEL SPRAYS; IGNITION; ENGINE; COMBUSTION; DENSITY AB Considering liquid fuels from a variety of feedstocks and refinement processes, evaporating sprays of various fuels are investigated in a constant-volume chamber at ambient and injection conditions typical of a diesel engine. For diesel sprays, the liquid phase of the spray reaches a maximum penetration distance soon after the start of injection, while the vapor phase of the spray continues to penetrate downstream. This liquid-phase penetration distance or in short, the "liquid length", depends upon the ambient and fuel-injector conditions. To clarify fuel effects on liquid length and vapor penetration, in this study we performed simultaneous high-speed imaging of Mie-scattering and schlieren at approximately 50-kHz framing rates. Experiments were performed at specified ambient gas temperature and density in an environment with 0% oxygen. This non-reacting condition was selected intentionally to isolate the mixing and vaporization processes from more complex effects of combustion. Fuels with a wide range of boiling points and densities were examined, including a conventional No. 2 diesel, low-aromatics jet fuel, world-average jet fuel, Fischer-Tropsch synthetic fuel, coal-derived fuel, and a two-component surrogate fuel. Results show that the liquid length increases with increasing fuel density for fuels of similar boiling-point temperature. Considering a mixing-limited vaporization process, entrained ambient mass per fuel mass is inversely proportional to the fuel density, and thereby, high fuel density causes a decrease in ambient-to-fuel ratio, which increases liquid length. Consequently, both boiling point and density of fuel affect liquid length. In contrast to the liquid-length result, no correlation between fuel density and vapor penetration was found. This is because the momentum flux, which governs the jet penetration, is not a function of the fuel density. Although the liquid length varies, the similarity in vapor penetration for all fuels investigated shows that the fuel density and boiling point do not significantly affect the total entrainment and mixing into the spray. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kook, Sanghoon] Univ New S Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia. [Pickett, Lyle M.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Kook, S (reprint author), Univ New S Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia. EM s.kook@unsw.edu.au; LMPicke@sandia.gov RI Kook, Sanghoon/C-5372-2009 OI Kook, Sanghoon/0000-0002-7620-9789 FU Chevron Corporation; Strategic Environmental Research and Development Program (SERDP) [WP-1578]; DOE Office of Vehicle Technologies; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Support for this research was provided by Chevron Corporation and in part by Strategic Environmental Research and Development Program (SERDP) Project WP-1578, with facilities supported by the DOE Office of Vehicle Technologies. The research was performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 43 TC 44 Z9 45 U1 3 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAR PY 2012 VL 93 IS 1 BP 539 EP 548 DI 10.1016/j.fuel.2011.10.004 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 882DJ UT WOS:000299541400066 ER PT J AU Karavalakis, G Durbin, TD Shrivastava, M Zheng, ZQ Villela, M Jung, HJ AF Karavalakis, Georgios Durbin, Thomas D. Shrivastava, Manish Zheng, Zhongqing Villela, Mark Jung, Heejung TI Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles SO FUEL LA English DT Article DE Ethanol; Exhaust emissions; Toxics; Carbonyls; Driving cycles ID SPARK-IGNITION ENGINE; AIR/FUEL EQUIVALENCE RATIO; CARBONYL-COMPOUNDS; EXHAUST EMISSIONS; BLENDED FUELS; SI ENGINE; COMBUSTION; HYDROCARBONS; PERFORMANCE; ALCOHOLS AB The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Karavalakis, Georgios; Durbin, Thomas D.; Zheng, Zhongqing; Villela, Mark; Jung, Heejung] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, Riverside, CA 92507 USA. [Shrivastava, Manish] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Karavalakis, G (reprint author), Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, 1084 Columbia Ave, Riverside, CA 92507 USA. EM gkaraval@cert.ucr.edu OI Jung, Heejung/0000-0003-0366-7284 FU South Coast Air Quality Management District [09095] FX The authors acknowledge funding from the South Coast Air Quality Management District under Contract # 09095. The authors also thank Mr. Kurt Bumiller and Mr. Eddie O'Neal of the University of California, Riverside for their contributions in coordinating and conducting the emissions testing for this program. NR 40 TC 40 Z9 43 U1 4 U2 43 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAR PY 2012 VL 93 IS 1 BP 549 EP 558 DI 10.1016/j.fuel.2011.09.021 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 882DJ UT WOS:000299541400067 ER PT J AU Li, X Lee, JY Heald, S AF Li, Xin Lee, Joo-Youp Heald, Steve TI XAFS characterization of mercury captured on cupric chloride-impregnated sorbents SO FUEL LA English DT Article DE XAFS; Elemental mercury vapor; Cupric chloride; Mercury speciation; Activated carbon ID FIRED POWER-PLANTS; ACTIVATED CARBON INJECTION; PERFORMANCE; EMISSIONS; REMOVAL; GASES AB X-ray Absorption Near-Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy were used to determine the mercury species formed as a result of the reaction of elemental mercury vapor with cupric chloride impregnated onto activated carbon. Oxidized mercury was found to be a dominant mercury species identified from XAFS analysis. Both XANES and EXAFS spectra indicated that Hg-Cl bonding is present from CuCl2- or HCl-impregnated sorbents, and HgCl2 is most likely to be formed rather than HgCl. In addition, the XAFS analysis results obtained for spent raw activated carbon sorbents prepared in nitrogen or oxygen carrier gas confirmed that chemisorption is likely the dominant adsorption mechanism of Hg(0) vapor. It is currently speculated from results from this and previous studies that if oxidized mercury is formed onto raw activated carbon, Hg(0) vapor is very likely to be bound to sulfur species. ((C) 2011 Elsevier Ltd. All rights reserved. C1 [Li, Xin; Lee, Joo-Youp] Univ Cincinnati, Chem Engn Program, Sch Energy Environm Biol & Med Engn, Cincinnati, OH 45221 USA. [Heald, Steve] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Lee, JY (reprint author), Univ Cincinnati, Chem Engn Program, Sch Energy Environm Biol & Med Engn, Cincinnati, OH 45221 USA. EM li2x2@mail.uc.edu; joo.lee@uc.edu; heald@aps.anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; College of Engineering and Applied Science at the University of Cincinnati FX The XAFS experiments were performed using the 20-BM Beamline at the Sector 20 of Advanced Photon Source (APS) at Argonne National Laboratory (ANL, Argonne, IL). Use of the Advanced Photon Source is also supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We appreciate Ms. Bala Lingaraju for her assistance in sample preparation and data acquisition for XAFS measurements. We also greatly appreciate Dr. Dale L. Brewe of Argonne National Laboratory for his assistance in the measurements, data processing, interpretation, and helpful comments. This study was funded by the College of Engineering and Applied Science at the University of Cincinnati through faculty start-up funds. NR 25 TC 12 Z9 13 U1 2 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAR PY 2012 VL 93 IS 1 BP 618 EP 624 DI 10.1016/j.fuel.2011.11.013 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 882DJ UT WOS:000299541400076 ER PT J AU Gutierrez, K Sheldon, ND AF Gutierrez, Karen Sheldon, Nathan D. TI Paleoenvironmental reconstruction of Jurassic dinosaur habitats of the Vega Formation, Asturias, Spain SO GEOLOGICAL SOCIETY OF AMERICA BULLETIN LA English DT Article ID MORRISON FORMATION; PEDOGENIC CARBONATE; WESTERN INTERIOR; PALEOCLIMATIC SIGNIFICANCE; ISOTOPIC COMPOSITION; NORTHERN SPAIN; EARLY MIOCENE; EBRO BASIN; PALEOSOLS; USA AB Jurassic-aged strata of Asturias, Spain, contain trace fossils including sauropod, theropod, and ornithopod dinosaur footprints, but their paleoenvironmental context has been relatively unstudied. A coastally exposed continuous section at Playa de Vega shows a clear transition from the marine Middle Jurassic Rodiles Formation to the terrestrial Upper Jurassic Vega Formation. Within the >100 m of Vega Formation stratigraphy that was logged there, four distinct types of paleosols were identified: (1) Entisols, (2) Inceptisols, (3) Vertisols, and (4) composite or cumulative paleosols. The paleosol types and their features indicate a fioodplain depositional setting with short stature, shrubby vegetation. Theropod and ornithopod tracks have been identified at the base of the section, indicating that a dinosaurian fauna was present at Playa de Vega during the Jurassic. Results from well-characterized climofunctions based on modern soils and paleosol B horizon chemical composition of the Inceptisols and Vertisols yield mean annual precipitation estimates of 400-980 mm yr(-1) and mean annual temperature estimates of 8-15 degrees C. The presence of Vertisols, with both evidence for shrink-and-swell behavior and dispersed pedogenic carbonate, is consistent with a strongly seasonal precipitation regime. The delta C-13 analyses of pedogenic carbonates yield values that range from -7.09 parts per thousand to -8.88 parts per thousand (relative to Vienna Peedee belemnite [VPDB]) and indicate carbon dioxide levels about six times pre-industrial levels, consistent with previous results. The Asturian vertebrate track assemblage is remarkably similar to that of the Morrison Formation (western United States), but it has greater overall richness. The pattern is reversed for body fossils. The reconstructed paleoenvironmental and paleoclimatic conditions indicate similar depositional settings in both places, but with a cooler, wetter, more seasonal environment in Asturias. The greater seasonality indicated by the Vega Formation relative to the Morrison Formation may explain the observed differences in richness. C1 [Gutierrez, Karen; Sheldon, Nathan D.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Gutierrez, K (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nsheldon@umich.edu RI Sheldon, Nathan/K-6717-2015 OI Sheldon, Nathan/0000-0003-3371-0036 FU Sandia National Laboratories; University of Michigan FX The authors would like to acknowledge financial support provided by the Sandia National Laboratories Master's Fellowship Program as well as financial support from the University of Michigan Turner Award. Jeff Wilson offered numerous suggestions that improved this manuscript. The authors would like to acknowledge the many useful suggestions from reviewers Timothy Myers, Martin Lockley, and Jason Mintz, and also Associate Editor Steve Hasiotis, who also offered substantial comments and suggestions. NR 67 TC 6 Z9 6 U1 0 U2 8 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0016-7606 J9 GEOL SOC AM BULL JI Geol. Soc. Am. Bull. PD MAR-APR PY 2012 VL 124 IS 3-4 BP 596 EP 610 DI 10.1130/B30285.1 PG 15 WC Geosciences, Multidisciplinary SC Geology GA 900XW UT WOS:000300926500020 ER PT J AU Flach, GP AF Flach, Gregory P. TI Relationship Between Dual-Domain Parameters and Practical Characterization Data SO GROUND WATER LA English DT Article ID HETEROGENEOUS POROUS-MEDIA; PARALLEL PATTERN SEARCH; LIMITED MASS-TRANSFER; SOLUTE TRANSPORT; MACRODISPERSION EXPERIMENT; HYDRAULIC CONDUCTIVITY; BREAKTHROUGH CURVES; POROSITY MODEL; DISPERSION; FLOW AB Dual-domain solute transport models produce significantly improved agreement to observations compared to single-domain (advection-dispersion) models when used in an a posteriori data fitting mode. However, the use of dual-domain models in a general predictive manner has been a difficult and persistent challenge, particularly at field-scale where characterization of permeability and flow is inherently limited. Numerical experiments were conducted in this study to better understand how single-rate mass transfer parameters vary with aquifer attributes and contaminant exposure. High-resolution reference simulations considered 30 different scenarios involving variations in permeability distribution, flow field, mass transfer timescale, and contaminant exposure time. Optimal dual-domain transport parameters were empirically determined by matching to breakthrough curves from the high-resolution simulations. Numerical results show that mobile porosity increases with lower permeability contrast/variance, smaller spatial correlation length, lower connectivity of high-permeability zones, and flow transverse to strata. A nonzero non-participating porosity improves empirical fitting, and becomes larger for flow aligned with strata, smaller diffusion coefficient, and larger spatial correlation length. The non-dimensional mass transfer coefficient or Damkohler number tends to be close to 1.0 and decrease with contaminant exposure time, in agreement with prior studies. The best empirical fit is generally achieved with a combination of macrodispersion and first-order mass transfer. Quantitative prediction of ensemble-average dual-domain parameters as a function of measurable aquifer attributes proved only marginally successful. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Flach, GP (reprint author), Savannah River Natl Lab, Savannah River Site,Bldg 773-42A, Aiken, SC 29808 USA. EM gregory.flach@srnl.doe.gov FU U.S. Department of Energy (DOE); Savannah River National Laboratory [DE-AC09-08SR22470] FX This research was supported by the U.S. Department of Energy (DOE) through the Environmental Remediation Science Program (ERSP) and Savannah River National Laboratory, operated for DOE by Savannah River Nuclear Solutions LLC under contract DE-AC09-08SR22470. The thoughtful peer reviews of Dr. Chunmiao Zheng and two anonymous reviewers, whose constructive comments improved the paper, are much appreciated. NR 57 TC 4 Z9 4 U1 1 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X J9 GROUND WATER JI Ground Water PD MAR-APR PY 2012 VL 50 IS 2 BP 216 EP 229 DI 10.1111/j.1745-6584.2011.00834.x PG 14 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 901AI UT WOS:000300933700010 PM 21696389 ER PT J AU O'Leary, DR Izbicki, JA Moran, JE Meeth, T Nakagawa, B Metzger, L Bonds, C Singleton, MJ AF O'Leary, David R. Izbicki, John A. Moran, Jean E. Meeth, Tanya Nakagawa, Brandon Metzger, Loren Bonds, Chris Singleton, Michael J. TI Movement of Water Infiltrated from a Recharge Basin to Wells SO GROUND WATER LA English DT Article ID ARTIFICIAL RECHARGE; GROUNDWATER RECHARGE; UNSATURATED ZONE; CALIFORNIA; AIR; TRACER AB Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 mu g/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers. C1 [O'Leary, David R.; Izbicki, John A.] US Geol Survey, Calif Water Sci Ctr, San Diego, CA 92101 USA. [Moran, Jean E.] Calif State Univ Hayward, Hayward, CA 94542 USA. [Meeth, Tanya; Bonds, Chris] Calif Dept Water Resources, Sacramento, CA 94236 USA. [Nakagawa, Brandon] San Joaquin Cty Publ Works, Stockton, CA 95205 USA. [Metzger, Loren] US Geol Survey, Calif Water Sci Ctr, Sacramento, CA 95819 USA. [Singleton, Michael J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP O'Leary, DR (reprint author), US Geol Survey, Calif Water Sci Ctr, 4165 Spruance Rd,Suite 200, San Diego, CA 92101 USA. EM doleary@usgs.gov FU Northeastern San Joaquin Groundwater Banking Authority; California Department of Water Resources FX This study was funded by the Northeastern San Joaquin Groundwater Banking Authority and the California Department of Water Resources, in cooperation with the U.S. Geological Survey. Quarterly sampling from the recharge basin and multiple-well site was done by the California Department of Water Resources, Division of Planning and Local Assistance Central District. The SF6 tracer experiment was done by Lawrence Livermore National Laboratory with funding from the California State Water Resources Control Board. The authors thank the Northeastern San Joaquin Groundwater Banking Authority, the City of Stockton Municipal Utilities Department, Condor Earth Technology, and Dr. Kathy Thorbjarnarson of San Diego State University for their support and assistance during this study. NR 59 TC 3 Z9 3 U1 0 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD MAR-APR PY 2012 VL 50 IS 2 BP 242 EP 255 DI 10.1111/j.1745-6584.2011.00838.x PG 14 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 901AI UT WOS:000300933700012 PM 21740423 ER PT J AU Vogel, A Drews, A Im, MY Fischer, P Meier, G AF Vogel, Andreas Drews, Andre Im, Mi-Young Fischer, Peter Meier, Guido TI Finite Size Effect on Spread of Resonance Frequencies in Arrays of Coupled Vortices (vol 47, pg 1610, 2011) SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Correction C1 [Vogel, Andreas; Drews, Andre] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Vogel, Andreas; Drews, Andre; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany. [Drews, Andre] Univ Hamburg, Arbeitsbereich Tech Informatiksyst, D-22527 Hamburg, Germany. [Im, Mi-Young; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Vogel, A (reprint author), Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. EM andreas.vogel@physnet.uni-hamburg.de RI Fischer, Peter/A-3020-2010 OI Fischer, Peter/0000-0002-9824-9343 NR 1 TC 0 Z9 0 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD MAR PY 2012 VL 48 IS 3 BP 1252 EP 1252 DI 10.1109/TMAG.2011.2172807 PG 1 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 904LV UT WOS:000301199300019 ER PT J AU Iqbal, O Bansal, P AF Iqbal, Ossama Bansal, Pradeep TI In-tube condensation heat transfer of CO2 at low temperatures in a horizontal smooth tube SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID LA English DT Article DE CO2; R744; Condensation; Heat transfer; Horizontal tube; Low temperature; Two-phase flow AB This paper presents the experimental investigation of CO2 condensation in a horizontal smooth tube at saturation temperatures between 0 and -15 degrees C with mass fluxes between 50 and 200 kg m(-2) s(-1) and for various vapour qualities. One tube-in-tube counter flow heat exchanger was designed together with an open-loop CO2 cycle to make up an experimental rig that condenses CO2 at these conditions. The inner test tube, with internal diameter of 6.52 mm, is cooled using Glycol Water flowing in the outer tube. Experimental trends show that the heat transfer coefficient decreases with increasing saturation temperatures. Decrease in heat transfer coefficients is also observed for lower mass fluxes and lower vapour qualities in two-phase. Based on the experimental data collected, a new empirical correlation was developed to improve CO2 heat transfer coefficient prediction. The new correlation agreed well with experimental and data from the literature, with an average deviation of -4.4%. (C) 2011 Elsevier Ltd and IIR. All rights reserved. C1 [Iqbal, Ossama; Bansal, Pradeep] Univ Auckland, Dept Mech Engn, Auckland 1, New Zealand. RP Bansal, P (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM p.bansal@auckland.ac.nz NR 17 TC 10 Z9 10 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0140-7007 J9 INT J REFRIG JI Int. J. Refrig.-Rev. Int. Froid PD MAR PY 2012 VL 35 IS 2 BP 270 EP 277 DI 10.1016/j.ijrefrig.2011.10.015 PG 8 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 902GX UT WOS:000301027700005 ER PT J AU Caldwell, EF Duff, MC Ferguson, CE Coughlin, DP Hicks, RA Dixon, E AF Caldwell, E. F. Duff, M. C. Ferguson, C. E. Coughlin, D. P. Hicks, R. A. Dixon, E. TI Bio-monitoring for uranium using stream-side terrestrial plants and macrophytes SO JOURNAL OF ENVIRONMENTAL MONITORING LA English DT Article ID METAL ACCUMULATION; AQUATIC BRYOPHYTES; SOIL; PHYTOREMEDIATION; RADIONUCLIDES; WATER; PHYTOACCUMULATION; CHEMISTRY; RADIUM; FIELD AB This study evaluated the abilities of various plant species to act as bio-monitors for environmental uranium (U) contamination. Vegetation and soil samples were collected from a U processing facility. The water-way fed from facility storm and processing effluents was the focal sample site as it represented a primary U transport mechanism. Soils and sediments from areas exposed to contamination possessed U concentrations that averaged 630 mg U kg(-1). Aquatic mosses proved to be exceptional accumulators of U with dry weight (dw) concentrations measuring as high as 12 500 mg U kg(-1) (approximately 1% of the dw mass was attributable to U). The macrophytes (Phragmites communis, Scripus fontinalis and Sagittaria latifolia) were also effective accumulators of U. In general, plant roots possessed higher concentrations of U than associated upper portions of plants. For terrestrial plants, the roots of Impatiens capensis had the highest observed levels of U accumulation (1030 mg kg(-1)), followed by the roots of Cyperus esculentus and Solidago speciosa. The concentration ratio (CR) characterized dry weight (dw) vegetative U levels relative to that in associated dw soil. The plant species that accumulated U at levels in excess of that found in the soil were: P. communis root (CR, 17.4), I. capensis root (CR, 3.1) and S. fontinalis whole plant (CR, 1.4). Seven of the highest ten CR values were found in the roots. Correlations with concentrations of other metals with U were performed, which revealed that U concentrations in the plant were strongly correlated with nickel (Ni) concentrations (correlation: 0.992; r-squared: 0.984). Uranium in plant tissue was also strongly correlated with strontium (Sr) (correlation: 0.948; r-squared: 0.899). Strontium is chemically and physically similar to calcium (Ca) and magnesium (Mg), which were also positively-correlated with U. The correlation with U and these plant nutrient minerals, including iron (Fe), suggests that active uptake mechanisms may influence plant U accumulation. C1 [Caldwell, E. F.; Duff, M. C.; Ferguson, C. E.; Hicks, R. A.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Dixon, E.] NNSA, Off Nonproliferat & Verificat Res & Dev NA 22, Washington, DC 20585 USA. RP Caldwell, EF (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM eric.caldwell@srnl.doe.gov FU US DOE FX This work was supported by US DOE. NR 53 TC 7 Z9 7 U1 3 U2 35 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1464-0325 J9 J ENVIRON MONITOR JI J. Environ. Monit. PD MAR PY 2012 VL 14 IS 3 BP 968 EP 976 DI 10.1039/c2em10738d PG 9 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 900GP UT WOS:000300875100026 PM 22318309 ER PT J AU Li, Z Adams, RM Chourey, K Hurst, GB Hettich, RL Pan, CL AF Li, Zhou Adams, Rachel M. Chourey, Karuna Hurst, Gregory B. Hettich, Robert L. Pan, Chongle TI Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE quantitative proteomics; label-free; metabolic labeling; iTRAQ; TMT; LTQ Orbitrap Velos ID COMPLEX PROTEIN MIXTURES; MASS-SPECTROMETRY; SHOTGUN PROTEOMICS; SACCHAROMYCES-CEREVISIAE; GEL-ELECTROPHORESIS; YEAST PROTEOME; CELL-CULTURE; AMINO-ACIDS; TAGS; QUANTIFICATION AB A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification; isobaric chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; and (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. On the basis of the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study. C1 [Li, Zhou; Adams, Rachel M.; Hettich, Robert L.; Pan, Chongle] Univ Tennessee, Grad Sch Genome Sci & Technol, Oak Ridge Natl Lab, Knoxville, TN 37996 USA. [Li, Zhou; Adams, Rachel M.; Chourey, Karuna; Hurst, Gregory B.; Hettich, Robert L.; Pan, Chongle] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Pan, Chongle] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Pan, CL (reprint author), Univ Tennessee, Grad Sch Genome Sci & Technol, Oak Ridge Natl Lab, Knoxville, TN 37996 USA. EM panc@ornl.gov RI Li, Zhou/L-7976-2015; Hettich, Robert/N-1458-2016; OI Hettich, Robert/0000-0001-7708-786X; Hurst, Gregory/0000-0002-7650-8009; , /0000-0002-9216-3813 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 42 TC 109 Z9 113 U1 12 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAR PY 2012 VL 11 IS 3 BP 1582 EP 1590 DI 10.1021/pr200748h PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 900UH UT WOS:000300916200013 PM 22188275 ER PT J AU Olson, GL AF Olson, Gordon L. TI Grey and multigroup radiation transport models for two-dimensional stochastic media with material temperature coupling SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Stochastic media; Radiation transport; Multigroup; Grey transport ID TRANSFER EQUATIONS; BINARY; DIFFUSION; P-1 AB Current theories for approximating the effects of stochastic media on radiation transport assume very limited physics such as one dimension, constant grey opacities, and no material energy balance equation. When applied to more complex physical problems, the standard theory fails to match the results from direct numerical simulations. This work presents the first direct numerical simulations of multigroup radiation transport coupled to a material temperature equation in a 2D stochastic medium that are compared to closures proposed by various authors. After extending it from grey to multigroup physics, one closure that is not commonly used successfully models the results in dilute systems where one material comprises less than 5% of the total. This closure is more accurate for related grey transport problems than it is for the multigroup problem. When the specific heats are material- and temperature-dependent, it is much more difficult to fit the direct numerical solutions with an approximate closure. (C) 2011 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Comp & Computat Sci Div CCS 2, Madison, WI 53717 USA. RP Olson, GL (reprint author), Los Alamos Natl Lab, Comp & Computat Sci Div CCS 2, 5 Foxglove Circle, Madison, WI 53717 USA. EM olson99@tds.net NR 13 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2012 VL 113 IS 5 BP 325 EP 334 DI 10.1016/j.jqsrt.2011.12.009 PG 10 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 902AQ UT WOS:000301011400001 ER PT J AU Pitz, GA Sandoval, AJ Zameroski, ND Klennert, WL Hostutler, DA AF Pitz, Greg A. Sandoval, Andrew J. Zameroski, Nathan D. Klennert, Wade L. Hostutler, David A. TI Pressure broadening and shift of the potassium D-1 transition by the noble gases and N-2, H-2, HD, D-2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Pressure broadening; Pressure shift; Potassium; Laser absorption; Spectroscopy; DPAL ID 795-NM RUBIDIUM LASER; RESONANCE LINES; FOREIGN GASES; 1ST DOUBLET; CESIUM; HELIUM; HE-3 AB The pressure broadening and shift rates for the potassium D-1 (4(2)P(1/2) <- 4(2)S(1/2)) transition with the noble gases and He-3, H-2, HD, D-2, N-2, CH4, C2H6, C3H8, and n-C4H10 were obtained for pressures up to 80 Tort and at a temperature of 55 degrees C by means of laser absorption spectroscopy. The collisional broadening rate, gamma(L), for He, He-3, Ne, Ar, Kr, Xe, H-2, HD, D-2, N-2, CH4, C2H6, C3H8, and n-C4H10 are 13.08, 17.46, 6.14, 19.45, 16.64, 20.02, 22.15, 19.36, 17.47, 17.78, 29.35, 26.63, 27.27, and 27.85 MHz/Torr, respectively. The uncertainty in the broadening rates is typically less than 1.6%. The corresponding pressure induced shift rates, delta, are 1.63, 6.82, -1.27, -6.44, -5.42, -6.54,-5.34, -5.10, -4.70, -6.80, -7.41, -8.32, -8.59, and -8.80 MHz/Torr with a uncertainty of less than 2.4%. A comparison with the other alkali D-1 broadening cross-sections is presented. Published by Elsevier Ltd. C1 [Pitz, Greg A.; Sandoval, Andrew J.; Hostutler, David A.] USAF, Res Lab, Kirtland AFB, NM 87117 USA. [Zameroski, Nathan D.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Klennert, Wade L.] Boeing Co, Albuquerque, NM 87109 USA. RP Pitz, GA (reprint author), USAF, Res Lab, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117 USA. EM AFRL.RDLC.SCI.org@kirtland.af.mil FU Air Force Office of Scientific Research; High Energy Laser Joint Technology Office FX Support for this work from the Air Force Office of Scientific Research and the High Energy Laser Joint Technology Office is gratefully acknowledged. We also want to thank Billy Pike and Don Stalnaker for their help in the laboratory. NR 36 TC 8 Z9 8 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2012 VL 113 IS 5 BP 387 EP 395 DI 10.1016/j.jqsrt.2011.12.005 PG 9 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 902AQ UT WOS:000301011400009 ER PT J AU Garrison, JR Hanson, DE Hall, HL AF Garrison, Jon R. Hanson, Daniel E. Hall, Howard L. TI Monte Carlo analysis of thermochromatography as a fast separation method for nuclear forensics SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Thermochromatography; Nuclear forensics; Monte Carlo; Adsorption enthalpy; Lanthanides ID QUARTZ COLUMNS; CHLORIDES; ADSORPTION; BEHAVIOR AB Nuclear forensic science has become increasingly important for global nuclear security, and enhancing the timeliness of forensic analysis has been established as an important objective in the field. New, faster techniques must be developed to meet this objective. Current approaches for the analysis of minor actinides, fission products, and fuel-specific materials require time-consuming chemical separation coupled with measurement through either nuclear counting or mass spectrometry. These very sensitive measurement techniques can be hindered by impurities or incomplete separation in even the most painstaking chemical separations. High-temperature gas-phase separation or thermochromatography has been used in the past for the rapid separations in the study of newly created elements and as a basis for chemical classification of that element. This work examines the potential for rapid separation of gaseous species to be applied in nuclear forensic investigations. Monte Carlo modeling has been used to evaluate the potential utility of the thermochromatographic separation method, albeit this assessment is necessarily limited due to the lack of available experimental data for validation. C1 [Garrison, Jon R.; Hanson, Daniel E.; Hall, Howard L.] Univ Tennessee, Dept Nucl Engn, Oak Ridge Natl Lab, Knoxville, TN 37919 USA. RP Garrison, JR (reprint author), Univ Tennessee, Dept Nucl Engn, Oak Ridge Natl Lab, 6315 Kingston Pike Apt 1004, Knoxville, TN 37919 USA. EM jgarris1@utk.edu OI Hall, Howard/0000-0002-4080-5159 NR 13 TC 4 Z9 4 U1 2 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2012 VL 291 IS 3 BP 885 EP 894 DI 10.1007/s10967-011-1367-5 PG 10 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 892OP UT WOS:000300295800042 ER PT J AU Silver, GL AF Silver, G. L. TI Least-squares estimations of the first hydrolysis constant of Pu(IV) SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Plutonium; Hydrolysis; Disproportionation; Least squares ID NEUTRON-ACTIVATION ANALYSIS; MUSHROOM REFERENCE MATERIAL; QUALITY ASSESSMENT PROGRAM; PROFICIENCY TEST EXERCISE; FISH HOMOGENATE; TRACE-ELEMENTS; INAA; RADIONUCLIDES; IAEA-407 AB The numerical value of the first hydrolysis constant of tetravalent plutonium is uncertain by a factor of about ten. This article illustrates the estimation of that constant by a least squares method applied to simultaneous equations involving all of the Pu oxidation states. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Silver, GL (reprint author), Los Alamos Natl Lab, MS E502,POB 1663, Los Alamos, NM 87545 USA. EM gsilver@lanl.gov RI Lujan Center, LANL/G-4896-2012 FU U.S. Department of Energy [DE-AC52-06NA25396] FX Los Alamos National Laboratory is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy contract DE-AC52-06NA25396. NR 26 TC 4 Z9 4 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2012 VL 291 IS 3 BP 915 EP 926 DI 10.1007/s10967-011-1401-7 PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 892OP UT WOS:000300295800046 ER PT J AU Peter, SC Malliakas, CD Nakotte, H Kothapilli, K Rayaprol, S Schultz, AJ Kanatzidis, MG AF Peter, Sebastian C. Malliakas, Christos D. Nakotte, Heinze Kothapilli, Karunakar Rayaprol, Sudhindra Schultz, Arthur J. Kanatzidis, Mercouri G. TI The polygallides: Yb3Ga7Ge3 and YbGa4Ge2 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Intermetallics; Metal flux synthesis; Crystal structure; Neutron diffraction; Magnetism ID INHOMOGENEOUS LINEAR STRUCTURES; NEUTRON STRUCTURE DETERMINATION; CRYSTAL-STRUCTURE; MOLTEN GALLIUM; LIQUID GALLIUM; EXPLORATORY SYNTHESIS; RUTHENIUM GALLIDES; FLUX SYNTHESIS; SQUARE NET; METAL FLUX AB Yb3Ga7Ge3 and YbGa4Ge2 were obtained from reactions of Yb and Ge in excess liquid gallium. The crystal structure of Yb3Ga7Ge3 was refined using X-ray and neutron diffraction data on selected single crystals. Yb3Ga7Ge3 crystallizes in the monoclinic space group C2/c with lattice constants a=12.2261(20) angstrom, b=10.7447(20) angstrom, c=8.4754(17) angstrom and beta=110.288(30)degrees (neutron diffraction data). The crystal structure of Yb3Ga7Ge3 is an intergrowth of planar layers of YbGaxGey and puckered layers of (Ge)(n). YbGa4Ge2 crystallizes in a modified PuGa6 structure type in the tetragonal polar space group 14cm with lattice constants a=b=5.9874(6) angstrom and c=15.1178(19) angstrom. The structure of YbGa4Ge2 is an intergrowth of puckered Ga layers and puckered GaxGey layers with Yb atoms residing within the channels formed by the connection of the two layers. Physical properties, resistivity (rho), magnetic susceptibility (chi) and specific heat (C) were measured for Yb3Ga7Ge3. No magnetic ordering was observed. It was found that at low temperatures, rho varied as T-2 and C proportional to T, indicating Fermi-liquid regime in Yb3Ga7Ge3 at low temperatures. (C) 2012 Elsevier Inc. All rights reserved. C1 [Peter, Sebastian C.; Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Peter, Sebastian C.] Jawaharlal Nehru Ctr Adv Sci Res, New Chem Unit, Bangalore 560064, Karnataka, India. [Nakotte, Heinze; Kothapilli, Karunakar] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Nakotte, Heinze; Kothapilli, Karunakar] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Rayaprol, Sudhindra] BARC, UGC DAE Consortium Sci Res, Mumbai Ctr, Bombay 400085, Maharashtra, India. [Schultz, Arthur J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145N Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Peter, Sebastian/A-2666-2013; Lujan Center, LANL/G-4896-2012 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (Argonne) [DE-AC02-06CH11357]; NSF [DMR-0520513] FX Research at Argonne is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (Argonne Contract No. DE-AC02-06CH11357). Use was made of facilities operated by the Northwestern Materials Research Center under NSF Grant DMR-0520513. Technical support on the PPMS at Northwestern University was provided by Dr. O. Chernyashevskyy. NR 50 TC 18 Z9 18 U1 0 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD MAR PY 2012 VL 187 BP 200 EP 207 DI 10.1016/j.jssc.2012.01.006 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 902AU UT WOS:000301011800030 ER PT J AU Bajt, S Chapman, HN Aquila, A Gullikson, E AF Bajt, Sasa Chapman, Henry N. Aquila, Andrew Gullikson, Eric TI High-efficiency x-ray gratings with asymmetric-cut multilayers SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID MO-SI MULTILAYERS; ZONE PLATES; DYNAMICAL DIFFRACTION; MO/SI MULTILAYERS; PERFECT CRYSTALS; OPTICS; REFLECTION; SCATTERING; RESOLUTION; STABILITY AB We present the fabrication and analysis of efficient and highly dispersive gratings for the x-ray and extreme ultraviolet (EUV) regime. We show that an asymmetric-cut multilayer structure can act as a near-perfect blazed grating. The precision and high line density are achieved by layer deposition of materials, which can be controlled to the angstrom level. We demonstrate this in the EUV regime with two structures made by cutting and polishing magnetron-sputtered multilayer mirrors of over 2000 bilayers thick, each with a period of 6.88 nm. These were cut at angles of 2.9 degrees and 7.8 degrees to the surface. Within the 3% bandwidth rocking curve of the multilayer, the angular dispersion of the diffracted wave was in agreement with the grating equation for elements with 7250 and 19,700 line pairs/mm, respectively. The dependence of the measured efficiency was in excellent agreement with a formulation of dynamical diffraction theory for multilayered structures. At a wavelength of 13.2 nm, the efficiency of the first-order diffraction was over 95% of the reflectivity of the uncut multilayer. We predict that such structures should also be effective at shorter x-ray wavelengths. Both the Laue (transmitting) and Bragg (reflecting) geometries are incorporated in our formalism, which is applied to the analysis of multilayer Laue lenses and focusing and dispersing Bragg optics. (C) 2012 Optical Society of America C1 [Bajt, Sasa; Chapman, Henry N.] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Chapman, Henry N.] Univ Hamburg, Dept Phys, D-22761 Hamburg, Germany. [Gullikson, Eric] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Bajt, S (reprint author), DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany. EM sasa.bajt@desy.de RI Chapman, Henry/G-2153-2010; Bajt, Sasa/G-2228-2010 OI Chapman, Henry/0000-0002-4655-1743; FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Preliminary investigations of cut multilayers were performed when SB and HNC were at Lawrence Livermore National Laboratory. We would like to thank Jennifer Alameda and Sherry Baker (LLNL) for technical help. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 49 TC 10 Z9 10 U1 4 U2 29 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD MAR PY 2012 VL 29 IS 3 BP 216 EP 230 PG 15 WC Optics SC Optics GA 902TM UT WOS:000301064100005 PM 22472750 ER PT J AU Beaudoin, AJ Obstalecki, M Storer, R Tayon, W Mach, J Kenesei, P Lienert, U AF Beaudoin, A. J. Obstalecki, M. Storer, R. Tayon, W. Mach, J. Kenesei, P. Lienert, U. TI Validation of a crystal plasticity model using high energy diffraction microscopy SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID MECHANICAL THRESHOLD; METAL POLYCRYSTALS; GRAIN; FRACTURE; ALLOYS; DEFORMATION; STRESS; STRAIN; BEHAVIOR; SPACE AB High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al-Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation. C1 [Beaudoin, A. J.; Obstalecki, M.; Storer, R.] Univ Illinois, Dept Mech Sci & Engn, Champaign, IL 61820 USA. [Tayon, W.] NASA Langley, Hampton, VA USA. [Mach, J.] ATK Small Caliber Syst, Independence, MO USA. [Kenesei, P.; Lienert, U.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Beaudoin, AJ (reprint author), Univ Illinois, Dept Mech Sci & Engn, Champaign, IL 61820 USA. EM abeaudoi@illinois.edu FU NASA FX We extend appreciation to Dr Carlos Tome for his long-term research attending to model development, experimental validation and in providing codes that have assisted so many people in their study and research on crystal plasticity. Dr Juliette Chevy set up some of the initial realizations of the model. This work was supported through support from NASA NR 28 TC 8 Z9 8 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR 1 PY 2012 VL 20 IS 2 AR 024006 DI 10.1088/0965-0393/20/2/024006 PG 14 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 904ED UT WOS:000301175900007 ER PT J AU Lefebvre, G Sinclair, CW Lebensohn, RA Mithieux, JD AF Lefebvre, G. Sinclair, C. W. Lebensohn, R. A. Mithieux, J-D TI Accounting for local interactions in the prediction of roping of ferritic stainless steel sheets SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID AA6111 AUTOMOTIVE SHEET; GRAIN ANISOTROPY; LIMIT STRAINS; TEXTURE; MICROSTRUCTURE; ALLOYS; EBSD AB The effect of the spatial distribution of crystallographic orientations on roping amplitude and wavelength in ferritic stainless steel has been evaluated. The through-thickness mechanical behaviour of a sheet deformed in tension has been tested experimentally and simulated using a full-field viscoplastic fast Fourier transform formulation. These crystal plasticity simulations use orientation imaging microscopy data as input, allowing for large-scale simulation domains to be investigated while accounting for the clustering of orientations with similar deformation behaviour. The simulations predict both the local deformation response as well as the macroscopic surface roughness. The latter is compared quantitatively with experimental measurements and is shown to predict both the wavelength and amplitude of the observed roping. The results of these simulations have also been compared with previously proposed mean-field crystal plasticity simulations of roping, performed using the viscoplastic self-consistent code, in which each crystal orientation is, at most, influenced by the behaviour of a homogenized matrix, but not by its local neighbourhood. Comparison between these two kinds of approaches thus allows us to assess the significance of the local neighbourhood on the macroscopic prediction of roping. C1 [Lefebvre, G.; Sinclair, C. W.] Univ British Columbia, Dept Mat Engn, Vancouver, BC V6T 1Z4, Canada. [Lebensohn, R. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Mithieux, J-D] Aperam Stainless Steel Res Ctr, Isbergues, France. RP Lefebvre, G (reprint author), Univ British Columbia, Dept Mat Engn, Vancouver, BC V6T 1Z4, Canada. EM glefe220@interchange.ubc.ca RI Lebensohn, Ricardo/A-2494-2008; Sinclair, Chad/O-5744-2016 OI Lebensohn, Ricardo/0000-0002-3152-9105; Sinclair, Chad/0000-0002-6465-6952 NR 26 TC 13 Z9 13 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR 1 PY 2012 VL 20 IS 2 AR 024008 DI 10.1088/0965-0393/20/2/024008 PG 16 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 904ED UT WOS:000301175900009 ER PT J AU Merkel, S Gruson, M Wang, YB Nishiyama, N Tome, CN AF Merkel, Sebastien Gruson, Marion Wang, Yanbin Nishiyama, Norimasa Tome, Carlos N. TI Texture and elastic strains in hcp-iron plastically deformed up to 17.5 GPa and 600 K: experiment and model SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID EARTHS INNER-CORE; MAGNESIUM ALLOY AZ31; X-RAY-DIFFRACTION; HIGH-PRESSURE; NEUTRON-DIFFRACTION; RESIDUAL-STRESSES; DEFORMATION; ANISOTROPY; MECHANISMS; APPARATUS AB Internal elastic strains and textures are measured using monochromatic x-ray diffraction in epsilon-Fe plastically deformed up to 17.5 GPa and 600 K in the deformation-DIA. We observe the development of a strong 0 0 0 1 compression texture along with a strongly non-linear behavior of 0 0 0 2 lattice strains. We then use an elastoplastic self-consistent polycrystal model to simulate the macroscopic flow curves, internal strain and texture development within the sample. Input parameters are single-crystal elastic moduli, critical resolved shear stresses, and hardening behavior of the slip and twinning mechanisms. The model is found to reproduce the experiment data with basal slip as the easiest and most active deformation mechanism. Other active mechanisms are tensile twinning, prismatic and pyramidal < c + a > slip. Tensile twinning is most active at lower temperatures (e.g. 400 K) and a higher strain rate. In most cases, the twinning activity occurs early in the deformation and later saturates. It is also responsible for the non-linear behavior of 0 0 0 2 lattice strains. Later in the deformation, the plastic activity of epsilon-Fe is controlled by basal, prismatic and pyramidal < c + a > slip. C1 [Merkel, Sebastien; Gruson, Marion] Univ Lille 1, CNRS, Unite Mat & Transformat UMET, F-59655 Villeneuve Dascq, France. [Wang, Yanbin] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Nishiyama, Norimasa] Ehime Univ, Geodynam Res Ctr, Matsuyama, Ehime, Japan. [Tome, Carlos N.] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA. RP Merkel, S (reprint author), Univ Lille 1, CNRS, Unite Mat & Transformat UMET, F-59655 Villeneuve Dascq, France. EM sebastien.merkel@univ-lille1.fr RI Lujan Center, LANL/G-4896-2012; Tome, Carlos/D-5058-2013; Merkel, Sebastien/E-5501-2011; Nishiyama, Norimasa/A-7627-2016; OI Merkel, Sebastien/0000-0003-2767-581X; Wang, Yanbin/0000-0001-5716-3183 FU National Science Foundation Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG02-94ER14466]; DOE-BES [DE-AC02-06CH11357]; NSF [EAR-0652574, 0968456]; ANR [ANR-07-JCJC-0136] FX The D-DIA experiments were performed at the GeoSoilEnviroCARS (GSECARS) at the Advanced Photon Source (APS). GSECARS is supported by the National Science Foundation Earth Sciences (EAR-0622171) and Department of Energy-Geosciences (DE-FG02-94ER14466). APS is supported by DOE-BES, under Contract No DE-AC02-06CH11357. YW thanks NSF supports EAR-0652574 and 0968456. SM was supported by ANR program DiUP, N. ANR-07-JCJC-0136. NR 43 TC 10 Z9 10 U1 4 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR 1 PY 2012 VL 20 IS 2 AR 024005 DI 10.1088/0965-0393/20/2/024005 PG 17 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 904ED UT WOS:000301175900006 ER PT J AU Wang, J Beyerlein, IJ Hirth, JP AF Wang, J. Beyerlein, I. J. Hirth, J. P. TI Nucleation of elementary {(1)over-bar 0 1 1} and {(1)over-bar 0 1 3} twinning dislocations at a twin boundary in hexagonal close-packed crystals SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID HCP METALS; INTERFACIAL STRUCTURE; COMPUTER-SIMULATION; SCREW DISLOCATION; MAGNESIUM; DEFORMATION; SLIP; TITANIUM; GROWTH; MODEL AB In this paper, we study the kinetics and energetics involved in the nucleation and propagation of {(1) over bar 0 1 1} and {(1) over bar 0 1 3} twinning dislocations (TDs) in Mg using atomistic simulations. We demonstrate that for both twins, a 2-layer TD of mixed character nucleates as a result of the interaction of a basal dislocation with a twin boundary. The favorability of the 2-layer TD over a 4-layer TD of edge character can be explained by its greater mobility. The twin boundary likely translates by nucleating and propagating 2-layer TDs with opposite-signed screw components in equal amounts on average. C1 [Wang, J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hirth, J. P.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST 8, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU US Department of Energy, Office of Basic Energy Sciences [FWP-06SCPE401] FX This work was supported in full by the US Department of Energy, Office of Basic Energy Sciences (Project No: FWP-06SCPE401). The authors appreciate valuable discussions with Dr C N Tome whom we are delighted to help in honoring for his outstanding career. We have all profited from interactions and collaborations with him. NR 52 TC 35 Z9 35 U1 4 U2 52 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR 1 PY 2012 VL 20 IS 2 AR 024001 DI 10.1088/0965-0393/20/2/024001 PG 14 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 904ED UT WOS:000301175900002 ER PT J AU Wang, J Beyerlein, IJ AF Wang, J. Beyerlein, I. J. TI Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID TWINNING DISLOCATIONS; COMPUTER-SIMULATION; CONSTITUTIVE LAW; METALS; MAGNESIUM; ZIRCONIUM; TWINS; DEFORMATION; NUCLEATION; DEFECTS AB Using molecular dynamics (MD) simulations, the dislocation structures of [1 (2) over bar 1 0] symmetric tilt grain boundaries (STGBs) in hexagonal close packed (hcp) crystal structures are studied. STGBs over the entire range of possible rotation angles theta from 0 degrees to 90 degrees are found to have an ordered atomic structure. Formation energy calculations reveal four local minimum-energy boundaries that correspond to coherent grain boundaries (GBs). Deviations in tilt from the basal plane (theta = 0 degrees, P-B((1))), prismatic plane (theta = 90 degrees, P-B((6))), or one of these four minimum-energy boundaries, P-B((2)), P-B((3)), P-B((4)), P-B((5)), result in the formation of a tilt wall (edge-type grain boundary dislocations, GBDs) superimposed on the nearest GB structure P-B((i)) in theta-space. As theta deviates far from the rotation angle of one P-B((i)) and draws closer to that of an adjacent P-B((j)), an abrupt transition in STGB base boundary structure and GBD Burgers vector occurs. For all theta, the sign and spacing of GBDs depend on theta, and their Burgers vector is either one or two times the interplanar spacing of P-B. We present a simple model that generalizes the results to other c/a ratios. Subsequent MD simulations show that (1) the model forecasts the STGB structure to first-order and (2) STGBs with two distinct atomic structures can have remarkably different responses when interacting with basal lattice dislocations originating from the adjoining crystals. C1 [Wang, J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU Office of Basic Energy Sciences under US DOE [FWP 06SCPE401, W-7405-ENG-36] FX The authors gratefully acknowledge support from Office of Basic Energy Sciences, Project FWP 06SCPE401, under US DOE Contract No W-7405-ENG-36. The authors acknowledge the valuable discussion with Dr Carlos N Tome and Professor John P Hirth. The authors would like to dedicate this work to Dr Carlos N Tome in deep appreciation for his pioneering work in the structural behavior of hcp metals. NR 60 TC 52 Z9 52 U1 11 U2 53 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR 1 PY 2012 VL 20 IS 2 AR 024002 DI 10.1088/0965-0393/20/2/024002 PG 22 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 904ED UT WOS:000301175900003 ER PT J AU Ribeiro, RM AF Ribeiro, Ruy M. TI Quantifying the activity of anti-HIV treatment in silico SO NATURE MEDICINE LA English DT Editorial Material ID INFECTION AB Combination-based antiretroviral therapy has been very successful in preventing disease progression in HIV-infected individuals. However, a rational method for predicting the effect of a particular drug combination on clinical outcome is needed. A new study takes us closer to this goal by computationally predicting the inhibitory effects of combinations of three antiretroviral drugs (pages 446-451). C1 Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. RP Ribeiro, RM (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. EM ruy@lanl.gov OI Ribeiro, Ruy/0000-0002-3988-8241 NR 10 TC 0 Z9 0 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1078-8956 J9 NAT MED JI Nat. Med. PD MAR PY 2012 VL 18 IS 3 BP 355 EP 356 DI 10.1038/nm.2698 PG 2 WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental Medicine GA 905IF UT WOS:000301264800033 PM 22395700 ER PT J AU Zhou, W Lee, J Nanda, J Pantelides, ST Pennycook, SJ Idrobo, JC AF Zhou, Wu Lee, Jaekwang Nanda, Jagjit Pantelides, Sokrates T. Pennycook, Stephen J. Idrobo, Juan-Carlos TI Atomically localized plasmon enhancement in monolayer graphene SO NATURE NANOTECHNOLOGY LA English DT Article ID SURFACE; OPTICS; PHOTONICS AB Plasmons in graphene(1-4) can be tuned by using electrostatic gating or chemical doping(5-7), and the ability to confine plasmons in very small regions could have applications in optoelectronics(8,9), plasmonics(10,11) and transformation optics(12). However, little is known about how atomic-scale defects influence the plasmonic properties of graphene. Moreover, the smallest localized plasmon resonance observed in any material to date has been limited to around 10 nm (refs 13-15). Here, we show that surface plasmon resonances in graphene can be enhanced locally at the atomic scale. Using electron energy-loss spectrum imaging in an aberration-corrected scanning transmission electron microscope, we find that a single point defect can act as an atomic antenna in the petahertz (10(15) Hz) frequency range, leading to surface plasmon resonances at the subnanometre scale. C1 [Zhou, Wu; Lee, Jaekwang; Pantelides, Sokrates T.; Pennycook, Stephen J.; Idrobo, Juan-Carlos] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Zhou, Wu; Lee, Jaekwang; Nanda, Jagjit; Pantelides, Sokrates T.; Pennycook, Stephen J.; Idrobo, Juan-Carlos] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhou, W (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM wu.zhou@vanderbilt.edu; idrobojc@ornl.gov RI Zhou, Wu/D-8526-2011; Idrobo, Juan/H-4896-2015 OI Zhou, Wu/0000-0002-6803-1095; Idrobo, Juan/0000-0001-7483-9034 FU National Science Foundation [DMR-0938330]; Oak Ridge National Laboratory (ORNL); Office of Basic Energy Sciences, US Department of Energy (DOE); Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US DOE; DOE [DE-FG02-09ER46554]; McMinn Endowment at Vanderbilt University; Office of Science of the US DOE [DE-AC02-05CH11231] FX The authors thank B.S. Guiton, S.V. Kalinin, R.F. Klie, A.R. Lupini, and M.P. Oxley for helpful discussions and comments. This research was supported by the National Science Foundation (grant no. DMR-0938330; W.Z., J-C.I.); Oak Ridge National Laboratory's (ORNL) SHaRE User Facility (J.C.I.), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy (DOE); the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US DOE (S.J.P., J.L., S.T.P.), DOE grant DE-FG02-09ER46554 (S.T.P.); and by the McMinn Endowment (S.T.P.) at Vanderbilt University. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US DOE (contract no. DE-AC02-05CH11231). NR 30 TC 91 Z9 92 U1 12 U2 213 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD MAR PY 2012 VL 7 IS 3 BP 161 EP 165 DI 10.1038/NNANO.2011.252 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 904HW UT WOS:000301186300007 PM 22286496 ER PT J AU Yan, RX Park, JH Choi, Y Heo, CJ Yang, SM Lee, LP Yang, PD AF Yan, Ruoxue Park, Ji-Ho Choi, Yeonho Heo, Chul-Joon Yang, Seung-Man Lee, Luke P. Yang, Peidong TI Nanowire-based single-cell endoscopy SO NATURE NANOTECHNOLOGY LA English DT Article ID LIVING CELLS; MOLECULAR DELIVERY; SILICON NANOWIRES; MAMMALIAN-CELLS; QUANTUM DOTS; NUCLEUS AB One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution(1-6) and high-throughput(7,8) gene and drug delivery, biosensing(6,9) and single-cell electrophysiology(6,10). However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells. C1 [Yan, Ruoxue; Park, Ji-Ho; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yan, Ruoxue; Park, Ji-Ho; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Park, Ji-Ho] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Taejon 305701, South Korea. [Choi, Yeonho; Heo, Chul-Joon; Lee, Luke P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Choi, Yeonho] Korea Univ, Dept Biomed Engn, Seoul 136703, South Korea. [Heo, Chul-Joon; Yang, Seung-Man] Korea Adv Inst Sci & Technol, CRI Ctr Integrated Optofluid Syst, Dept Chem & Biomol Engn, Taejon 305701, South Korea. RP Yan, RX (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@uclink.berkeley.edu RI Park, Ji Ho/C-1832-2011; Yang, Seung-Man/C-1921-2011 FU National Institutes of Health [R21 EB007474-03]; Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX This work was supported by the National Institutes of Health (grant no. R21 EB007474-03) and Department of Energy (contract no. DE-AC02-05CH11231). The authors thank Z. Huo for transmission electron microscope observations, D. Sirbuly for the nanowire endoscope bending video, H.E. Jeong, J.W. Lee and Q. Pan for cell culturing, and Q. Pan and S. Gweon for discussions. P.Y. thanks the National Science Foundation for the A. T. Waterman Award. NR 29 TC 124 Z9 124 U1 9 U2 166 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD MAR PY 2012 VL 7 IS 3 BP 191 EP 196 DI 10.1038/NNANO.2011.226 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 904HW UT WOS:000301186300013 PM 22179570 ER PT J AU Dou, LT You, JB Yang, J Chen, CC He, YJ Murase, S Moriarty, T Emery, K Li, G Yang, Y AF Dou, Letian You, Jingbi Yang, Jun Chen, Chun-Chao He, Youjun Murase, Seiichiro Moriarty, Tom Emery, Keith Li, Gang Yang, Yang TI Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer SO NATURE PHOTONICS LA English DT Article ID ENERGY-CONVERSION EFFICIENCY; OPEN-CIRCUIT VOLTAGE; PHOTOVOLTAIC CELLS; CONJUGATED POLYMERS; DESIGN RULES; HETEROJUNCTIONS; ENHANCEMENT; ACCEPTOR; DONORS; LEVEL AB Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of a suitable low-bandgap polymer. Here, we demonstrate highly efficient single and tandem polymer solar cells featuring a low-bandgap conjugated polymer (PBDTT-DPP: bandgap, similar to 1.44 eV). A single-layer device based on the polymer provides a power conversion efficiency of similar to 6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which is, to the best of our knowledge, the highest certified efficiency for a polymer solar cell to date. C1 [Dou, Letian; You, Jingbi; Yang, Jun; Chen, Chun-Chao; He, Youjun; Murase, Seiichiro; Li, Gang; Yang, Yang] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Moriarty, Tom; Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yang, Yang] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. RP Dou, LT (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. EM yangy@ucla.edu RI Yang, Yang/A-2944-2011; You, Jingbi/A-2941-2011; Li, Gang/A-5667-2012; He, Youjun/I-6626-2013; Wei, Zhanhua/D-7544-2013 OI You, Jingbi/0000-0002-4651-9081; Li, Gang/0000-0001-8399-7771; Wei, Zhanhua/0000-0003-2687-0293 FU National Science Foundation (NSF) [CHE0822573]; Air Force Office of Scientific Research (AFOSR) [FA9550-09-1-0610]; Office of Naval Research (ONR) [N00014-04-1-0434]; US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was financially supported by the National Science Foundation (NSF, grant no. CHE0822573; programme manager: C. Foss), the Air Force Office of Scientific Research (AFOSR, grant no. FA9550-09-1-0610; programme manager: C. Lee) and the Office of Naval Research (ONR, grant no. N00014-04-1-0434; programme manager: P. Armistead), as well as by the US Department of Energy (contract no. DE-AC36-08-GO28308) together with the National Renewable Energy Laboratory. The authors thank R. Green, E. Richard, W. B. Yang and W.-C. Hsu of the Department of Materials Science and Engineering at UCLA for material testing, synthesis, ultraviolet photoelectron spectroscopy and X-ray diffraction measurements, respectively. Thanks also go to K.N. Houk and B. Martin of the Department of Chemistry (UCLA) for the quantum chemical calculation and R. Kaner and P. Weiss of the Department of Chemistry (UCLA) for reading the manuscript. NR 47 TC 1074 Z9 1095 U1 25 U2 435 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD MAR PY 2012 VL 6 IS 3 BP 180 EP 185 DI 10.1038/NPHOTON.2011.356 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA 901BC UT WOS:000300935700014 ER PT J AU Clark, J Nelson, T Tretiak, S Cirmi, G Lanzani, G AF Clark, J. Nelson, T. Tretiak, S. Cirmi, G. Lanzani, G. TI Femtosecond torsional relaxation SO NATURE PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; SOLVATION DYNAMICS; SPECTRA; ISOMERIZATION; SPECTROSCOPY; ABSORPTION; EMISSION; MOBILITY; SYSTEMS AB Molecular conformational reorganization following photon absorption is a fundamental process driving reactions such as the cis-trans isomerization at the heart of the primary step of vision and can be exploited for switching in artificial systems using photochromics. In general, conformational change occurs on a timescale defined by the energy of the main vibrational mode and the rate of energy dissipation. Typically, for a conformational change such as a twist around the backbone of a conjugated molecule, this occurs on the tens of picoseconds timescale. However, here we demonstrate experimentally that in certain circumstances the molecule, in this case an oligofluorene, can change conformation over two orders of magnitude faster (that is sub-100 fs) in a manner analogous to inertial solvent reorganization demonstrated in the 1990s. Theoretical simulations demonstrate that non-adiabatic transitions during internal conversion can efficiently convert electronic potential energy into torsional kinetic energy, providing the 'kick' that prompts sub-100 fs torsional reorganization. C1 [Clark, J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Nelson, T.; Tretiak, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cirmi, G.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Cirmi, G.] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Lanzani, G.] Ist Italiano Tecnol, Ctr Nano Sci & Technol Polimi, I-20133 Milan, Italy. [Lanzani, G.] Politecn Milan, Dept Phys, I-20133 Milan, Italy. RP Clark, J (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. EM jc414@cam.ac.uk RI Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 FU Royal Society; Center for Integrated Nanotechnology (CINT),; Center for Nonlinear Studies (CNLS); National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396]; European Union [FP6-026365] FX We thank S. Fernandez-Alberti for stimulating discussions and for help with the code for the non-adiabatic simulations. J.C. acknowledges the Royal Society for a Dorothy Hodgkin Fellowship. We also acknowledge support of the Center for Integrated Nanotechnology (CINT), the Center for Nonlinear Studies (CNLS) and the LDRD programme at Los Alamos National Laboratory, operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396, as well as the European Union for financial support through FP6-026365. NR 48 TC 68 Z9 68 U1 5 U2 69 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD MAR PY 2012 VL 8 IS 3 BP 225 EP 231 DI 10.1038/NPHYS2210 PG 7 WC Physics, Multidisciplinary SC Physics GA 900ZA UT WOS:000300929800018 ER PT J AU Machida, S Barlow, R Berg, JS Bliss, N Buckley, RK Clarke, JA Craddock, MK D'Arcy, R Edgecock, R Garland, JM Giboudot, Y Goudket, P Griffiths, S Hill, C Hill, SF Hock, KM Holder, DJ Ibison, MG Jackson, F Jamison, SP Johnstone, C Jones, JK Jones, LB Kalinin, A Keil, E Kelliher, DJ Kirkman, IW Koscielniak, S Marinov, K Marks, N Martlew, B McIntosh, PA McKenzie, JW Meot, F Middleman, KJ Moss, A Muratori, BD Orrett, J Owen, HL Pasternak, J Peach, KJ Poole, MW Rao, YN Saveliev, Y Scott, DJ Sheehy, SL Shepherd, BJA Smith, R Smith, SL Trbojevic, D Tzenov, S Weston, T Wheelhouse, A Williams, PH Wolski, A Yokoi, T AF Machida, S. Barlow, R. Berg, J. S. Bliss, N. Buckley, R. K. Clarke, J. A. Craddock, M. K. D'Arcy, R. Edgecock, R. Garland, J. M. Giboudot, Y. Goudket, P. Griffiths, S. Hill, C. Hill, S. F. Hock, K. M. Holder, D. J. Ibison, M. G. Jackson, F. Jamison, S. P. Johnstone, C. Jones, J. K. Jones, L. B. Kalinin, A. Keil, E. Kelliher, D. J. Kirkman, I. W. Koscielniak, S. Marinov, K. Marks, N. Martlew, B. McIntosh, P. A. McKenzie, J. W. Meot, F. Middleman, K. J. Moss, A. Muratori, B. D. Orrett, J. Owen, H. L. Pasternak, J. Peach, K. J. Poole, M. W. Rao, Y-N. Saveliev, Y. Scott, D. J. Sheehy, S. L. Shepherd, B. J. A. Smith, R. Smith, S. L. Trbojevic, D. Tzenov, S. Weston, T. Wheelhouse, A. Williams, P. H. Wolski, A. Yokoi, T. TI Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA SO NATURE PHYSICS LA English DT Article ID FFAG; LATTICE AB In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators. C1 [Machida, S.; Edgecock, R.; Kelliher, D. J.; Pasternak, J.; Sheehy, S. L.] Harwell Oxford, STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Barlow, R.; Edgecock, R.] Univ Huddersfield, Huddersfield HD1 3DH, W Yorkshire, England. [Berg, J. S.; Meot, F.; Trbojevic, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Bliss, N.; Buckley, R. K.; Clarke, J. A.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S. F.; Jackson, F.; Jamison, S. P.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; Poole, M. W.; Saveliev, Y.; Scott, D. J.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Weston, T.; Wheelhouse, A.; Williams, P. H.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Buckley, R. K.; Clarke, J. A.; Garland, J. M.; Giboudot, Y.; Goudket, P.; Hill, S. F.; Hock, K. M.; Holder, D. J.; Ibison, M. G.; Jackson, F.; Jamison, S. P.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Kirkman, I. W.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Middleman, K. J.; Moss, A.; Muratori, B. D.; Orrett, J.; Poole, M. W.; Saveliev, Y.; Scott, D. J.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Wheelhouse, A.; Williams, P. H.; Wolski, A.] Cockcroft Inst Accelerator Sci & Technol, Warrington WA4 4AD, Cheshire, England. [Craddock, M. K.; Koscielniak, S.; Rao, Y-N.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Craddock, M. K.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [D'Arcy, R.] UCL, London WC1E 6BT, England. [Garland, J. M.; Owen, H. L.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Giboudot, Y.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Griffiths, S.] Australian Synchrotron, Clayton, Vic 3168, Australia. [Hock, K. M.; Holder, D. J.; Ibison, M. G.; Kirkman, I. W.; Marks, N.; Wolski, A.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Johnstone, C.; Scott, D. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Keil, E.] CERN, CH-1211 Geneva, Switzerland. [Pasternak, J.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Peach, K. J.; Sheehy, S. L.; Yokoi, T.] Univ Oxford, John Adams Inst Accelerator Sci, Oxford OX1 3RH, England. [Tzenov, S.] Univ Lancaster, Lancaster LA1 4YW, England. RP Machida, S (reprint author), Harwell Oxford, STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. EM shinji.machida@stfc.ac.uk RI Berg, Joseph/E-8371-2014; Owen, Hywel/G-4548-2014; Peach, Ken/C-6551-2009; Sheehy, Suzie/C-3304-2013; OI Berg, Joseph/0000-0002-5955-6973; Owen, Hywel/0000-0001-5028-2841; Peach, Ken/0000-0003-2966-2457; Wolski, Andrzej/0000-0002-5057-5588; Sheehy, Suzie/0000-0002-7653-7205; Tzenov, Stephan/0000-0001-8672-308X; Kelliher, David/0000-0001-9583-7804 FU BASROC/CONFORM under Engineering and Physical Sciences Research Council (EPSRC) [EP/E032869/1]; UK Neutrino Factory under Particle Physics and Astronomy Research Council (PPARC) [2054]; Science and Technology Facilities Council (STFC); National Sciences and Engineering Research Council of Canada (NSERC) [SRO 328338-05]; US Department of Energy [DE-AC02-98CH10886, DE-AC02-07CH11359] FX We greatly appreciate the assistance of the Technology Department at STFC Daresbury Laboratory during the design and construction of EMMA. Our work is supported by the BASROC/CONFORM project (the UK Basic Technology Fund) under Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/E032869/1, the UK Neutrino Factory project under Particle Physics and Astronomy Research Council (PPARC) Contract No. 2054, Science and Technology Facilities Council (STFC), National Sciences and Engineering Research Council of Canada (NSERC) Grant No. SRO 328338-05 and the US Department of Energy under Contract No. DE-AC02-98CH10886 and DE-AC02-07CH11359. NR 32 TC 27 Z9 27 U1 1 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAR PY 2012 VL 8 IS 3 BP 243 EP 247 DI 10.1038/NPHYS2179 PG 5 WC Physics, Multidisciplinary SC Physics GA 900ZA UT WOS:000300929800021 ER PT J AU Brandl, G Lal, J Carpenter, J Crow, L Robertson, L Georgii, R Boni, P Bleuel, M AF Brandl, G. Lal, J. Carpenter, J. Crow, L. Robertson, L. Georgii, R. Boeni, P. Bleuel, M. TI Tests of modulated intensity small angle scattering in time of flight mode SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE MIEZE; Spin echo; HFIR; MISANS; ESS ID PULSED-SOURCE; NEUTRON; RESOLUTION AB We report results of tests of the MISANS technique at the CG-1D beamline at the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory (ORNL). A chopper at 40 Hz simulated a pulsed neutron source at the beamline. A compact turn-key MISANS module operating with the pulsed beam was installed and a well characterized MnSi sample was tested. The feasibility of application of high magnetic fields at the sample position was also explored. These tests demonstrate the great potential of this technique, in particular for examining magnetic and depolarizing samples, under extreme sample environments at pulsed sources, such as the Spallation Neutron Source (SNS) or the planned European Spallation Source (ESS). (C) 2011 Elsevier B.V. All rights reserved. C1 [Brandl, G.; Georgii, R.; Boeni, P.] Tech Univ Munich, Phys Dept E21, D-85747 Garching, Germany. [Lal, J.; Carpenter, J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Carpenter, J.; Crow, L.; Robertson, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bleuel, M.] Delft Univ Technol, NL-2629 JB Delft, Netherlands. RP Georgii, R (reprint author), Tech Univ Munich, Phys Dept E21, Lichtenbergstr 1, D-85747 Garching, Germany. EM Robert.Georgii@frm2.tum.de FU ONRL; US Department of Energy [DE-AC0500OR22725]; German BMBF under "Mitwirkung der Zentren der Helmholtz Gemeinschaft und der Technischen Universitat Munchen an der Design-Update Phase der ESS, Forderkennzeichen" [05E10WO1] FX This work was funded by ONRL, the US Department of Energy, and by the German BMBF under "Mitwirkung der Zentren der Helmholtz Gemeinschaft und der Technischen Universitat Munchen an der Design-Update Phase der ESS, Forderkennzeichen 05E10WO1." ORNL is managed by UTBatelle, LLC, under contract DE-AC0500OR22725 for the U.S. Department of Energy. NR 15 TC 4 Z9 4 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 1 PY 2012 VL 667 BP 1 EP 4 DI 10.1016/j.nima.2011.11.075 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 904TR UT WOS:000301221300001 ER PT J AU Mao, JH Wu, D Kim, IJ Kang, HC Wei, G Climent, J Kumar, A Pelorosso, FG DelRosario, R Huang, EJ Balmain, A AF Mao, J-H Wu, D. Kim, I-J Kang, H. C. Wei, G. Climent, J. Kumar, A. Pelorosso, F. G. DelRosario, R. Huang, E. J. Balmain, A. TI Hipk2 cooperates with p53 to suppress gamma-ray radiation-induced mouse thymic lymphoma SO ONCOGENE LA English DT Article DE Hipk2; p53; radiation; tumorigenesis ID INTERACTING PROTEIN KINASE-2; TRANSCRIPTION; TUMORS; GENE AB A genome-wide screen for genetic alterations in radiation-induced thymic lymphomas generated from p53+/- and p53-/- mice showed frequent loss of heterozygosity (LOH) on chromosome 6. Fine mapping of these LOH regions revealed three non-overlapping regions, one of which was refined to a 0.2 Mb interval that contained only the gene encoding homeobox-interacting protein kinase 2 (Hipk2). More than 30% of radiation-induced tumors from both p53+/- and p53-/- mice showed heterozygous loss of one Hipk2 allele. Mice carrying a single inactive allele of Hipk2 in the germline were susceptible to induction of tumors by gamma-radiation, but most tumors retained and expressed the wild-type allele, suggesting that Hipk2 is a haploinsufficient tumor suppressor gene for mouse lymphoma development. Heterozygous loss of both Hipk2 and p53 confers strong sensitization to radiation-induced lymphoma. We conclude that Hipk2 is a haploinsufficient lymphoma suppressor gene. Oncogene (2012) 31, 1176-1180; doi:10.1038/onc.2011.306; published online 25 July 2011 C1 [Wu, D.; Kim, I-J; Kang, H. C.; Climent, J.; Kumar, A.; Pelorosso, F. G.; DelRosario, R.; Balmain, A.] Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94158 USA. [Mao, J-H] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Wei, G.; Huang, E. J.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA. [Wei, G.; Huang, E. J.] Vet Affairs Med Ctr, Pathol Serv 113B, San Francisco, CA 94121 USA. RP Balmain, A (reprint author), Helen Diller Family Comprehens Canc Ctr, 1450 3rd St, San Francisco, CA 94158 USA. EM abalmain@cc.ucsf.edu OI Huang, Eric/0000-0002-5381-3801 FU NIH/NCI [U01 CA84244R, 01 CA116481]; DOE [DE-FG02-03ER63630]; Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development Program (LDRD); UCSF Genome Analysis Core; Barbara Bass Bakar Chair of Cancer Genetics FX These studies were supported by NIH/NCI grant U01 CA84244 and the DOE (DE-FG02-03ER63630) to AB, and NIH/NCI grant R01 CA116481, Office of Biological and Environmental Research of the US Department of Energy under Contract No DE-AC02-05CH11231 and Laboratory Directed Research and Development Program (LDRD) to JHM. AB acknowledges support from the UCSF Genome Analysis Core and the Barbara Bass Bakar Chair of Cancer Genetics. NR 17 TC 21 Z9 22 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD MAR PY 2012 VL 31 IS 9 BP 1176 EP 1180 DI 10.1038/onc.2011.306 PG 5 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 901EW UT WOS:000300945900010 PM 21785465 ER PT J AU Magneschi, L Catalanotti, C Subramanian, V Dubini, A Yang, WQ Mus, F Posewitz, MC Seibert, M Perata, P Grossman, AR AF Magneschi, Leonardo Catalanotti, Claudia Subramanian, Venkataramanan Dubini, Alexandra Yang, Wenqiang Mus, Florence Posewitz, Matthew C. Seibert, Michael Perata, Pierdomenico Grossman, Arthur R. TI A Mutant in the ADH1 Gene of Chlamydomonas reinhardtii Elicits Metabolic Restructuring during Anaerobiosis SO PLANT PHYSIOLOGY LA English DT Article ID PYRUVATE FORMATE-LYASE; ESCHERICHIA-COLI; ALCOHOL-DEHYDROGENASE; HYDROGEN PHOTOPRODUCTION; CARROT CELLS; FERMENTATION; ALGA; OXYGEN; ARABIDOPSIS; RESPIRATION AB The green alga Chlamydomonas reinhardtii has numerous genes encoding enzymes that function in fermentative pathways. Among these, the bifunctional alcohol/acetaldehyde dehydrogenase (ADH1), highly homologous to the Escherichia coli AdhE enzyme, is proposed to be a key component of fermentative metabolism. To investigate the physiological role of ADH1 in dark anoxic metabolism, a Chlamydomonas adh1 mutant was generated. We detected no ethanol synthesis in this mutant when it was placed under anoxia; the two other ADH homologs encoded on the Chlamydomonas genome do not appear to participate in ethanol production under our experimental conditions. Pyruvate formate lyase, acetate kinase, and hydrogenase protein levels were similar in wild-type cells and the adh1 mutant, while the mutant had significantly more pyruvate: ferredoxin oxidoreductase. Furthermore, a marked change in metabolite levels (in addition to ethanol) synthesized by the mutant under anoxic conditions was observed; formate levels were reduced, acetate levels were elevated, and the production of CO 2 was significantly reduced, but fermentative H 2 production was unchanged relative to wild-type cells. Of particular interest is the finding that the mutant accumulates high levels of extracellular glycerol, which requires NADH as a substrate for its synthesis. Lactate production is also increased slightly in the mutant relative to the control strain. These findings demonstrate a restructuring of fermentative metabolism in the adh1 mutant in a way that sustains the recycling (oxidation) of NADH and the survival of the mutant (similar to wild-type cell survival) during dark anoxic growth. C1 [Magneschi, Leonardo; Catalanotti, Claudia; Yang, Wenqiang; Grossman, Arthur R.] