FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Frauenfelder, H AF Frauenfelder, Hans TI Giorgio Careri: A physicist in the life sciences SO JOURNAL OF BIOLOGICAL PHYSICS LA English DT Editorial Material C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, T-6, Los Alamos, NM 87545 USA. EM frauenfelder@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0092-0606 J9 J BIOL PHYS JI J. Biol. Phys. PD JAN PY 2012 VL 38 IS 1 SI SI BP 3 EP 3 DI 10.1007/s10867-011-9258-0 PG 1 WC Biophysics SC Biophysics GA 898WZ UT WOS:000300774400002 PM 23277665 ER PT J AU Christensen, U Scheller, HV AF Christensen, Ulla Scheller, Henrik Vibe TI Regulation of (1,3;1,4)-beta-D-glucan synthesis in developing endosperm of barley lys mutants SO JOURNAL OF CEREAL SCIENCE LA English DT Article DE Hordeum vulgare; Endosperm; (1,3;1,4)-beta-D-glucan; CSLF ID HORDEUM-VULGARE; BETA-GLUCAN; GENE FAMILY; CELLULOSE; BIOSYNTHESIS; ARABIDOPSIS; METHYLATION; EXPRESSION; GRAIN AB The mechanism behind altered content of (1,3:1,4)-beta-D-glucan was investigated in developing endosperm of barley lys3 and lys5 mutants. Both types of mutants are primarily affected in starch biosynthesis, and hence effects on (1,3;1,4)-beta-D-glucan are likely to be pleiotropic. The mutant alleles lys5f and lys5g exerted pronounced effects on the cell wall with increased level of (1,3;1,4)-beta-D-glucan content. The low-starch high-(1,3;1,4)-beta-D-glucan phenotype was most pronounced in lys5f. Among the Cellulose Synthase-Like (CSL) gene members belonging to the families CSLF and CSLH, which all encode (1,3;1,4)-beta-D-glucan synthase proteins, CSLF6 was by far the highest expressed in the wild type, whereas both lys5f and lys5g exhibited a decreased level of CSLF6 transcript. Thus, the lys5 mutants have increased (1,3:1,4)-beta-D-glucan level in spite of lower transcript levels. This suggests the presence of a sensing and signaling system in the cell wall, which in the case of the lys5 mutants caused a decreased transcript level in response to the increased (1,3;1,4)-beta-D-glucan levels. In the lys3a mutant we found a 1000-fold repression of the CSLF6 transcript throughout the whole endosperm development. Thus CSLF6 is under the control of the Lys3 transcriptional regulatory mechanism that operates during barley grain development. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Christensen, Ulla; Scheller, Henrik Vibe] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA 94608 USA. [Christensen, Ulla] Univ Copenhagen, Fac Life Sci, Dept Plant Biol & Biotechnol, DK-1871 Copenhagen C, Denmark. RP Scheller, HV (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 1 Cyclotron Rd,MS978R4121, Berkeley, CA 94720 USA. EM hscheller@lbl.gov FU University of Copenhagen, Faculty of Life Sciences; Office of Science, Office of Biological and Environmental Research, of the U. S. Department of Energy [DE-AC02-05CH11231] FX Charlotte Sorensen, Louise Nancke and Sten Malmmose are thanked for excellent technical assistance and Drs. Jesper Harholt, Lars Munck and Graeme Coles for many interesting and motivating conversations. This work was supported by a fellowship from the University of Copenhagen, Faculty of Life Sciences, and by the Office of Science, Office of Biological and Environmental Research, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 7 Z9 7 U1 2 U2 19 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0733-5210 J9 J CEREAL SCI JI J. Cereal Sci. PD JAN PY 2012 VL 55 IS 1 BP 69 EP 76 DI 10.1016/j.jcs.2011.10.005 PG 8 WC Food Science & Technology SC Food Science & Technology GA 894ZW UT WOS:000300467000010 ER PT J AU Font-Ribera, A McDonald, P Miralda-Escude, J AF Font-Ribera, Andreu McDonald, Patrick Miralda-Escude, Jordi TI Generating mock data sets for large-scale Lyman-alpha forest correlation measurements SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE Lyman alpha forest; redshift surveys; cosmological simulations; intergalactic media ID DIGITAL SKY SURVEY; POWER SPECTRUM; FLUCTUATIONS AB Massive spectroscopic surveys of high-redshift quasars yield large numbers of correlated Ly alpha absorption spectra that can be used to measure large-scale structure. Simulations of these surveys are required to accurately interpret the measurements of correlations and correct for systematic errors. An efficient method to generate mock realizations of Ly alpha forest surveys is presented which generates a field over the lines of sight to the survey sources only, instead of having to generate it over the entire three-dimensional volume of the survey. The method can be calibrated to reproduce the power spectrum and one-point distribution function of the transmitted flux fraction, as well as the redshift evolution of these quantities, and is easily used for modeling any survey systematic effects. We present an example of how these mock surveys are applied to predict the measurement errors in a survey with similar parameters as the BOSS quasar survey in SDSS-III. C1 [Font-Ribera, Andreu] Inst Ciencies Espai CSIC IEEC, Fac Ciencies, Bellaterra, Catalonia, Spain. [McDonald, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McDonald, Patrick] Brookhaven Natl Lab, Upton, NY 11375 USA. [Miralda-Escude, Jordi] Inst Catalana Recerca & Estudis Avancats, Barcelona, Catalonia, Spain. [Miralda-Escude, Jordi] Inst Ciencies Cosmos UB IEEC, Barcelona, Catalonia, Spain. RP Font-Ribera, A (reprint author), Inst Ciencies Espai CSIC IEEC, Fac Ciencies, Campus UAB,Torre C5 Parell 2, Bellaterra, Catalonia, Spain. EM font@ieec.uab.es; pvmcdonald@lbl.gov; miralda@icc.ub.edu OI Miralda-Escude, Jordi/0000-0002-2316-8370 FU Spanish grant [AYA2009-09745]; Canada Foundation for Innovation; Ontario Innovation Trust; Ontario Research Fund FX The simulations in this work were performed on CITA's Sunnyvale clusters which are funded by the Canada Foundation for Innovation, the Ontario Innovation Trust, and the Ontario Research Fund. The authors thank Anze Slosar, Jean-Marc LeGoff and Nicolas Busca for very helpful discussions. This work was supported in part by Spanish grant AYA2009-09745. NR 21 TC 19 Z9 19 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JAN PY 2012 IS 1 AR 001 DI 10.1088/1475-7516/2012/01/001 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 894BZ UT WOS:000300403300001 ER PT J AU Lin, QL Xu, Y Fu, EG Baber, S Bao, ZB Yu, L Deng, SG Kundu, J Hollingsworth, J Bauer, E McCleskey, TM Burrell, AK Jia, QX Luo, HM AF Lin, Qianglu Xu, Yun Fu, Engang Baber, Stacy Bao, Zongbi Yu, Liang Deng, Shuguang Kundu, Janardan Hollingsworth, Jennifer Bauer, Eve McCleskey, T. Mark Burrell, Anthony K. Jia, Quanxi Luo, Hongmei TI Polymer-assisted chemical solution approach to YVO4:Eu nanoparticle networks SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID LUMINESCENCE PROPERTIES; COLLOIDAL NANOPARTICLES; YVO4-EU PHOSPHORS; FABRICATION; DEPOSITION; FILMS; NANOCRYSTALS AB Phosphor YVO4:Eu nanoparticle networks were synthesized using water soluble ethylenediaminetetraacetic acid (EDTA) and polyethyleneimine (PEI) as binding ligands. The morphology, particle size, BET surface area, and photoluminescence of YVO4:Eu processed at different annealing temperatures (500, 600, 700, and 800 degrees C) and EDTA/PEI mass ratios (1 : 4, 1 : 2.5, 1 : 2, 1 : 1.5, 1 : 1, 2 : 1, and 4 : 1) were determined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fluorescence spectrophotometer, and N-2 adsorption and desorption. The red emission was observed with increasing the annealing temperature. Importantly, the nanoparticles did not aggregate at high annealing temperatures up to 800 degrees C. The smallest size of the YVO4: Eu nanoparticles is about 18 nm and the surface area is 35 m(2) g(-1) with the EDTA/PEI mass ratios of 1 : 1-2.5. C1 [Fu, Engang; Kundu, Janardan; Hollingsworth, Jennifer; Bauer, Eve; McCleskey, T. Mark; Burrell, Anthony K.; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Lin, Qianglu; Xu, Yun; Baber, Stacy; Bao, Zongbi; Yu, Liang; Deng, Shuguang; Luo, Hongmei] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA. RP Jia, QX (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM qxjia@lanl.gov; hluo@nmsu.edu RI Deng, Shuguang/G-5926-2011; Bao, Zongbi/E-9429-2011; McCleskey, Thomas/J-4772-2012; Dennis, Allison/A-7654-2014; Jia, Q. X./C-5194-2008 OI Deng, Shuguang/0000-0003-2892-3504; FU NSF/CMMI Nano-Manufacturing [1131290]; New Mexico Consortium; Los Alamos National Laboratory; NMSU; U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX We acknowledge the support from NSF/CMMI Nano-Manufacturing Program under Grant No. 1131290, New Mexico Consortium, Los Alamos National Laboratory, and the Interdisciplinary Research Grant (IRG) from NMSU. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 28 TC 12 Z9 12 U1 1 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 12 BP 5835 EP 5839 DI 10.1039/c2jm15628h PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 899TC UT WOS:000300838100077 ER PT J AU Brown, RS Pflugrath, BD Carlson, TJ Deng, ZD AF Brown, Richard S. Pflugrath, Brett D. Carlson, Thomas J. Deng, Z. Daniel TI The effect of an externally attached neutrally buoyant transmitter on mortal injury during simulated hydroturbine passage SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Article; Proceedings Paper CT Photovoltaic Technical Conference CY 2011 CL Aix en Provence, FRANCE DE acoustic devices; biological techniques; dams; hydraulic turbines; hydroelectric power stations; transmitters; underwater acoustic telemetry ID JUVENILE CHINOOK SALMON; BAROTRAUMA AB On their seaward migration, juvenile salmonids commonly pass hydroelectric dams. Fish passing through hydroturbines experience a rapid decrease in pressure as they pass by the turbine blade. The severity of this decompression can be highly variable but can result in injuries such as swim bladder rupture, exophthalmia, and emboli and hemorrhaging in the fins and tissues. Recent research indicates that the presence of a telemetry tag (acoustic, radio, inductive) implanted inside the coelom of a juvenile salmon increases the likelihood that the fish will be injured or die during turbine passage. Thus, previous turbine passage survival research conducted using telemetry tags implanted into the coelom of fish may have been inaccurate. Therefore, a new technique is needed to provide unbiased estimates of survival through turbines. This study evaluated the effectiveness of a neutrally buoyant externally attached acoustic transmitter on decompression-stressed juvenile Chinook salmon. Both nontagged fish and fish tagged with a neutrally buoyant external transmitter were exposed to a range of rapid decompressions simulating turbine passage. Juvenile Chinook salmon tagged with a neutrally buoyant externally attached acoustic transmitter did not experience a higher degree of barotrauma-induced injuries than their nontagged counterparts. We suggest that future research include field-based comparisons of survival and behavior among fish tagged with a neutrally buoyant external transmitter and those internally implanted with transmitters. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682062] C1 [Brown, Richard S.; Pflugrath, Brett D.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. [Carlson, Thomas J.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Deng, Z. Daniel] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Brown, RS (reprint author), Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. EM Rich.Brown@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 NR 18 TC 5 Z9 5 U1 6 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD JAN 1 PY 2012 VL 4 IS 1 AR 013107 DI 10.1063/1.3682062 PG 7 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 901GJ UT WOS:000300951000018 ER PT J AU Duan, YH AF Duan, Yuhua TI A first-principles density functional theory study of the electronic structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K) and their capabilities for CO2 capture SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Article; Proceedings Paper CT Photovoltaic Technical Conference CY 2011 CL Aix en Provence, FRANCE DE density functional theory; desorption; electronic structure; lattice dynamics; phonon dispersion relations; potassium compounds; sodium compounds; thermodynamic properties ID NEUTRON POWDER DIFFRACTION; CARBON-DIOXIDE SORPTION; LITHIUM ZIRCONATE; CRYSTAL-STRUCTURE; SODIUM-CARBONATE; NA2ZRO3; ENERGY; CHEMISORPTION; SEQUESTRATION; ABSORPTION AB Alkali metal zirconates could be used as solid sorbents for CO2 capture. The structural, electronic, and phonon properties of Na2ZrO3, K2ZrO3, Na2CO3, and K2CO3 are investigated by combining the density functional theory with lattice phonon dynamics. The thermodynamics of CO2 absorption/desorption reactions of these two zirconates are analyzed. The calculated results show that their optimized structures are in a good agreement with experimental measurements. The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na2ZrO3, K2ZrO3, Na2CO3, and K2CO3, respectively. The calculated phonon dispersions and phonon density of states for M2ZrO3 and M2CO3 (M=K, Na, Li) revealed that from K to Na to Li, their frequency peaks are shifted to high frequencies due to the molecular weight decreased from K to Li. From the calculated reaction heats and relationships of free energy change versus temperatures and CO2 pressures of the M2ZrO3 (M K, Na, Li) reacting with CO2, we found that the performance of Na2ZrO3 capturing CO2 is similar to that of Li2ZrO3 and is better than that of K2ZrO3. Therefore, Na2ZrO3 and Li2ZrO3 are good candidates of high temperature CO2 sorbents and could be used for post-combustion CO2 capture technologies. [doi:10.1063/1.3683519] C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Duan, YH (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM yuhua.duan@netl.doe.gov RI Duan, Yuhua/D-6072-2011 OI Duan, Yuhua/0000-0001-7447-0142 NR 50 TC 11 Z9 11 U1 1 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD JAN 1 PY 2012 VL 4 IS 1 AR 013109 DI 10.1063/1.3683519 PG 17 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 901GJ UT WOS:000300951000020 ER PT J AU Miller, MB Bing, W Luebke, DR Enick, RM AF Miller, Matthew B. Bing, Wei Luebke, David R. Enick, Robert M. TI Solid CO2-philes as potential phase-change physical solvents for CO2 SO JOURNAL OF SUPERCRITICAL FLUIDS LA English DT Article DE Binary phase equilibria; Ternary phase equilibria; Carbon dioxide; Hydrogen; Sugar acetates; Tert-butylated aromatics; Carbon capture ID SUPERCRITICAL CARBON-DIOXIDE; DISPERSION POLYMERIZATION; PDMS MACROMONOMER; BETA-CYCLODEXTRIN; SUGAR ACETATES; BINARY-SYSTEM; SOLUBILITY; BEHAVIOR; POLYMERS; SURFACTANTS AB The binary phase behavior of mixtures of CO2 and highly CO2-philic solids has been determined at 298 K. The solids include sugar acetates (beta-D-galactose pentaacetate, beta-D-ribofuranose tetraacetate, alpha-D(+)-glucose pentaacetate, D-(+)-sucrose octaacetate), tert-butylated aromatics (2,4-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, 3,5-di-tert-butylphenol, 1,2,4-triacetoxybenzene), and a highly oxygenated cyclic compound (1,3,5-trioxane). The results are presented in the form of phase behavior (Px) diagrams at 298 K that exhibit either one (vapor-liquid-solid, VLS) or two (vapor-liquid-liquid, VL1L2 and vapor-liquid-solid, VL2S) three-phase equilibrium lines. Ternary phase behavior at 298 K has also been determined and presented in the form of a pseudo-binary Px diagram for mixtures of an equimolar gas blend of CO2 and H-2 and each of these CO2-philic solids and several other previously identified highly CO2-philic compounds. Only four compounds, sucrose octaacetate, 1,3,5-tri-tert-butylbenzene, 2,4-di-tert-butylbenzene, and 1,3,5-trioxane, melted at 298 K in the presence of the CO2/H-2 mixture at three-phase vapor-liquid-solid pressures ranging between 6 MPa and 10 MPa. These four compounds are candidates for the selective absorption of CO2 from a CO2/H-2 mixture using solid compounds that can melt and selectively absorb CO2. (C) 2011 Elsevier B.V. All rights reserved. C1 [Miller, Matthew B.; Luebke, David R.; Enick, Robert M.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Miller, Matthew B.; Bing, Wei; Enick, Robert M.] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. RP Miller, MB (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM mbm35@pitt.edu; weibing1984@gmail.com; david.luebke@NETL.DOE.GOV; rme@pitt.edu FU National Energy Technology Laboratory NETL-RUA under RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in carbon capture NETL-RUA program under RES contract DE-FE0004000. NR 46 TC 1 Z9 2 U1 2 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0896-8446 J9 J SUPERCRIT FLUID JI J. Supercrit. Fluids PD JAN PY 2012 VL 61 BP 212 EP 220 DI 10.1016/j.supflu.2011.09.003 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 902CC UT WOS:000301015200027 ER PT J AU Tandon, R Shahin, D Swiler, TP AF Tandon, Rajan Shahin, David Swiler, Thomas P. TI Cracking up Fragmentation of an anti-reflective coating SO MATERIALS TODAY LA English DT Editorial Material C1 [Tandon, Rajan; Swiler, Thomas P.] Sandia Natl Labs, Livermore, CA 94550 USA. [Shahin, David] Missouri Univ Sci & Technol, Rolla, MO 65409 USA. RP Tandon, R (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 J9 MATER TODAY JI Mater. Today PD JAN-FEB PY 2012 VL 15 IS 1-2 BP 71 EP 71 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA 899SC UT WOS:000300835400022 ER PT J AU Fernandez-Martinez, P Palomo, FR Diez, S Hidalgo, S Ullan, M Flores, D Sorge, R AF Fernandez-Martinez, P. Palomo, F. R. Diez, S. Hidalgo, S. Ullan, M. Flores, D. Sorge, R. TI Simulation methodology for dose effects in lateral DMOS transistors SO MICROELECTRONICS JOURNAL LA English DT Article DE Total ionising dose (TID); Power LDMOS transistors; TCAD simulation; High energy physics (HEP) experiments; Radiation effects ID X-RAY; MOS DEVICES; OXIDES; DAMAGE; CO-60; IRRADIATIONS; DISPLACEMENT AB Due to the increasing interest on laterally diffused MOS (LDMOS) transistors as a part of power electronics in the high energy physics (HEP) experiments, the effect of total ionising dose (TID) on their electrical performances has been experimentally measured. The analysis of the experimental results requires the aid of physics-based simulations to study the impact of TID effects on the LDMOS drift oxide layer. In this work, a simulation methodology is developed in order to analyse the changes in the electric field distribution as a consequence of the TID induced trapped charge, and its relationship with the technological parameters and the bias conditions. The simulation results are compared with the experimental data. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Fernandez-Martinez, P.; Hidalgo, S.; Ullan, M.; Flores, D.] CSIC, CNM, IMB, Barcelona 08193, Spain. [Palomo, F. R.] Univ Seville, Sch Engn, Dept Elect Engn, Seville 41092, Spain. [Diez, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sorge, R.] Innovat High Performance Microelect IHP, D-15236 Frankfurt, Oder, Germany. RP Fernandez-Martinez, P (reprint author), CSIC, CNM, IMB, Campus UAB, Barcelona 08193, Spain. EM pablo.fernandez@imb-cnm.csic.es; rogelio@gte.esi.us.es RI Palomo Pinto, Francisco Rogelio/K-7400-2014; Fernandez-Martinez, Pablo/I-1193-2015; Ullan, Miguel/P-7392-2015; Hidalgo, Salvador/B-2649-2012 OI Palomo Pinto, Francisco Rogelio/0000-0002-1147-0812; Fernandez-Martinez, Pablo/0000-0002-7818-6971; Hidalgo, Salvador/0000-0002-8070-3499 FU Ministerio de Ciencia e Innovacion, Spain [FPA2010-22163-C02-02 (DET4HEP), FPA2009-13234-C04-04]; FEDER FX This work was partially supported by Ministerio de Ciencia e Innovacion, Spain, under grants FPA2010-22163-C02-02 (DET4HEP) and FPA2009-13234-C04-04, and co-financed with FEDER funds. NR 27 TC 0 Z9 0 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0026-2692 J9 MICROELECTRON J JI Microelectron. J. PD JAN PY 2012 VL 43 IS 1 BP 50 EP 56 DI 10.1016/j.mejo.2011.10.013 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA 895FR UT WOS:000300482100007 ER PT J AU Budny, RV AF Budny, R. V. TI Alpha heating in ITER L-mode and H-mode plasmas SO NUCLEAR FUSION LA English DT Article ID TRANSPORT MODEL; DISCHARGES; ABSORPTION; STABILITY AB Predictions of alpha heating in ITER L-mode and H-mode DT plasmas are generated using the PTRANSP code. The baseline toroidal field (5.3 T), plasma current ramped to 15MA and a flat electron density profile ramped to Greenwald fraction 0.85 are assumed. Various combinations of external heating by negative ion neutral beam injection, ion cyclotron resonance and electron cyclotron resonance are assumed to start half-way up the density ramp with the full power planned (P-ext = 73 MW). 