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA. [Magneschi, Leonardo; Perata, Pierdomenico] Scuola Super Sant Anna, Inst Life Sci, PlantLab, I-56124 Pisa, Italy. [Subramanian, Venkataramanan; Dubini, Alexandra; Seibert, Michael] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Subramanian, Venkataramanan; Posewitz, Matthew C.; Seibert, Michael] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Mus, Florence] Montana State Univ, Dept Microbiol, Dept Chem & Biol Engn, Bozeman, MT 59717 USA. [Mus, Florence] Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA. RP Magneschi, L (reprint author), Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA. EM magneschi@sssup.it RI Perata, Pierdomenico/A-5658-2008; dubini, alexandra /A-7252-2016 OI Perata, Pierdomenico/0000-0001-9444-0610; dubini, alexandra /0000-0001-8825-3915 FU Office of Biological and Environmental Research; Genome; Office of Science, U.S. Department of Energy; National Science Foundation [MCB-0235878]; U.S. Department of Energy [DE-FG02-07ER64427, DE-AC36-08GO28308]; Air Force Office of Scientific Research [FA9550-11-1-0211]; Scuola Superiore Sant'Anna; Regione Toscana; National Renewable Energy Laboratory FX This work was supported by the Office of Biological and Environmental Research, Genome to Life program, Office of Science, U.S. Department of Energy (grants to A.R.G., M.C.P., and M.S.), by the National Science Foundation (grant no. MCB-0235878) and the U.S. Department of Energy (grant no. DE-FG02-07ER64427) to A.R.G., by the Air Force Office of Scientific Research (grant no. FA9550-11-1-0211 to M.C.P.), by the Scuola Superiore Sant'Anna (to P.P. and L.M.), by the Regione Toscana (Programma Operativo Regionale Obiettivo 2 Fondo Sociale Europeo to L.M.), and by the National Renewable Energy Laboratory Pension Program (to M.S.). Work at the National Renewable Energy Laboratory was performed under U.S. Department of Energy contract number DE-AC36-08GO28308. NR 54 TC 31 Z9 31 U1 0 U2 22 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD MAR PY 2012 VL 158 IS 3 BP 1293 EP 1305 DI 10.1104/pp.111.191569 PG 13 WC Plant Sciences SC Plant Sciences GA 905NY UT WOS:000301280500016 PM 22271746 ER PT J AU Bernardis, S Newman, BK Di Sabatino, M Fakra, SC Bertoni, MI Fenning, DP Larsen, RB Buonassisi, T AF Bernardis, Sarah Newman, Bonna K. Di Sabatino, Marisa Fakra, Sirine C. Bertoni, Mariana I. Fenning, David P. Larsen, Rune B. Buonassisi, Tonio TI Synchrotron-based microprobe investigation of impurities in raw quartz-bearing and carbon-bearing feedstock materials for photovoltaic applications SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE quartz; feedstock; silicon refining; impurities; synchrotron-based microprobe; X-ray fluorescence; XANES; metals ID SOLAR-GRADE SILICON; K-EDGE XANES; MULTICRYSTALLINE SILICON; CELLS; TI; SPECTROSCOPY; TRANSITION; DIFFUSION; ELEMENTS; METALS AB Using synchrotron-based analytical microprobe techniques, we determine micrometer-scale elemental composition, spatial distribution, and oxidation state of impurities in raw feedstock materials used in the photovoltaic industry. Investigated Si-bearing compounds are pegmatitic quartz, hydrothermal quartz, and quartzite. Micrometer-scale clusters containing Fe, Ti, and/or Ca are frequently observed at structural defects in oxidized states and in bulk concentrations equivalent to inductively coupled plasma mass spectroscopy measurements. Investigated C-bearing compounds are pine wood, pine charcoal, and eucalyptus charcoal. Clustered metals are observed only in the charcoal samples. Impurity clustering implies that industrial processing could be adapted to take advantage of this natural gettering phenomenon, expanding the usable range of raw feedstock materials to dirtier, cheaper, and more abundant ones, currently underexploited for solar-grade silicon production. Copyright (c) 2011 John Wiley & Sons, Ltd. C1 [Bernardis, Sarah; Newman, Bonna K.; Bertoni, Mariana I.; Fenning, David P.; Buonassisi, Tonio] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Di Sabatino, Marisa] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway. [Di Sabatino, Marisa] SINTEF Mat & Chem, N-7465 Trondheim, Norway. [Fakra, Sirine C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Larsen, Rune B.] Norwegian Univ Sci & Technol, Dept Geol & Mineral Resources Engn, N-7491 Trondheim, Norway. RP Bernardis, S (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bernardis@alum.mit.edu RI Buonassisi, Tonio/J-2723-2012; OI Fenning, David/0000-0002-4609-9312 FU US Department of Energy [DE-FG36-09GO19001]; Doug Spreng; Chesonis Family Foundation; BASIC, Norwegian Research Council [191285/V30]; Claire Boothe Luce Foundation; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [E-AC02-05CH11231, DE-AC02-06CH11357] FX The authors thank B Monsen, SINTEF Materials and Chemistry, Trondheim, Norway, for supplying the C-bearing compounds and insightful discussions. C Francis is acknowledged for helpful geological discussions and S Hudelson for experimental support. M Islam at Metron Tech, Burlingame, CA, is acknowledged for ICP-MS analyses and S Woods for insightful ICP-MS discussions. MA Marcus and B Lai are thanked for experimental support at the Advanced Light Source and Advanced Photon Source, respectively.r Support for this research was provided by the US Department of Energy, under contract number DE-FG36-09GO19001, through the generous support of Doug Spreng and the Chesonis Family Foundation and the BASIC Project, Norwegian Research Council, under contract number 191285/V30. S.B. acknowledges the support of the Leiv Eiriksson mobility program through the Norwegian Research Council. BKN acknowledges the support of the Claire Boothe Luce Foundation. The Advanced Light Source and Advanced Photon Source are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contracts DE-AC02-05CH11231 and DE-AC02-06CH11357, respectively. NR 41 TC 2 Z9 2 U1 1 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD MAR PY 2012 VL 20 IS 2 BP 217 EP 225 DI 10.1002/pip.1126 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 897ZE UT WOS:000300701600011 ER PT J AU Leggett, RW AF Leggett, R. W. TI The biokinetics of ruthenium in the human body SO RADIATION PROTECTION DOSIMETRY LA English DT Article ID COMPARATIVE METABOLISM; FISCHER-344 RATS; RADIORUTHENIUM; RETENTION; RADIONUCLIDES; DOSIMETRY; RU-106; COMPLEXES; MAMMALS AB The International Commission on Radiological Protection (ICRP) is updating its biokinetic and dosimetric models for workers and subsequently will revisit its models for members of the public. This paper summarises the biokinetic database for ruthenium and proposes a new biokinetic model for systemic ruthenium. In contrast to the ICRPs current model, the proposed model depicts recycling of ruthenium between tissues and blood and a non-uniform distribution of systemic ruthenium. The paper also points out inconsistencies between the ICRPs respiratory model for RuO4 vapour and reported data, and inconsistencies between the ICRPs default gastrointestinal (GI) uptake value and data for some forms of ruthenium. Dosimetric implications of the proposed systemic model and the findings for inhaled RuO4 vapour and GI uptake of ruthenium are examined. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Leggett, RW (reprint author), Oak Ridge Natl Lab, Bldg 545TPK,MS6495, Oak Ridge, TN 37831 USA. EM rwl@ornl.gov FU Office of Radiation and Indoor Air, U.S. Environmental Protection Agency (EPA) under DOE [1824-S581-A1]; UT-Battelle [DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Government [DE-AC05-00OR22725] FX This work was supported by the Office of Radiation and Indoor Air, U.S. Environmental Protection Agency (EPA), under Interagency Agreement DOE No. 1824-S581-A1, under contract No. DE-AC05-00OR22725 with UT-Battelle. The manuscript was prepared by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free licence to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 49 TC 0 Z9 0 U1 2 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD MAR PY 2012 VL 148 IS 4 BP 389 EP 402 DI 10.1093/rpd/ncr197 PG 14 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 898HB UT WOS:000300730000002 PM 21561945 ER PT J AU McLaughlin, DA Schwahn, SO AF McLaughlin, David A. Schwahn, Scott O. TI Worker inhalation dose coefficients for radionuclides not previously identified in ICRP publication 68 SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB While inhalation dose coefficients are provided for about 800 radionuclides in International Commission on Radiological Protection (ICRP) Publication 68, many radionuclides of practical dosimetric interest for facilities such as high-energy proton accelerators are not specifically addressed, nor are organ-specific dose coefficients tabulated. The ICRP Publication 68 dosimetry concepts are used, along with updated radiological decay data and metabolic data, to calculate committed equivalent dose coefficients [h(T)(50)] and committed effective dose coefficients [e(50)] for radionuclides produced at the Oak Ridge National Laboratorys Spallation Neutron Source. C1 [McLaughlin, David A.; Schwahn, Scott O.] UT Battelle, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Schwahn, SO (reprint author), UT Battelle, Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM schwahnso@ornl.gov RI Schwahn, Scott/C-2530-2016 OI Schwahn, Scott/0000-0001-7105-3095 FU United States Department of Energy [DE-AC05-00OR22725] FX This work was supported by the United States Department of Energy [DE-AC05-00OR22725]. NR 10 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD MAR PY 2012 VL 148 IS 4 BP 428 EP 430 DI 10.1093/rpd/ncr207 PG 3 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 898HB UT WOS:000300730000006 PM 21576177 ER PT J AU Manger, RP Bellamy, MB Eckerman, KF AF Manger, R. P. Bellamy, M. B. Eckerman, K. F. TI Dose conversion coefficients for neutron exposure to the lens of the human eye SO RADIATION PROTECTION DOSIMETRY LA English DT Article ID RADIATION AB Dose conversion coefficients for the lens of the human eye have been calculated for neutron exposure at energies from 110(9) to 20 MeV and several standard orientations: anterior-to-posterior, rotational and right lateral. MCNPX version 2.6.0, a Monte Carlo-based particle transport package, was used to determine the energy deposited in the lens of the eye. The human eyeball model was updated by partitioning the lens into sensitive and insensitive volumes as the anterior portion (sensitive volume) of the lens being more radiosensitive and prone to cataract formation. The updated eye model was used with the adult UF-ORNL mathematical phantom in the MCNPX transport calculations. C1 [Manger, R. P.; Bellamy, M. B.; Eckerman, K. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Manger, RP (reprint author), Oak Ridge Natl Lab, 545Oak Ridge Turnpike, Oak Ridge, TN 37830 USA. EM mangerrp@ornl.gov OI Bellamy, Michael/0000-0003-0892-7559 FU Office of Radiation and Indoor Air, US Environmental Protection Agency (EPA) under DOE [1824-S581-A1]; U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER); U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Government [DE-AC05-00O R22725] FX This work was sponsored by the Office of Radiation and Indoor Air, US Environmental Protection Agency (EPA), under Interagency Agreement DOE No. 1824-S581-A1, performed at Oak Ridge National Laboratory (ORNL), and supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER) programs. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00O R22725. NR 10 TC 4 Z9 7 U1 2 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD MAR PY 2012 VL 148 IS 4 BP 507 EP 513 DI 10.1093/rpd/ncr202 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 898HB UT WOS:000300730000019 PM 21531748 ER PT J AU Bolster, D de Anna, P Benson, DA Tartakovsky, AM AF Bolster, Diogo de Anna, Pietro Benson, David A. Tartakovsky, Alexandre M. TI Incomplete mixing and reactions with fractional dispersion SO ADVANCES IN WATER RESOURCES LA English DT Article DE Fractional dispersion; Reactions; Incomplete mixing ID BIMOLECULAR REACTION-KINETICS; HETEROGENEOUS POROUS-MEDIA; TRANSPORT; DIFFUSION; MOMENTS; MODEL AB A common barrier to accurately predicting the fate of reactive contaminants is accurately describing the role of incomplete mixing. In this paper we develop a stochastic analytical framework for an irreversible kinetic bimolecular reaction in a system with anomalous transport, governed by the fractional advection-dispersion equation (fADE). The classical well-mixed (thermodynamic) solution dictates that the concentration of reactants after an initial transient decreases proportional to t(-1). As the system becomes less and less well-mixed, the rate of reaction decreases relative to the thermodynamic solution, at late times scaling with t(-1/(2 alpha)) instead of t(-1), where 1 < alpha <= 2 is the fractional order of the dispersion term in the fADE. The time at which this transition takes place is derived, giving an indication of the range of validity of the classical (well-mixed) equation. We verify these analytic results using particle-based simulations of random walks and reactions. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Bolster, Diogo] Univ Notre Dame, Environm Fluid Mech Labs, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. [de Anna, Pietro] Univ Rennes 1, CNRS, UMR 6118, Rennes, France. [Benson, David A.] Colorado Sch Mines, Golden, CO 80401 USA. [Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Computat Math Grp, Richland, WA 99352 USA. RP Bolster, D (reprint author), Univ Notre Dame, Environm Fluid Mech Labs, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. EM bolster@nd.edu RI Bolster, Diogo/D-9667-2011; Experiences, Modelisation/A-2664-2013; Benson, David/J-2683-2013 OI Bolster, Diogo/0000-0003-3960-4090; FU NSF [EAR-1113704, EAR-0749035, DMS-0539176]; Department of Energy [DOE DE-FG02-07ER15841]; European Commission [212298]; Office of Advanced Scientific Computational Research of the Department of Energy FX Diogo Bolster would like to express thanks for financial support from NSF via Grant EAR-1113704. David Benson would like to express thanks for financial support from NSF via Grants EAR-0749035 and DMS-0539176 and the Department of Energy through Grant DOE DE-FG02-07ER15841. Any opinions, findings, conclusions, or recommendations do not necessarily reflect the views of the funding agencies. Pietro de Anna would like to express thanks for the financial support of the European Commission through FP7 project, IMVUL (Grant Agreement 212298). Alexander Tartakovsky was partially supported by the Office of Advanced Scientific Computational Research of the Department of Energy. NR 47 TC 23 Z9 24 U1 3 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD MAR PY 2012 VL 37 BP 86 EP 93 DI 10.1016/j.advwatres.2011.11.005 PG 8 WC Water Resources SC Water Resources GA 900BS UT WOS:000300862200006 ER PT J AU Boden, AF Torres, G Duchene, G Konopacky, Q Ghez, AM Torres, RM Loinard, L AF Boden, Andrew F. Torres, Guillermo Duchene, Gaspard Konopacky, Quinn Ghez, A. M. Torres, Rosa M. Loinard, Laurent TI A SURPRISING DYNAMICAL MASS FOR V773 Tau B SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars fundamental parameters; stars individual (V773 Tau); stars pre-main sequence ID MAIN-SEQUENCE STARS; ECCENTRIC STELLAR BINARIES; PRELIMINARY PHYSICAL ORBIT; SOLAR-TYPE STARS; CIRCUMBINARY DISCS; SPECTRAL LIBRARY; V-773 TAURI; COOL STARS; SYSTEM; MULTIPLICITY AB We report on new high-resolution imaging and spectroscopy on the multiple T Tauri star system V773 Tau over the 2003-2009 period. With these data we derive relative astrometry, photometry between the A and B components, and radial velocity (RV) of the A-subsystem components. Combining these new data with previously published astrometry and RVs, we update the relative A-B orbit model. This updated orbit model, the known system distance, and A-subsystem parameters yield a dynamical mass for the B component for the first time. Remarkably, the derived B dynamical mass is in the range 1.7-3.0 M-circle dot. This is much higher than previous estimates and suggests that like A, B is also a multiple stellar system. Among these data, spatially resolved spectroscopy provides new insight into the nature of the B component. Similar to A, these near-IR spectra indicate that the dominant source in B is of mid-K spectral type. If B is in fact a multiple star system as suggested by the dynamical mass estimate, the simplest assumption is that B is composed of similar similar to 1.2 M-circle dot pre-main-sequence stars in a close (< 1 AU) binary system. This inference is supported by line-shape changes in near-IR spectroscopy of B, tentatively interpreted as changing RV among components in V773 Tau B. Relative photometry indicates that B is highly variable in the near-IR. The most likely explanation for this variability is circum-B material resulting in variable line-of-sight extinction. The distribution of this material must be significantly affected by both the putative B multiplicity and the A-B orbit. C1 [Boden, Andrew F.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Duchene, Gaspard] Univ Calif Berkeley, Div Astron & Astrophys, Berkeley, CA 94720 USA. [Duchene, Gaspard] UJF Grenoble 1 CNRS INSU, IPAG, UMR 5274, F-38041 Grenoble, France. [Konopacky, Quinn] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Konopacky, Quinn; Ghez, A. M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Torres, Rosa M.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Torres, Rosa M.; Loinard, Laurent] Univ Nacl Autonoma Mexico, Ctr Radiostron & Astrofis, Morelia 58089, Michoacan, Mexico. [Loinard, Laurent] Max Planck Inst Radioastron, D-53121 Bonn, Germany. RP Boden, AF (reprint author), CALTECH, Div Phys Math & Astron, MS 11-17, Pasadena, CA 91125 USA. FU W.M. Keck Foundation; National Science Foundation; California Institute of Technology, Harvard University; University of California; DGAPA; UNAM; CONACyT, Mexico; NSF [AST-1007992, AST-0908822]; Deutsche Forschungsgemeinschaft (DFG) [VL 61/3-1]; Guggenheim Foundation; von Humboldt Stiftung; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Some of the data presented here were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, the University of Hawaii, and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. We gratefully acknowledge personnel from the W.M. Keck Observatory in supporting observations of V773 Tau. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.; The authors gratefully acknowledge research support provided by the National Science Foundation, the California Institute of Technology, Harvard University, the University of California, DGAPA, UNAM, and CONACyT, Mexico. In particular: A.F.B. acknowledges support from NSF grant AST-0908822, G.T. acknowledges support from NSF grant AST-1007992, R.M.T. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) through the Emmy Noether Research grant VL 61/3-1. L.L. acknowledges the financial support of the Guggenheim Foundation and the von Humboldt Stiftung. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 48 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 17 DI 10.1088/0004-637X/747/1/17 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300017 ER PT J AU Hansen, CE Klein, RI Mckee, CF Fisher, RT AF Hansen, Charles E. Klein, Richard I. McKee, Christopher F. Fisher, Robert T. TI FEEDBACK EFFECTS ON LOW-MASS STAR FORMATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; ISM clouds; ISM jets and outflows; methods numerical; stars formation; stars luminosity function, mass function; radiative transfer; turbulence ID RADIATION-HYDRODYNAMIC SIMULATIONS; EMBEDDED STELLAR CLUSTERS; SELF-GRAVITATIONAL HYDRODYNAMICS; OUTFLOW-DRIVEN TURBULENCE; GALACTIC MOLECULAR CLOUDS; ADAPTIVE MESH REFINEMENT; COMPETITIVE ACCRETION; PRESTELLAR CORES; DENSE CORES; JEANS MASS AB Protostellar feedback, both radiation and bipolar outflows, dramatically affects the fragmentation and mass accretion from star-forming cores. We use ORION, an adaptive mesh refinement gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud in the presence of protostellar feedback. We present results of the first simulations of a star-forming cluster that include both radiative transfer and protostellar outflows. We run four simulations to isolate the individual effects of radiation feedback and outflow feedback as well as the combination of the two. We find that outflows reduce protostellar masses and accretion rates each by a factor of three and therefore reduce protostellar luminosities by an order of magnitude. This means that, while radiation feedback suppresses fragmentation, outflows render protostellar radiation largely irrelevant for low-mass star formation above a mass scale of 0.05 M-circle dot. We find initial fragmentation of our cloud at half the global Jeans length, around 0.1 pc. With insufficient protostellar radiation to stop it, these 0.1 pc cores fragment repeatedly, forming typically 10 stars each. The accretion rate in these stars scales with mass as predicted from core accretion models that include both thermal and turbulent motions; the accretion rate does not appear to be consistent with either competitive accretion or accretion from an isothermal sphere. We find that protostellar outflows do not significantly affect the overall cloud dynamics, in the absence of magnetic fields, due to their small opening angles and poor coupling to the dense gas. The outflows reduce the mass from the cores by 2/3, giving a core to star efficiency, is an element of(core) similar or equal to 1/3. The simulations are also able to reproduce many observation of local star-forming regions. Our simulation with radiation and outflows reproduces the observed protostellar luminosity function. All of the simulations can reproduce observed core mass functions, though we find they are sensitive to telescope resolution. We also reproduce the two-point correlation function of these observed cores. Lastly, we reproduce the initial mass function itself, including the low-mass end, when outflows are included. C1 [Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McKee, Christopher F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fisher, Robert T.] Univ Massachusetts, Dept Phys, Dartmouth, MA USA. RP Hansen, CE (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. RI Fisher, Robert/J-8667-2014 OI Fisher, Robert/0000-0001-8077-7255 FU NSF [AST-0908553, CNS-0959382]; Spitzer Space Telescope Theoretical Research Program grant; AFOSR DURIP [FA9550-10-1-0354]; US Deptartment of Energy at LLNL [DE-AC52-07NA]; NASA through ATFP; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge helpful discussions with Stella Offner, Mark Krumholz, and Andrew Cunningham and improvements suggested by our anonymous referee and Philip Myers. This research has been supported by the NSF through grants AST-0908553 (CEH, CFM and RIK) and CNS-0959382 (RTF), a Spitzer Space Telescope Theoretical Research Program grant (CFM), and AFOSR DURIP Grant FA9550-10-1-0354 (RTF). Support for this work was also provided by the US Deptartment of Energy at LLNL under contract DE-AC52-07NA (RIK). Support for computer simulations was provided by an LRAC grant from the NSF through Teragrid resources and NASA through grants from the ATFP. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 127 TC 36 Z9 36 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 22 DI 10.1088/0004-637X/747/1/22 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300022 ER PT J AU Lentz, EJ Mezzacappa, A Messer, OEB Liebendorfer, M Hix, WR Bruenn, SW AF Lentz, Eric J. Mezzacappa, Anthony Messer, O. E. Bronson Liebendoerfer, Matthias Hix, W. Raphael Bruenn, Stephen W. TI ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: numerical; neutrinos; radiative transfer; supernovae: general ID CIRCLE-DOT STAR; RADIATION HYDRODYNAMICS; GRAVITATIONAL COLLAPSE; NUMERICAL-METHOD; II SUPERNOVAE; CODE TESTS; EXPLOSIONS; MECHANISM; EQUATION; MULTIGROUP AB We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models. C1 [Lentz, Eric J.; Mezzacappa, Anthony; Messer, O. E. Bronson; Hix, W. Raphael] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Lentz, Eric J.] Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Mezzacappa, Anthony; Messer, O. E. Bronson] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Messer, O. E. Bronson] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Liebendoerfer, Matthias] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Bruenn, Stephen W.] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. RP Lentz, EJ (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM elentz@utk.edu; mezzacappaa@ornl.gov RI Messer, Bronson/G-1848-2012; Hix, William/E-7896-2011; Lentz, Eric/M-7173-2015; Mezzacappa, Anthony/B-3163-2017 OI Messer, Bronson/0000-0002-5358-5415; Hix, William/0000-0002-9481-9126; Lentz, Eric/0000-0002-5231-0532; Mezzacappa, Anthony/0000-0001-9816-9741 FU NASA [NNH11AQ72I]; NSF [OCI-0749242]; Department of Energy Office of Nuclear Physics; Department of Energy Office of Advanced Scientific Computing Research; Swiss National Science Foundation [PP00P2-124879, 200020-122287]; National Science Foundation through TeraGrid; National Institute for Computational Sciences [TG-MCA08X010]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX E.J.L. is supported by grants from the NASA Astrophysics Theory and Fundamental Physics Program (grant No. NNH11AQ72I) and the NSF PetaApps Program (grant No. OCI-0749242). A.M. and W.R.H. are supported by the Department of Energy Office of Nuclear Physics; and A.M. and O.E.B.M. are supported by the Department of Energy Office of Advanced Scientific Computing Research. M.L. is supported by the Swiss National Science Foundation (grant Nos. PP00P2-124879 and 200020-122287). This research was supported in part by the National Science Foundation through TeraGrid resources provided by National Institute for Computational Sciences under grant number TG-MCA08X010. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 54 TC 38 Z9 38 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 73 DI 10.1088/0004-637X/747/1/73 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300073 ER PT J AU Reis, RRR Soares-Santos, M Annis, J Dodelson, S Hao, JG Johnston, D Kubo, J Lin, H Seo, HJ Simet, M AF Reis, Ribamar R. R. Soares-Santos, Marcelle Annis, James Dodelson, Scott Hao, Jiangang Johnston, David Kubo, Jeffrey Lin, Huan Seo, Hee-Jong Simet, Melanie TI THE SLOAN DIGITAL SKY SURVEY CO-ADD: A GALAXY PHOTOMETRIC REDSHIFT CATALOG SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; galaxies: distances and redshifts ID SPECTROSCOPIC TARGET SELECTION; EARLY DATA RELEASE; NEURAL-NETWORK; SDSS; SYSTEM; SAMPLE; CLASSIFICATION; PARAMETERS; TELESCOPE; MONITOR AB We present and describe a catalog of galaxy photometric redshifts (photo-z) for the Sloan Digital Sky Survey (SDSS) Co-add Data. We use the artificial neural network (ANN) technique to calculate the photo-z and the nearest neighbor error method to estimate photo-z errors for similar to 13 million objects classified as galaxies in the co-add with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of similar to 83,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey, the Deep Extragalactic Evolutionary Probe Data Release 3, the VIsible imaging Multi-Object Spectrograph-Very Large Telescope Deep Survey, and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than sigma(68) = 0.031. After presenting our results and quality tests, we provide a short guide for users accessing the public data. C1 [Reis, Ribamar R. R.; Soares-Santos, Marcelle; Annis, James; Dodelson, Scott; Hao, Jiangang; Johnston, David; Kubo, Jeffrey; Lin, Huan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Reis, Ribamar R. R.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil. [Soares-Santos, Marcelle] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, Brazil. [Dodelson, Scott; Simet, Melanie] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Dodelson, Scott] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Seo, Hee-Jong] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Seo, Hee-Jong] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Reis, RRR (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. RI Reis, Ribamar/H-9381-2012; Simet, Melanie/A-3415-2016; OI Simet, Melanie/0000-0001-8823-8926; Hao, Jiangang/0000-0003-0502-7571 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX Funding for the Sloan Digital Sky Survey (SDSS) and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, The University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 37 TC 19 Z9 19 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 59 DI 10.1088/0004-637X/747/1/59 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300059 ER PT J AU Song, J Mohr, JJ Barkhouse, WA Warren, MS Dolag, K Rude, C AF Song, Jeeseon Mohr, Joseph J. Barkhouse, Wayne A. Warren, Michael S. Dolag, Klaus Rude, Cody TI A PARAMETERIZED GALAXY CATALOG SIMULATOR FOR TESTING CLUSTER FINDING, MASS ESTIMATION, AND PHOTOMETRIC REDSHIFT ESTIMATION IN OPTICAL AND NEAR-INFRARED SURVEYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; dark energy; dark matter; galaxies: clusters: general; galaxies: halos; methods: numerical ID SOUTH-POLE TELESCOPE; DIGITAL SKY SURVEY; HALO OCCUPATION DISTRIBUTION; DARK-MATTER HALOS; K-BAND PROPERTIES; LUMINOSITY FUNCTION; RICH CLUSTERS; RED-SEQUENCE; X-RAY; COSMOLOGICAL CONSTRAINTS AB We present a galaxy catalog simulator that converts N-body simulations with halo and subhalo catalogs into mock, multiband photometric catalogs. The simulator assigns galaxy properties to each subhalo in a way that reproduces the observed cluster galaxy halo occupation distribution, the radial and mass-dependent variation in fractions of blue galaxies, the luminosity functions in the cluster and the field, and the color-magnitude relation in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Parameterizing an ensemble of cluster galaxy properties enables us to createmock catalogs with variations in those properties, which in turn allows us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. Field galaxies are sampled from existing multiband photometric surveys of similar depth. We present an application of the catalog simulator to characterize the selection function and contamination of a galaxy cluster finder that utilizes the cluster red sequence together with galaxy clustering on the sky. We estimate systematic uncertainties in the selection to be at the <= 15% level with current observational constraints on cluster galaxy populations and their evolution. We find the contamination in this cluster finder to be similar to 35% to redshift z similar to 0.6. In addition, we use the mock galaxy catalogs to test the optical mass indicator B-gc and a red-sequence redshift estimator. We measure the intrinsic scatter of the B-gc-mass relation to be approximately log normal with sigma(log10) M similar to 0.25 and we demonstrate photometric redshift accuracies for massive clusters at the similar to 3% level out to z similar to 0.7. C1 [Song, Jeeseon] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, Joseph J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, Joseph J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, Joseph J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Barkhouse, Wayne A.; Rude, Cody] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Warren, Michael S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Dolag, Klaus] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Dolag, Klaus] Univ Observ Munich, D-81679 Munich, Germany. RP Song, J (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. OI Warren, Michael/0000-0002-1218-7904; /0000-0002-9584-2600 FU DOE [DE-FG02-95ER40899]; Excellence Cluster Universe in Garching FX J.S. acknowledges the support of the DOE grant DE-FG02-95ER40899. J.J.M. acknowledges the support of the Excellence Cluster Universe in Garching. NR 70 TC 13 Z9 13 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 58 DI 10.1088/0004-637X/747/1/58 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300058 ER PT J AU Moller, P Sierk, AJ Bengtsson, R Sagawa, H Ichikawa, T AF Moeller, P. Sierk, A. J. Bengtsson, R. Sagawa, H. Ichikawa, T. TI Nuclear shape isomers SO ATOMIC DATA AND NUCLEAR DATA TABLES LA English DT Article ID GROUND-STATE; COEXISTENCE; MASSES AB We calculate potential-energy surfaces as functions of spheroidal (epsilon(2)), hexadecapole (epsilon(4)), and axial-asymmetry (gamma) shape coordinates for 7206 nuclei from A = 31 to A = 290. We tabulate the deformations and energies of all minima deeper than 0.2 MeV and of the saddles between all pairs of minima. The tabulation is terminated at N = 160. Our study is based on the FRLDM macroscopic-microscopic model defined in ATOMIC DATA AND NUCLEAR DATA TABLES [P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59 (1995) 185]. We also present potential-energy contour plots versus epsilon(2) and gamma for 1224 even-even nuclei in the region studied. We can identify nuclei for which a necessary condition for shape isomers occurs, namely multiple minima in the calculated potential-energy surface. We find that the vast majority of nuclear shape isomers occur in the A = 80 region, the A = 100 region, and in a more extended region centered around Pb-208. A calculated region of shape isomers that has so far not been extensively explored is the region of neutron-deficient actinides "north-east" of (208)pb. (C) 2011 Elsevier Inc. All rights reserved. C1 [Moeller, P.; Sierk, A. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bengtsson, R.] Lund Inst Technol, Dept Math Phys, SE-22100 Lund, Sweden. [Sagawa, H.] Univ Aizu, Ctr Math Sci, Aizu Wakamatsu, Fukushima 96580, Japan. [Ichikawa, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov RI Lujan Center, LANL/G-4896-2012 OI Moller, Peter/0000-0002-5848-3565; FU Japan-US Theory Institute for Physics with Exotic Nuclei, University of Tennessee [DE-FG02-06ER41407]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work is the result of an extensive, long-term collaboration. PM is grateful to the Department of Mathematical Physics, Lund Institute of Technology, for hospitality during several visits in 2002-2010. TI, RB, and HS would like to thank Los Alamos National Laboratory for hospitality during visits in 2002-2010. This work was supported by several travel grants for PM to JUSTIPEN (Japan-US Theory Institute for Physics with Exotic Nuclei) under grant number DE-FG02-06ER41407 (University of Tennessee). This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 29 TC 16 Z9 16 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0092-640X J9 ATOM DATA NUCL DATA JI Atom. Data Nucl. Data Tables PD MAR PY 2012 VL 98 IS 2 BP 149 EP 300 DI 10.1016/j.adt.2010.09.002 PG 152 WC Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA 901ME UT WOS:000300970200004 ER PT J AU Freed, AD Einstein, DR AF Freed, Alan D. Einstein, Daniel R. TI Hypo-elastic model for lung parenchyma SO BIOMECHANICS AND MODELING IN MECHANOBIOLOGY LA English DT Article DE Biomechanics; Elastic moduli; Finite deformation; Soft solids; Thermodynamics ID SOFT-TISSUE MECHANICS; LOGARITHMIC STRAIN; SURFACE-TENSION; HYPO-ELASTICITY; ALVEOLAR DUCT; I THEORY; DEFORMATION; DISTORTION; STRESS; UNIQUENESS AB A simple, isotropic, elastic constitutive model for the spongy tissue in lung is formulated from the theory of hypo-elasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted in the literature as indicating extensional anisotropy. In contrast, we show that this behavior arises naturally from an analysis of isotropic hypo-elastic invariants and is a result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model predictions are compared with published experimental data for dog lung. C1 [Freed, Alan D.] Saginaw Valley State Univ, Dept Mech Engn, University Ctr, MI 48710 USA. [Einstein, Daniel R.] Pacific NW Natl Lab, Olympia, WA 98502 USA. RP Freed, AD (reprint author), Saginaw Valley State Univ, Dept Mech Engn, 202 Pioneer Hall,7400 Bay Rd, University Ctr, MI 48710 USA. EM adfreed@svsu.edu; daniel.einstein@pnl.gov OI Freed, Alan/0000-0002-3492-0628 FU National Heart, Lung, and Blood Institute [R01HL073598] FX The project described was supported by Award Number R01HL073598 from the National Heart, Lung, and Blood Institute. NR 81 TC 2 Z9 2 U1 1 U2 11 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-7959 J9 BIOMECH MODEL MECHAN JI Biomech. Model. Mechanobiol. PD MAR PY 2012 VL 11 IS 3-4 BP 557 EP 573 DI 10.1007/s10237-011-0333-z PG 17 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 895SZ UT WOS:000300518000023 PM 21744015 ER PT J AU Tommasini, SM Trinward, A Acerbo, AS De Carlo, F Miller, LM Judex, S AF Tommasini, Steven M. Trinward, Andrea Acerbo, Alvin S. De Carlo, Francesco Miller, Lisa M. Judex, Stefan TI Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT SO BONE LA English DT Article DE PTH; Alendronate; OVX; Osteocyte lacunae; Synchrotron micro-CT; Cortical bone porosity ID BONE-MINERAL DENSITY; OSTEOCYTE LACUNAR SIZE; TRABECULAR BONE; CORTICAL BONE; MECHANICAL-PROPERTIES; PARATHYROID-HORMONE; OVARIECTOMIZED RATS; POSTMENOPAUSAL OSTEOPOROSIS; BIOMECHANICAL PROPERTIES; COMPUTED-TOMOGRAPHY AB Bone's microporosities play important biologic and mechanical roles. Here, we quantified 3D changes in cortical osteocyte-lacunae and other small porosities induced by estrogen withdrawal and two different osteoporosis treatments. Unlike 2D measurements, these data collected via synchrotron radiation-based mu CT describe the size and 3D spatial distribution of a large number of porous structures. Six-month old female Sprague-Dawley rats were separated into four groups of age-matched controls, untreated OVX, OVX treated with PTH, and OVX treated with Alendronate (ALN). Intracortical microporosity of the medial quadrant of the femoral diaphysis was quantified at endosteal, intracortical, and periosteal regions of the samples, allowing the quantification of osteocyte lacunae that were formed primarily before versus after the start of treatment. Across the overall thickness of the medial cortex, lacunar volume fraction (Lc.V/TV) was significantly lower in ALN treated rats compared to PTH. In the endosteal region, average osteocyte lacunar volume (< Lc.V >) of untreated OVX rats was significantly lower than in age-matched controls, indicating a decrease in osteocyte lacunar size in bone formed on the endosteal surface after estrogen withdrawal. The effect of treatment (OVX, ALN, PTH) on the number of lacunae per tissue volume (Lc.N/TV) was dependent on the specific location within the cortex (endosteal, intracortical, periosteal). In both the endosteal and intracortical regions, Lc.N/TV was significantly lower in ALN than in untreated OVX, suggesting a site-specific effect in osteocyte lacuna density with ALN treatment. There also were a significantly greater number of small pores (5-100 mu m(3) in volume) in the endosteal region for PTH compared to ALN. The mechanical impact of this altered microporosity structure is unknown, but might serve to enhance, rather than deteriorate bone strength with PTH treatment, as smaller osteocyte lacunae may be better able to absorb shear forces than larger lacunae. Together, these data demonstrate that current treatments of osteoporosis can alter the number, size, and distribution of microporosities in cortical rat lamellar bone. (C) 2011 Elsevier Inc. All rights reserved. C1 [Tommasini, Steven M.; Trinward, Andrea; Acerbo, Alvin S.; Judex, Stefan] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Acerbo, Alvin S.; Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [De Carlo, Francesco] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Judex, S (reprint author), SUNY Stony Brook, Dept Biomed Engn, Bioengn Bldg Rm 213, Stony Brook, NY 11794 USA. EM steven.tommasini@stonybrook.edu; andrea.trinward@gmail.com; acerbo@bnl.gov; decarlo@aps.anl.gov; lmiller@bnl.gov; stefan.judex@stonybrook.edu RI Acerbo, Alvin/D-8931-2011 OI Acerbo, Alvin/0000-0002-0909-6497 FU National Institutes of Health [AR052778] FX The authors thank the National Institutes of Health (AR052778) for their support of this research. Statistical advice from Dr. Jie Yang was greatly appreciated. NR 65 TC 19 Z9 20 U1 1 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD MAR PY 2012 VL 50 IS 3 BP 596 EP 604 DI 10.1016/j.bone.2011.12.012 PG 9 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 897KR UT WOS:000300650100003 PM 22226688 ER PT J AU Loots, GG Keller, H Leupin, O Murugesh, D Collette, NM Genetos, DC AF Loots, Gabriela G. Keller, Hansjoerg Leupin, Olivier Murugesh, Deepa Collette, Nicole M. Genetos, Damian C. TI TGF-beta regulates sclerostin expression via the ECR5 enhancer SO BONE LA English DT Article DE Transforming growth factor-beta; Sost; ECR5; Osteoblast; Bone; Wnt ID GROWTH-FACTOR-BETA; FRIZZLED-RELATED PROTEIN-1; INCREASES BONE-FORMATION; VAN-BUCHEM-DISEASE; OSTEOBLAST DIFFERENTIATION; NEGATIVE REGULATOR; SOST GENE; RECEPTOR; ANTAGONIST; CELLS AB Wnt signaling is critical for skeletal development and homeostasis. Sclerostin (Sost) has emerged as a potent inhibitor of Wnt signaling and, thereby, bone formation. Thus, strategies to reduce sclerostin expression may. be used to treat osteoporosis or non-union fractures. Transforming growth factor-beta (TGF-beta) elicits various effects upon the skeleton both in vitro and in vivo depending on the duration and timing of administration. In vitro and in vivo studies demonstrate that TGF-beta increases osteoprogenitor differentiation but decreases matrix mineralization of committed osteoblasts. Because sclerostin decreases matrix mineralization, this study aimed to examine whether TGF-beta achieves such inhibitory effects via transcriptional modulation of Sost. Using the UMR106.01 mature osteoblast cell line, we demonstrated that TGF-beta TGF-beta(1)-beta(2)-beta(3) and Activin A increase Sost transcript expression. Pharmacologic inhibition of Alk4/5/7 in vitro and in vivo decreased endogenous Sost expression, and siRNA against Alk4 and Alk5 demonstrated their requirement for endogenous Sost expression. TGF-beta(1), targeted the Sost bone enhancer ECR5 and did not affect the transcriptional activity of the endogenous Sost promoter. These results indicate that TGF-beta(1) controls Sost transcription in mature osteoblasts, suggesting that sclerostin may mediate the inhibitory effect of TGF-beta upon osteoblast differentiation. (C) 2011 Elsevier Inc. All rights reserved. C1 [Genetos, Damian C.] Univ Calif Davis, Sch Vet Med, Dept Anat Physiol & Cell Biol, Davis, CA 95616 USA. [Loots, Gabriela G.; Murugesh, Deepa; Collette, Nicole M.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA USA. [Loots, Gabriela G.] Univ Calif, Sch Nat Sci, Merced, CA USA. [Keller, Hansjoerg; Leupin, Olivier] Novartis Inst BioMed Res, Basel, Switzerland. RP Genetos, DC (reprint author), Univ Calif Davis, Sch Vet Med, Dept Anat Physiol & Cell Biol, 1321 Haring Hall, Davis, CA 95616 USA. EM dgenetos@ucdavis.edu RI Genetos, Damian/A-6480-2012; OI Genetos, Damian/0000-0002-8599-2867 FU National Institute of Arthritis and Musculoskeletal and Skin Diseases [R03AR057547]; National Institute of Diabetes and Digestive and Kidney Diseases [DK075730]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by Award Number R03AR057547 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (DCG) and DK075730 from the National Institute of Diabetes and Digestive and Kidney Diseases (DCG, DM, NMC, GGL). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 59 TC 18 Z9 23 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD MAR PY 2012 VL 50 IS 3 BP 663 EP 669 DI 10.1016/j.bone.2011.11.016 PG 7 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 897KR UT WOS:000300650100011 PM 22155511 ER PT J AU Doyle, J Streeper, C AF Doyle, James Streeper, Charles TI Steps toward increased nuclear transparency SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE disarmament; fissile materials; nonproliferation; nuclear security; nuclear weapons; stockpiles; transparency AB While there is no doubt that some information on nuclear weapons must remain undisclosed, excessive nuclear secrecy hinders progress toward the twin goals of improved nuclear materials security and the eventual elimination of nuclear weapons worldwide. With the March 2012 Nuclear Security Summit afoot and the 2015 Nuclear Non-Proliferation Treaty Review Conference in sight, now is the time for nuclear weapons states to implement new transparency measures such as declaring additional information regarding the capabilities, size, and purpose of weapons stockpiles and fissile materials, and providing the means to verify a larger portion of those declarations. Increased transparency can reduce uncertainty, build trust, establish baselines for future reductions, and place political pressure on other states possessing nuclear weapons to take similar steps. Because they possess the vast majority of nuclear weapons and fissile material in the world, the United States and Russia should lead the way by creating a model for declarations, including non-deployed and nonstrategic weapons. Declarations of nuclear weapons and fissile materials could be verified bilaterally, through new multilateral agreements and a multilateral inspections agency or by expanding the role of the International Atomic Energy Agency. Some transparency actions can be taken immediately, either unilaterally or reciprocally. Increased transparency can provide short-term benefits for some states and establish a foundation for additional bilateral and multilateral nuclear arms reductions. Transparency can be embraced by non-nuclear weapons states and states with nuclear weapons outside of the Nuclear Non-Proliferation Treaty without undertaking new treaty obligations. C1 [Doyle, James; Streeper, Charles] Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. RP Doyle, J (reprint author), Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. NR 7 TC 0 Z9 0 U1 2 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 J9 B ATOM SCI JI Bull. Atom. Scient. PD MAR-APR PY 2012 VL 68 IS 2 BP 55 EP 62 DI 10.1177/0096340212438386 PG 8 WC International Relations; Social Issues SC International Relations; Social Issues GA 902TP UT WOS:000301064400006 ER PT J AU Kwak, JH Tran, D Szanyi, J Peden, CHF Lee, JH AF Kwak, Ja Hun Tran, Diana Szanyi, Janos Peden, Charles H. F. Lee, Jong H. TI The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13 SO CATALYSIS LETTERS LA English DT Article DE Selective catalytic reduction; Nitric oxide; Ammonia; Copper; Zeolite ID ZEOLITE CATALYST; CU-ZEOLITE; NH3; UREA; SCR; NO AB The effect of Cu loading on the selective catalytic reduction of NOx by NH3 was examined over a series of Cu ion-exchanged (20-80%) SSZ-13 zeolite catalysts. High NO reduction efficiencies (80-95%) were obtained over all catalyst samples between 250 and 500 A degrees C, and at the gas hourly space velocity of 200,000 h(-1). Both NO reduction and NH3 oxidation activities under these conditions were found to increase slightly with increasing Cu loading at low temperatures. However, NO reduction activity was suppressed with increasing Cu loadings at high temperatures (> 500 A degrees C) due to excess NH3 oxidation. The optimum Cu ion exchange level appears to be similar to 40-60% since higher than 80% NO reduction efficiency was obtained over 50% Cu ion-exchanged SSZ-13 up to 600 A degrees C. The NO oxidation activity of Cu-SSZ-13 was found to be low regardless of Cu loading, although it was somewhat improved with increasing Cu ion exchange level at high temperatures. During the "fast" SCR (i.e., NO/NO2 = 1), only a slight improvement in NOx reduction activity was obtained for Cu-SSZ-13. Regardless of Cu loading, near 100% selectivity to N-2 was observed; only a very small amount of N2O was produced even in the presence of NO2. The apparent activation energies for NO oxidation and NO SCR were estimated to be similar to 58 and similar to 41 kJ/mol, respectively. C1 [Kwak, Ja Hun; Tran, Diana; Szanyi, Janos; Peden, Charles H. F.; Lee, Jong H.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Kwak, JH (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM kwak@pnnl.gov RI Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 FU US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies; US DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. The authors also thank Prof. Bill Schneider for providing a preprint of Reference 14 prior to publication. NR 17 TC 81 Z9 88 U1 9 U2 140 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD MAR PY 2012 VL 142 IS 3 BP 295 EP 301 DI 10.1007/s10562-012-0771-y PG 7 WC Chemistry, Physical SC Chemistry GA 900MS UT WOS:000300891800001 ER PT J AU Nunziata, SO Richter, SC Denton, RD Yeiser, JM Wells, DE Jones, KL Hagen, C Lance, SL AF Nunziata, Schyler O. Richter, Stephen C. Denton, Robert D. Yeiser, John M. Wells, Danielle E. Jones, Kenneth L. Hagen, Cris Lance, Stacey L. TI Fourteen novel microsatellite markers for the gopher frog, Lithobates capito (Amphibia: Ranidae) SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Lithobates; Rana; Ranidae; Gopher frog; Microsatellite; PCR primers; SSR; STR ID DNA LOCI AB We isolated and characterized a total of 14 microsatellite loci from gopher frogs, Lithobates capito. This species is of conservation concern because most populations have gone locally extinct across the geographic distribution. Loci were screened for 21 individuals from a single population in Florida. The number of alleles per locus ranged from 7 to 17, observed heterozygosity ranged from 0.667 to 0.947, and the probability of identity values ranged from 0.011 to 0.077. These new loci provide tools for examining the genetic diversity and population structure of L. capito populations and addressing factors associated with their decline. C1 [Nunziata, Schyler O.; Richter, Stephen C.; Denton, Robert D.; Yeiser, John M.; Wells, Danielle E.] Eastern Kentucky Univ, Dept Biol Sci, Richmond, KY 40475 USA. [Nunziata, Schyler O.; Hagen, Cris; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29803 USA. [Jones, Kenneth L.] Univ Colorado, Sch Med, Aurora, CO 80045 USA. RP Richter, SC (reprint author), Eastern Kentucky Univ, Dept Biol Sci, Moore 235,521 Lancaster Ave, Richmond, KY 40475 USA. EM stephen.richter@eku.edu RI Lance, Stacey/K-9203-2013; OI Lance, Stacey/0000-0003-2686-1733; Yeiser, John/0000-0002-0053-0664 FU Department of Energy [DE-FC09-07SR22506]; agency of the United States Government FX Manuscript preparation was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. We thank Daniel Smith for providing the frog specimens.; This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 8 TC 2 Z9 2 U1 6 U2 40 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD MAR PY 2012 VL 4 IS 1 BP 201 EP 203 DI 10.1007/s12686-011-9508-2 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 898WG UT WOS:000300772500048 ER PT J AU Murtagh, VJ O'Meally, D Sankovic, N Delbridge, ML Kuroki, Y Boore, JL Toyoda, A Jordan, KS Pask, AJ Renfree, MB Fujiyama, A Graves, JAM Waters, PD AF Murtagh, Veronica J. O'Meally, Denis Sankovic, Natasha Delbridge, Margaret L. Kuroki, Yoko Boore, Jeffrey L. Toyoda, Atsushi Jordan, Kristen S. Pask, Andrew J. Renfree, Marilyn B. Fujiyama, Asao Graves, Jennifer A. Marshall Waters, Paul D. TI Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution SO GENOME RESEARCH LA English DT Article ID CANDIDATE SPERMATOGENESIS GENE; HUMAN X-CHROMOSOME; MACROPUS-EUGENII; MAMMALIAN SEX; PHYSICAL MAP; DNA-SEQUENCE; HOMOLOG; GENOME; REGION; CONSTRUCTION AB We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECF2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL1OX/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis brain expressed genes on the X. C1 [Murtagh, Veronica J.; O'Meally, Denis; Sankovic, Natasha; Delbridge, Margaret L.; Jordan, Kristen S.; Graves, Jennifer A. Marshall; Waters, Paul D.] Australian Natl Univ, Res Sch Biol, Canberra, ACT 2601, Australia. [Murtagh, Veronica J.; Sankovic, Natasha; Delbridge, Margaret L.; Pask, Andrew J.; Renfree, Marilyn B.; Graves, Jennifer A. Marshall; Waters, Paul D.] Univ Melbourne, ARC Ctr Excellence Kangaroo Genom, Melbourne, Vic 3010, Australia. [O'Meally, Denis] Australian Natl Univ, Inst Appl Ecol, Canberra, ACT 2601, Australia. [Sankovic, Natasha; Pask, Andrew J.; Renfree, Marilyn B.; Graves, Jennifer A. Marshall] Univ Melbourne, Dept Zool, Melbourne, Vic 3010, Australia. [Kuroki, Yoko] RIKEN Res Ctr Allergy & Immunol, Yokohama, Kanagawa 2300045, Japan. [Boore, Jeffrey L.] Genome Project Solut, Hercules, CA 94547 USA. [Boore, Jeffrey L.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Toyoda, Atsushi; Fujiyama, Asao] Natl Inst Genet, Mishima, Shizuoka 4118540, Japan. [Pask, Andrew J.] Univ Connecticut, Dept Mol & Cellular Biol, Storrs, CT 06260 USA. [Fujiyama, Asao] Natl Inst Informat, Tokyo 1018430, Japan. RP Waters, PD (reprint author), Australian Natl Univ, Res Sch Biol, GPO Box 4, Canberra, ACT 2601, Australia. EM Paul.waters@anu.edu.au RI Waters, Paul/B-7871-2015; O'Meally, Denis/A-3746-2012; OI O'Meally, Denis/0000-0001-7749-9506; Pask, Andrew/0000-0002-1900-2263; Renfree, Marilyn/0000-0002-4589-0436 FU Australian Research Council; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-05CH11231]; University of California, Lawrence Berkeley National Laboratory; KAKENHI from the Ministry of Education, Culture, Sports, Science and Technology of Japan FX We are especially thankful to the technical staff of the Comparative Genomics Laboratory NIG and the RIKEN Advanced Science Institute, the Victorian Institute of Animal Sciences (VIAS) for construction of the ME_VIA library, Ke-Jun Wei for curation of the ME_VIA tammar BAC library, and Anthony Papenfuss for bio-informatic tools used during this project. This project was funded by grants from the Australian Research Council (to J.A.M.G. and P.D.W.). Part of this work was performed under the auspices of the U.S. Department of Energy, Office of Biological and Environmental Research, contract No. DE-AC02-05CH11231 with the University of California, Lawrence Berkeley National Laboratory. Part of this work was supported by KAKENHI (Grant-in-Aid for Scientific Research) on Priority Area "Comparative Genomics" from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to A.F. and Y.K.). NR 57 TC 18 Z9 18 U1 0 U2 16 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD MAR PY 2012 VL 22 IS 3 BP 498 EP 507 DI 10.1101/gr.120790.111 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 901JG UT WOS:000300962600009 PM 22128133 ER PT J AU Cho, YK Jung, Y Lee, JS Foley, BT AF Cho, Y. -K. Jung, Y. Lee, J. -S. Foley, B. T. TI Molecular evidence of HIV-1 transmission in 20 Korean individuals with haemophilia: phylogenetic analysis of the vif gene SO HAEMOPHILIA LA English DT Article DE AIDS; haemophilia; HIV-1; phylogenetic analysis; signature pattern analysis; vif ID HUMAN-IMMUNODEFICIENCY-VIRUS; INFECTION; STRAINS; SURGEON; CLADE AB . To assess whether a genetic relationship exists between the viruses infecting HIV-positive patients with haemophilia and those infecting plasma donors, we determined the vif sequences in 169 individuals, including 20 haemophilia patients, 3 plasma donors, and 146 local controls. Twenty haemophilia patients were diagnosed with HIV-1 at 12 years after exposure to factor IX (FIX) manufactured in Korea, beginning in 19891990. Plasma samples from donors O and P were used to manufacture clotting factors including FIX used to treat the 20 haemophiliacs. The vif gene from frozen stored serum samples obtained 13 years after diagnosis was amplified by RT-PCR, and subjected to direct sequencing. Phylogenetic analysis revealed that vif sequences from 128 of the samples (including haemophilia patients and donors) belonged to the Korean subclade of HIV-1 subtype B (KSB). Sequences from 41 other participants were identified as subtype B, but outside the Korean subclade. Sequences of the vif gene from donors O and P plus the 20 individuals with haemophilia comprised two subclusters within KSB. In addition, signature pattern analysis disclosed the presence of conserved nucleotides at two positions in donors and haemophiliacs only. Together with information on KSB, dates of plasma donations and seroconversion of haemophilia patients, our results suggest that the haemophiliacs examined here became infected by viruses in the domestic clotting factor used for treatment. C1 [Cho, Y. -K.; Jung, Y.; Lee, J. -S.] Univ Ulsan, Coll Med, Dept Microbiol, Seoul 138736, South Korea. [Foley, B. T.] Los Alamos Natl Lab, HIV Databases, Theoret Biol & Biophys Grp, Los Alamos, NM USA. RP Cho, YK (reprint author), Univ Ulsan, Coll Med, Dept Microbiol, 88,Olympic Ro 43 Gil, Seoul 138736, South Korea. EM ykcho2@amc.seoul.kr; btf@lanl.gov OI Foley, Brian/0000-0002-1086-0296 FU Korean Society of Ginseng; Korea Ginseng Corporation FX This work was supported by a grant from the Korean Society of Ginseng funded by the Korea Ginseng Corporation (2008-09). Cho designed the research study. Cho, Lee and Jung performed the research. Cho and Foley analysed the data and wrote the paper. NR 21 TC 3 Z9 4 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1351-8216 J9 HAEMOPHILIA JI Haemophilia PD MAR PY 2012 VL 18 IS 2 BP 291 EP 299 DI 10.1111/j.1365-2516.2011.02620.x PG 9 WC Hematology SC Hematology GA 897PL UT WOS:000300665000033 PM 21787373 ER PT J AU Godoy-Vitorino, F Goldfarb, KC Karaoz, U Leal, S Garcia-Amado, MA Hugenholtz, P Tringe, SG Brodie, EL Dominguez-Bello, MG AF Godoy-Vitorino, Filipa Goldfarb, Katherine C. Karaoz, Ulas Leal, Sara Garcia-Amado, Maria A. Hugenholtz, Philip Tringe, Susannah G. Brodie, Eoin L. Dominguez-Bello, Maria Gloria TI Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows SO ISME JOURNAL LA English DT Article DE microbiota; foregut; hindgut; hoatzin; cow; PhyloChip ID GASTROINTESTINAL-TRACT; OPISTHOCOMUS HOAZIN; FOLIVOROUS HOATZIN; RUMEN; DIVERSITY; SHEEP; BIRD; TIME; CROP; POPULATION AB Foregut fermentation occurs in mammalian ruminants and in one bird, the South American folivorous hoatzin. This bird has an enlarged crop with a function analogous to the rumen, where foregut microbes degrade the otherwise indigestible plant matter, providing energy to the host from foregut fermentation, in addition to the fermentation that occurs in their hindguts (cecum/colon). As foregut fermentation represents an evolutionary convergence between hoatzins and ruminants, our aim was to compare the community structure of foregut and hindgut bacterial communities in the cow and hoatzin to evaluate the influences of host phylogeny and organ function in shaping the gut microbiome. The approach used was to hybridize amplified bacterial ribosomal RNA genes onto a high-density microarray (PhyloChip). The results show that the microbial communities cluster primarily by functional environment (foreguts cluster separately from hindguts) and then by host. Bacterial community diversity was higher in the cow than in the hoatzin. Overall, compared with hindguts, foreguts have higher proportions of Bacteroidetes and Spirochaetes, and lower proportions of Firmicutes and Proteobacteria. The main host differences in gut bacterial composition include a higher representation of Spirochaetes, Synergistes and Verrucomicrobia in the cow. Despite the significant differences in host phylogeny, body size, physiology and diet, the function seems to shape the microbial communities involved in fermentation. Regardless of the independent origin of foregut fermentation in birds and mammals, organ function has led to convergence of the microbial community structure in phylogenetically distant hosts. The ISME Journal (2012) 6, 531-541; doi: 10.1038/ismej.2011.131; published online 22 September 2011 C1 [Godoy-Vitorino, Filipa; Dominguez-Bello, Maria Gloria] Univ Puerto Rico, Dept Biol, San Juan, PR 00931 USA. [Godoy-Vitorino, Filipa; Hugenholtz, Philip; Tringe, Susannah G.] DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA USA. [Goldfarb, Katherine C.; Karaoz, Ulas; Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Garcia-Amado, Maria A.] IVIC, Caracas, Venezuela. [Hugenholtz, Philip] Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogen, St Lucia, Qld, Australia. [Hugenholtz, Philip] Univ Queensland, Inst Mol Biosci, St Lucia, Qld, Australia. RP Dominguez-Bello, MG (reprint author), Univ Puerto Rico, Dept Biol, Rio Piedras Campus,POB 23360, San Juan, PR 00931 USA. EM maria.dominguez1@upr.edu RI Hugenholtz, Philip/G-9608-2011; Garcia Amado, Maria Alexandra/B-5297-2015; Brodie, Eoin/A-7853-2008; Karaoz, Ulas/J-7093-2014; OI Brodie, Eoin/0000-0002-8453-8435; Tringe, Susannah/0000-0001-6479-8427; Garcia-Amado, Maria Alexandra/0000-0001-6396-4681 FU NSF IOS [0716911]; NSF DEB-DDIG [0709840]; NSF [CREST/HRD0206200]; University of California [DE-AC02-05CH11231] FX This work was supported by Grants from NSF IOS 0716911, NSF DEB-DDIG 0709840 and NSF CREST/HRD0206200. Part of this work was performed at the Lawrence Berkeley National Laboratory under the auspices of the University of California-contract number DE-AC02-05CH11231. We gratefully acknowledge fieldwork support from Jose Gonzalez-Fernandez, Juan Gonzalez-Fernandez and Antonio Gonzalez-Fernandez from Hato Mataclara (Cojedes river) where the birds were captured. We also thank Mr Jorge Morales (owner of Macelo-La Muda Slaughterhouse) and Dr Enid Aviles (USDA Veterinarian) the authorization of the sampling procedures of cow rumen and colon contents. NR 48 TC 35 Z9 35 U1 8 U2 78 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD MAR PY 2012 VL 6 IS 3 BP 531 EP 541 DI 10.1038/ismej.2011.131 PG 11 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 900JM UT WOS:000300883200006 PM 21938024 ER PT J AU McDonald, D Price, MN Goodrich, J Nawrocki, EP DeSantis, TZ Probst, A Andersen, GL Knight, R Hugenholtz, P AF McDonald, Daniel Price, Morgan N. Goodrich, Julia Nawrocki, Eric P. DeSantis, Todd Z. Probst, Alexander Andersen, Gary L. Knight, Rob Hugenholtz, Philip TI An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea SO ISME JOURNAL LA English DT Article DE evolution; phylogenetics; taxonomy ID RIBOSOMAL-RNA GENE; HUMAN MICROBIOME PROJECT; SEQUENCE DATA; ALIGNMENTS; DIVERSITY; DATABASE; TOOL; ARB; ASSIGNMENT; INFERENCE AB Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a 'taxonomy to tree' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/. The ISME Journal (2012) 6, 610-618; doi: 10.1038/ismej.2011.139; published online 1 December 2011 C1 [Hugenholtz, Philip] Univ Queensland, Australian Ctr Ecogen, Sch Chem & Mol Biosci, St Lucia, Qld 4072, Australia. [Hugenholtz, Philip] Univ Queensland, Inst Mol Biosci, St Lucia, Qld 4072, Australia. [McDonald, Daniel; Goodrich, Julia; Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Price, Morgan N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Nawrocki, Eric P.] Howard Hughes Med Inst, Ashburn, VA USA. [Probst, Alexander; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. [DeSantis, Todd Z.] Second Genome Inc, Dept Bioinformat, San Bruno, CA USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. RP Hugenholtz, P (reprint author), Univ Queensland, Australian Ctr Ecogen, Sch Chem & Mol Biosci, Mol Biosci Bldg 76, St Lucia, Qld 4072, Australia. EM p.hugenholtz@uq.edu.au RI Hugenholtz, Philip/G-9608-2011; Andersen, Gary/G-2792-2015; Probst, Alexander/K-2813-2016; Knight, Rob/D-1299-2010; OI Andersen, Gary/0000-0002-1618-9827; Price, Morgan/0000-0002-4251-0362 FU Office of Science, the Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231]; Sloan Indoor Environment program; National Institutes of Health [UH2/UH3CA140233, U01-HG004866]; Bill and Melinda Gates Foundation; Howard Hughes Medical Institute FX We thank Adam Arkin and Sean Eddy for supporting this study. The work conducted by ENIGMA was supported by the Office of Science, the Office of Biological and Environmental Research, of the US Department of Energy under Contract no. DE-AC02-05CH11231. This work was supported in part by the Sloan Indoor Environment program, the National Institutes of Health (grants UH2/UH3CA140233 and U01-HG004866), the Bill and Melinda Gates Foundation and the Howard Hughes Medical Institute. NR 31 TC 795 Z9 804 U1 32 U2 195 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD MAR PY 2012 VL 6 IS 3 BP 610 EP 618 DI 10.1038/ismej.2011.139 PG 9 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 900JM UT WOS:000300883200013 PM 22134646 ER PT J AU Amaro, F Gilbert, JA Owens, S Trimble, W Shuman, HA AF Amaro, Francisco Gilbert, Jack A. Owens, Sarah Trimble, William Shuman, Howard A. TI Whole-Genome Sequence of the Human Pathogen Legionella pneumophila Serogroup 12 Strain 570-CO-H SO JOURNAL OF BACTERIOLOGY LA English DT Article ID GENES AB We present the genomic sequence of the human pathogen Legionella pneumophila serogroup 12 strain 570-CO-H (ATCC 43290), a clinical isolate from the Colorado Department of Health, Denver, CO. This is the first example of a genome sequence of L. pneumophila from a serogroup other than serogroup 1. We highlight the similarities and differences relative to six genome sequences that have been reported for serogroup 1 strains. C1 [Amaro, Francisco; Shuman, Howard A.] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. [Gilbert, Jack A.; Owens, Sarah; Trimble, William] Argonne Natl Lab, Inst Genom & Syst Biol, Lemont, IL USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. RP Shuman, HA (reprint author), Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. EM hshuman@bsd.uchicago.edu OI Trimble, William L./0000-0001-7029-2676 FU NIAID [RO1 AI23549]; U.S. Department of Energy [DE-AC02-06CH11357]; Fulbright Commission; Ministry of Education of Spain FX This work was supported by NIAID RO1 AI23549 (H.A.S.) and the U.S. Department of Energy under contract DE-AC02-06CH11357 (J.A.G.). F. Amaro is the recipient of a postdoctoral fellowship from the Fulbright Commission and Ministry of Education of Spain. NR 11 TC 12 Z9 12 U1 0 U2 3 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAR PY 2012 VL 194 IS 6 BP 1613 EP 1614 DI 10.1128/JB.06626-11 PG 2 WC Microbiology SC Microbiology GA 899WI UT WOS:000300846900038 PM 22374950 ER PT J AU Correa-Metrio, A Bush, MB Hodell, DA Brenner, M Escobar, J Guilderson, T AF Correa-Metrio, Alexander Bush, Mark B. Hodell, David A. Brenner, Mark Escobar, Jaime Guilderson, Tom TI The influence of abrupt climate change on the ice-age vegetation of the Central American lowlands SO JOURNAL OF BIOGEOGRAPHY LA English DT Article DE Central American lowlands; glacial diversity; Heinrich events; Last Glacial Maximum; Pinus; Pinus savannas; Pleistocene vegetation change; Quercus; vegetation history; Yucatan Peninsula ID LAST GLACIAL PERIOD; YUCATAN PENINSULA; LATE PLEISTOCENE; HEINRICH EVENTS; CENTRAL MEXICO; RAIN-FOREST; COSTA-RICA; POLLEN; RECORDS; FIRE AB Aim To investigate the effects of abrupt climate change in the North Atlantic on the vegetation history of lowland Central America. We use palynological evidence from a Central American lake on the Yucatan Peninsula to evaluate the effects of rapid climate changes during the last ice age, between 65 and 8 ka. Location Lake Peten-Itza, lowlands of northern Guatemala. Methods Sediment core PI-6 was sampled at c. 170-year resolution for pollen and charcoal analysis in order to construct a temporal sequence of environmental change. Uni-and multivariate statistical analyses were performed on the pollen dataset to test whether there was an association between Heinrich events in the North Atlantic and vegetation changes in the Central American lowlands. Results Pollen analysis revealed that the composition of plant assemblages on the Yucatan Peninsula varied in phase with rapid changes in North Atlantic climate. Pine savannas were the main vegetation type between c. 60 and 47 ka. These savannas gave way to pine-oak (Pinus-Quercus) forests in the latter half of the last ice age. Marked episodes of replacement of the pine-oak assemblage by xeric-tolerant taxa occurred during Heinrich events. The Last Glacial Maximum (LGM) was characterized by mesic conditions. Main conclusions The pollen record from Lake Peten-Itzashowed that vegetation changes associated with Heinrich events were more significant than those associated with the LGM. Each Heinrich event produced a characteristic shift towards xeric taxa. Although colder than Heinrich events, the LGM on the Yucatan Peninsula was relatively moist, and the presumed savannization of the landscape during the maximum cooling of the last glacial was not supported by our data. Our findings suggest alternative scenarios for plant diversification and genetic interchange during glacial times, and also indicate that vegetation in tropical continental settings was not as stable as previously thought. C1 [Correa-Metrio, Alexander; Bush, Mark B.] Florida Inst Technol, Dept Biol Sci, Melbourne, FL 32901 USA. [Correa-Metrio, Alexander] Univ Nacl Autonoma Mexico, Inst Geol, Mexico City 04510, DF, Mexico. [Hodell, David A.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Brenner, Mark] Univ Florida, LUECI, Gainesville, FL 32611 USA. [Escobar, Jaime] Univ Bogota Jorge Tadeo Lozano, Dept Ciencias Biol & Ambientales, Bogota, Colombia. [Guilderson, Tom] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. RP Correa-Metrio, A (reprint author), Florida Inst Technol, Dept Biol Sci, 150 W Univ Blvd, Melbourne, FL 32901 USA. EM acorrea@geologia.unam.mx OI Bush, Mark/0000-0001-6894-8613 FU US National Science Foundation [ATM-0502030]; International Continental Scientific Drilling Program; Swiss Federal Institute of Technology; Swiss National Science Foundation under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; School of Natural Resources and Environment, and Land Use and Environmental Change Institute (University of Florida); Gulf Coast Association of Geological Societies; DOSECC Internship for Student Research; Geological Society of America; Natural Environmental Research Council of the United Kingdom [NE/I016716/1] FX We thank the many agencies and individuals in Guatemala who assisted this project, and all individuals and institutions that participated in the Lake Peten-Itza Scientific Drilling Project. The cores are archived at LacCore (National Lacustrine Core Repository), Department of Geology and Geophysics, University of Minnesota-Twin Cities, and we are grateful to Anders Noren for his assistance in core sampling. This project was funded by grants from the US National Science Foundation (ATM-0502030), the International Continental Scientific Drilling Program, the Swiss Federal Institute of Technology, and the Swiss National Science Foundation. Radiocarbon analyses were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. J. E. received support from the School of Natural Resources and Environment, and Land Use and Environmental Change Institute (University of Florida), the Gulf Coast Association of Geological Societies Student Grant Program, the DOSECC Internship for Student Research, and a Geological Society of America Graduate Student Research Grant. D.H. received support from the Natural Environmental Research Council (NE/I016716/1) of the United Kingdom. This is publication 61 of the Florida Institute of Technology Institute for Research on Global Climate Change. NR 63 TC 12 Z9 13 U1 0 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0305-0270 EI 1365-2699 J9 J BIOGEOGR JI J. Biogeogr. PD MAR PY 2012 VL 39 IS 3 BP 497 EP 509 DI 10.1111/j.1365-2699.2011.02618.x PG 13 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA 897PP UT WOS:000300665400007 ER PT J AU Philip, B Chartier, TP AF Philip, Bobby Chartier, Timothy P. TI Adaptive algebraic smoothers SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article DE Adaptive smoothers; Block smoothers; Line smoothers; Multigrid; Algebraic multigrid ID AGGREGATION; SYSTEMS; SOLVER AB This paper will present a new method of adaptively constructing block iterative methods based on Local Sensitivity Analysis (LSA). The method can be used in the context of geometric and algebraic multigrid methods for constructing smoothers, and in the context of Krylov methods for constructing block preconditioners. It is suitable for both constant and variable coefficient problems. Furthermore, the method can be applied to systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems that do not arise from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid and Krylov solvers while providing a powerful tool for adaptively constructing methods tuned to a problem. Published by Elsevier B.V. C1 [Philip, Bobby] Oak Ridge Natl Lab, Computat Engn & Energy Sci Grp, Oak Ridge, TN 37831 USA. [Chartier, Timothy P.] Davidson Coll, Dept Math, Davidson, NC 28035 USA. RP Philip, B (reprint author), Oak Ridge Natl Lab, Computat Engn & Energy Sci Grp, Oak Ridge, TN 37831 USA. EM philipb@ornl.gov; tichartier@davidson.edu OI Philip, Bobby/0000-0001-6716-3515 FU LANL LDRD office under LDRD [20050315ER]; US Department of Energy [DE-FG02-04ER25590]; US Department of Energy under DOE at Los Alamos National Laboratory [W-7405-ENG-36] FX The authors thank Mac Hyman, Leon Arriola, and John Ruge for several useful discussions and input. The first author acknowledges the funding provided by the LANL LDRD office under LDRD 20050315ER which made this research possible. The second author thanks the US Department of Energy for partially funding this research through the US Department of Energy grant DE-FG02-04ER25590. The authors also thank Klaus Stuben for sharing the linear systems in Sections 4.1.3 and 4.1.4 and also for giving permission for the use of Fig. 4 as it appeared in Section 8.4.1 of [26].; This work was supported under the auspices of the US Department of Energy under DOE contract W-7405-ENG-36 at Los Alamos National Laboratory, an affirmative action/equal opportunity employer. By acceptance of this article, the publisher recognizes that the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for US Government purposes. Los Alamos National Laboratory requests that the publisher identifies this article as work performed under the auspices of the US Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. LA-UR-07-6276. NR 33 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD MAR PY 2012 VL 236 IS 9 BP 2277 EP 2297 DI 10.1016/j.cam.2011.11.016 PG 21 WC Mathematics, Applied SC Mathematics GA 900CI UT WOS:000300863800005 ER PT J AU Rycroft, CH Gibou, F AF Rycroft, Chris H. Gibou, Frederic TI Simulations of a stretching bar using a plasticity model from the shear transformation zone theory SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Plasticity; Numerical methods ID FLOW; COMPUTATION; INTERFACES; SCHEMES; GLASSES; SOLIDS; IMPACT AB An Eulerian simulation framework is developed to study an elastoplastic model of amorphous materials that is based upon the shear transformation zone (STZ) theory developed by Langer and coworkers [1]. In this theory, plastic deformation is controlled by an effective temperature that measures the amount of configurational disorder in the material. The simulation is used to model ductile fracture in a stretching bar that initially contains a small notch, and the effects of many of the model parameters are examined. The simulation tracks the shape of the bar using the level set method. Within the bar, a finite difference discretization is employed that makes use of the essentially non-oscillatory (ENO) scheme. The system of equations is moderately stiff due to the presence of large elastic constants, and one of the key numerical challenges is to accurately track the level set and construct extrapolated field values for use in boundary conditions. A new approach to field extrapolation is discussed that is second-order accurate and requires a constant amount of work per grid point. (C) 2011 Elsevier Inc. All rights reserved. C1 [Rycroft, Chris H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Math, Berkeley, CA 94720 USA. [Gibou, Frederic] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Gibou, Frederic] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA. RP Rycroft, CH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Math, Berkeley, CA 94720 USA. EM chr@math.berkeley.edu; fgibou@engineering.ucsb.edu OI Rycroft, Chris/0000-0003-4677-6990 FU National Science Foundation [DMS-0410110, DMS-070590, CHE 1027817]; Office of Science, Computational and Technology Research, US Department of Energy [DE-AC02-05CH11231]; ONR [N00014-11-1-0027]; Department of Energy [DE-FG02-08ER15991]; Institute for Collaborative Biotechnologies from the US Army Research Office [W911NF-09-D-0001]; W.M. Keck Foundation FX The authors are grateful to J.S. Langer who provided the initial motivation for the study and much support throughout, and to M.L. Manning and E. Bouchbinder for useful discussions. C.H. Rycroft was supported in part by the National Science Foundation under grants DMS-0410110 and DMS-070590, and by the Director, Office of Science, Computational and Technology Research, US Department of Energy under contract number DE-AC02-05CH11231. The research of F. Gibou was supported in part by ONR under grant agreement N00014-11-1-0027, by the National Science Foundation under grant agreement CHE 1027817, by the Department of Energy under grant agreement DE-FG02-08ER15991, by the Institute for Collaborative Biotechnologies through contract No. W911NF-09-D-0001 from the US Army Research Office and by the W.M. Keck Foundation. NR 33 TC 12 Z9 12 U1 3 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 1 PY 2012 VL 231 IS 5 BP 2155 EP 2179 DI 10.1016/j.jcp.2011.10.009 PG 25 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 899GQ UT WOS:000300804800001 ER PT J AU Berry, RD Najm, HN Debusschere, BJ Marzouk, YM Adalsteinsson, H AF Berry, Robert D. Najm, Habib N. Debusschere, Bert J. Marzouk, Youssef M. Adalsteinsson, Helgi TI Data-free inference of the joint distribution of uncertain model parameters SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Uncertainty quantification; Bayesian statistics; Missing information ID POLYNOMIAL CHAOS; DIFFERENTIAL-EQUATIONS; FINITE-ELEMENTS; MONTE-CARLO; REPRESENTATIONS; PROPAGATION; SIMULATION AB A critical problem in accurately estimating uncertainty in model predictions is the lack of details in the literature on the correlation (or full joint distribution) of uncertain model parameters. In this paper we describe a framework and a class of algorithms for analyzing such "missing data" problems in the setting of Bayesian statistics. The analysis focuses on the family of posterior distributions consistent with given statistics (e.g. nominal values, confidence intervals). The combining of consistent distributions is addressed via techniques from the opinion pooling literature. The developed approach allows subsequent propagation of uncertainty in model inputs consistent with reported statistics, in the absence of data. (C) 2011 Elsevier Inc. All rights reserved. C1 [Berry, Robert D.; Najm, Habib N.; Debusschere, Bert J.; Adalsteinsson, Helgi] Sandia Natl Labs, Livermore, CA USA. [Marzouk, Youssef M.] MIT, Cambridge, MA 02139 USA. RP Berry, RD (reprint author), Sandia Natl Labs, Livermore, CA USA. EM rdberry@sandia.gov; hnnajm@sandia.gov; bjdebus@sandia.gov; ymarz@mit.edu; hadalst@sandia.gov FU US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR); American Recovery and Reinvestment Act; DOE Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences; US Department of Energy, Office of Advanced Scientific Computing Research [DE-SC0003564]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Supported by the US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR), Applied Mathematics program, and the 2009 American Recovery and Reinvestment Act. Also supported by the DOE Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences. Y. Marzouk also acknowledges support from the US Department of Energy, Office of Advanced Scientific Computing Research, under contract number DE-SC0003564.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 36 TC 6 Z9 6 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 1 PY 2012 VL 231 IS 5 BP 2180 EP 2198 DI 10.1016/j.jcp.2011.10.031 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 899GQ UT WOS:000300804800002 ER PT J AU Bassim, ND De Gregorio, BT Kilcoyne, ALD Scott, K Chou, T Wirick, S Cody, G Stroud, RM AF Bassim, N. D. De Gregorio, B. T. Kilcoyne, A. L. D. Scott, K. Chou, T. Wirick, S. Cody, G. Stroud, R. M. TI Minimizing damage during FIB sample preparation of soft materials SO JOURNAL OF MICROSCOPY LA English DT Article DE Damage; focused ion beam; SEM; soft materials; STXM; TEM; XANES ID FOCUSED-ION-BEAM; TRANSMISSION ELECTRON-MICROSCOPY; X-RAY MICROSCOPES; THERMAL-CONDUCTIVITY; TEM-EELS; NEXAFS; ULTRAMICROTOMY; MICROANALYSIS; ABSORPTION; EXTRACTION AB Although focused ion beam (FIB) microscopy has been used successfully for milling patterns and creating ultra-thin electron and soft X-ray transparent sections of polymers and other soft materials, little has been documented regarding FIB-induced damage of these materials beyond qualitative evaluations of microstructure. In this study, we sought to identify steps in the FIB preparation process that can cause changes in chemical composition and bonding in soft materials. The impact of various parameters in the FIB-scanning electron microscope (SEM) sample preparation process, such as final milling voltage, temperature, ion beam overlap and mechanical stability of soft samples, was evaluated using two test-case materials systems: polyacrylamide, a low melting-point polymer, and Wyodak lignite coal, a refractory organic material. We evaluated changes in carbon bonding in the samples using X-ray absorption near-edge structure spectroscopy (XANES) at the carbon K edge and compared these samples with thin sections that had been prepared mechanically using ultramicrotomy. Minor chemical changes were induced in the coal samples during FIB-SEM preparation, and little effect was observed by changing ion-beam parameters. However, polyacrylamide was particularly sensitive to irradiation by the electron beam, which drastically altered the chemistry of the sample, with the primary damage occurring as an increase in the amount of aromatic carbon bonding (C=C). Changes in temperature, final milling voltage and beam overlap led to small improvements in the quality of the specimens. We outline a series of best practices for preparing electron and soft X-ray transparent samples, with respect to preserving chemical structure and mechanical stability of soft materials using the FIB. C1 [Bassim, N. D.; Stroud, R. M.] USN, Res Lab, Div Mat Sci & Technol, Washington, DC 20375 USA. [De Gregorio, B. T.] NASA Johnson Space Ctr ESCG, Houston, TX USA. [Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Scott, K.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Chou, T.] FEI Co, Hillsboro, OR USA. [Wirick, S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, New York, NY USA. [Cody, G.] Carnegie Inst Washington, Washington, DC 20005 USA. RP Bassim, ND (reprint author), Code 6366,4555 Overlook Ave SW, Washington, DC 20375 USA. EM nabil.bassim@nrl.navy.mil RI De Gregorio, Bradley/B-8465-2008; Scott, Keana/J-5717-2015; Kilcoyne, David/I-1465-2013; Stroud, Rhonda/C-5503-2008 OI De Gregorio, Bradley/0000-0001-9096-3545; Stroud, Rhonda/0000-0001-5242-8015 FU U.S. Department of Energy [DE-AC02-98CH10886, DE-AC02-05CH11231]; Natural Science and Engineering Research Council of Canada; National Research Council Canada; Canadian Institutes of Health Research; Province of Saskatchewan; Western Economic Diversification Canada; University of Saskatchewan FX The authors gratefully acknowledge the support of the NASA SRLIDAP program, which funded this research. Additionally, the authors are thankful for the support Paul Fischione and Junhai Liu of E. A. Fischione, Inc. Thomas Zega of the Naval Research Laboratory was quite helpful in some discussions of the results. Use of the NSLS and ALS was supported by the U.S. Department of Energy under Contracts No. DE-AC02-98CH10886 and DE-AC02-05CH11231, respectively, while use of the CLS was supported by the Natural Science and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Finally, some of this work was performed at the NRL Nanoscience Institute and was greatly enabled by excellent facility support. NR 45 TC 35 Z9 36 U1 5 U2 68 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-2720 J9 J MICROSC-OXFORD JI J. Microsc.. PD MAR PY 2012 VL 245 IS 3 BP 288 EP 301 DI 10.1111/j.1365-2818.2011.03570.x PG 14 WC Microscopy SC Microscopy GA 897QM UT WOS:000300669100009 ER PT J AU Armstrong, LS Walter, MJ Tuff, JR Lord, OT Lennie, AR Kleppe, AK Clark, SM AF Armstrong, L. S. Walter, M. J. Tuff, J. R. Lord, O. T. Lennie, A. R. Kleppe, A. K. Clark, S. M. TI Perovskite Phase Relations in the System CaO-MgO-TiO2-SiO2 and Implications for Deep Mantle Lithologies SO JOURNAL OF PETROLOGY LA English DT Article DE megacrysts; perovskite; perovskite inclusions; phase relations ID DIAMOND-ANVIL CELL; EARTHS LOWER MANTLE; EQUATION-OF-STATE; SUBDUCTED BASALTIC CRUST; UPPERMOST LOWER-MANTLE; ADVANCED-LIGHT-SOURCE; HIGH-PRESSURE; MELTING EXPERIMENTS; HIGH-TEMPERATURE; JUINA AREA AB Experiments at 20-97 GPa and 2000 K in the system CaO-MgO-TiO2-SiO2 constrain phase relations involving Mg-rich and Ca-rich perovskite solid solutions at conditions relevant to the Earth's deep Transition Zone and lower mantle. Bulk compositions were investigated with molar Ti/(Ti + Si) up to 0 center dot 5 within the quasi-ternary 'perovskite plane', which is defined by a reciprocal solution among the components MgSiO3, MgTiO3, CaSiO3, and CaTiO3. Multi-anvil experiments at 20 GPa and 2000 K on bulk compositions within the plane produce akimotoite coexisting with Ca-perovskites that lie close to the CaSiO3-CaTiO3 join. Higher-pressure experiments using a laser-heated diamond anvil cell constrain the position of a two-perovskite field that extends into the perovskite plane from the solvus along the MgSiO3-CaSiO3 binary join, where limited mutual solubility exists between MgSiO3 and CaSiO3 perovskites. On the join MgSiO3-MgTiO3, MgTiO3 solubility in MgSiO3 perovskite increases with pressure, with MgSi0 center dot 8Ti0 center dot 2O3 perovskite stable at similar to 50 GPa. Limited reciprocal solution at similar to 25 GPa results in an expansive two-perovskite field that occupies much of the Si-rich portion of the perovskite plane. Solution of Ti into Mg-rich and Ca-rich perovskites enhances the solubility of reciprocal Ca and Mg components, respectively. Increase in pressure promotes reciprocal solution, and the two-phase field collapses rapidly with pressure toward the MgSiO3-CaSiO3 join. We find that a single-phase, orthorhombic perovskite with near equimolar Ca and Mg is stable in a composition with Ti/(Ti + Si) of only 0 center dot 05 at 97 GPa, requiring that by this pressure the two-phase field occupies a small area close to the MgSiO3-CaSiO3 join. On the basis of experiments at similar to 1500 K, temperature has only a mild effect on the position of the Ca-rich limb of the solvus. Ca(Ti,Si)O-3 mineral inclusions in deep sublithospheric diamonds could not have formed in equilibrium with Mg-perovskite owing to their virtual lack of MgSiO3 component at pressures of Mg-perovskite stability, but may have equilibrated with Transition Zone MgSiO3-rich phases at lower pressures; this observation can be extended generally to near-endmember CaSiO3 inclusions. On an iron-free basis, the average bulk compositions of clinopyroxene-ilmenite and orthopyroxene-ilmenite megacrysts from kimberlites plot in single-perovskite fields at pressures greater than about 45 and 65 GPa, respectively, when projected onto the perovskite plane. We predict that the effect of iron will not be large, and estimate that single-phase perovskites may form at somewhat lower pressures than in the iron-free system. Thus, the origin of pyroxene-ilmenite megacrysts from single-phase perovskite solutions in the lower mantle is plausible on the basis of phase relations, although a lower pressure magmatic origin appears more likely. Deeply subducted Ti-rich lithologies such as ocean-island basalt will crystallize a single perovskite rather than a two-perovskite assemblage beginning at pressures of similar to 80 GPa. Normal mid-ocean ridge basalt and primitive mantle peridotite are expected to remain within a two-phase perovskite field until Mg-perovskite transforms to post-perovskite. C1 [Armstrong, L. S.; Walter, M. J.; Tuff, J. R.; Lord, O. T.] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England. [Lennie, A. R.; Kleppe, A. K.] Diamond Light Source Ltd, Didcot OX11 ODE, Oxon, England. [Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Armstrong, LS (reprint author), Univ Bristol, Dept Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England. EM l.armstrong@bristol.ac.uk RI Lord, Oliver/D-4663-2014; Clark, Simon/B-2041-2013 OI Lord, Oliver/0000-0003-0563-1293; Clark, Simon/0000-0002-7488-3438 FU National Environmental Research Council [NE/E00475X/1]; European Commission [MEST-CT-2005-019700]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Overseas Research Students Awards Scheme; University of Bristol FX This work was supported by the National Environmental Research Council (NE/E00475X/1 to M.J.W.) and the European Commission under the Marie Curie Action for Early Stage Training of Researchers within the 6th Framework Programme (MEST-CT-2005-019700 to L.S.A. while visiting Bayerisches Geoinstitut). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. L.S.A. acknowledges support from the Overseas Research Students Awards Scheme and the University of Bristol. NR 111 TC 7 Z9 9 U1 9 U2 58 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-3530 EI 1460-2415 J9 J PETROL JI J. Petrol. PD MAR PY 2012 VL 53 IS 3 BP 611 EP 635 DI 10.1093/petrology/egr073 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 898DV UT WOS:000300716800006 ER PT J AU Cao, BB Shi, TT Zheng, SJ Ikuhara, YH Zhou, WL Wood, D Al-Jassim, M Yan, YF AF Cao, Baobao Shi, Tingting Zheng, Shijian Ikuhara, Yumi H. Zhou, Weilie Wood, David Al-Jassim, Mowafak Yan, Yanfa TI New Polytypoid SnO2(ZnO:Sn)(m) Nanowire: Characterization and Calculation of Its Electronic Structure SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TRANSPARENT CONDUCTING OXIDES; AUGMENTED-WAVE METHOD; SUPERLATTICE STRUCTURE; MICROSCOPY; SYSTEM; FILMS; CRYSTAL AB A new SnO2(ZnO:Sn)(m) polytypoid nanowire has been synthesized through a two-step chemical vapor deposition (CVD) method. Cs-corrected scanning transmission electron microscopy (STEM) studies indicate the crystal structure consists of an alternating stack of a Sn-O octahedral layer and a (Sn/Zn)-O wurtzite slab. First-principles density-functional theory (DFT) calculations suggest Sn atoms in the Sn-doped ZnO slabs have both 4- and 6-fold coordination, forming an inversion boundary of polarity. The SnO2(ZnO:Sn)(m) nanowires may exhibit unique anisotropic electronic properties: poor conductivity along the wire axis, but metallic conductivity along the diametrical directions according to the calculations. C1 [Cao, Baobao; Zhou, Weilie] Univ New Orleans, Adv Mat Res Inst, New Orleans, LA 70148 USA. [Shi, Tingting; Yan, Yanfa] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Zheng, Shijian; Ikuhara, Yumi H.] Japan Fine Ceram Ctr, Nanostruct Res Lab, Nagoya, Aichi 4568587, Japan. [Shi, Tingting; Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shi, Tingting; Wood, David] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Zhou, WL (reprint author), Univ New Orleans, Adv Mat Res Inst, New Orleans, LA 70148 USA. EM wzhou@uno.edu; yanfa.yan@utoledo.edu RI zheng, shijian/F-2453-2012; Cao, Baobao/E-9110-2011; Ikuhara, Yuichi/N-1001-2015 OI Ikuhara, Yuichi/0000-0003-3886-005X FU DARPA [HR0011-09-1-0047]; Louisiana Board of Regents [LEQSF(2007-12)-ENH-PKSFI-PRS-04, LEQSF(2008-11)-RD-B-10, LEQSF(2011-13)-RD-B-08]; American Chemical Society [48796-DN110]; U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the DARPA Grant No. HR0011-09-1-0047, research grants from Louisiana Board of Regents Contract Nos. LEQSF(2007-12)-ENH-PKSFI-PRS-04, LEQSF(2008-11)-RD-B-10, and LEQSF(2011-13)-RD-B-08, and American Chemical Society Petroleum Research Fund under PRF No 48796-DN110. The work at NREL was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 24 TC 4 Z9 4 U1 2 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 1 PY 2012 VL 116 IS 8 BP 5009 EP 5013 DI 10.1021/jp211135r PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 900TC UT WOS:000300911600010 ER PT J AU Chiang, WS Fratini, E Baglioni, P Liu, DZ Chen, SH AF Chiang, Wei-Shan Fratini, Emiliano Baglioni, Piero Liu, Dazhi Chen, Sow-Hsin TI Microstructure Determination of Calcium-Silicate-Hydrate Globules by Small-Angle Neutron Scattering SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID C-S-H; PROTEIN-DETERGENT COMPLEXES; CEMENT PASTE; TRICALCIUM SILICATE; WATER; MODEL; GEL AB The basic building block of calcium-silicate-hydrate (C-S-H) gel, which is the major hydration product of a commercial Portland cement paste, is usually referred as "globule" in the Jennings' colloidal model-II developed for C-S-H. The detailed nanostructure of the globule is so far not given quantitatively. In this paper, we determine the structural parameters of the building block with good accuracy by small-angle neutron scattering technique probing an extended interval of the scattering vector, Q from 0.015-1.0 angstrom(-1). In this Q-range an interlamellar peak at 0.65-0.80 angstrom(-1) is present, shifting as a function of the water content present in the C-S-H gel. This additional feature enables us to confirm the presence of a lamellar structure and determine the thicknesses of both the water and the hydrated calcium silicate layers respectively proper of the C-S-H globules. C1 [Chiang, Wei-Shan; Chen, Sow-Hsin] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Fratini, Emiliano; Baglioni, Piero] Univ Florence, Dept Chem, I-50019 Florence, Italy. [Fratini, Emiliano; Baglioni, Piero] Univ Florence, CSGI, I-50019 Florence, Italy. [Liu, Dazhi] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Chen, SH (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sowhsin@mit.edu RI Fratini, Emiliano/C-9983-2010; Liu, Dazhi/G-2675-2013; Baglioni, Piero/B-1208-2011 OI Fratini, Emiliano/0000-0001-7104-6530; Liu, Dazhi/0000-0002-7604-6940; Baglioni, Piero/0000-0003-1312-8700 FU DOE [DE-FG02-90ER4S429]; Ministero dell'Istruzione, Universita e della Ricerca Scientifica (MIUR) [prot. 20087K9A2J]; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI) FX We greatly appreciate the technical assistant of the instrument scientists, J. K. Zhao and W. Heller and the scientific associate, Dr. C. Y. Gao of EQSANS at Spallation Neutron Source, Oak Ridge National Laboratory during the measurements. This research is supported by DOE grant number DE-FG02-90ER4S429. E.F. and P.B. gratefully acknowledge Ministero dell'Istruzione, Universita e della Ricerca Scientifica (MIUR, grant PRIN-2008, prot. 20087K9A2J), Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI). CTG-Italcementi is kindly acknowledged for providing the synthetic C3S batch. NR 27 TC 36 Z9 37 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 1 PY 2012 VL 116 IS 8 BP 5055 EP 5061 DI 10.1021/jp300745g PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 900TC UT WOS:000300911600017 ER PT J AU Lee, HY Issa, JB Isied, SS Castner, EW Pan, YF Hussey, CL Lee, KS Wishart, JF AF Lee, Heather Y. Issa, Joseph B. Isied, Stephan S. Castner, Edward W., Jr. Pan, Yunfeng Hussey, Charles L. Lee, Kwang Soon Wishart, James F. TI A Comparison of Electron-Transfer Dynamics in Ionic Liquids and Neutral Solvents SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PERIOD TRANSIENT SPECTROSCOPY; GENERALIZED MULLIKEN-HUSH; SOLVATION DYNAMICS; FLUORESCENCE BEHAVIOR; SOLUTE ROTATION; FIXED-DISTANCE; POLAR-SOLVENTS; TEMPERATURE; MOLECULES; COUMARIN-153 AB The effect of ionic liquids on photoinduced electron-transfer reactions in a donor-bridge-acceptor system is examined for two ionic liquid solvents, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and tributylmethylammonium bis(trifluoromethylsulfonyl)amide. The results are compared with those for the same system in methanol and acetonitrile solution. Electron-transfer rates were measured using time-resolved fluorescence quenching for the donor-bridge-acceptor system comprising a 1-N,1-N-dimethylbenzene-l,4-diamine donor, a proline bridge, and a coumarin 343 acceptor. The photoinduced electron-transfer processes are in the inverted regime (-Delta G > lambda) in all four solvents, with driving forces of -1.6 to -1.9 eV and estimated reorganization energies of about 1.0 eV. The observed electron-transfer kinetics have broadly distributed rates that are generally slower in the ionic liquids compared to the neutral solvents, which also have narrower rate distributions. To describe the broad distributions of electron-transfer kinetics, we use two different models: a distribution of exponential lifetimes and a discrete sum of exponential lifetimes. Analysis of the donor-acceptor electronic coupling shows that for ionic liquids this intramolecular electron-transfer reaction should be treated using a solvent-controlled electron-transfer model. C1 [Lee, Heather Y.; Issa, Joseph B.; Isied, Stephan S.; Castner, Edward W., Jr.] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Pan, Yunfeng; Hussey, Charles L.] Univ Mississippi, Dept Chem & Biochem, University, MS 38677 USA. [Lee, Kwang Soon] Sogang Univ, Dept Chem & Biomol Engn, Seoul 121742, South Korea. [Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Castner, EW (reprint author), Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. EM ed.castner@rutgers.edu; wishart@bnl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 FU U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-98CH10886]; U.S. Department of Education for Graduate Assistance in Areas of National Need; National Science Foundation [CHE-0718391] FX J.F.W. and H.Y.L. acknowledge support from the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Contract No. DE-AC02-98CH10886. H.Y.L. also acknowledges support from U.S. Department of Education for Graduate Assistance in Areas of National Need. E.W.C. acknowledges support from the National Science Foundation through Grant No. CHE-0718391. The authors thank Prof. Dimitri Khoshtariya and an anonymous referee for helpful comments and Dr. Marie Thomas for providing Pyrri4+/NTf2- for fluorescence experiments. NR 66 TC 14 Z9 14 U1 3 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 1 PY 2012 VL 116 IS 8 BP 5198 EP 5209 DI 10.1021/jp208852r PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 900TC UT WOS:000300911600034 ER PT J AU Sawangwit, U Shanks, T Croom, SM Drinkwater, MJ Fine, S Parkinson, D Ross, NP AF Sawangwit, U. Shanks, T. Croom, S. M. Drinkwater, M. J. Fine, S. Parkinson, D. Ross, Nicholas P. TI Measuring BAO and non-Gaussianity via QSO clustering SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE quasars: general; cosmology: observations; dark energy; distance scale; inflation; large-scale structure of Universe ID REDSHIFT-SPACE DISTORTIONS; DIGITAL SKY SURVEY; BARYON ACOUSTIC-OSCILLATIONS; OBSERVATIONS COSMOLOGICAL INTERPRETATION; ANGULAR-CORRELATION FUNCTION; GALAXY POWER SPECTRUM; LUMINOUS RED GALAXIES; DARK ENERGY; DATA RELEASE; EVOLUTION AB Our goals are (i) to search for BAO and large-scale structure in current quasi-stellar object (QSO) survey data and (ii) to use these and simulation/forecast results to assess the science case for a new, ?10 times larger, QSO survey. We first combine the Sloan Digital Sky Survey (SDSS), 2dF QSO Redshift Survey (2QZ) and 2dF-SDSS LRG and QSO (2SLAQ) surveys to form a survey of 60 000 QSOs. We find a hint of a peak in the QSO two-point correlation function, ?(s), at the same scale (105 h-1 Mpc) as detected by Eisenstein et al. in their sample of Data Release 5 (DR5) Luminous Red Galaxies (LRGs) but only at low statistical significance. We then compare these data with QSO mock catalogues from the Hubble Volume N-body light-cone simulation used by Hoyle et al. and find that both routes give statistical error estimates that are consistent at 100 h-1 Mpc scales. Mock catalogues are then used to estimate the nominal survey size needed for a 34s detection of the Baryon Acoustic Oscillations (BAO) peak. We find that a redshift survey of 250 000 z < 2.2 QSOs is required over 3000 deg2. This is further confirmed by static lognormal simulations where the BAO are clearly detectable in the QSO power spectrum and correlation function. The nominal survey would on its own produce the first detection of, for example, discontinuous dark energy evolution in the so far uncharted 1 < z < 2.2 redshift range. We further find that a survey with 50 per cent higher QSO sky densities and 50 per cent bigger area will give an 6s BAO detection, leading to an error 60 per cent of the size of the BOSS error on the dark energy evolution parameter, wa. C1 [Sawangwit, U.; Shanks, T.; Fine, S.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Croom, S. M.] Univ Sydney, Sydney Inst Astron, Sch Phys, Sydney, NSW 2006, Australia. [Drinkwater, M. J.; Parkinson, D.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sawangwit, U (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. EM utane.sawangwit@durham.ac.uk RI Drinkwater, Michael/A-2201-2008; Parkinson, David/E-1183-2013 OI Drinkwater, Michael/0000-0003-4867-0022; Parkinson, David/0000-0002-7464-2351 FU Institute for the Promotion of Teaching Science and Technology (IPST) of The Royal Thai Government; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX US acknowledges financial support from the Institute for the Promotion of Teaching Science and Technology (IPST) of The Royal Thai Government.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. NR 60 TC 8 Z9 8 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 420 IS 3 BP 1916 EP 1925 DI 10.1111/j.1365-2966.2011.19848.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897ZI UT WOS:000300702200006 ER PT J AU Cenko, SB Bloom, JS Kulkarni, SR Strubbe, LE Miller, AA Butler, NR Quimby, RM Gal-Yam, A Ofek, EO Quataert, E Bildsten, L Poznanski, D Perley, DA Morgan, AN Filippenko, AV Frail, DA Arcavi, I Ben-Ami, S Cucchiara, A Fassnacht, CD Green, Y Hook, IM Howell, DA Lagattuta, DJ Law, NM Kasliwal, MM Nugent, PE Silverman, JM Sullivan, M Tendulkar, SP Yaron, O AF Cenko, S. Bradley Bloom, Joshua S. Kulkarni, S. R. Strubbe, Linda E. Miller, Adam A. Butler, Nathaniel R. Quimby, Robert M. Gal-Yam, Avishay Ofek, Eran O. Quataert, Eliot Bildsten, Lars Poznanski, Dovi Perley, Daniel A. Morgan, Adam N. Filippenko, Alexei V. Frail, Dale A. Arcavi, Iair Ben-Ami, Sagi Cucchiara, Antonio Fassnacht, Christopher D. Green, Yoav Hook, Isobel M. Howell, D. Andrew Lagattuta, David J. Law, Nicholas M. Kasliwal, Mansi M. Nugent, Peter E. Silverman, Jeffrey M. Sullivan, Mark Tendulkar, Shriharsh P. Yaron, Ofer TI PTF10iya: a short-lived, luminous flare from the nuclear region of a star-forming galaxy SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE accretion, accretion discs; black hole physics; galaxies: active; galaxies: nuclei ID ACTIVE GALACTIC NUCLEI; MASSIVE BLACK-HOLES; X-RAY OUTBURST; TIDAL DISRUPTION EVENTS; DIGITAL SKY SURVEY; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; SPECTRAL ENERGY-DISTRIBUTIONS; LINE SEYFERT-1 GALAXIES; FOLLOW-UP OBSERVATIONS; BL-LAC OBJECTS AB We present the discovery and characterization of PTF10iya, a short-lived (Delta t approximate to 10 d, with an optical decay rate of similar to 0.3 mag d-1), luminous (Mg approximate to -21 mag) transient source found by the Palomar Transient Factory. The ultraviolet/optical spectral energy distribution is reasonably well fitted by a blackbody with T approximate to (1-2) x 10(4) K and peak bolometric luminosity LBB approximate to (1-5) x 10(44) erg s(-1) (depending on the details of the extinction correction). A comparable amount of energy is radiated in the X-ray band that appears to result from a distinct physical process. The location of PTF10iya is consistent with the nucleus of a star-forming galaxy (z= 0.224 05 +/- 0.000 06) to within 350 mas (99.7 per cent confidence radius), or a projected distance of less than 1.2 kpc. At first glance, these properties appear reminiscent of the characteristic big blue bump seen in the near-ultraviolet spectra of many active galactic nuclei (AGNs). However, emission-line diagnostics of the host galaxy, along with a historical light curve extending back to 2007, show no evidence for AGN-like activity. We therefore consider whether the tidal disruption of a star by an otherwise quiescent supermassive black hole may account for our observations. Though with limited temporal information, PTF10iya appears broadly consistent with the predictions for the early super-Eddington phase of a solar-type star being disrupted by a similar to 10(7) M circle dot black hole. Regardless of the precise physical origin of the accreting material, the large luminosity and short duration suggest that otherwise quiescent galaxies can transition extremely rapidly to radiate near the Eddington limit; many such outbursts may have been missed by previous surveys lacking sufficient cadence. C1 [Cenko, S. Bradley; Bloom, Joshua S.; Strubbe, Linda E.; Miller, Adam A.; Butler, Nathaniel R.; Quataert, Eliot; Poznanski, Dovi; Perley, Daniel A.; Morgan, Adam N.; Filippenko, Alexei V.; Cucchiara, Antonio; Silverman, Jeffrey M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kulkarni, S. R.; Ofek, Eran O.; Kasliwal, Mansi M.; Tendulkar, Shriharsh P.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Strubbe, Linda E.; Quataert, Eliot] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Quimby, Robert M.] Univ Tokyo, IPMU, Kashiwa, Chiba, Japan. [Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi; Green, Yoav; Yaron, Ofer] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Bildsten, Lars; Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Poznanski, Dovi; Cucchiara, Antonio; Nugent, Peter E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Poznanski, Dovi] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Frail, Dale A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Fassnacht, Christopher D.; Lagattuta, David J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Hook, Isobel M.; Sullivan, Mark] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Hook, Isobel M.] INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Roma, Italy. [Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Law, Nicholas M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Cenko, SB (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM cenko@astro.berkeley.edu RI Green, Yoav/L-5874-2015; OI Green, Yoav/0000-0002-0809-6575; Sullivan, Mark/0000-0001-9053-4820 FU Richard and Rhoda Goldman Fund; NASA [NNX10AI21G, NNX1OA057G, NNG06DO90A, NNX09AQ66G, NNX10AF93G, NNG06GH61G]; NSF [AST-0908886, PHY-0551164, AST-0707633]; US Department of Energy; Israeli Science Foundation; Binational Science Foundation; EU; W. M. Keck Foundation FX SBC and AVF wish to acknowledge generous support from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, NASA/Swift grant NNX10AI21G, NASA/Fermi grant NNX1OA057G, and NSF grant AST-0908886. NRB is supported through the Einstein Fellowship Program (NASA Cooperative Agreement NNG06DO90A). JSB and his group were partially supported by NASA/Swift Guest Investigator grants NNX09AQ66G and NNX10AF93G, and a SciDAC grant from the US Department of Energy. The Weizmann Institute PTF partnership is supported in part by grants from the Israeli Science Foundation to AG. Joint work by the Weizmann and Caltech groups is supported by a grant from the Binational Science Foundation to AG and SRK, and AG acknowledges further support from a EU/FP7 Marie Curie IRG fellowship. LB is supported by the NSF under grants PHY-0551164 and AST-0707633. P60 operations are funded in part by NASA through the Swift Guest Investigator Program (grant NNG06GH61G).; We acknowledge the use of public data from the Swift data archive. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. NR 141 TC 45 Z9 45 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 420 IS 3 BP 2684 EP 2699 DI 10.1111/j.1365-2966.2011.20240.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897ZI UT WOS:000300702200066 ER PT J AU Fenter, P AF Fenter, Paul TI DISSOLUTION PROCESSES Stuffed structures SO NATURE MATERIALS LA English DT News Item ID OXIDE C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Fenter, P (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Bldg 200,9700 S Cass Ave, Argonne, IL 60439 USA. EM Fenter@anl.gov NR 9 TC 3 Z9 3 U1 1 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAR PY 2012 VL 11 IS 3 BP 183 EP 184 DI 10.1038/nmat3252 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 897EA UT WOS:000300625500011 PM 22349856 ER PT J AU Koopmann, R Cupelli, K Redecke, L Nass, K DePonte, DP White, TA Stellato, F Rehders, D Liang, MN Andreasson, J Aquila, A Bajt, S Barthelmess, M Barty, A Bogan, MJ Bostedt, C Boutet, S Bozek, JD Caleman, C Coppola, N Davidsson, J Doak, RB Ekeberg, T Epp, SW Erk, B Fleckenstein, H Foucar, L Graafsma, H Gumprecht, L Hajdu, J Hampton, CY Hartmann, A Hartmann, R Hauser, G Hirsemann, H Holl, P Hunter, MS Kassemeyer, S Kirian, RA Lomb, L Maia, FRNC Kimmel, N Martin, AV Messerschmidt, M Reich, C Rolles, D Rudek, B Rudenko, A Schlichting, I Schulz, J Seibert, MM Shoeman, RL Sierra, RG Soltau, H Stern, S Struder, L Timneanu, N Ullrich, J Wang, XY Weidenspointner, G Weierstall, U Williams, GJ Wunderer, CB Fromme, P Spence, JCH Stehle, T Chapman, HN Betzel, C Duszenko, M AF Koopmann, Rudolf Cupelli, Karolina Redecke, Lars Nass, Karol DePonte, Daniel P. White, Thomas A. Stellato, Francesco Rehders, Dirk Liang, Mengning Andreasson, Jakob Aquila, Andrew Bajt, Sasa Barthelmess, Miriam Barty, Anton Bogan, Michael J. Bostedt, Christoph Boutet, Sebastien Bozek, John D. Caleman, Carl Coppola, Nicola Davidsson, Jan Doak, R. Bruce Ekeberg, Tomas Epp, Sascha W. Erk, Benjamin Fleckenstein, Holger Foucar, Lutz Graafsma, Heinz Gumprecht, Lars Hajdu, Janos Hampton, Christina Y. Hartmann, Andreas Hartmann, Robert Hauser, Guenter Hirsemann, Helmut Holl, Peter Hunter, Mark S. Kassemeyer, Stephan Kirian, Richard A. Lomb, Lukas Maia, Filipe R. N. C. Kimmel, Nils Martin, Andrew V. Messerschmidt, Marc Reich, Christian Rolles, Daniel Rudek, Benedikt Rudenko, Artem Schlichting, Ilme Schulz, Joachim Seibert, M. Marvin Shoeman, Robert L. Sierra, Raymond G. Soltau, Heike Stern, Stephan Strueder, Lothar Timneanu, Nicusor Ullrich, Joachim Wang, Xiaoyu Weidenspointner, Georg Weierstall, Uwe Williams, Garth J. Wunderer, Cornelia B. Fromme, Petra Spence, John C. H. Stehle, Thilo Chapman, Henry N. Betzel, Christian Duszenko, Michael TI In vivo protein crystallization opens new routes in structural biology SO NATURE METHODS LA English DT Article ID CYPOVIRUS POLYHEDRA; TRYPANOSOMA-BRUCEI; MAXIMUM-LIKELIHOOD; CATHEPSIN-B; CRYSTALS; NANOCRYSTALLOGRAPHY; REFINEMENT AB Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology. C1 [Koopmann, Rudolf; Cupelli, Karolina; Stehle, Thilo; Duszenko, Michael] Univ Tubingen, Interfac Inst Biochem, Tubingen, Germany. [Redecke, Lars; Rehders, Dirk] Univ Hamburg, Joint Lab Struct Biol Infect & Inflammat, Inst Biochem & Mol Biol, Hamburg, Germany. [Redecke, Lars; Rehders, Dirk] Univ Lubeck, Inst Biochem, Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Nass, Karol; Chapman, Henry N.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [DePonte, Daniel P.; White, Thomas A.; Stellato, Francesco; Liang, Mengning; Aquila, Andrew; Barty, Anton; Caleman, Carl; Coppola, Nicola; Fleckenstein, Holger; Gumprecht, Lars; Martin, Andrew V.; Schulz, Joachim; Stern, Stephan; Chapman, Henry N.] DESY, Ctr Free Electron Laser Sci, D-2000 Hamburg, Germany. [Andreasson, Jakob; Davidsson, Jan; Ekeberg, Tomas; Hajdu, Janos; Seibert, M. Marvin; Timneanu, Nicusor] Uppsala Univ, Lab Mol Biophys, Dept Cell & Mol Biol, Uppsala, Sweden. [Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.] Stanford Linear Accelerator Ctr SLAC Natl Acceler, Photon Ultrafast Laser Sci & Engn PULSE Inst, Menlo Pk, CA USA. [Bostedt, Christoph; Boutet, Sebastien; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA USA. [Doak, R. Bruce; Kirian, Richard A.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Strueder, Lothar; Ullrich, Joachim] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, Hamburg, Germany. [Epp, Sascha W.; Erk, Benjamin; Rudek, Benedikt; Rudenko, Artem; Ullrich, Joachim] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Foucar, Lutz; Kassemeyer, Stephan; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Shoeman, Robert L.] Max Planck Inst Med Res, D-69120 Heidelberg 1, Germany. [Hauser, Guenter; Kimmel, Nils; Strueder, Lothar; Weidenspointner, Georg] Max Planck Inst Halbleiterlab, Munich, Germany. [Hartmann, Andreas; Hartmann, Robert; Holl, Peter; Reich, Christian; Soltau, Heike] PNSensor GmbH, Munich, Germany. [Hunter, Mark S.; Fromme, Petra] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ USA. [Maia, Filipe R. N. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA 94720 USA. [Kimmel, Nils; Strueder, Lothar; Weidenspointner, Georg] Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. [Strueder, Lothar] Univ Siegen, Siegen, Germany. [Stehle, Thilo] Vanderbilt Univ, Sch Med, Dept Pediat, Nashville, TN 37212 USA. RP Duszenko, M (reprint author), Univ Tubingen, Interfac Inst Biochem, Tubingen, Germany. EM michael.duszenko@uni-tuebingen.de RI Rudek, Benedikt/A-5100-2017; Redecke, Lars/A-5611-2013; Schlichting, Ilme/I-1339-2013; Kirian, Richard/M-3750-2013; Rocha Neves Couto Maia, Filipe/C-3146-2014; Bozek, John/E-9260-2010; Barty, Anton/K-5137-2014; Chapman, Henry/G-2153-2010; Timneanu, Nicusor/C-7691-2012; Messerschmidt, Marc/F-3796-2010; Williams, Garth/H-1606-2012; Bogan, Mike/I-6962-2012; Rudenko, Artem/C-7412-2009; Nass, Karol/K-1970-2012; Bajt, Sasa/G-2228-2010 OI graafsma, heinz/0000-0003-2304-667X; MARTIN, ANDREW/0000-0003-3704-1829; Epp, Sascha/0000-0001-6366-9113; Kirian, Richard/0000-0001-7197-3086; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Bozek, John/0000-0001-7486-7238; Barty, Anton/0000-0003-4751-2727; Chapman, Henry/0000-0002-4655-1743; Timneanu, Nicusor/0000-0001-7328-0400; Messerschmidt, Marc/0000-0002-8641-3302; Bogan, Mike/0000-0001-9318-3333; Rudenko, Artem/0000-0002-9154-8463; FU Deutsche Forschungsgemeinschaft (DFG); Swedish Research Council; Knut och Alice Wallenbergs Stiftelse; European Research Council; US National Science Foundation [MCB-1021557]; Landesgraduiertenforderung Baden-Wurttemberg; German Federal Ministry for Education and Research [01KX0806, 01KX0807]; Hamburg Ministry of Science and Research and Joachim Herz Stiftung; Hamburg Initiative for Excellence in Research and the Hamburg School for Structure and Dynamics in infection; DFG [EXC 306]; US Department of Energy Office of Basic Energy Sciences through Photon Ultrafast Laser Science and Engineering (PULSE) Institute at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory FX FEL experiments were carried out at LCLS in June 2010 (TbCatB) and in August 2011 (TbIMPDH), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The X-ray diffraction experiments on recrystallized TbCatB crystals were carried out at beamline X06DA of the Swiss Light Source (Villigen, Switzerland). This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft (DFG), from the Swedish Research Council, from the Knut och Alice Wallenbergs Stiftelse, from the European Research Council, as well as by US National Science Foundation award MCB-1021557. R. K. received a fellowship from the Landesgraduiertenforderung Baden-Wurttemberg. L. R., D. Rehders and C. Betzel thank the German Federal Ministry for Education and Research for funding (grants 01KX0806 and 01KX0807). Support from the Hamburg Ministry of Science and Research and Joachim Herz Stiftung as part of the Hamburg Initiative for Excellence in Research and the Hamburg School for Structure and Dynamics in infection, and from the DFG Cluster of Excellence "Inflammation at Interfaces" (EXC 306) is gratefully acknowledged. Funding for the development and operation of the CFEL-ASG multipurpose (CAMP) instrument within the Advanced Study Group at the Center for Free-Electron Laser Science was provided by the Max Planck Society. M.J.B., R. G. S. and C.Y.H. acknowledge funding from the US Department of Energy Office of Basic Energy Sciences through the Photon Ultrafast Laser Science and Engineering (PULSE) Institute at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory. NR 28 TC 84 Z9 84 U1 11 U2 113 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD MAR PY 2012 VL 9 IS 3 BP 259 EP U54 DI 10.1038/NMETH.1859 PG 6 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 900ME UT WOS:000300890400020 PM 22286384 ER PT J AU Johansson, LC Arnlund, D White, TA Katona, G DePonte, DP Weierstall, U Doak, RB Shoeman, RL Lomb, L Malmerberg, E Davidsson, J Nass, K Liang, MN Andreasson, J Aquila, A Bajt, S Barthelmess, M Barty, A Bogan, MJ Bostedt, C Bozek, JD Caleman, C Coffee, R Coppola, N Ekeberg, T Epp, SW Erk, B Fleckenstein, H Foucar, L Graafsma, H Gumprecht, L Hajdu, J Hampton, CY Hartmann, R Hartmann, A Hauser, G Hirsemann, H Holl, P Hunter, MS Kassemeyer, S Kimmel, N Kirian, RA Maia, FRNC Marchesini, S Martin, AV Reich, C Rolles, D Rudek, B Rudenko, A Schlichting, I Schulz, J Seibert, MM Sierra, RG Soltau, H Starodub, D Stellato, F Stern, S Struder, L Timneanu, N Ullrich, J Wahlgren, WY Wang, XY Weidenspointner, G Wunderer, C Fromme, P Chapman, HN Spence, JCH Neutze, R AF Johansson, Linda C. Arnlund, David White, Thomas A. Katona, Gergely DePonte, Daniel P. Weierstall, Uwe Doak, R. Bruce Shoeman, Robert L. Lomb, Lukas Malmerberg, Erik Davidsson, Jan Nass, Karol Liang, Mengning Andreasson, Jakob Aquila, Andrew Bajt, Sasa Barthelmess, Miriam Barty, Anton Bogan, Michael J. Bostedt, Christoph Bozek, John D. Caleman, Carl Coffee, Ryan Coppola, Nicola Ekeberg, Tomas Epp, Sascha W. Erk, Benjamin Fleckenstein, Holger Foucar, Lutz Graafsma, Heinz Gumprecht, Lars Hajdu, Janos Hampton, Christina Y. Hartmann, Robert Hartmann, Andreas Hauser, Guenter Hirsemann, Helmut Holl, Peter Hunter, Mark S. Kassemeyer, Stephan Kimmel, Nils Kirian, Richard A. Maia, Filipe R. N. C. Marchesini, Stefano Martin, Andrew V. Reich, Christian Rolles, Daniel Rudek, Benedikt Rudenko, Artem Schlichting, Ilme Schulz, Joachim Seibert, M. Marvin Sierra, Raymond G. Soltau, Heike Starodub, Dmitri Stellato, Francesco Stern, Stephan Strueder, Lothar Timneanu, Nicusor Ullrich, Joachim Wahlgren, Weixiao Y. Wang, Xiaoyu Weidenspointner, Georg Wunderer, Cornelia Fromme, Petra Chapman, Henry N. Spence, John C. H. Neutze, Richard TI Lipidic phase membrane protein serial femtosecond crystallography SO NATURE METHODS LA English DT Article ID NMR SYSTEM; CRYSTALLIZATION; NANOCRYSTALLOGRAPHY; SOFTWARE AB X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet. C1 [Johansson, Linda C.; Arnlund, David; Katona, Gergely; Malmerberg, Erik; Wahlgren, Weixiao Y.; Neutze, Richard] Univ Gothenburg, Dept Chem & Mol Biol, Gothenburg, Sweden. [White, Thomas A.; DePonte, Daniel P.; Liang, Mengning; Aquila, Andrew; Barty, Anton; Caleman, Carl; Coppola, Nicola; Fleckenstein, Holger; Gumprecht, Lars; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Chapman, Henry N.] DESY, Ctr Free Electron Laser Sci, Hamburg, Germany. [Weierstall, Uwe; Doak, R. Bruce; Kirian, Richard A.; Wang, Xiaoyu; Spence, John C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Shoeman, Robert L.; Lomb, Lukas; Foucar, Lutz; Kassemeyer, Stephan; Rolles, Daniel; Schlichting, Ilme] Max Planck Inst Med Res, D-69120 Heidelberg 1, Germany. [Davidsson, Jan] Uppsala Univ, Dept Photochem & Mol Sci, Uppsala, Sweden. [Nass, Karol; Chapman, Henry N.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Andreasson, Jakob; Ekeberg, Tomas; Hajdu, Janos; Seibert, M. Marvin; Timneanu, Nicusor] Uppsala Univ, Lab Mol Biophys, Dept Cell & Mol Biol, Uppsala, Sweden. [Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia] DESY, Photon Sci, Hamburg, Germany. [Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri] Stanford Linear Accelerator Ctr SLAC Natl Acceler, Photon Ultrafast Laser Sci & Engn Ctr Inst, Menlo Pk, CA USA. [Bostedt, Christoph; Bozek, John D.; Coffee, Ryan] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA USA. [Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Ullrich, Joachim] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, Hamburg, Germany. [Epp, Sascha W.; Erk, Benjamin; Rudek, Benedikt; Rudenko, Artem; Ullrich, Joachim] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hartmann, Robert; Hartmann, Andreas; Holl, Peter; Reich, Christian; Soltau, Heike] PNSensor GmbH, Munich, Germany. [Hauser, Guenter; Kimmel, Nils; Strueder, Lothar; Weidenspointner, Georg] Max Planck Inst Halbleiterlab, Munich, Germany. [Hauser, Guenter; Kimmel, Nils; Strueder, Lothar; Weidenspointner, Georg] Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. [Hunter, Mark S.; Fromme, Petra] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ USA. [Maia, Filipe R. N. C.; Marchesini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Neutze, R (reprint author), Univ Gothenburg, Dept Chem & Mol Biol, Gothenburg, Sweden. EM richard.neutze@chem.gu.se RI Arnlund, David/B-1246-2011; Chapman, Henry/G-2153-2010; Bozek, John/E-9260-2010; Bogan, Mike/I-6962-2012; Rudenko, Artem/C-7412-2009; Nass, Karol/K-1970-2012; Schlichting, Ilme/I-1339-2013; Katona, Gergely/B-3491-2008; Johansson, Linda/B-1240-2011; Timneanu, Nicusor/C-7691-2012; Yuan Wahlgren, Weixiao/D-5589-2011; Neutze, Richard/A-7573-2010; Marchesini, Stefano/A-6795-2009; Kirian, Richard/M-3750-2013; Rocha Neves Couto Maia, Filipe/C-3146-2014; Barty, Anton/K-5137-2014; Bajt, Sasa/G-2228-2010; Rudek, Benedikt/A-5100-2017; OI Chapman, Henry/0000-0002-4655-1743; Bozek, John/0000-0001-7486-7238; Bogan, Mike/0000-0001-9318-3333; Rudenko, Artem/0000-0002-9154-8463; Katona, Gergely/0000-0002-2031-8716; Johansson, Linda/0000-0003-4776-5142; Timneanu, Nicusor/0000-0001-7328-0400; Neutze, Richard/0000-0003-0986-6153; Epp, Sascha/0000-0001-6366-9113; Kirian, Richard/0000-0001-7197-3086; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Barty, Anton/0000-0003-4751-2727; graafsma, heinz/0000-0003-2304-667X; MARTIN, ANDREW/0000-0003-3704-1829 FU Swedish Research Council (Vetenskapsradet); Swedish Foundation for International Cooperation in Research and Higher Education; Stiftelsen Olle Engkvist Byggmastare; Max Planck Society; US National Science Foundation [MCB 0919195, 0417142, MCB-1021557]; US Department of Energy Office of Basic Energy Sciences through the Photon Ultrafast Laser Science and Engineering Center Institute at the SLAC National Accelerator Laboratory and the Energy Frontier Research Center for Bio-Inspired Solar Fuel Production [DE-SC0001016]; Hamburg Ministry of Science and Research and Joachim Herz Stiftung as part of the Hamburg Initiative for Excellence in Research; Hamburg School for Structure and Dynamics in Infection; US National Institutes of Health [1R01GM095583-01, 1U54GM094625-01]; Deutsche Forschungsgemeinschaft at the Munich Center for Advanced Photonics, Center for Biophotonics Science and Technology at the University of California [PHY 0120999] FX Experiments were carried out at the LCLS, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. We acknowledge financial support from the Swedish Research Council (Vetenskapsradet), the Swedish Foundation for International Cooperation in Research and Higher Education, Stiftelsen Olle Engkvist Byggmastare, the Max Planck Society for funding the development and operation of the CAMP instrument, the US National Science Foundation grant MCB 0919195, the US Department of Energy Office of Basic Energy Sciences through the Photon Ultrafast Laser Science and Engineering Center Institute at the SLAC National Accelerator Laboratory and the Energy Frontier Research Center for Bio-Inspired Solar Fuel Production (award DE-SC0001016), the Hamburg Ministry of Science and Research and Joachim Herz Stiftung as part of the Hamburg Initiative for Excellence in Research and the Hamburg School for Structure and Dynamics in Infection, US National Science Foundation (awards 0417142 and MCB-1021557), US National Institutes of Health (awards 1R01GM095583-01 and 1U54GM094625-01), the Deutsche Forschungsgemeinschaft Cluster of Excellence at the Munich Center for Advanced Photonics, Center for Biophotonics Science and Technology at the University of California (cooperative agreement PHY 0120999). NR 21 TC 88 Z9 89 U1 5 U2 84 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 EI 1548-7105 J9 NAT METHODS JI Nat. Methods PD MAR PY 2012 VL 9 IS 3 BP 263 EP 265 DI 10.1038/NMETH.1867 PG 3 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 900ME UT WOS:000300890400021 PM 22286383 ER PT J AU Chandler, D Maldonado, GI Proctor, LD Primm, RT AF Chandler, David Maldonado, G. Ivan Proctor, L. D. Primm, R. T., III TI NUCLEAR TRANSMUTATIONS IN HFIR'S BERYLLIUM REFLECTOR AND THEIR IMPACT ON REACTOR OPERATION AND REFLECTOR DISPOSAL SO NUCLEAR TECHNOLOGY LA English DT Article DE HFIR; Be; He-3 AB The High Flux Isotope Reactor (H FIR) located at the Oak Ridge National Laboratory utilizes a large annular beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron-absorbing and radiation-emitting isotopes. During the past year two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (He-3 and Li-6) buildup in the reflector regions and its effect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to 3 He buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge and during postdischarge decay to assess the viability of transporting, storing, and ultimately disposing of the reflector regions currently stored in the spent-fuel pool. The postirradiation curie inventories were used to determine whether, for disposal purposes, the reflector regions are discharged as transuranic (TRU) waste or become TRU waste during the decay period and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be TRU waste at discharge, and the other region was determined to become TRU waste <2 yr after being discharged due to irradiation of the initial uranium impurity content (0.0044 wt% uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only). C1 [Chandler, David; Maldonado, G. Ivan] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Proctor, L. D.; Primm, R. T., III] Oak Ridge Natl Lab, Res Reactors Div, Oak Ridge, TN USA. RP Chandler, D (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM Ivan.Maldonado@utk.edu OI Maldonado, Guillermo/0000-0001-7377-4494 FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. DOE FX This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. DOE. NR 24 TC 0 Z9 0 U1 0 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2012 VL 177 IS 3 BP 395 EP 412 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 901LW UT WOS:000300969400008 ER PT J AU Dolz, MI Shalom, DE Pastoriza, H Lopez, DO AF Dolz, M. I. Shalom, D. E. Pastoriza, H. Lopez, D. O. TI Anisotropic response of the moving vortex lattice in superconducting Mo(1-x)Gex amorphous films SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Superconductivity; 2D systems; Transverse critical current; Anisotropic behavior ID FLUX-LINE-LATTICE; MO77GE23 FILMS; DYNAMICS; PHASE AB We have performed magnetic susceptibility measurements in Mo1-xGex amorphous thin films biased with an electrical current using anisotropic coils. We tested the symmetry of the vortex response changing the relative orientation between the bias current and the susceptibility coils. We found a region in the DC current-temperature phase diagram where the dynamical vortex structures behave anisotropically. In this region the shielding capability of the superconducting currents measured by the susceptibility coils is less effective along the direction of vortex motion compared to the transverse direction. This anisotropic response is found in the same region where the peak effect in the critical current is developed. On rising temperature the isotropic behavior is recovered. (C) 2012 Elsevier B. V. All rights reserved. C1 [Dolz, M. I.; Shalom, D. E.; Pastoriza, H.] Consejo Nacl Invest Cient & Tecn, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Lopez, D. O.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Dolz, MI (reprint author), Univ Nacl San Luis, Dept Fis, INFAP, CONICET, Ejercito Los Andes 950,D5700BWS, San Luis, Argentina. EM mdolz@unsl.edu.ar OI Pastoriza, Hernan/0000-0001-5576-6538 FU CNEA; CONICET FX We are very grateful to M. Hesselberth and P. H. Kes for helping us with the deposition of the MoGe films on the planar coils. This project was financially supported by CNEA and CONICET. M. I. D., D. E. S and H. P. researchers of CONICET. NR 18 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAR PY 2012 VL 474 BP 34 EP 37 DI 10.1016/j.physc.2012.01.005 PG 4 WC Physics, Applied SC Physics GA 901CL UT WOS:000300939200009 ER PT J AU Deng, J AF Deng, Jie TI Phase field modeling of grain growth in thin films on rigid substrates SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE grain growth; phase field modeling; thin films ID COMPUTER-SIMULATION; SURFACE-ENERGY; FERRITE TRANSFORMATION; INTERPHASE BOUNDARIES; 3 DIMENSIONS; ANISOTROPY; EVOLUTION; KINETICS; TEXTURE; STRESS AB A phase field model of grain growth in thin films on rigid substrates is presented, in which the motion of grain boundaries is driven by curvatures as well as anisotropy in surface, interface, and strain energies. The match between the proposed model and the corresponding sharp interface model is demonstrated by asymptotic analysis. The effect of diffuse interface on grain boundary mobility is minimized. The parameters in the model are connected to the measurable properties of materials, and therefore can be obtained from experiments or atomic scale simulations. In numerical simulations, the influence of the texture dependent surface, interface, and strain energies on grain growth is illustrated. The effects of film thickness, strain level, and grain boundary grooving on grain size distribution and texture evolution are also investigated. The effectiveness as well as the limits of the present model are discussed, and the ways to extend it are proposed. C1 [Deng, Jie] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32310 USA. RP Deng, J (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM jdeng@sandia.gov FU Florida Center for Advanced Aero-Propulsion (FCCAP) FX Author thanks the support from the Florida Center for Advanced Aero-Propulsion (FCCAP). NR 46 TC 3 Z9 3 U1 0 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAR PY 2012 VL 249 IS 3 BP 564 EP 574 DI 10.1002/pssb.201147495 PG 11 WC Physics, Condensed Matter SC Physics GA 897XZ UT WOS:000300696500026 ER PT J AU Zhou, YG Wang, ZG Nie, JL Yang, P Sun, X Khaleel, MA Zu, XT Gao, F AF Zhou, Y. G. Wang, Z. G. Nie, J. L. Yang, P. Sun, X. Khaleel, M. A. Zu, X. T. Gao, F. TI Vacancies in fully hydrogenated boron nitride layer: implications for functional nanodevices SO PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS LA English DT Article DE BN; thin films; density functional theory; vacancies; electronic properties; hydrogenation ID NANORIBBONS AB Using density functional theory, a series of calculations of structural and electronic properties of hydrogen vacancies in a fully hydrogenated boron nitride (fH-BN) layer were conducted. By dehydrogenating the fH-BN structure, B-terminated vacancies can be created which induce complete spin polarization around the Fermi level, irrespective of the vacancy size. On the contrary, the fH-BN structure with N-terminated vacancies can be a small-gap semiconductor, a typical spin gapless semiconductor, or a metal depending on the vacancy size. Utilizing such vacancy-induced band gap and magnetism changes, possible applications in spintronics are proposed, and a special fH-BN based quantum dot device is designed. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) C1 [Zhou, Y. G.; Wang, Z. G.; Nie, J. L.; Sun, X.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Zhou, Y. G.; Yang, P.; Khaleel, M. A.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, MS K8-93,POB 999, Richland, WA 99352 USA. EM Yungang.Zhou@pnl.gov; fei.gao@pnl.gov RI Yang, Ping/E-5355-2011; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009; OI khaleel, mohammad/0000-0001-7048-0749; Yang, Ping/0000-0003-4726-2860 NR 15 TC 1 Z9 1 U1 2 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1862-6254 J9 PHYS STATUS SOLIDI-R JI Phys. Status Solidi-Rapid Res. Lett. PD MAR PY 2012 VL 6 IS 3 BP 105 EP 107 DI 10.1002/pssr.201105513 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 898UV UT WOS:000300768700009 ER PT J AU Pindzola, MS Abdel-Naby, SA Robicheaux, F Colgan, J AF Pindzola, M. S. Abdel-Naby, Sh. A. Robicheaux, F. Colgan, J. TI Single photoionization of highly charged atomic ions including the full electromagnetic-field potential SO PHYSICAL REVIEW A LA English DT Article ID ELECTRON AB A previous fully relativistic time-dependent close-coupling method [Phys. Rev. A 81, 063431 (2010)], developed to study the photoionization of highly charged atomic ions, is substantially modified to include the full electromagnetic-field potential. Expansion of a one active electron wave function for the time-dependent Dirac equation in spin-orbit eigenfunctions yields close-coupled equations for bispinor radial wave functions. A spherical Bessel function expansion is then used to go beyond the Lorentz gauge dipole approximation to include higher order radiation field operators in both the Lorentz and Coulomb gauges. We test the high-order close-coupling method on the single photoionization of U91+. C1 [Pindzola, M. S.; Abdel-Naby, Sh. A.; Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36832 USA. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Pindzola, MS (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36832 USA. RI Abdel-Naby, Shahin/G-1295-2014; Robicheaux, Francis/F-4343-2014; OI Abdel-Naby, Shahin/0000-0002-9268-3587; Robicheaux, Francis/0000-0002-8054-6040; Colgan, James/0000-0003-1045-3858 FU US Department of Energy; US National Science Foundation FX This work was supported in part by grants from the US Department of Energy and the US National Science Foundation. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee. NR 12 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAR 1 PY 2012 VL 85 IS 3 AR 032701 DI 10.1103/PhysRevA.85.032701 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 900ZM UT WOS:000300931300001 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Aoki, M Askew, A Asman, B Atkins, S Atramentov, O Augsten, K Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Belanger-Champagne, C Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calpas, B Camacho-Perez, E Carrasco-Lizarraga, MA Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Guerra, GA Gavrilov, V Gay, P Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jamin, D Jayasinghe, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kobach, AC Kohli, JM Kozelov, AV Kraus, J Kulikov, S Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Novaes, SF Nunnemann, T Obrant, G Orduna, J Osman, N Osta, J Garzon, GJOY Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Polozov, P Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stolin, V Stoyanova, DA Strauss, M Strom, D Stutte, L Suter, L Svoisky, P Takahashi, M Tanasijczuk, A Titov, M Tokmenin, VV Tsai, YT Tschann-Grimm, K Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Youn, SW Yu, J Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Aoki, M. Askew, A. Asman, B. Atkins, S. Atramentov, O. Augsten, K. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Belanger-Champagne, C. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calpas, B. Camacho-Perez, E. Carrasco-Lizarraga, M. A. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Guerra, G. A. Gavrilov, V. Gay, P. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jamin, D. Jayasinghe, A. Jesik, R. Johns, K. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kobach, A. C. Kohli, J. M. Kozelov, A. V. Kraus, J. Kulikov, S. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Novaes, S. F. Nunnemann, T. Obrant, G. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, M. Strom, D. Stutte, L. Suter, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tschann-Grimm, K. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Z(gamma) production and limits on anomalous ZZ(gamma) and Z(gamma gamma) couplings in p(p)over-bar collisions at root s 1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID GAUGE-BOSON COUPLINGS; Z-GAMMA PRODUCTION; ROOT-S=1.96 TEV; ZZ-GAMMA; LEP; DETECTOR; SEARCH AB We present a measurement of p (p) over bar -> Z gamma -> l(+)l(-)gamma (l = e, mu) production with a data sample corresponding to an integrated luminosity of 6.2 fb(-1) collected by the D0 detector at the Fermilab Tevatron p (p) over bar Collider. The results of the electron and muon channels are combined, and we measure the total production cross section and the differential cross section d(sigma)/dp(T)(gamma), where p(T)(gamma) is the momentum of the photon in the plane transverse to the beam line. The results obtained are consistent with the standard model predictions from next-to-leading order calculations. We use the transverse momentum spectrum of the photon to place limits on anomalous ZZ gamma and Z gamma gamma couplings. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Maciel, A. K. A.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Barreto, J.; Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Hohlfeld, M.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bassler, U.; Besancon, M.; Chapon, E.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Deterre, C.; Grohsjean, A.; Hubacek, Z.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Irfu, Saclay, France. [Bernhard, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Schliephake, T.; Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Kulikov, S.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Stockholm Univ, S-10691 Stockholm, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; Peters, Y.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Kobach, A. C.; Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Carrasco-Lizarraga, M. A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Kaadze, K.; Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Atkins, S.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Tschann-Grimm, K.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Heintz, U.; Jabeen, S.; Landsberg, G.; Narain, M.; Parihar, V.; Partridge, R.; Zivkovic, L.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Pal, A.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Mulhearn, M.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Karmanov, Dmitry/E-2242-2012; Boos, Eduard/D-9748-2012; Gutierrez, Phillip/C-1161-2011; Novaes, Sergio/D-3532-2012; Santos, Angelo/K-5552-2012; Mercadante, Pedro/K-1918-2012; Alves, Gilvan/C-4007-2013; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015 OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 34 TC 18 Z9 18 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 1 PY 2012 VL 85 IS 5 AR 052001 DI 10.1103/PhysRevD.85.052001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 901BY UT WOS:000300937900002 ER PT J AU Davoudiasl, H McElmurry, T Soni, A AF Davoudiasl, Hooman McElmurry, Thomas Soni, Amarjit TI Top-pair forward-backward asymmetry from loops of new strongly coupled quarks SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; STANDARD MODEL; HEAVY QUARKS; COLLISIONS; TEVATRON; SPECTRUM; PHYSICS; BROKEN; TEV AB We examine loop-mediated effects of new heavy quarks Q = (t', b') on t (t) over bar production at hadron colliders, using a phenomenological model with flavor off-diagonal couplings of charged and neutral scalars phi = (phi(+/-); phi(0)) to Q. We show that an invariant-mass-dependent asymmetry, in the t (t) over bar center of mass, consistent with those recently reported by the CDF collaboration, can be obtained for quark masses around 350-500 GeV, scalar masses of order 100-200 GeV, and modest-to-strong Yukawa couplings. The requisite strong interactions suggest a nonperturbative electroweak-symmetry-breaking mechanism and composite states at the weak scale. A typical prediction of this framework is that the new heavy quarks decay dominantly into t phi final states. C1 [Davoudiasl, Hooman; McElmurry, Thomas; Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU US DOE [DE-AC02-98CH10886] FX We thank Zuowei Liu for collaboration at the early stages of this project. We also thank Shaouly Bar-Shalom and Jessie Shelton for discussions. This work is supported in part by the US DOE Grant No. DE-AC02-98CH10886. NR 64 TC 12 Z9 12 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 1 PY 2012 VL 85 IS 5 AR 054001 DI 10.1103/PhysRevD.85.054001 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 901BY UT WOS:000300937900003 ER PT J AU Melnikov, K Scharf, A Schulze, M AF Melnikov, Kirill Scharf, Andreas Schulze, Markus TI Top quark pair production in association with a jet: QCD corrections and jet radiation in top quark decays SO PHYSICAL REVIEW D LA English DT Article ID HADRON COLLIDERS; NLO QCD; LHC; DISTRIBUTIONS; AMPLITUDES; COLLISIONS AB We consider top quark pair production in association with a hard jet through next-to-leading order in perturbative QCD. Top quark decays are treated in the narrow width approximation and spin correlations are retained throughout the computation. We include hard jet radiation by top quark decay products and explore their importance for basic kinematic distributions at the Tevatron and the LHC. Our results suggest that QCD corrections and jet radiation in decays can lead to significant changes in shapes of basic distributions and, therefore, need to be included for the description of t (t) over barj production. C1 [Melnikov, Kirill; Schulze, Markus] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Scharf, Andreas] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Scharf, Andreas] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Schulze, Markus] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Melnikov, K (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. FU NSF [PHY-0855365, PHY-0547564]; DOE [DE-AC02-06CD11357]; Johns Hopkins University FX We would like to thank R. Demina, A. Harel, D. Orbaker, and B. Webber for comments on the manuscript. This research is supported in part by NSF Grants No. PHY-0855365 and No. PHY-0547564, as well as by DOE Grant No. DE-AC02-06CD11357 and startup funds of Johns Hopkins University. Calculations reported in this paper were performed on the Homewood High Performance Cluster of Johns Hopkins University. NR 49 TC 46 Z9 46 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 1 PY 2012 VL 85 IS 5 AR 054002 DI 10.1103/PhysRevD.85.054002 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 901BY UT WOS:000300937900004 ER PT J AU Aamodt, K Abelev, B Quintana, AA Adamova, D Adare, AM Aggarwal, MM Rinella, GA Agocs, AG Agostinelli, A Salazar, SA Ahammed, Z Ahmad, N Masoodi, AA Ahn, SU Akindinov, A Aleksandrov, D Alessandro, B Molina, RA Alici, A Alkin, A Avina, EA Alme, J Alt, T Altini, V Altinpinar, S Altsybeev, I Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arbor, N Arcelli, S Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Bach, M Badala, A Baek, YW Bailhache, R Bala, R Ferroli, RB Baldisseri, A Baldit, A Pedrosa, FBD Ban, J Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, IG Beck, H Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bergmann, C Betev, L Bhasin, A Bhati, AK Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biolcati, E Blanco, F Blanco, F Blau, D Blume, C Bock, N Bogdanov, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Bombonati, C Book, J Borel, H Borissov, A Bortolin, C Bose, S Bossu, F Botje, M Bottger, S Boyer, B Braun-Munzinger, P Bregant, M Breitner, T Broz, M Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Bugaiev, K Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Villar, EC Camerini, P Roman, VC Romeo, GC Carena, F Carena, W Carminati, F Diaz, AC Caselle, M Castellanos, JC Casula, EAR Catanescu, V Cavicchioli, C Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Cherney, M Cheshkov, C Cheynis, B Chiavassa, E Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Coccetti, F Coffin, JP Colamaria, F Colella, D Balbastre, GC del Valle, ZC Constantin, P Contin, G Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Cotallo, ME Crochet, P Alaniz, EC Cuautle, E Cunqueiro, L Erasmo, GD Dainese, A Dalsgaard, HH Danu, A Das, D Das, I Das, K Dash, A Dash, S De, S Moregula, AD de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S de Rooij, R Sanchez, ED Delagrange, H Deloff, A Demanov, V Denes, E Deppman, A Di Bari, D Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Dietel, T Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Dominguez, I Donigus, B Dordic, O Driga, O Dubey, AK Ducroux, L Dupieux, P Majumdar, AKD Majumdar, MRD Elia, D Emschermann, D Engel, H Erdal, HA Espagnon, B Estienne, M Esumi, S Evans, D Eyyubova, G Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fearick, R Fedunov, A Fehlker, D Felea, D Fenton-Olsen, B Feofilov, G Tellez, AF Ferreiro, EG Ferretti, A Ferretti, R Figiel, J Figueredo, MAS Filchagin, S Fini, R Finogeev, D Fionda, FM Fiore, EM Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Fragkiadakis, M Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, A Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Garishvili, I Gerhard, J Germain, M Geuna, C Gheata, A Gheata, M Ghidini, B Ghosh, P Gianotti, P Girard, MR Giubellino, P Gladysz-Dziadus, E Glassel, P Gomez, R Gonzalez-Trueba, LH Gonzalez-Zamora, P Gorbunov, S Goswami, A Gotovac, S Grabski, V Graczykowski, LK Grajcarek, R Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Guber, F Guernane, R Gutierrez, CG Guerzoni, B Guilbaud, M Gulbrandsen, K Gunji, T Gupta, A Gupta, R Gutbrod, H Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Harmanova, Z Harris, JW Hartig, M Hasegan, D Hatzifotiadou, D Hayrapetyan, A Heide, M Helstrup, H Herghelegiu, A Corral, GH Herrmann, N Hetland, KF Hicks, B Hille, PT Hippolyte, B Horaguchi, T Hori, Y Hristov, P Hrivnacova, I Huang, M Huber, S Humanic, TJ Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Incani, E Innocenti, GM Ippolitov, M Irfan, M Ivan, C Ivanov, A Ivanov, M Ivanov, V Ivanytskyi, O Jacobs, PM Jancurova, L Jangal, S Janik, MA Janik, R Jayarathna, PHSY Jena, S Bustamante, RTJ Jirden, L Jones, PG Jung, H Jung, W Jusko, A Kalcher, S Kalinak, P Kalisky, M Kalliokoski, T Kalweit, A Kanaki, K Kang, JH Kaplin, V Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DJ Kim, DW Kim, JH Kim, JS Kim, M Kim, S Kim, SH Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Kluge, A Knichel, ML Koch, K Kohler, MK Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Don, CKK Kour, R Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kramer, F Kraus, I Krawutschke, T Kretz, M Krivda, M Krizek, F Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kuhn, C Kuijer, PG Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kushpil, V Kweon, MJ Kwon, Y La Rocca, P de Guevara, PL Lakomov, I Lara, C Lardeux, A Larsen, DT Lazzeroni, C Le Bornec, Y Lea, R Lechman, M Lee, KS Lee, SC Lefevre, F Lehnert, J Leistam, L Lenhardt, M Lenti, V Monzon, IL Vargas, HL Levai, P Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Liu, L Loenne, PI Loggins, VR Loginov, V Lohn, S Lohner, D Loizides, C Loo, KK Lopez, X Torres, EL Lovhoiden, G Lu, XG Luettig, P Lunardon, M Luo, J Luparello, G Luquin, L Luzzi, C Ma, R Maevskaya, A Mager, M Mahapatra, DP Maire, A Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Mao, Y Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Markert, C Martashvili, I Martinengo, P Martinez, MI Davalos, AM Garcia, GM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastromarco, M Mastroserio, A Matthews, ZL Matyja, A Mayani, D Mayer, C Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Michalon, A Midori, J Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitu, C Mlynarz, J Mohanty, AK Mohanty, B Molnar, L Zetina, LM Monteno, M Montes, E Moon, T Morando, M De Godoy, DAM Moretto, S Morsch, A Muccifora, V Mudnic, E Muller, H Muhuri, S Munhoz, MG Musa, L Musso, A Nandi, BK Nania, R Nappi, E Nattrass, C Naumov, NP Navin, S Nayak, TK Nazarenko, S Nazarov, G Nedosekin, A Nicassio, M Nielsen, BS Niida, T Nikolaev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nomokonov, P Nooren, G Novitzky, N Nyanin, A Nyatha, A Nygaard, C Nystrand, J Obayashi, H Ochirov, A Oeschler, H Oh, SK Oleniacz, J Oppedisano, C Velasquez, AO Ortona, G Oskarsson, A Otterlund, I Otwinowski, J Ovrebekk, G Oyama, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Paic, G Painke, F Pajares, C Pal, S Pal, SK Palaha, A Palmeri, A Pappalardo, GS Park, WJ Passfeld, A Patalakha, DI Paticchio, V Pavlinov, A Pawlak, T Peitzmann, T De Oliveira, E Peresunko, D Lara, CEP Lezama, EP Perini, D Perrino, D Peryt, W Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrov, P Petrovici, M Petta, C Piano, S Piccotti, A Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piuz, F Piyarathna, DB Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Pop, A Porteboeuf-Houssais, S Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pulvirenti, A Punin, V Putis, M Putschke, J Quercigh, E Qvigstad, H Rachevski, A Rademakers, A Radomski, S Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Reyes, AR Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Real, JS Redlich, K Reichelt, P Reicher, M Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Ricaud, H Riccati, L Ricci, RA Richter, M Riedler, P Riegler, W Riggi, F Cahuantzi, MR Rohr, D Rohrich, D Romita, R Ronchetti, F Rosnet, P Rossegger, S Rossi, A Roukoutakis, F Roy, C Roy, P Montero, AJR Rui, R Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahu, PK Saini, J Sakaguchi, H Sakai, S Sakata, D Salgado, CA Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Sano, S Santo, R Santoro, R Sarkamo, J Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schreiner, S Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, PA Scott, R Segato, G Selyuzhenkov, I Senyukov, S Serci, S Serradilla, E Sevcenco, A Sgura, I Shabratova, G Shahoyan, R Sharma, N Sharma, S Shigaki, K Shimomura, M Shtejer, K Sibiriak, Y Siciliano, M Sicking, E Siddhanta, S Siemiarczuk, T Silvermyr, D Simonetti, G Singaraju, R Singh, R Singha, S Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, R Sogaard, C Soltz, R Son, H Song, J Song, M Soos, C Soramel, F Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Stefanini, G Steinbeck, T Steinpreis, M Stenlund, E Steyn, G Stocco, D Stolpovskiy, M Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Sukhorukov, M Sultanov, R Sumbera, M Susa, T de Toledo, AS Szarka, I Szostak, A Tagridis, C Takahashi, J Takaki, JDT Tauro, A Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Thomas, JH Tieulent, R Timmins, AR Tlusty, D Toia, A Torii, H Tosello, F Traczyk, T Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Turvey, AJ Tveter, TS Ulery, J Ullaland, K Ulrich, J Uras, A Urban, J Urciuoli, GM Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S van der Kolk, N van Leeuwen, M Vyvre, PV Vannucci, L Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Venaruzzo, M Vercellin, E Vergara, S Vernekohl, DC Vernet, R Verweij, M Vickovic, L Viesti, G Vikhlyantsev, O Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopyanov, A Voloshin, K Voloshin, S Volpe, G von Haller, B Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, V Wan, R Wang, D Wang, M Wang, Y Wang, Y Watanabe, K Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, A Wilk, G Williams, MCS Windelband, B Karampatsos, LX Yang, H Yasnopolskiy, S Yi, J Yin, Z Yokoyama, H Yoo, IK Yoon, J Yu, W Yuan, X Yushmanov, I Zach, C Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zelnicek, P Zgura, I Zhalov, M Zhang, X Zhou, D Zhou, F Zhou, Y Zhu, X Zichichi, A Zimmermann, A Zinovjev, G Zoccarato, Y Zynovyev, M AF Aamodt, K. Abelev, B. Abrahantes Quintana, A. Adamova, D. Adare, A. M. Aggarwal, M. M. Rinella, G. Aglieri Agocs, A. G. Agostinelli, A. Aguilar Salazar, S. Ahammed, Z. Ahmad, N. Masoodi, A. Ahmad Ahn, S. U. Akindinov, A. Aleksandrov, D. Alessandro, B. Alfaro Molina, R. Alici, A. Alkin, A. Almaraz Avina, E. Alme, J. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bailhache, R. Bala, R. Ferroli, R. Baldini Baldisseri, A. Baldit, A. Pedrosa, F. Baltasar Dos Santos Ban, J. Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Beck, H. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bergmann, C. Betev, L. Bhasin, A. Bhati, A. K. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biolcati, E. Blanco, F. Blanco, F. Blau, D. Blume, C. Bock, N. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Bombonati, C. Book, J. Borel, H. Borissov, A. Bortolin, C. Bose, S. Bossu, F. Botje, M. Boettger, S. Boyer, B. Braun-Munzinger, P. Bregant, M. Breitner, T. Broz, M. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Bugaiev, K. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Calvo Villar, E. Camerini, P. Canoa Roman, V. Romeo, G. Cara Carena, F. Carena, W. Carminati, F. Diaz, A. Casanova Caselle, M. Castellanos, J. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Cherney, M. Cheshkov, C. Cheynis, B. Chiavassa, E. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Coccetti, F. Coffin, J-P. Colamaria, F. Colella, D. Balbastre, G. Conesa del Valle, Z. Conesa Constantin, P. Contin, G. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortes Maldonado, I. Cortese, P. Cosentino, M. R. Costa, F. Cotallo, M. E. Crochet, P. Cruz Alaniz, E. Cuautle, E. Cunqueiro, L. Erasmo, G. D. Dainese, A. Dalsgaard, H. H. Danu, A. Das, D. Das, I. Das, K. Dash, A. Dash, S. De, S. Moregula, A. De Azevedo de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. de Rooij, R. Sanchez, E. Del Castillo Delagrange, H. Deloff, A. Demanov, V. Denes, E. Deppman, A. Di Bari, D. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Dietel, T. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Dominguez, I. Doenigus, B. Dordic, O. Driga, O. Dubey, A. K. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Majumdar, M. R. Dutta Elia, D. Emschermann, D. Engel, H. Erdal, H. A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Eyyubova, G. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fearick, R. Fedunov, A. Fehlker, D. Felea, D. Fenton-Olsen, B. Feofilov, G. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Ferretti, R. Figiel, J. Figueredo, M. A. S. Filchagin, S. Fini, R. Finogeev, D. Fionda, F. M. Fiore, E. M. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Fragkiadakis, M. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Garishvili, I. Gerhard, J. Germain, M. Geuna, C. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Gianotti, P. Girard, M. R. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Gomez, R. Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gorbunov, S. Goswami, A. Gotovac, S. Grabski, V. Graczykowski, L. K. Grajcarek, R. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J-Y. Guber, F. Guernane, R. Guerra Gutierrez, C. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Gutbrod, H. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Harmanova, Z. Harris, J. W. Hartig, M. Hasegan, D. Hatzifotiadou, D. Hayrapetyan, A. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Herrmann, N. Hetland, K. F. Hicks, B. Hille, P. T. Hippolyte, B. Horaguchi, T. Hori, Y. Hristov, P. Hrivnacova, I. Huang, M. Huber, S. Humanic, T. J. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Incani, E. Innocenti, G. M. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, A. Ivanov, M. Ivanov, V. Ivanytskyi, O. Jacobs, P. M. Jancurova, L. Jangal, S. Janik, M. A. Janik, R. Jayarathna, P. H. S. Y. Jena, S. Jimenez Bustamante, R. T. Jirden, L. Jones, P. G. Jung, H. Jung, W. Jusko, A. Kalcher, S. Kalinak, P. Kalisky, M. Kalliokoski, T. Kalweit, A. Kanaki, K. Kang, J. H. Kaplin, V. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. J. Kim, D. W. Kim, J. H. Kim, J. S. Kim, M. Kim, S. Kim, S. H. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Kluge, A. Knichel, M. L. Koch, K. Koehler, M. K. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Don, C. Kottachchi Kankanamg Kour, R. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kraus, I. Krawutschke, T. Kretz, M. Krivda, M. Krizek, F. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kuhn, C. Kuijer, P. G. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kushpil, V. Kweon, M. J. Kwon, Y. La Rocca, P. Ladron de Guevara, P. Lakomov, I. Lara, C. Lardeux, A. Larsen, D. T. Lazzeroni, C. Le Bornec, Y. Lea, R. Lechman, M. Lee, K. S. Lee, S. C. Lefevre, F. Lehnert, J. Leistam, L. Lenhardt, M. Lenti, V. Leon Monzon, I. Vargas, H. Leon Levai, P. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Liu, L. Loenne, P. I. Loggins, V. R. Loginov, V. Lohn, S. Lohner, D. Loizides, C. Loo, K. K. Lopez, X. Lopez Torres, E. Lovhoiden, G. Lu, X-G. Luettig, P. Lunardon, M. Luo, J. Luparello, G. Luquin, L. Luzzi, C. Ma, R. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Markert, C. Martashvili, I. Martinengo, P. Martinez, M. I. Martinez Davalos, A. Garcia, G. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastromarco, M. Mastroserio, A. Matthews, Z. L. Matyja, A. Mayani, D. Mayer, C. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Michalon, A. Midori, J. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitu, C. Mlynarz, J. Mohanty, A. K. Mohanty, B. Molnar, L. Montano Zetina, L. Monteno, M. Montes, E. Moon, T. Morando, M. Moreira De Godoy, D. A. Moretto, S. Morsch, A. Muccifora, V. Mudnic, E. Mueller, H. Muhuri, S. Munhoz, M. G. Musa, L. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Naumov, N. P. Navin, S. Nayak, T. K. Nazarenko, S. Nazarov, G. Nedosekin, A. Nicassio, M. Nielsen, B. S. Niida, T. Nikolaev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Novitzky, N. Nyanin, A. Nyatha, A. Nygaard, C. Nystrand, J. Obayashi, H. Ochirov, A. Oeschler, H. Oh, S. K. Oleniacz, J. Oppedisano, C. Ortiz Velasquez, A. Ortona, G. Oskarsson, A. Otterlund, I. Otwinowski, J. Ovrebekk, G. Oyama, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. Pal, S. K. Palaha, A. Palmeri, A. Pappalardo, G. S. Park, W. J. Passfeld, A. Patalakha, D. I. Paticchio, V. Pavlinov, A. Pawlak, T. Peitzmann, T. Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Perez Lezama, E. Perini, D. Perrino, D. Peryt, W. Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrov, P. Petrovici, M. Petta, C. Piano, S. Piccotti, A. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piuz, F. Piyarathna, D. B. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Pop, A. Porteboeuf-Houssais, S. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pulvirenti, A. Punin, V. Putis, M. Putschke, J. Quercigh, E. Qvigstad, H. Rachevski, A. Rademakers, A. Radomski, S. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Ramirez Reyes, A. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Real, J. S. Redlich, K. Reichelt, P. Reicher, M. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Ricaud, H. Riccati, L. Ricci, R. A. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rodriguez Cahuantzi, M. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Rosnet, P. Rossegger, S. Rossi, A. Roukoutakis, F. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahu, P. K. Saini, J. Sakaguchi, H. Sakai, S. Sakata, D. Salgado, C. A. Sambyal, S. Samsonov, V. Sanchez Castro, X. Sandor, L. Sandoval, A. Sano, M. Sano, S. Santo, R. Santoro, R. Sarkamo, J. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schreiner, S. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, P. A. Scott, R. Segato, G. Selyuzhenkov, I. Senyukov, S. Serci, S. Serradilla, E. Sevcenco, A. Sgura, I. Shabratova, G. Shahoyan, R. Sharma, N. Sharma, S. Shigaki, K. Shimomura, M. Shtejer, K. Sibiriak, Y. Siciliano, M. Sicking, E. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. Sogaard, C. Soltz, R. Son, H. Song, J. Song, M. Soos, C. Soramel, F. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Stefanini, G. Steinbeck, T. Steinpreis, M. Stenlund, E. Steyn, G. Stocco, D. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Sukhorukov, M. Sultanov, R. Sumbera, M. Susa, T. Szanto de Toledo, A. Szarka, I. Szostak, A. Tagridis, C. Takahashi, J. Takaki, J. D. Tapia Tauro, A. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Thomas, J. H. Tieulent, R. Timmins, A. R. Tlusty, D. Toia, A. Torii, H. Tosello, F. Traczyk, T. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Turvey, A. J. Tveter, T. S. Ulery, J. Ullaland, K. Ulrich, J. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. van der Kolk, N. van Leeuwen, M. Vyvre, P. Vande Vannucci, L. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Venaruzzo, M. Vercellin, E. Vergara, S. Vernekohl, D. C. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Vikhlyantsev, O. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voloshin, K. Voloshin, S. Volpe, G. von Haller, B. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, V. Wan, R. Wang, D. Wang, M. Wang, Y. Wang, Y. Watanabe, K. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, A. Wilk, G. Williams, M. C. S. Windelband, B. Karampatsos, L. Xaplanteris Yang, H. Yasnopolskiy, S. Yi, J. Yin, Z. Yokoyama, H. Yoo, I-K. Yoon, J. Yu, W. Yuan, X. Yushmanov, I. Zach, C. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zelnicek, P. Zgura, I. Zhalov, M. Zhang, X. Zhou, D. Zhou, F. Zhou, Y. Zhu, X. Zichichi, A. Zimmermann, A. Zinovjev, G. Zoccarato, Y. Zynovyev, M. CA ALICE Collaboration TI Particle-Yield Modification in Jetlike Azimuthal Dihadron Correlations in Pb-Pb Collisions at root S-NN=2.76 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA; ROOT-S(NN)=2.76 TEV; COLLABORATION; PERSPECTIVE; MATTER AB The yield of charged particles associated with high-pt trigger particles (8 < p(t) < 15 GeV/c) is measured with the ALICE detector in Pb-Pb collisions at root S-NN = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jetlike correlation peaks in azimuthal dihadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta p(t) > 3 GeV/c on the away side drops to about 60% of that observed in pp collisions, while on the near side a moderate enhancement of 20%-30% is found. C1 [Aamodt, K.; Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Kanaki, K.; Larsen, D. T.; Lien, J.; Liu, L.; Loenne, P. I.; Nystrand, J.; Ovrebekk, G.; Richter, M.; Rohrich, D.; Skjerdal, K.; Szostak, A.; Ullaland, K.; Wagner, B.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Abrahantes Quintana, A.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Adamova, D.; Bielcikova, J.; Kushpil, S.; Kushpil, V.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Adare, A. M.; Aronsson, T.; Bruna, E.; Caines, H.; Harris, J. W.; Hicks, B.; Hille, P. T.; Ma, R.; Putschke, J.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Aggarwal, M. M.; Bhati, A. K.; Rathee, D.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Brun, R.; Carena, F.; Carena, W.; Carminati, F.; Caselle, M.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Cifarelli, L.; Costa, F.; Sanchez, E. Del Castillo; Di Mauro, A.; Divia, R.; Floris, M.; Fuchs, U.; Gheata, A.; Gheata, M.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Hayrapetyan, A.; Hristov, P.; Jirden, L.; Uysal, A. Karasu; Kisiel, A.; Kluge, A.; Lechman, M.; Leistam, L.; Lohn, S.; Luzzi, C.; Mager, M.; Martinengo, P.; Mastroserio, A.; Miskowiec, D.; Mohanty, A. K.; Molnar, L.; Morsch, A.; Mueller, H.; Musa, L.; Perini, D.; Peskov, V.; Pinazza, O.; Piuz, F.; Quercigh, E.; Rademakers, A.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rossegger, S.; Safarik, K.; Schreiner, S.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sicking, E.; Simonetti, G.; Soos, C.; Stefanini, G.; Tauro, A.; Telesca, A.; Toia, A.; Vyvre, P. Vande; von Haller, B.; Zampolli, C.] European Org Nucl Res CERN, Geneva, Switzerland. [Agocs, A. G.; Barnafoeldi, G. G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Levai, P.; Pochybova, S.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Agostinelli, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Romeo, G. Cara; Cifarelli, L.; Cindolo, F.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Aguilar Salazar, S.; Alfaro Molina, R.; Almaraz Avina, E.; Belmont-Moreno, E.; Cruz Alaniz, E.; Gonzalez-Trueba, L. H.; Grabski, V.; Martinez Davalos, A.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Ahammed, Z.; Chattopadhyay, S.; De, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ghosh, P.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Nayak, T. K.; Pal, S. K.; Saini, J.; Singaraju, R.; Singha, S.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Ahmad, N.; Masoodi, A. Ahmad; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Jung, W.; Kim, D. W.; Kim, J. S.; Kim, S. H.; Lee, K. S.; Lee, S. C.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Sultanov, R.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr Kurchatov Inst, Moscow, Russia. [Alessandro, B.; Arnaldi, R.; Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Bufalino, S.; Cerello, P.; Chiavassa, E.; Morales, Y. Corrales; Dash, S.; De Marco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Giubellino, P.; Innocenti, G. M.; Luparello, G.; Manceau, L.; Marchisone, M.; Masera, M.; Milano, L.; Monteno, M.; Musso, A.; Oppedisano, C.; Ortona, G.; Padilla, F.; Piccotti, A.; Poghosyan, M. G.; Prino, F.; Riccati, L.; Scomparin, E.; Siciliano, M.; Vasquez, M. A. Subieta; Tosello, F.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Alici, A.; Ferroli, R. Baldini; Coccetti, F.; Noferini, F.; Preghenella, R.; Zichichi, A.] Museo Storico Fis Enrico Fermi, Rome, Italy. [Alici, A.; Ferroli, R. Baldini; Coccetti, F.; Noferini, F.; Preghenella, R.; Zichichi, A.] Ctr Studi & Ric, Ctr Fermi, Rome, Italy. [Alkin, A.; Bugaiev, K.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Alt, T.; Anguelov, V.; Bach, M.; de Cuveland, J.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kretz, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.; Steinbeck, T.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Nicassio, M.; Perrino, D.; Terrevoli, C.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G. D.; de Cataldo, G.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fini, R.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastromarco, M.; Nappi, E.; Nicassio, M.; Paticchio, V.; Perrino, D.; Santoro, R.; Sgura, I.; Terrevoli, C.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Altsybeev, I.; Asryan, A.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kondratiev, V.; Lakomov, I.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Huber, S.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Kraus, I.; Lippmann, C.; Malzacher, P.; Marin, A.; Masciocchi, S.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Selyuzhenkov, I.; Thaeder, J.; Thomas, J. H.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Huber, S.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Kraus, I.; Lippmann, C.; Malzacher, P.; Marin, A.; Masciocchi, S.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Selyuzhenkov, I.; Thaeder, J.; Thomas, J. H.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Anielski, J.; Bathen, B.; Bergmann, C.; Dietel, T.; Emschermann, D.; Heide, M.; Kalisky, M.; Klein-Boesing, C.; Passfeld, A.; Santo, R.; Vernekohl, D. C.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Wilk, A.] Univ Munster, Inst Kernphys, D-4400 Munster, Germany. [Anticic, T.; Nikolic, V.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Antinori, F.; Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Dainese, A.; Fabris, D.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, F.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Aphecetche, L.; Batigne, G.; Bregant, M.; Delagrange, H.; Driga, O.; Estienne, M.; Germain, M.; Lardeux, A.; Lefevre, F.; Lenhardt, M.; Luquin, L.; Garcia, G. Martinez; Mas, A.; Pillot, P.; Schutz, Y.; Stocco, D.] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, Nantes, France. [Appelshaeuser, H.; Arend, A.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Buesching, H.; Hartig, M.; Kliemant, M.; Kramer, F.; Lehnert, J.; Vargas, H. Leon; Luettig, P.; Pitz, N.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Schuchmann, S.; Ulery, J.; Yu, W.] Goethe Univ Frankfurt, Inst Kernphys, D-6000 Frankfurt, Germany. [Arbor, N.; Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Mao, Y.; Real, J. S.] Univ Grenoble 1, CNRS, Inst Polytech Grenoble, LPSC,IN2P3, Grenoble, France. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, IGFAE, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Univ Jyvaskyla, Jyvaskyla, Finland. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] HIP, Jyvaskyla, Finland. [Badala, A.; Barbera, R.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Pulvirenti, A.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Geuna, C.; Pal, S.; Rakotozafindrabe, A.; Yang, H.] IRFU, Commissariat Energie Atom, Saclay, France. [Ahn, S. U.; Baldit, A.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Ichou, R.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Vulpescu, B.; Zhang, X.] Univ Clermont Ferrand, Clermont Univ, CNRS, LPC,IN2P3, Clermont Ferrand, France. [Ban, J.; Kalinak, P.; Kralik, I.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Barbera, R.; La Rocca, P.; Petta, C.; Pulvirenti, A.; Riggi, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Kour, R.; Krivda, M.; Lazzeroni, C.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Batyunya, B.; Fedunov, A.; Grigoryan, S.; Jancurova, L.; Malinina, L.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] JINR, Dubna, Russia. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Belikov, I.; Coffin, J-P.; del Valle, Z. Conesa; Hippolyte, B.; Jangal, S.; Kuhn, C.; Maire, A.; Michalon, A.; Roy, C.; Wan, R.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Bellwied, R.; Blanco, F.; Jayarathna, P. H. S. Y.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX USA. [Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Giubellino, P.; Innocenti, G. M.; Luparello, G.; Marchisone, M.; Masera, M.; Milano, L.; Ortona, G.; Padilla, F.; Poghosyan, M. G.; Siciliano, M.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis Sperimentale, Turin, Italy. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bhasin, A.; Gupta, A.; Gupta, R.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Bianchi, N.; Diaz, A. Casanova; Cunqueiro, L.; Moregula, A. De Azevedo; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis, Padua, Italy. [Bielcik, J.; Cepila, J.; Krus, M.; Pachr, M.; Petracek, V.; Petran, M.; Pospisil, V.; Smakal, R.; Tlusty, D.; Vajzer, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bilandzic, A.; Botje, M.; Krzewicki, M.; Kuijer, P. G.; Lara, C. E. Perez; van der Kolk, N.] Natl Inst Subat Phys, Amsterdam, Netherlands. [Blanco, F.; Cotallo, M. E.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] CIEMAT, Madrid, Spain. [Bock, N.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Bogolyubsky, M.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Stolpovskiy, M.] Inst High Energy Phys, Protvino, Russia. [Bombara, M.; Harmanova, Z.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Borissov, A.; Cormier, T. M.; Dobrin, A.; Don, C. Kottachchi Kankanamg; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Prasad, S. K.; Pruneau, C. A.; Voloshin, S.] Wayne State Univ, Detroit, MI USA. [Bose, S.; Chattopadhyay, S.; Das, D.; Das, I.; Das, K.; Majumdar, A. K. Dutta; Khan, P.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.; Ulrich, J.; Zelnicek, P.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Boyer, B.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Le Bornec, Y.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Broz, M.; Janik, R.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Budnikov, D.; Demanov, V.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Mao, Y.; Naumov, N. P.; Nazarenko, S.; Nazarov, G.; Punin, V.; Sukhorukov, M.; Tumkin, A.; Vikhlyantsev, O.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Busch, O.; Constantin, P.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Koch, K.; Krawutschke, T.; Kweon, M. J.; Lohner, D.; Lu, X-G.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Radomski, S.; Reygers, K.; Schicker, R.; Schweda, K.; Stachel, J.; Vallero, S.; Wang, Y.; Wiechula, J.; Windelband, B.; Zimmermann, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, iThemba LABS, ZA-7925 Cape Town, South Africa. [Cai, X.; Luo, J.; Wang, D.; Wang, M.; Wang, Y.; Yin, Z.; Yuan, X.; Zhang, X.; Zhou, D.; Zhou, F.; Zhu, X.] Hua Zhong Normal Univ, Wuhan, Peoples R China. [Calvo Villar, E.; Gago, A.; Guerra Gutierrez, C.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Camerini, P.; Contin, G.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Canoa Roman, V.; Contreras, J. G.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest Estudios Avanzados CINVES, Mexico City, DF, Mexico. [Canoa Roman, V.; Contreras, J. G.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest n Estudios Avanzados CINVES, Merida, Mexico. [Casula, E. A. R.; Cicalo, C.; De Falco, A.; Incani, E.; Masoni, A.; Puddu, G.; Serci, S.; Siddhanta, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Casula, E. A. R.; De Falco, A.; Incani, E.; Puddu, G.; Serci, S.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Cherney, M.; Nilsen, B. S.; Turvey, A. J.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J-Y.; Guilbaud, M.; Massacrier, L.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Chinellato, D. D.; Cosentino, M. R.; Dash, A.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, Brazil. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Zhou, Y.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Mischke, A.; Nooren, G.; Peitzmann, T.; Reicher, M.; Snellings, R.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Zhou, Y.] Univ Utrecht, Natl Inst Subatom Phys, Utrecht, Netherlands. [Christiansen, P.; Oskarsson, A.; Otterlund, I.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Chujo, T.; Esumi, S.; Horaguchi, T.; Inaba, M.; Miake, Y.; Niida, T.; Sakata, D.; Sano, M.; Shimomura, M.; Watanabe, K.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Chung, S. U.; Song, J.; Yi, J.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Canoa Roman, V.; Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Cortese, P.; Ferretti, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Cortese, P.; Ferretti, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, Alessandria, Italy. [Cuautle, E.; Dominguez, I.; Jimenez Bustamante, R. T.; Ladron de Guevara, P.; Maldonado Cervantes, I.; Mayani, D.; Ortiz Velasquez, A.; Paic, G.; Perez Lezama, E.; Peskov, V.; Sanchez Castro, X.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Danu, A.; Felea, D.; Haiduc, M.; Hasegan, D.; Mitu, C.; Sevcenco, A.; Stan, I.; Zgura, I.] ISS, Bucharest, Romania. [de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; Moreira De Godoy, D. A.; Munhoz, M. G.; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, Sao Paulo, Brazil. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Grp Collegato INFN, Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis E R Caianiello, I-84100 Salerno, Italy. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Dordic, O.; Eyyubova, G.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Qvigstad, H.; Skaali, T. B.; Tveter, T. S.; Wikne, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Fenton-Olsen, B.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Sakai, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Fragkiadakis, M.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Tagridis, C.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Garcia-Solis, E.] Chicago State Univ, Chicago, IL USA. [Girard, M. R.; Graczykowski, L. K.; Janik, M. A.; Oleniacz, J.; Pawlak, T.; Peryt, W.; Pluta, J.; Traczyk, T.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Gomez, R.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Goswami, A.; Mishra, A. N.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Grigoryan, A.; Hayrapetyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Gunji, T.; Hamagaki, H.; Hori, Y.; Sano, S.; Tsuji, T.] Univ Tokyo, Tokyo, Japan. [Hwang, D. S.; Kim, J. H.; Kim, S.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Jena, S.; Meethaleveedu, G. Koyithatta; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Kalweit, A.; Oeschler, H.; Ricaud, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Kang, J. H.; Kim, B.; Kim, M.; Kim, T.; Kwon, Y.; Moon, T.; Song, M.; Yoon, J.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Markert, C.; Karampatsos, L. Xaplanteris] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Martashvili, I.; Nattrass, C.; Read, K. F.; Scott, R.] Univ Tennessee, Knoxville, TN USA. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Midori, J.; Obayashi, H.; Sakaguchi, H.; Shigaki, K.; Sugitate, T.; Torii, H.] Hiroshima Univ, Hiroshima, Japan. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Bortolin, C.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Krawutschke, T.] Fachhsch Koln, Cologne, Germany. RP Aamodt, K (reprint author), Univ Bergen, Dept Phys & Technol, Bergen, Norway. RI Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Vinogradov, Leonid/K-3047-2013; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Deppman, Airton/J-5787-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Altsybeev, Igor/K-6687-2013; Vechernin, Vladimir/J-5832-2013; Janik, Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Jena, Deepika/P-2873-2015; Kurepin, Alexey/H-4852-2013; Adamova, Dagmar/G-9789-2014; Barnby, Lee/G-2135-2010; Blau, Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; Cosentino, Mauro/L-2418-2014; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Kharlov, Yuri/D-2700-2015; Mitu, Ciprian/E-6733-2011; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; Zarochentsev, Andrey/J-6253-2013; Kondratiev, Valery/J-8574-2013; Barnafoldi, Gergely Gabor/L-3486-2013; Christensen, Christian Holm/A-4901-2010; Levai, Peter/A-1544-2014; Guber, Fedor/I-4271-2013; Martinez Davalos, Arnulfo/F-3498-2013; Wagner, Vladimir/G-5650-2014; Vajzer, Michal/G-8469-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Christensen, Christian/D-6461-2012; Peitzmann, Thomas/K-2206-2012; feofilov, grigory/A-2549-2013; Williams, Crispin/A-8733-2013; Traczyk, Tomasz/C-1310-2013; Takahashi, Jun/B-2946-2012; Mischke, Andre/D-3614-2011; Ramello, Luciano/F-9357-2013; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Felea, Daniel/C-1885-2012; Sevcenco, Adrian/C-1832-2012; Chinellato, David/D-3092-2012; Barbera, Roberto/G-5805-2012; Cortese, Pietro/G-6754-2012; SCAPPARONE, EUGENIO/H-1805-2012; Masera, Massimo/J-4313-2012; Gagliardi, Martino/J-4787-2012; Aglieri Rinella, Gianluca/I-8010-2012; beole', stefania/G-9353-2012; Yoo, In-Kwon/J-6222-2012; Turrisi, Rosario/H-4933-2012; Bregant, Marco/I-7663-2012 OI Turrisi, Rosario/0000-0002-5272-337X; Tosello, Flavio/0000-0003-4602-1985; Beole', Stefania/0000-0003-4673-8038; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Coccetti, Fabrizio/0000-0001-7041-3394; Vinogradov, Leonid/0000-0001-9247-6230; Mohanty, Bedangadas/0000-0001-9610-2914; Gago Medina, Alberto Martin/0000-0002-0019-9692; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333; Bhasin, Anju/0000-0002-3687-8179; SANTORO, ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Deppman, Airton/0000-0001-9179-6363; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Karasu Uysal, Ayben/0000-0001-6297-2532; Pshenichnov, Igor/0000-0003-1752-4524; Altsybeev, Igor/0000-0002-8079-7026; Vechernin, Vladimir/0000-0003-1458-8055; Janik, Malgorzata/0000-0002-3356-3438; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398; Jena, Deepika/0000-0003-2112-0311; Kurepin, Alexey/0000-0002-1851-4136; Barnby, Lee/0000-0001-7357-9904; Cosentino, Mauro/0000-0002-7880-8611; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Zarochentsev, Andrey/0000-0002-3502-8084; Kondratiev, Valery/0000-0002-0031-0741; Christensen, Christian Holm/0000-0002-1850-0121; Guber, Fedor/0000-0001-8790-3218; Martinez Davalos, Arnulfo/0000-0002-9481-9548; Christensen, Christian/0000-0002-1850-0121; Peitzmann, Thomas/0000-0002-7116-899X; feofilov, grigory/0000-0003-3700-8623; Traczyk, Tomasz/0000-0002-6602-4094; Takahashi, Jun/0000-0002-4091-1779; Castillo Castellanos, Javier/0000-0002-5187-2779; Felea, Daniel/0000-0002-3734-9439; Sevcenco, Adrian/0000-0002-4151-1056; Chinellato, David/0000-0002-9982-9577; Barbera, Roberto/0000-0001-5971-6415; Aglieri Rinella, Gianluca/0000-0002-9611-3696; FU Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, Mexico; DGAPA, Mexico; ALFA-EC; HELEN (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autoritatea Nationala pentru Cercetare Stiintifica-ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation; International Science and Technology Center; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Reseach Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the "Region Pays de Loire,'' "Region Alsace,'' "Region Auvergne'' and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autoritatea Nationala pentru Cercetare Stiintifica-ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Reseach Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); the United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 36 TC 53 Z9 54 U1 3 U2 72 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 1 PY 2012 VL 108 IS 9 AR 092301 DI 10.1103/PhysRevLett.108.092301 PG 11 WC Physics, Multidisciplinary SC Physics GA 901EB UT WOS:000300943400002 PM 22463626 ER PT J AU Lin, C van Tilborg, J Nakamura, K Gonsalves, AJ Matlis, NH Sokollik, T Shiraishi, S Osterhoff, J Benedetti, C Schroeder, CB Toth, C Esarey, E Leemans, WP AF Lin, C. van Tilborg, J. Nakamura, K. Gonsalves, A. J. Matlis, N. H. Sokollik, T. Shiraishi, S. Osterhoff, J. Benedetti, C. Schroeder, C. B. Toth, Cs Esarey, E. Leemans, W. P. TI Long-Range Persistence of Femtosecond Modulations on Laser-Plasma-Accelerated Electron Beams SO PHYSICAL REVIEW LETTERS LA English DT Article AB Laser plasma accelerators have produced femtosecond electron bunches with a relative energy spread ranging from 100% to a few percent. Simulations indicate that the measured energy spread can be dominated by a correlated spread, with the slice spread significantly lower. Measurements of coherent optical transition radiation are presented for broad-energy-spread beams with laser-induced density and momentum modulations. The long-range (meter-scale) observation of coherent optical transition radiation indicates that the slice energy spread is below the percent level to preserve the modulations. C1 [Lin, C.; van Tilborg, J.; Nakamura, K.; Gonsalves, A. J.; Matlis, N. H.; Sokollik, T.; Shiraishi, S.; Osterhoff, J.; Benedetti, C.; Schroeder, C. B.; Toth, Cs; Esarey, E.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lin, C.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. RP Lin, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM WPLeemans@lbl.gov RI Sokollik, Thomas/P-2584-2015; OI Schroeder, Carl/0000-0002-9610-0166 FU U.S. Department of Energy [DE-AC02-05CH11231]; DTRA [WF006631B]; National Science Foundation [PHY-0935197, PHY-0917687]; China Scholarship Council FX The authors thank C. G. R. Geddes, M. Chen, A. Lumpkin, D. Syversrud, Z. Eisentraut, and N. Ybarrolaza, and C. L. also thanks Professor Z. Guo for his guidance. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, DTRA under Contract No. WF006631B, the National Science Foundation under Grants No. PHY-0935197 and No. PHY-0917687, and the China Scholarship Council. NR 20 TC 13 Z9 13 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 1 PY 2012 VL 108 IS 9 AR 094801 DI 10.1103/PhysRevLett.108.094801 PG 4 WC Physics, Multidisciplinary SC Physics GA 901EB UT WOS:000300943400006 PM 22463644 ER PT J AU Matthews, TS Sawyer, C Ogletree, DF Liliental-Weber, Z Chrzan, DC Wu, JQ AF Matthews, Tyler S. Sawyer, Carolyn Ogletree, D. Frank Liliental-Weber, Zuzanna Chrzan, Daryl C. Wu, Junqiao TI Large Reaction Rate Enhancement in Formation of Ultrathin AuSi Eutectic Layers SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILMS; GOLD NANOWIRES; LIQUID-FILMS; DIFFUSION; STRENGTH; STRESS; ALLOY AB Metal-semiconductor eutectic liquids play a key role in both the fundamental understanding of atomic interactions and nanoscale synthesis and catalysis. At reduced sizes they exhibit properties distinct from the bulk. In this work we show an unusual effect that the formation of AuSi eutectic liquid layers is much easier for smaller thicknesses. The alloying reaction rate is enhanced by over 20 times when the thickness is reduced from 300 to 20 nm. The strong enhancement is attributed to a strain-induced increase in the chemical potential of the solid layer prior to the alloying reaction. C1 [Matthews, Tyler S.; Sawyer, Carolyn; Chrzan, Daryl C.; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Matthews, Tyler S.; Sawyer, Carolyn; Liliental-Weber, Zuzanna; Chrzan, Daryl C.; Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ogletree, D. Frank] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Matthews, TS (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Wu, Junqiao/G-7840-2011; Liliental-Weber, Zuzanna/H-8006-2012; Ogletree, D Frank/D-9833-2016 OI Wu, Junqiao/0000-0002-1498-0148; Ogletree, D Frank/0000-0002-8159-0182 FU NSF [DMR-1055938]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.C. Berkeley FX This work was supported by a NSF CAREER Award under the Grant No. DMR-1055938. Portions of this work (in situ SEM) were performed as user projects at the Molecular Foundry, Lawrence Berkeley National Laboratory. The theoretical analysis part was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Professor Peter Voorhees, Professor Mark Asta, Dr. Shaul Aloni, and Dr. Andreas Schmid for useful discussions and Ed Wong for technical assistance. T. S. M. acknowledges a Jane Lewis Fellowship from U.C. Berkeley. NR 25 TC 5 Z9 5 U1 0 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 1 PY 2012 VL 108 IS 9 AR 096102 DI 10.1103/PhysRevLett.108.096102 PG 5 WC Physics, Multidisciplinary SC Physics GA 901EB UT WOS:000300943400007 PM 22463651 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Measuring the Earth SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAR PY 2012 VL 25 IS 3 BP 23 EP 23 PG 1 WC Physics, Multidisciplinary SC Physics GA 903EG UT WOS:000301098300017 ER PT J AU Bellei, C Davies, JR Chauhan, PK Najmudin, Z AF Bellei, C. Davies, J. R. Chauhan, P. K. Najmudin, Z. TI Coherent transition radiation in relativistic laser-solid interactions SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID GENERATED FAST ELECTRONS; ULTRARELATIVISTIC PARTICLES; TARGETS; SPECTRUM; PHYSICS; REAR AB Coherent transition radiation (CTR) produced by the hot electrons generated when solid targets are irradiated by high-intensity lasers is examined. The theory is extended to include the effects of collisions on the generated hot electron beam. The collisional effects on electron transport, blooming and straggling, leads to transverse and longitudinal loss of coherence of the electron beam structure, resulting in a decrease in efficiency in the CTR. The directionality of the electrons leads to measurable non-radial components for the polarization of the CTR. With these effects accounted for, the properties of this radiation can give valuable information on the high-energy tail of the fast electrons produced at the target front side and transported through the solid-density material, such as temperature, direction and size of the filaments composing the beam. C1 [Bellei, C.; Najmudin, Z.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. [Bellei, C.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Bellei, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Davies, J. R.; Chauhan, P. K.] Inst Super Tecn, GoLP, Inst Plasmas & Fusao Nucl, Lab Associado, Lisbon, Portugal. [Davies, J. R.] Univ Rochester, Fus Sci Ctr, Rochester, NY USA. [Davies, J. R.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Davies, J. R.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. RP Bellei, C (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Prince Consort Rd, London SW7 2BZ, England. RI Davies, Jonathan/J-2611-2012 NR 39 TC 1 Z9 1 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAR PY 2012 VL 54 IS 3 AR 035011 DI 10.1088/0741-3335/54/3/035011 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 899PH UT WOS:000300827800011 ER PT J AU Lindquist, NC Nagpal, P McPeak, KM Norris, DJ Oh, SH AF Lindquist, Nathan C. Nagpal, Prashant McPeak, Kevin M. Norris, David J. Oh, Sang-Hyun TI Engineering metallic nanostructures for plasmonics and nanophotonics SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID ATOMIC LAYER DEPOSITION; ENHANCED RAMAN-SPECTROSCOPY; SELF-ASSEMBLED MONOLAYERS; FIELD OPTICAL MICROSCOPY; SUBWAVELENGTH HOLE ARRAYS; ELECTRON-BEAM LITHOGRAPHY; EXTRAORDINARY INFRARED TRANSMISSION; PERIODIC MICROMACHINED SURFACES; POLARIZED SPECTRAL EMITTANCE; SHAPE-CONTROLLED SYNTHESIS AB Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered. C1 [McPeak, Kevin M.; Norris, David J.] Swiss Fed Inst Technol, Opt Mat Engn Lab, Zurich, Switzerland. [Lindquist, Nathan C.] Bethel Univ, Dept Phys, St Paul, MN USA. [Nagpal, Prashant] Los Alamos Natl Lab, Los Alamos, NM USA. [Lindquist, Nathan C.; Oh, Sang-Hyun] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN USA. RP Norris, DJ (reprint author), Swiss Fed Inst Technol, Opt Mat Engn Lab, Zurich, Switzerland. EM dnorris@ethz.ch; sang@umn.edu RI Norris, David/F-4022-2010; Nagpal, Prashant/G-7802-2012 FU Office of Naval Research (ONR); National Science Foundation (NSF) [CBET 1067681, DBI 0964216, DMR 0941537]; National Institutes of Health (NIH) [R01 GM092993]; DARPA Young Faculty FX S-HO acknowledges support from the Office of Naval Research (ONR Young Investigator Program), the National Science Foundation (NSF CAREER Award, CBET 1067681, DBI 0964216, DMR 0941537), the National Institutes of Health (NIH R01 GM092993) and the DARPA Young Faculty Award. The authors thank Bryan Cord, Sudhir Cherukulappurath, Jincy Jose, and Avery Musbach for helpful comments. The authors also thank Lukas Novotny, Claudia Steinem, Ning Cao and Brian Thibeault for sharing their images. NR 606 TC 147 Z9 150 U1 24 U2 330 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD MAR PY 2012 VL 75 IS 3 AR 036501 DI 10.1088/0034-4885/75/3/036501 PG 61 WC Physics, Multidisciplinary SC Physics GA 898JC UT WOS:000300737700002 PM 22790420 ER PT J AU Savin, DW Brickhouse, NS Cowan, JJ Drake, RP Federman, SR Ferland, GJ Frank, A Gudipati, MS Haxton, WC Herbst, E Profumo, S Salama, F Ziurys, LM Zweibel, EG AF Savin, D. W. Brickhouse, N. S. Cowan, J. J. Drake, R. P. Federman, S. R. Ferland, G. J. Frank, A. Gudipati, M. S. Haxton, W. C. Herbst, E. Profumo, S. Salama, F. Ziurys, L. M. Zweibel, E. G. TI The impact of recent advances in laboratory astrophysics on our understanding of the cosmos SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID METAL-POOR STARS; ACTIVE GALACTIC NUCLEI; X-RAY-SPECTRUM; VY CANIS MAJORIS; ATOMIC TRANSITION-PROBABILITIES; DIFFUSE INTERSTELLAR CLOUDS; FINITE-DENSITY PLASMAS; R-PROCESS-RICH; T-TAURI STARS; EXPERIMENTAL OSCILLATOR-STRENGTHS AB An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling. C1 [Savin, D. W.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Brickhouse, N. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cowan, J. J.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Drake, R. P.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Federman, S. R.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Ferland, G. J.] Univ Kentucky, Dept Phys, Lexington, KY 40506 USA. [Frank, A.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Gudipati, M. S.] CALTECH, Jet Prop Lab, Div Sci, Pasadena, CA 91109 USA. [Haxton, W. C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Haxton, W. C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Herbst, E.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Profumo, S.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Salama, F.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Ziurys, L. M.] Univ Arizona, Arizona Radio Observ, Dept Chem, Tucson, AZ 85721 USA. [Ziurys, L. M.] Univ Arizona, Arizona Radio Observ, Dept Astron, Tucson, AZ 85721 USA. [Ziurys, L. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Zweibel, E. G.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Zweibel, E. G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Herbst, E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Herbst, E.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RP Savin, DW (reprint author), Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. RI Savin, Daniel/B-9576-2012; Gudipati, Murthy/F-7575-2011; Salama, Farid/A-8787-2009; Drake, R Paul/I-9218-2012; OI Savin, Daniel/0000-0002-1111-6610; Salama, Farid/0000-0002-6064-4401; Drake, R Paul/0000-0002-5450-9844; Brickhouse, Nancy/0000-0002-8704-4473; Ferland, Gary/0000-0003-4503-6333 FU NASA [NAS8-03060, 07-ATFP07-0124, 10-ATP10-0053, 10-ADAP10-0073]; National Science Foundation [AST 0707447, 0908877, PHY-0757911, PHY-0821899]; DOE/NNSA Defense Sciences and Advanced Scientific Computing from DOE/Science Office of Fusion Energy Sciences; Defense Threat Reduction Agency; STScI [HST-AR-12125.01, HST-GO-12309]; NASA Astrobiology Institute 'Icy Worlds'; Jet Propulsion Laboratory, California Institute of Technology under National Aeronautics and Space Administration; US Department of Energy [DE-SC00046548, DE-FG02-04ER41268]; NASA Science Mission Directorate; NSF Division of Astronomical Sciences Astronomy and Astrophysics FX The authors thank their many colleagues including J E Bailey, P Beiersdorfer, G V Brown, J R Crespo Lopez-Urrutia, H Ji, H Kreckel, J E Lawler, M Medvedev, T Plewa, D Sasselov, R K Smith, C Sneden, B J Wargelin and S Widicus Weaver for stimulating conversations. NSB was supported in part by the NASA contract NAS8-03060 to the Smithsonian Astrophysical Observatory for the Chandra X-ray Center. JJC is supported in part by the National Science Foundation through grant AST 0707447. RPD acknowledges support from DOE/NNSA Defense Sciences and Advanced Scientific Computing, from DOE/Science Office of Fusion Energy Sciences and from the Defense Threat Reduction Agency. GJF acknowledges support by NSF (0908877), NASA (07-ATFP07-0124, 10-ATP10-0053 and 10-ADAP10-0073) and STScI (HST-AR-12125.01 and HST-GO-12309). MSG acknowledges funding from NASA Astrobiology Institute 'Icy Worlds' and support from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. WCH was supported in part by the US Department of Energy under grant DE-SC00046548 to the University of California at Berkeley. EH acknowledges the support of NASA through its program in laboratory astrophysics and through the Herschel program. SP is partly supported by the US Department of Energy with an Outstanding Junior Investigator Award and by Contract DE-FG02-04ER41268 and by NSF Grant PHY-0757911. FS acknowledges the support of the Astrophysics Research and Analysis Program of NASA Science Mission Directorate. DWS is supported in part by the NASA Astronomy and Physics Research and Analysis program, the NASA Solar Heliospheric Physics program and the NSF Division of Astronomical Sciences Astronomy and Astrophysics Grants program. EGZ was supported in part by the NSF grant PHY-0821899 to the University of Wisconsin. NR 673 TC 26 Z9 26 U1 4 U2 42 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD MAR PY 2012 VL 75 IS 3 AR 036901 DI 10.1088/0034-4885/75/3/036901 PG 36 WC Physics, Multidisciplinary SC Physics GA 898JC UT WOS:000300737700006 PM 22790424 ER PT J AU Hatchell, BK Mauss, FJ Amaya, IA Skorpik, JR Silvers, KL Marotta, SA AF Hatchell, Brian K. Mauss, Fredrick J. Amaya, Ivan A. Skorpik, James R. Silvers, Kurt L. Marotta, Stephen A. TI Missile captive carry monitoring and helicopter identification using a capacitive microelectromechanical systems accelerometer SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL LA English DT Article DE structural health monitoring; Goertzel algorithm; health and usage monitoring systems; ambient vibration; microelectromechanical systems; accelerometer ID GEARBOX FAULT-DETECTION; VIBRATION AB Military missiles are exposed to many sources of mechanical vibration that can affect system reliability, safety, and mission effectiveness. The US Army Aviation and Missile Research Development and Engineering Center has been developing missile health monitoring systems to assess and improve reliability, reduce life cycle costs, and increase system readiness. One of the most significant exposures to vibration occurs when the missile is being carried by a helicopter or other aviation platform, which is a condition known as captive carry. Recording the duration of captive carry exposure during the missile's service life can enable the implementation of predictive maintenance and resource management programs. Since the vibration imparted by each class of helicopter varies in frequency and amplitude, tracking the vibration exposure from each helicopter separately can help quantify the severity and harmonic content of the exposure. To help address these needs, the authors have developed a captive carry health monitor for the Hellfire II missile. The captive carry health monitor is an embedded usage monitoring device installed on the outer skin of the Hellfire II missile to record the cumulative hours the host missile has been in captive carry mode. To classify the vibration by class of helicopter, the captive carry health monitor analyzes the amplitude and frequency content of the vibration with the Goertzel algorithm to detect the presence of distinctive rotor harmonics. This article provides an overview of the captive carry health monitor, presents vibration data collected on missiles during captive carry, describes data analysis techniques used to monitor captive carry and identify the class of helicopter, and discusses the potential application of missile health and usage data for real-time reliability analysis. More broadly, this article illuminates the challenges of developing a structural health monitor to classify transportation modes in an unstructured environment. C1 [Hatchell, Brian K.; Mauss, Fredrick J.; Amaya, Ivan A.; Skorpik, James R.; Silvers, Kurt L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Marotta, Stephen A.] USA, AMRDEC, Redstone Arsenal, AL USA. RP Hatchell, BK (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM brian.hatchell@pnl.gov FU US Army Joint Attack Munition Systems (JAMS) Project Management Office [AGRD19D1021D1] FX This work was supported by the US Army Joint Attack Munition Systems (JAMS) Project Management Office under interagency agreement AGRD19D1021D1. NR 18 TC 1 Z9 1 U1 1 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1475-9217 J9 STRUCT HEALTH MONIT JI Struct. Health Monit. PD MAR PY 2012 VL 11 IS 2 BP 213 EP 224 DI 10.1177/1475921711414237 PG 12 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 899TX UT WOS:000300840400008 ER PT J AU Liu, B Lusk, MT Ely, JF AF Liu, Bin Lusk, Mark T. Ely, James F. TI Reactive molecular dynamic simulations of hydrocarbon dissociations on Ni(111) surfaces SO SURFACE SCIENCE LA English DT Article DE Molecular dynamics; ReaxFF; Density functional calculations; Methane; Hydrocarbon decomposition on Ni(111) ID OXIDE FUEL-CELLS; FORCE-FIELD; CANONICAL ENSEMBLE; HYDROGEN-SULFIDE; CH4 DISSOCIATION; SOFC ANODES; METHANE; REAXFF; CATALYSTS; CARBON AB Empirical potential parameters for H. C and Ni elements have been developed for the ReaxFF force field in order to study the decomposition of small hydrocarbon molecules on nickel using molecular dynamics simulations. These parameters were optimized using the geometrical and energetic information obtained from density functional (DFT) calculations on a subset of hydrogen and methane reactions with nickel (111) surfaces. The resulting force field was then used to obtain a molecular perspective of the dynamics of the methane dissociative adsorption on Ni(111) as well as two other small alkane molecules, ethane and n-butane. NVT simulations of dissociative adsorption of methane over a range of temperatures enabled the estimation of the sticking coefficient for the adsorption as well as the activation energy of the first C-H bond breaking. The rate constants of each elementary step (both forward and reverse) of CHx dissociation on Ni(111) were obtained by monitoring the surface species and a microkinetic model was constructed as a result. Qualitative analyses of the simulations of ethane and n-butane decompositions on Ni( 111) demonstrate that such reactive MD technique can also be used to obtain useful information on complex reaction networks. (C) 2011 Elsevier B.V. All rights reserved. C1 [Liu, Bin; Ely, James F.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Lusk, Mark T.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Liu, B (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bliu@anl.gov RI Liu, Bin/C-1475-2012 FU U.S. Department of Energy, Office of Science [DE-ER9542165]; National Science Foundation; National Renewable Energy Laboratory FX We would like to thank Dr. William A Goddard III and Dr. Adri C. T. van Duin for their valuable comments and suggestions on ReaxFF force filed and its parameter training during the preparation of this work. This work was financially sponsored by the U.S. Department of Energy, Office of Science, Grant No. DE-ER9542165. Computations were performed on the supercomputing cluster located at Golden, CO, which is managed by the Golden Energy Computing Organization (GECO) that uses sources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratory. NR 35 TC 11 Z9 11 U1 9 U2 87 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR PY 2012 VL 606 IS 5-6 BP 615 EP 623 DI 10.1016/j.susc.2011.11.035 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 900VU UT WOS:000300920600007 ER PT J AU Tran, NK Wisner, DH Albertson, TE Cohen, S Greenhalgh, D Palmieri, TL Polage, C Kost, GJ AF Tran, Nam K. Wisner, David H. Albertson, Timothy E. Cohen, Stuart Greenhalgh, David Palmieri, Tina L. Polage, Christopher Kost, Gerald J. TI Multiplex polymerase chain reaction pathogen detection in patients with suspected septicemia after trauma, emergency, and burn surgery SO SURGERY LA English DT Article ID REAL-TIME PCR; RAPID DETECTION; SEPSIS; BACTERIAL; SAMPLES; ASSAY; IDENTIFICATION; BACTEREMIA; MORTALITY; INJURY AB Background. The goal of this study is to determine the clinical value of multiplex polymerase chain reaction (PCR) study for enhancing pathogen detection in patients with suspected septicemia after trauma, emergency, and burn surgery. PCR-based pathogen detection quickly reveals occult bloodstream infections in these high-risk patients and may accelerate the initiation of targeted antimicrobial therapy. Methods. We conducted a prospective observational study comparing results for 30 trauma and emergency surgery patients to 20 burn patients. Whole-blood samples collected with routine blood cultures (BCs) were tested using a new multiplex, PCR-based, pathogen detection system. PCR results were compared to culture data. Results. PCR detected rapidly more pathogens than culture methods. Acute Physiology and Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), and Multiple Organ Dysfunction (MODS) scores were greater in PCR-positive versus PCR-negative trauma and emergency surgery patients (P <= .033). Negative PCR results (odds ratio, 0.194; 95% confidence interval, 0.045-0.840; P = .028) acted as an independent predictor of survival for the combined surgical patient population. Conclusion. PCR detected the presence of pathogens more frequently than blood culture. These PCR results were reported faster than blood culture results. Severity scores were significantly greater in PCR-positive trauma and emergency surgery patients. The lack of pathogen DNA as determined by PR served as a significant predictor of survival in the combined patient population. PCR testing independent of traditional prompts for culturing may have clinical value in burn patients. These results warrant further investigation through interventional trials. (Surgery 2012;151:456-63.) C1 [Tran, Nam K.] Univ Calif Davis, Sch Med, Dept Pathol & Lab Med, Lawrence Livermore Natl Lab,Point Of Care Technol, Davis, CA 95616 USA. [Wisner, David H.] Univ Calif Davis, Dept Trauma & Emergency Surg, Davis, CA 95616 USA. [Albertson, Timothy E.] Univ Calif Davis, Dept Pulm & Crit Care Med, Davis, CA 95616 USA. [Cohen, Stuart] Univ Calif Davis, Dept Infect Dis, Davis, CA 95616 USA. [Greenhalgh, David; Palmieri, Tina L.] Univ Calif Davis, Dept Burn Surg, Davis, CA 95616 USA. RP Tran, NK (reprint author), Univ Calif Davis, Sch Med, Dept Pathol & Lab Med, Lawrence Livermore Natl Lab,Point Of Care Technol, 3455 Tuper Hall, Davis, CA 95616 USA. EM nktran@ucdavis.edu OI Polage, Christopher/0000-0003-1433-6886 FU Roche Diagnostics (Indianapolis, IN); University of California, Davis, Point-of-Care Testing Center for Teaching and Research (POCT.CTR); National Institute of Biomedical Imaging and Bioengineering (National Institutes of Health) [U54 EB007959]; National Institutes of Biomedical Imaging and Bioengineering; Roche Diagnostics FX We thank Dr Dennis Matthews and the Center for Biophotonics, Science and Technology; the UC Davis Regional Burn Center, UC Davis Trauma and Emergency Surgery service; and Drs Joseph Galante, Ho Phan, and Soman Sen for their contributions. Dr Brad Nicholson at Duke University performed MRSA testing. The study was supported in part by Roche Diagnostics (Indianapolis, IN); the University of California, Davis, Point-of-Care Testing Center for Teaching and Research (POCT center dot CTR); and the National Institute of Biomedical Imaging and Bioengineering Point-of-Care Technologies Grant (U54 EB007959; G.J.K., Principal Investigator, National Institutes of Health). This content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institute of Biomedical Imaging and Bioengineering or the National Institutes of Health.; Supported by the National Institutes of Biomedical Imaging and Bioengineering and Roche Diagnostics. NR 21 TC 8 Z9 8 U1 0 U2 1 PU MOSBY-ELSEVIER PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA SN 0039-6060 J9 SURGERY JI Surgery PD MAR PY 2012 VL 151 IS 3 BP 456 EP 463 DI 10.1016/j.surg.2011.07.030 PG 8 WC Surgery SC Surgery GA 902CP UT WOS:000301016500015 PM 21975287 ER PT J AU Holmberg, K Andersson, P Erdemir, A AF Holmberg, Kenneth Andersson, Peter Erdemir, Ali TI Global energy consumption due to friction in passenger cars SO TRIBOLOGY INTERNATIONAL LA English DT Article DE Friction; Lubrication; Passenger cars; Energy ID PISTON RINGS; AUTOMOTIVE APPLICATIONS; BOUNDARY LUBRICATION; ULTRALOW FRICTION; RUBBER-FRICTION; IONIC LIQUIDS; COATINGS; TRIBOLOGY; ADDITIVES; SURFACES AB This study presents calculations on the global fuel energy consumption used to overcome friction in passenger cars in terms of friction in the engine, transmission, tires, and brakes. Friction in tribocontacts was estimated according to prevailing contact mechanisms such as elastohydrodynamic, hydrodynamic, mixed, and boundary lubrication. Coefficients of friction in the tribocontacts were estimated based on available information in the literature on the average passenger car in use today, a car with today's advanced commercial tribological technology, a car with today's best advanced technology based upon recent research and development, and a car with the best technology forecasted in the next 10 years. The following conclusions were reached: In passenger cars, one-third of the fuel energy is used to overcome friction in the engine, transmission, tires, and brakes. The direct frictional losses, with braking friction excluded, are 28% of the fuel energy. In total, 21.5% of the fuel energy is used to move the car. Worldwide, 208,000 million liters of fuel (gasoline and diesel) was used in 2009 to overcome friction in passenger cars. This equals 360 million tonne oil equivalent per year (Mtoe/a) or 7.3 million TJ/a. Reductions in frictional losses will lead to a threefold improvement in fuel economy as it will reduce both the exhaust and cooling losses also at the same ratio. Globally, one passenger car uses on average of 340 I of fuel per year to overcome friction, which would cost 510 euros according to the average European gas price in 2011 and corresponds to an average driving distance of 13,000 km/a. By taking advantage of new technology for friction reduction in passenger cars, friction losses could be reduced by 18% in the short term (5-10 years) and by 61% in the long term (15-25 years). This would equal worldwide economic savings of 174,000 million euros and 576,000 million euros, respectively; fuel savings 01 117,000 million and 385,000 million liters, respectively; and CO2 emission reduction of 290 million and 960 million tonnes, respectively. The friction-related energy losses in an electric car are estimated to be only about half those of an internal combustion passenger car. Potential actions to reduce friction in passenger cars include the use of advanced coatings and surface texturing technology on engine and transmission components, new low-viscosity and low-shear lubricants and additives, and tire designs that reduce rolling friction. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Holmberg, Kenneth; Andersson, Peter] VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland. [Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Holmberg, K (reprint author), VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. EM kenneth.holmberg@vtt.fi FU Tekes; Finnish Technology Agency; VTT Technical Research Centre of Finland; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]; participating companies FX This study has been carried out as part of the Finnish joint industrial consortium strategic research action coordinated by FIMECC, Ltd. within the program on Breakthrough Materials called DEMAPP in the Friction and Energy Project. We gratefully acknowledge the financial support of Tekes, the Finnish Technology Agency, the participating companies, and VTT Technical Research Centre of Finland. Additional support was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial and Vehicle Technologies Programs, under Contract No. DE-AC02-06CH11357. NR 109 TC 162 Z9 165 U1 12 U2 172 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD MAR PY 2012 VL 47 BP 221 EP 234 DI 10.1016/j.triboint.2011.11.022 PG 14 WC Engineering, Mechanical SC Engineering GA 901KI UT WOS:000300965400025 ER PT J AU Edmiston, JK Bernier, JV Barton, NR Johnson, GC AF Edmiston, John K. Bernier, Joel V. Barton, Nathan R. Johnson, George C. TI Lattice refinement strategies SO ACTA CRYSTALLOGRAPHICA SECTION A LA English DT Article DE finite strain; lattice refinement; elastic deformation ID DIAMOND-ANVIL CELL; POLYCRYSTALS; DIFFRACTION; ORIENTATION; MODEL AB This article quantitatively reconciles crystallographic and mechanics approaches to lattice refinement as part of X-ray diffraction procedures. The equivalence between the refinement based on unit-cell parameters to that based on a lattice deformation tensor is established from a fixed reference configuration. Justification for the small strain assumption, commonly employed in X-ray diffraction based stress analysis, is also derived. It is shown that relations based on infinitesimal strains are correct to within an error of quadratic order in strain. This error may be important to consider for high-precision or high-strain experiments. It is hoped that these results are of use for facilitating communication and collaboration between crystallography and experimental mechanics communities, for studies where X-ray diffraction data are the fundamental measurement. C1 [Edmiston, John K.; Johnson, George C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Edmiston, John K.; Bernier, Joel V.; Barton, Nathan R.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Edmiston, JK (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM jedmiston@berkeley.edu RI Edmiston, John/D-7898-2015 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-507832)]; Lawrence Scholar Program FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-507832). JE is supported by the Lawrence Scholar Program. NR 23 TC 5 Z9 5 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0108-7673 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD MAR PY 2012 VL 68 BP 181 EP 187 DI 10.1107/S010876731105598X PN 2 PG 7 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 897TA UT WOS:000300678400002 PM 22338653 ER PT J AU Liu, HG Morris, RJ Hexemer, A Grandison, S Zwart, PH AF Liu, Haiguang Morris, Richard J. Hexemer, Alexander Grandison, Scott Zwart, Peter H. TI Computation of small-angle scattering profiles with three-dimensional Zernike polynomials SO ACTA CRYSTALLOGRAPHICA SECTION A LA English DT Article DE small-angle scattering; SAXS; Zernike polynomials; structure reconstruction ID X-RAY-SCATTERING; BIOLOGICAL MACROMOLECULES; SAXS PROFILES; SURFACE FORM; WEB SERVER; PROTEINS; CRYSTALLOGRAPHY; DIFFRACTION; HYDRATION; MODELS AB Small-angle X-ray scattering (SAXS) methods are extensively used for characterizing macromolecular structure and dynamics in solution. The computation of theoretical scattering profiles from three-dimensional models is crucial in order to test structural hypotheses. Here, a new approach is presented to efficiently compute SAXS profiles that are based on three-dimensional Zernike polynomial expansions. Comparison with existing methods and experimental data shows that the Zernike method can be used to effectively validate three-dimensional models against experimental data. For molecules with large cavities or complicated surfaces, the Zernike method more accurately accounts for the solvent contributions. The program is available as open-source software at . C1 [Liu, Haiguang; Zwart, Peter H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Morris, Richard J.] John Innes Ctr, Norwich NR4 7UH, Norfolk, England. [Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Grandison, Scott] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England. RP Zwart, PH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM phzwart@lbl.gov OI Morris, Richard/0000-0003-3080-2613 FU LDRD from LBNL FX HGL, AH and PHZ are grateful for the LDRD funding obtained from LBNL to carry out this research. NR 29 TC 28 Z9 28 U1 1 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-7673 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD MAR PY 2012 VL 68 BP 278 EP 285 DI 10.1107/S010876731104788X PN 2 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 897TA UT WOS:000300678400011 PM 22338662 ER PT J AU Olson, AK Bouchard, B Ning, XH Isern, N Des Rosiers, C Portman, MA AF Olson, Aaron K. Bouchard, Bertrand Ning, Xue-Han Isern, Nancy Des Rosiers, Christine Portman, Michael A. TI Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass SO AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY LA English DT Article DE metabolism; pediatrics; reperfusion ID RAT HEARTS; PHOSPHATIDYLINOSITOL 3-KINASE; ISCHEMIA-REPERFUSION; CARDIAC-SURGERY; DEHYDROGENASE; KINASE; METABOLISM; CHILDREN; HYPOTHYROIDISM; CARBOXYLATION AB Olson AK, Bouchard B, Ning XH, Isern N, Des Rosiers C, Portman MA. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 302: H1086-H1093, 2012. First published December 16, 2011; doi:10.1152/ajpheart.00959.2011.-Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-(13)Carbon(C-13)] pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 mu g/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-C-13] pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and C-13-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (similar to 4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, C-13-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion. C1 [Olson, Aaron K.; Ning, Xue-Han; Portman, Michael A.] Seattle Childrens Res Inst, Seattle, WA 98101 USA. [Olson, Aaron K.; Portman, Michael A.] Univ Washington, Dept Pediat, Div Cardiol, Seattle, WA 98195 USA. [Isern, Nancy] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bouchard, Bertrand; Des Rosiers, Christine] Univ Montreal, Dept Nutr, Montreal, PQ H3C 3J7, Canada. [Bouchard, Bertrand; Des Rosiers, Christine] Montreal Heart Inst, Montreal, PQ H1T 1C8, Canada. RP Portman, MA (reprint author), Seattle Childrens Res Inst, 1900 9th Ave, Seattle, WA 98101 USA. EM Michael.Portman@seattlechildrens.org RI Des Rosiers, Christine/O-6285-2014; OI Isern, Nancy/0000-0001-9571-8864 FU Department of Energy's Office of Biological and Environmental Research; National Heart, Lung, and Blood Institute [R01-HL-60666, K08-HL-092333, T32-HL-07828]; Thompson Family Research FX A portion of the research was performed using Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.; This work was supported by the National Heart, Lung, and Blood Institute Grants R01-HL-60666 (to M. Portman) and K08-HL-092333 and T32-HL-07828 (to A. K. Olson) and a Thompson Family Research grant (to A. K. Olson). NR 32 TC 11 Z9 11 U1 0 U2 4 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0363-6135 J9 AM J PHYSIOL-HEART C JI Am. J. Physiol.-Heart Circul. Physiol. PD MAR PY 2012 VL 302 IS 5 BP H1086 EP H1093 DI 10.1152/ajpheart.00959.2011 PG 8 WC Cardiac & Cardiovascular Systems; Physiology; Peripheral Vascular Disease SC Cardiovascular System & Cardiology; Physiology GA 898EX UT WOS:000300720500006 PM 22180654 ER PT J AU Lee, PKH Dill, BD Louie, TS Shah, M VerBerkmoes, NC Andersen, GL Zinder, SH Alvarez-Cohen, L AF Lee, Patrick K. H. Dill, Brian D. Louie, Tiffany S. Shah, Manesh VerBerkmoes, Nathan C. Andersen, Gary L. Zinder, Stephen H. Alvarez-Cohen, Lisa TI Global Transcriptomic and Proteomic Responses of Dehalococcoides ethenogenes Strain 195 to Fixed Nitrogen Limitation SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID VINYL-CHLORIDE REDUCTASE; ESCHERICHIA-COLI; MICROARRAY ANALYSIS; DECHLORINATES TETRACHLOROETHENE; SUBSURFACE SEDIMENTS; COMMUNITY PROTEOMICS; SHOTGUN PROTEOMICS; ENRICHMENT CULTURE; GENOME SEQUENCE; GENE-EXPRESSION AB Bacteria of the genus Dehalococcoides play an important role in the reductive dechlorination of chlorinated ethenes. A systems-level approach was taken in this study to examine the global transcriptomic and proteomic responses of exponentially growing cells of Dehalococcoides ethenogenes strain 195 to fixed nitrogen limitation (FNL), as dechlorination activity and cell yield both decrease during FNL. As expected, the nitrogen-fixing (nif) genes were differentially upregulated in the transcriptome and proteome of strain 195 during FNL. Aside from the nif operon, a putative methylglyoxal synthase-encoding gene (DET1576), the product of which is predicted to catalyze the formation of the toxic electrophile methylglyoxal and is implicated in the uncoupling of anabolism from catabolism in bacteria, was strongly upregulated in the transcriptome and could potentially play a role in the observed growth inhibition during FNL. Carbon catabolism genes were generally downregulated in response to FNL, and a number of transporters were differentially regulated in response to nitrogen limitation, with some playing apparent roles in nitrogen acquisition, while others were associated with general stress responses. A number of genes related to the functions of nucleotide synthesis, replication, transcription, translation, and posttranslational modifications were also differentially expressed. One gene coding for a putative reductive dehalogenase (DET1545) and a number of genes coding for oxidoreductases, which have implications in energy generation and redox reactions, were also differentially regulated. Interestingly, most of the genes within the multiple integrated elements were not differentially expressed. Overall, this study elucidates the molecular responses of strain 195 to FNL and identifies differentially expressed genes that are potential biomarkers to evaluate environmental cellular nitrogen status. C1 [Lee, Patrick K. H.; Louie, Tiffany S.; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Lee, Patrick K. H.] City Univ Hong Kong, Sch Energy & Environm, Hong Kong, Hong Kong, Peoples R China. [Dill, Brian D.; Shah, Manesh; VerBerkmoes, Nathan C.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Andersen, Gary L.; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zinder, Stephen H.] Cornell Univ, Dept Microbiol, Ithaca, NY USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu RI Andersen, Gary/G-2792-2015; Lee, Patrick K H/L-1844-2016; OI Andersen, Gary/0000-0002-1618-9827; Lee, Patrick K H/0000-0003-0911-5317; Dill, Brian/0000-0002-4532-3044 FU NIEHS [ES04705-19]; SERDP [ER 1567]; U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX This research was supported by NIEHS Superfund basic research project ES04705-19 and SERDP grant ER 1567. The Oak Ridge National Laboratory part of this research was sponsored in part by the U.S. Department of Energy under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 58 TC 13 Z9 13 U1 2 U2 17 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2012 VL 78 IS 5 BP 1424 EP 1436 DI 10.1128/AEM.06792-11 PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 896AI UT WOS:000300537400013 PM 22179257 ER PT J AU You, C Zhang, XZ Sathitsuksanoh, N Lynd, LR Zhang, YHP AF You, Chun Zhang, Xiao-Zhou Sathitsuksanoh, Noppadon Lynd, Lee R. Zhang, Y. -H. Percival TI Enhanced Microbial Utilization of Recalcitrant Cellulose by an Ex Vivo Cellulosome-Microbe Complex SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CEREVISIAE CELL-SURFACE; BACILLUS-SUBTILIS; CLOSTRIDIUM-THERMOCELLUM; EXTRACELLULAR PROTEASES; ETHANOL-PRODUCTION; MINICELLULOSOMES; CELLULOVORANS; HYDROLYSIS; SYSTEM; POLYSACCHARIDES AB A cellulosome-microbe complex was assembled ex vivo on the surface of Bacillus subtilis displaying a miniscaffoldin that can bind with three dockerin-containing cellulase components: the endoglucanase Cel5, the processive endoglucanase Cel9, and the cellobiohydrolase Cel48. The hydrolysis performances of the synthetic cellulosome bound to living cells, the synthetic cellulosome, a noncomplexed cellulase mixture with the same catalytic components, and a commercial fungal enzyme mixture were investigated on low-accessibility recalcitrant Avicel and high-accessibility regenerated amorphous cellulose (RAC). The cell-bound cellulosome exhibited 4.5- and 2.3-fold-higher hydrolysis ability than cell-free cellulosome on Avicel and RAC, respectively. The cellulosome-microbe synergy was not completely explained by the removal of hydrolysis products from the bulk fermentation broth by free-living cells and appeared to be due to substrate channeling of long-chain hydrolysis products assimilated by the adjacent cells located in the boundary layer. Our results implied that long-chain hydrolysis products in the boundary layer may inhibit cellulosome activity to a greater extent than the short-chain products in bulk phase. The findings that cell-bound cellulosome expedited the microbial cellulose utilization rate by 2.3- to 4.5-fold would help in the development of better consolidated bioprocessing microorganisms (e.g., B. subtilis) that can hydrolyze recalcitrant cellulose rapidly at low secretory cellulase levels. C1 [You, Chun; Zhang, Xiao-Zhou; Sathitsuksanoh, Noppadon; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Xiao-Zhou; Zhang, Y. -H. Percival] Gate Fuels Inc, Blacksburg, VA USA. [Sathitsuksanoh, Noppadon; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA. [Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Lynd, Lee R.; Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr, Oak Ridge, TN USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI You, Chun/D-7656-2013; Lynd, Lee/N-1260-2013; sathitsuksanoh, noppadon/O-6305-2014 OI Lynd, Lee/0000-0002-5642-668X; sathitsuksanoh, noppadon/0000-0003-1521-9155 FU DOE BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; GALS Biodesign and Bioprocessing Research Center; Virginia Tech FX This work was supported mainly by the DOE BioEnergy Science Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was also partially supported by the GALS Biodesign and Bioprocessing Research Center and the Integrated Internal Competitive Grants Program at Virginia Tech. NR 43 TC 27 Z9 28 U1 0 U2 35 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2012 VL 78 IS 5 BP 1437 EP 1444 DI 10.1128/AEM.07138-11 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 896AI UT WOS:000300537400014 PM 22210210 ER PT J AU Liu, KL Porras-Alfaro, A Kuske, CR Eichorst, SA Xie, G AF Liu, Kuan-Liang Porras-Alfaro, Andrea Kuske, Cheryl R. Eichorst, Stephanie A. Xie, Gary TI Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SEQUENCE-DATA; KINGDOM FUNGI; DIVERSITY; COMMUNITIES; PHYLOGENY; NETWORKS; IMPACT; ARB AB Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naive Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naive Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naive Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifiericlassifier.jsp). C1 [Liu, Kuan-Liang; Kuske, Cheryl R.; Eichorst, Stephanie A.; Xie, Gary] Biosci Div, Los Alamos Natl Lab, Los Alamos, NM USA. [Liu, Kuan-Liang] Natl Cheng Kung Univ, Inst Informat Management, Tainan, Taiwan. [Porras-Alfaro, Andrea] Western Illinois Univ, Dept Biol Sci, Macomb, IL 61455 USA. [Porras-Alfaro, Andrea] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Xie, G (reprint author), Biosci Div, Los Alamos Natl Lab, Los Alamos, NM USA. EM kuske@lanl.gov; xie@lanl.gov RI Eichorst, Stephanie A/A-1079-2017; OI Eichorst, Stephanie A/0000-0002-9017-7461; xie, gary/0000-0002-9176-924X; Porras-Alfaro, Andrea/0000-0002-9053-7973 FU Los Alamos National Laboratory [20080662DR]; NIH NIDCR [Y1-DE-6006-02]; U.S. Department of Energy, Office of Biological and Environmental Research [2009LANLF260]; NSF [0919510]; WIU Foundation; Office of Sponsored Projects; National Science Council in Taiwan [NSC97-2917-I-006-111] FX This study was supported by the Los Alamos National Laboratory through a Laboratory Directed Research and Development Grant (20080662DR; G.X. and K.