50 s later the power is reduced to 50MW to increase Q(DT), and to prevent excessive heat flow to the divertor and walls as the alpha heating increases. The time evolution of plasma temperatures and bulk toroidal rotation v(phi) are predicted assuming GLF23 and boundary parameters. Conservatively low temperatures (similar or equal to 0.6 keV) and v(phi) similar or equal to 400 rad s(-1) at the boundary (r/a similar or equal to 0.85) are assumed. Alternative options are used to predict v(phi) and the flow-shearing rates induced by the neutral beam torques in order to assess effects of uncertainties. Option 1 assumes the momentum transport coefficient X-phi is half the energy transport coefficient X-i predicted consistently with the GLF23-predicted temperatures. With this assumption flow shearing does not have large effects on the energy transport, plasma temperatures and alpha heating. Option 2 uses GLF23 to predict v(phi) directly. Higher flow-shearing rates and alpha heating powers are predicted for heating mixes with neutral beam heating. If the L -> H power threshold is twice the ITPA fit then the heating mixes with the highest neutral beam power (and the most alpha heating) transition to H-mode during the density ramp. Other heating mixes remain in L-mode. Predictions of H-mode temperatures and alpha heating depend sensitively on the assumed pedestal pressures. A scan in pedestal pressures is presented using the more pessimistic option 1. A linear increase in alpha heating with pedestal temperature and pressure is predicted. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Budny, RV (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM budny@princeton.edu FU US Department of Energy [DE-AC02-09CH11466] FX This work is supported by the US Department of Energy contract DE-AC02-09CH11466. NR 34 TC 7 Z9 7 U1 1 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013001 DI 10.1088/0029-5515/52/1/013001 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700003 ER PT J AU Goldston, RJ AF Goldston, R. J. TI Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks SO NUCLEAR FUSION LA English DT Article ID ALCATOR C-MOD; DIII-D; ASDEX UPGRADE; PLASMA-FLOW; DIVERTOR TOKAMAKS; HEAT-FLUX; LAYER; TRANSPORT; EDGE; BOUNDARY AB A heuristic model for the plasma scrape-off width in low-gas-puff tokamak H-mode plasmas is introduced. Grad B and curv B drifts into the scrape-off layer (SOL) are balanced against near-sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch-Schluter flows to include order-unity sinks to the divertors. These assumptions result in an estimated SOL width of similar to 2a rho(p)/R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, derived above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Harm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Goldston, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rgoldston@pppl.gov FU US Department of Energy [DE-AC02-09CH11466] FX The author thanks Thomas Eich, Wojtek Fundamenski, Sergei Krasheninnikov, Brian LaBombard, Bruce Lipschultz, Vladimir Rozhansky, Peter Stangeby, the TCV Group, Dennis Whyte and Michael Zarnstorff for helpful discussions. This research is supported by the US Department of Energy, under contract DE-AC02-09CH11466. NR 48 TC 77 Z9 77 U1 3 U2 21 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013009 DI 10.1088/0029-5515/52/1/013009 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700011 ER PT J AU Hanson, JM Reimerdes, H Lanctot, MJ In, Y La Haye, RJ Jackson, GL Navratil, GA Okabayashi, M Sieck, PE Strait, EJ AF Hanson, J. M. Reimerdes, H. Lanctot, M. J. In, Y. La Haye, R. J. Jackson, G. L. Navratil, G. A. Okabayashi, M. Sieck, P. E. Strait, E. J. TI Feedback control of the proximity to marginal RWM stability using active MHD spectroscopy SO NUCLEAR FUSION LA English DT Article ID DIII-D TOKAMAK; RESISTIVE WALL MODES; PLASMA ROTATION; STORED ENERGY; BETA-LIMIT; STABILIZATION; SYSTEM; INSTABILITIES; DISCHARGES; DYNAMICS AB DIII-D experiments yield the first proof-of-principle results in feedback control of the proximity to the resistive wall mode (RWM) stability boundary using an active MHD spectroscopic stability measurement and neutral beam injection heating. In contrast to calculations of the stability of reconstructed equilibria, the spectroscopic measurement is independent of the assumed RWM stability model. The real-time implementation enables the control system to react to unforeseen changes in plasma parameters and hence stability limits. In the experimentally accessed regime, near but below the ideal-MHD no-wall limit for the n = 1 external kink instability, the control dynamics are described by a linear model that depends on the plasma stored energy. This model is used to aid in optimizing feedback gain settings. C1 [Hanson, J. M.; Reimerdes, H.; Lanctot, M. J.; Navratil, G. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Hanson, J. M.] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [La Haye, R. J.; Jackson, G. L.; Sieck, P. E.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hanson, JM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 2960 Broadway, New York, NY 10027 USA. EM jmh2130@columbia.edu RI Lanctot, Matthew J/O-4979-2016 OI Lanctot, Matthew J/0000-0002-7396-3372 FU US Department of Energy (DOE) [DE-AC05-06OR23100, DE-FG02-04ER54761, DE-AC52-07NA27344, DE-FG02-06ER84442, DE-FC02-04ER54698, DE-AC02-09CH11466] FX This research was performed under an appointment to the US Department of Energy (DOE) Fusion Energy Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education under DE-AC05-06OR23100 between the US Department of Energy and Oak Ridge Associated Universities, with additional support from the US Department of Energy under DE-FG02-04ER54761, DE-AC52-07NA27344, DE-FG02-06ER84442, DE-FC02-04ER54698 and DE-AC02-09CH11466. NR 37 TC 6 Z9 6 U1 0 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013003 DI 10.1088/0029-5515/52/1/013003 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700005 ER PT J AU James, AN Austin, ME Commaux, N Eidietis, NW Evans, TE Hollmann, EM Humphreys, DA Hyatt, AW Izzo, VA Jernigan, TC La Haye, RJ Parks, PB Strait, EJ Tynan, GR Wesley, JC Yu, JH AF James, A. N. Austin, M. E. Commaux, N. Eidietis, N. W. Evans, T. E. Hollmann, E. M. Humphreys, D. A. Hyatt, A. W. Izzo, V. A. Jernigan, T. C. La Haye, R. J. Parks, P. B. Strait, E. J. Tynan, G. R. Wesley, J. C. Yu, J. H. TI Measurements of hard x-ray emission from runaway electrons in DIII-D SO NUCLEAR FUSION LA English DT Article ID DISRUPTION MITIGATION; D TOKAMAK; ENERGY DISTRIBUTIONS; CURRENT TERMINATION; CYCLOTRON EMISSION; PLASMA; BREMSSTRAHLUNG; GAS; SYSTEMS; JT-60U AB The spatial distribution of runaway electron (RE) strikes to the wall during argon pellet-initiated rapid shutdown of diverted and limited plasma shapes in DIII-D is studied using a new array of hard x-ray (HXR) scintillators. Two plasma configurations were investigated: an elongated diverted H-mode and a low-elongation limited L-mode. HXR emission from MeV level REs generated during the argon pellet injection is observed during the thermal quench (TQ) in diverted discharges from REs lost into the divertor. In limiter discharges, this prompt TQ loss is reduced, suggesting improved TQ confinement of REs in this configuration. During the plateau phase when the plasma current is carried by REs, toroidally symmetric HXR emission from remaining confined REs is seen. Transient HXR bursts during this RE current plateau suggest the presence of a small level of wall losses due to the presence of an unidentified instability. Eventually, an abrupt final loss of the remaining RE current occurs. This final loss HXR emission shows a strong toroidal peaking and a consistent spatiotemporal evolution that suggests the development of a kink instability. C1 [James, A. N.; Hollmann, E. M.; Izzo, V. A.; Tynan, G. R.; Yu, J. H.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Austin, M. E.] Univ Texas Austin, Univ Stn 1, Austin, TX 78712 USA. [Commaux, N.; Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Eidietis, N. W.; Evans, T. E.; Humphreys, D. A.; Hyatt, A. W.; La Haye, R. J.; Parks, P. B.; Strait, E. J.; Wesley, J. C.] Gen Atom Co, San Diego, CA 92186 USA. RP James, AN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM jamesan@fusion.gat.com FU US Department of Energy [DE-FG02-07ER54917, DE-FG02-07ER54912, DE-FG03-97ER54415, DE-AC05-00OR22725, DE-FC02-04ER54698] FX This work was supported by the US Department of Energy under DE-FG02-07ER54917, DE-FG02-07ER54912, DE-FG03-97ER54415, DE-AC05-00OR22725 and DE-FC02-04ER54698. The authors would like to acknowledge outstanding support and numerous contributions from the DIII-D team which enabled these experiments, and especially contributions of N. Antoniuk, R.A. Moyer, and J.A. Boedo for assistance troubleshooting experimental hardware. NR 67 TC 12 Z9 12 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013007 DI 10.1088/0029-5515/52/1/013007 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700009 ER PT J AU Lundberg, DP Kaita, R Majeski, R AF Lundberg, D. P. Kaita, R. Majeski, R. TI Molecular hydrogen density measurements of short-pulse, high-density fuelling from a molecular cluster injector SO NUCLEAR FUSION LA English DT Article ID FREE-JET; BEAM; GAS; TARGET; FLUORESCENCE; TOKAMAK AB A molecular cluster injector (MCI) has been developed to provide short-pulse, high-density fuelling for the lithium tokamak experiment (LTX). Using an electron-beam fluorescence method, the molecular density profiles produced by the injector are measured with