-L.L.) and an NIH NIDCR grant (Y1-DE-6006-02; G.X.) and by the U.S. Department of Energy, Office of Biological and Environmental Research, through a Science Focus Area grant (2009LANLF260; C.R.K., A.P.-A., S.A.E., and K.-L.L.). Additional support was provided by the NSF (grant 0919510; A.P.-A.), by the WIU Foundation and Office of Sponsored Projects (A.P.-A.), and by the National Science Council in Taiwan (NSC97-2917-I-006-111; K.-L.L.). NR 27 TC 75 Z9 77 U1 2 U2 62 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2012 VL 78 IS 5 BP 1523 EP 1533 DI 10.1128/AEM.06826-11 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 896AI UT WOS:000300537400024 PM 22194300 ER PT J AU You, C Zhang, XZ Zhang, YHP AF You, Chun Zhang, Xiao-Zhou Zhang, Y. -H. Percival TI Simple Cloning via Direct Transformation of PCR Product (DNA Multimer) to Escherichia coli and Bacillus subtilis SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MUTAGENESIS; CELLULASE; PLASMIDS; SYSTEM; GENES AB We developed a general restriction enzyme-free and ligase-free method for subcloning up to three DNA fragments into any location of a plasmid. The DNA multimer generated by prolonged overlap extension PCR was directly transformed in Escherichia coli [e.g., TOP10, DH5 alpha, JM109, and BL21(DE3)] and Bacillus subtilis for obtaining chimeric plasmids. C1 [You, Chun; Zhang, Xiao-Zhou; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr, Oak Ridge, TN USA. [Zhang, Xiao-Zhou; Zhang, Y. -H. Percival] Gate Fuels Inc, Blacksburg, VA USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. EM xzzhang@vt.edu; ypzhang@vt.edu RI You, Chun/D-7656-2013 FU DOE BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; CALS Biodesign and Bioprocessing Research Center; Virginia Tech FX This work was supported mainly by the DOE BioEnergy Science Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was also partially supported by the CALS Biodesign and Bioprocessing Research Center and the Integrated Internal Competitive Grants Program at Virginia Tech. NR 16 TC 49 Z9 51 U1 8 U2 49 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2012 VL 78 IS 5 BP 1593 EP 1595 DI 10.1128/AEM.07105-11 PG 3 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 896AI UT WOS:000300537400032 PM 22194286 ER PT J AU Hanna, LF Matthews, TD Dinsdale, EA Hasty, D Edwards, RA AF Hanna, L. Farris Matthews, T. David Dinsdale, Elizabeth A. Hasty, David Edwards, Robert A. TI Characterization of the ELPhiS Prophage from Salmonella enterica Serovar Enteritidis Strain LK5 SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MARINE PHAGE GENOMICS; BACTERIAL PATHOGENS; ESCHERICHIA-COLI; TYPHIMURIUM; BACTERIOPHAGE; GENE; IDENTIFICATION; REARRANGEMENTS; INACTIVATION; EVOLUTION AB Phages are a primary driving force behind the evolution of bacterial pathogens by transferring a variety of virulence genes into their hosts. Similar to other bacterial genomes, the Salmonella enterica serovar Enteritidis LK5 genome contains several regions that are homologous to phages. Although genomic analysis demonstrated the presence of prophages, it was unable to confirm which phage elements within the genome were viable. Genetic markers were used to tag one of the prophages in the genome to allow monitoring of phage induction. Commonly used laboratory strains of Salmonella were resistant to phage infection, and therefore a rapid screen was developed to identify susceptible hosts. This approach showed that a genetically tagged prophage, ELPhiS (Enteritidis lysogenic phage S), was capable of infecting Salmonella serovars that are diverse in host range and virulence and has the potential to laterally transfer genes between these serovars via lysogenic conversion. The rapid screen approach is adaptable to any system with a large collection of isolates and may be used to test the viability of prophages found by sequencing the genomes of various bacterial pathogens. C1 [Matthews, T. David; Dinsdale, Elizabeth A.; Edwards, Robert A.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Hanna, L. Farris; Hasty, David] Univ Tennessee, Ctr Hlth Sci, Dept Mol Sci, Memphis, TN 38163 USA. [Hasty, David] Univ Tennessee, Ctr Hlth Sci, Dept Anat & Neurobiol, Memphis, TN 38163 USA. [Hasty, David] Vet Affairs Med Ctr, Res & Dev Serv, Memphis, TN USA. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. RP Edwards, RA (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM redwards@cs.sdsu.edu FU NSF TUES [1044453]; University of Tennessee Center of Excellence in Genomics and Bioinformatics; St. Jude Children's Research Hospital; NSF from the Division of Biological Infrastructure [DBI:0850356] FX We thank Theresa Ho for experimental advice. We thank Pat Ryan, Anca Segall, Forest Rohwer, and Stanley Maloy for helpful discussions and reading the manuscript. We also thank the Ecological Metagenomics undergraduates at San Diego State University for sequencing of S. Enteritidis LK5 (supported by NSF TUES grant 1044453).; This work was supported by grants from the University of Tennessee Center of Excellence in Genomics and Bioinformatics, St. Jude Children's Research Hospital, and NSF grant DBI:0850356 from the Division of Biological Infrastructure. NR 52 TC 9 Z9 9 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2012 VL 78 IS 6 BP 1785 EP 1793 DI 10.1128/AEM.07241-11 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 897EX UT WOS:000300629800019 PM 22247173 ER PT J AU Escamilla-Trevino, LL AF Escamilla-Trevino, Luis Lauro TI Potential of Plants from the Genus Agave as Bioenergy Crops SO BIOENERGY RESEARCH LA English DT Article DE Agave; Bioenergy crop; Biofuel; Biofuel feedstock; Crassulacean acid metabolism ID CRASSULACEAN ACID METABOLISM; CAM PLANT; KALANCHOE-DAIGREMONTIANA; C SUBUNIT; H+-ATPASE; PRODUCTIVITY; SWITCHGRASS; TEQUILANA; BIOFUELS; LIGNIN AB Agave is a succulent genus within the monocot family Agavaceae. The plants have a large rosette of thick fleshy leaves, each ending generally in a sharp point, and are native to arid and semi-arid regions from the southern USA to northern South America. The most important commercial species is Agave tequilana grown for production of tequila. Several cultivated species of Agave such as Agave sislana and Agave salmiana can perform well in areas where rainfall is insufficient for the cultivation of many C-3 and C-4 crops. The key feature of the crassulacean acid metabolism photosynthetic pathway used by agaves is the stomata opening and CO2 uptake during the night, thus allowing less water to be lost by transpiration. Alcoholic beverages, sweeteners, fibers, and some specialty chemicals are currently the main products coming from agave plants. The recovered information related to productivity, biofuel processability, by-products, etc. suggests that some Agave species have a real potential to compete economically with other bioenergy crops. But more than compete, it could complement the list of bioenergy crops due to its capacity to grow with very little rainfall and/or inputs and still reach good amount of biomass, so unused semi-arid land could be productive. Although Agave has great potential to be developed as a bioenergy crop, more laboratory and field research are needed. C1 [Escamilla-Trevino, Luis Lauro] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Escamilla-Trevino, Luis Lauro] US Dept Energy BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Escamilla-Trevino, LL (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. EM llescamilla@noble.org NR 55 TC 25 Z9 25 U1 1 U2 31 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 J9 BIOENERG RES JI BioEnergy Res. PD MAR PY 2012 VL 5 IS 1 BP 1 EP 9 DI 10.1007/s12155-011-9159-x PG 9 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA 897NV UT WOS:000300658900001 ER PT J AU Garten, CT AF Garten, Charles T., Jr. TI Review and Model-Based Analysis of Factors Influencing Soil Carbon Sequestration Beneath Switchgrass (Panicum virgatum) SO BIOENERGY RESEARCH LA English DT Review DE Switchgrass; Modeling; Soil carbon; Carbon sequestration; Bioenergy; Review ID ORGANIC-CARBON; NITROGEN-FERTILIZATION; BIOMASS PRODUCTION; VERTICAL-DISTRIBUTION; BIOENERGY FEEDSTOCK; ALAMO SWITCHGRASS; CROPPING SYSTEMS; GLOBAL PATTERNS; UNITED-STATES; USA AB A multi-compartment model was developed to summarize existing data and predict soil carbon sequestration beneath switchgrass (Panicum virgatum) in the southeastern USA. Soil carbon sequestration is an important part of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was undertaken for the purpose of model parameterization. A sensitivity analysis of the model indicated that predictions of soil carbon sequestration were affected most by changes in aboveground biomass production, the ratio of belowground-to-aboveground biomass production, and mean annual temperature. Simulations indicated that the annual rate of soil carbon sequestration approached steady state after a decade of switchgrass growth while predicted mineral soil carbon stocks were still increasing. A model-based experiment was performed to predict rates of soil carbon sequestration at different levels of nitrogen fertilization and initial soil carbon stocks (to a 30-cm depth). At a mean annual temperature of 13A degrees C, the predicted rate of soil carbon sequestration varied from -28 to 114 g C m(-2) year(-1) (after 30 years) and was greater than zero in 11 of 12 simulations that varied initial surface soil carbon stocks from 1 to 5 kg C m(-2) and nitrogen fertilization from 0 to 18 g N m(-2) year(-1). The modeling indicated that more research is needed on the process of biomass allocation and on nitrogen loss from mature plantations, respectively, to improve our understanding of carbon and nitrogen dynamics in switchgrass agriculture. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,Mail Stop 6301, Oak Ridge, TN 37831 USA. EM gartenctjr@ornl.gov FU US Department of Energy [DE-AC05-00OR22725]; US Department of Energy's Office of Science, Biological and Environmental Research FX This manuscript has been authored by UT-Battelle LLC, under contract no. DE-AC05-00OR22725 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes.; This research was sponsored by the US Department of Energy's Office of Science, Biological and Environmental Research funding to the Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems, and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. I wish to thank Stan Wullschleger (ORNL) and Mac Post (ORNL) for their helpful reviews of the draft manuscript. NR 57 TC 5 Z9 5 U1 2 U2 43 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 J9 BIOENERG RES JI BioEnergy Res. PD MAR PY 2012 VL 5 IS 1 BP 124 EP 138 DI 10.1007/s12155-011-9154-2 PG 15 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA 897NV UT WOS:000300658900013 ER PT J AU Robertson, BA Porter, C Landis, DA Schemske, DW AF Robertson, Bruce A. Porter, Cody Landis, Douglas A. Schemske, Douglas W. TI Agroenergy Crops Influence the Diversity, Biomass, and Guild Structure of Terrestrial Arthropod Communities SO BIOENERGY RESEARCH LA English DT Article DE Biodiversity; Ecosystem services; Landscape ecology; Agroecology ID AGRICULTURAL LANDSCAPES; INSECT COMMUNITIES; ECOSYSTEM SERVICES; BIOLOGICAL-CONTROL; UNITED-STATES; BIODIVERSITY; CONSERVATION; HERBIVORES; HABITAT; INTENSIFICATION AB Expanded production of contemporary bioenergy crops (e.g., corn) is considered a threat to the conservation of biodiversity, yet next-generation perennially based crops (switchgrass, mixed-grass-forb prairie) may represent an opportunity for enhancing biodiversity in agricultural landscapes. We employed a multi-scaled approach to investigate the relative importance of feedstock selection, forb content, patch size, and landscape-scale habitat structure and composition as factors shaping the diversity and abundance of terrestrial arthropod communities and the biomass of functional groups of arthropods associated with the provisioning of ecosystem services. Compared to intensively managed annual corn fields, switchgrass and mixed-grass-forb prairie plantings were associated with a 230% and 324% increase in arthropod family diversity and a 750% and 2,700% increase in arthropod biomass, respectively. Biomass of arthropod pollinators, herbivores, predators, and parasites were similarly the highest in mixed-grass-forb prairie, intermediate in switchgrass plantings, and the lowest in cornfields. Community-wide biomass and that of several functional arthropod groups were positively linked to increasing forest cover and land cover diversity surrounding biomass plantings, while pollinator and detritivore biomass was lower in smaller fields. Results not only suggest that the choice of biomass feedstock will play an important role in shaping within-field arthropod diversity but also indicate an important role for the composition of this surrounding landscape. Collectively, our results suggest that selection of perennially based biomass feedstocks along with careful attention to crop placement have important potential to enhance biodiversity conservation and the provisioning of ecologically and economically important arthropod-mediated ecosystem services in future agricultural landscapes. C1 [Robertson, Bruce A.] Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Washington, DC 20013 USA. [Robertson, Bruce A.; Porter, Cody; Landis, Douglas A.; Schemske, Douglas W.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Robertson, BA (reprint author), Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Natl Zool Pk, Washington, DC 20013 USA. EM RobertsonBr@si.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; DOE Great Lakes Bioenergy Research Center (DOE OBP Office of Energy Efficiency and Renewable Energy) [DE-AC05-76RL01830]; Smithsonian Conservation Biology Institute, National Zoological Park FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494 and DOE OBP Office of Energy Efficiency and Renewable Energy DE-AC05-76RL01830). BAR was supported by a fellowship from the Smithsonian Conservation Biology Institute, National Zoological Park. NR 67 TC 19 Z9 20 U1 4 U2 67 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 EI 1939-1242 J9 BIOENERG RES JI BioEnergy Res. PD MAR PY 2012 VL 5 IS 1 BP 179 EP 188 DI 10.1007/s12155-011-9161-3 PG 10 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA 897NV UT WOS:000300658900018 ER PT J AU Swaminathan, S Shen, L Risacher, SL Yoder, KK West, JD Kim, S Nho, K Foroud, T Inlow, M Potkin, SG Huentelman, MJ Craig, DW Jagust, WJ Koeppe, RA Mathis, CA Jack, CR Weiner, MW Saykin, AJ AF Swaminathan, Shanker Shen, Li Risacher, Shannon L. Yoder, Karmen K. West, John D. Kim, Sungeun Nho, Kwangsik Foroud, Tatiana Inlow, Mark Potkin, Steven G. Huentelman, Matthew J. Craig, David W. Jagust, William J. Koeppe, Robert A. Mathis, Chester A. Jack, Clifford R., Jr. Weiner, Michael W. Saykin, Andrew J. CA Alzheimer's Dis Neuroimaging Initi TI Amyloid pathway-based candidate gene analysis of [C-11]PiB-PET in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort SO BRAIN IMAGING AND BEHAVIOR LA English DT Article DE Alzheimer's disease; ADNI; Pathway-based gene analysis; PiB-PET; Endophenotype; Voxel-based analysis ID GENOME-WIDE ASSOCIATION; MILD COGNITIVE IMPAIRMENT; FALSE DISCOVERY RATE; IDENTIFIES VARIANTS; QUANTITATIVE TRAIT; OXIDATIVE STRESS; COMMON VARIANTS; HUMAN BRAIN; BIOMARKERS; DEMENTIA AB Amyloid imaging with [(11) C]Pittsburgh Compound-B (PiB) provides in vivo data on plaque deposition in those with, or at risk for, Alzheimer's disease (AD). We performed a gene-based association analysis of 15 quality-controlled amyloid-pathway associated candidate genes in 103 Alzheimer's Disease Neuroimaging Initiative participants. The mean normalized PiB uptake value across four brain regions known to have amyloid deposition in AD was used as a quantitative phenotype. The minor allele of an intronic SNP within DHCR24 was identified and associated with a lower average PiB uptake. Further investigation at whole-brain voxel-wise level indicated that non-carriers of the minor allele had higher PiB uptake in frontal regions compared to carriers. DHCR24 has been previously shown to confer resistance against beta-amyloid and oxidative stress-induced apoptosis, thus our findings support a neuroprotective role. Pathway-based genetic analysis of targeted molecular imaging phenotypes appears promising to help elucidate disease pathophysiology and identify potential therapeutic targets. C1 [Swaminathan, Shanker; Shen, Li; Risacher, Shannon L.; Yoder, Karmen K.; West, John D.; Kim, Sungeun; Nho, Kwangsik; Inlow, Mark; Saykin, Andrew J.] Indiana Univ Sch Med, Dept Radiol & Imaging Sci, Ctr Neuroimaging, Indianapolis, IN 46202 USA. [Swaminathan, Shanker; Foroud, Tatiana; Saykin, Andrew J.] Indiana Univ Sch Med, Dept Med & Mol Genet, Indianapolis, IN USA. [Shen, Li; Kim, Sungeun; Saykin, Andrew J.] Indiana Univ Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN USA. [Nho, Kwangsik] Regenstrief Inst Hlth Care, Div Med Informat, Indianapolis, IN 46202 USA. [Inlow, Mark] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA. [Potkin, Steven G.] Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA 92717 USA. [Huentelman, Matthew J.; Craig, David W.] Translat Genom Res Inst, Neurogenom Div, Phoenix, AZ USA. [Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Koeppe, Robert A.] Univ Michigan, Dept Radiol, Div Nucl Med, Ann Arbor, MI 48109 USA. [Mathis, Chester A.] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA. [Jack, Clifford R., Jr.] Mayo Clin & Mayo Fdn, Dept Radiol, Rochester, MN USA. [Weiner, Michael W.] Univ Calif San Francisco, Dept Radiol, San Francisco, CA USA. [Weiner, Michael W.] Univ Calif San Francisco, Dept Med, San Francisco, CA USA. [Weiner, Michael W.] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA USA. [Weiner, Michael W.] Dept Vet Affairs Med Ctr, San Francisco, CA USA. RP Saykin, AJ (reprint author), Indiana Univ Sch Med, Dept Radiol & Imaging Sci, Ctr Neuroimaging, Indianapolis, IN 46202 USA. EM asaykin@iupui.edu RI Jack, Clifford/F-2508-2010; Potkin, Steven/A-2021-2013; Saykin, Andrew/A-1318-2007; OI Jack, Clifford/0000-0001-7916-622X; Saykin, Andrew/0000-0002-1376-8532; Potkin, Steven/0000-0003-1028-1013 FU Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health (NIH) [U01 AG024904]; National Institute on Aging (NIA); National Institute of Biomedical Imaging and Bioengineering (NIBIB); NIH [U01 AG024904, P30 AG010129, K01 AG030514, NIBIB R03 EB008674, NIBIB R03 EB008674S1, UL1RR025761, NLM T15LM07117, U01 HL086528, R01 MH078151, AG027859, AG027984, AG024904, P01 NS15655, R01 HL079540, R01 DA022520, R01 DA016423, AG018402, NIA R01-AG11378, U01 AG024904-01, P41 RR023953, R01 AG10897, P01 AG19724, P50 AG23501, R24 RR021992, R01 NS031966, P01 AG012435, R01 CA101318, R01 AG19771, RC2 AG036535, P30 AG10133-18S1, U01 AG032984]; Alzheimer's Disease Genetics Consortium (ADGC) [U01 AG032984]; National Cell Repository for AD (NCRAD) [U24 AG21886]; NIA; NIH (CTSI) [TL1 RR025759]; NIAAA [R21AA016901, NIDA R03DA024774, NIAAA R01AA017661, NIA P30AG010133-20]; Indiana State Department of Health [PI]; IUPUI; Indiana CTSI Clinical Research Center [UL RR025761]; NIH (NIA) [U01 AG032984, 5U24AG021886, R01 AR047822, R01 NS037167, N01NS32357, U01AA014809, R01 CA141668, P01 AG018397, NCRR U24 RR021992, NCIRE AG036535]; Families of Spinal Muscular Atrophy; Muscular Dystrophy Association; HP Therapeutics Foundation; CHDI Foundation; AstraZeneca; Bioline; Bristol; Myers-Squibb; Cortex Pharmaceuticals, Inc.; Dainippon Sumitomo Pharma; Janssen; Novartis; Merck Serono; Pfizer Inc.; Otsuka Pharmaceutical Co., Ltd.; Roche; Minister Pharmaceuticals plc; Transdisciplinary Imaging Genetics Center (TIGC) [P20 RR020837]; NIH/NINDS [R01 NS059873]; Arizona Alzheimer's Consortium; Arizona Science Foundation; Arizona Alzheimer's Research Center; Alzheimer's Association; Elan Corporation; GE Healthcare; Bayer-Schering Pharma; IBA; Takeda Pharmaceutical Company Limited; Neuroptix Corporation; US Department of Energy; Anonymous Foundation; GE Healthcare (amyloid imaging agents for brain applications); Neuroptix Corporation (amyloid imaging agents for eye applications); Pfizer, Inc.; Mayo Foundation; Nestl; Kenes International; Merck and Co.; Avid Radiopharmaceuticals Inc.; US Department of Defense; Veterans Administration; State of California; Eli Lilly and Company; Siemens AG; Welch Allyn Inc; Indiana Economic Development Corporation (IEDC); Foundation for the NIH FX Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health (NIH) Grant U01 AG024904). ADNI is funded by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., and Wyeth, as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U. S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129, K01 AG030514, the Dana Foundation and U01 AG032984 Alzheimer's Disease Genetics Consortium (ADGC) grant (PI: Schellenberg).; Samples from the National Cell Repository for AD (NCRAD), which receives government support under a cooperative agreement grant (U24 AG21886) awarded by the NIA, were used in this study. Additional support for data analysis was provided by NIA R01 AG19771 and P30 AG10133. The authors thank contributors, including the ADNI sites that collected samples used in this study, as well as patients and their families, whose help and participation made this work possible.; We thank the following people for their contributions to the ADNI genotyping project: (1) genotyping at the Translational Genomics Institute, Phoenix AZ: Jennifer Webster, Jill D. Gerber, April N. Allen, and Jason J. Corneveaux; and (2) sample processing, storage and distribution at the NIA-sponsored NCRAD: Kelley Faber and Colleen Mitchell.; Dr. Shen receives support from the NIH (NIBIB R03 EB008674 [PI], NIBIB R03 EB008674S1 [PI], UL1RR025761 [PI of an Indiana CTSI pilot project]), and the NSF (IIS-1117335 [PI]).; Ms. Risacher receives support from the NIH (CTSI Pre-doctoral training grant, TL1 RR025759). Dr. Yoder is supported by NIAAA R21AA016901 [PI], NIDA R03DA024774 [PI], NIAAA R01AA017661 [coinvestigator], NIA P30AG010133-20 [coinvestigator, Neuroimaging Core], The Indiana State Department of Health [PI], the IUPUI Research Support Funds Grant [PI] and the Indiana CTSI Clinical Research Center, UL RR025761.; Dr. Nho receives support from the NIH (NLM T15LM07117 [post-doctoral trainee]).; Dr. Foroud serves on the editorial boards of Psychiatric Genetics, Journal of Bone and Mineral Research, Behavior Genetics, Parkisonism and Related Disorders, and Journal of Studies on Alcohol and Drugs; has served as a consultant for the Institute for Behavioral Genetics at the University of Colorado; and receives research support from the NIH (NIA 5U24AG021886 [PI], R01 AR047822 [PI], R01 NS037167 [PI], N01NS32357 [PI], U01AA014809 [PI], R01 CA141668 [PI], and P01 AG018397 [PI]), Families of Spinal Muscular Atrophy, the Muscular Dystrophy Association, HP Therapeutics Foundation, and CHDI Foundation (previously High Q Foundation).; Dr. Potkin serves on scientific advisory boards and speakers' bureaus for and has received funding for travel and speaker honoraria from AstraZeneca, Bioline, Bristol Myers-Squibb, Cortex Pharmaceuticals, Inc., Dainippon Sumitomo Pharma, Janssen, Novartis, Merck Serono, Pfizer Inc., Otsuka Pharmaceutical Co., Ltd., Roche, and Minister Pharmaceuticals plc; serves on the editorial board of Brain Imaging and Behavior; conducts clinical procedures/imaging studies at the UCI Brain Imaging Center and Neuropsychiatric Clinical Research Division; and receives research support from the Transdisciplinary Imaging Genetics Center (TIGC) P20 RR020837, and the NIH (NCRR U24 RR021992 [PI], U01 AG032984 [PI], NCIRE AG036535 [coinvestigator]).; Dr. Huentelman receives research support from the NIH/NINDS (R01 NS059873 [PI]) and the Arizona Alzheimer's Consortium. Dr. Craig has received research support from the Arizona Science Foundation, Arizona Alzheimer's Research Center, and the NIH (U01 HL086528 [PI] and R01 MH078151 [coinvestigator]).; Dr. Jagust has served on a scientific advisory board for Genentech, Inc., Ceregene, Schering-Plough Corp., and Merck & Co; and receives research support from the NIH (AG027859 [PI], AG027984 [PI], and AG024904 [coinvestigator]) and from the Alzheimer's Association.; Dr. Koeppe receives research support from Elan Corporation and from the NIH (U01 AG024904 [coinvestigator], P01 NS15655 [coinvestigator], R01 HL079540 [coinvestigator], R01 DA022520 [coinvestigator], and R01 DA016423 [coinvestigator]).; Dr. Mathis serves on a scientific advisory board for Neuroptix Corporation; has received funding for travel and speaker honoraria from Elan Corporation, GE Healthcare, Bayer-Schering Pharma, IBA, and Takeda Pharmaceutical Company Limited; serves on the editorial board of Nuclear Medicine and Biology; may accrue revenue on over 20 active US and international patents, 1996-present re: amyloid imaging agents; serves as a consultant for GE Healthcare, Elan Corporation, Wyeth, and Novartis; estimates that 30% of his academic effort is spent on PiB imaging, which might benefit the commercial license holder of the technology, GE Healthcare, and the University of Pittsburgh as the licensor of the technology; has received/receives research support from GE Healthcare, Neuroptix Corporation, the NIH (AG018402 [PI]), the US Department of Energy, the Dana Foundation, and the Anonymous Foundation; holds stock options in Neuroptix Corporation; and has received license fees and will receive future royalties from GE Healthcare (amyloid imaging agents for brain applications) and Neuroptix Corporation (amyloid imaging agents for eye applications).; Dr. Jack serves a consultant for Elan Corporation and GE Healthcare; receives research support from Pfizer, Inc., the NIH (NIA R01-AG11378 [PI] and U01 AG024904-01 [coinvestigator]), and the Alexander Family Alzheimer's Disease Research Professorship of the Mayo Foundation; and holds stock in GE Healthcare and Johnson & Johnson.; Dr. Weiner serves on scientific advisory boards for Bayer Schering Pharma, Eli Lilly and Company, Nestle, CoMentis, Inc., Neurochem Inc., Eisai Inc., Avid Radiopharmaceuticals Inc., Aegis Therapies, Genentech, Inc., Allergan, Inc., Lippincott Williams and Wilkins, Bristol-Myers Squibb, Forest Laboratories, Inc., Pfizer Inc., McKinsey & Company, Mitsubishi Tanabe Pharma Corporation, and Novartis; has received funding for travel from Nestle and Kenes International and to attend conferences not funded by industry; serves on the editorial board of Alzheimer's & Dementia; has received honoraria from the Rotman Research Institute and BOLT International; serves as a consultant for Elan Corporation; receives research support from Merck and Co., Avid Radiopharmaceuticals Inc., the NIH (U01 AG024904 [PI], P41 RR023953 [PI], R01 AG10897 [PI], P01 AG19724 [coinvestigator], P50 AG23501 [coinvestigator], R24 RR021992 [coinvestigator], R01 NS031966 [coinvestigator], and P01 AG012435 [coinvestigator]), the US Department of Defense, the Veterans Administration, and the State of California; and holds stock in Synarc and Elan Corporation.; Dr. Saykin serves as Editor-in-Chief of Brain Imaging and Behavior; has served as a consultant to Baxter International Inc., Bristol-Myers Squibb, and Pfizer Inc.; and has received research support from Pfizer Inc., Eli Lilly and Company, Siemens AG, Welch Allyn Inc., the NIH (R01 CA101318 [PI], R01 AG19771 [PI], RC2 AG036535 [Genetics Core Leader], P30 AG10133-18S1 [Imaging Core Leader], and U01 AG032984 [Site PI and Chair, Genetics Working Group]), the Indiana Economic Development Corporation (IEDC #87884), and the Foundation for the NIH. NR 59 TC 15 Z9 15 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1931-7557 J9 BRAIN IMAGING BEHAV JI Brain Imaging Behav. PD MAR PY 2012 VL 6 IS 1 BP 1 EP 15 DI 10.1007/s11682-011-9136-1 PG 15 WC Neuroimaging SC Neurosciences & Neurology GA 896OC UT WOS:000300576500001 PM 21901424 ER PT J AU Bansal, T Mohite, AD Shah, HM Galande, C Srivastava, A Jasinski, JB Ajayan, PM Alphenaar, BW AF Bansal, Tanesh Mohite, Aditya D. Shah, Hemant M. Galande, Charudatta Srivastava, Anchal Jasinski, Jacek B. Ajayan, Pulickel M. Alphenaar, Bruce W. TI New insights into the density of states of graphene oxide using capacitive photocurrent spectroscopy SO CARBON LA English DT Article ID GRAPHITE OXIDE; OPTICAL-ABSORPTION; FILMS; REDUCTION AB Capacitive photocurrent spectroscopy is used to probe the electronic states of graphene-oxide, and reduced graphene-oxide. Three peaks are observed whose intensities scale with the oxygen coverage. The energy of these peaks correlate with the luminescence spectra reported for graphene-oxide. Using a fitting procedure, the density of states for graphene oxide is extracted from the data. It consists of the pi/pi(center dot) states along with a distribution of mid-gap states centered at three different energies near the Dirac point. X-ray photoelectron spectroscopy measurements are used to identify the oxygen functional groups corresponding to the observed state distribution. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Bansal, Tanesh; Shah, Hemant M.; Alphenaar, Bruce W.] Univ Louisville, Dept Elect & Comp Engn, Louisville, KY 40292 USA. [Mohite, Aditya D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Galande, Charudatta; Srivastava, Anchal; Ajayan, Pulickel M.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77251 USA. [Jasinski, Jacek B.] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA. RP Alphenaar, BW (reprint author), Univ Louisville, Dept Elect & Comp Engn, Louisville, KY 40292 USA. EM brucea@louisville.edu RI Shah, Hemant/F-6316-2014 OI Shah, Hemant/0000-0002-3896-4935 FU Department of Energy [DE-FG02-07ER46375]; National Science Foundation [NSF-DMR-0906961] FX We appreciate support from Department of Energy (Grant No. DE-FG02-07ER46375) and National Science Foundation (Grant No. NSF-DMR-0906961). NR 25 TC 16 Z9 16 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD MAR PY 2012 VL 50 IS 3 BP 808 EP 814 DI 10.1016/j.carbon.2011.09.037 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 895BR UT WOS:000300471700009 ER PT J AU Contescu, CI Saha, D Gallego, NC Mamontov, E Kolesnikov, AI Bhat, VV AF Contescu, Cristian I. Saha, Dipendu Gallego, Nidia C. Mamontov, Eugene Kolesnikov, Alexander I. Bhat, Vinay V. TI Restricted dynamics of molecular hydrogen confined in activated carbon nanopores SO CARBON LA English DT Article ID INELASTIC NEUTRON-SCATTERING; METAL-ORGANIC FRAMEWORKS; TRANSLATIONAL DYNAMICS; ADSORPTION-ISOTHERMS; SELF-DIFFUSION; SOLID HYDROGEN; VYCOR GLASS; PORE-SIZE; H-2; ZEOLITE AB Quasi-elastic neutron scattering was used for characterization of dynamics of molecular hydrogen confined in narrow nanopores of two activated carbon materials: a carbon derived from polyfurfuryl alcohol and an ultramicroporous carbon. Fast, but incomplete ortho-para conversion was observed at 10 K, suggesting that scattering originates from the fraction of unconverted ortho isomer which is rotation-hindered because of confinement in nanopores. Hydrogen molecules entrapped in narrow nanopores (<7 angstrom) were immobile below 22-25 K. Mobility increased rapidly with temperature above this threshold, which is higher than the melting point of bulk hydrogen (13.9 K). Diffusion obeyed fixed-jump length mechanism, indistinguishable between 2D and 3D processes. Thermal activation of diffusion was characterized between similar to 22 and 37 K, and structure-dependent differences were found between the two carbons. Activation energy of diffusion was higher than that of bulk solid hydrogen. Classical notions of liquid and solid do not longer apply for H-2 confined in narrow nanopores. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Contescu, Cristian I.; Saha, Dipendu; Gallego, Nidia C.; Bhat, Vinay V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Mamontov, Eugene; Kolesnikov, Alexander I.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Contescu, CI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM ContescuCI@ornl.gov RI Kolesnikov, Alexander/I-9015-2012; Mamontov, Eugene/Q-1003-2015; OI Kolesnikov, Alexander/0000-0003-1940-4649; Mamontov, Eugene/0000-0002-5684-2675; Contescu, Cristian/0000-0002-7450-3722; Gallego, Nidia/0000-0002-8252-0194 FU United States Government [DE-AC05-00OR22725]; United States Department of Energy; Materials Science and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; Scientific User Facility Division, Office of Basic Energy Sciences, US Department of Energy; UT-Battelle, LLC [DE-AC0500OR22725] FX This submission was supported by a contractor of the United States Government under Contract DE-AC05-00OR22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for United States Government purposes.; Research supported by the Materials Science and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. QENS experiments were conducted at Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) which is supported by the Scientific User Facility Division, Office of Basic Energy Sciences, US Department of Energy. ORNL is managed by UT-Battelle, LLC under contract DE-AC0500OR22725 for the US Department of Energy. The authors acknowledge stimulating discussions with Dr. Takeshi Egami (ORNL and University of Tennessee Joint Institute for Neutron Research) and Dr. Fred Baker (ORNL) for kindly supplying the UMC carbon. Two authors acknowledge their present (D.S.) and past (V.V.B.) appointments under ORNL post-doctoral associate program administered jointly by Oak Ridge Institute for Science and Education (ORISE), Oak Ridge Associated Universities (ORAU) and ORNL. NR 57 TC 13 Z9 13 U1 4 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD MAR PY 2012 VL 50 IS 3 BP 1071 EP 1082 DI 10.1016/j.carbon.2011.10.016 PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 895BR UT WOS:000300471700040 ER PT J AU Peng, LJ Morris, JR AF Peng, Lu Jian Morris, James R. TI Structure and hydrogen adsorption properties of low density nanoporous carbons from simulations SO CARBON LA English DT Article ID BINDING MOLECULAR-DYNAMICS; AB-INITIO SIMULATIONS; MONTE-CARLO METHOD; AMORPHOUS-CARBON; GRAPHITE NANOFIBERS; POROUS CARBONS; LIQUID CARBON; SLIT PORES; STORAGE; NANOTUBES AB We systematically model the hydrogen adsorption in nanoporous carbons over a wide range of carbon bulk densities (0.6-2.4 g/cm(3)) by using tight binding molecular dynamics simulations for the carbon structures and thermodynamics calculations of the hydrogen adsorption. The resulting structures are in good agreement with the experimental data of ultra-microporous carbon (UMC), a wood-based activated carbon, as indicated by comparisons of the microstructure at atomic level, pair distribution function, and pore size distribution. The hydrogen adsorption calculations in carbon structures demonstrate both a promising hydrogen storage capacity (excess uptake of 1.33 wt.% at 298 K and 5 MPa, for carbon structures at the lower range of densities) and a reasonable heat of adsorption (12-22 kJ/mol). This work demonstrates that increasing the heat of adsorption does not necessarily increase the hydrogen uptake. In fact, the available adsorption volume is as important as the isosteric heat of adsorption for hydrogen storage in nanoporous carbons. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Morris, James R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Peng, Lu Jian; Morris, James R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Morris, JR (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM morrisj@ornl.gov RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge useful comments on the manuscript from C. I. Contescu and V. R. Cooper. Research supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 63 TC 18 Z9 19 U1 2 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD MAR PY 2012 VL 50 IS 3 BP 1394 EP 1406 DI 10.1016/j.carbon.2011.11.012 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 895BR UT WOS:000300471700076 ER PT J AU Gao, F Xiao, HY Zhou, YG Devanathan, R Hu, SY Li, YL Sun, X Khaleel, MA AF Gao, F. Xiao, H. Y. Zhou, Y. G. Devanathan, R. Hu, S. Y. Li, Y. L. Sun, X. Khaleel, M. A. TI Ab initio study of defect properties in YPO4 SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Ab initio calculations; Interatomic potential calculations; Defect formation; Defect stability; YPO4 ID MOLECULAR-DYNAMICS SIMULATIONS; CERAMICS; CRYSTAL; ZIRCON; XENOTIME; MONAZITE; SOLIDS AB Ab initio methods based on density functional theory have been used to calculate the formation energies of intrinsic defects, including vacancies, interstitials, antisites and Frenkel pairs in YPO4 under the O-rich and Y2O3-rich, and the O-rich and Y-rich conditions. The larger size of the yttrium atom may give rise to higher formation energy of the phosphorus antisite defect. In general, the formation energies of anion interstitials are much smaller than those of cation interstitials for both conditions considered. It is of greatly interest to find that the relative stabilities among the same types of interstitials are independent of the reference states. The most stable configuration for oxygen interstitials is an O-O split interstitial near the T, site, while the most stable configuration for cation interstitials is a tetrahedral interstitial near the T site. The cation split interstitials are unfavorable in YPO4, with much higher formation energies. Furthermore, the properties of Frenkel pairs are compared with those calculated using empirical potentials. The results reveal that both ab initio and empirical potential calculations show a similar trend in the formation energies of Frenkel pairs, but the formation energies obtained by empirical potentials are much larger than those calculated by ab initio method. (C) 2011 Published by Elsevier B.V. C1 [Gao, F.; Zhou, Y. G.; Devanathan, R.; Hu, S. Y.; Li, Y. L.; Sun, X.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Xiao, H. Y.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM fei.gao@pnl.gov RI Gao, Fei/H-3045-2012; Devanathan, Ram/C-7247-2008; OI Devanathan, Ram/0000-0001-8125-4237; khaleel, mohammad/0000-0001-7048-0749; HU, Shenyang/0000-0002-7187-3082 FU US Department of Energy at Pacific Northwest National Laboratory; US Department of Energy [DE-AC05-76RL01830] FX This research was supported by the US Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the US Department of Energy under Contract No. DE-AC05-76RL01830. We kindly acknowledge Dr. Peter A Schultz for useful discussions on chemical potential calculations. NR 27 TC 4 Z9 4 U1 4 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAR PY 2012 VL 54 BP 170 EP 175 DI 10.1016/j.commatsci.2011.10.005 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 895BP UT WOS:000300471500028 ER PT J AU Hale, LM Zhang, DB Zhou, X Zimmerman, JA Moody, NR Dumitrica, T Ballarini, R Gerberich, WW AF Hale, L. M. Zhang, D. -B. Zhou, X. Zimmerman, J. A. Moody, N. R. Dumitrica, T. Ballarini, R. Gerberich, W. W. TI Dislocation morphology and nucleation within compressed Si nanospheres: A molecular dynamics study SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Silicon; Nanoparticle; Dislocation; Molecular dynamics ID SILICON NANOSPHERES; POTENTIALS; ENERGY; SIMULATION AB Large scale molecular dynamics simulations of the compression of silicon nanospheres were performed with the Stillinger-Weber potential. Several defects were observed to cause the yielding, including dislocations, stacking faults and phase transformations. To better investigate dislocation interactions, spheres of increasing size comprised of up to one million atoms were simulated. The morphologies of the defects and the conditions under which they are formed are explored. A new and interesting route to dislocation formation is identified and examined in which perfect dislocations form on {1 1 0} planes as opposed to the expected {1 1 1} planes. The dislocations on {1 1 0} planes are observed to form through a pathway with an intermediate metastable state corresponding to a change in the atomic bonding. Density Functional based Tight Binding calculations reveal the feasibility of this pathway although the appearance of dislocations on the {1 1 0} plane in the molecular dynamics simulations is specific to the Stillinger-Weber potential. {C} 2011 Elsevier B.V. All rights reserved. C1 [Hale, L. M.; Zhou, X.; Zimmerman, J. A.] Sandia Natl Labs, Dept Mech Mat, Livermore, CA 94550 USA. [Zhang, D. -B.; Dumitrica, T.] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA. [Moody, N. R.] Sandia Natl Labs, Dept Hydrogen & Met Sci, Livermore, CA 94550 USA. [Dumitrica, T.; Gerberich, W. W.] Univ Minnesota, Dept Mat Sci, Minneapolis, MN 55455 USA. [Ballarini, R.] Univ Minnesota, Dept Civil Engn, Minneapolis, MN 55455 USA. RP Hale, LM (reprint author), POB 969,MS 9403, Livermore, CA 94551 USA. EM lmhale@sandia.gov RI Zhang, Dong-Bo/A-2273-2009 FU National Science Foundation [NSF_CMMI 0800896, CMMI-1000415]; Air Force [AOARD-08-4131]; Abu Dhabi-Minnesota Institute for Research Excellence (ADMIRE); Sandia, Livermore; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was partially supported (RB and LMH) by the National Science Foundation Grant NSF_CMMI 0800896. One of us (WWG) would like to acknowledge additional support of the Air Force through an AOARD-08-4131 program dedicated to understanding plasticity and fracture in hard materials and the Abu Dhabi-Minnesota Institute for Research Excellence (ADMIRE); a partnership between the Petroleum Institute (PI) of Abu Dhabi and the Department of Chemical Engineering and Materials Science of the University of Minnesota. TD and WING thank NSF Grand No. CMMI-1000415. Additionally, four of us (LMH, XZ, JAZ, and NMR) were supported by Sandia, Livermore. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 11 Z9 11 U1 2 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAR PY 2012 VL 54 BP 280 EP 286 DI 10.1016/j.commatsci.2011.11.004 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 895BP UT WOS:000300471500043 ER PT J AU Zhou, CZ LeSar, R AF Zhou, Caizhi LeSar, Richard TI Dislocation dynamics simulations of the Bauschinger effect in metallic thin films SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Dislocation dynamics; Bauschinger effect; Thin films; Passivation layer; Grain boundaries ID PLASTIC-DEFORMATION; SINGLE-CRYSTALS; COPPER-SILICA; FCC METALS; SIZE; TRANSMISSION; RELAXATION; ALUMINUM; SLIP AB Three-dimensional dislocation dynamics simulations were used to examine the role of surface passivation on the plasticity of thin films. A simple line-tension model was used to model the dislocation transmission cross grain boundaries. We find that passivated thin films have a higher hardening rate and strength than freestanding films and that the hardening rate increases with decreasing film thickness. Under unloading, passivated films exhibit a significant Bauschinger effect in which reverse plastic flow occurs during unloading. The Bauschinger effect is enhanced by an increasing pre-strain or by decreasing the aspect ratio of the film. The reverse motion of dislocation pile-ups and the collapse of misfit dislocations were found to be responsible for the observed Bauschinger effect in passivated films. The predicted deformation behavior is in excellent agreement with that seen experimentally. Published by Elsevier B.V. C1 [Zhou, Caizhi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [LeSar, Richard] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [LeSar, Richard] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Zhou, CZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM czhou@lanl.gov RI LeSar, Richard/G-1609-2012 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358]; Center for Nonlinear Studies, Statistical Physics Beyond Equilibrium; Los Alamos National Laboratory Directed Research and Development Office FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. CZ acknowledges support provided by the Center for Nonlinear Studies, Statistical Physics Beyond Equilibrium Project from the Los Alamos National Laboratory Directed Research and Development Office. NR 34 TC 8 Z9 8 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAR PY 2012 VL 54 BP 350 EP 355 DI 10.1016/j.commatsci.2011.09.031 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 895BP UT WOS:000300471500051 ER PT J AU Du, PW Eisenberg, R AF Du, Pingwu Eisenberg, Richard TI Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID OXYGEN-EVOLVING CATALYST; ELECTROCATALYTIC HYDROGEN EVOLUTION; RAY-STRUCTURE ANALYSIS; ACTIVE-SITE; VISIBLE-LIGHT; CRYSTAL-STRUCTURE; PHOTOSYSTEM-II; SOLAR-ENERGY; PHOTOELECTROCHEMICAL CELLS; MOLECULAR CATALYSTS AB This article reviews recent significant advances in the field of water splitting. Catalysts play very important roles in two half reactions of water splitting - water reduction and water oxidation. Considering potential future applications, catalysts made of cheap and earth abundant element(s) are especially important for economically viable energy conversion. This article focuses only on catalysts made of cobalt (Co), nickel (Ni) and iron (Fe) elements for water reduction and water oxidation. Different series of catalysts that can be applied in electrocatalytic and photocatalytic water spitting are discussed in detail and their catalytic mechanisms are introduced. Finally, the future outlook and perspective of catalysts made of earth abundant elements will be discussed. C1 [Du, Pingwu; Eisenberg, Richard] Univ Rochester, Dept Chem, Rochester, NY 14627 USA. RP Du, PW (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Bldg 200,E105,9700 S Cass Ave, Argonne, IL 60439 USA. EM pdu@mail.rochester.edu; eisenberg@chem.rochester.edu RI Du, Pingwu/G-3329-2010; Dom, Rekha/B-7113-2012; Paquette, Joseph/O-4271-2015 OI Du, Pingwu/0000-0002-2715-0979; Paquette, Joseph/0000-0001-6023-5125 FU U. S. Department of Energy, Office of basic Chemical Sciences FX R.E. wishes to acknowledge support of research in this area over the years from the U. S. Department of Energy, Office of basic Chemical Sciences. We also thank the reviewers of this article for their constructive and detailed comments. NR 115 TC 457 Z9 460 U1 79 U2 763 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2012 VL 5 IS 3 BP 6012 EP 6021 DI 10.1039/c2ee03250c PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 898BO UT WOS:000300710600009 ER PT J AU Lee, E Persson, KA AF Lee, Eunseok Persson, Kristin A. TI Revealing the coupled cation interactions behind the electrochemical profile of LixNi0.5Mn1.5O4 SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; JAHN-TELLER DISTORTION; AUGMENTED-WAVE METHOD; THIN-FILM ELECTRODES; LI-ION BATTERIES; CATHODE MATERIALS; 5 V; BASIS-SET; LINI0.5MN1.5O4 AB We present first-principles energy calculations and a cluster expansion model of the ionic ordering in LixNi0.5Mn1.5O4 (0 <= x <= 1), one of the proposed high-energy density next-generation Li-ion cathode materials. The developed model predicts an intricate relationship between the preferred Li-vacancy ordering and the Ni/Mn configuration, which explains the difference in intermediate ground states between ordered (P4(3)32) and disordered (Fd (3) over barm) Ni/Mn configuration. The phase sequence as a function of lithiation as well as the voltage profile are well matched with experimental results. Understanding of the inherent chemical interactions and their impact on the performance of an energy storage material is essential when designing and optimizing Li-ion electrode materials. C1 [Lee, Eunseok; Persson, Kristin A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Lee, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM eunseoklee@lbl.gov FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work at the Lawrence Berkeley National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 36 TC 43 Z9 43 U1 3 U2 63 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2012 VL 5 IS 3 BP 6047 EP 6051 DI 10.1039/c2ee03068c PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 898BO UT WOS:000300710600012 ER PT J AU Wee, SH Cantoni, C Fanning, TR Teplin, CW Bogorin, DF Bornstein, J Bowers, K Schroeter, P Hasoon, F Branz, HM Paranthaman, MP Goyal, A AF Wee, Sung Hun Cantoni, Claudia Fanning, Thomas R. Teplin, Charles W. Bogorin, Daniela F. Bornstein, Jon Bowers, Karen Schroeter, Paul Hasoon, Falah Branz, Howard M. Paranthaman, M. Parans Goyal, Amit TI Heteroepitaxial film silicon solar cell grown on Ni-W foils SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID POLYCRYSTALLINE-SILICON; CRYSTAL SILICON; THIN-FILMS; GLASS; PHOTOVOLTAICS; AL2O3 AB Heteroepitaxial semiconductor films on low-cost, flexible metal foil templates are a potential route to inexpensive, high-efficiency solar cells. Here, we report epitaxial growth of Si films on low-cost, flexible, biaxially-textured Ni-W substrates. A robust buffer architecture comprised of multiple epitaxial oxide layers has been developed to grow high quality, heteroepitaxial Si films without any undesired reaction between the Si film and the metal substrate and with a single biaxial texture. XRD analysis including omega-scans, phi-scans, and pole figures confirms that the buffers and silicon are all epitaxial, with excellent cube-on-cube epitaxy. A photo-conversion efficiency of 1.1% is demonstrated from a proof-of-concept heteroepitaxial film Si solar cell. C1 [Wee, Sung Hun; Cantoni, Claudia; Bogorin, Daniela F.; Paranthaman, M. Parans; Goyal, Amit] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Fanning, Thomas R.; Bornstein, Jon; Bowers, Karen; Schroeter, Paul] Ampulse Corp, Golden, CO 80401 USA. [Teplin, Charles W.; Hasoon, Falah; Branz, Howard M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wee, SH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Bogorin, Daniela/F-5663-2010; Paranthaman, Mariappan/N-3866-2015; Cantoni, Claudia/G-3031-2013 OI Paranthaman, Mariappan/0000-0003-3009-8531; Cantoni, Claudia/0000-0002-9731-2021 FU U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE); Industrial Technologies Program (ITP); Ampulse Corporation; ORNL SHaRE; Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. DOE FX Support for research at NREL and ORNL was provided by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EE&RE) Technology Commercialization and Development Fund (TCDF), Industrial Technologies Program (ITP), and the Ampulse Corporation. Research partially supported by ORNL SHaRE, sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. DOE. Sung Hun Wee thanks Eliot. D. Specht for valuable discussion on % cube texture evaluation. We are grateful to David Young and Kirstin Alberi for assistance in developing device contacting methods for film silicon. We thank Frederick A. List, Lee Heatherly, Jerry Pineau, Russell Bauer, and Anna Duda for technical support. NR 22 TC 26 Z9 26 U1 2 U2 35 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2012 VL 5 IS 3 BP 6052 EP 6056 DI 10.1039/c2ee03350j PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 898BO UT WOS:000300710600013 ER PT J AU Crumlin, EJ Mutoro, E Liu, Z Grass, ME Biegalski, MD Lee, YL Morgan, D Christen, HM Bluhm, H Shao-Horn, Y AF Crumlin, Ethan J. Mutoro, Eva Liu, Zhi Grass, Michael E. Biegalski, Michael D. Lee, Yueh-Lin Morgan, Dane Christen, Hans M. Bluhm, Hendrik Shao-Horn, Yang TI Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID X-RAY PHOTOELECTRON; THIN-FILMS; REDUCTION ACTIVITY; ACTIVITY ENHANCEMENT; SPECTROSCOPY; LA0.6SR0.4COO3-DELTA; CATALYSTS; LA1-XSRXCOO3-DELTA; SEGREGATION; NANOSCALE AB Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La0.8Sr0.2CoO3-delta (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O-2 electrocatalysis relative to LSC powder-based electrodes. C1 [Crumlin, Ethan J.; Mutoro, Eva; Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Shao-Horn, Yang] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Crumlin, Ethan J.; Mutoro, Eva; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Liu, Zhi; Grass, Michael E.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Lee, Yueh-Lin; Morgan, Dane] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Bluhm, Hendrik] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Crumlin, EJ (reprint author), MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Christen, Hans/H-6551-2013; Liu, Zhi/B-3642-2009; Albe, Karsten/F-1139-2011; LEE, YUEH-LIN/F-6274-2011 OI Christen, Hans/0000-0001-8187-7469; Liu, Zhi/0000-0002-8973-6561; LEE, YUEH-LIN/0000-0003-2477-6412 FU DOE (SISGR) [DE-SC0002633]; King Abdullah University of Science and Technology; German Research Foundation (DFG); King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0001284] FX This work was supported in part by DOE (SISGR DE-SC0002633) and King Abdullah University of Science and Technology. E. Mutoro is grateful for financial support from the German Research Foundation (DFG research scholarship). The authors like to thank the King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The PLD preparation performed was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Work at the University of Wisconsin gratefully acknowledges financial support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award number DE-SC0001284. NR 48 TC 92 Z9 92 U1 14 U2 153 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2012 VL 5 IS 3 BP 6081 EP 6088 DI 10.1039/c2ee03397f PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 898BO UT WOS:000300710600019 ER PT J AU He, HY Zapol, P Curtiss, LA AF He, Haiying Zapol, Peter Curtiss, Larry A. TI Computational screening of dopants for photocatalytic two-electron reduction of CO2 on anatase (101) surfaces SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID HETEROGENEOUS CATALYSIS; CARBON-DIOXIDE; AB-INITIO; TIO2; ENERGY; OXIDE; ENTHALPIES; DECOMPOSITION; MECHANISMS; PRINCIPLES AB We have carried out first-principles calculations to explore reaction mechanisms of the 2e reduction of CO2 to HCOOH or CO in photochemical reactions catalyzed by anatase (101) surface. Two energetically competitive reaction pathways to HCOOH were identified, which involve initial 1e (via bidentate) and 2e (via monodentate) reduction steps, respectively. The pathways of producing CO were also explored. From the electronic structure analysis, we have shown the role of the anatase surface in facilitating electron and proton transfer in CO2 reduction. Based on the determined rate-limiting step, we have carried out screening of substitutional surface cation doping and found metallic elements that could substantially lower the reaction barriers. A simple model describing the relationship between the activation barriers and the binding energies of CO2- to the dopant surface site is proposed. C1 [He, Haiying; Zapol, Peter; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60561 USA. [Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60561 USA. RP He, HY (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60561 USA. EM zapol@anl.gov RI Zapol, Peter/G-1810-2012 OI Zapol, Peter/0000-0003-0570-9169 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH11357] FX This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC0206CH11357. We acknowledge grants of computer time from EMSL, a national scientific user facility located at Pacific Northwest National Laboratory, Argonne Center for Nanoscale Materials and the ANL Laboratory Computing Resource Center (LCRC). NR 57 TC 36 Z9 36 U1 6 U2 68 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2012 VL 5 IS 3 BP 6196 EP 6205 DI 10.1039/c2ee02665a PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 898BO UT WOS:000300710600033 ER PT J AU Tripathi, R Popov, G Ellis, BL Huq, A Nazar, LF AF Tripathi, Rajesh Popov, Guerman Ellis, Brian L. Huq, Ashfia Nazar, L. F. TI Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CATHODE MATERIALS; CRYSTAL-STRUCTURE; TRIPLITE; FE; FLUOROPHOSPHATE; TRANSITION; MINERALS; LIFESO4F; MN AB Transition-metal fluorosulfates are currently being extensively explored for their use as cathodes in Li-ion batteries. Several new polymorphs of LiMSO4F (M Fe, Mn, Zn) crystallizing in the tavorite, triplite and sillimanite structures have captured much recent interest, but synthetic access is limited and the underlying phase stability and ion transport in these materials are poorly understood. Here we report that solvothermal routes to LiMSO4F (M Fe, Mn, Zn) offer significant advantage over both exotic ionothermal methods and solid state synthesis by enabling greater control of the chemistry. We show new limits for the onset of triplite crystallization, and report new phases in the Li[Fe,Zn]SO4F system that enable a fuller understanding of the complex chemistry and thermodynamics underlying these fascinating materials. The transformation of LiFeSO4F from the tavorite to the triplite polymorph is triggered in the absence of any substituents, proving that tavorite is an intermediate in the reaction pathway. As a result of structural changes between tavorite and triplite, their Li+ transport paths are quite different. Combined X-ray/neutron diffraction studies of the triplites suggest that distinct inter-site zig-zag paths must be involved, owing to complete cation disorder that impacts the electrochemical behavior. C1 [Tripathi, Rajesh; Popov, Guerman; Ellis, Brian L.; Nazar, L. F.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Huq, Ashfia] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Tripathi, R (reprint author), Univ Waterloo, Dept Chem, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada. EM lfnazar@uwaterloo.ca RI Nazar, Linda/H-2736-2014; Huq, Ashfia/J-8772-2013; OI Nazar, Linda/0000-0002-3314-8197; Huq, Ashfia/0000-0002-8445-9649; Ellis, Brian/0000-0002-7313-0637 FU NSERC; GM Canada through the NSERC; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX LFN gratefully acknowledges NSERC through its Discovery and Strategic funding programs, and the generous support of GM Canada through the NSERC Collaborative Research and Development program. The neutron diffraction data were collected at the Oak Ridge National Laboratory's Spallation Neutron Source; research sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 39 TC 40 Z9 40 U1 4 U2 114 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2012 VL 5 IS 3 BP 6238 EP 6246 DI 10.1039/c2ee03222h PG 9 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 898BO UT WOS:000300710600038 ER PT J AU Ravcheev, DA Li, XQ Latif, H Zengler, K Leyn, SA Korostelev, YD Kazakov, AE Novichkov, PS Osterman, AL Rodionov, DA AF Ravcheev, Dmitry A. Li, Xiaoqing Latif, Haythem Zengler, Karsten Leyn, Semen A. Korostelev, Yuri D. Kazakov, Alexey E. Novichkov, Pavel S. Osterman, Andrei L. Rodionov, Dmitry A. TI Transcriptional Regulation of Central Carbon and Energy Metabolism in Bacteria by Redox-Responsive Repressor Rex SO JOURNAL OF BACTERIOLOGY LA English DT Article ID BACILLUS-SUBTILIS; GENOMIC RECONSTRUCTION; FAMILY REPRESSOR; STAPHYLOCOCCUS-AUREUS; CRYSTAL-STRUCTURE; GENE-EXPRESSION; NAD METABOLISM; DEHYDROGENASE; BINDING; PROTEIN AB Redox-sensing repressor Rex was previously implicated in the control of anaerobic respiration in response to the cellular NADH/NAD(+) levels in Gram-positive bacteria. We utilized the comparative genomics approach to infer candidate Rex-binding DNA motifs and assess the Rex regulon content in 119 genomes from 11 taxonomic groups. Both DNA-binding and NAD-sensing domains are broadly conserved in Rex orthologs identified in the phyla Firmicutes, Thermotogales, Actinobacteria, Chlo-roflexi, Deinococcus-Thermus, and Proteobacteria. The identified DNA-binding motifs showed significant conservation in these species, with the only exception detected in Clostridia, where the Rex motif deviates in two positions from the generalized consensus, TTGTGAANNNNTTCACAA. Comparative analysis of candidate Rex sites revealed remarkable variations in functional repertoires of candidate Rex-regulated genes in various microorganisms. Most of the reconstructed regulatory interactions are lineage specific, suggesting frequent events of gain and loss of regulator binding sites in the evolution of Rex regulons. We identified more than 50 novel Rex-regulated operons encoding functions that are essential for resumption of the NADH:NAD+ balance. The novel functional role of Rex in the control of the central carbon metabolism and hydrogen production genes was validated by in vitro DNA binding assays using the TM0169 protein in the hydrogen-producing bacterium Thermotoga maritima. C1 [Ravcheev, Dmitry A.; Li, Xiaoqing; Leyn, Semen A.; Osterman, Andrei L.; Rodionov, Dmitry A.] Sanford Burnham Med Res Inst, La Jolla, CA USA. [Ravcheev, Dmitry A.; Leyn, Semen A.; Korostelev, Yuri D.; Kazakov, Alexey E.; Rodionov, Dmitry A.] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia. [Latif, Haythem; Zengler, Karsten] Univ Calif San Diego, La Jolla, CA 92093 USA. [Korostelev, Yuri D.] Moscow MV Lomonosov State Univ, Fac Bioengn & Bioinformat, Moscow, Russia. [Kazakov, Alexey E.; Novichkov, Pavel S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Rodionov, DA (reprint author), Sanford Burnham Med Res Inst, La Jolla, CA USA. EM rodionov@burnham.org RI Ravcheev, Dmitry/B-5899-2013; Ravcheev, Dmitry/M-6877-2015; OI Ravcheev, Dmitry/0000-0002-8435-5516; Rodionov, Dmitry/0000-0002-0939-390X; Zengler, Karsten/0000-0002-8062-3296 FU U.S. Department of Energy, Office of Science (Biological and Environmental Research) [DE-FG02-08ER64686]; SBMRI; UCSD; LBNL; National Science Foundation [DBI-0850546]; Russian Foundation for Basic Research [10-04-01768]; Russian Academy of Sciences; [DE-SC0004999] FX This work was supported by the U.S. Department of Energy, Office of Science (Biological and Environmental Research), as part of Genomic Science Program contracts DE-FG02-08ER64686 with SBMRI and UCSD and DE-SC0004999 with SBMRI and LBNL. Additional funding was provided by National Science Foundation grant DBI-0850546, the Russian Foundation for Basic Research grant 10-04-01768, and the Russian Academy of Sciences under the Molecular and Cellular Biology program. NR 40 TC 47 Z9 50 U1 3 U2 22 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAR PY 2012 VL 194 IS 5 BP 1145 EP 1157 DI 10.1128/JB.06412-11 PG 13 WC Microbiology SC Microbiology GA 895XU UT WOS:000300530800026 PM 22210771 ER PT J AU Doll, WE Gamey, TJ Bell, DT Beard, LP Sheehan, JR Norton, J Holladay, JS Lee, JLC AF Doll, William E. Gamey, T. Jeffrey Bell, David T. Beard, Les P. Sheehan, Jacob R. Norton, Jeannemarie Holladay, J. Scott Lee, James L. C. TI Historical Development and Performance of Airborne Magnetic and Electromagnetic Systems for Mapping and Detection of Unexploded Ordnance SO JOURNAL OF ENVIRONMENTAL AND ENGINEERING GEOPHYSICS LA English DT Article ID NOISE AB Over the past fifteen years, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of boom-mounted platforms, and implementation of higher sample rates, denser magnetometer arrays, and vertical gradient configurations. Nine magnetometer-based systems are described and their performance summarized. In prototype analyses and recent U.S. Department of Defense Environmental Security Technology Certification Program (ESTCP) assessments using new production systems, the best performance has been achieved with a vertical gradient configuration. AS effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. We discuss the development of airborne time-domain electromagnetic systems over the past ten years. Overall, improvements in airborne geophysical systems have led to more consistent detection of smaller ordnance. These trends should continue as additional technological advances are made. C1 [Doll, William E.; Gamey, T. Jeffrey; Bell, David T.; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie] Battelle Oak Ridge Operat, Oak Ridge, TN 37830 USA. [Holladay, J. Scott; Lee, James L. C.] Geosensors, Toronto, ON, Canada. RP Doll, WE (reprint author), Battelle Oak Ridge Operat, 105 Mitchell Rd,Suite 103, Oak Ridge, TN 37830 USA. FU ESTCP FX The authors would like to express their gratitude to Dr. Jeffrey Marqusee, Dr. Herb Nelson, and Dr. Anne Andrews of the ESTCP Program Office for their support of the many projects that we have discussed in this paper. We would also like to acknowledge two anonymous reviewers who provided feedback that has significantly improved the quality of this paper. NR 23 TC 1 Z9 1 U1 1 U2 5 PU ENVIRONMENTAL ENGINEERING GEOPHYSICAL SOC PI DENVER PA 1720 SOUTH BELLAIRE, STE 110, DENVER, CO 80222-433 USA SN 1083-1363 J9 J ENVIRON ENG GEOPH JI J. Environ. Eng. Geophys. PD MAR PY 2012 VL 17 IS 1 BP 1 EP 17 PG 17 WC Geochemistry & Geophysics; Engineering, Geological SC Geochemistry & Geophysics; Engineering GA 896WI UT WOS:000300601700001 ER PT J AU Davydyuk, GY Myronchuk, GL Lakshminarayana, G Yakymchuk, OV Reshak, AH Wojciechowski, A Rakus, P AlZayed, N Chmiel, M Kityk, IV Parasyuk, OV AF Davydyuk, G. Ye. Myronchuk, G. L. Lakshminarayana, G. Yakymchuk, O. V. Reshak, A. H. Wojciechowski, A. Rakus, P. AlZayed, N. Chmiel, M. Kityk, I. V. Parasyuk, O. V. TI IR-induced features of AgGaGeS4 crystalline semiconductors SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Article DE Optical materials; Chalcogenides; Crystal growth; Phonons AB Complex investigations of the photoconductivity and photoinduced absorption together with the piezoelectric features were performed for the AgGaGeS4 semiconducting single crystals under the influence of 3.5 mu s CO2 (80 mJ) pulsed laser emitting at 10.6 mu m. These crystals are transparent in the wide spectral range 0.4-17 mu m, which allows operating due to their properties in the spectral range covering the excitation of the phonons and electron subsystem. The piezoelectric properties show substantial increment during illumination by microsecond CO2 laser and irreversible relaxation after swathing off the laser excitation. The temperature dependent studies of absorption and photoconductivity confirm the main role of intrinsic defects forming the tails of electronic states below the bottom of conduction band gap. Principal role of IR-induced electron-phonon interactions in the observed changes of the piezoelectricity is demonstrated. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lakshminarayana, G.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA. [Davydyuk, G. Ye.; Myronchuk, G. L.; Yakymchuk, O. V.] Volyn Natl Univ, Dept Solid State Phys, UA-43025 Lutsk, Ukraine. [Reshak, A. H.] Univ S Bohemia, Sch Complex Syst, FFWP, Nove Hrady 37333, Czech Republic. [Reshak, A. H.] Malaysia Univ Perlis, Sch Mat Engn, Kangar 01007, Perlis, Malaysia. [Wojciechowski, A.; Kityk, I. V.] Czestochowa Tech Univ, Dept Elect Engn, Czestochowa, Poland. [Rakus, P.; AlZayed, N.; Kityk, I. V.] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia. [Chmiel, M.] Sch CSGF, SFS Czestochowa, PL-42201 Czestochowa, Poland. [Parasyuk, O. V.] Volyn Natl Univ, Dept Inorgan & Phys Chem, UA-43025 Lutsk, Ukraine. RP Lakshminarayana, G (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, POB 1663, Los Alamos, NM 87545 USA. EM glnphysics@rediffmail.com RI Kityk, Iwan/M-4032-2015; Reshak, Ali/B-8649-2008; OI Reshak, Ali/0000-0001-9426-8363; Gandham, Lakshminarayana/0000-0002-1458-9368 FU RDI of the Czech Republic; CENAKVA [CZ.1.05/2.1.00/01.0024]; Grant Agency of the University of South Bohemia [152/2010/Z]; Polish Committee of Science and Technology [N 6337/B/TO2/2011/40] FX Author Ali H. Reshak's work was supported from the program RDI of the Czech Republic, the project CENAKVA (no. CZ.1.05/2.1.00/01.0024), the Grant no. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis, Malaysia. K.I.V. and M.C. are acknowledged to promoter grant of Polish Committee of Science and Technology N 6337/B/TO2/2011/40 for financial support of the work. NR 15 TC 10 Z9 10 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD MAR PY 2012 VL 73 IS 3 BP 439 EP 443 DI 10.1016/j.jpcs.2011.11.026 PG 5 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA 895AT UT WOS:000300469300009 ER PT J AU Aaron, D Borole, AP Yiacoumi, S Tsouris, C AF Aaron, Doug Borole, Abhijeet P. Yiacoumi, Sotira Tsouris, Costas TI Effects of operating conditions on internal resistances in enzyme fuel cells studied via electrochemical impedance spectroscopy SO JOURNAL OF POWER SOURCES LA English DT Article DE Enzyme fuel cell; Electrochemical impedance spectroscopy; Laccase ID BIOFUEL CELL; AIR; ELECTRODE; DENSITY; CARBON AB Enzyme fuel cells (EFCs) offer some advantages over traditional precious-metal-catalyzed fuel cells, such as polymer electrolyte membrane fuel cells (PEMFCs). However, EFCs exhibit far less power output than PEMFCs and have relatively short life spans before materials must be replaced. In this work, electrochemical impedance spectroscopy (EIS) is used to analyze the internal resistances throughout the EFC at a variety of operating conditions. EIS analysis is focused primarily on the resistances of the anode, solution/membrane, and cathode. Increased enzyme loading results in improved power output and reductions in internal resistance. Conditions are identified for which enzyme loading does not limit the EFC performance. EIS experiments are also reported for EFCs operated continuously for 2 days; power output declines sharply over time, while all internal resistances increase. Drying of the cathode and enzyme/mediator degradation are believed to have contributed to this behavior. Finally, experiments are performed at varying air-humidification temperatures. Little effect on internal resistances or power output is observed. However, it is anticipated that increased air humidification can improve longevity by delivering more water to the cathode. Improvements to the enzymatic cathode are needed for EFC development. These improvements need to focus on improving transport rather than increasing enzyme loading. Published by Elsevier B.V. C1 [Borole, Abhijeet P.; Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Aaron, Doug; Yiacoumi, Sotira; Tsouris, Costas] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. RP Borole, AP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM doug.aaron4@gmail.com; borolea@ornl.gov; sotira.yiacoumi@ce.gatech.edu; tsouris@ornl.gov RI Tsouris, Costas/C-2544-2016; OI Tsouris, Costas/0000-0002-0522-1027; Borole, Abhijeet/0000-0001-8423-811X FU American Chemical Society; ORNL; U.S. Department of Energy [DE-AC05-000R22725] FX This work was supported by the American Chemical Society, Petroleum Research Fund-Green Chemistry Initiative at Georgia Institute of Technology. EFC work at Oak Ridge National Laboratory was supported by the Laboratory Directed Research and Development Program of ORNL. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-000R22725. NR 15 TC 5 Z9 5 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2012 VL 201 BP 59 EP 65 DI 10.1016/j.jpowsour.2011.10.105 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 892CN UT WOS:000300264400008 ER PT J AU Gong, MY Gemmen, RS Liu, XB AF Gong, Mingyang Gemmen, Randall S. Liu, Xingbo TI Modeling of oxygen reduction mechanism for 3PB and 2PB pathways at solid oxide fuel cell cathode from multi-step charge transfer SO JOURNAL OF POWER SOURCES LA English DT Article DE Solid oxide fuel cell; MIEC cathode; Oxygen reduction kinetics; Modeling ID YTTRIA-STABILIZED ZIRCONIA; SR-DOPED LAMNO3; CHEMICAL DIFFUSION-COEFFICIENT; IONIC-ELECTRONIC CONDUCTORS; ELECTRICAL-CONDUCTIVITY; IMPEDANCE SPECTROSCOPY; COMPOSITE ELECTRODE; INTERFACE REGIONS; O-2 REDUCTION; TRANSPORT AB Oxygen reduction at the mixed ionic and electronic conductive (MIEC) SOFC cathodes occur along a surface pathway with oxygen transport through a triple-phase boundary (3PB), and/or a bulk pathway via bulk cathode and electrolyte/cathode interface (2PB). The identification of the rate-limiting steps (RLSs) for each path and understand on their interactions are important to the SOFC cathode kinetics. In this research a modified one-dimensional continuum model is developed to analyze the oxygen reduction on LSM-type MIEC cathode by incorporating multi-step charge-transfer into the bi-pathway kinetics. Finite control-volume method is used to simulate the pathway kinetic competition, and a parametric study is performed with different equilibrium concentrations of surface oxygen ion (C-O-,(eq))and bulk oxygen vacancy (C-V,(MIEC),(eq)). The I-V profiles show kinetic transition from 3PB-control to 2PB-control at overpotentials from -0.2V to -0.4V, and the active reaction zone in concentration profiles expands from 3PB/2PB interfaces by 2-4 mu m. The exchange and local 3PB currents recognized from simulation indicate limit of surface oxygen diffusion as the mechanistic process for pathway transition. The results are compared to the reported experimental findings to examine the model's assumption of oxygen reduction scenario, and its potential implication on SOFC cathode performance improvement. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gong, Mingyang; Liu, Xingbo] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Gemmen, Randall S.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Liu, XB (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. EM xingbo.liu@mail.wvu.edu RI Gong, Mingyang/E-5939-2012 FU NETL; U.S. Department of Energy [DE-FG02-06ER46299] FX The research is sponsored by NETL's URS program and U.S. Department of Energy's EPSCoR program under grant number DE-FG02-06ER46299. The authors thank Dr. Kirk Gerdes and Dr. David S. Mebane from National Energy Technology Laboratory together with Dr. Harry O. Finklea from Department of Chemistry in West Virginia University, for their critical discussions and suggestions during model construction and analysis. NR 53 TC 15 Z9 15 U1 1 U2 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2012 VL 201 BP 204 EP 218 DI 10.1016/j.jpowsour.2011.11.002 PG 15 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 892CN UT WOS:000300264400028 ER PT J AU Kalnaus, S Sabau, AS Tenhaeff, WE Dudney, NJ Daniel, C AF Kalnaus, Sergiy Sabau, Adrian S. Tenhaeff, Wyatt E. Dudney, Nancy J. Daniel, Claus TI Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium ion battery; Composite electrolyte; Effective properties; Lithium anode; Dendrites ID BLOCK-COPOLYMER ELECTROLYTES; THIN-FILM LITHIUM; ELECTRICAL-PROPERTIES; ELECTROCHEMICAL PROPERTIES; CONDUCTIVITY ENHANCEMENT; SOLID ELECTROLYTES; SALT CONCENTRATION; ELASTIC PROPERTIES; MOLECULAR-WEIGHT; FILLERS AB Mechanical properties and conductivity were computed for several composite polymer electrolyte structures. A multi-phase effective medium approach was used to estimate effective conductivity. The Mori-Tanaka approach was applied for calculating the effective stiffness tensor of the composites. An analysis of effective mechanical properties was performed in order to identify the composite structures, which would be capable of blocking the dendrites forming in Li-ion battery when Li metal is used as anode. The stability parameter which combines both stiffness and compressibility of the electrolyte was used in the analysis. The calculations were done over the wide range of Young's modulus of the polymer matrix showing the threshold concentration of the filler necessary for the mechanical stability. The results can be used to formulate design criteria for solid electrolytes that would exhibit appropriate stiffness and compressibility to suppress lithium dendrite growth while maintaining high effective conductivities. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kalnaus, Sergiy; Sabau, Adrian S.; Tenhaeff, Wyatt E.; Dudney, Nancy J.; Daniel, Claus] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kalnaus, S (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM kalnauss@ornl.gov RI Sabau, Adrian/B-9571-2008; Dudney, Nancy/I-6361-2016; Daniel, Claus/A-2060-2008; OI Sabau, Adrian/0000-0003-3088-6474; Dudney, Nancy/0000-0001-7729-6178; Daniel, Claus/0000-0002-0571-6054; Kalnaus, Sergiy/0000-0002-7465-3034 FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy [DE-AC05-000R22725] FX This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-000R22725. NR 42 TC 14 Z9 14 U1 5 U2 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2012 VL 201 BP 280 EP 287 DI 10.1016/j.jpowsour.2011.11.020 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 892CN UT WOS:000300264400038 ER PT J AU Pacold, JI Bradley, JA Mattern, BA Lipp, MJ Seidler, GT Chow, P Xiao, Y Rod, E Rusthoven, B Quintana, J AF Pacold, J. I. Bradley, J. A. Mattern, B. A. Lipp, M. J. Seidler, G. T. Chow, P. Xiao, Y. Rod, Eric Rusthoven, B. Quintana, J. TI A miniature X-ray emission spectrometer (miniXES) for high-pressure studies in a diamond anvil cell SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray emission spectrometer; resonant X-ray emission spectroscopy; high-energy resolution fluorescence detection; volume collapse ID ELECTRONIC EXCITATIONS; LOWER MANTLE; SPECTROSCOPY; SCATTERING; TRANSITION; COMPLEXES; LIGAND; IRON AB Core-shell X-ray emission spectroscopy (XES) is a valuable complement to X-ray absorption spectroscopy (XAS) techniques. However, XES in the hard X-ray regime is much less frequently employed than XAS, often as a consequence of the relative scarcity of XES instrumentation having energy resolutions comparable with the relevant core-hole lifetimes. To address this, a family of inexpensive and easily operated short-working-distance X-ray emission spectrometers has been developed. The use of computer-aided design and rapid prototype machining of plastics allows customization for various emission lines having energies from similar to 3 keV to similar to 10 keV. The specific instrument described here, based on a coarsely diced approximant of the Johansson optic, is intended to study volume collapse in Pr metal and compounds by observing the pressure dependence of the Pr L alpha emission spectrum. The collection solid angle is similar to 50 msr, roughly equivalent to that of six traditional spherically bent crystal analyzers. The miniature X-ray emission spectrometer (miniXES) methodology will help encourage the adoption and broad application of high-resolution XES capabilities at hard X-ray synchrotron facilities. C1 [Pacold, J. I.; Mattern, B. A.; Seidler, G. T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Bradley, J. A.; Lipp, M. J.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Chow, P.; Xiao, Y.; Rod, Eric] Carnegie Inst Washington, HPCAT, Argonne, IL 60439 USA. [Rusthoven, B.; Quintana, J.] Argonne Natl Lab, APS Engn Support Div, Argonne, IL 60439 USA. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM seidler@uw.edu RI Seidler, Gerald/I-6974-2012 FU US Department of Energy, Basic Energy Sciences [DE-SC0002194]; CIW; CDAC; UNLV; LLNL; DO E-NNSA; DOE-BES [DE-AC02-06CH11357]; NSFUS Department of Energy by Lawrence Livermore National Laboratory [DEAC52-07NA27344] FX GTS acknowledges support of this research program by the US Department of Energy, Basic Energy Sciences, under award DE-SC0002194. This work was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DO E-NNSA, DOE-BES and NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DEAC52-07NA27344. NR 38 TC 17 Z9 17 U1 1 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2012 VL 19 BP 245 EP 251 DI 10.1107/S0909049511056081 PN 2 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 896MO UT WOS:000300571300014 PM 22338686 ER PT J AU Wang, HX Yoda, Y Kamali, S Zhou, ZH Cramer, SP AF Wang, Hongxin Yoda, Yoshitaka Kamali, Saeed Zhou, Zhao-Hui Cramer, Stephen P. TI Real sample temperature: a critical issue in the experiments of nuclear resonant vibrational spectroscopy on biological samples SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE nuclear resonant vibrational spectroscopy; real sample temperature(s); cryogenic adhesive; heat transfer; X-ray radiation damage ID RADIATION-DAMAGE; NRVS AB There are several practical and intertangled issues which make the experiments of nuclear resonant vibrational spectroscopy (NRVS) on biological samples difficult to perform. The sample temperature is one of the most important issues. In NRVS the real sample temperatures can be very different from the readings on the temperature sensors. In this study the following have been performed: (i) citing and analyzing various existing NRVS data to assess the real sample temperatures during the NRVS measurements and to understand their trends with the samples' loading conditions; (ii) designing several NRVS measurements with (Et4N)[FeCl4] to verify these trends; and (iii) proposing a new sample-loading procedure to achieve significantly lower real sample temperatures and to balance among the intertangled experimental issues in biological NRVS measurements. C1 [Wang, Hongxin; Kamali, Saeed; Zhou, Zhao-Hui; Cramer, Stephen P.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Wang, Hongxin; Zhou, Zhao-Hui; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yoda, Yoshitaka] JASRI, SPring 8, Sayo, Hyogo 6795198, Japan. [Zhou, Zhao-Hui] Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China. RP Wang, HX (reprint author), Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA. EM hxwang2@lbl.gov; spjcramer@ucdavis.edu RI Zhou, ZH/G-4658-2010 FU NIH [GM-65440, EB-001962]; DOE Office of Biological and Environmental Research; JASRI; JST (CREST); [ESRF/ID18]; [APS/03ID] FX This work was funded by NIH grants GM-65440 and EB-001962, and the DOE Office of Biological and Environmental Research (all to SPC). NRVS spectra were measured at SPring-8 BL09XU (Proposal No. 2009A0015 and 2009B0015 etc.). SPring-8 is funded by JASRI. The BL09XU's monochromator was upgraded using the JST (CREST) fund. We also thank Drs I. Sergeev/R. Ruffer (at ESRF/ID18), J. Zhao/E. Alp (at APS/03ID) for their partial support in obtaining the NRVS data cited or mentioned in this study. NR 10 TC 4 Z9 4 U1 0 U2 7 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2012 VL 19 BP 257 EP 263 DI 10.1107/S0909049512001380 PN 2 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 896MO UT WOS:000300571300016 PM 22338688 ER PT J AU Liu, YJ Meirer, F Williams, PA Wang, JY Andrews, JC Pianetta, P AF Liu, Yijin Meirer, Florian Williams, Phillip A. Wang, Junyue Andrews, Joy C. Pianetta, Piero TI TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Software Review DE X-ray microscopy; full-field; tomography; XANES imaging ID ELECTRON-MICROSCOPY; PHASE-CONTRAST; COMPUTED-TOMOGRAPHY; SPATIAL-RESOLUTION; REFRACTIVE-INDEX; RECONSTRUCTION; SPECTROSCOPY; NANOSCALE AB Transmission X-ray microscopy (TXM) has been well recognized as a powerful tool for non-destructive investigation of the three-dimensional inner structure of a sample with spatial resolution down to a few tens of nanometers, especially when combined with synchrotron radiation sources. Recent developments of this technique have presented a need for new tools for both system control and data analysis. Here a software package developed in MATLAB for script command generation and analysis of TXM data is presented. The first toolkit, the script generator, allows automating complex experimental tasks which involve up to several thousand motor movements. The second package was designed to accomplish computationally intense tasks such as data processing of mosaic and mosaic tomography datasets; dual-energy contrast imaging, where data are recorded above and below a specific X-ray absorption edge; and TXM X-ray absorption near-edge structure imaging datasets. Furthermore, analytical and iterative tomography reconstruction algorithms were implemented. The compiled software package is freely available. C1 [Liu, Yijin; Williams, Phillip A.; Andrews, Joy C.; Pianetta, Piero] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Meirer, Florian] Fdn Bruno Kessler, CMM Irst, MiNALab, I-38123 Povo, Trento, Italy. [Wang, Junyue] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Andrews, JC (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM jandrews@slac.stanford.edu RI Liu, Yijin/O-2640-2013; Meirer, Florian/H-7642-2016 OI Liu, Yijin/0000-0002-8417-2488; Meirer, Florian/0000-0001-5581-5790 FU NIH/NIBIB [5F01EB004321]; Department of Energy, Office of Basic Energy Sciences FX The transmission X-ray microscope at SSRL has been supported by NIH/NIBIB grant no. 5F01EB004321. SSRL is supported by the Department of Energy, Office of Basic Energy Sciences. The authors thank Paul Shearing (Imperial College, London), Eduardo Almeida (NASA, USA) and Philippe Sciau (U Toulouse) for providing the samples that are demonstrated in the figures. NR 35 TC 63 Z9 63 U1 1 U2 28 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2012 VL 19 BP 281 EP 287 DI 10.1107/S0909049511049144 PN 2 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 896MO UT WOS:000300571300019 PM 22338691 ER PT J AU Chu, HJ Pan, E Han, X Wang, J Beyerlein, IJ AF Chu, H. J. Pan, E. Han, X. Wang, J. Beyerlein, I. J. TI Elastic fields of dislocation loops in three-dimensional anisotropic bimaterials SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Dislocation loop; Line integral; Green's function; Bimaterial interface ID NANOSCALE METALLIC MULTILAYERS; DEFORMATION MECHANISMS; ARBITRARY DISLOCATION; GREENS-FUNCTIONS; STRESS-FIELD; HALF-SPACE; FORCE; INTERFACES; POINT; MEDIA AB By applying semi-analytical point-force Green's functions obtained via the Stroh formulism, we derive simple line integrals to calculate the elastic displacement and stress fields for a three-dimensional dislocation loop in an anisotropic bimaterial system. The solutions for the case of anisotropy are more convenient for treating an arbitrary dislocation loop compared with traditional area integration. With this new formulation, we numerically examine the displacement, stress, and energy due to the interaction between a dislocation loop and the bimaterial interface in an Al-Cu system. The interactive image energy due to the elastic moduli mismatch across the interface is then numerically evaluated. The result shows that a dislocation loop is subjected to an attractive force by the interface when it lies in the stiff material, and a repulsive force when it lies in the soft material. Moreover, the dependence of the interactive image energy of a dislocation loop on the position and size of the dislocation loop are also demonstrated and discussed. Significantly, it is found that the interactive image energy for a dislocation loop depends only on the ratio d/a, where a is the loop diameter and d is its distance to the interface. The examples studied provide benchmark solutions for anisotropic bimaterial dislocation problems. Published by Elsevier Ltd. C1 [Chu, H. J.; Wang, J.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Chu, H. J.] Yanzhou Univ, Res Grp Mech, Yangzhou 225009, Peoples R China. [Chu, H. J.; Pan, E.] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA. [Han, X.] Beijing Inst Technol, Dept Mech, Beijing 1000081, Peoples R China. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU National Natural Science Foundation [10602050, 10672021]; Jiangsu Government; Los Alamos National Laboratory Directed Research and Development (LDRD) [DR20110029, ER20110573]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX H. Chu acknowledgments the financial support provided by the National Natural Science Foundation (10602050) and a Jiangsu Government Scholarship for overseas studies. H. Chu, J. Wang and I.J. Beyerlein acknowledge support provided by Los Alamos National Laboratory Directed Research and Development (LDRD) project DR20110029. J. Wang also acknowledges support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and a Los Alamos National Laboratory Directed Research and Development (LDRD) project ER20110573. X. Han was supported by National Natural Science Foundation (10672021). The authors are very grateful to both reviewers for their valuable and constructive comments and suggestions. The derivation in the appendix is own to Prof. Robert V. Kukta at State University of New York at Stony Brook, who would like to share it to the dislocation community. NR 44 TC 14 Z9 14 U1 2 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD MAR PY 2012 VL 60 IS 3 BP 418 EP 431 DI 10.1016/j.jmps.2011.12.007 PG 14 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 897LJ UT WOS:000300651900003 ER PT J AU Tucker, GJ Tiwari, S Zimmerman, JA McDowell, DL AF Tucker, Garritt J. Tiwari, Shreevant Zimmerman, Jonathan A. McDowell, David L. TI Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Molecular dynamics; Dislocations; Grain boundaries; Metallic material; Nanocrystalline ID SEVERE PLASTIC-DEFORMATION; TILT GRAIN-BOUNDARIES; FCC METALS; DISLOCATION NUCLEATION; ATOMISTIC SIMULATIONS; BICRYSTAL INTERFACES; TENSILE DUCTILITY; QUASI-CONTINUUM; POINT-DEFECTS; HIGH-STRENGTH AB Atomistic simulations are employed to investigate the deformation of nanocrystalline copper and the associated strain accommodation mechanisms at 10 K as a function of grain size. Volume-averaged kinematic metrics based on continuum mechanics theory are formulated to analyze the results of molecular dynamics simulations. The metrics rely on both reference and current configurations, along with nearest neighbor lists to estimate nanoscale behavior of atomic deformation fields in nanocrystalline copper. Various deformation mechanisms are activated in the structures, and shown to depend on average grain size of the nanocrystalline structure. Furthermore, grain boundaries, along with dislocation glide, become an important source of strain accommodation as grain size is reduced. It is demonstrated that the metrics capture the contributions of various mechanisms, and provide a sense of the history of atomic regions undergoing both elastic and plastic deformation. The significance of this research is that unique kinematic signatures of the mechanisms are uncovered using certain metrics, and we are able to resolve the contributions of the deformation mechanisms to the overall strain of the structure using Green strain. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Tucker, Garritt J.; Tiwari, Shreevant; McDowell, David L.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [McDowell, David L.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Zimmerman, Jonathan A.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Tucker, GJ (reprint author), Sandia Natl Labs, POB 5800,MS 1411, Albuquerque, NM 87185 USA. EM gtucker@sandia.gov RI Tucker, Garritt/A-1954-2016 OI Tucker, Garritt/0000-0002-4011-450X FU US National Science Foundation, NSF [CMMI-0758265, CMMI-1030103]; National Science Foundation; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX G.J. Tucker, S. Tiwari, and D.L. McDowell are grateful for the support of the US National Science Foundation, NSF Grants CMMI-0758265 (GJT, kinematic metrics) and CMMI-1030103 (ST, nanocrystalline materials). This research was supported in part by the National Science Foundation through TeraGrid resources provided by the TeraGrid Science Gateways program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 76 TC 19 Z9 20 U1 5 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD MAR PY 2012 VL 60 IS 3 BP 471 EP 486 DI 10.1016/j.jmps.2011.11.007 PG 16 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 897LJ UT WOS:000300651900006 ER PT J AU Fong, RWL Miller, R Saari, HJ Vogel, SC AF Fong, R. W. L. Miller, R. Saari, H. J. Vogel, S. C. TI Crystallographic Texture and Volume Fraction of alpha and beta Phases in Zr-2.5Nb Pressure Tube Material During Heating and Cooling SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID LATTICE-PARAMETERS; TOF DIFFRACTOMETER; TRANSFORMATION; DIFFRACTION; ALLOY; BCC; ZR AB The phase transformations in an as-received Zr-2.5Nb pressure tube material were characterized in detail by neutron diffraction. The texture and volume fraction of alpha and beta phases were measured on heating at eight different temperatures 373 K to 1323 K (100 degrees C to 1050 degrees C) traversing across the alpha/(alpha + beta) and (alpha + beta)/beta solvus lines, and also upon cooling at 1173 K and 823 K (900 degrees C and 550 degrees C). The results indicate that the a-phase texture is quite stable, with little change in the {0002} and {11 (2) over bar0} pole figures during heating to 1123 K (850 degrees C). The beta-phase volume fraction increased while a slight change in texture was observed until heating reached 973 K (700 degrees C). On further heating to 1173 K (900 degrees C), there appears a previously unobserved alpha-phase texture component due to coarsening of the prior primary alpha grains; meanwhile the transformed beta-phase texture evolved markedly. At 1323 K (1050 degrees C), the a phase disappeared with only 100 pct beta phase remaining but with a different texture than that observed at lower temperatures. On cooling from the full beta-phase regime, a different cooldown transformed alpha-phase texture was observed, with no resemblance of the original texture observed at 373 K (100 degrees C). The transformed alpha-phase texture shows that the {0002} plane normals are within the radial-longitudinal plane of the pressure tube following the Burgers orientation relationship of (110)(bcc)//(0002)(hcp) and [(1) over bar 11](bcc)//[11 (2) over bar0](hcp) with a memory of the precursor texture of the primary alpha grains observed on heating at 1173 K (900 degrees C). C1 [Fong, R. W. L.] Atom Energy Canada Ltd, Chalk River Labs, Chalk River, ON K0J 1J0, Canada. [Miller, R.; Saari, H. J.] Carleton Univ, Dept Mech & Aerosp Engn, Ottawa, ON K1S 5B6, Canada. [Vogel, S. C.] Los Alamos Natl Lab, LANSCE, Lujan Ctr, Los Alamos, NM 87545 USA. RP Fong, RWL (reprint author), Atom Energy Canada Ltd, Chalk River Labs, Chalk River, ON K0J 1J0, Canada. EM fongr@aecl.ca RI Lujan Center, LANL/G-4896-2012 FU United States Department of Energy Office of Basic Energy Sciences [DE-AC52-06NA25396] FX This work has benefited from the use of the Manuel Lujan, Jr. Neutron Scattering Center at LANSCE, which is funded by the United States Department of Energy Office of Basic Energy Sciences, under Contract No. DE-AC52-06NA25396. The assistance of Dr. D. Sediako (NRC-Chalk River) is gratefully acknowledged. We thank Professor Wenk for useful comments on ODF data calculations in MAUD program. Thanks are due to K. V. Kidd for the reversed bend sample of an as-received pressure tube material used in this study, and also to Dr. O.T. Woo for providing TEM micrographs. Useful comments from Researcher Emeritus Dr. C. E. Coleman are much appreciated. NR 27 TC 5 Z9 5 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAR PY 2012 VL 43A IS 3 BP 806 EP 821 DI 10.1007/s11661-011-0914-6 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 891CG UT WOS:000300193300004 ER PT J AU Li, DS Li, YL Hu, SY Sun, X Khaleel, M AF Li, Dongsheng Li, Yulan Hu, Shenyang Sun, Xin Khaleel, Mohammad TI Predicting Thermal Conductivity Evolution of Polycrystalline Materials Under Irradiation Using Multiscale Approach SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID THERMOPHYSICAL PROPERTIES; URANIUM-DIOXIDE; NUCLEAR-FUELS; UO2 AB A multiscale methodology was developed to predict the evolution of thermal conductivity of polycrystalline fuel under irradiation. At the mesoscale level, a phase field model was used to predict the evolution of gas bubble microstructure. Generation of gas atoms and vacancies was taken into consideration. Gas bubbles were predicted to form, grow, and coalesce around grain boundary (GB) areas. On the macroscopic scale, a statistical continuum mechanics model was applied to predict the anisotropic thermal conductivity evolution during irradiation. Microstructures predicted by the phase field model were fed into the statistical continuum mechanics model to predict properties and behavior. A decrease of thermal conductivity during irradiation was demonstrated. The influence of irradiation flux, the exposure time, and the grain microstructure were investigated. If the initial GB microstructure was isotropic, the thermal conductivity under irradiation would be similarly isotropic. If the initial GB configuration was anisotropic, anisotropy of thermal conductivity would intensify under irradiation as gas bubbles coalesce around GB areas. The prediction of microstructure and property evolution of polycrystalline materials under irradiation by bridging two models in different scales were demonstrated successfully. This approach provides a deep understanding from a basic scientific viewpoint. C1 [Li, Dongsheng; Li, Yulan; Hu, Shenyang; Sun, Xin; Khaleel, Mohammad] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Li, DS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM dongsheng.li@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749; HU, Shenyang/0000-0002-7187-3082 FU United States Department of Energy [DE-AC05-76RL01830] FX This work was funded by the United States Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in the Pacific Northwest National Laboratory operated by Battelle Memorial Institute for the United States Department of Energy under Contract No. DE-AC05-76RL01830. NR 20 TC 3 Z9 3 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAR PY 2012 VL 43A IS 3 BP 1060 EP 1069 DI 10.1007/s11661-011-0936-0 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 891CG UT WOS:000300193300025 ER PT J AU Noinaj, N Easley, NC Oke, M Mizuno, N Gumbart, J Boura, E Steere, AN Zak, O Aisen, P Tajkhorshid, E Evans, RW Gorringe, AR Mason, AB Steven, AC Buchanan, SK AF Noinaj, Nicholas Easley, Nicole C. Oke, Muse Mizuno, Naoko Gumbart, James Boura, Evzen Steere, Ashley N. Zak, Olga Aisen, Philip Tajkhorshid, Emad Evans, Robert W. Gorringe, Andrew R. Mason, Anne B. Steven, Alasdair C. Buchanan, Susan K. TI Structural basis for iron piracy by pathogenic Neisseria SO NATURE LA English DT Article ID BINDING PROTEIN-B; HUMAN SERUM TRANSFERRIN; X-RAY; MOLECULAR-DYNAMICS; C-LOBE; MENINGITIDIS; RECEPTOR; IDENTIFICATION; ANTIBODIES; SCATTERING AB Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process. C1 [Noinaj, Nicholas; Easley, Nicole C.; Oke, Muse; Boura, Evzen; Buchanan, Susan K.] NIDDK, Mol Biol Lab, US Natl Inst Hlth, Bethesda, MD 20892 USA. [Mizuno, Naoko; Steven, Alasdair C.] NIAMSD, Struct Biol Lab, US Natl Inst Hlth, Bethesda, MD 20892 USA. [Gumbart, James] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Steere, Ashley N.; Mason, Anne B.] Univ Vermont, Coll Med, Dept Biochem, Burlington, VT 05405 USA. [Zak, Olga; Aisen, Philip] Albert Einstein Coll Med, Bronx, NY 10461 USA. [Tajkhorshid, Emad] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA. [Tajkhorshid, Emad] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA. [Evans, Robert W.] Brunel Univ, Sch Hlth Sci & Social Care, Div Biosci, Metalloprot Res Grp, Uxbridge UB8 3PH, Middx, England. [Gorringe, Andrew R.] Hlth Protect Agcy, Salisbury SP2 8NY, Wilts, England. RP Buchanan, SK (reprint author), NIDDK, Mol Biol Lab, US Natl Inst Hlth, Bethesda, MD 20892 USA. EM skbuchan@helix.nih.gov RI Boura, Evzen/I-2626-2012; Boura, Evzen/G-5275-2014; OI Tajkhorshid, Emad/0000-0001-8434-1010 FU NIH, National Institute of Diabetes and Digestive and Kidney Diseases; EPSRC Research Committee; NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases; USPHS [R01-DK21739]; AHA [10PRE4200010]; NIH [R01-GM086749, U54-GM087519, P41-RR05969]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]; US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; Department of Energy, Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources FX N.N., N.C.E., M.O., E.B. and S.K.B. are supported by the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases. M.O. was initially funded by an EPSRC Research Committee Studentship awarded to S.K.B. and R.W.E. N.M. and A.C.S. are supported by the Intramural Research Program of the NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases. A.B.M. was supported in part by USPHS grant R01-DK21739. A.N.S. is funded by an AHA Predoctoral Fellowship (10PRE4200010). E.T. acknowledges NIH support by R01-GM086749, U54-GM087519 and P41-RR05969. All the simulations were performed using TeraGrid resources (MCA06N060). We thank the respective staffs at the Southeast Regional Collaborative Access Team (SER-CAT) and General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) beamlines at the Advanced Photon Source, Argonne National Laboratory for their assistance during data collection. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 (SER-CAT), and by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract No. DE-AC02-06CH11357 (GM/CA-CAT). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. NR 52 TC 91 Z9 91 U1 1 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAR 1 PY 2012 VL 483 IS 7387 BP 53 EP U92 DI 10.1038/nature10823 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 900HP UT WOS:000300877900042 PM 22327295 ER PT J AU Arnold, PL Jones, GM Odoh, SO Schreckenbach, G Magnani, N Love, JB AF Arnold, Polly L. Jones, Guy M. Odoh, Samuel O. Schreckenbach, Georg Magnani, Nicola Love, Jason B. TI Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylation SO NATURE CHEMISTRY LA English DT Article ID PENTAVALENT URANYL; ELECTRONIC-STRUCTURE; AQUEOUS-SOLUTION; OXYGEN-EXCHANGE; LIGAND-EXCHANGE; PARAMETER SETS; ACTINYL IONS; COORDINATION; FUNCTIONALIZATION; PSEUDOPOTENTIALS AB The most common motif in uranium chemistry is the d(0)f(0) uranyl ion [UO2](2+) in which the oxo groups are rigorously linear and inert. Alternative geometries, such as the cis-uranyl, have been identified theoretically and implicated in oxo-atom transfer reactions that are relevant to environmental speciation and nuclear waste remediation. Single electron reduction is now known to impart greater oxo-group reactivity, but with retention of the linear OUO motif, and reactions of the oxo groups to form new covalent bonds remain rare. Here, we describe the synthesis, structure, reactivity and magnetic properties of a binuclear uranium-oxo complex. Formed through a combination of reduction and oxo-silylation and migration from a trans to a cis position, the new butterfly-shaped Si-OUO2UO-Si molecule shows remarkably strong U-V-U-V coupling and chemical inertness, suggesting that this rearranged uranium oxo motif might exist for other actinide species in the environment, and have relevance to the aggregation of actinide oxide clusters. C1 [Arnold, Polly L.; Jones, Guy M.; Love, Jason B.] Univ Edinburgh, EaStCHEM Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland. [Odoh, Samuel O.; Schreckenbach, Georg] Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2, Canada. [Magnani, Nicola] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Magnani, Nicola] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. RP Arnold, PL (reprint author), Univ Edinburgh, EaStCHEM Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland. EM polly.arnold@ed.ac.uk; jason.love@ed.ac.uk RI Arnold, Polly/E-6229-2011; OI Arnold, Polly/0000-0001-6410-5838; Jones, Guy/0000-0001-8966-8688 FU Engineering and Physical Sciences Research Council EPSRC (UK), EaStCHEM; University of Edinburgh; Natural Sciences and Engineering Research Council of Canada (NSERC) FX P.L.A. and J.B.L. acknowledge support from the Engineering and Physical Sciences Research Council EPSRC (UK), EaStCHEM and the University of Edinburgh. G. S. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC). NR 50 TC 76 Z9 76 U1 3 U2 81 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 J9 NAT CHEM JI Nat. Chem. PD MAR PY 2012 VL 4 IS 3 BP 221 EP 227 DI 10.1038/NCHEM.1270 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 897ER UT WOS:000300628900019 PM 22354437 ER PT J AU Leander, R Lenhart, S Protopopescu, V AF Leander, Rachel Lenhart, Suzanne Protopopescu, Vladimir TI Using optimal control theory to identify network structures that foster synchrony SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE Synchrony; Kuramoto oscillators; Optimal control AB Network structures are known to influence a population's propensity to synchronize. Previous attempts to identify synchrony promoting structures have focused on homogeneous populations. We use optimal control theory to construct networks that allow heterogeneous populations to maintain high levels of synchrony, explore the relationship between population heterogeneity and the structure of the optimal networks, and identify salient optimal network features that may enhance synchrony. In particular, we identify a new parameter, the average strength of neighbors, that may foster synchrony and observe that repulsion, in addition to attraction, can foster synchrony. (C) 2011 Elsevier B.V. All rights reserved. C1 [Leander, Rachel] Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USA. [Lenhart, Suzanne] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. [Protopopescu, Vladimir] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Leander, R (reprint author), Ohio State Univ, Math Biosci Inst, 1735 Neil Ave, Columbus, OH 43210 USA. EM rleander@mbi.osu.edu FU National Science Foundation [0931642]; National Institute for Mathematical and Biological Synthesis [NSF EF-0832858]; US Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank Louis Gross for helpful suggestions. The work of Leander was partially supported by the National Science Foundation under Agreement No. 0931642 and partially supported by funding from the National Institute for Mathematical and Biological Synthesis on grant NSF EF-0832858. The work of Lenhart was partially supported by funding from the National Institute for Mathematical and Biological Synthesis on grant NSF EF-0832858. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Department of Energy under contract DE-AC05-00OR22725. NR 11 TC 2 Z9 2 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 J9 PHYSICA D JI Physica D PD MAR 1 PY 2012 VL 241 IS 5 BP 574 EP 582 DI 10.1016/j.physd.2011.11.016 PG 9 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 895GJ UT WOS:000300483900014 ER PT J AU He, Q Liu, X Hu, XM Deng, LW Chen, ZQ Li, BS Fei, YW AF He, Qiang Liu, Xi Hu, Xiaomin Deng, Liwei Chen, Zhiqiang Li, Baosheng Fei, Yingwei TI Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Apatite solid solutions; Diamond-anvil cell; Elastic anisotropy; Isothermal bulk modulus; Synchrotron X-ray diffraction ID RARE-EARTH-ELEMENTS; HIGH-PRESSURE; VIBRATIONAL BEHAVIOR; ELASTIC PROPERTIES; SITE PREFERENCE; HYDROXYAPATITE; DISTANCES; CARBONATE; PHOSPHATE; CALCIUM AB The synthetic solid solutions between lead fluorapatite and lead fluorvanadate apatite, Pb-10[(PO4)(6-x) (VO4) (x) ]F-2 with x equal to 0, 1, 2, 3, 4, 5, and 6, were compressed up to about 9 GPa at ambient temperature by using a diamond-anvil cell coupled with synchrotron X-ray radiation. A second-order Birch-Murnaghan equation of state was used to fit the data. As the substitution of the PO4 (3-) cations by the VO4 (3-) cations progresses, the isothermal bulk modulus steadily decreases, with a maximum reduction of about 16% (from 68.4(16) GPa for Pb-10(PO4)(6)F-2 to 57.2(28) GPa for Pb-10(VO4)(6)F-2). For the entire composition range, the a-axis dimension remains more compressible than the c-axis dimension, with the ratio of the axial bulk moduli (K (T-c) :K (T-a) ) larger than 1. The ratio of K (T-c) to K (T-a) increases from about 1.04(4) to 1.23(14) as the composition parameter x increases from 0 to 6, suggesting that the apatite solid solutions Pb-10[(PO4)(6-x) (VO4) (x) ]F-2 become more elastically anisotropic. C1 [He, Qiang; Liu, Xi; Hu, Xiaomin] Peking Univ, Key Lab Orogen Belts & Crustal Evolut, MOE, Beijing 100871, Peoples R China. [He, Qiang; Liu, Xi; Hu, Xiaomin] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Deng, Liwei; Fei, Yingwei] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Chen, Zhiqiang] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Li, Baosheng] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. RP Liu, X (reprint author), Peking Univ, Key Lab Orogen Belts & Crustal Evolut, MOE, Beijing 100871, Peoples R China. EM xi.liu@pku.edu.cn RI Li, Baosheng/C-1813-2013; chen, zhiqiang/C-9134-2013; 中国科学院, 地球深部研究重点实验室/E-2300-2014; Liu, Xi/K-9845-2015; Fei, Yingwei/F-3709-2011 OI Fei, Yingwei/0000-0001-9955-5353 FU National Natural Science Foundation of China [40872033, 41090371] FX We are grateful to two anonymous reviewers and Professor M. Matsui who provided us with constructive comments which substantially improved the quality of our paper. We thank the National Natural Science Foundation of China (Grant 40872033 and 41090371) for financial support. NR 39 TC 12 Z9 15 U1 3 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD MAR PY 2012 VL 39 IS 3 BP 219 EP 226 DI 10.1007/s00269-011-0477-5 PG 8 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 898ZG UT WOS:000300780300005 ER PT J AU Bhattacharya, RN Oh, MK Kim, Y AF Bhattacharya, Raghu N. Oh, Mi-Kyung Kim, Youngho TI CIGS-based solar cells prepared from electrodeposited precursor films SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE CIGS; Solar cell; Electrodeposited ID SE THIN-FILMS; PHOTOVOLTAIC CELLS; LAYERS AB Previously, we reported 15.4%-efficient [1] copper indium gallium diselenide (CIGS)-based photovoltaic devices from electrodeposited precursor films in which the final film composition was adjusted using the physical vapor deposition (PVD) method. At present, we are fabricating CIGS-based solar cells directly from electrodeposited precursor films, eliminating the expensive PVD step. Electrodeposited CIGS absorber layers are fabricated by a three-stage electrodeposition process in which: (a) CIGS is electrodeposited in the first stage, (b) Cu is electrodeposited in the second stage, and (c) an In layer is deposited in the final third stage. All films are electrodeposited from an aqueous-based solution at room temperature in a two-electrode cell configuration, with platinum gauze as the counter electrode and a glass/MO substrate as the working electrode. The substrate is DC-sputtered with about 1 mu m of Mo. The electrodeposited films are selenized at high temperature (similar to 550 degrees C) to obtain a 10.9%-efficient device. Published by Elsevier B.V. C1 [Bhattacharya, Raghu N.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Oh, Mi-Kyung; Kim, Youngho] Doss Tech Co Ltd, Chungcheongbuk do 363883, South Korea. RP Bhattacharya, RN (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM raghu.bhattacharya@nrel.gov FU Alliance for Sustainable Energy, LLC [DE-AC36-08GO28308]; US Department of Energy FX The authors thank Clay DeHart (NCPV, NREL) for device fabrication, Bobby To (NCPV, NREL) for scanning electron micrographs, and Paul Ciszek (NCPV, NREL) for official J-V measurements. This work has been performed by an employee of the Alliance for Sustainable Energy, LLC, under contract number DE-AC36-08GO28308 with the US Department of Energy. The United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. The research work was performed under a CRADA agreement between NREL and Dass Tech. Co. Ltd. NR 22 TC 30 Z9 33 U1 5 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAR PY 2012 VL 98 BP 198 EP 202 DI 10.1016/j.solmat.2011.10.026 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 895ZZ UT WOS:000300536500026 ER PT J AU Chandra, LSS Chattopadhyay, MK Roy, SB Sahni, VC Myneni, GR AF Chandra, L. S. Sharath Chattopadhyay, M. K. Roy, S. B. Sahni, V. C. Myneni, G. R. TI Magneto thermal conductivity of superconducting Nb with intermediate level of impurity SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID MIXED-STATE; II SUPERCONDUCTORS; LOW-TEMPERATURES; NIOBIUM AB Niobium materials with intermediate purity level are used for fabrication of superconducting radio frequency cavities (SCRF), and thermal conductivity is an important parameter influencing the performance of such SCRF cavities. We report here the temperature and magnetic field dependence of thermal conductivity kappa for superconducting niobium (Nb) samples, for which the electron mean free path l(e), the phonon mean free path l(g), and the vortex core diameter 2r(C) are of the same order of magnitude. The measured thermal conductivity is analyzed using the effective gap model (developed for l(e) >> 2r(C) (Dubeck et al 1963 Phys. Rev. Lett. 10 98)) and the normal core model (developed for l(e) << 2r(C) (Ward and Dew-Hughes 1970 J. Phys. C: Solid St. Phys. 3 2245)). However, it is found that the effective gap model is not suitable for low temperatures when l(e) similar to 2r(C). The normal core model, on the other hand, is able to describe kappa(T, H) over the entire temperature range except in the field regime between H-C1 and H-C2 i.e. in the mixed state. It is shown that to understand the complete behavior of kappa in the mixed state, the scattering of quasi-particles from the vortex cores and the intervortex quasi-particle tunneling are to be invoked. The quasi-particle scattering from vortices for the present system is understood in terms of the framework of Sergeenkov and Ausloos (1995 Phys. Rev. B 52 3614) extending their approach to the case of Nb. The intervortex tunneling is understood within the framework of Schmidbauer et al (1970 Z. Phys. 240 30). Analysis of the field dependence of thermal conductivity shows that while the quasi-particle scattering from vortices dominates in the low fields, the intervortex quasi-particle tunneling dominates in high fields. Analysis of the temperature dependence of thermal conductivity shows that while the quasi-particle scattering is dominant at low temperatures, the intervortex quasi-particle tunneling is dominant at high temperatures. C1 [Chandra, L. S. Sharath; Chattopadhyay, M. K.; Roy, S. B.] Raja Ramanna Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, Madhya Pradesh, India. [Sahni, V. C.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Myneni, G. R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Chandra, LSS (reprint author), Raja Ramanna Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, Madhya Pradesh, India. EM lsschandra@rrcat.gov.in OI , Sharath Chandra/0000-0002-1253-6035 NR 47 TC 4 Z9 4 U1 3 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2012 VL 25 IS 3 AR 035010 DI 10.1088/0953-2048/25/3/035010 PG 12 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 896YN UT WOS:000300607500010 ER PT J AU Brzezinski, K Dauter, Z Jaskolski, M AF Brzezinski, Krzysztof Dauter, Zbigniew Jaskolski, Mariusz TI High-resolution structures of complexes of plant S-adenosyl-L-homocysteine hydrolase (Lupinus luteus) SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID SITE-DIRECTED MUTAGENESIS; ADENOSYLHOMOCYSTEINE HYDROLASE; DNA METHYLATION; RIBOSOMAL-RNA; CRYSTAL-STRUCTURE; SPINACH BEET; RAT-LIVER; ARABIDOPSIS; MECHANISM; INACTIVATION AB S-Adenosyl-l-homocysteine hydrolase (SAHase) catalyzes the reversible breakdown of S-adenosyl-l-homocysteine (SAH) to adenosine and homocysteine. SAH is formed in methylation reactions that utilize S-adenosyl-l-methionine (SAM) as a methyl donor. By removing the SAH byproduct, SAHase serves as a major regulator of SAM-dependent biological methylation reactions. Here, the first crystal structure of SAHase of plant origin, that from the legume yellow lupin (LlSAHase), is presented. Structures have been determined at high resolution for three complexes of the enzyme: those with a reaction byproduct/ substrate (adenosine), with its nonoxidizable analog (cordycepin) and with a product of inhibitor cleavage (adenine). In all three cases the enzyme has a closed conformation. A sodium cation is found near the active site, coordinated by residues from a conserved loop that hinges domain movement upon reactant binding. An insertion segment that is present in all plant SAHases is located near a substrate-pocket access channel and participates in its formation. In contrast to mammalian and bacterial SAHases, the channel is open when adenosine or cordycepin is bound and is closed in the adenine complex. In contrast to SAHases from other organisms, which are active as tetramers, the plant enzyme functions as a homodimer in solution. C1 [Brzezinski, Krzysztof; Jaskolski, Mariusz] Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Poznan, Poland. [Brzezinski, Krzysztof; Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. [Jaskolski, Mariusz] Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, PL-60780 Poznan, Poland. RP Brzezinski, K (reprint author), Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Poznan, Poland. EM kbrzezinski@anl.gov FU Polish Ministry of Science and Higher Education [N N302 4305 34]; NIH; National Cancer Institute; National Cancer Institute, National Institutes of Health [HHSN2612008000001E] FX This work was supported in part by a grant from the Polish Ministry of Science and Higher Education (No. N N302 4305 34), by the Intramural Research Program of NIH, National Cancer Institute, Center for Cancer Research and by Federal funds from the National Cancer Institute, National Institutes of Health under contract HHSN2612008000001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US Government. NR 61 TC 5 Z9 6 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD MAR PY 2012 VL 68 BP 218 EP 231 DI 10.1107/S0907444911055090 PN 3 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 894RM UT WOS:000300444300003 PM 22349223 ER PT J AU Zhang, Y Zwart, PH Ealick, SE AF Zhang, Yang Zwart, Peter H. Ealick, Steven E. TI A corrected space group for Sulfolobus sulfataricus 5 '-deoxy-5 '-methylthioadenosine phosphorylase II SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID PURINE NUCLEOSIDE PHOSPHORYLASE; 3-DIMENSIONAL STRUCTURE; CRYSTAL-STRUCTURE; DISULFIDE BONDS; SOLFATARICUS; REFINEMENT; RESOLUTION AB 5'-Deoxy-5'-methylthioadenosine phosphorylase (MTAP) catalyzes the phosphorolytic cleavage of 5'-deoxy-5'-methylthioadenosine ( MTA), a byproduct of polyamine biosynthesis. The Sulfolobus sulfataricus genome encodes two MTAPs. SsMTAP I has broad substrate specifity, accepting guanosine, inosine, adenosine and MTA, while SsMTAP II is specific for MTA. SsMTAP I forms a donut-shaped hexamer, while SsMTAP II is a hexamer formed from trimers packed face to face. The structure of SsMTAP II was originally determined in space group P1 (PDB entry 2a8y) and showed R32 pseudosymmetry. Post-analysis using phenix. xtriage showed that the correct space group is C2. Here, the structure refined in space group C2 is reported and the factors that initially led to the incorrect space-group assignment are discussed. C1 [Zhang, Yang; Ealick, Steven E.] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. [Zwart, Peter H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ealick, SE (reprint author), Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. EM see3@cornell.edu NR 20 TC 1 Z9 1 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD MAR PY 2012 VL 68 BP 249 EP 252 DI 10.1107/S0907444911051699 PN 3 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 894RM UT WOS:000300444300006 PM 22349226 ER PT J AU Brunecky, R Alahuhta, M Bomble, YJ Xu, Q Baker, JO Ding, SY Himmel, ME Lunin, VV AF Brunecky, Roman Alahuhta, Markus Bomble, Yannick J. Xu, Qi Baker, John O. Ding, Shi-You Himmel, Michael E. Lunin, Vladimir V. TI Structure and function of the Clostridium thermocellum cellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID BACILLUS-CIRCULANS WL-12; PROTEIN-STRUCTURE; MULTIMODULAR CELLOBIOHYDROLASE; MACROMOLECULAR CRYSTALLOGRAPHY; MOLECULAR REPLACEMENT; CHITINASE A1; III DOMAINS; CELLULOSOME; DEGRADATION; HYDROLYSIS AB The efficient deconstruction of lignocellulosic biomass remains a significant barrier to the commercialization of biofuels. Whereas most commercial plant cell-wall-degrading enzyme preparations used today are derived from fungi, the cellulosomal enzyme system from Clostridium thermocellum is an equally effective catalyst, yet of considerably different structure. A key difference between fungal enzyme systems and cellulosomal enzyme systems is that cellulosomal enzyme systems utilize self-assembled scaffolded multimodule enzymes to deconstruct biomass. Here, the possible function of the X1 modules in the complex multimodular enzyme system cellobiohydrolase A (CbhA) from C. thermocellum is explored. The crystal structures of the two X1 modules from C. thermocellum CbhA have been solved individually and together as one construct. The role that calcium may play in the stability of the X1 modules has also been investigated, as well as the possibility that they interact with each other. Furthermore, the results show that whereas the X1 modules do not seem to act as cellulose disruptors, they do aid in the thermostability of the CbhA complex, effectively allowing it to deconstruct cellulose at a higher temperature. C1 [Brunecky, Roman; Alahuhta, Markus; Bomble, Yannick J.; Xu, Qi; Baker, John O.; Ding, Shi-You; Himmel, Michael E.; Lunin, Vladimir V.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Lunin, VV (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM vladimir.lunin@nrel.gov RI Alahuhta, Markus/E-9344-2012; Ding, Shi-You/O-1209-2013 FU DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC); DOE Bioenergy Research Center; National Science Foundation [TGMCB090159] FX This work was supported by the DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center. Computational time for this research was supported in part by the Golden Energy Computing Organization at the Colorado School of Mines using resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratory. Simulations were also performed in part using the Texas Advanced Computing Center Ranger cluster under the National Science Foundation Teragrid grant No. TGMCB090159. NR 42 TC 6 Z9 6 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD MAR PY 2012 VL 68 BP 292 EP 299 DI 10.1107/S0907444912001680 PN 3 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 894RM UT WOS:000300444300011 PM 22349231 ER PT J AU Martinez-Rodriguez, MJ Garcia-Diaz, BL Teprovich, JA Knight, DA Zidan, R AF Martinez-Rodriguez, Michael J. Garcia-Diaz, Brenda L. Teprovich, Joseph A., Jr. Knight, Douglas A. Zidan, Ragaiy TI Advances in the electrochemical regeneration of aluminum hydride SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID LITHIUM AB In previous work, a reversible cycle that uses electrolysis and catalytic hydrogenation of spent Al-(s) for the regeneration of alane (AlH3) was reported. In this study, the electrochemical synthesis of alane is improved. Advances in the electrochemical regeneration of alane have been achieved via the use of lithium aluminum hydride (LiAlH4) and lithium chloride (LiCl). Lithium chloride reacts in a cyclic process and functions as an electro-catalytic additive that enhances the electrochemical process by increasing the cell efficiency and the alane production. Electrochemical techniques are used to show that the increased rate of alane generation is due to the electro-catalytic effect of lithium chloride, rather than an electrolyte enhanced effect. C1 [Martinez-Rodriguez, Michael J.; Garcia-Diaz, Brenda L.; Teprovich, Joseph A., Jr.; Knight, Douglas A.; Zidan, Ragaiy] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Zidan, R (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM Ragaiy.Zidan@srnl.doe.gov OI Knight, David/0000-0001-5510-6265 FU DOE office of EERE (Energy Efficiency and Renewable Energy) [EB4202000]; SRNL [FY11] FX Work presented here was supported by the DOE office of EERE (Energy Efficiency and Renewable Energy) Contract Number EB4202000. This work was also funded by SRNL FY11 Mini-Sabbatical. Savannah River National Laboratory is operated by Savannah River Nuclear Solutions. Special thanks are given to Joseph G. Wheeler for whose assistance and guidance we are extremely grateful. NR 11 TC 8 Z9 8 U1 2 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD MAR PY 2012 VL 106 IS 3 BP 545 EP 550 DI 10.1007/s00339-011-6647-y PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 892BD UT WOS:000300260600011 ER PT J AU Sathyamurthy, S Tuncer, E More, KL Gu, BH Sauers, I Paranthaman, MP AF Sathyamurthy, Srivatsan Tuncer, Enis More, Karren L. Gu, Baohua Sauers, Isidor Paranthaman, M. Parans TI Colloidal synthesis of BaF2 nanoparticles and their application as fillers in polymer nanocomposites SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID BARIUM-FLUORIDE NANOPARTICLES; PHOTOLUMINESCENCE PROPERTIES; LUMINESCENCE BEHAVIOR; SUPERCONDUCTOR WIRES; YBCO FILMS; MOD-YBCO; MICROEMULSION; TRANSITIONS; PERFORMANCE; NANORODS AB Nanoparticles of pure and Eu-doped BaF2 have been prepared through sol-gel colloidal synthesis. In addition, BaF2-filled PMMA polymer nanocomposites were fabricated and dielectric properties were measured. The as-synthesized pure and Eu-doped BaF2 nanoparticles were analyzed by both X-ray diffraction and transmission electron microscopy and consisted of crystalline BaF2 particles with an average diameter of 13.6 nm with a standard deviation of about +/- 2.4 nm. The photoluminescence properties of the pure and Eu-doped (2%, 4% and 8%) nanoparticles showed characteristic emission of Eu3+ (D-5(0)-> F-7 (J) (J=1-4) transitions). We also measured significantly enhanced dielectric breakdown strength of up to 30% for BaF2 nanocomposites over the unfilled PMMA polymer. This study thus offers some promise of sol-gel synthesis of nanocomposite dielectrics with great potential for use as electrical insulation materials in cryogenic high-voltage applications. C1 [Sathyamurthy, Srivatsan; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Tuncer, Enis; Sauers, Isidor] Oak Ridge Natl Lab, Fus Energy Div, Oak Ridge, TN 37831 USA. [More, Karren L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Tuncer, E (reprint author), GE Global Res, Dielect & Elect, Niskayuna, NY 12309 USA. EM enis.tuncer@physics.org RI Gu, Baohua/B-9511-2012; Paranthaman, Mariappan/N-3866-2015; More, Karren/A-8097-2016; OI Gu, Baohua/0000-0002-7299-2956; Paranthaman, Mariappan/0000-0003-3009-8531; More, Karren/0000-0001-5223-9097; Tuncer, Enis/0000-0002-9324-4324 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy-Office of Electricity Delivery and Energy Reliability [DE-AC05-00OR22725] FX The materials synthesis work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The microscopy work of this research was conducted at ORNL's SHaRE User Facility, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. Both SS and ET are supported by the U.S. Department of Energy-Office of Electricity Delivery and Energy Reliability, Superconductivity Program for Electric Power Systems under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 39 TC 6 Z9 6 U1 0 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD MAR PY 2012 VL 106 IS 3 BP 661 EP 667 DI 10.1007/s00339-011-6652-1 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 892BD UT WOS:000300260600026 ER PT J AU Tomasi, D Volkow, ND AF Tomasi, Dardo Volkow, Nora D. TI Abnormal Functional Connectivity in Children with Attention-Deficit/Hyperactivity Disorder SO BIOLOGICAL PSYCHIATRY LA English DT Article DE ADHD; FCD mapping; impulsivity; inattention; networks; reward-motivation ID DEFICIT HYPERACTIVITY DISORDER; DEFAULT-MODE NETWORK; BRAIN NETWORKS; PREFRONTAL CORTEX; ADHD; DOPAMINE; DYSFUNCTION; MEDICATION; COGNITION; ADULTS AB Background: Attention-deficit/hyperactivity disorder (ADHD) is typically characterized by symptoms of inattention and hyperactivity/impulsivity, but there is increased recognition of a motivation deficit too. This neuropathology may reflect dysfunction of both attention and reward-motivation networks. Methods: To test this hypothesis, we compared the functional connectivity density between 247 ADHD and 304 typically developing control children from a public magnetic resonance imaging database. We quantified short- and long-range functional connectivity density in the brain using an ultrafast data-driven approach. Results: Children with ADHD had lower connectivity (short- and long-range) in regions of the dorsal attention (superior parietal cortex) and default-mode (precuneus) networks and in cerebellum and higher connectivity (short-range) in reward-motivation regions (ventral striatum and orbitofrontal cortex) than control subjects. In ADHD children, the orbitofrontal cortex (region involved in salience attribution) had higher connectivity with reward-motivation regions (striatum and anterior cingulate) and lower connectivity with superior parietal cortex (region involved in attention processing). Conclusions: The enhanced connectivity within reward-motivation regions and their decreased connectivity with regions from the default-mode and dorsal attention networks suggest impaired interactions between control and reward pathways in ADHD that might underlie attention and motivation deficits in ADHD. C1 [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD USA. RP Tomasi, D (reprint author), Brookhaven Natl Lab, Lab Neuroimaging LNI NIAAA, Dept Med, Bldg 490,30 Bell Ave, Upton, NY 11973 USA. EM tomasi@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU National Institute on Alcohol Abuse and Alcoholism [2RO1AA09481] FX This work was accomplished with support from the National Institute on Alcohol Abuse and Alcoholism (2RO1AA09481). NR 52 TC 106 Z9 109 U1 1 U2 26 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD MAR 1 PY 2012 VL 71 IS 5 BP 443 EP 450 DI 10.1016/j.biopsych.2011.11.003 PG 8 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 892BE UT WOS:000300260700009 PM 22153589 ER PT J AU Vine, E AF Vine, Edward TI Adaptation of California's electricity sector to climate change SO CLIMATIC CHANGE LA English DT Article ID FOLSOM LAKE RESPONSE; CHANGE SCENARIOS; UNITED-STATES; HEAT-WAVE; RESOURCES; NEED; US AB Climate change is likely to pose considerable new challenges to California's electricity sector. This paper primarily focuses on the adaptation challenges of an important component of the energy arena: electricity demand in the residential and commercial sectors and electricity supply. The primary challenge to California's electricity sector will likely be the increase in demand for air conditioning as a result of rising temperatures. In addition, renewable energy sources, which are an increasing share of the electricity portfolio, are particularly vulnerable to climate change. Many of the key players have been actively considering the implications of climate change. Because electricity generation accounts for nearly 30% of greenhouse gas emissions, this sector has been a target of the state's efforts to reduce emissions. Fortunately, many of the same tools can simultaneously improve the sector's resilience to a changing climate. Demand management strategies and supply diversification are both important strategies. Local governments can play a central role in encouraging the adoption of more energy efficient building codes and the use of more renewable sources, such as solar energy. The positive steps taken by many local governments are encouraging. Steps to increase public awareness are an important, often missing component, however. Increases in research, development, and demonstration to improve system resiliency and develop new energy conservation tools are also needed. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Vine, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg 90-4000, Berkeley, CA 94720 USA. EM elvine@lbl.gov RI Brooks, Katya/J-4975-2014; Quezada, George/I-1106-2012 OI Quezada, George/0000-0002-4060-6109 FU Next Ten; Pacific Gas and Electric Company; Nature Conservancy FX I would like to thank the Public Policy Institute of California for inviting me to prepare this paper and the financial support from Next Ten, Pacific Gas and Electric Company, and The Nature Conservancy. I would also like to thank the following people for providing information or advice for the preparation of this paper: Cal Broomhead (City and County of San Francisco), Merwin Brown (California Institute for Energy and Environment), Lloyd Cibulka (California Institute for Energy and Environment), Guido Franco (California Energy Commission), Gary Freeman (Pacific Gas & Electric Company), Marshall Hunt (UC Davis Western Cooling Efficiency Center), Norm Miller (Lawrence Berkeley National Laboratory), Evan Mills (Lawrence Berkeley National Laboratory), Joe O'Hagan (California Energy Commission), Wendy Pulling (Pacific Gas & Electric Company), Sue Tierney (Analysis Group), and Lorraine White (California Energy Commission). Finally, I would also like to thank the reviewers of an earlier version of this paper: Guido Franco, Evan Mills, Wendy Pulling, and Michael Teitz. Furthermore, I am indebted to Louise Bedsworth, Ellen Hanak, and Lynette Ubois of the Public Policy Institute of California who made this paper more intelligible than I could produce. Finally, I would like to acknowledge the helpful comments from the anonymous journal reviewers. NR 62 TC 14 Z9 14 U1 2 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD MAR PY 2012 VL 111 IS 1 SI SI BP 75 EP 99 DI 10.1007/s10584-011-0242-2 PG 25 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 892KN UT WOS:000300285200005 ER PT J AU Duffy, PB Tebaldi, C AF Duffy, P. B. Tebaldi, C. TI Increasing prevalence of extreme summer temperatures in the U.S. SO CLIMATIC CHANGE LA English DT Article ID UNITED-STATES; TRENDS; HEAT AB Human-caused climate change can affect weather and climate extremes, as well as mean climate properties. Analysis of observations and climate model results shows that previously rare (5th percentile) summertime average temperatures are presently occurring with greatly increased frequency in some regions of the 48 contiguous United States. Broad agreement between observations and a mean of results based upon 16 global climate models suggests that this result is more consistent with the consequences of increasing greenhouse gas concentrations than with the effects of natural climate variability. This conclusion is further supported by a statistical analysis based on resampling of observations and model output. The same climate models project that the prevalence of previously extreme summer temperatures will continue to increase, occurring in well over 50% of summers by mid-century. C1 [Duffy, P. B.] Climate Cent Inc, Palo Alto, CA 94301 USA. [Tebaldi, C.] Natl Atmospher Res, Boulder, CO 80305 USA. RP Duffy, PB (reprint author), Lawrence Livermore Natl Lab, L-103,POB 808, Livermore, CA 94550 USA. EM pduffy@llnl.gov FU US Department of Energy, Office of Biological and Environmental Research [DE-SC0004956] FX Claudia Tebaldi acknowledges support from the US Department of Energy, Office of Biological and Environmental Research, grant DE-SC0004956 and thanks the Climate and Global Dynamics division of the National Center for Atmospheric Research, Climate Change Research section, for hosting her. NR 18 TC 27 Z9 28 U1 3 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD MAR PY 2012 VL 111 IS 2 BP 487 EP 495 DI 10.1007/s10584-012-0396-6 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 892VU UT WOS:000300314500016 ER PT J AU Nagai, R Murray, DB Metz, TO Baynes, JW AF Nagai, Ryoji Murray, David B. Metz, Thomas O. Baynes, John W. TI Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications SO DIABETES LA English DT Article ID GLYCATION END-PRODUCTS; ANGIOTENSIN-CONVERTING ENZYME; EARLY RENAL-DISEASE; ALDOSE REDUCTASE; OXIDATIVE STRESS; IN-VIVO; LIPID-PEROXIDATION; RECEPTOR BLOCKERS; MAILLARD REACTION; CROSS-LINKS AB This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications. Diabetes 61:549-559, 2012 C1 [Baynes, John W.] Univ S Carolina, Sch Med, Dept Pharmacol Physiol & Neurosci, Columbia, SC 29208 USA. [Nagai, Ryoji] Japan Womens Univ, Dept Food & Nutr, Tokyo 112, Japan. [Murray, David B.] Univ Mississippi, Dept Pharmacol, Oxford, MS USA. [Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA USA. RP Baynes, JW (reprint author), Univ S Carolina, Sch Med, Dept Pharmacol Physiol & Neurosci, Columbia, SC 29208 USA. EM john.baynes@sc.edu OI Metz, Tom/0000-0001-6049-3968 FU Ministry of Education, Japan [18790619]; University of South Carolina School of Medicine Center for Biomedical Research Excellence; National Institute of Diabetes and Digestive and Kidney Diseases [DK071283, DK19971]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research [DE-AC06-76-RLO-1830]; NephroGenex, Inc. FX Research in the authors' laboratories was supported by a Grant-in-Aid for Scientific Research (18790619) from the Ministry of Education, Japan (to R.N.), the University of South Carolina School of Medicine Center for Biomedical Research Excellence (to D.B.M.), and research grants DK071283 (to T.O.M.) and DK19971 (to J.W.B.) from the National Institute of Diabetes and Digestive and Kidney Diseases. Pacific Northwest National Laboratory is supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research and is operated by Battelle for the DOE under contract no. DE-AC06-76-RLO-1830. J.W.B. receives royalties from NephroGenex, Inc., through a licensing agreement with the University of South Carolina for use of pyridoxamine. No other potential conflicts of interest relevant to this article were reported. NR 50 TC 62 Z9 63 U1 3 U2 16 PU AMER DIABETES ASSOC PI ALEXANDRIA PA 1701 N BEAUREGARD ST, ALEXANDRIA, VA 22311-1717 USA SN 0012-1797 J9 DIABETES JI Diabetes PD MAR PY 2012 VL 61 IS 3 BP 549 EP 559 DI 10.2337/db11-1120 PG 11 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 899FA UT WOS:000300800600001 PM 22354928 ER PT J AU Lam, PJ Ohnemus, DC Marcus, MA AF Lam, Phoebe J. Ohnemus, Daniel C. Marcus, Matthew A. TI The speciation of marine particulate iron adjacent to active and passive continental margins SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID HYDROTHERMAL VENTS; DUST SOURCES; OCEAN; SEDIMENTS; FE; XANES; BIOGEOCHEMISTRY; PHYTOPLANKTON; AVAILABILITY; SOLUBILITY AB We use synchrotron-based chemical-species mapping techniques to compare the speciation of suspended (1-51 mu m) marine particulate iron collected in two open ocean environments adjacent to active and passive continental margins. Chemical-species mapping provides speciation information for heterogeneous environmental samples, and is especially good for detecting spectroscopically distinct trace minerals and species that could not be detectable by other methods. The average oxidation state of marine particulate iron determined by chemical-species mapping is comparable to that determined by standard bulk X-ray Absorption Near Edge Structure spectroscopy. Using chemical-species mapping, we find that up to 43% of particulate Fe in the Northwest Pacific at the depth of the adjacent active continental margin is in the Fe(II) state, with the balance Fe(III). In contrast, particulate iron in the eastern tropical North Atlantic, which receives the highest dust deposition on Earth and is adjacent to a passive margin, is dominated by weathered and oxidized Fe compounds, with Fe(III) contributing 90% of total iron. The balance is composed primarily of Fe(II)-containing species, but we detected individual pyrite particles in some samples within an oxygen minimum zone in the upper thermocline. Several lines of evidence point to the adjacent Mauritanian continental shelf as the source of pyrite to the water column. The speciation of suspended marine particulate iron reflects the mineralogy of iron from the adjacent continental margins. Since the solubility of particulate iron has been shown to be a function of its speciation, this may have implications for the bioavailability of particulate iron adjacent to passive compared to active continental margins. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lam, Phoebe J.; Ohnemus, Daniel C.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lam, PJ (reprint author), Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, MS 25,266 Woods Hole Rd, Woods Hole, MA 02543 USA. EM pjlam@whoi.edu OI Ohnemus, Daniel/0000-0001-6362-4134 FU NSF [OCE-0726367]; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231] FX This research was supported by NSF grant OCE-0726367 to P.J.L. The operations of the Advanced Light Source at Lawrence Berkeley National Laboratory are supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under contract number DE-AC02-05CH11231. The authors are grateful to Tim Eglinton and Dave Griffiths for providing core-top sediments from the NW African margin from the CHEETA cruise in 2007; the scientific and ship's crew of the R/V Oceanus for help at sea during the SIRENA cruise in 2008; Sirine Fakra, Hyojin Kim, Ralph Till, and John Swartz for assistance at the beamline; the many users at beamline 10.3.2 for contributing XANES spectra of Fe model compounds; Sirine Fakra for maintaining this database; Tracy Atwood for assistance in the laboratory; and Scot Birdwhistel l and the WHOI ICP facility for assistance on the ICP-MS. This manuscript was improved by the comments of Rob Raiswell and two anonymous reviewers. NR 51 TC 18 Z9 19 U1 0 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAR 1 PY 2012 VL 80 BP 108 EP 124 DI 10.1016/j.gca.2011.11.044 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 891QE UT WOS:000300230900007 ER PT J AU Spitz, H Glover, S Hickman, D AF Spitz, Henry Glover, Samuel Hickman, David TI NATURAL VS. ARTIFICIAL ANTHROPOMETRIC PHANTOMS FOR MEASURING BONE-SEEKING RADIONUCLIDES SO HEALTH PHYSICS LA English DT Letter C1 [Spitz, Henry; Glover, Samuel] Univ Cincinnati, Cincinnati, OH 45221 USA. [Hickman, David] Lawrence Livermore Natl Lab, Whole Body Counter & Spect Lab, Livermore, CA 94550 USA. RP Spitz, H (reprint author), Univ Cincinnati, 598 Rhodes Hall, Cincinnati, OH 45221 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2012 VL 102 IS 3 BP 353 EP 354 DI 10.1097/HP.0b013e31823f58a6 PG 3 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 894FP UT WOS:000300412800014 PM 22315027 ER PT J AU Bakhtiari, S Elmer, TW Cox, NM Gopalsami, N Raptis, AC Liao, SL Mikhelson, I Sahakian, AV AF Bakhtiari, Sasan Elmer, Thomas W., II Cox, Nicholas M. Gopalsami, Nachappa Raptis, Appostolos C. Liao, Shaolin Mikhelson, Ilya Sahakian, Alan V. TI Compact Millimeter-Wave Sensor for Remote Monitoring of Vital Signs SO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT LA English DT Article DE Biomedical monitoring; millimeter-wave (MMW) sensor; remote sensing; signal processing; vital signs ID MICROWAVE; HEARTBEAT; MOVEMENT; BODY AB A compact millimeter-wave (MMW) sensor has been developed for remote monitoring of human vital signs (heart and respiration rate). The low-power homodyne transceiver operating at 94 GHz was assembled by using solid-state active and passive block-type components and can be battery operated. A description of the MMW system front end and the back-end acquisition hardware and software is presented. Representative test case results on the application of various signal processing and data analysis algorithms developed to extract faint physiological signals of interest in presence of strong background interference are provided. Although the laboratory experiments so far have been limited to standoff distances of up to 15 m, the upper limit of the detection range is expected to be higher. In comparison with its microwave counterparts, the MMW system described here provides higher directivity, increased sensitivity, and longer detection range for measuring subtle mechanical displacements associated with heart and respiration functions. The system may be adapted for use in a wide range of standoff sensing applications including for patient health care, structural health monitoring, nondestructive testing, biometric sensing, and remote vibrometry in general. C1 [Bakhtiari, Sasan; Elmer, Thomas W., II; Cox, Nicholas M.; Gopalsami, Nachappa; Raptis, Appostolos C.; Liao, Shaolin] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Mikhelson, Ilya; Sahakian, Alan V.] Northwestern Univ, Dept Elect & Comp Sci, Evanston, IL 60208 USA. RP Bakhtiari, S (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bakhtiari@anl.gov RI Sahakian, Alan/B-7268-2009; OI Elmer, Thomas/0000-0003-0363-5928 FU U.S. Department of Energy [DE-AC02-06CH11357]; National Consortium for Measurement and Signature Intelligence (MASINT) FX Manuscript received February 23, 2011; revised August 29, 2011; accepted September 14, 2011. Date of publication November 18, 2011; date of current version February 8, 2012. This work was supported in part by the U.S. Department of Energy under Contract DE-AC02-06CH11357 and in part by the National Consortium for Measurement and Signature Intelligence (MASINT). The Associate Editor coordinating the review process for this paper was Dr. Samir Trabelsi. NR 16 TC 26 Z9 27 U1 0 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9456 J9 IEEE T INSTRUM MEAS JI IEEE Trans. Instrum. Meas. PD MAR PY 2012 VL 61 IS 3 BP 830 EP 841 DI 10.1109/TIM.2011.2171589 PG 12 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 891WX UT WOS:000300248600029 ER PT J AU Gul, R Keeter, K Rodriguez, R Bolotnikov, AE Hossain, A Camarda, GS Kim, KH Yang, G Cui, Y Carcelen, V Franc, J Li, Z James, RB AF Gul, R. Keeter, K. Rodriguez, R. Bolotnikov, A. E. Hossain, A. Camarda, G. S. Kim, K. H. Yang, G. Cui, Y. Carcelen, V. Franc, J. Li, Z. James, R. B. TI Point Defects in Pb-, Bi-, and In-Doped CdZnTe Detectors: Deep-Level Transient Spectroscopy (DLTS) Measurements SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE CdZnTe detectors; dopant; point defects; DLTS; indium; bismuth; lead; capture cross-section ID TELLURIDE CRYSTALS; CDTE MATERIALS; PERFORMANCE AB We studied, by current deep-level transient spectroscopy (I-DLTS), point defects induced in CdZnTe detectors by three dopants: Pb, Bi, and In. Pb-doped CdZnTe detectors have a new acceptor trap at around 0.48 eV. The absence of a V-Cd trap suggests that all Cd vacancies are compensated by Pb interstitials after they form a deep-acceptor complex [[Pb-Cd](+)-V (Cd) (2-) ](-). Bi-doped CdZnTe detectors had two distinct traps: a shallow trap at around 36 meV and a deep donor trap at around 0.82 eV. In detectors doped with In, we noted three well-known traps: two acceptor levels at around 0.18 eV (A-centers) and 0.31 eV (V-Cd), and a deep trap at around 1.1 eV. C1 [Gul, R.; Bolotnikov, A. E.; Hossain, A.; Camarda, G. S.; Kim, K. H.; Yang, G.; Cui, Y.; Li, Z.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Keeter, K.; Rodriguez, R.] Idaho State Univ, Pocatello, ID 83209 USA. [Carcelen, V.] Univ Autonoma Madrid, Madrid, Spain. [Franc, J.] Charles Univ Prague, Prague, Czech Republic. RP Gul, R (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM gul@bnl.gov RI Carcelen, Veronica /B-3750-2017; Franc, Jan/C-3802-2017 OI Franc, Jan/0000-0002-9493-3973 FU Defense Treat Reduction Agency; US Department of Energy, Office of Nonproliferation Research and Development [NA-22] FX This work was supported by the Defense Treat Reduction Agency and US Department of Energy, Office of Nonproliferation Research and Development, NA-22. NR 14 TC 10 Z9 10 U1 0 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2012 VL 41 IS 3 BP 488 EP 493 DI 10.1007/s11664-011-1802-y PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 887LY UT WOS:000299930100010 ER PT J AU Biswas, S Gosztola, DJ Wiederrecht, GP Stroscio, MA Dutta, M AF Biswas, Sushmita Gosztola, David J. Wiederrecht, Gary P. Stroscio, Michael A. Dutta, Mitra TI Annealing-Induced Morphological Changes in Nanocrystalline Quantum Dots and Their Impact on Charge Transport Properties SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Quantum dots; annealing; cadmium selenide; charge transport; morphology ID LIGHT-EMITTING-DIODES; POLYMER; FILMS; PHOTODETECTORS AB The effects of thermal annealing on the morphological and photoconductive properties of cadmium selenide quantum dots coated with zinc sulfide are studied. The results of transmission electron microscopy with in situ annealing show a number of events taking place simultaneously, including aggregation of dots, changes in the size and shape distribution, and reduction in interdot separation. Transient absorption results indicate that there is a small redshift of the spectrum. There is a shortening of the absorption decay lifetimes due to annealing. Higher photocurrents are measured in the annealed compared with unannealed dots at room temperature. C1 [Biswas, Sushmita] USAF, Res Lab, Dayton, OH 45433 USA. [Gosztola, David J.; Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Stroscio, Michael A.; Dutta, Mitra] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA. [Stroscio, Michael A.] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA. [Stroscio, Michael A.; Dutta, Mitra] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Biswas, S (reprint author), USAF, Res Lab, 2941 Hobson Way, Dayton, OH 45433 USA. EM dutta@uic.edu RI Gosztola, David/D-9320-2011 OI Gosztola, David/0000-0003-2674-1379 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Prof. Preston T. Snee from the Department of Chemistry at the University of Illinois at Chicago, for providing the quantum dot samples. We also thank Dr. Ke-Bin Low and Dr. Alan Nicholls from the Research Resources Center, University of Illinois at Chicago, for the TEM measurements. Use of the Center for Nanoscale materials, Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 21 TC 4 Z9 6 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2012 VL 41 IS 3 BP 524 EP 529 DI 10.1007/s11664-011-1815-6 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 887LY UT WOS:000299930100016 ER PT J AU Klostermann, EC Braskie, MN Landau, SM O'Neil, JP Jagust, WJ AF Klostermann, Ellen C. Braskie, Meredith N. Landau, Susan M. O'Neil, James P. Jagust, William J. TI Dopamine and frontostriatal networks in cognitive aging SO NEUROBIOLOGY OF AGING LA English DT Article DE Aging; Working memory; Dopamine; Functional connectivity; FMT ID POSITRON-EMISSION-TOMOGRAPHY; EARLY PARKINSONS-DISEASE; WORKING-MEMORY; BASAL GANGLIA; HUMAN-BRAIN; FUNCTIONAL CONNECTIVITY; PREFRONTAL CORTEX; HUMAN STRIATUM; RHESUS-MONKEY; IN-VIVO AB Recent studies have linked dopamine to differences in behavior and brain activity in normal individuals. We explored these relationships in older and younger adults by investigating how functional connectivity between the striatum and prefrontal cortex is related to caudate dopamine and verbal working memory task performance. We studied 12 young and 18 older participants with functional magnetic resonance imaging (fMRI) during this task, and used positron emission tomography with the tracer 6-[F-18]-fluoro-L-m-tyrosine (FMT) to assess dopamine synthesis capacity. Younger adults had a greater extent of frontal caudate functional connectivity during the load-dependent delay period of the working memory task than the older participants. Across all subjects, the extent of this functional connectivity was negatively correlated with dopamine synthesis capacity, such that participants with the greatest connectivity had the lowest caudate 6-[F-18]-fluoro-L- m-tyrosine (FMT) signal. Additionally, the extent of functional connectivity was positively correlated with working memory performance. Overall these data suggest interdependencies exist between frontostriatal functional connectivity, dopamine, and working memory performance and that this system is functioning suboptimally in normal aging. (C) 2012 Elsevier Inc. All rights reserved. C1 [Klostermann, Ellen C.; Braskie, Meredith N.; Landau, Susan M.