sub-cm spatial resolution. The system, which is cryogenically cooled to promote the formation of molecular clusters, demonstrates a significant increase in molecular density relative to room-temperature supersonic gas injectors. The transient characteristics of short pulses (3-5 ms) are measured with 250 mu s temporal resolution, and the jet shock structure is found to evolve significantly on that time scale. Supplemental measurements with a pressure transducer validate the electron-beam measurements. The measured density profiles are consistent with supersonic flows suitable for producing substantial populations of molecular clusters. The measured densities and flow rates are appropriate for high-density fuelling of LTX plasmas. The MCI will be used to investigate the physics of molecular cluster fuelling of LTX plasmas. C1 [Lundberg, D. P.; Kaita, R.; Majeski, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lundberg, DP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dlundberg@pppl.gov FU US Department of Energy [DE-AC02-09CH11466] FX This work was supported by US Department of Energy Contract Number DE-AC02-09CH11466. NR 31 TC 2 Z9 2 U1 0 U2 22 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013016 DI 10.1088/0029-5515/52/1/013016 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700018 ER PT J AU Medley, SS Kolesnichenko, YI Yakovenko, YV Bell, RE Bortolon, A Crocker, NA Darrow, DS Diallo, A Domier, CW Fonck, RJ Fredrickson, ED Gerhardt, SP Gorelenkov, NN Kramer, GJ Kubota, S LeBlanc, BP Lee, KC Mazzucato, E McKee, GR Podesta, M Ren, Y Roquemore, AL Smith, DR Stutman, D Tritz, K White, RB AF Medley, S. S. Kolesnichenko, Ya. I. Yakovenko, Yu. V. Bell, R. E. Bortolon, A. Crocker, N. A. Darrow, D. S. Diallo, A. Domier, C. W. Fonck, R. J. Fredrickson, E. D. Gerhardt, S. P. Gorelenkov, N. N. Kramer, G. J. Kubota, S. LeBlanc, B. P. Lee, K. C. Mazzucato, E. McKee, G. R. Podesta, M. Ren, Y. Roquemore, A. L. Smith, D. R. Stutman, D. Tritz, K. White, R. B. TI Investigation of a transient energetic charge exchange flux enhancement ('spike-on-tail') observed in neutral-beam-heated H-mode discharges in the National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article ID FAST-ION LOSS; EXPERIMENT NSTX; DRIVEN INSTABILITIES; TOKAMAK EXPERIMENT; PLASMAS; CONFINEMENT; TRANSPORT; PARTICLES; OPERATION; REACTOR AB In the National Spherical Torus Experiment (NSTX), a large increase in the charge exchange neutral flux localized around the neutral beam (NB) injection full energy is measured using a neutral particle analyser. Termed the high-energy feature (HEF), it appears on the NB-injected energetic-ion spectrum only in discharges where tearing or kink-type modes (f < 50 kHz) are absent, toroidal Alfven eigenmode activity (f similar to 50-150 kHz) is weak and global Alfven eigenmode (GAE) activity (f similar to 400-1000 kHz) is robust. Compressional Alfven eigenmode activity (f > 1000 kHz) is usually sporadic or absent during the HEF event. The HEF exhibits growth times of Delta t similar to 20-80 ms, durations spanning 100-600 ms and peak-to-base flux ratios up to H = F-max/ F-min similar to 10. In infrequent cases, a slowing-down distribution below the HEF energy can develop that continues to evolve over periods of order 100 ms, a time scale long compared with the typical fast-ion equilibration times. HEFs are observed only in H-mode (not L-mode) discharges with injected power P-b >= 4 MW and in the pitch range chi equivalent to upsilon(parallel to)/upsilon similar to 0.7-0.9; i.e. only for passing particles. Increases of order 10-30% in the measured neutron yield and total stored energy that are observed to coincide with the feature appear to be driven by concomitant broadening of measured T-e(r), T-i(r) and n(e)(r) profiles and not the HEF itself. While the HEF has minimal impact on plasma performance, it nevertheless poses a challenging wave-particle interaction phenomenon to understand. Candidate mechanisms for HEF formation are developed based on quasilinear (QL) theory of wave-particle interaction. The only mechanism found to lead to the large NPA flux ratios, H = F-max/ F-min, observed in NSTX is the QL evolution of the energetic-ion distribution, F-b(E,chi, r), in phase space. A concomitant loss of some particles is observed due to interaction through cyclotron resonance of the particles with destabilized modes having sufficiently high frequencies, f similar to 700-1000 kHz, in the plasma frame that are tentatively identified as GAEs. C1 [Medley, S. S.; Bell, R. E.; Darrow, D. S.; Diallo, A.; Fredrickson, E. D.; Gerhardt, S. P.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Mazzucato, E.; Podesta, M.; Ren, Y.; Roquemore, A. L.; White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kolesnichenko, Ya. I.; Yakovenko, Yu. V.] Inst Nucl Res, UA-03680 Kiev, Ukraine. [Bortolon, A.] Univ Calif Irvine, Irvine, CA 90095 USA. [Crocker, N. A.; Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Domier, C. W.; Lee, K. C.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Fonck, R. J.; McKee, G. R.; Smith, D. R.] Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA. [Stutman, D.; Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. RP Medley, SS (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM medley@pppl.gov RI White, Roscoe/D-1773-2013; Bortolon, Alessandro/H-5764-2015; Stutman, Dan/P-4048-2015; OI White, Roscoe/0000-0002-4239-2685; Bortolon, Alessandro/0000-0002-0094-0209; Yakovenko, Yuriy/0000-0002-3499-5275 FU US Department of Energy [DE-AC02-09CH11466, DE-FG02-89ER53296, DE-SC0001288, DE-FG02-06ER54867, DE-FG02-99ER54527, DE-FG02-99ER54518]; Science and Technology Center in Ukraine [4588] FX This work was supported by the US Department of Energy under Contract No DE-AC02-09CH11466. This work was partly supported by Project #4588 of the Science and Technology Center in Ukraine, US DOE Grant Nos DE-FG02-89ER53296 and DE-SC0001288 (U. Wisconsin-Madison), US DOE Grant No DE-FG02-06ER54867 (UC Irvine), US DOE Grant No DE-FG02-99ER54527 (UCLA) and US DOE Grant No DE-FG02-99ER54518 (UC Davis). NR 60 TC 3 Z9 3 U1 0 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013014 DI 10.1088/0029-5515/52/1/013014 PG 25 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700016 ER PT J AU Petty, CC Jayakumar, RJ Makowski, MA Holcomb, CT Humphreys, DA La Haye, RJ Luce, TC Politzer, PA Prater, R Wade, MR Welander, AS AF Petty, C. C. Jayakumar, R. J. Makowski, M. A. Holcomb, C. T. Humphreys, D. A. La Haye, R. J. Luce, T. C. Politzer, P. A. Prater, R. Wade, M. R. Welander, A. S. TI Spatiotemporal changes in the pressure-driven current densities on DIII-D due to magnetic islands SO NUCLEAR FUSION LA English DT Article ID NEOCLASSICAL TEARING MODES; CYCLOTRON CURRENT DRIVE; ASDEX UPGRADE; COMPLETE SUPPRESSION; NONLINEAR GROWTH; CURRENT PROFILES; D TOKAMAK; PERFORMANCE; DISCHARGES; STABILIZATION AB Using direct analysis of the motional Stark effect (MSE) signals, an explicit measurement of the `missing' bootstrap current density around the island location of a neoclassical tearing mode (NTM) is made for the first time. When the NTM is suppressed using co-electron cyclotron current drive, the measured changes in the current profile that restore the bootstrap current are also directly found from the MSE measurements. Additionally, direct analysis of helical perturbations in the MSE signals during slowly rotating `quasi-stationary' modes shows the first explicit measurement of the deficit in the toroidal current density in the island O-point. C1 [Petty, C. C.; Humphreys, D. A.; La Haye, R. J.; Luce, T. C.; Politzer, P. A.; Prater, R.; Wade, M. R.; Welander, A. S.] Gen Atom Co, San Diego, CA 92186 USA. [Jayakumar, R. J.; Makowski, M. A.; Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Petty, CC (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344. NR 41 TC 1 Z9 1 U1 0 U2 2 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JAN PY 2012 VL 52 IS 1 AR 013011 DI 10.1088/0029-5515/52/1/013011 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 897EC UT WOS:000300625700013 ER PT J AU Ghaemi, P Wilczek, F AF Ghaemi, Pouyan Wilczek, Frank TI Near-zero modes in superconducting graphene SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT Nobel Symposium on Graphene and Quantum Matter CY MAY 27-31, 2010 CL Saltsjobaden, SWEDEN ID CONDENSED-MATTER; STATISTICS; GRAPHITE; VORTICES; PARITY; SYSTEM; STATES; FIELD AB Vortices in the simplest superconducting state of graphene contain very-low-energy excitations whose existence is connected to an index theorem that applies strictly to an approximate form of the relevant Bogoliubov-de Gennes equations. When Zeeman interactions are taken into account, the zero modes required by the index theorem are (slightly) displaced. Thus, the vortices acquire internal structure, which plausibly supports interesting dynamical phenomena. C1 [Ghaemi, Pouyan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ghaemi, Pouyan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wilczek, Frank] MIT, Ctr Theoret Phys, Dept Phys, Cambridge, MA 02139 USA. RP Ghaemi, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM pouyan@berkeley.edu NR 26 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD JAN PY 2012 VL T146 AR 014019 DI 10.1088/0031-8949/2012/T146/014019 PG 4 WC Physics, Multidisciplinary SC Physics GA 895OD UT WOS:000300504800020 ER PT J AU Uchoa, B Reed, JP Gan, Y Joe, YI Fradkin, E Abbamonte, P Casa, D AF Uchoa, Bruno Reed, James P. Gan, Yu Joe, Young Il Fradkin, Eduardo Abbamonte, Peter Casa, Diego TI The electron many-body problem in graphene SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT Nobel Symposium on Graphene and Quantum Matter CY MAY 27-31, 2010 CL Saltsjobaden, SWEDEN ID SUSPENDED GRAPHENE; DYNAMICS AB We give a brief summary of the current status of the electron many-body problem in graphene. We claim that graphene has intrinsic dielectric properties which should dress the interactions among the quasiparticles, and may explain why the observation of electron-electron renormalization effects has been so elusive in the recent experiments. We argue that the strength of Coulomb interactions in graphene may be characterized by an effective fine structure constant given by alpha(star) (k, omega) equivalent to 2.2/epsilon(k, omega), where epsilon(k, omega) is the dynamical dielectric function. At long wavelengths, alpha(star) (k, omega) appears to have its smallest value in the static regime, where alpha(star) (k -> 0, 0) approximate to 1/7 according to recent inelastic x-ray measurements, and the largest value in the optical limit, where alpha(star) (0, omega) approximate to 2.6. We conclude that the strength of Coulomb interactions in graphene is not universal, but is highly dependent on the scale of the phenomenon of interest. We propose a prescription in order to reconcile different experiments. C1 [Uchoa, Bruno; Reed, James P.; Gan, Yu; Joe, Young Il; Fradkin, Eduardo; Abbamonte, Peter] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Uchoa, Bruno; Reed, James P.; Gan, Yu; Joe, Young Il; Fradkin, Eduardo; Abbamonte, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Casa, Diego] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Uchoa, B (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RI Fradkin, Eduardo/B-5612-2013; Casa, Diego/F-9060-2016; OI Fradkin, Eduardo/0000-0001-6837-463X NR 29 TC 2 Z9 2 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD JAN PY 2012 VL T146 AR 014014 DI 10.1088/0031-8949/2012/T146/014014 PG 6 WC Physics, Multidisciplinary SC Physics GA 895OD UT WOS:000300504800015 ER PT J AU Benisti, D Yampolsky, NA Fisch, NJ AF Benisti, Didier Yampolsky, Nikolai A. Fisch, Nathaniel J. TI Comparisons between nonlinear kinetic modelings of simulated Raman scattering using envelope equations SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA-WAVES; INSTABILITIES AB In this paper, we compare two recent models [N. A. Yampolsky and N. J. Fisch, Phys. Plasmas 16, 072104 (2009); D. Benisti, D. J. Strozzi, L. Gremillet, and O. Morice, Phys. Rev. Lett. 103, 155002 (2009)] introduced to predict the nonlinear growth of stimulated Raman scattering in the kinetic regime, and providing moreover a nonlinear description of the collisionless, Landau-like, damping rate of the driven electron plasma wave. We first recall the general theoretical framework common to these two models, based on the derivation of the imaginary part of the electron susceptibility, vi, and then discuss in detail why the two approaches differ. By comparing the theoretical predictions for vi to those derived from test particle or Vlasov simulations, we moreover discuss the range of validity of the two models. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677264] C1 [Benisti, Didier] CEA, DIF, DAM, F-91297 Arpajon, France. [Yampolsky, Nikolai A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fisch, Nathaniel J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Benisti, D (reprint author), CEA, DIF, DAM, F-91297 Arpajon, France. EM didier.benisti@cea.fr RI Yampolsky, Nikolai/A-7521-2011 NR 21 TC 11 Z9 11 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 013110 DI 10.1063/1.3677264 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400066 ER PT J AU Burgos, JMM Schmitz, O Loch, SD Ballance, CP AF Burgos, J. M. Munoz Schmitz, O. Loch, S. D. Ballance, C. P. TI Hybrid time dependent/independent solution for the He I line ratio temperature and density diagnostic for a thermal helium beam with applications in the scrape-off layer-edge regions in tokamaks SO PHYSICS OF PLASMAS LA English DT Article ID RATE COEFFICIENTS; PLASMAS; RECOMBINATION; EMISSION; POPULATIONS; EXCITATION; SCATTERING; STATE; IONS AB Spectroscopic studies of line emission intensities and ratios offer an attractive option in the development of non-invasive plasma diagnostics. Evaluating ratios of selected He I line emission profiles from the singlet and triplet neutral helium spin systems allows for simultaneous measurement of electron density (n(e)) and temperature (T-e) profiles. Typically, this powerful diagnostic tool is limited by the relatively long relaxation times of the S-3 metastable term of helium that populates the triplet spin system, and on which electron temperature sensitive lines are based. By developing a time dependent analytical solution, we model the time evolution of the two spin systems. We present a hybrid time dependent/independent line ratio solution that improves the range of application of this diagnostic technique in the scrape-off layer (SOL) and edge plasma regions when comparing it against the current equilibrium line ratio helium model used at TEXTOR. (c) 2012 American Institute of Physics. [doi:10.1063/1.3672230] C1 [Burgos, J. M. Munoz] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. [Schmitz, O.] Forschungszentrum Julich, Assoc EURATOM FZJ, Inst Energieforsch Plasmaphys, D-52425 Julich, Germany. [Loch, S. D.; Ballance, C. P.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Burgos, JMM (reprint author), Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. EM munozj@fusion.gat.com; o.schmitz@fz-juelich.de; loch@physics.auburn.edu; ballance@physics.auburn.edu FU US Department of Energy [DE-AC05-06OR23100, DE-FC02-04ER54698]; atomic physics group at Auburn University; ADAS consortium FX This work was supported in part by the US Department of Energy under DE-AC05-06OR23100 and DE-FC02-04ER54698. The authors wish to acknowledge the support of the atomic physics group at Auburn University, the ADAS consortium, the support of Yuhong Xu for his work in the TEXTOR fast probe data, Mikhael Kantor for the TEXTOR edge Thomson data contribution, and Nicolas Commaux for his help preparing some of the figures. NR 27 TC 14 Z9 14 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012501 DI 10.1063/1.3672230 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400040 ER PT J AU Ellison, CL Raitses, Y Fisch, NJ AF Ellison, C. L. Raitses, Y. Fisch, N. J. TI Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA-OSCILLATIONS; CLOSED DRIFT; ACCELERATION; DIFFUSION; DISCHARGE AB Rotating spoke phenomena have been observed in a variety of Hall thruster and other E x B devices. It has been suggested that the spoke may be associated with the enhancement of the electron cross-field transport. In this paper, the current conducted across the magnetic field via a rotating spoke has been directly measured for the first time in the E x B discharge of a cylindrical Hall thruster. The spoke current was measured using a segmented anode. Synchronized measurements with a high speed camera and a four-segment anode allow observation of the current as a function of time and azimuthal position. Upwards of 50% of the total current is conducted through the spoke, which occupies a quarter of the Hall thruster channel area. To determine the transport mechanism, emissive and Langmuir probes were installed to measure fluctuating plasma potential, electron density, and temperature. A perturbed, azimuthal electric field and density are observed to oscillate in-phase with the rotating spoke. The resulting drift current is found to enhance electron transport with a magnitude equal to the spoke current to within margins of error. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671920] C1 [Ellison, C. L.; Raitses, Y.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ellison, CL (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU DOE; U.S. Department of Energy [DE-AC02-09CH11466]; Air Force Office of Scientific Research (AFOSR) FX The authors would like to thank J. Parker, M. Griswold, J. C. Gayoso, J. P. Sheehan, K. Matyash and R. Schneider for their assistance and helpful discussions. This work was performed under the support of a DOE-Fusion Energy Sciences Fellowship. This manuscript has been authored by Princeton University and collaborators under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy with additional support from the Air Force Office of Scientific Research (AFOSR). NR 35 TC 38 Z9 38 U1 5 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 013503 DI 10.1063/1.3671920 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400074 ER PT J AU Krasheninnikova, NS Finnegan, SM Schmitt, MJ AF Krasheninnikova, Natalia S. Finnegan, Sean M. Schmitt, Mark J. TI An initial assessment of three-dimensional polar direct drive capsule asymmetries for implosions at the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR GROWTH; LASER-DRIVEN; SPECTRAL DISPERSION; TARGETS; OMEGA; INSTABILITY; UNIFORMITY; STABILITY; LIGHT AB The National Ignition Facility (NIF) provides a unique opportunity to study implosion physics with nuclear yield. The use of polar direct drive (PDD) [A. M. Cok, R. S. Craxton, and P. W. McKenty, Phys. Plasmas 15, 082705 (2008)] provides a simple platform for the experimental studies without expensive optics upgrades to NIF. To determine the optimum PDD laser pointing geometry on NIF and provide a baseline for validating inertial confinement fusion codes against experiments for symmetric and asymmetric implosions, computer simulations using the 3D radiation-hydrodynamics code HYDRA [M. M. Marinak, R. E. Tipton, O. L. Landen, T. J. Murphy, P. Amendt, S. W. Haan, S. P. Hatchett, C. J. Keane, R. McEachern, and R. Wallace, Phys. Plasmas 3, 2070 (1996)] were preformed. The upper hemisphere of a DT-filled CH capsule was imploded by 96 NIF beams in a PDD configuration. Asymmetries in both polar and equatorial directions around the capsule were observed, with the former dominating the latter. Analysis of the simulation results indicates that the lack of symmetry in the initial power density profile (during the first 200 ps of the implosion) is a primary cause of late-time asymmetry in the implosion as well as decreased yield. By adjusting the laser pointings, the symmetry and total neutron yield were improved. Simulations with dropped quads (four of the NIF laser system's 192 beamlines) without repointing worsen the overall symmetry by a factor of 10 (with respect to rms radial variation around the capsule) and reduce neutron yield by a factor of 2. Both of these degraded implosion characteristics are restored