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Klostermann, Ellen C.; Landau, Susan M.; O'Neil, James P.; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Klostermann, EC (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 132 Barker Hall,MC 3190, Berkeley, CA 94720 USA. EM eklostermann@berkeley.edu FU NIH [AG027984] FX This study was supported by NIH grant AG027984 to W.J. Jagust. NR 58 TC 11 Z9 11 U1 2 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0197-4580 J9 NEUROBIOL AGING JI Neurobiol. Aging PD MAR PY 2012 VL 33 IS 3 AR 623.e15 DI 10.1016/j.neurobiolaging.2011.03.002 PG 10 WC Geriatrics & Gerontology; Neurosciences SC Geriatrics & Gerontology; Neurosciences & Neurology GA 885NP UT WOS:000299786000034 PM 21511369 ER PT J AU Brown, WM Kohlmeyer, A Plimpton, SJ Tharrington, AN AF Brown, W. Michael Kohlmeyer, Axel Plimpton, Steven J. Tharrington, Arnold N. TI Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Molecular dynamics; Electrostatics; Particle mesh; GPU; Hybrid parallel computing ID EWALD SUMS AB The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with an approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers. (C) 2011 Elsevier B.V. All rights reserved. C1 [Brown, W. Michael; Tharrington, Arnold N.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Kohlmeyer, Axel] Temple Univ, Inst Computat Mol Sci, Philadelphia, PA 19122 USA. [Plimpton, Steven J.] Sandia Natl Labs, Albuquerque, NM USA. RP Brown, WM (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. EM brownw@ornl.gov; a.kohlmeyer@temple.edu; sjplimp@sandia.gov; arnoldt@ornl.gov FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC04-94AL85000]; National Science Foundation [CHE-09-46358]; National Institute for Computational Science [UT-NTNL0039] FX This research was conducted in part under the auspices of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This research used resources of the Leadership Computing Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. The work was supported in part by the National Science Foundation through grant number CHE-09-46358 and computer time on the Keeneland initial delivery system hosted at the National Institute for Computational Science under grant number UT-NTNL0039. All of the code described in this paper is available in the open-source LAMMPS software package, available at http://lammps.sandia.gov/. NR 20 TC 55 Z9 60 U1 10 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAR PY 2012 VL 183 IS 3 BP 449 EP 459 DI 10.1016/j.cpc.2011.10.012 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 890ES UT WOS:000300128500001 ER PT J AU Gorton, I Sivaramakrishnan, C Black, G White, S Purohit, S Lansing, C Madison, M Schuchardt, K Lou, Y AF Gorton, Ian Sivaramakrishnan, Chandrika Black, Gary White, Signe Purohit, Sumit Lansing, Carina Madison, Michael Schuchardt, Karen Lou, Yan TI Velo: A Knowledge-Management Framework for Modeling and Simulation SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article ID CHALLENGES AB Velo is a reusable, domain-independent knowledge-management infrastructure for modeling and simulation. Velo leverages, integrates, and extends Web-based open source collaborative and data-management technologies to create a scalable and flexible core platform tailored to specific scientific domains. As the examples here describe, Velo has been used in both the carbon sequestration and climate modeling domains. C1 [Gorton, Ian; Sivaramakrishnan, Chandrika; Black, Gary; White, Signe; Purohit, Sumit; Lansing, Carina; Madison, Michael; Schuchardt, Karen; Lou, Yan] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gorton, I (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ian.gorton@pnnl.gov; chandrika@pnnl.gov; gary.black@pnnl.gov; signe.white@pnnl.gov; sumit.purohit@pnnl.gov; carina.lansing@pnnl.gov; michael.madison@pnnl.gov; karen.schuchardt@pnnl.gov; yan.liu@pnnl.gov OI White, Signe/0000-0003-4797-8877 NR 7 TC 9 Z9 9 U1 0 U2 11 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD MAR-APR PY 2012 VL 14 IS 2 BP 12 EP 23 PG 12 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 888TE UT WOS:000300026700003 ER PT J AU Rouson, D Morris, K Xia, J AF Rouson, Damian Morris, Karla Xia, Jim TI This Isn't Your Parents' Fortran: Managing C++ Objects with Modern Fortran SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB Modern Fortran automates dynamic memory deallocations, except in two cases: memory allocated via pointers and via a second language at the request of a Fortran driver. This article focuses on the second exception and presents a reference-counting architecture that requires minimal user intervention to safely free memory if and only if no references remain. C1 [Rouson, Damian; Morris, Karla] Sandia Natl Labs, Reacting Flows Res Dept, Livermore, CA 94550 USA. RP Rouson, D (reprint author), Sandia Natl Labs, Reacting Flows Res Dept, Livermore, CA 94550 USA. EM rouson@sandia.gov; knmorri@sandia.gov; jimxia@ca.ibm.com NR 11 TC 2 Z9 2 U1 1 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD MAR-APR PY 2012 VL 14 IS 2 BP 46 EP 54 PG 9 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 888TE UT WOS:000300026700006 ER PT J AU Urbin, SS Elvers, I Hinz, JM Helleday, T Thompson, LH AF Urbin, Salustra S. Elvers, Ingegerd Hinz, John M. Helleday, Thomas Thompson, Larry H. TI Uncoupling of RAD51 focus formation and cell survival after replication fork stalling in RAD51D null CHO cells SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Article DE homologous recombination; RAD51 paralogs; RAD51 foci; hydroxyurea; DNA replication ID DOUBLE-STRAND BREAKS; INTRACHROMOSOMAL HOMOLOGOUS RECOMBINATION; DNA-REPAIR PROTEINS; MAMMALIAN-CELLS; POLY(ADP-RIBOSE) POLYMERASE; MUTANT P53; ATAXIA-TELANGIECTASIA; IONIZING-RADIATION; TOPOISOMERASE-I; IRS MUTANTS AB In vertebrate cells, the five RAD51 paralogs (XRCC2/3 and RAD51B/C/D) enhance the efficiency of homologous recombination repair (HRR). Stalling and breakage of DNA replication forks is a common event, especially in the large genomes of higher eukaryotes. When cells are exposed to agents that arrest DNA replication, such as hydroxyurea or aphidicolin, fork breakage can lead to chromosomal aberrations and cell killing. We assessed the contribution of the HRR protein RAD51D in resistance to killing by replication-associated DSBs. In response to hydroxyurea, the isogenic rad51d null CHO mutant fails to show any indication of HRR initiation, as assessed by induction RAD51 foci, as expected. Surprisingly, these cells have normal resistance to killing by replication inhibition from either hydroxyurea or aphidicolin, but show the expected sensitivity to camptothecin, which also generates replication-dependent DSBs. In contrast, we confirm that the V79 xrcc2 mutant does show increased sensitivity to hydroxyurea under some conditions, which was correlated to its attenuated RAD51 focus response. In response to the PARP1 inhibitor KU58684, rad51d cells, like other HRR mutants, show exquisite sensitivity (>1000-fold), which is also associated with defective RAD51 focus formation. Thus, rad51d cells are broadly deficient in RAD51 focus formation in response to various agents, but this defect is not invariably associated with increased sensitivity. Our results indicate that RAD51 paralogs do not contribute equally to cellular resistance of inhibitors of DNAreplication, and that the RAD51 foci associated with replication inhibition may not be a reliable indicator of cellular resistance to such agents. Environ. Mol. Mutagen. 2012. (c) 2012 Wiley Periodicals, Inc. C1 [Urbin, Salustra S.; Thompson, Larry H.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Elvers, Ingegerd; Helleday, Thomas] Stockholm Univ, Dept Genet Microbiol & Toxicol, S-10691 Stockholm, Sweden. [Hinz, John M.] Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA. RP Thompson, LH (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, L452, Livermore, CA 94550 USA. EM thompson14@llnl.gov RI Helleday, Thomas/D-5224-2013; OI Helleday, Thomas/0000-0002-7384-092X FU NIH National Cancer Institute; U.S. Department of Health and Human Services; Swedish Cancer Society [CA112566] FX Grant sponsors: NIH National Cancer Institute, U.S. Department of Health and Human Services, The Swedish Cancer Society; Grant Number: CA112566. NR 66 TC 9 Z9 9 U1 0 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0893-6692 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD MAR PY 2012 VL 53 IS 2 BP 114 EP 124 DI 10.1002/em.21672 PG 11 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA 886DJ UT WOS:000299831600004 PM 22302683 ER PT J AU Galvez, ME Beyssac, O Benzerara, K Bernard, S Menguy, N Cox, SC Martinez, I Johnston, MR Brown, GE AF Galvez, M. E. Beyssac, O. Benzerara, K. Bernard, S. Menguy, N. Cox, S. C. Martinez, I. Johnston, M. R. Brown, G. E., Jr. TI Morphological preservation of carbonaceous plant fossils in blueschist metamorphic rocks from New Zealand SO GEOBIOLOGY LA English DT Article ID CAMBRIAN BURGESS SHALE; ADVANCED LIGHT-SOURCE; MEDIAN TECTONIC ZONE; ORGANIC-MATTER; HIGH-PRESSURE; IN-SITU; RECORD; MINERALIZATION; ENVIRONMENTS; ORIGIN AB Morphological and chemical evidence of ancient life is widespread in sedimentary rocks retrieved from shallow depths in the Earths crust. Metamorphism is highly detrimental to the preservation of biological information in rocks, thus limiting the geological record in which traces of life might be found. Deformation and increasing pressure/temperature during deep burial may alter the morphology as well as the composition and structure of both the organic and mineral constituents of fossils. However, microspore fossils have been previously observed in intensely metamorphosed rocks. It has been suggested that their small size, and/or the nature of the polymer composing their wall, and/or the mineralogy of their surrounding matrix were key parameters explaining their exceptional preservation. Here, we describe the remarkable morphological preservation of plant macrofossils in blueschist metamorphic rocks from New Zealand containing lawsonite. Leaves and stems can be easily identified at the macroscale. At the microscale, polygonal structures with walls mineralized by micas within the leaf midribs and blades may derive from the original cellular ultrastructure or, alternatively, from the shrinkage during burial of the gelified remnants of the leaves in an abiotic process. Processes and important parameters involved in the remarkable preservation of these fossils during metamorphism are discussed. Despite the excellent morphological preservation, the initial biological polymers have been completely transformed to graphitic carbonaceous matter down to the nanometer scale. This occurrence demonstrates that plant macrofossils may experience major geodynamic processes such as metamorphism and exhumation involving deep changes and homogenization of their carbon chemistry and structure but still retain their morphology with remarkable integrity even if they are not shielded by any hard-mineralized concretion. C1 [Galvez, M. E.; Beyssac, O.; Benzerara, K.; Menguy, N.] UPMC, CNRS, UMR 7590, IMPMC, Paris, France. [Galvez, M. E.] ENS, CNRS, Dept Geosci, Geol Lab, F-75230 Paris 05, France. [Bernard, S.] Museum Natl Hist Nat, CNRS, UMR 7202, LMCM, Paris 05, France. [Cox, S. C.] GNS Sci Te Pu Ao, Dunedin, New Zealand. [Martinez, I.] IPGP, Equipe Geochim Isotopes Stables, Paris 05, France. [Johnston, M. R.] GNS Sci, Nelson, New Zealand. [Brown, G. E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Brown, G. E., Jr.] Stanford Univ, Dept Photon Sci, Stanford, CA 94305 USA. [Brown, G. E., Jr.] Stanford Univ, SLAC, Stanford Synchrotron Radiat Lightsource, Stanford, CA 94305 USA. RP Galvez, ME (reprint author), UPMC, CNRS, UMR 7590, IMPMC, Campus Jussieu,Case Courrier 115,4 Pl Jussieu, Paris, France. EM matthieu.galvez@gmail.com; olivier.beyssac@impmc.upmc.fr RI MENGUY, Nicolas/F-5607-2012; Beyssac, Olivier/F-6811-2012; Bernard, Sylvain/B-6756-2013; Benzerara, Karim/J-1532-2016; IMPMC, Geobio/F-8819-2016; OI MENGUY, Nicolas/0000-0003-4613-2490; Benzerara, Karim/0000-0002-0553-0137; Cox, Simon C./0000-0001-5899-8035 FU ANR JCJC; INSU INTERRVIE; Region Ile de France [2000 E 1435]; INSU CNRS; INP CNRS; University Pierre et Marie Curie Paris 6; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and Materials Sciences Division of the US Department of Energy FX This project was funded by the ANR JCJC program (project GeoCarbons, PI O. Beyssac) and the INSU INTERRVIE program. The JEOL JEM2100F at IMPMC was supported by Region Ile de France grant SESAME 2000 E 1435, INSU CNRS, INP CNRS, and University Pierre et Marie Curie Paris 6. We thank Tolek Tylisczak and the ALS staff for providing the best conditions possible on STXM beamline 11.0.2 at the Advance Light Source. ALS-MES beamline 11.0.2 is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and Materials Sciences Division of the US Department of Energy. This manuscript has benefited from helpful reviews by James Schiffbauer and two anonymous reviewers as well as insightful editorial handling by Kurt Konhauser. NR 71 TC 15 Z9 16 U1 1 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 EI 1472-4669 J9 GEOBIOLOGY JI Geobiology PD MAR PY 2012 VL 10 IS 2 BP 118 EP 129 DI 10.1111/j.1472-4669.2011.00316.x PG 12 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA 887PW UT WOS:000299941800002 PM 22299653 ER PT J AU Morales, MA Benedict, LX Clark, DS Schwegler, E Tamblyn, I Bonev, SA Correa, AA Haan, SW AF Morales, Miguel A. Benedict, Lorin X. Clark, Daniel S. Schwegler, Eric Tamblyn, Isaac Bonev, Stanimir A. Correa, Alfredo A. Haan, Steven W. TI Ab initio calculations of the equation of state of hydrogen in a regime relevant for inertial fusion applications SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Fusion; Hydrogen; Equation of state ID LIQUID DEUTERIUM; FLUID HYDROGEN; HIGH-DENSITY; SIMULATIONS; HUGONIOT AB We describe ab initio electronic structure calculations (density functional theory molecular dynamics and coupled electron-ion quantum Monte Carlo) of the equation of state (EOS) of hydrogen in a pressure temperature regime relevant for simulating the initial phase of an inertial confinement fusion capsule implosion. We find the computed EOS to be quite close to that of the most recent SESAME table (constructed by G. Kerley, 2003). A simple density-dependent but temperature-independent correction brings the 2003-Kerley EOS into excellent agreement with ours in the chosen region of the hydrogen phase diagram. Simulations of fusion ignition experiments on the National Ignition Facility (NIF) with this modified 2003-Kerley table are shown to produce results nearly indistinguishable from those of the 2003-Kerley EOS, which was used to design the capsule. In this sense, we do not expect that further improvements to the hydrogen EOS in this particular regime will impact the capsule design. (C) 2011 Elsevier B.V. All rights reserved. C1 [Benedict, Lorin X.; Tamblyn, Isaac] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Morales, Miguel A.; Clark, Daniel S.; Schwegler, Eric; Bonev, Stanimir A.; Correa, Alfredo A.; Haan, Steven W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bonev, Stanimir A.] Dalhousie Univ, Dept Phys, Halifax, NS B3H, Canada. RP Benedict, LX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM benedict5@llnl.gov RI Schwegler, Eric/A-2436-2016; OI Schwegler, Eric/0000-0003-3635-7418; Tamblyn, Isaac/0000-0002-8146-6667 FU U.S. Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Didier Saumon for his very helpful suggestions during the early stages of this work, and Daniel Orlikowski, David A. Young, and Thomas L. McAbee for their guidance throughout. We also thank Michael P. Desjarlais, Saad A. Khairallah, and John E. Klepeis for helpful discussions. This work was performed under the auspices of the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 35 TC 16 Z9 16 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2012 VL 8 IS 1 BP 5 EP 12 DI 10.1016/j.hedp.2011.09.002 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 890FQ UT WOS:000300130900002 ER PT J AU Gamaly, EG Vailionis, A Mizeikis, V Yang, W Rode, AV Juodkazis, S AF Gamaly, E. G. Vailionis, A. Mizeikis, V. Yang, W. Rode, A. V. Juodkazis, S. TI Warm dense matter at the bench-top: Fs-laser-induced confined micro-explosion SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Warm dense matter; Fs-laser-induced micro-explosion; Super-dense bcc-Al ID HIGH-PRESSURE; COMPRESSION; ALUMINUM AB We report the experimental evidence for creation of Warm Dense Matter (WDM) in ultrafast laser-induced micro-explosion inside a sapphire (Al2O3) crystal. We show that the WDM can be formed by a 100 nJ fs-pulse if the following conditions are satisfied: (1) the laser pulse is tightly focused to inside of the bulk of transparent material so the intensity at focus is two orders of magnitude higher than the optical breakdown threshold; (2) the pulse duration is shorter than the electron ion energy exchange time; and, (3) the absorbed energy density is above the Young's modulus for the material studied. The empty void created inside a sapphire crystal surrounded by a shell of compressed material provides the direct evidence of the maximum pressure above the Young's modulus of sapphire (similar to 400 GPa). Synchrotron X-ray diffraction (XRD) analysis of the shell revealed the presence of novel super-dense bcc-Al crystalline phase predicted at pressures above similar to 380 GPa theoretically, which has never been observed experimentally before neither in nature in laboratory experiments. These results show that confined micro-explosion induced by tightly focussed fs-laser inside a transparent solid opens new routes for synthesis of new materials and study of WDM at a laboratory bench-top. (C) 2011 Published by Elsevier B.V. C1 [Gamaly, E. G.; Rode, A. V.] Australian Natl Univ, Laser Phys Ctr, RSPE, ACTON, Canberra, ACT 0200, Australia. [Vailionis, A.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Vailionis, A.] Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Mizeikis, V.] Shizuoka Univ, Div Global Res Leaders, Elect Res Inst, Hamamatsu, Shizuoka 4328561, Japan. [Yang, W.] Argonne Natl Lab, HPSynC Carnegie Inst Washington, Argonne, IL 60439 USA. [Juodkazis, S.] Swinburne Univ Technol, Ctr Microphoton, Fac Engn & Ind Sci, Hawthorn, Vic 3122, Australia. RP Gamaly, EG (reprint author), Australian Natl Univ, Laser Phys Ctr, RSPE, ACTON, GPO Box 4, Canberra, ACT 0200, Australia. EM gam111@physics.anu.edu.au RI Juodkazis, Saulius/D-7615-2011; Yang, Wenge/H-2740-2012; Rode, Andrei/D-4672-2013; Vailionis, Arturas/C-5202-2008; OI Juodkazis, Saulius/0000-0003-3542-3874; Rode, Andrei/0000-0002-9869-9782; Vailionis, Arturas/0000-0001-5878-1864; , Saulius/0000-0003-3897-2844 FU Australian Research Council; CIW; CDAC; UNLV; LLNL through DOE-BES; DOE-NNSA; NSF; DOE-BES [DE-SC000 1057] FX This work was supported by the Australian Research Council through the Discovery program. Si thanks Photon Process Lab of Hokkaido University for the use of their laser, Tecdia Ltd. for sample preparation. XRD experiments were performed at HPCAT, which is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-BES, DOE-NNSA and NSF. HPSynC is supported as part of the EFree, an Energy Frontier Research Center funded by DOE-BES under award DE-SC000 1057. NR 16 TC 17 Z9 17 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2012 VL 8 IS 1 BP 13 EP 17 DI 10.1016/j.hedp.2011.10.003 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 890FQ UT WOS:000300130900003 ER PT J AU Park, HS Ryutov, DD Ross, JS Kugland, NL Glenzer, SH Plechaty, C Pollaine, SM Remington, BA Spitkovsky, A Gargate, L Gregori, G Bell, A Murphy, C Sakawa, Y Kuramitsu, Y Morita, T Takabe, H Froula, DH Fiksel, G Miniati, F Koenig, M Ravasio, A Pelka, A Liang, E Woolsey, N Kuranz, CC Drake, RP Grosskopf, MJ AF Park, Hye-Sook Ryutov, D. D. Ross, J. S. Kugland, N. L. Glenzer, S. H. Plechaty, C. Pollaine, S. M. Remington, B. A. Spitkovsky, A. Gargate, L. Gregori, G. Bell, A. Murphy, C. Sakawa, Y. Kuramitsu, Y. Morita, T. Takabe, H. Froula, D. H. Fiksel, G. Miniati, F. Koenig, M. Ravasio, A. Pelka, A. Liang, E. Woolsey, N. Kuranz, C. C. Drake, R. P. Grosskopf, M. J. TI Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Astrophysical Collisionless shocks; Weibel instability; Electromagnetic instabilities; Interpenetrating plasmas; Thomson scattering ID COSMIC-RAYS; PARTICLE-ACCELERATION; MAGNETIC-FIELDS; SIMULATIONS; GENERATION AB Collisions of high Mach number flows occur frequently in astrophysics, and the resulting shock waves are responsible for the properties of many astrophysical phenomena, such as supernova remnants, Gamma Ray Bursts and jets from Active Galactic Nuclei. Because of the low density of astrophysical plasmas, the mean free path due to Coulomb collisions is typically very large. Therefore, most shock waves in astrophysics are "collisionless", since they form due to plasma instabilities and self-generated magnetic fields. Laboratory experiments at the laser facilities can achieve the conditions necessary for the formation of collisionless shocks, and will provide a unique avenue for studying the nonlinear physics of collisionless shock waves. We are performing a series of experiments at the Omega and Omega-EP lasers, in Rochester, NY, with the goal of generating collisionless shock conditions by the collision of two highspeed plasma flows resulting from laser ablation of solid targets using similar to 10(16) W/cm(2) laser irradiation. The experiments will aim to answer several questions of relevance to collisionless shock physics: the importance of the electromagnetic filamentation (Weibel) instabilities in shock formation, the self-generation of magnetic fields in shocks, the influence of external magnetic fields on shock formation, and the signatures of particle acceleration in shocks. Our first experiments using Thomson scattering diagnostics studied the plasma state from a single foil and from double foils whose flows collide head-on". Our data showed that the flow velocity and electron density were 10(8) cm/s and 10(19) cm(-3), respectively, where the Coulomb mean free path is much larger than the size of the interaction region. Simulations of our experimental conditions show that weak Weibel mediated current filamentation and magnetic field generation were likely starting to occur. This paper presents the results from these first Omega experiments. Published by Elsevier Ltd. C1 [Park, Hye-Sook; Ryutov, D. D.; Ross, J. S.; Kugland, N. L.; Glenzer, S. H.; Plechaty, C.; Pollaine, S. M.; Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Spitkovsky, A.; Gargate, L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Gregori, G.; Bell, A.; Murphy, C.] Univ Oxford, Oxford, England. [Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Takabe, H.] Osaka Univ, Osaka, Japan. [Froula, D. H.; Fiksel, G.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Miniati, F.] ETH Sci & Technol Univ, Zurich, Switzerland. [Koenig, M.; Ravasio, A.; Pelka, A.] Ecole Polytech, F-75230 Paris, France. [Liang, E.] Rice Univ, Houston, TX USA. [Woolsey, N.] Univ York, York YO10 5DD, N Yorkshire, England. [Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Park, HS (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM park1@llnl.gov RI Sakawa, Youichi/J-5707-2016; Drake, R Paul/I-9218-2012 OI Sakawa, Youichi/0000-0003-4165-1048; Drake, R Paul/0000-0002-5450-9844 FU Lawrence Livermore National Security, LLC, (LLNS) [DE-AC52-07NA27344]; European Research Council under the European Community [256973, 247039]; RTRA Triangle de la physique; Institut Laser Plasma FX This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. The work at Oxford University was funded by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreements no. 256973 and 247039. M. Koenig was supported by the Institut Laser Plasma and A. Pelka was supported by the RTRA Triangle de la physique. NR 25 TC 48 Z9 48 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2012 VL 8 IS 1 BP 38 EP 45 DI 10.1016/j.hedp.2011.11.001 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 890FQ UT WOS:000300130900006 ER PT J AU Falk, K Regan, SP Vorberger, J Barrios, MA Boehly, TR Fratanduono, DE Glenzer, SH Hicks, DG Hu, SX Murphy, CD Radha, PB Rothman, S Jephcoat, AP Watt, JS Gericke, DO Gregori, G AF Falk, K. Regan, S. P. Vorberger, J. Barrios, M. A. Boehly, T. R. Fratanduono, D. E. Glenzer, S. H. Hicks, D. G. Hu, S. X. Murphy, C. D. Radha, P. B. Rothman, S. Jephcoat, A. P. Watt, J. S. Gericke, D. O. Gregori, G. TI Self-consistent measurement of the equation of state of liquid deuterium SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Warm dense matter; Plasma diagnostic; Equation of state ID FLUID HYDROGEN; GIANT PLANETS; HIGH-DENSITY; INTERIORS; COMPRESSION; TRANSITION; CONDUCTION; JUPITER; HELIUM; METALS AB We combine experiments and theoretical models to characterize warm dense deuterium. A shockwave was driven in a planar target by the OMEGA laser without a standard pusher making the analysis independent of a quartz or aluminium pressure standard. The conditions of the shocked material were diagnosed with VISAR and optical pyrometry which yields the shock velocity (16.9 +/- 0.9 km/s) and the temperature (0.57 +/- 0.05 eV). We find a self-consistent description of the data when using ab initio simulations (DFT-MD), but not for other equation of state (EOS) models tested. (C) 2011 Elsevier BY. All rights reserved. C1 [Falk, K.; Murphy, C. D.; Watt, J. S.; Gregori, G.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Regan, S. P.; Barrios, M. A.; Boehly, T. R.; Fratanduono, D. E.; Hu, S. X.; Radha, P. B.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Vorberger, J.; Gericke, D. O.] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Barrios, M. A.; Fratanduono, D. E.; Glenzer, S. H.; Hicks, D. G.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Rothman, S.] AWE PLC, Reading RG7 4PR, Berks, England. [Jephcoat, A. P.] Diamond Light Source, Harwell OX11 0DE, Berks, England. [Jephcoat, A. P.] Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England. RP Falk, K (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. EM katerina.falk@physics.ox.ac.uk RI Hu, Suxing/A-1265-2007; Hicks, Damien/B-5042-2015; Vorberger, Jan/D-9162-2015; Falk, Katerina/D-2369-2017 OI Hu, Suxing/0000-0003-2465-3818; Hicks, Damien/0000-0001-8322-9983; Falk, Katerina/0000-0001-5975-776X FU EPSRC [EP/G007187/1, EP/D062837]; HiPER; US Department of Energy Office of Inertial Confinement Fusion [DE-FC52-08NA28302] FX The authors would like to thank Wolf Seka for his valuable consultations. The work of K.F., C.D.M. and G.G. was supported by EPSRC grant no. EP/G007187/1 and by the HiPER fund. The work of J.V. and D.O.G. was supported by EPSRC grant no. EP/D062837. Support by the US Department of Energy Office of Inertial Confinement Fusion under cooperative agreement no. DE-FC52-08NA28302 is also acknowledged. The calculations of optical properties from DFT-MD snapshots were performed using codes from J. Furthmuller. NR 44 TC 11 Z9 11 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2012 VL 8 IS 1 BP 76 EP 80 DI 10.1016/j.hedp.2011.11.006 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 890FQ UT WOS:000300130900013 ER PT J AU Starrett, CE Saumon, D AF Starrett, C. E. Saumon, D. TI A variational average atom approach to closing the quantum Ornstein-Zernike relations SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Average atom; Ornstein-Zernike ID LIQUID-METALS; PLASMAS AB A summary of a variational average atom model which is used to close the quantum Ornstein-Zernike relations is presented. The first numerical results are presented from a code developed to solve these equations with two simplifying assumptions, described in the text. The inputs are the nuclear charge of the plasma species, the average material density and the temperature. Results generated include the spatially dependent electronic and nuclear densities, which are related to the electron-nucleus and nucleus nucleus pair distribution functions. These in turn are simply related to the static structure factors. Numerical results presented are in the form of average ionization and nucleus nucleus pair distribution functions. Average ionizations for carbon are compared to experiment and other models, showing good agreement. (C) 2011 Elsevier B.V. All rights reserved. C1 [Starrett, C. E.; Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Starrett, CE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM starrett@lanl.gov FU United States Department of Energy [DE-AC52-06NA25396] FX We thank G. Faussurier for providing us with data for Fig. 1. This work was performed under the auspices of the United States Department of Energy under contract DE-AC52-06NA25396. NR 21 TC 5 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2012 VL 8 IS 1 BP 101 EP 104 DI 10.1016/j.hedp.2011.11.003 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 890FQ UT WOS:000300130900016 ER PT J AU Graziani, FR Batista, VS Benedict, LX Castor, JI Chen, H Chen, SN Fichtl, CA Glosli, JN Grabowski, PE Graf, AT Hau-Riege, SP Hazi, AU Khairallah, SA Krauss, L Langdon, AB London, RA Markmann, A Murillo, MS Richards, DF Scott, HA Shepherd, R Stanton, LG Streitz, FH Surh, MP Weisheit, JC Whitley, HD AF Graziani, Frank R. Batista, Victor S. Benedict, Lorin X. Castor, John I. Chen, Hui Chen, Sophia N. Fichtl, Chris A. Glosli, James N. Grabowski, Paul E. Graf, Alexander T. Hau-Riege, Stefan P. Hazi, Andrew U. Khairallah, Saad A. Krauss, Liam Langdon, A. Bruce London, Richard A. Markmann, Andreas Murillo, Michael S. Richards, David F. Scott, Howard A. Shepherd, Ronnie Stanton, Liam G. Streitz, Fred H. Surh, Michael P. Weisheit, Jon C. Whitley, Heather D. TI Large-scale molecular dynamics simulations of dense plasmas: The Cimarron Project SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Molecular dynamics methods; Inertial confinement fusion; Kinetic theory ID EQUATION-OF-STATE; DEPENDENT VARIATIONAL-PRINCIPLES; PHASE-SPACE DISTRIBUTIONS; COUPLED HYDROGEN PLASMA; QUANTUM ELECTRON-GAS; SCHRODINGER-EQUATION; TRANSITION-METALS; KINETIC-EQUATIONS; COULOMB-SYSTEMS; STOPPING POWER AB We describe the status of a new time-dependent simulation capability for dense plasmas. The backbone of this multi-institutional effort the Cimarron Project is the massively parallel molecular dynamics (MD) code "ddcMD," developed at Lawrence Livermore National Laboratory. The project's focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low-Z elements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This paper summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision, describes two new experimental efforts that play a central role in our validation work, highlights some significant results obtained to date, outlines concepts now being explored to deal more efficiently with the very disparate dynamical timescales that arise in fusion plasmas, and provides a careful comparison of quantum effects on electron trajectories predicted by more elaborate dynamical methods. (C) 2011 Elsevier BM. All rights reserved. C1 [Graziani, Frank R.; Benedict, Lorin X.; Castor, John I.; Chen, Hui; Chen, Sophia N.; Glosli, James N.; Graf, Alexander T.; Hau-Riege, Stefan P.; Hazi, Andrew U.; Khairallah, Saad A.; Krauss, Liam; Langdon, A. Bruce; London, Richard A.; Richards, David F.; Scott, Howard A.; Shepherd, Ronnie; Stanton, Liam G.; Streitz, Fred H.; Surh, Michael P.; Whitley, Heather D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fichtl, Chris A.; Grabowski, Paul E.; Murillo, Michael S.] Los Alamos Natl Lab, Computat Phys Grp, Los Alamos, NM 87545 USA. [Batista, Victor S.; Markmann, Andreas] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Weisheit, Jon C.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Graziani, FR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM graziani1@llnl.gov OI chen, sophia n./0000-0002-3372-7666; Whitley, Heather/0000-0002-2344-8698 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy [DE-AC52-06NA25396]; LLNL [09-SI-011] FX We wish to thank Richard More for many useful and enlightening conversations. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and parts have been authored by employees of the Los Alamos National Security, LLC. CLANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 09-SI-011. NR 126 TC 45 Z9 46 U1 5 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2012 VL 8 IS 1 BP 105 EP 131 DI 10.1016/j.hedp.2011.06.010 PG 27 WC Physics, Fluids & Plasmas SC Physics GA 890FQ UT WOS:000300130900017 ER PT J AU Hasanbeigi, A Hasanabadi, A Abdorrazaghi, M AF Hasanbeigi, Ali Hasanabadi, Abdollah Abdorrazaghi, Mohamad TI Comparison analysis of energy intensity for five major sub-sectors of the Textile Industry in Iran SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Energy intensity analysis; Benchmarking methodology; Textile industry ID CLEANER PRODUCTION AB The textile industry is a complicated manufacturing industry because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. This paper contributes to the understanding of energy use in the textile industry. In this study, thirteen textile plants from five major sub-sectors of the textile industry in Iran, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet manufacturing, were studied. The energy intensity of each plant was calculated and compared against other plants within the same sub-sector. The results showed the range of energy intensities for plants in each sub-sector. It also showed that energy saving/management efforts should be focused on motor-driven systems in spinning plants, whereas in other textile sub-sectors thermal energy is the dominant type of energy used and should be focused on. For conducting a fair and proper comparison/benchmarking studies, factors that significantly influence the energy intensity across plants within each textile sub-sector (explanatory variables) are discussed. Published by Elsevier Ltd. C1 [Hasanbeigi, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, China Energy Grp, Energy Anal Dept,Environm Energy Technol Div, Berkeley, CA 94720 USA. [Hasanabadi, Abdollah] Isfahan Univ Technol, Dept Text Engn, Esfahan 8415693111, Iran. [Abdorrazaghi, Mohamad] Amir Kabir Univ Technol, Tehran Polytech, Dept Text Engn, Tehran, Iran. RP Hasanbeigi, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, China Energy Grp, Energy Anal Dept,Environm Energy Technol Div, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM AHasanbeigi@lbl.gov FU Iranian Fuel Conservation Organization (IFCO) FX The empirical data collection of this study was funded by the Iranian Fuel Conservation Organization (IFCO) and was conducted by the authors under supervision of Shayanik Engineering Company. The authors would like to thank staff of Shayanik Engineering Company for their input to this study, especially Ali Ghoba and Saeed Zahabiyoun. Authors also would like to thank Maryam Elhambakhsh from IFCO for her support for this research. Authors are thankful to Lynn Price from Lawrence Berkeley National Laboratory, Henri van Rensburg from Marbek Consultant Company in Canada, and Ernst Worrell from Utrecht University for their valuable comments on this paper. Also, we are grateful to Christopher Williams from University of California, Berkeley for editing the English of this paper. Finally, we would like to thank all companies that participated in this study and those who helped us to complete this study. NR 29 TC 10 Z9 10 U1 3 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 J9 J CLEAN PROD JI J. Clean Prod. PD MAR PY 2012 VL 23 IS 1 BP 186 EP 194 DI 10.1016/j.jclepro.2011.10.037 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 889LX UT WOS:000300076300020 ER PT J AU Carroll, TE Grosu, D AF Carroll, T. E. Grosu, D. TI An incentive-based distributed mechanism for scheduling divisible loads in tree networks SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Divisible load scheduling; Distributed systems; Mechanism design; Game theory ID ONE-PARAMETER AGENTS; VERIFICATION AB The underlying assumption of Divisible Load Scheduling (DLS) theory is that the processors composing the network are obedient, i.e., they do not "cheat" the scheduling algorithm. This assumption is unrealistic if the processors are owned by autonomous, self-interested organizations that have no a priori motivation for cooperation and they will manipulate the algorithm if it is beneficial to do so. In this paper, we address this issue by designing a distributed mechanism for scheduling divisible loads in tree networks, called DLS-T, which provides incentives to processors for reporting their true processing capacity and executing their assigned load at full processing capacity. We prove that the DLS-T mechanism computes the optimal allocation in an ex post Nash equilibrium. Finally, we simulate and study the mechanism under various network structures and processor parameters. (C) 2011 Elsevier Inc. All rights reserved. C1 [Grosu, D.] Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA. [Carroll, T. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Grosu, D (reprint author), Wayne State Univ, Dept Comp Sci, 5057 Woodward Ave, Detroit, MI 48202 USA. EM Thomas.Carroll@pnl.gov; dgrosu@wayne.edu RI Carroll, Timothy/B-6934-2009 FU NSF [CNS-1116787, DGE-0654014] FX This paper is a revised and extended version of [14] presented at the 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2006). The authors wish to express their thanks to the editor and the anonymous referees for their helpful and constructive suggestions, which considerably improved the quality of the paper. This research was supported, in part, by NSF grants CNS-1116787 and DGE-0654014. NR 35 TC 3 Z9 3 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 EI 1096-0848 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD MAR PY 2012 VL 72 IS 3 BP 389 EP 401 DI 10.1016/j.jpdc.2011.11.008 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA 888VU UT WOS:000300033500006 ER PT J AU Kityk, IV AlZayed, NS El-Naggar, AM Reben, M Wasylak, J Lakshminarayana, G Reshak, AH Brik, MG AF Kityk, I. V. AlZayed, N. S. El-Naggar, A. M. Reben, M. Wasylak, J. Lakshminarayana, G. Reshak, Ali H. Brik, M. G. TI Er-Pr doped tellurite glass nanocomposites for white light emitting diodes SO OPTICS COMMUNICATIONS LA English DT Article DE Tellurite glasses; Nanocomposites; Polymers; Light emitting diodes ID SPECTROSCOPIC PROPERTIES; SPECTRAL-ANALYSIS; MU-M; LUMINESCENCE; AMPLIFIERS; LASER AB In this paper, optical glass nanocomposites (nanoparticles sizes up to 100 nm) with composition TeO2-WO3-PbO-xEr(2)O(3)-yPr(6)O(11) (x = 0.30 mol%, y = 0.70 mol%) embedded into polymer matrices was reported. The two types of polymers chosen for present study were: photopolymer oligoetheracryalte (OEA) and polymethylmethacrylate (PMMA), respectively. The incorporation of the titled nanoparticles into the polymer matrices is analyzed optically. The fluorescence spectra of the nanocomposites were compared with the fluorescence spectra of bulk glasses. Based on the comparison of Er3+ and Pr3+ ions' energy level schemes, possible energy transfer processes were identified. The prepared glasses are promising candidates for the white light emitting diodes applications. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kityk, I. V.] Czestochowa Tech Univ, Dept Elect Engn, Czestochowa, Poland. [Reben, M.; Wasylak, J.] AGH Univ Sci & Technol, Fac Mat Sci & Ceram, PL-30059 Krakow, Poland. [Lakshminarayana, G.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA. [Kityk, I. V.; AlZayed, N. S.; El-Naggar, A. M.] King Saud Univ, Dept Phys & Astron, Fac Sci, Riyadh 11451, Saudi Arabia. [Reshak, Ali H.] FFWP S Bohemia Univ, Sch Complex Syst, Nove Hrady 37333, Czech Republic. [Reshak, Ali H.] Malaysia Univ Perlis, Sch Mat Engn, Kangar 01007, Perlis, Malaysia. [Brik, M. G.] Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia. [El-Naggar, A. M.] Ain Shams Univ, Fac Sci, Dept Phys, Cairo 11566, Egypt. RP Kityk, IV (reprint author), Czestochowa Tech Univ, Dept Elect Engn, Armii Krajowej 17, Czestochowa, Poland. EM ikityk@el.pcz.czest.pl RI Brik, Mikhail/C-4971-2009; Kityk, Iwan/M-4032-2015; Reshak, Ali/B-8649-2008; OI Brik, Mikhail/0000-0003-2841-2763; Reshak, Ali/0000-0001-9426-8363; Gandham, Lakshminarayana/0000-0002-1458-9368 FU King Saud University; RDI of the Czech Republic; CENAKVA [CZ.1.05/2.1.00/01.0024]; Grant Agency of the University of South Bohemia [152/2010/Z] FX The authors are grateful to the scientific grant of King Saud University for financial support.; For the author Ali H. Reshak his work was supported by the program RDI of the Czech Republic, the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis, Malaysia. NR 23 TC 8 Z9 8 U1 1 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD MAR 1 PY 2012 VL 285 IS 5 BP 655 EP 658 DI 10.1016/j.optcom.2011.10.088 PG 4 WC Optics SC Optics GA 891EO UT WOS:000300200200026 ER PT J AU Mourou, GA Fisch, NJ Malkin, VM Toroker, Z Khazanov, EA Sergeev, AM Tajima, T Le Garrec, B AF Mourou, G. A. Fisch, N. J. Malkin, V. M. Toroker, Z. Khazanov, E. A. Sergeev, A. M. Tajima, T. Le Garrec, B. TI Exawatt-Zettawatt pulse generation and applications SO OPTICS COMMUNICATIONS LA English DT Article DE Ultrafast lasers; High energy laser pulses; Relativistic optics; Plasma optics ID BACKWARD RAMAN AMPLIFIERS; LASER-PULSES; AMPLIFICATION; PLASMA; FOCUSABILITY; SUPPRESSION; COMPRESSION AB A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C-3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule. nanosecond laser pulses into femtosecond pulses, to produce exawatt-and-beyond peak power. In the future. C-3 could be used at large-scale facilities such as the National Ignition Facility (NIF) or the laser Megajoule (LMJ) and open the way to zettawatt level pulses. The beam will be focused to a wavelength spot size with a f#1. The very small beam size, i.e. few centimeters, along with the low laser repetition rate laser system will make possible the use of inexpensive, precision, disposable optics. The resulting intensity will approach the Schwinger value, thus opening up new possibilities in fundamental physics. (C) 2011 Published by Elsevier B.V. C1 [Mourou, G. A.] ENSTA, Inst Lumiere Extreme, F-91761 Palaiseau, France. [Fisch, N. J.; Malkin, V. M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. [Fisch, N. J.; Toroker, Z.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Khazanov, E. A.; Sergeev, A. M.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Tajima, T.] Univ Munich, Fac Phys, D-85748 Munich, Germany. [Le Garrec, B.] CEA, CESTA, Dept Lasers Puissance, F-33114 Le Barp, France. RP Mourou, GA (reprint author), ENSTA, Inst Lumiere Extreme, Chemin Huniere, F-91761 Palaiseau, France. EM gerardmourou@gmail.com RI Khazanov, Efim/B-6643-2014; Sergeev, Alexander/F-3027-2017 FU DOE [DE-AC02-09CH11466]; NNSA SSAA through DOE [DE274-FG52-08NA28553]; Fondation de l'Ecole Polytechnique; ELI [212105]; Blaise Pascal Foundation; Deutsche Forschungsgemeinschaft Cluster of Excellence MAP (Munich Centre for Advanced Photonics) FX The work was supported, in part, through DOE Research Grant No. DE-AC02-09CH11466 and through the NNSA SSAA Program through DOE Research Grant No. DE274-FG52-08NA28553, Gerard Mourou was supported by the Fondation de l'Ecole Polytechnique and ELI 212105 T.T. was supported in part by the Blaise Pascal Foundation and by Deutsche Forschungsgemeinschaft Cluster of Excellence MAP (Munich Centre for Advanced Photonics). The authors wants to thank Natalia Naumova and Bianca Jackson for helpful discussions. NR 19 TC 74 Z9 76 U1 5 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD MAR 1 PY 2012 VL 285 IS 5 BP 720 EP 724 DI 10.1016/j.optcom.2011.10.089 PG 5 WC Optics SC Optics GA 891EO UT WOS:000300200200038 ER PT J AU Mahadevan, VS Ragusa, JC Mousseau, VA AF Mahadevan, Vijay S. Ragusa, Jean C. Mousseau, Vincent A. TI A verification exercise in multiphysics simulations for coupled reactor physics calculations SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Multiphysics coupling; Code verification; Method of manufactured solutions; Convergence order ID TIME-INTEGRATION METHODS; RADIATION-DIFFUSION; NONMATCHING MESHES; KRYLOV METHODS; EQUATIONS; FRAMEWORK; SYSTEMS; ACCURACY; HEAT AB The modeling of nuclear reactors involves the solution of a multiphysics problem with various time and length scales. Mathematically, this requires solving a system of coupled, nonlinear, stiff, Partial Differential Equations (PDEs). This paper deals with the verification aspects associated with a multiphysics code, i.e., the substantiation that the mathematical description of the multiphysics equations are solved correctly (in time and space). Multiphysics applications have the added complexity that the solution field participates in various physics components, potentially yielding spatial and/or temporal coupling errors. We present a multiphysics framework that tightly couples the various physical models using the Jacobian-free Newton-Krylov technique (JFNK) and show that high-order convergence can be achieved in both space and time. Code verification results are provided. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Ragusa, Jean C.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Mahadevan, Vijay S.] Argonne Natl Lab, Nucl Energy Div, Argonne, IL 60439 USA. [Mousseau, Vincent A.] Multiphys Simulat Technol, Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ragusa, JC (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM mahadevan@anl.gov; ragusa@ne.tamu.edu; vamouss@sandia.gov OI Mahadevan, Vijay/0000-0002-3337-2607 NR 41 TC 10 Z9 10 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAR PY 2012 VL 55 BP 12 EP 32 DI 10.1016/j.pnucene.2011.10.013 PG 21 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 890EU UT WOS:000300128700002 ER PT J AU Capdevila, C Miller, MK Pimentel, G Chao, J AF Capdevila, C. Miller, M. K. Pimentel, G. Chao, J. TI Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe-Cr-Al alloy SO SCRIPTA MATERIALIA LA English DT Article DE Phase separation; Ferrous alloy; Mechanical alloying; Tomography; Thermoelectric power ID THERMOELECTRIC-POWER; FERRITIC STEEL; TEMPERATURE; PM2000; DECOMPOSITION; DEFORMATION AB The effect of different starting microstructures on the kinetics of Fe-rich (alpha) and Cr-rich (alpha') phase separation during aging of Fe Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Capdevila, C.; Pimentel, G.; Chao, J.] Ctr Nacl Invest Met CENIM CSIC, MATERALIA Grp, Madrid 28040, Spain. [Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Capdevila, C (reprint author), Ctr Nacl Invest Met CENIM CSIC, MATERALIA Grp, Avda Gregorio del Amo 8, Madrid 28040, Spain. EM ccm@cenim.csic.es RI Capdevila, Carlos/B-6970-2015 OI Capdevila, Carlos/0000-0002-1869-4085 FU Spanish Ministerio de Ciencia e Innovacion [ENE2009-13766-C04-01]; ORNL's Shared Research Equipment (SHaRE) User Facility; Office of Basic Energy Sciences, US Department of Energy FX PM 2000 (TM) is a trademark of Plansee GmbH. LEAP (R) is a registered trademark of Cameca Instruments. The authors acknowledge the financial support of the Spanish Ministerio de Ciencia e Innovacion in the form of a Coordinate Project in the Energy Area of Plan Nacional 2009 (ENE2009-13766-C04-01). This research was supported by ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. NR 21 TC 10 Z9 10 U1 4 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2012 VL 66 IS 5 BP 254 EP 257 DI 10.1016/j.scriptamat.2011.11.003 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 890EZ UT WOS:000300129200014 ER PT J AU Nutaro, J Kuruganti, PT Protopopescu, V Shankar, M AF Nutaro, James Kuruganti, Phani Teja Protopopescu, Vladimir Shankar, Mallikarjun TI The split system approach to managing time in simulations of hybrid systems having continuous and discrete event components SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE combined simulation; continuous system simulation; discrete event simulation; hybrid simulation AB The efficient and accurate management of time in simulations of hybrid models is an outstanding engineering problem. General a priori knowledge about the dynamic behavior of the hybrid system (i.e. essentially continuous, essentially discrete, or 'truly hybrid') facilitates this task. Indeed, for essentially discrete and essentially continuous systems, existing software packages can be conveniently used to perform quite sophisticated and satisfactory simulations. The situation is different for 'truly hybrid' systems, for which direct application of existing software packages results in a lengthy design process, cumbersome software assemblies, inaccurate results, or some combination of these independent of the designer's a priori knowledge about the system's structure and behavior. The main goal of this paper is to provide a methodology whereby simulation designers can use a priori knowledge about the hybrid model's structure to build a straightforward, efficient, and accurate simulator with existing software packages. The proposed methodology is based on a formal decomposition and re-articulation of the hybrid system; this is the main theoretical result of the paper. To set the result in the right perspective, we briefly review the essentially continuous and essentially discrete approaches, which are illustrated with typical examples. Then we present our new, split system approach, first in a general formal context, then in three more specific guises that reflect the viewpoints of three main communities of hybrid system researchers and practitioners. For each of these variants we indicate an implementation path. Our approach is illustrated with an archetypal problem of power grid control. C1 [Nutaro, James; Protopopescu, Vladimir] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Nutaro, J (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM nutarojj@ornl.gov RI 李, 涵/B-4995-2012; Shankar, Mallikarjun/N-4400-2015; OI Shankar, Mallikarjun/0000-0001-5289-7460; Nutaro, James/0000-0001-7360-2836 FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy (contract number DE-AC05-00OR22725). NR 34 TC 6 Z9 7 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD MAR PY 2012 VL 88 IS 3 BP 281 EP 298 DI 10.1177/0037549711401000 PG 18 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA 888IC UT WOS:000299996100002 ER PT J AU Zhuang, WJ Yuan, DQ Li, JR Luo, ZP Zhou, HC Bashir, S Liu, JB AF Zhuang, Wenjuan Yuan, Daqiang Li, Jian-Rong Luo, Zhiping Zhou, Hong-Cai Bashir, Sajid Liu, Jingbo TI Highly Potent Bactericidal Activity of Porous Metal-Organic Frameworks SO ADVANCED HEALTHCARE MATERIALS LA English DT Article ID ZINC-OXIDE NANOPARTICLES; FERRITE COMPOSITE NANOPARTICLES; IRON-SULFUR CLUSTERS; ESCHERICHIA-COLI; ANTIBACTERIAL ACTIVITY; STAPHYLOCOCCUS-AUREUS; SILICA NANOPARTICLES; ENANTIOSELECTIVE SEPARATION; COORDINATION CHEMISTRY; BIOMATERIAL SYSTEM AB Recent outbreaks of bacterial infection leading to human fatalities have been a motivational force for us to develop antibacterial agents with high potency and long-term stability. A novel cobalt (Co) based metal-organic framework (MOF) was tested and shown to be highly effective at inactivating model microorganisms. Gram-negative bacteria, Escherichia coli (strains DH5alpha and XL1-Blue) were selected to determine the antibacterial activities of the Co MOF. In this MOF, the Co serves as a central element and an octa-topic carboxylate ligand, tetrakis [(3,5-dicarboxyphenyl)-oxamethyl] methane (TDM8-) serves as a bridging linker. X-ray crystallographic studies indicate that Co-TDM crystallizes in tetragonal space group P4 2(1)m with a porous 3D framework. The potency of the Co-TDM disinfectant was evaluated using a minimal bactericidal concentration (MBC) benchmark and was determined to be 10-15 ppm within a short incubation time period (<60 min). Compared with previous work using silver nanoparticles and silver-modified TiO2 nano-composites over the same time period, the MBC and effectiveness of Co-TDM are superior. Electron microscopy images indicate that the Co-TDM displayed distinctive grain boundaries and well-developed reticulates. The Co active sites rapidly catalyzed the lipid peroxidation, causing rupture of the bacterial membrane followed by inactivation, with 100% recycling and high persistence (>4 weeks). This MOF-based approach may lead to a new paradigm for MOF applications in diverse biological fields due to their inherent porous structure, tunable surface functional groups, and adjustable metal coordination environments. C1 [Zhuang, Wenjuan; Yuan, Daqiang; Li, Jian-Rong; Zhou, Hong-Cai; Liu, Jingbo] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Yuan, Daqiang] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China. [Luo, Zhiping] Texas A&M Univ, Microscopy & Imaging Ctr, College Stn, TX 77843 USA. [Luo, Zhiping] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Bashir, Sajid] Texas A&M Univ Kingsville, Chem Biol Res Grp, Kingsville, TX 78363 USA. [Bashir, Sajid; Liu, Jingbo] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA USA. [Liu, Jingbo] Texas A&M Univ Kingsville, Kingsville, TX 78363 USA. RP Zhou, HC (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. EM zhou@chem.tamu.edu; jingbo.liu@tamuk.edu RI Li, Jian-Rong (Jeff)/G-2781-2010; Zhuang, Wenjuan/G-2784-2010; EFRC, CGS/I-6680-2012; Zhou, Hong-Cai/A-3009-2011; Luo, Zhiping/C-4435-2014; Stangl, Kristin/D-1502-2015; Yuan, Daqiang/F-5695-2010 OI Zhou, Hong-Cai/0000-0002-9029-3788; Luo, Zhiping/0000-0002-8264-6424; Yuan, Daqiang/0000-0003-4627-072X FU US Department of Energy (DOE), the Office of Science [DOE DE-SC0001015, DE-FC36-07GO17033, DE-AR0000073]; National Science Foundation [NSF CBET-0930079, NSF CBET-0821370]; National Natural Toxins Research Center at TAMUK; National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The US Department of Energy (DOE), the Office of Science (DOE DE-SC0001015, DE-FC36-07GO17033, and DE-AR0000073), and the National Science Foundation (NSF CBET-0930079 and NSF CBET-0821370), are acknowledged for their financial support. Dr. J. Ying from the National Natural Toxins Research Center at TAMUK is also acknowledged for allowing us to conduct the bioassay. Dr. R. Perez-Ballestero, K. Chamakura are thanked for sharing unused MBC values from a previous study (TAMUK), and the Microscopy and Imaging Center and Materials Science and Engineering Program at TAMU and the Departments of Chemistry at TAMU and TAMUK are acknowledged for their technical support. The microcrystal diffraction of Co-TDM was carried out with the assistance of Yu-Sheng Chen at the Advanced Photon Source on beamline 15-ID-B at ChemMatCARS Sector 15, which is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 141 TC 22 Z9 22 U1 19 U2 177 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2192-2640 EI 2192-2659 J9 ADV HEALTHC MATER JI Adv. Healthc. Mater. PD MAR PY 2012 VL 1 IS 2 BP 225 EP 238 DI 10.1002/adhm.201100043 PG 14 WC Engineering, Biomedical; Nanoscience & Nanotechnology; Materials Science, Biomaterials SC Engineering; Science & Technology - Other Topics; Materials Science GA 092HN UT WOS:000315111100012 PM 23184726 ER PT J AU Seletskiy, DV Hehlen, MP Epstein, RI Sheik-Bahae, M AF Seletskiy, Denis V. Hehlen, Markus P. Epstein, Richard I. Sheik-Bahae, Mansoor TI Cryogenic optical refrigeration SO ADVANCES IN OPTICS AND PHOTONICS LA English DT Article AB We review the field of laser cooling of solids, focusing our attention on the recent advances in cryogenic cooling of an ytterbium-doped fluoride crystal (Yb3+ : YLiF4). Recently, bulk cooling in this material to 155 K has been observed upon excitation near the lowest-energy (E4-E5) crystal-field resonance of Yb3+. Furthermore, local cooling in the same material to a minimum achievable temperature of 110 K has been measured, in agreement with the predictions of the laser cooling model. This value is limited only by the current material purity. Advanced material synthesis approaches reviewed here would allow reaching temperatures approaching 80 K. Current results and projected improvements position optical refrigeration as the only viable all-solid-state cooling approach for cryogenic temperatures. (C) 2012 Optical Society of America C1 [Seletskiy, Denis V.; Epstein, Richard I.; Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Hehlen, Markus P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Seletskiy, Denis V.] Space Vehicles Directorate, Air Force Res Lab, Kirtland AFB, NM 87117 USA. RP Seletskiy, DV (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM d.seletskiy@gmail.com RI Seletskiy, Denis/C-1372-2011; OI Seletskiy, Denis/0000-0003-3480-4595; Epstein, Richard/0000-0002-3929-4363 FU Air Force Office of Scientific Research (MURI program); DARPA; NASA; U.S. Department of Energy; National Research Council Research Associateship Award at the Air Force Research Laboratory FX This work has been supported by the Air Force Office of Scientific Research (MURI program), DARPA (seedling), NASA, and the U.S. Department of Energy. D. V. Seletskiy acknowledges the support of a National Research Council Research Associateship Award at the Air Force Research Laboratory. NR 139 TC 41 Z9 41 U1 2 U2 21 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1943-8206 J9 ADV OPT PHOTONICS JI Adv. Opt. Photonics PD MAR PY 2012 VL 4 IS 1 BP 78 EP 107 DI 10.1364/AOP.4.000078 PG 30 WC Optics SC Optics GA V30WA UT WOS:000208844900002 ER PT J AU Sioshansi, R Denholm, P Jenkin, T AF Sioshansi, Ramteen Denholm, Paul Jenkin, Thomas TI Market and Policy Barriers to Deployment of Energy Storage SO ECONOMICS OF ENERGY & ENVIRONMENTAL POLICY LA English DT Article DE Energy storage; Electricity markets; Externalities; Incomplete markets; Energy policy AB There has recently been resurgent interest in energy storage, due to a number of developments in the electricity industry. Despite this interest, very little storage, beyond some small demonstration projects, has been deployed recently. While technical issues, such as cost, device efficiency, and other technical characteristics are often listed as barriers to storage, there are a number of non-technical and policy-related issues. This paper surveys some of these main barriers and proposes some potential research and policy steps that can help address them. While the discussion is focused on the United States, a number of the findings and observations may be more broadly applicable. C1 [Sioshansi, Ramteen] Ohio State Univ, Integrated Syst Engn Dept, Columbus, OH 43210 USA. [Denholm, Paul; Jenkin, Thomas] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA. RP Sioshansi, R (reprint author), Ohio State Univ, Integrated Syst Engn Dept, Columbus, OH 43210 USA. NR 50 TC 11 Z9 11 U1 2 U2 6 PU INT ASSOC ENERGY ECONOMICS PI CLEVELAND PA 28790 CHAGRIN BLVD, STE 210, CLEVELAND, OH 44122 USA SN 2160-5882 EI 2160-5890 J9 ECON ENERGY ENV POL JI Econ. Energy Environ. Policy PD MAR PY 2012 VL 1 IS 2 BP 47 EP 63 DI 10.5547/2160-5890.1.2.4 PG 17 WC Economics; Environmental Studies SC Business & Economics; Environmental Sciences & Ecology GA V39QO UT WOS:000209425700005 ER PT J AU Livny-Ezer, A Weiser, M Kushnir, T Harnof, S Tomasi, D Biegon, A AF Livny-Ezer, A. Weiser, M. Kushnir, T. Harnof, S. Tomasi, D. Biegon, A. TI Functional magnetic resonance imaging of increased working memory load after traumatic brain injury SO EUROPEAN NEUROPSYCHOPHARMACOLOGY LA English DT Meeting Abstract C1 [Livny-Ezer, A.] Chaim Sheba Med Ctr, Joseph Sagol Neurosci Ctr, Ramat Gan, Israel. [Weiser, M.] Chaim Sheba Med Ctr, Dept Psychiat, Ramat Gan, Israel. [Kushnir, T.] Chaim Sheba Med Ctr, Dept Diagnost Imaging, Ramat Gan, Israel. [Harnof, S.] Chaim Sheba Med Ctr, Dept Neurosurg, Ramat Gan, Israel. [Tomasi, D.] Brookhaven Natl Lab, Lab Neuroimaging, Upton, NY 11973 USA. [Biegon, A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-977X EI 1873-7862 J9 EUR NEUROPSYCHOPHARM JI Eur. Neuropsychopharmacol. PD MAR PY 2012 VL 22 SU 1 MA P.3.30 BP S77 EP S78 PG 2 WC Clinical Neurology; Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA V45YC UT WOS:000209850900083 ER PT J AU De Jesus-Laboy, KM Godoy-Vitorino, F Piceno, YM Tom, LM Pantoja-Feliciano, IG Rivera-Rivera, MJ Andersen, GL Dominguez-Bello, MG AF De Jesus-Laboy, Kassandra M. Godoy-Vitorino, Filipa Piceno, Yvette M. Tom, Lauren M. Pantoja-Feliciano, Ida G. Rivera-Rivera, Michelle J. Andersen, Gary L. Dominguez-Bello, Maria G. TI Comparison of the Fecal Microbiota in Feral and Domestic Goats SO GENES LA English DT Article DE feral; domestic; microbiome; antibiotic; resistance AB Animals have co-evolved with mutualistic microbial communities, known as the microbiota, which are essential for organ development and function. We hypothesize that modern animal husbandry practices exert an impact on the intestinal microbiota. In this study, we compared the structure of the fecal microbiota between feral and domestic goats using the G2 PhyloChip and assessed the presence of five tetracycline resistance genes [tet(M), tet(S), tet(O), tet(Q) and tet(W)] by PCR. Feces were collected from 10 goats: 5 domestic from a farm in the main island of Puerto Rico and 5 feral from the remote dry island of Mona. There were 42 bacterial phyla from 153 families detected in the goats' feces. A total of 84 PhyloChip-OTUs were different in the fecal microbiota of feral and domestic goat. Both feral and domestic goats carried antibiotic resistance genes tet(O) and tet(W), but domestic goats additionally carried tet(Q). Diet, host genetics and antibiotic exposure are likely determinant factors in shaping the intestinal microbiota and may explain the differences observed between feral and domestic goats fecal microbiota. C1 [De Jesus-Laboy, Kassandra M.; Godoy-Vitorino, Filipa; Pantoja-Feliciano, Ida G.; Rivera-Rivera, Michelle J.; Dominguez-Bello, Maria G.] Univ Puerto Rico, Dept Biol, Microbial Ecol Lab, San Juan, PR 00931 USA. [Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. RP Dominguez-Bello, MG (reprint author), Univ Puerto Rico, Dept Biol, Microbial Ecol Lab, JGD 224,Rio Piedras Campus,Ave Ponce de Leon, San Juan, PR 00931 USA. EM kzandra.m@gmail.com; filipagodoyvitorino@gmail.com; ympiceno@lbl.gov; ltom@lbl.gov; idapantoja@gmail.com; yersiniamjr@hotmail.com; glandersen@lbl.gov; maria.dominguez1@upr.edu RI Tom, Lauren/E-9739-2015; Andersen, Gary/G-2792-2015; Piceno, Yvette/I-6738-2016 OI Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699 FU NSF CREST [HRD0206200]; Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231] FX This work was supported by NSF CREST HRD0206200. A portion of this work was performed at Lawrence Berkeley National Laboratory under Department of Energy contract number DE-AC02-05CH11231. We thank Miguel Gueimonde and Rod Mackie for providing plasmids containing tetracycline resistance genes. We acknowledge undergraduate students Maite Ferrer, Maria del Mar Rodriguez Berrios, Ivonne Reyes, Lidia Ocasio and Anamaria Noriega for their help in sample processing. NR 41 TC 2 Z9 2 U1 1 U2 3 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4425 J9 GENES-BASEL JI Genes PD MAR PY 2012 VL 3 IS 1 BP 1 EP 18 DI 10.3390/genes3010001 PG 18 WC Genetics & Heredity SC Genetics & Heredity GA V36YA UT WOS:000209242300001 ER PT J AU Ryan, DH Lee-Hone, NR Cadogan, JM Ahn, K Pecharsky, VK Gschneidner, KA AF Ryan, D. H. Lee-Hone, N. R. Cadogan, J. M. Ahn, K. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Doping-induced valence change in Yb5Ge4-x(Sb, Ga)(x): (x <= 1) SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 65th Yamada Conference / 31st International Conference on the Applications of the Mossbauer Effect (ICAME) CY SEP 25-30, 2011 CL Kobe, JAPAN DE Lanthanide; Valence; Mossbauer spectroscopy ID GD-5(SI2GE2); SYSTEM AB Following our earlier observation that the ytterbium valence distribution in Yb5Ge4-xSix was independent of x, we use Yb-170 Mossbauer spectroscopy to follow the Yb valence distribution in Sb and Ga doped Yb5Ge4. The crystal structure does not change for either dopant and the Yb valence, while affected, proves quite resistant to change, with only one third of the electrons added or removed by the dopants leading to Yb3+ <-> Yb2+ conversion. C1 [Ryan, D. H.; Lee-Hone, N. R.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Cadogan, J. M.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Ahn, K.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Ahn, K.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Cadogan, JM (reprint author), Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. EM cadogan@physics.umanitoba.ca OI Lee-Hone, Nicholas/0000-0003-2264-4803 NR 6 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD MAR PY 2012 VL 208 IS 1-3 BP 59 EP 63 DI 10.1007/s10751-011-0415-4 PG 5 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 070KT UT WOS:000313505700012 ER PT J AU Dong, D Thacker, T Cvetkovic, I Burgos, R Boroyevich, D Wang, F Skutt, G AF Dong, Dong Thacker, Timothy Cvetkovic, Igor Burgos, Rolando Boroyevich, Dushan Wang, Fred Skutt, Glenn TI Modes of Operation and System-Level Control of Single-Phase Bidirectional PWM Converter for Microgrid Systems SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Islanding detection; microgrid system; multi-function converter; PLL; single-phase ID ISLANDING DETECTION; CURRENT INJECTION; REDUCTION; INVERTERS AB Robust system control design and seamless transition between various modes of operation are paramount for multifunctional converters in microgrid systems. This paper proposes a control system for single-phase (1 Phi) bidirectional PWM converters for residential power level microgrid systems which is robust and can tolerate transitions between the different modes of operation. This is achieved by means of a common inner ac current-loop. Each of the operating modes has an individually designed outer loop performing the corresponding regulation tasks, most commonly including the ac voltage and the dc voltage regulation. A modified 1 Phi, phase-locked loop (PLL) system is used for system-level operation with both small steady-state error and fast response; and a novel islanding detection algorithm based on PLL stability is proposed to facilitate the transition between grid-connected mode and stand-alone mode. Finally, a frequency-response based design procedure for the proposed control system is presented in detail for all operating modes, and its performance is verified experimentally using a DSP-controlled 6 kW 120 V rms (ac)/ 300 V (dc) laboratory converter prototype. C1 [Dong, Dong; Cvetkovic, Igor; Boroyevich, Dushan] Virginia Tech, Ctr Power Elect Syst, Blacksburg, VA 24061 USA. [Thacker, Timothy; Skutt, Glenn] PowerHub Syst, Blacksburg, VA 24060 USA. [Burgos, Rolando] ABB US Corp Res Ctr, Raleigh, NC 27606 USA. [Wang, Fred] Univ Tennessee, Knoxville, TN 37996 USA. [Wang, Fred] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dong, D (reprint author), Virginia Tech, Ctr Power Elect Syst, Blacksburg, VA 24061 USA. EM dongd@vt.edu; tthacker@vpt-es.com; igorc@vt.edu; rburgos@ieee.org; dushan@vt.edu; f.wang@ieee.org; gskutt@vpt-es.com NR 38 TC 31 Z9 33 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD MAR PY 2012 VL 3 IS 1 BP 93 EP 104 DI 10.1109/TSG.2011.2167352 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 231OS UT WOS:000325427200009 ER PT J AU Nutaro, J Protopopescu, V AF Nutaro, James Protopopescu, Vladimir TI Calculating Frequency at Loads in Simulations of Electro-Mechanical Transients SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Frequency control; modeling; simulation ID POWER-SYSTEM FREQUENCY AB This paper introduces a new method for calculating frequency at an electrical load in simulations of electro-mechanical transients. The method is designed for simulation studies that require accurate models of sensors such as phasor measurement units and F-Net devices, which measure frequency at locations away from generating plants. These sensors are poised to become critical components in the control systems of electrical power grids, and therefore simulation tools that incorporate accurate models of these devices are essential. The method proposed here corrects two drawbacks of using numerically computed phase angle derivatives to approximate frequency. First, it eliminates spurious spikes in frequencies calculated at loads. Second, it eliminates instabilities induced by the simulator in studies of frequency responsive loads. The proposed method is derived from a simplified model of the generators and loads in an electrical system, but in the final analysis does not depend critically on these simplifications and is therefore applicable to more sophisticated models. The method is demonstrated with the simplified model applied to the IEEE 14 and 300 bus systems. C1 [Nutaro, James; Protopopescu, Vladimir] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Nutaro, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM nutarojj@ornl.gov; protopopesva@ornl.gov OI Nutaro, James/0000-0001-7360-2836 FU UT-Battelle, LLC [AC05-00OR22725]; U.S. Department of Energy; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); UT-Battelle, LLC for the U.S. Department of Energy [DE-AC05-00OR22725] FX This paper was authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This work was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Paper no. TSG-00131-2011. NR 22 TC 8 Z9 8 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD MAR PY 2012 VL 3 IS 1 BP 233 EP 240 DI 10.1109/TSG.2011.2173359 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA 231OS UT WOS:000325427200023 ER PT J AU Onar, OC Khaligh, A AF Onar, O. C. Khaligh, A. TI A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Battery; bidirectional dc/dc converter; energy storage system; hybrid energy storage system; hybrid vehicles; integrated magnetic structures; ultracapacitor ID ELECTRIC VEHICLE; FUEL-CELL; POWER ELECTRONICS; ULTRACAPACITORS; INDUCTORS; MULTIPLE; BATTERY; DESIGN AB This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions. C1 [Onar, O. C.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Khaligh, A.] Univ Maryland, Dept Elect & Comp Engn, Power Elect Energy Harvesting & Renewable Energie, College Pk, MD 20742 USA. RP Onar, OC (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM onaroc@ornl.gov; khaligh@ece.umd.edu RI Khaligh, Alireza/B-8435-2012 FU U.S. National Science Foundation [0801860, 0852013] FX This work was supported by the U.S. National Science Foundation under Grants 0801860 and 0852013. Paper no. TSG-00258-2010. NR 36 TC 21 Z9 23 U1 0 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD MAR PY 2012 VL 3 IS 1 BP 296 EP 307 DI 10.1109/TSG.2011.2150250 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 231OS UT WOS:000325427200030 ER PT J AU Beer, S Gomez, T Dallinger, D Momber, I Marnay, C Stadler, M Lai, J AF Beer, Sebastian Gomez, Tomas Dallinger, David Momber, Ilan Marnay, Chris Stadler, Michael Lai, Judy TI An Economic Analysis of Used Electric Vehicle Batteries Integrated Into Commercial Building Microgrids SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Battery storage; building management systems; dispersed storage and generation; electric vehicles; load management; microgrid; optimization methods; power system economics; road vehicle electric propulsion AB Current policies in the U.S. and other countries are trying to stimulate electric transportation deployment. Consequently, plug-in electric vehicle (PEV) adoption will presumably spread among vehicle users. With the increased diffusion of PEVs, lithium-ion batteries will also enter the market on a broad scale. However, their costs are still high and ways are needed to optimally deploy vehicle batteries in order to account for the higher initial outlay. This study analyzed the possibility of extending the lifecycle of PEV batteries to a secondary, stationary application. Battery usage can be optimized by installing used battery packs in buildings' microgrids. Employed as decentralized storage, batteries can be used for a microgrid's power supply and provide ancillary services (A/S). This scenario has been modeled with the Distributed Energy Resources Customer Adoption Model (DER-CAM), which identifies optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results show that used PEV batteries can create significant monetary value if subsequently used for stationary applications. C1 [Beer, Sebastian] RWE Innogy GmbH, D-22297 Hamburg, Germany. [Dallinger, David] Fraunhofer Inst Syst & Innovat Res, D-76139 Karlsruhe, Germany. [Gomez, Tomas; Momber, Ilan] Pontificia Comillas Univ Madrid, Madrid, Spain. [Marnay, Chris; Stadler, Michael; Lai, Judy] Berkeley Lab, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Beer, S (reprint author), RWE Innogy GmbH, D-22297 Hamburg, Germany. EM se-bastian.beer@rwe.de; tomas.gomez@iit.upcomillas.es; David.Dallinger@isi.fhg.de; ilan.momber@itt.upcomillas.es; C_Marnay@lbl.gov; MStadler@lbl.gov; JLai@lbl.gov OI Gomez San Roman, Tomas/0000-0001-5517-9587 FU Office of Electricity Delivery and Energy Reliability's Smart Grids Program in the U.S. Department of Energy [DE-AC02-05CH11231]; German Federal Ministry of Education and Research (BMBF) as part of the project "Fraunhofer Systems Research Electric Mobility" [13N10599]; Spanish Ministry of Education FX This work was supported by the Office of Electricity Delivery and Energy Reliability's Smart Grids Program in the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the German Federal Ministry of Education and Research (BMBF) as part of the project "Fraunhofer Systems Research Electric Mobility" under Project 13N10599. The work of T. Gomez was supported by the Spanish Ministry of Education under its Professor and Senior Researcher Mobility program. Paper no. TSG-00114-2011. NR 22 TC 40 Z9 41 U1 3 U2 27 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD MAR PY 2012 VL 3 IS 1 BP 517 EP 525 DI 10.1109/TSG.2011.2163091 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 231OS UT WOS:000325427200053 ER PT J AU Long, JCS Greenblatt, J AF Long, Jane C. S. Greenblatt, Jeffery TI The 80% Solution Radical Carbon Emission Cuts for California SO ISSUES IN SCIENCE AND TECHNOLOGY LA English DT Article C1 [Greenblatt, Jeffery] Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM janecslong@gmail.com; jbgreenblatt@lbl.gov NR 0 TC 1 Z9 1 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0748-5492 EI 1938-1557 J9 ISSUES SCI TECHNOL JI Issues Sci. Technol. PD SPR PY 2012 VL 28 IS 3 BP 61 EP 66 PG 6 WC Engineering, Multidisciplinary; Engineering, Industrial; Multidisciplinary Sciences; Social Issues SC Engineering; Science & Technology - Other Topics; Social Issues GA V30TU UT WOS:000208839100028 ER PT J AU Candelaria, SL Shao, YY Zhou, W Li, XL Xiao, J Zhang, JG Wang, Y Liu, J Li, JH Cao, GZ AF Candelaria, Stephanie L. Shao, Yuyan Zhou, Wei Li, Xiaolin Xiao, Jie Zhang, Ji-Guang Wang, Yong Liu, Jun Li, Jinghong Cao, Guozhong TI Nanostructured carbon for energy storage and conversion SO NANO ENERGY LA English DT Review DE Porous carbon; Carbon nanotubes; Graphene; Supercapacitor; Electrocatalyst; Lithium battery ID LITHIUM-ION BATTERIES; METHANOL FUEL-CELLS; DOUBLE-LAYER CAPACITORS; HETEROJUNCTION SOLAR-CELLS; NATURAL-GAS STORAGE; AMMONIA BORANE NANOCOMPOSITES; PERFORMANCE ANODE MATERIAL; CHEMICAL-VAPOR-DEPOSITION; CARBIDE DERIVED CARBONS; PISTACHIO-NUT SHELLS AB Carbon materials have been playing a significant role in the development of alternative clean and sustainable energy technologies. This review article summarizes the recent research progress on the synthesis of nanostructured carbon and its application in energy storage and conversion. In particular, we will systematically discuss the synthesis and applications of nanoporous carbon as electrodes for supercapacitors and electrodes in lithium-ion batteries, and the development of nanoporous media for methane gas storage, coherent nanocomposites for hydrogen storage, electrocatalysts and catalyst supports for fuel cells, new porous carbon for lithium-sulfur batteries, and porous carbon for lithium-oxygen batteries. The common challenges in developing simple, scalable, and environmentally friendly synthetic and manufacturing processes, in controlling the nanoscale and high level structures and functions, and in integrating such materials with suitable device architectures are reviewed. Possible new directions to overcome the current limitations on the performance are discussed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Candelaria, Stephanie L.; Cao, Guozhong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Shao, Yuyan; Li, Xiaolin; Xiao, Jie; Zhang, Ji-Guang; Wang, Yong; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhou, Wei; Li, Jinghong] Tsinghua Univ, Dept Chem, Beijing Key Lab Microanalyt Methods & Instrumenta, Beijing 100084, Peoples R China. [Zhou, Wei; Li, Jinghong] Tsinghua Univ, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China. RP Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.liu@pnnl.gov; jhli@mail.tsinghua.edu.cn; gzcao@u.washington.edu RI Shao, Yuyan/A-9911-2008; Cao, Guozhong/E-4799-2011; Li, Jinghong /D-4283-2012 OI Shao, Yuyan/0000-0001-5735-2670; Li, Jinghong /0000-0002-0750-7352 FU National Science Foundation [DMI-0455994, DMR-0605159, CMMI-1030048]; Air Force Office of Scientific Research (AFOSR-MURI) [FA9550-06-1-0326]; Washington Technology Center; Pacific Northwest National Laboratory (PNNL); Intel Labs; EnerG2; University of Washington Bioenergy IGERT fellowship [DGE-0654252]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE by Battelle [DE-AC05-76RL01830]; National Basic Research Program of China [2011CB935704]; National Natural Science Foundation of China [11079002] FX This work has been supported in part by National Science Foundation (DMI-0455994, DMR-0605159, and CMMI-1030048) and Air Force Office of Scientific Research (AFOSR-MURI, FA9550-06-1-0326). This work has also been supported by Washington Technology Center, Pacific Northwest National Laboratory (PNNL), Intel Labs, and EnerG2. SLC acknowledges the University of Washington Bioenergy IGERT fellowship (DGE-0654252) and the GO-MAP fellowship. PNNL researchers would like to acknowledge support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152. PNNL is a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. Tsinghua University researchers acknowledge financial support from National Basic Research Program of China (No. 2011CB935704) and National Natural Science Foundation of China (No. 11079002). NR 344 TC 341 Z9 344 U1 130 U2 1016 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 J9 NANO ENERGY JI Nano Energy PD MAR PY 2012 VL 1 IS 2 BP 195 EP 220 DI 10.1016/j.nanoen.2011.11.006 PG 26 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 132EG UT WOS:000318050100004 ER PT J AU Taylor-Pashow, KML Della Rocca, J Lin, WB AF Taylor-Pashow, Kathryn M. L. Della Rocca, Joseph Lin, Wenbin TI Mesoporous Silica Nanoparticles with Co-Condensed Gadolinium Chelates for Multimodal Imaging SO NANOMATERIALS LA English DT Article DE mesoporous silica nanoparticle; MRI contrast agent; Gd3+ contrast agent; multimodal imaging AB Several mesoporous silica nanoparticle (MSN) contrast agents have been synthesized using a co-condensation method to incorporate two different Gd3+ complexes at very high loadings (15.5-28.8 wt %). These MSN contrast agents, with an MCM-41 type pore structure, were characterized using a variety of methods including SEM and TEM, nitrogen adsorption measurements, thermogravimetric analysis (TGA), direct current plasma (DCP) spectroscopy, and powder X-ray diffraction (PXRD). The magnetic resonance (MR) relaxivities of these contrast agents were determined using a 3 T MR scanner. The r(1) relaxivities of these nanoparticles range from 4.1 to 8.4 mM(-1)s(-1) on a per Gd basis. Additionally, the MSN particles were functionalized with an organic fluorophore and cancer cell targeting peptide to allow for demonstration of both the optical and MR contrast enhancing capabilities in vitro. C1 [Taylor-Pashow, Kathryn M. L.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Della Rocca, Joseph; Lin, Wenbin] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. RP Lin, WB (reprint author), Univ N Carolina, Dept Chem, CB 3290, Chapel Hill, NC 27599 USA. EM kathryn.taylor-pashow@srnl.doe.gov; dellaroc@ad.unc.edu; wlin@email.unc.edu RI Lin, Wenbin/B-4151-2010 OI Lin, Wenbin/0000-0001-7035-7759 FU NIH [U01-CA151455, U54-119343] FX The authors thank Hongyu An for help with MRI experiments and NIH (U01-CA151455 and U54-119343) for funding. NR 43 TC 4 Z9 4 U1 4 U2 19 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2079-4991 J9 NANOMATERIALS-BASEL JI Nanomaterials PD MAR PY 2012 VL 2 IS 1 BP 1 EP 14 DI 10.3390/nano2010001 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA V34FM UT WOS:000209072300001 PM 24527205 ER PT J AU Ellis, AW Barton, NP AF Ellis, Andrew W. Barton, Neil P. TI CHARACTERIZING THE NORTH PACIFIC JET STREAM FOR UNDERSTANDING HISTORICAL VARIABILITY IN WESTERN UNITED STATES WINTER PRECIPITATION SO PHYSICAL GEOGRAPHY LA English DT Article DE North Pacific jet; winter precipitation variability; jet stream; ENSO; western United States ID SOUTHERN-OSCILLATION; ENSO TELECONNECTIONS; DECADAL OSCILLATION; EL-NINO; CLIMATE; DROUGHT; SNOWFALL; ASSOCIATIONS; CIRCULATION; MODULATION AB We examined historical winter-season relationships among precipitation across the western United States, the northern Pacific jet stream (NPJ) across the northern Pacific Ocean basin, and the El Nino-Southern Oscillation (ENSO) phenomenon to determine if the NPJ significantly adds to the existing ENSO-based understanding of inter-annual variability in precipitation. The results indicate that the NPJ is significantly related to winter precipitation across a much larger area of the western United States than the ENSO signal. For areas where the ENSO signal is significantly related to precipitation, there generally exists a stronger or more consistent NPJ-precipitation relationship. The position of the NPJ is the most important characteristic of the jet in its relationship with precipitation across the western United States. However, winter precipitation across the northwest, especially for regions of higher elevation, is more significantly related to the strength of the NPJ. The results indicate that there is value in considering seasonal jet stream characteristics as independent variables, along with climate teleconnections, when considering seasonal precipitation variability in regions where large-scale jet stream dynamics are influential. C1 [Ellis, Andrew W.] Virginia Tech, Dept Geog MC 0115, Blacksburg, VA 24061 USA. [Barton, Neil P.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA. RP Ellis, AW (reprint author), Virginia Tech, Dept Geog MC 0115, 220 Stanger St, Blacksburg, VA 24061 USA. RI Barton, Neil/F-9827-2011 FU U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; LLNL FX NPB's contribution to this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344. The LLNL Institutional Postdoc Program partly funded this work. NR 30 TC 2 Z9 2 U1 1 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0272-3646 EI 1930-0557 J9 PHYS GEOGR JI Phys. Geogr. PD MAR-APR PY 2012 VL 33 IS 2 BP 105 EP 128 DI 10.2747/0272-3646.33.2.105 PG 24 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Physical Geography; Geology; Meteorology & Atmospheric Sciences GA 934KU UT WOS:000303443800001 ER PT J AU Ekworomadu, MT Poor, CB Owens, CP Balderas, MA Fabian, M Olson, JS Murphy, F Balkabasi, E Honsa, ES He, C Goulding, CW Maresso, AW AF Ekworomadu, MarCia T. Poor, Catherine B. Owens, Cedric P. Balderas, Miriam A. Fabian, Marian Olson, John S. Murphy, Frank Balkabasi, Erol Honsa, Erin S. He, Chuan Goulding, Celia W. Maresso, Anthony W. TI Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore SO PLOS PATHOGENS LA English DT Article ID HEME ACQUISITION-SYSTEM; SURFACE PROTEIN ISDC; STAPHYLOCOCCUS-AUREUS; BACILLUS-ANTHRACIS; NEAT DOMAIN; HEMOGLOBIN RECEPTOR; SERRATIA-MARCESCENS; IRON ACQUISITION; PSEUDOMONAS-AERUGINOSA; SECONDARY STRUCTURE AB To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3(10)-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3(10)-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with upstream ligands. C1 [Ekworomadu, MarCia T.; Balderas, Miriam A.; Balkabasi, Erol; Honsa, Erin S.; Maresso, Anthony W.] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. [Poor, Catherine B.; He, Chuan] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Owens, Cedric P.; Goulding, Celia W.] Univ Calif Irvine, Dept Mol Biol, Irvine, CA USA. [Owens, Cedric P.; Goulding, Celia W.] Univ Calif Irvine, Dept Biochem, Irvine, CA 92717 USA. [Fabian, Marian; Olson, John S.] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77251 USA. [Murphy, Frank] Argonne Natl Lab, NE Collaborat Access Team, Argonne, IL 60439 USA. RP Ekworomadu, MT (reprint author), Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. EM maresso@bcm.edu OI Fabian, M. Patricia/0000-0002-1658-3349; Olson, John/0000-0002-0760-5403 FU National Institutes of Health [AI069697, AI074658, GM035649, HL047020, GM84348, AI081161]; Robert A. Welch Foundation [C0612] FX This work was supported by grants from the National Institutes of Health: AI069697 to A.W.M., AI074658 to C.H., GM035649 and HL047020 to J.S.O, GM84348 to M.F., and AI081161 to C.W.G. J.S.O. was also supported by the Robert A. Welch Foundation Grant C0612. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 88 TC 24 Z9 24 U1 0 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD MAR PY 2012 VL 8 IS 3 AR e1002559 DI 10.1371/journal.ppat.1002559 PG 16 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 918CC UT WOS:000302225600013 PM 22412371 ER PT J AU Wang, XT Waite, N Murcia, P Emery, K Steiner, M Kiamilev, F Goossen, K Honsberg, C Barnett, A AF Wang, Xiaoting Waite, Nick Murcia, Paola Emery, Keith Steiner, Myles Kiamilev, Fouad Goossen, Keith Honsberg, Christiana Barnett, Allen TI Lateral spectrum splitting concentrator photovoltaics: direct measurement of component and submodule efficiency SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE lateral spectrum splitting concentrator photovoltaics (LSSCPV); direct measurement; component efficiency; test bed; spectral calibration ID SOLAR; SYSTEMS AB To achieve high energy conversion efficiency, a solar module architecture called lateral spectrum splitting concentrator photovoltaics (LSSCPV) is being developed. LSSCPV can concentrate available sunlight and laterally split a single beam into bands with different spectra for absorption by different solar cells with band gaps matched to the split spectrum. Test assemblies of a sample LSSCPV architecture were constructed, each of which contains four pn junctions and two optical pieces. Independent experiments or simulations had been implemented on the components but by using optimal assumptions. In order to examine the actual performances of all the components, which are dependent on each other and the light source, direct outdoor measurements were made. A set of self-consistent efficiency definitions was articulated and a test bed was developed to measure the parameters required by the efficiency calculation. By comparing the component efficiency items derived from the outdoor measurement and the expected values based on independent simulations, the potential opportunities for efficiency improvement are determined. In the outdoor measurement at the University of Delaware, the optical component demonstrated 89.1% efficiency. Additional assemblies were tested at the National Renewable Energy Laboratory. One assembly demonstrated 36.7% submodule efficiency, which compares favorably with the 32.6% previously reported verified submodule efficiency. Copyright (c) 2011 John Wiley & Sons, Ltd. C1 [Wang, Xiaoting; Waite, Nick; Murcia, Paola; Kiamilev, Fouad; Goossen, Keith; Barnett, Allen] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA. [Emery, Keith; Steiner, Myles] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Honsberg, Christiana] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA. RP Wang, XT (reprint author), Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA. EM xiaotingudel@gmail.com FU US Government Defense Advanced Research Projects Agency [HR0011-07-9-0005] FX This research was, in part, funded by the US Government Defense Advanced Research Projects Agency under Agreement No. HR0011-07-9-0005. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. NR 26 TC 19 Z9 21 U1 1 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD MAR PY 2012 VL 20 IS 2 BP 149 EP 165 DI 10.1002/pip.1194 PG 17 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 897ZE UT WOS:000300701600004 ER PT J AU Shumay, E Fowler, JS Wang, GJ Logan, J Alia-Klein, N Goldstein, RZ Maloney, T Wong, C Volkow, ND AF Shumay, E. Fowler, J. S. Wang, G-J Logan, J. Alia-Klein, N. Goldstein, R. Z. Maloney, T. Wong, C. Volkow, N. D. TI Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability SO TRANSLATIONAL PSYCHIATRY LA English DT Article DE cocaine addiction; dopaminergic signaling; human brain; human brain imaging; Period 2 gene ID CIRCADIAN-RHYTHMS; CLOCK GENES; PARKINSONS-DISEASE; POSITIVE SELECTION; NUCLEUS-ACCUMBENS; EXPRESSION; DEPENDENCE; EVOLUTION; POLYMORPHISMS; POPULATIONS AB Low dopamine D2 receptor (D2R) levels in the striatum are consistently reported in cocaine abusers; inter-individual variations in the degree of the decrease suggest a modulating effect of genetic makeup on vulnerability to addiction. The PER2 (Period 2) gene belongs to the clock genes family of circadian regulators; circadian oscillations of PER2 expression in the striatum was modulated by dopamine through D2Rs. Aberrant periodicity of PER2 contributes to the incidence and severity of various brain disorders, including drug addiction. Here we report a newly identified variable number tandem repeat (VNTR) polymorphism in the human PER2 gene (VNTR in the third intron). We found significant differences in the VNTR alleles prevalence across ethnic groups so that the major allele (4 repeats (4R)) is over-represented in non-African population (4R homozygosity is 88%), but not in African Americans (homozygosity 51%). We also detected a biased PER2 genotype distribution among healthy controls and cocaine-addicted individuals. In African Americans, the proportion of 4R/three repeat (3R) carriers in healthy controls is much lower than that in cocaine abusers (23% vs 39%, P = 0.004), whereas among non-Africans most 3R/4R heterozygotes are healthy controls (10.5% vs 2.5%, P = 0.04). Analysis of striatal D2R availability measured with positron emission tomography and [C-11]raclopride revealed higher levels of D2R in carriers of 4R/4R genotype (P<0.01). Taken together, these results provide preliminary evidence for the role of the PER2 gene in regulating striatal D2R availability in the human brain and in vulnerability for cocaine addiction. Translational Psychiatry (2012) 2, e86; doi:10.1038/tp.2012.11; published online 6 March 2012 C1 [Shumay, E.; Fowler, J. S.; Wang, G-J; Logan, J.; Alia-Klein, N.; Goldstein, R. Z.; Maloney, T.; Wong, C.] Brookhaven Natl Lab, Dept Med, Ctr Translat Neuroimaging, Upton, NY 11973 USA. [Volkow, N. D.] NIDA, Bethesda, MD 20892 USA. RP Shumay, E (reprint author), Brookhaven Natl Lab, Dept Med, Ctr Translat Neuroimaging, Upton, NY 11973 USA. EM eshumay@bnl.gov FU National Institute on Drug Abuse (NIDA) [KO1 DA025280, R01DA023579] FX This study was supported by National Institute on Drug Abuse (NIDA) Grants KO1 DA025280 (to ES) and R01DA023579 (to RZG). We are grateful to BNL Center for Translational Neuroimaging team for PET operation, to Dr Frank Telang, RNs Barbara Hubbard and Millard Jayne for collecting blood samples and to Karen Apelskog-Torres, AA, for protocol coordination. We also thank the individuals who volunteered to participate in this study. NR 60 TC 20 Z9 20 U1 1 U2 6 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 2158-3188 J9 TRANSL PSYCHIAT JI Transl. Psychiatr. PD MAR PY 2012 VL 2 AR e86 DI 10.1038/tp.2012.11 PG 9 WC Psychiatry SC Psychiatry GA 104KE UT WOS:000315990800002 PM 22832851 ER PT J AU Prochnik, S Marri, PR Desany, B Rabinowicz, PD Kodira, C Mohiuddin, M Rodriguez, F Fauquet, C Tohme, J Harkins, T Rokhsar, DS Rounsley, S AF Prochnik, Simon Marri, Pradeep Reddy Desany, Brian Rabinowicz, Pablo D. Kodira, Chinnappa Mohiuddin, Mohammed Rodriguez, Fausto Fauquet, Claude Tohme, Joseph Harkins, Timothy Rokhsar, Daniel S. Rounsley, Steve TI The Cassava Genome: Current Progress, Future Directions SO TROPICAL PLANT BIOLOGY LA English DT Review DE Cassava; 454-sequencing; Linkage mapping; Genotyping by sequencing; Polymorphism; Crop improvement AB The starchy swollen roots of cassava provide an essential food source for nearly a billion people, as well as possibilities for bioenergy, yet improvements to nutritional content and resistance to threatening diseases are currently impeded. A 454-based whole genome shotgun sequence has been assembled, which covers 69% of the predicted genome size and 96% of protein-coding gene space, with genome finishing underway. The predicted 30,666 genes and 3,485 alternate splice forms are supported by 1.4 M expressed sequence tags (ESTs). Maps based on simple sequence repeat (SSR)-, and EST-derived single nucleotide polymorphisms (SNPs) already exist. Thanks to the genome sequence, a high-density linkage map is currently being developed from a cross between two diverse cassava cultivars: one susceptible to cassava brown streak disease; the other resistant. An efficient genotyping-by-sequencing (GBS) approach is being developed to catalog SNPs both within the mapping population and among diverse African farmer-preferred varieties of cassava. These resources will accelerate marker-assisted breeding programs, allowing improvements in disease-resistance and nutrition, and will help us understand the genetic basis for disease resistance. C1 [Prochnik, Simon; Rokhsar, Daniel S.] US DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Marri, Pradeep Reddy; Rounsley, Steve] Univ Arizona, Inst BIO5, Tucson, AZ 85721 USA. [Desany, Brian; Kodira, Chinnappa; Mohiuddin, Mohammed] 454 Life Sci Roche, Branford, CT 06405 USA. [Rabinowicz, Pablo D.] Univ Maryland Sch Med, IGS, Baltimore, MD 21201 USA. [Rabinowicz, Pablo D.] Univ Maryland Sch Med, Dept Biochem & Mol Biol, Baltimore, MD 21201 USA. [Rabinowicz, Pablo D.] US DOE, Off Biol & Environm Res, Washington, DC 20585 USA. [Rodriguez, Fausto] Johns Hopkins Univ, Baltimore, MD USA. [Fauquet, Claude] Donald Danforth Plant Sci Ctr, ILTAB, St Louis, MO 63132 USA. [Rodriguez, Fausto; Tohme, Joseph] CIAT, Cali, Colombia. [Harkins, Timothy] Life Technol Corp, Carlsbad, CA 92008 USA. [Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Rounsley, Steve] Dow Agrosci, Indianapolis, IN 46268 USA. RP Rounsley, S (reprint author), Univ Arizona, Inst BIO5, 1657 E Helen St, Tucson, AZ 85721 USA. EM seprochnik@lbl.gov; pradeepreddy.marri@gmail.com; Brian.Desany@roche.com; prabinowicz@som.umaryland.edu; chinnappa.kodira@roche.com; mohammed.mohiuddin@roche.com; f.v.rodriguez@cgiar.org; Fauquet@danforthcenter.org; j.tohme2@cgiar.org; tim.t.harkins@gmail.com; dsrokhsar@gmail.com; steve.rounsley@gmail.com FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Shenqiang Shu for help with annotation. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 93 Z9 105 U1 8 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1935-9756 EI 1935-9764 J9 TROP PLANT BIOL JI Trop. Plant Biol. PD MAR PY 2012 VL 5 IS 1 BP 88 EP 94 DI 10.1007/s12042-011-9088-z PG 7 WC Plant Sciences SC Plant Sciences GA V32WA UT WOS:000208980100007 ER PT J AU McClain, V Stapleton, HM Tilton, F Gallagher, EP AF McClain, Valerie Stapleton, Heather M. Tilton, Fred Gallagher, Evan P. TI BDE 49 and developmental toxicity in zebrafish SO COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY LA English DT Article DE BDE 47; Zebrafish; Development ID POLYBROMINATED DIPHENYL ETHERS; BROMINATED FLAME RETARDANTS; STANDARD REFERENCE MATERIALS; POLYCHLORINATED-BIPHENYLS; EMBRYONIC EXPOSURE; HOUSE-DUST; PBDES; FISH; ENVIRONMENT; EXPRESSION AB The polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardants. Human health concerns of these agents have largely centered upon their potential to elicit reproductive and developmental effects. Of the various congeners. BDE 49 (2,2',4,5'-tetrabromodiphenyl ether) has been poorly studied, despite the fact that it is often detected in the tissues of fish and wildlife species. Furthermore, we have previously shown that BDE 49 is a metabolic debromination product of BDE 99 hepatic metabolism in salmon, carp and trout, underscoring the need for a better understanding of biological effects. In the current study, we investigated the developmental toxicity of BDE 49 using the zebrafish (Danio rerio) embryo larval model. Embryo and larval zebrafish were exposed to BDE 49 at either 5 hours post fertilization (hpf) or 24 hpf and monitored for developmental and neurotoxicity. Exposure to BDE 49 at concentrations of 4i mu-32 mu M caused a dose-dependent loss in survivorship at 6 days post fertilization (dpf). Morphological impairments were observed prior to the onset of mortality, the most striking of which included severe dorsal curvatures of the tail. The incidence of dorsal tail curvatures was dose and time dependent. Exposure to BDE 49 caused cardiac toxicity as evidenced by a significant reduction in zebrafish heart rates at 6 dpf but not earlier, suggesting that cardiac toxicity was non-specific and associated with physiological stress. Neurobehavioral injury from BDE 49 was evidenced by an impairment of touch-escape responses observed at 5 dpf. Our results indicate that BDE 49 is a developmental toxicant in larval zebrafish that can cause morphological abnormalities and adversely affect neurobehavior. The observed toxicities from BDE 49 were similar in scope to those previously reported for the more common tetrabrominated congener, BDE 47, and also for other lower brominated PBDEs, suggest that these compounds may share similarities in risk to aquatic species. (C) 2011 Elsevier Inc. All rights reserved. C1 [McClain, Valerie; Gallagher, Evan P.] Univ Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98105 USA. [Stapleton, Heather M.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Tilton, Fred] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gallagher, EP (reprint author), Univ Washington, Dept Environm & Occupat Hlth Sci, 4225 Roosevelt Way NE,Suite 100, Seattle, WA 98105 USA. EM evang3@u.washington.edu FU University of Washington [NIEHS P42ES004696]; National Oceanic and Atmospheric Administration [NA10OAR4170057, R/OCEH-5]; University of Washington/NSF Research Experience for Undergraduates (REU); National Institute of Environmental Health Sciences [R01ES016099] FX This work was funded in part by grants from the Washington Sea Grant Program, University of Washington, pursuant to National Oceanic and Atmospheric Administration Award No. NA10OAR4170057, Project R/OCEH-5, and from the University of Washington Superfund Research Program, Grant NIEHS P42ES004696. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its sub-agencies.; VM was a recipient of a University of Washington/NSF Research Experience for Undergraduates (REU) Summer Fellowship. Dr. Heather M. Stapleton was funded and supported by a grant from the National Institute of Environmental Health Sciences, R01ES016099. NR 43 TC 10 Z9 12 U1 3 U2 31 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1532-0456 J9 COMP BIOCHEM PHYS C JI Comp. Biochem. Physiol. C-Toxicol. Pharmacol. PD MAR PY 2012 VL 155 IS 2 BP 253 EP 258 DI 10.1016/j.cbpc.2011.09.004 PG 6 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism; Toxicology; Zoology SC Biochemistry & Molecular Biology; Endocrinology & Metabolism; Toxicology; Zoology GA 882QY UT WOS:000299580200011 PM 21951712 ER PT J AU Kulkarni, AR Pena, MJ Avci, U Mazumder, K Urbanowicz, BR Pattathil, S Yin, YB O'Neill, MA Roberts, AW Hahn, MG Xu, Y Darvill, AG York, WS AF Kulkarni, Ameya R. Pena, Maria J. Avci, Utku Mazumder, Koushik Urbanowicz, Breeanna R. Pattathil, Sivakumar Yin, Yanbin O'Neill, Malcolm A. Roberts, Alison W. Hahn, Michael G. Xu, Ying Darvill, Alan G. York, William S. TI The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes SO GLYCOBIOLOGY LA English DT Article DE glucuronoxylan; land plant evolution; Physcomitrella; plant cell wall; Selaginella ID MULTIPLE SEQUENCE ALIGNMENT; CELL-WALL POLYMERS; MONOCLONAL-ANTIBODIES; VASCULAR PLANTS; BIOSYNTHESIS; ARABIDOPSIS; XYLAN; ALGAE; MOSS; GLYCOSYLTRANSFERASES AB Glucuronoxylans with a backbone of 1,4-linked beta-d-xylosyl residues are ubiquitous in the secondary walls of gymnosperms and angiosperms. Xylans have been reported to be present in hornwort cell walls, but their structures have not been determined. In contrast, the presence of xylans in the cell walls of mosses and liverworts remains a subject of debate. Here we present data that unequivocally establishes that the cell walls of leafy tissue and axillary hair cells of the moss Physcomitrella patens contain a glucuronoxylan that is structurally similar to glucuronoxylans in the secondary cell walls of vascular plants. Some of the 1,4-linked beta-d-xylopyranosyl residues in the backbone of this glucuronoxylan bear an alpha-d-glucosyluronic acid (GlcpA) sidechain at O-2. In contrast, the lycopodiophyte Selaginella kraussiana synthesizes a glucuronoxylan substituted with 4-O-Me-alpha-d-GlcpA sidechains, as do many hardwood species. The monilophyte Equisetum hyemale produces a glucuronoxylan with both 4-O-Me-alpha-d-GlcpA and alpha-d-GlcpA sidechains, as does Arabidopsis. The seedless plant glucuronoxylans contain no discernible amounts of the reducing-end sequence that is characteristic of gymnosperm and eudicot xylans. Phylogenetic studies showed that the P. patens genome contains genes with high sequence similarity to Arabidopsis CAZy family GT8, GT43 and GT47 glycosyltransferases that are likely involved in xylan synthesis. We conclude that mosses synthesize glucuronoxylan that is structurally similar to the glucuronoxylans present in the secondary cell walls of lycopodiophytes, monilophytes, and many seed-bearing plants, and that several of the glycosyltransferases required for glucuronoxylan synthesis evolved before the evolution of tracheophytes. C1 [Kulkarni, Ameya R.; Pena, Maria J.; Avci, Utku; Mazumder, Koushik; Urbanowicz, Breeanna R.; Pattathil, Sivakumar; O'Neill, Malcolm A.; Hahn, Michael G.; Darvill, Alan G.; York, William S.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Kulkarni, Ameya R.; Pena, Maria J.; Avci, Utku; Mazumder, Koushik; Urbanowicz, Breeanna R.; Pattathil, Sivakumar; O'Neill, Malcolm A.; Hahn, Michael G.; Darvill, Alan G.; York, William S.] Univ Georgia, US Dept Energy Bioenergy Sci Ctr, Athens, GA 30602 USA. [Yin, Yanbin; Xu, Ying] Univ Georgia, Computat Syst Biol Lab, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Yin, Yanbin; Xu, Ying] Univ Georgia, DOE Bioenergy Sci Ctr, Athens, GA 30602 USA. [Hahn, Michael G.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [Darvill, Alan G.; York, William S.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Roberts, Alison W.] Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA. RP York, WS (reprint author), Univ Georgia, Complex Carbohydrate Res Ctr, 315 Riverbend Rd, Athens, GA 30602 USA. EM will@ccrc.uga.edu RI Urbanowicz, Breeanna/C-6488-2012; AVCI, Utku/B-9745-2011; Yin, Yanbin/C-9788-2010; OI Yin, Yanbin/0000-0001-7667-881X; Hahn, Michael/0000-0003-2136-5191; , Sivakumar Pattathil/0000-0003-3870-4137 FU Bioenergy Science Center, a U.S. Department of Energy Bioenergy Research Center [DE-AC05-00OR22725]; Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science [DE-FG02-96ER20220]; US Department of Agriculture National Institute of Food and Agriculture National Research Initiative [2007-35318-18389]; Center for Plant and Microbial Complex Carbohydrates [DE-FG02-93ER20097]; NSF [DBI-0421683] FX This research was funded as part of the Bioenergy Science Center (DE-AC05-00OR22725), a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science (grant DE-FG02-96ER20220), and by a US Department of Agriculture National Institute of Food and Agriculture National Research Initiative Competitive Grant (2007-35318-18389 to A. W. R.). Support for infrastructure and analytical instrumentation was provided by the U.S. Department of Energy-funded Center for Plant and Microbial Complex Carbohydrates (grant DE-FG02-93ER20097). Generation of the CCRC series of plant glycan-directed monoclonal antibodies used in this study was supported by the NSF Plant Genome Program (grant DBI-0421683). NR 70 TC 24 Z9 24 U1 2 U2 21 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 J9 GLYCOBIOLOGY JI Glycobiology PD MAR PY 2012 VL 22 IS 3 BP 439 EP 451 DI 10.1093/glycob/cwr117 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 884ZM UT WOS:000299747400014 PM 22048859 ER PT J AU Tumeo, A Villa, O Chavarria-Miranda, DG AF Tumeo, Antonino Villa, Oreste Chavarria-Miranda, Daniel G. TI Aho-Corasick String Matching on Shared and Distributed-Memory Parallel Architectures SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Aho-Corasick; string matching; GPGPU; Cray XMT; multithreaded architectures; high-performance computing AB String matching requires a combination of (sometimes all) the following characteristics: high and/or predictable performance, support for large data sets and flexibility of integration and customization. This paper compares several software-based implementations of the Aho-Corasick algorithm for high-performance systems. We focus on the matching of unknown inputs streamed from a single source, typical of security applications and difficult to manage since the input cannot be preprocessed to obtain locality. We consider shared-memory architectures (Niagara 2, x86 multiprocessors, and Cray XMT) and distributed-memory architectures with homogeneous (InfiniBand cluster of x86 multicores) or heterogeneous processing elements (InfiniBand cluster of x86 multicores with NVIDIA Tesla C1060 GPUs). We describe how each solution achieves the objectives of supporting large dictionaries, sustaining high performance, and enabling customization and flexibility using various data sets. C1 [Tumeo, Antonino; Villa, Oreste; Chavarria-Miranda, Daniel G.] Pacific NW Natl Lab, High Performance Comp Grp, Richland, WA 99352 USA. RP Tumeo, A (reprint author), Pacific NW Natl Lab, High Performance Comp Grp, Richland, WA 99352 USA. EM antonino.tumeo@pnl.gov; oreste.villa@pnl.gov; daniel.chavarria@pnl.gov RI Tumeo, Antonino/L-3106-2016 NR 16 TC 8 Z9 9 U1 0 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD MAR PY 2012 VL 23 IS 3 BP 436 EP 443 DI 10.1109/TPDS.2011.181 PG 8 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 880CO UT WOS:000299382400005 ER PT J AU Huang, SH Wang, XP Richmond, MG AF Huang, Shih-Huang Wang, Xiaoping Richmond, Michael G. TI Phosphinoborane-induced fragmentation of the unsaturated hydride H2Re2(CO)(8): X-ray structure of HRe(CO)(4)(kappa(B,P)-Ph2PCH2CH2BR2) (where BR2=9-borabicyclo [3.3.1]nonanyl) and DFT Evaluation of hydride versus CO coordination by the ancillary borane SO JOURNAL OF ORGANOMETALLIC CHEMISTRY LA English DT Article DE Phosphinoborane; Rhenium; Ambiphilic ligand; Crystallography; DFT ID FRUSTRATED LEWIS PAIR; CARBON-MONOXIDE; AMBIPHILIC COMPOUNDS; TRANSITION-METALS; COMPLEXES; LIGANDS; ACTIVATION; HYDROGEN; DENSITY; ALKENES AB The reactivity of the unsaturated dimer H2Re2(CO)(8) (1) with the ambiphilic phosphinoborane Ph2PCH2CH2BR2 (2; where BR2 = 9-borabicyclo[3.3.1]nonanyl) has been explored. Coordination of the ambiphilic ligand to 1 is rapid at room temperature, leading to the fragmentation of 1 and formation of HRe(CO)(4)(k(B,P)-Ph2PCH2CH2BR2) (3) in high yield. 3 has been characterized in solution by IR and NMR spectroscopy, and the molecular structure established by X-ray diffraction analysis. The solid-state structure confirms the presence of a chelated phosphinoborane ligand through coordination of the phosphine to the rhenium center and the formation of a three-center, two-electron (3c, 2e) Re-H-B interaction. The nature of the Re-H-B interaction in 3 has been investigated by DFT, and the energetics for borane dissociation and hydride abstraction by the coordinated Lewis acid in 3 have also been computationally evaluated. The coordination of an oxygen in one of the ancillary CO groups by the pendant borane in HRe(CO)(4)(k(P)-Ph2PCH2CH2BR2) is thermodynamically unfavorable relative to the formation of the 3c,2e Re-H-B bond. (C) 2011 Elsevier B. V. All rights reserved. C1 [Huang, Shih-Huang; Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Richmond, MG (reprint author), Univ N Texas, Dept Chem, Denton, TX 76203 USA. EM cobalt@unt.edu RI Wang, Xiaoping/E-8050-2012 OI Wang, Xiaoping/0000-0001-7143-8112 FU Robert A. Welch Foundation [B-1093-MGR]; U.S. Department of Energy, Office of Science [DE-AC05-00OR22725]; NSF [CHE-0840518, CHE-0741936] FX Financial support from the Robert A. Welch Foundation (Grant B-1093-MGR) is greatly appreciated, and X. Wang acknowledges support by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC05-00OR22725 managed by UT Battelle, LLC. NSF support of the NMR and computational facilities at UNT through grants CHE-0840518 and CHE-0741936 is acknowledged. We also wish to thank Prof. Michael B. Hall (TAMU) for providing us a copy of his JIMP2 program, which was used to prepare the geometry-optimized structures reported here. MGR acknowledges helpful DFT discussions with Dr. David A. Hrovat (UNT). NR 45 TC 4 Z9 4 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-328X J9 J ORGANOMET CHEM JI J. Organomet. Chem. PD MAR 1 PY 2012 VL 700 BP 103 EP 109 DI 10.1016/j.jorganchem.2011.11.020 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 882AW UT WOS:000299534600014 ER PT J AU Dendy, JE AF Dendy, J. E., Jr. TI Multigrid methods SO NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS LA English DT Editorial Material C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dendy, JE (reprint author), Los Alamos Natl Lab, MS B284, Los Alamos, NM 87545 USA. EM jed@lanl.gov NR 14 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1070-5325 J9 NUMER LINEAR ALGEBR JI Numer. Linear Algebr. Appl. PD MAR PY 2012 VL 19 IS 2 SI SI BP 175 EP 177 DI 10.1002/nla.1817 PG 3 WC Mathematics, Applied; Mathematics SC Mathematics GA 885KI UT WOS:000299777500001 ER PT J AU Brezina, M Ketelsen, C Manteuffel, T McCormick, S Park, M Ruge, J AF Brezina, M. Ketelsen, C. Manteuffel, T. McCormick, S. Park, M. Ruge, J. TI Relaxation-corrected bootstrap algebraic multigrid (rBAMG) SO NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS LA English DT Article DE iterative methods; multigrid; algebraic multigrid; adaptive algebraic multigrid ID AGGREGATION ALPHA-SA; AMG AB Bootstrap algebraic multigrid (BAMG) is a multigrid-based solver for matrix equations of the form Ax=b. Its aim is to automatically determine the interpolation weights used in algebraic multigrid by locally fitting a set of test vectors that have been relaxed as solutions to the corresponding homogeneous equation, Ax=0. This paper studies an improved form of BAMG, called relaxation-corrected bootstrap algebraic multigrid (rBAMG), that involves adding scaled residuals of the test vectors to the least-squares equations. The basic rBAMG scheme was introduced in an earlier paper [1] and analyzed on a simplemodel problem. The purpose of the current paper is to further develop this algorithm by incorporating several new critical components and to systematically study its performance on an interesting model problem from quantum chromodynamics. Whereas the earlier paper introduced a new least-squares principle involving the residuals of the test vectors, a simple extrapolation scheme is developed here to accurately estimate the convergence factors of the evolving algebraic multigrid solver. Such a capability is essential to the effective development of a fast solver, and the approach introduced here is shown numerically to be much more effective than the conventional approach of just observing successive error reduction factors. Another component of the setup process developed here is an adaptive cycling process. This component assesses the effectiveness of the V-cycle constructed in the initial rBAMG phase by applying it to the homogeneous equation. When poor convergence is observed, the set of test vectors is enhanced with the resulting error, enabling the subsequent least-squares fit of interpolation to produce an improved V-cycle. A related component is the scaling and recombination Ritz process that targets the so- called weak approximation property in an attempt to reveal the important elements of these evolving error and test vector spaces. The aim of the numerical study documented here is to provide insight into the various design choices that arise in the development of an rBAMG algorithm. With this in mind, the results for quantum chromodynamics focus on the behavior of rBAMG in terms of the number of initial test vectors used, the number of relaxation sweeps applied to them, and the size of the target matrices. Copyright (C) 2012 John Wiley & Sons, Ltd. C1 [Brezina, M.; Manteuffel, T.; McCormick, S.; Ruge, J.] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA. [Ketelsen, C.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Park, M.] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England. RP McCormick, S (reprint author), Univ Colorado, Dept Appl Math, Campus Box 526, Boulder, CO 80309 USA. EM stevem@colorado.edu FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-508373] FX Portions of this work were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under the contracts DE-AC52-07NA27344 and LLNL-JRNL-508373. NR 17 TC 4 Z9 4 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1070-5325 EI 1099-1506 J9 NUMER LINEAR ALGEBR JI Numer. Linear Algebr. Appl. PD MAR PY 2012 VL 19 IS 2 SI SI BP 178 EP 193 DI 10.1002/nla.1821 PG 16 WC Mathematics, Applied; Mathematics SC Mathematics GA 885KI UT WOS:000299777500002 ER PT J AU Schroder, JB AF Schroder, Jacob B. TI Smoothed aggregation solvers for anisotropic diffusion SO NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS LA English DT Article DE algebraic multigrid (AMG); smoothed aggregation (SA); anisotropic diffusion; energy minimization ID CONVERGENCE; STRATEGY AB A smoothed aggregation-based algebraic multigrid solver for anisotropic diffusion problems is presented. Algebraic multigrid is a popular and effective method for solving sparse linear systems that arise from discretizing partial differential equations. However, although algebraic multigrid was designed for elliptic problems, the case of non-grid-aligned anisotropic diffusion is not adequately addressed by existing methods. To achieve scalable performance, it is shown that neither new coarsening nor new relaxation strategies are necessary. Instead, a novel smoothed aggregation approach is developed that combines long-distance interpolation, coarse-grid injection, and an energy-minimization strategy that finds the interpolation weights. Previously developed theory by Falgout and Vassilevski is used to discern that existing coarsening strategies are sufficient, but that existing interpolation methods are not. In particular, an interpolation quality measure tracks closeness to the ideal interpolant and guides the interpolation sparsity pattern choice. Although the interpolation quality measure is computable for only small model problems, an inexact, but computable, measure is proposed for larger problems. This paper concludes with encouraging numerical results that also potentially show broad applicability (e.g., for linear elasticity). Copyright (C) 2012 John Wiley & Sons, Ltd. C1 Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Schroder, JB (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, L-561, Livermore, CA 94551 USA. EM schroder2@llnl.gov FU Department of Energy [DE-FG02-03ER25574, DE-FC02-06ER25784]; Lawrence Livermore National Laboratory [B568677]; National Science Foundation [DMS-0621199, DMS-0749317, DMS-0811275] FX This work was sponsored by the Department of Energy under grant numbers DE-FG02-03ER25574 and DE-FC02-06ER25784, Lawrence Livermore National Laboratory under contract numbers B568677, and the National Science Foundation under grant numbers DMS-0621199, DMS-0749317, and DMS-0811275. NR 26 TC 9 Z9 9 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1070-5325 J9 NUMER LINEAR ALGEBR JI Numer. Linear Algebr. Appl. PD MAR PY 2012 VL 19 IS 2 SI SI BP 296 EP 312 DI 10.1002/nla.1805 PG 17 WC Mathematics, Applied; Mathematics SC Mathematics GA 885KI UT WOS:000299777500009 ER PT J AU MacLachlan, SP Moulton, JD Chartier, TP AF MacLachlan, S. P. Moulton, J. D. Chartier, T. P. TI Robust and adaptive multigrid methods: comparing structured and algebraic approaches SO NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS LA English DT Article DE multigrid; adaptive multigrid; algebraic multigrid ID AGGREGATION ALPHA-SA; SMOOTHED AGGREGATION; COMPATIBLE RELAXATION; NONSYMMETRIC PROBLEMS; PRECONDITIONERS; INTERPOLATION; COEFFICIENTS; EQUATIONS; SYSTEMS; SOLVER AB Although there have been significant advances in robust algebraic multigrid (AMG) methods in recent years, numerical studies and emerging hardware architectures continue to favor structured-grid approaches. Specifically, implementations of logically structured robust variational multigrid algorithms, such as the black box multigrid (BoxMG) solver, have been shown to be 10 times faster than AMG for three-dimensional heterogeneous diffusion problems on structured grids. BoxMG offers important features such as operator-induced interpolation for robustness, while taking advantage of direct data access and bounded complexity in the Galerkin coarse-grid operator. Moreover, because BoxMG uses a variational framework, it can be used to explore advances of modern adaptive AMG approaches in a structured setting. In this paper, we show how to extend the adaptive multigrid methodology to the BoxMG setting. This extension not only retains the favorable properties of the adaptive framework but also sheds light on the relationship between BoxMG and AMG. In particular, we show how classical BoxMG can be viewed as a special case of classical AMG and how this viewpoint leads to a richer family of adaptive BoxMG approaches. We present numerical results that explore this family of adaptive methods and compare its robustness and efficiency to the classical BoxMG solver.Copyright (C) 2012 John Wiley & Sons, Ltd. C1 [MacLachlan, S. P.] Tufts Univ, Dept Math, Medford, MA 02155 USA. [Moulton, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chartier, T. P.] Davidson Coll, Dept Math, Davidson, NC 28035 USA. RP MacLachlan, SP (reprint author), Tufts Univ, Dept Math, 503 Boston Ave, Medford, MA 02155 USA. EM scott.maclachlan@tufts.edu FU National Science Foundation [DMS-0811022]; Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of Science Advanced Computing Research (ASCR); Alfred P. Sloan Foundation; Department of Energy [DE-FG02-04ER25590] FX The work of SPM was partially supported by the National Science Foundation, under grant DMS-0811022. The work of JDM was funded by the Department of Energy at Los Alamos National Laboratory under contracts DE-AC52-06NA25396 and the DOE Office of Science Advanced Computing Research (ASCR) program in Applied Mathematical Sciences. The work of TPC was partially supported by a research fellowship from the Alfred P. Sloan Foundation and the Department of Energy, under grant DE-FG02-04ER25590. NR 58 TC 4 Z9 4 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1070-5325 EI 1099-1506 J9 NUMER LINEAR ALGEBR JI Numer. Linear Algebr. Appl. PD MAR PY 2012 VL 19 IS 2 SI SI BP 389 EP 413 DI 10.1002/nla.837 PG 25 WC Mathematics, Applied; Mathematics SC Mathematics GA 885KI UT WOS:000299777500013 ER PT J AU Lashuk, IV Vassilevski, PS AF Lashuk, I. V. Vassilevski, P. S. TI Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties SO NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS LA English DT Article DE mixed methods; multigrid; upscaling; agglomeration; unstructured ID POLYHEDRAL MESHES; FINITE-ELEMENTS AB We propose a new technique based on element agglomeration for constructing coarse subspaces of the lowest-order tetrahedral RaviartThomas finite element space. The coarse spaces are spanned by local basis functions associated with each coarse face (i.e., with an interface between two agglomerated elements). Each such face is associated with up to four coarse basis functions. The support of these functions extends into the neighboring agglomerated elements, and the construction of these functions involves solution of certain local mixed finite element problem on each neighboring agglomerated element. In contrast to some previous work, the thus constructed coarse subspace exhibits improved approximation properties because under certain conditions, it locally contains (i.e., interpolates exactly) all vector constants. Our construction is general; in particular, we do not assume that the coarse faces are planar. Possible applications of the coarse RaviartThomas spaces are in constructing multigrid methods for the H(div) bilinear forms and (on the basis of the approximation properties of these spaces) in upscaling of mixed formulation of diffusion problems. Copyright (C) 2012 John Wiley & Sons, Ltd. C1 [Lashuk, I. V.; Vassilevski, P. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lashuk, IV (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-560, Livermore, CA 94550 USA. EM lashuk2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 17 TC 9 Z9 9 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1070-5325 J9 NUMER LINEAR ALGEBR JI Numer. Linear Algebr. Appl. PD MAR PY 2012 VL 19 IS 2 SI SI BP 414 EP 426 DI 10.1002/nla.1819 PG 13 WC Mathematics, Applied; Mathematics SC Mathematics GA 885KI UT WOS:000299777500014 ER PT J AU Sun, L Varanasi, P Yang, F Loque, D Simmons, BA Singh, S AF Sun, Lan Varanasi, Patanjali Yang, Fan Loque, Dominique Simmons, Blake A. Singh, Seema TI Rapid determination of syringyl: Guaiacyl ratios using FT-Raman spectroscopy SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE syringyl; guaiacyl; p-hydroxyphenyl; S; G ratio; lignin; FT-Raman spectroscopy ID CHROMATOGRAPHY-MASS-SPECTROMETRY; LIGNIN MONOMER COMPOSITION; PHENOLIC COMPOSITION; WOOD; PYROLYSIS; BIOSYNTHESIS; ARABIDOPSIS; PERFORMANCE; IMPACT; WALLS AB Lignin composition in relation to its basic phenylpropanoid units, particularly the syringyl to guaiacyl (S/G) ratio, is an important property for biomass characterization and varies greatly as a function of species, genotype and environment. A rapid screening method is highly desirable to assess lignin composition in a large number of samples. We have developed a nondestructive and label-free Fourier transform Raman (FT-Raman) spectroscopic method that is capable of rapidly and reliably measuring the S/G ratio with minimal sample preparation. A variety of feedstocks, including hardwood (Eucalyptus globulus), softwood (Pinus radiata), herbaceous plants (Zea mays, Panicum virgatum, and Sorghum bicolor), and a model dicot (Arabidopsis thaliana) were measured using this technique and the corresponding S/G ratio was calculated after spectral deconvolution based on the S and G bands identified using a known library of model compounds. The results obtained using this technique were successfully validated by pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS). This technique holds significant promise in the rapid screening of engineered feedstocks as part of a comprehensive screening methodology that is correlated with biomass recalcitrance. Biotechnol. Bioeng. 2012; 109:647656. (C) 2011 Wiley Periodicals, Inc. C1 [Sun, Lan; Varanasi, Patanjali; Yang, Fan; Loque, Dominique; Simmons, Blake A.; Singh, Seema] Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Sun, Lan; Varanasi, Patanjali; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA 94551 USA. RP Singh, S (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM seesing@sandia.gov RI Sun, Lan/C-7321-2012; Yang, Fan/I-4438-2015; Loque, Dominique/A-8153-2008; OI Simmons, Blake/0000-0002-1332-1810 FU U. S. Department of Energy; Office of Science; Office of Biological and Environmental Research; U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX Contract grant sponsor: U. S. Department of Energy; Contract grant sponsor: Office of Science; Contract grant sponsor: Office of Biological and Environmental Research; We thank Drs. Sara Hake, Kenneth Vogel, and Gautam Sarath for providing switchgrass and sorghum samples. This work was part of the DOE Joint BioEnergy Institute 9http://www.jbei.org) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. NR 39 TC 20 Z9 20 U1 3 U2 59 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAR PY 2012 VL 109 IS 3 BP 647 EP 656 DI 10.1002/bit.24348 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 877CP UT WOS:000299154600004 PM 22012706 ER PT J AU Griggs, AJ Stickel, JJ Lischeske, JJ AF Griggs, Andrew J. Stickel, Jonathan J. Lischeske, James J. TI A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: Depolymerization by EGI and CBHI SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE cellulose; enzymatic hydrolysis; kinetics model; polymer distribution; substrate structure ID TRICHODERMA-REESEI; HYDROLYSIS; SUBSTRATE; DEGRADATION; COTTON AB A mechanistically based kinetic model for the enzymatic hydrolysis of cellulosic biomass has been developed that incorporates the distinct modes of action of cellulases on insoluble cellulose polymer chains. Cellulose depolymerization by an endoglucanase (endoglucanase I, EGI) and an exoglucanase (cellobiohydrolase I, CBHI) is modeled using population-balance equations, which provide a kinetic description of the evolution of a polydisperse distribution of chain lengths. The cellulose substrate is assumed to have enzyme-accessible chains and inaccessible interior chains. EGI is assumed to randomly cleave insoluble cellulose chains. For CBHI, distinct steps for adsorption, complexation, processive hydrolysis, and desorption are included in the mechanistic description. Population-balance models that employ continuous distributions track the evolution of the spectrum of chain lengths, and do not require solving equations for all chemical species present in the reacting mixture, resulting in computationally efficient simulations. The theoretical and mathematical development needed to describe the hydrolysis of insoluble cellulose chains embedded in a solid particle by EGI and CBHI is given in this article (Part I). Results for the time evolution of the distribution of chain sizes are provided for independent and combined enzyme hydrolysis. A companion article (Part II) incorporates this modeling framework to study cellulose conversion processes, specifically, solution kinetics, enzyme inhibition, and cooperative enzymatic action. Biotechnol. Bioeng. 2012; 109:665675. (C) 2011 Wiley Periodicals, Inc. C1 [Griggs, Andrew J.; Stickel, Jonathan J.; Lischeske, James J.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Stickel, JJ (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jonathan.stickel@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory and through the Office of the Biomass Program FX This work was funded by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory and through the Office of the Biomass Program. Contributions to an earlier version of the kinetics model were made by Manju Garg, Deepak Dugar, Jamila Saifee, and Alan Hatton of the David H. Koch School of Chemical Engineering Practice, Department of Chemical Engineering, Massachusetts Institute of Technology. NR 26 TC 17 Z9 17 U1 1 U2 43 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAR PY 2012 VL 109 IS 3 BP 665 EP 675 DI 10.1002/bit.23355 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 877CP UT WOS:000299154600006 PM 22034153 ER PT J AU Griggs, AJ Stickel, JJ Lischeske, JJ AF Griggs, Andrew J. Stickel, Jonathan J. Lischeske, James J. TI A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics II: Cooperative enzyme action, solution kinetics, and product inhibition SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE cellulose; enzymatic hydrolysis; kinetics model; polymer distribution; substrate structure ID TRICHODERMA-REESEI; BACTERIAL CELLULOSE; CELLOBIOHYDROLASE I; ENDOGLUCANASE I; HYDROLYSIS; BIOMASS; CELLULASES; COTTON; SIZE AB The projected cost for the enzymatic hydrolysis of cellulosic biomass continues to be a barrier for the commercial production of liquid transportation fuels from renewable feedstocks. Predictive models for the kinetics of the enzymatic reactions will enable an improved understanding of current limitations, such as the slow-down of the overall conversion rate, and may point the way for more efficient utilization of the enzymes in order to achieve higher conversion yields. A mechanistically based kinetic model for the enzymatic hydrolysis of cellulose was recently reported in Griggs et al. (2011) (Part I). In this article (Part II), the enzyme system is expanded to include solution-phase kinetics, particularly cellobiose-to-glucose conversion by beta-glucosidase (beta G), and novel adsorption and product inhibition schemes have been incorporated, based on current structural knowledge of the component enzymes. Model results show cases of cooperative and non-cooperative hydrolysis for an enzyme system consisting of EGI and CBHI. The model is used to explore various potential rate-limiting phenomena, such as substrate accessibility, product inhibition, sterically hindered enzyme adsorption, and the molecular weight of the cellulose substrate. Biotechnol. Bioeng. 2012; 109:676685. (C) 2011 Wiley Periodicals, Inc. C1 [Griggs, Andrew J.; Stickel, Jonathan J.; Lischeske, James J.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Stickel, JJ (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jonathan.stickel@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308] FX Contract grant sponsor: U.S. Department of Energy; Contract grant number: DE-AC36-08-GO28308 NR 27 TC 19 Z9 19 U1 0 U2 42 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAR PY 2012 VL 109 IS 3 BP 676 EP 685 DI 10.1002/bit.23354 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 877CP UT WOS:000299154600007 PM 22034106 ER PT J AU Sridevi, G Minocha, R Turlapati, SA Goldfarb, KC Brodie, EL Tisa, LS Minocha, SC AF Sridevi, Ganapathi Minocha, Rakesh Turlapati, Swathi A. Goldfarb, Katherine C. Brodie, Eoin L. Tisa, Louis S. Minocha, Subhash C. TI Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE PhyloChip microarray; forest soil; bacterial diversity; Hubbard Brook; calcium amendment ID NORTHERN HARDWOOD FOREST; SPRUCE PICEA-RUBENS; MICROBIAL COMMUNITIES; FUNGAL COMMUNITIES; CLONE LIBRARY; UNITED-STATES; NITROGEN; MICROARRAY; DIVERSITY; ECOSYSTEM AB Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-amended (WS1) and reference watershed (WS3) for comparison of bacterial community composition between the two watersheds. The sites were about 125 m apart and were known to have similar stream chemistry and tree populations before Ca amendment. Ca-amended soil had higher Ca and P, and lower Al and acidity as compared with the reference soils. Analysis of bacterial populations by PhyloChip revealed that the bacterial community structure in the Ca-amended and the reference soils was significantly different and that the differences were more pronounced in the mineral soils. Overall, the relative abundance of 300 taxa was significantly affected. Numbers of detectable taxa in families such as Acidobacteriaceae, Comamonadaceae, and Pseudomonadaceae were lower in the Ca-amended soils, while Flavobacteriaceae and Geobacteraceae were higher. The other functionally important groups, e.g. ammonia-oxidizing Nitrosomonadaceae, had lower numbers of taxa in the Ca-amended organic soil but higher in the mineral soil. C1 [Minocha, Rakesh] US Forest Serv, No Res Stn, Durham, NH 03824 USA. [Sridevi, Ganapathi; Turlapati, Swathi A.; Minocha, Subhash C.] Univ New Hampshire, Dept Biol Sci, Durham, NH 03824 USA. [Goldfarb, Katherine C.; Brodie, Eoin L.] Lawrence Berkley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA USA. [Tisa, Louis S.] Univ New Hampshire, Dept Mol Cellular & Biomed Sci, Durham, NH 03824 USA. RP Minocha, R (reprint author), US Forest Serv, No Res Stn, Durham, NH 03824 USA. EM rminocha@unh.edu RI Brodie, Eoin/A-7853-2008 OI Brodie, Eoin/0000-0002-8453-8435 FU US Department of Energy, at the University of California, Berkeley, CA [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; Northeastern States Research Cooperative (NSRC) FX We thank Stephanie Long and Kenneth Dudzik for help in the collection of soil samples and for editing of the manuscript, and Lindsey Lemire and Matt Power (undergraduates) for help in plasmid isolations for bacterial library work. We also thank Dr Jo Handelsman, Dr Thomas Isenberger, and Dr Kevin Smith for their valuable suggestions during this study. A part of this work was performed under the auspices of the US Department of Energy, at the University of California, Berkeley, CA under contract DE-AC02-05CH11231, and by the Laboratory Directed Research and Development Program of the Lawrence Berkeley National Laboratory. The Hubbard Brook Experimental Forest is owned and operated by the Northern Research Station, USDA Forest Service, and this study was part of the ongoing HBEF LTER study (www.hubbardbrook.org). The Northeastern States Research Cooperative (NSRC) provided partial funding for this research. Maine Soil Testing Service, University of ME is acknowledged for their help in soil analysis. This paper is scientific contribution Number 2365 from the New Hampshire Agricultural Experiment Station. NR 57 TC 7 Z9 7 U1 1 U2 23 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0168-6496 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD MAR PY 2012 VL 79 IS 3 BP 728 EP 740 DI 10.1111/j.1574-6941.2011.01258.x PG 13 WC Microbiology SC Microbiology GA 878LA UT WOS:000299257300015 PM 22098093 ER PT J AU Wolf, P Balakrishnan, R Staffelbach, G Gicquel, LYM Poinsot, T AF Wolf, Pierre Balakrishnan, Ramesh Staffelbach, Gabriel Gicquel, Laurent Y. M. Poinsot, Thierry TI Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers SO FLOW TURBULENCE AND COMBUSTION LA English DT Article DE Combustion instabilities; Large Eddy Simulation; Annular gas turbines; Mesh resolution ID LARGE-EDDY SIMULATION; COMPLEX-GEOMETRY; TURBULENT COMBUSTION; ACOUSTIC ANALYSIS; MODES; BURNER; FLAMES AB Great prominence is put on the design of aeronautical gas turbines due to increasingly stringent regulations and the need to tackle rising fuel prices. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. Since one of the most limiting factors in performing Large Eddy Simulation (LES) of real combustors is estimating the adequate grid, the effects of mesh resolution are investigated by computing full annular LES of a realistic helicopter combustion chamber on three grids, respectively made of 38, 93 and 336 million elements. Results are compared in terms of mean and fluctuating fields. LES captures self-established azimuthal modes. The presence and structure of the modes is discussed. This study therefore highlights the potential of LES for studying combustion instabilities in annular gas turbine combustors. C1 [Wolf, Pierre; Staffelbach, Gabriel; Gicquel, Laurent Y. M.] CERFACS, F-31057 Toulouse, France. [Balakrishnan, Ramesh] Argonne Natl Lab, ALCF, Argonne, IL 60439 USA. [Poinsot, Thierry] Univ Toulouse, IMFT, CNRS, Toulouse, France. [Poinsot, Thierry] INPT, Toulouse, France. RP Wolf, P (reprint author), CERFACS, F-31057 Toulouse, France. EM Pierre.Wolf@cerfacs.fr FU Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; ANR [ANR-07-CIS7-008] FX This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. The authors thank GENCI (Grand Equipement National de Calcul Intensif) and CINES (Centre Informatique National de l'Enseignement Superieur) for providing part of the computing power necessary for these simulations. The support of Turbomeca (Dr. C. Berat and Dr. T. Lederlin) is also acknowledged. This research is partly supported by the ANR under the project "SIMTUR" ANR-07-CIS7-008. NR 40 TC 37 Z9 37 U1 0 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1386-6184 EI 1573-1987 J9 FLOW TURBUL COMBUST JI Flow Turbul. Combust. PD MAR PY 2012 VL 88 IS 1-2 SI SI BP 191 EP 206 DI 10.1007/s10494-011-9367-7 PG 16 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 879YM UT WOS:000299370700011 ER PT J AU O'Brien, JE AF O'Brien, James E. TI Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE high temperature electrolysis; solid-oxide cells; thermodynamic limits; hydrogen production ID HYDROGEN-PRODUCTION SYSTEMS; NUCLEAR-ENERGY; PERFORMANCE; ELECTRICITY; OXYGEN; WATER AB Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling. [DOI: 10.1115/1.4005132] C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP O'Brien, JE (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM james.obrien@inl.gov FU U.S. Department of Energy, Office of Nuclear Energy, Nuclear Hydrogen Initiative; DOE Operations Office [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, Nuclear Hydrogen Initiative, and Next Generation Nuclear Plant Programs under DOE Operations Office Contract DE-AC07-05ID14517. NR 35 TC 10 Z9 10 U1 3 U2 18 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD MAR PY 2012 VL 134 IS 3 AR 031017 DI 10.1115/1.4005132 PG 11 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 880EQ UT WOS:000299388000019 ER PT J AU Otto, F Payton, EJ Frenzel, J Eggeler, G AF Otto, F. Payton, E. J. Frenzel, J. Eggeler, G. TI The effectiveness of coincidence site lattice criteria in predicting creep cavitation resistance SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID ANGLE GRAIN-BOUNDARIES; SYMMETRIC TILT BOUNDARIES; INDUCED EMBRITTLEMENT; CUBIC METALS; COPPER; SEGREGATION; NICKEL; ORIENTATION; BISMUTH; ENERGY AB The coincidence site lattice (CSL) concept is often used in microstructural characterization by researchers studying grain boundary engineering as a method for improving the performance of polycrystalline materials. It is assumed that a high degree of shared lattice sites in the boundary between two grains will result in improved mechanical properties. For practical application of the CSL concept to experimental results, a maximum deviation from ideal CSL orientation relationships must be defined to distinguish potential CSL boundaries from random boundaries that are not likely to exhibit "special" properties. Several different maximum deviation criteria have been proposed in the literature. In this study, four of these criteria are investigated for their effectiveness in predicting the creep cavitation resistance of boundaries of different CSL character in three model alloys: pure Cu, Cu-Bi, and Cu-Sb. Bi and Sb strongly segregate to Cu grain boundaries and are detrimental to creep life. The experimental observations are compared to simulation results for a non-textured polycrystal. It is observed that only boundaries related to cubic annealing twins (I 3 pound and I 9) pound exhibit special resistance to creep cavitation, that boundaries with I pound > 3 are affected by the presence of segregants, and that the fraction of non-I (3,9) pound boundaries tracks closely with what would be expected from a random polycrystal. It is shown that more restrictive criteria result in more reliable characterization of the fraction of cavitation-resistant boundaries only because they exclude more non-I (3,9) pound boundaries from the analysis. C1 [Otto, F.; Payton, E. J.; Frenzel, J.; Eggeler, G.] Ruhr Univ Bochum, Inst Werkstoffe, D-44780 Bochum, Germany. RP Otto, F (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM frederik.otto@rub.de RI Eggeler, Gunther/R-9833-2016; OI Frenzel, Jan/0000-0002-2778-5392; Payton, Eric/0000-0001-7478-9372 FU Deutsche Forschungsgemeinschaft (DFG) [EG 101/13-1, EG 101/13-2]; Max-Planck-Fellow research group at the Max-Planck Institut fur Eisenforschung (MPIE), Dusseldorf; Advanced Study Group for Input Data and Validation of the Interdisciplinary Centre for Advanced Materials Simulation (IC-AMS) at Ruhr-Universitat Bochum FX The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through projects EG 101/13-1 and EG 101/13-2. GE acknowledges support through his Max-Planck-Fellow research group at the Max-Planck Institut fur Eisenforschung (MPIE), Dusseldorf. FO acknowledges funding through the Advanced Study Group for Input Data and Validation of the Interdisciplinary Centre for Advanced Materials Simulation (IC-AMS) at Ruhr-Universitat Bochum. NR 59 TC 7 Z9 7 U1 0 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD MAR PY 2012 VL 47 IS 6 BP 2915 EP 2927 DI 10.1007/s10853-011-6124-1 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA 879LM UT WOS:000299330700047 ER PT J AU Torres, JM Stafford, CM Uhrig, D Vogt, BD AF Torres, Jessica M. Stafford, Christopher M. Uhrig, David Vogt, Bryan D. TI Impact of chain architecture (branching) on the thermal and mechanical behavior of polystyrene thin films SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE glass transition; modulus; polystyrene; star polymers; thin films ID GLASS-TRANSITION TEMPERATURE; ULTRATHIN POLYMER-FILMS; ANIONIC-POLYMERIZATION; HYPERBRANCHED POLYMERS; POLY(METHYL METHACRYLATE); MOLECULAR-DYNAMICS; ELASTIC-MODULUS; SURFACE-TENSION; CONFINEMENT; DEPENDENCE AB The modulus and glass transition temperature (Tg) of ultrathin films of polystyrene (PS) with different branching architectures are examined via surface wrinkling and the discontinuity in the thermal expansion as determined from spectroscopic ellipsometry, respectively. Branching of the PS is systematically varied using multifunctional monomers to create comb, centipede, and star architectures with similar molecular masses. The bulk-like (thick film) Tg for these polymers is 103 +/- 2 degrees C and independent of branching and all films thinner than 40 nm exhibit reductions in Tg. There are subtle differences between the architectures with reductions in Tg for linear (25 degrees C), centipede (40 degrees C), comb (9 degrees C), and 4 armed star (9 degrees C) PS for 5 nm films. Interestingly, the room temperature modulus of the thick films is dependent upon the chain architecture with the star and comb polymers being the most compliant (approximate to 2 GPa) whereas the centipede PS is most rigid (approximate to 4 GPa). The comb PS exhibits no thickness dependence in moduli, whereas all other PS architectures examined show a decrease in modulus as the film thickness is decreased below similar to 40 nm. We hypothesize that the chain conformation leads to the apparent susceptibility of the polymer to reductions in moduli in thin films. These results provide insight into potential origins for thickness dependent properties of polymer thin films. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 C1 [Vogt, Bryan D.] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Torres, Jessica M.] Arizona State Univ, Chem Engn Program, Tempe, AZ 85284 USA. [Stafford, Christopher M.] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA. [Uhrig, David] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Vogt, BD (reprint author), Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. EM vogt@uakron.edu RI Uhrig, David/A-7458-2016 OI Uhrig, David/0000-0001-8447-6708 FU National Science Foundation [0653989-CMMI]; Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2010-021] FX This work was financially supported by the National Science Foundation under grant #0653989-CMMI. The authors acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy, reviewed under proposal CNMS2010-021. This manuscript is an official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States. NR 68 TC 17 Z9 17 U1 3 U2 40 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD MAR 1 PY 2012 VL 50 IS 5 BP 370 EP 377 DI 10.1002/polb.23014 PG 8 WC Polymer Science SC Polymer Science GA 879MO UT WOS:000299334000007 ER PT J AU Payri, R Garcia-Oliver, JM Bardi, M Manin, J AF Payri, Raul Garcia-Oliver, Jose M. Bardi, Michele Manin, Julien TI Fuel temperature influence on diesel sprays in inert and reacting conditions SO APPLIED THERMAL ENGINEERING LA English DT Article DE Diesel; Sprays; Combustion; Liquid length; LOL ID 1D MODEL; INJECTION; GEOMETRY; ENGINE; NOZZLE AB The detailed knowledge of the evaporation combustion process of the Diesel spray is a key factor for the development of robust injection strategies able to reduce the pollutant emissions and keep or increase the combustion efficiency. In this work several typical measurement applied to the diesel spray diagnostic (liquid length, lift-off length and ignition delay) have been employed in a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic test conditions (up to 1000 K and 15 MPa). A step forward in the control of the test boundary conditions has been done employing a special system to study the fuel temperature effect on the evaporation and combustion of the spray. The temperature of the injector body has been controlled with a thermostatic system and the relationship between injector body and fuel temperature has been observed experimentally. Imaging diagnostics have been employed to visualize the liquid phase penetration in evaporative/inert conditions and, lift-off length and ignition delay in reactive condition. The results underline a clear influence of the injector body temperature on both conditions, evaporative and, in a lesser degree, reactive: finally the physical models found in the literature have been compared with the results obtained experimentally. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Payri, Raul; Garcia-Oliver, Jose M.; Bardi, Michele] Univ Politecn Valencia, CMT Motores Term, Valencia 46022, Spain. [Manin, Julien] Sandia Natl Labs, CRF, Livermore, CA 94550 USA. RP Payri, R (reprint author), Univ Politecn Valencia, CMT Motores Term, Camino Vera S-N, Valencia 46022, Spain. EM rpayri@mot.upv.es RI Garcia-Oliver, Jose/L-6517-2014; Payri, Raul/B-3662-2009 OI Garcia-Oliver, Jose/0000-0002-2676-9681; Payri, Raul/0000-0001-7428-5510 FU Ministerio de Ciencia e Innovacion [TRA2010-17564] FX This research has been funded in the frame of the project FLEXIFUEL reference TRA2010-17564 from Ministerio de Ciencia e Innovacion. The injectors are part of the ECN international project. NR 33 TC 38 Z9 39 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-4311 J9 APPL THERM ENG JI Appl. Therm. Eng. PD MAR PY 2012 VL 35 BP 185 EP 195 DI 10.1016/j.applthermaleng.2011.10.027 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics SC Thermodynamics; Energy & Fuels; Engineering; Mechanics GA 868JK UT WOS:000298519400019 ER PT J AU Fan, RK Xu, SH Geng, WD AF Fan, Rukun Xu, Songhua Geng, Weidong TI Example-Based Automatic Music-Driven Conventional Dance Motion Synthesis SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Dance motion and music mapping relationship; music-driven dance motion synthesis; learning-based dance motion synthesis ID BEAT TRACKING; ANIMATION; GENERATION; REGRESSION; STYLE AB We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with a piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method. C1 [Fan, Rukun] Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Peoples R China. [Xu, Songhua] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Geng, Weidong] Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Peoples R China. RP Fan, RK (reprint author), Zhejiang Univ, Coll Comp Sci, Yuquan Campus, Hangzhou 310027, Peoples R China. EM fanrk@cs.unc.edu; xus1@ornl.gov; gengwd@zju.edu.cn FU NSFC [60633070, 60773183, 60903132]; National 863 High-Tech Program [2006AA01Z313, 2006AA01Z335]; National Key Technology R&D Program of China [2007BAH11B02, 2007BAH11B03]; US Department of Energy [DE-AC05-00OR22725]; [NCET-07-0743]; [PCSIRT 0652] FX This work was partly supported by NSFC 60633070, 60773183 and 60903132, National 863 High-Tech Program (Grant no: 2006AA01Z313 and 2006AA01Z335), and National Key Technology R&D Program of China (Grant no: 2007BAH11B02 and 2007BAH11B03). It is also supported by NCET-07-0743, and PCSIRT 0652. S. Xu performed this research as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under Contract DE-AC05-00OR22725. NR 50 TC 6 Z9 6 U1 0 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD MAR PY 2012 VL 18 IS 3 BP 501 EP 515 DI 10.1109/TVCG.2011.73 PG 15 WC Computer Science, Software Engineering SC Computer Science GA 878UE UT WOS:000299281700014 PM 21519104 ER EF