by azimuthal repointing of the remaining quads. [doi:10.1063/1.3671972] C1 [Krasheninnikova, Natalia S.; Schmitt, Mark J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Finnegan, Sean M.] Off Fus Energy Sci, Germantown, MD 20874 USA. RP Krasheninnikova, NS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012; OI Schmitt, Mark/0000-0002-0197-9180 FU US DOE/NNSA; LANS LLC [DE-AC52-06NA25396] FX This research was supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under Contract No. DE-AC52-06NA25396. The authors are extremely grateful to Marty Marinak and the rest of the HYDRA team for making their code available to us to perform this work. We also would like to express our gratitude to Larry Suter and Ines Heinz for facilitating computational access to HYDRA. NR 46 TC 10 Z9 11 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012702 DI 10.1063/1.3671972 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400050 ER PT J AU Lemons, DS AF Lemons, Don S. TI Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory SO PHYSICS OF PLASMAS LA English DT Article ID GEOMAGNETIC STORMS; FIELD; MAGNETOSPHERE; DIFFUSION AB We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density-a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone. (c) 2012 American Institute of Physics. [doi:10.1063/1.3676156] C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lemons, DS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 24 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012306 DI 10.1063/1.3676156 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400030 ER PT J AU Saito, S Gary, SP AF Saito, S. Gary, S. Peter TI Beta dependence of electron heating in decaying whistler turbulence: Particle-in-cell simulations SO PHYSICS OF PLASMAS LA English DT Article ID SOLAR-WIND; MAGNETOHYDRODYNAMIC TURBULENCE; DISSIPATION RANGE; WAVE TURBULENCE; MAGNETIC-FIELD; FLUCTUATIONS; ANISOTROPY; CASCADE; SCALES AB Two-dimensional particle-in-cell simulations have been carried out to study electron beta dependence of decaying whistler turbulence and electron heating in a homogeneous, collisionless magnetized plasma. Initially, applied whistler fluctuations at relatively long wavelengths cascade their energy into shorter wavelengths. This cascade leads to whistler turbulence with anisotropic wavenumber spectra which are broader in directions perpendicular to the background magnetic field than in the parallel direction. Comparing the development of whistler turbulence at different electron beta values, it is found that both the wavenumber spectrum anisotropy and electron heating anisotropy decrease with increasing electron beta. This indicates that higher electron beta reduces the perpendicular energy cascade of whistler turbulence. Fluctuation energy dissipation by electron Landau damping responsible for the electron parallel heating becomes weaker at higher electron beta, which leads to more isotropic heating. It suggests that electron kinetic processes are important in determining the properties of whistler turbulence. This kinetic property is applied to discuss the generation of suprathermal strahl electron distributions in the solar wind. (c) 2012 American Institute of Physics. [doi:10.1063/1.3676155] C1 [Saito, S.] Natl Inst Informat & Commun Technol, Koganei, Tokyo 1848795, Japan. [Gary, S. Peter] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Saito, S (reprint author), Natl Inst Informat & Commun Technol, 4-2-1 Nukui Kitamachi, Koganei, Tokyo 1848795, Japan. EM ssaito@nict.go.jp; pgary@lanl.gov FU Japan Society for the Promotion of Science [21740353]; U.S. Department of Energy (DOE); National Aeronautics and Space Administration FX This work was supported by Grant-in-Aid for Young Scientists (B) Grant No. 21740353 from Japan Society for the Promotion of Science. The Los Alamos portion of this work was performed under the auspices of the U.S. Department of Energy (DOE). It was supported by the Solar and Heliospheric Physics SR&T and Heliophysics Guest Investigators Programs of the National Aeronautics and Space Administration. NR 25 TC 16 Z9 16 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012312 DI 10.1063/1.3676155 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400036 ER PT J AU Schroeder, CB Benedetti, C Esarey, E Gruner, FJ Leemans, WP AF Schroeder, C. B. Benedetti, C. Esarey, E. Gruener, F. J. Leemans, W. P. TI Particle beam self-modulation instability in tapered and inhomogeneous plasma SO PHYSICS OF PLASMAS LA English DT Article ID ACCELERATION; ELECTRONS AB The particle beam self-modulation instability in tapered and inhomogeneous plasmas is analyzed via an evolution equation for the beam radius. For a sufficiently fast taper, the instability is suppressed, and the condition for growth suppression is derived. The form of the taper to phase lock a trailing witness bunch in the plasma wave driven by a self-modulated beam is determined, which can increase the energy gain by several orders of magnitude. Growth of the instability places stringent constraints on the initial background plasma density fluctuations. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677358] C1 [Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gruener, F. J.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. RP Schroeder, CB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Gruner, Florian/M-1212-2016; OI Gruner, Florian/0000-0001-8382-9225; Schroeder, Carl/0000-0002-9610-0166 FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 15 Z9 15 U1 3 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 010703 DI 10.1063/1.3677358 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400003 ER PT J AU Seguin, FH Li, CK Manuel, JE Rinderknecht, HG Sinenian, N Frenje, JA Rygg, JR Hicks, DG Petrasso, RD Delettrez, J Betti, R Marshall, FJ Smalyuk, VA AF Seguin, F. H. Li, C. K. Manuel, J. -E. Rinderknecht, H. G. Sinenian, N. Frenje, J. A. Rygg, J. R. Hicks, D. G. Petrasso, R. D. Delettrez, J. Betti, R. Marshall, F. J. Smalyuk, V. A. TI Time evolution of filamentation and self-generated fields in the coronae of directly driven inertial-confinement fusion capsules SO PHYSICS OF PLASMAS LA English DT Article ID LASER-PLASMA INTERACTION; RHO-R; PROTON RADIOGRAPHY; OMEGA LASER; IMPLOSIONS; NONUNIFORMITY; INSTABILITY; TRANSPORT; TARGETS AB Time-gated radiography with monoenergetic 15-MeV protons, 3-MeV protons, and 4-MeV alpha particles has revealed a rich and complex evolution of electromagnetic field structures in and around imploding, directly driven inertial-confinement fusion (ICF) targets at the OMEGA laser facility. Plastic-shell capsules and solid plastic spheres were imaged during and after irradiation with ICF-relevant laser drive (up to 6 x 10(14) W/cm(2)). Radial filaments appeared while the laser was on; they filled, and were frozen into, the out-flowing corona, persisting until well after the end of the laser drive. Data from specially designed experiments indicate that the filaments were not generated by two-plasmon-decay instabilities or by Rayleigh-Taylor instabilities associated with shell acceleration. Before the onset of visible filamentation, quasi-spherical field structures appeared outside the capsule in the images in a form that suggests outgoing shells of net positive charge. We conjecture that these discrete shells are related to multiple peaks seen previously in the spectra of protons ablated from the targets. (c) 2012 American Institute of Physics. [doi:10.1063/1.3671908] C1 [Seguin, F. H.; Li, C. K.; Manuel, J. -E.; Rinderknecht, H. G.; Sinenian, N.; Frenje, J. A.; Rygg, J. R.; Hicks, D. G.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Delettrez, J.; Betti, R.; Marshall, F. J.; Smalyuk, V. A.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Betti, R.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. [Betti, R.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Rygg, J. R.; Hicks, D. G.; Smalyuk, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Seguin, FH (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Hicks, Damien/B-5042-2015; Manuel, Mario/L-3213-2015; OI Hicks, Damien/0000-0001-8322-9983; Manuel, Mario/0000-0002-5834-1161; /0000-0003-4969-5571 FU Laboratory for Laser Energetics (LLE) National Laser User's Facility [DE-FG03-03SF22691]; Fusion Science Center at the University of Rochester [412761-G] FX This work was supported in part by the Laboratory for Laser Energetics (LLE) National Laser User's Facility (DE-FG03-03SF22691) and the Fusion Science Center at the University of Rochester (412761-G). We thank General Atomics for the fabrication of targets; the operations staff and Michelle Burke at LLE for their help with the experiments; and Jocelyn Schaeffer at MIT for data processing. In addition, an anonymous referee provided very useful suggestions. NR 34 TC 16 Z9 16 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012701 DI 10.1063/1.3671908 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400049 ER PT J AU Velikovich, AL Giuliani, JL Zalesak, ST Thornhill, JW Gardiner, TA AF Velikovich, A. L. Giuliani, J. L. Zalesak, S. T. Thornhill, J. W. Gardiner, T. A. TI Exact self-similar solutions for the magnetized Noh Z pinch problem SO PHYSICS OF PLASMAS LA English DT Article ID ARRAY Z-PINCHES; IDEAL MAGNETOHYDRODYNAMICS; 2-DIMENSIONAL SIMULATIONS; RADIATION TRANSPORT; INSTABILITY; FLUX; FLOW; MHD; HYDRODYNAMICS; IMPLOSIONS AB A self-similar solution is derived for a radially imploding cylindrical plasma with an embedded, azimuthal magnetic field. The plasma stagnates through a strong, outward propagating shock wave of constant velocity. This analysis is an extension of the classic Noh gasdynamics problem to its ideal magnetohydrodynamics (MHD) counterpart. The present exact solution is especially suitable as a test for MHD codes designed to simulate linear Z pinches. To demonstrate the application of the new solution to code verification, simulation results from the cylindrical R-Z version of Mach2 and the 3D Cartesian code Athena are compared against the analytic solution. Alternative routines from the default ones in Athena lead to significant improvement of the results, thereby demonstrating the utility of the self-similar solution for verification. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3678213] C1 [Velikovich, A. L.; Giuliani, J. L.; Thornhill, J. W.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Zalesak, S. T.] Berkeley Res Associates Inc, Beltsville, MD 20705 USA. [Gardiner, T. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Velikovich, AL (reprint author), USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. FU National Nuclear Security Administration of DOE; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors are grateful to M. Frese of NumerEx for several discussions on running the Mach2 code and presentation of the resulting solutions and to E. P. Yu of Sandia National Laboratories for fruitful discussions of the analytical self-similar solutions. The authors would also like to thank J. H. Cooley of Los Alamos National Laboratory for initiating our interest in the problem of an MHD verification tool. The work was supported by the National Nuclear Security Administration of DOE. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 47 TC 7 Z9 7 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2012 VL 19 IS 1 AR 012707 DI 10.1063/1.3678213 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 901IF UT WOS:000300957400055 ER PT J AU Abernathy, DL Stone, MB Loguillo, MJ Lucas, MS Delaire, O Tang, X Lin, JYY Fultz, B AF Abernathy, D. L. Stone, M. B. Loguillo, M. J. Lucas, M. S. Delaire, O. Tang, X. Lin, J. Y. Y. Fultz, B. TI Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID STATE AB The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of He-3 linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection. CD 2012 American Institute of Physics. [doi:10.1063/1.3680104] C1 [Abernathy, D. L.; Stone, M. B.; Loguillo, M. J.; Lucas, M. S.; Delaire, O.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Tang, X.; Lin, J. Y. Y.; Fultz, B.] CALTECH, Pasadena, CA 91125 USA. RP Abernathy, DL (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM abernathydl@ornl.gov RI Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; Lin, Jiao/A-2529-2016; BL18, ARCS/A-3000-2012 OI Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; Lin, Jiao/0000-0001-9233-0100; FU DOE [DE-FG02-01ER45950, DE-AC05-000R22725]; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE FX The ARCS project was only made possible by the support of numerous colleagues at the SNS, Caltech and the IDT members. In particular, expert design work was provided by K. Shaw and S. Howard, outstanding support for neutronic calculations by E. Iverson, and excellent project management by P. Albertson and B. Thibadeau. Many essential discussions were held with J. Ankner, J. Carpenter, G. Ehlers, G. Granroth, M. Hagen, and K. Herwig. We acknowledge T. Kelley for his work on creating the early version of the reduction software, and M. Aivazis for his guidance on software architecture and design. We thank D. Mikkelson, R. Mikkelson, and A. Schultz for developing the ISAW handling of ARCS data. A. Kolesnikov graciously provided the idea and sample for the C4H2I2S measurement. Data for the liquid 4He measurement were provided by S. Diallo, R. Azuah and H. Glyde. Data for the FeSi single crystal measurements were provided by O. Delaire. ARCS was supported by the DOE under Grant No. DE-FG02-01ER45950. ORNL/SNS is managed by UT-Battelle, LLC, for the DOE under Contract No. DE-AC05-000R22725. Research at the SNS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. NR 48 TC 77 Z9 77 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JAN PY 2012 VL 83 IS 1 AR 015114 DI 10.1063/1.3680104 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 896TS UT WOS:000300594900072 PM 22299993 ER PT J AU Islam, Z Ruff, JPC Ross, KA Nojiri, H Gaulin, BD AF Islam, Zahirul Ruff, Jacob P. C. Ross, Kate A. Nojiri, Hiroyuki Gaulin, Bruce D. TI Time-resolved one-dimensional detection of x-ray scattering in pulsed magnetic fields SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON-RADIATION; LOW-TEMPERATURE; DIFFRACTION AB We have developed an application of a one-dimensional micro-strip detector for capturing x-ray diffraction data in pulsed magnetic fields. This detector consists of a large array of 50 mu m-wide Si strips with a full-frame read out at 20 kHz. Its use substantially improves data-collection efficiency and quality as compared to point detectors, because diffraction signals are recorded along an arc in reciprocal space in a time-resolved manner. By synchronizing with pulsed fields, the entire field dependence of a two-dimensional swath of reciprocal space may be determined using a small number of field pulses. (C) 2012 American Institute of Physics. [doi:10.1063/1.3675478] C1 [Islam, Zahirul; Ruff, Jacob P. C.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Ross, Kate A.; Gaulin, Bruce D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Nojiri, Hiroyuki] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 980, Japan. [Gaulin, Bruce D.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4C6, Canada. [Gaulin, Bruce D.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Islam, Z (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Nojiri, Hiroyuki/B-3688-2011 FU U. S. Department of Energy (DOE), Office of Science [DE-AC02-06CH11357]; International Collaboration Center at the Institute for Materials Research (ICC-IMR) at Tohoku University; MEXT [23224009]; Natural Sciences and Engineering Research Council (NSERC) of Canada FX We appreciate R. Goldsbrough (Quantum Detectors) and A. Micelli (APS) for technical assistance with the strip detector and its control software. Use of the APS is supported by the U. S. Department of Energy (DOE), Office of Science (Contract No. DE-AC02-06CH11357). A part of the is supported by International Collaboration Center at the Institute for Materials Research (ICC-IMR) at Tohoku University. H.N. acknowledges KAKENHI No. 23224009 from MEXT. J.P.C.R., B.D.G., and K.R. acknowledge the support of Natural Sciences and Engineering Research Council (NSERC) of Canada. NR 28 TC 3 Z9 3 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JAN PY 2012 VL 83 IS 1 AR 013113 DI 10.1063/1.3675478 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 896TS UT WOS:000300594900014 PM 22299935 ER PT J AU Moon, GH Kim, HI Shin, Y Choi, W AF Moon, Gun-hee Kim, Hyoung-il Shin, Yongsoon Choi, Wonyong TI Chemical-free growth of metal nanoparticles on graphene oxide sheets under visible light irradiation SO RSC ADVANCES LA English DT Article ID CARBON NANOTUBES; NANOCOMPOSITES; REDUCTION; NANOSHEETS; SURFACES; WATER AB In the presence of silver or gold ions, visible light irradiation (> 420 nm) induces the formation of metal nanoparticles on graphene (GO) sheets without the need of any chemical reducing reagents. GO sheets serve as not only a good substrate for dispersion of metal nanoparticles but also a self-reactive material itself for the photo-induced reduction of metal ions. C1 [Moon, Gun-hee; Choi, Wonyong] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea. [Kim, Hyoung-il; Choi, Wonyong] Pohang Univ Sci & Technol POSTECH, Sch Environm Sci & Engn, Pohang 790784, South Korea. [Shin, Yongsoon] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Choi, W (reprint author), Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea. EM wchoi@postech.edu RI Choi, Wonyong/F-8206-2010; Kim, Hyoung-il/D-1053-2014; Moon, Gun-hee/A-3279-2017 OI Choi, Wonyong/0000-0003-1801-9386; Kim, Hyoung-il/0000-0003-4358-1442; FU Korea government (MEST through NRF) [R0A-2008-000-20068-0, 2011-0031571, NRF-2011-C1AAA001-2011-0030278] FX This work was supported by the Korea government (MEST through NRF) projects: KOSEF NRL program (No. R0A-2008-000-20068-0); the Global Frontier R&D Program on Center for Multiscale Energy System (2011-0031571); the Korea Center for Artificial Photosynthesis (KCAP: Sogang Univ.) (NRF-2011-C1AAA001-2011-0030278). NR 31 TC 14 Z9 14 U1 0 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2012 VL 2 IS 6 BP 2205 EP 2207 DI 10.1039/c2ra00875k PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 899PN UT WOS:000300828400004 ER PT J AU Dawedeit, C Kim, SH Braun, T Worsley, MA Letts, SA Wu, KJ Walton, CC Chernov, AA Satcher, JH Hamza, AV Biener, J AF Dawedeit, Christoph Kim, Sung Ho Braun, Tom Worsley, Marcus A. Letts, Stephan A. Wu, Kuang Jen Walton, Christopher C. Chernov, Alexander A. Satcher, Joe H., Jr. Hamza, Alex V. Biener, Juergen TI Tuning the rheological properties of sols for low-density aerogel coating applications SO SOFT MATTER LA English DT Article ID POLYMERIZATION; DICYCLOPENTADIENE; FABRICATION; UNIFORMITY; FIREX AB Coating of cylindrical and spherical surfaces with thin and homogeneous low-density aerogel films requires precise control over viscosity and gel time. If the viscosity is too low, shear forces can damage the growing gel network and prevent the formation of uniform coatings. Using the example of dicyclopentadiene-based polymer gels, we demonstrate that the gelation behaviour can be manipulated by reducing the amount of cross-linking through co-polymerization with a monomer that can only form linear chains. Even small additions of a linear co-polymer (1-10 wt. %) increase the viscosity at the sol-gel transition by several orders of magnitude, and drastically improve the uniformity of gel films formed under the influence of shear. These results are discussed in the context of the classical gel theory. C1 [Dawedeit, Christoph; Kim, Sung Ho; Braun, Tom; Worsley, Marcus A.; Letts, Stephan A.; Wu, Kuang Jen; Walton, Christopher C.; Chernov, Alexander A.; Satcher, Joe H., Jr.; Hamza, Alex V.; Biener, Juergen] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [Dawedeit, Christoph] Tech Univ Munich, D-85748 Garching, Germany. RP Dawedeit, C (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RI Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; TUM Faculty Graduate Center Mechanical Engineering at the Technische Universitat Munchen FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The author gratefully acknowledges the support of the TUM Faculty Graduate Center Mechanical Engineering at the Technische Universitat Munchen. NR 23 TC 11 Z9 11 U1 0 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 13 BP 3518 EP 3521 DI 10.1039/c2sm07396j PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 904LN UT WOS:000301198100003 ER PT J AU Haxton, TK Whitelam, S AF Haxton, Thomas K. Whitelam, Stephen TI Design rules for the self-assembly of a protein crystal SO SOFT MATTER LA English DT Article ID PHASE-SEPARATION; CRYSTALLIZATION; NUCLEATION; KINETICS; GROWTH; SUSPENSIONS; TRANSITION; BEHAVIOR; DIAGRAM; LAYERS AB Theories of protein crystallization based on spheres that form close-packed crystals predict optimal assembly within a 'slot' of second virial coefficients and enhanced assembly near the metastable liquid-vapor critical point. However, most protein crystals are open structures stabilized by anisotropic interactions. Here, we use theory and simulation to show that assembly of one such structure is not predicted by the second virial coefficient or enhanced by the critical point. Instead, good assembly requires that the thermodynamic driving force be on the order of the thermal energy and that interactions be made as nonspecific as possible without promoting liquid-vapor phase separation. C1 [Haxton, Thomas K.; Whitelam, Stephen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Whitelam, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Caroline Ajo-Franklin, Robert Jack, Behzad Rad, and Jeremy Schmit for discussions. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, used resources of the National Energy Research Scientific Computing Center, and was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 50 TC 25 Z9 25 U1 1 U2 42 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 13 BP 3558 EP 3562 DI 10.1039/c2sm07436b PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 904LN UT WOS:000301198100008 ER PT J AU Rosales, AM Murnen, HK Kline, SR Zuckermann, RN Segalman, RA AF Rosales, Adrianne M. Murnen, Hannah K. Kline, Steven R. Zuckermann, Ronald N. Segalman, Rachel A. TI Determination of the persistence length of helical and non-helical polypeptoids in solution SO SOFT MATTER LA English DT Article ID SEQUENCE-SPECIFIC POLYPEPTOIDS; AROMATIC SIDE-CHAINS; SECONDARY STRUCTURE; PEPTOID OLIGOMERS; LIGHT-SCATTERING; PROTEINS; CIS; CONFORMATIONS; ISOMERIZATION; POLYMERS AB Control over the shape of a polymer chain is desirable from a materials perspective because polymer stiffness is directly related to chain characteristics such as liquid crystallinity and entanglement, which in turn are related to mechanical properties. However, the relationship between main chain helicity in novel biologically derived and inspired polymers and chain stiffness (persistence length) is relatively poorly understood. Polypeptoids, or poly(N-substituted glycines), constitute a modular, biomimetic system that enables precise tuning of chain sequence and are therefore a good model system for understanding the interrelationship between monomer structure, helicity, and persistence length. The incorporation of bulky chiral monomers is known to cause main chain helicity in polypeptoids. Here, we show that helical polypeptoid chains have a flexibility nearly identical to an analogous random coil polypeptoid as observed via small angle neutron scattering (SANS). Additionally, our findings show that polypeptoids with aromatic phenyl side chains are inherently flexible with persistence lengths ranging from 0.5 to 1 nm. C1 [Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Rosales, Adrianne M.; Murnen, Hannah K.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Kline, Steven R.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov; segalman@berkeley.edu RI Zuckermann, Ronald/A-7606-2014; OI Zuckermann, Ronald/0000-0002-3055-8860; Segalman, Rachel/0000-0002-4292-5103 FU Office of Naval Research; National Science Foundation; Department of Defense; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR-0454672]; Office of Biological and Environmental Research; DOE [DE-AC05-00OR22725] FX We gratefully acknowledge funding from the Office of Naval Research via a Presidential Early Career Award in Science and Engineering. A.M.R. and H.K.M also gratefully acknowledge the National Science Foundation and the Department of Defense for graduate fellowships (respectively). Polypeptoid synthesis and associated chemical characterization were performed at the Molecular Foundry, a Lawrence Berkeley National Laboratory user facility supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-05CH11231. The neutron scattering in this work is based on activities at the NIST Center for Neutron Research, which is supported in part by the National Science Foundation under Agreement No. DMR-0454672. Certain trade names and company products are identified to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily best for the purpose. A portion of this research was also performed at Oak Ridge National Laboratory. The authors thank Dr Volker S. Urban at Oak Ridge National Laboratory for assistance on SANS data collection. The SANS studies at Oak Ridge National Laboratory's Center for Structural Molecular Biology were supported by the Office of Biological and Environmental Research, using facilities supported by the DOE, managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725. NR 38 TC 23 Z9 23 U1 3 U2 49 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 13 BP 3673 EP 3680 DI 10.1039/c2sm07092h PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 904LN UT WOS:000301198100022 ER PT J AU Gaire, C Rao, S Riley, M Chen, L Goyal, A Lee, S Bhat, I Lu, TM Wang, GC AF Gaire, C. Rao, S. Riley, M. Chen, L. Goyal, A. Lee, S. Bhat, I. Lu, T. -M. Wang, G. -C. TI Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic chemical vapor deposition SO THIN SOLID FILMS LA English DT Article DE Epitaxy; Cadmium telluride; Cube-textured nickel; Metal organic chemical vapor deposition; X-ray pole figures; Electron backscattered diffraction; Oriented domains ID SOLAR-CELLS; SURFACE; SPECTROSCOPY; REDUCTION; INTERFACE; HYDROGEN AB Single crystal-like CdTe thin film has been grown by metalorganic chemical vapor deposition on cube-textured Ni(100) substrate. Using X-ray pole figure measurements we observed the epitaxial relationship of {111}(CdTe)//{001}(Ni) with [1 (1) over bar0](CdTe)//[010](Ni) and [11 (2) over bar](CdTe)//[100](Ni). The 12 diffraction peaks in the (111) pole figure of CdTe film and their relative positions with respect to the four peak positions in the (111) pole figure of Ni substrate are consistent with four equivalent orientational domains of CdTe with three to four superlattice match of about 1.6% in the [1 (1) over bar0] direction of CdTe and the [010] direction of Ni. The electron backscattered diffraction images show that the CdTe domains are 30 degrees oriented from each other. These high structural quality films may find applications in low cost optoelectronic devices. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gaire, C.; Chen, L.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Rao, S.; Bhat, I.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. [Riley, M.] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA. [Goyal, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lee, S.] USA, ARDEC Benet Labs, Watervliet, NY 12189 USA. RP Wang, GC (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM wangg@rpi.edu RI chen, liang/L-9868-2013 OI chen, liang/0000-0002-1680-2628 FU NSF [0506738, 0333314, 0828401] FX This work was supported by NSF 0506738, NSF 0333314, and NSF 0828401. We thank Tom Parker for help in experiments. NR 21 TC 11 Z9 11 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JAN 1 PY 2012 VL 520 IS 6 BP 1862 EP 1865 DI 10.1016/j.tsf.2011.09.019 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 894WW UT WOS:000300459200034 ER PT J AU Smith, RS Petrik, NG Kimmel, GA Kay, BD AF Smith, R. Scott Petrik, Nikolay G. Kimmel, Greg A. Kay, Bruce D. TI Thermal and Nonthermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID ELECTRON-STIMULATED PRODUCTION; LIQUID WATER; 150 K; CRYSTALLIZATION KINETICS; MOLECULAR-HYDROGEN; SELF-DIFFUSIVITY; ICE; ENERGY; PT(111); DESORPTION AB Amorphous solid water (ASW) is a disordered version of ice created by vapor deposition onto a cold substrate (typically less than 130 K). It has a higher free energy than the crystalline phase of ice, and when heated above its glass transition temperature, it transforms into a metastable supercooled liquid. This unusual form of water exists on earth only in laboratories, after preparation with highly specialized equipment. It is thus fair to ask why there is any interest in studying such an esoteric material. Much of the scientific interest results from the ability to use ASW as a model system for exploring the physical and reactive properties of liquid water and aqueous solutions. ASW is also thought to be the predominant form of water in the extremely cold temperatures of many interstellar and planetary environments. In addition, ASW is a convenient model system for studying the stability of amorphous and glassy materials as well as the properties of highly porous materials. A fundamental understanding of such properties is invaluable in a diverse range of applications, including cryobiology, food science, pharmaceuticals, astrophysics, and nuclear waste storage, among others. Over the past 15 years, we have used molecular beams and surface science techniques to probe the thermal and nonthermal properties of nanoscale films of ASW. In this Account, we present a survey of our research on the properties of ASW using this approach. We use molecular beams to precisely control the deposition conditions (flux, incident energy, and incident angle) and create compositionally tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity and diffusivity), we heat the amorphous films above their glass transition temperature, T-g, at which they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near T-g, the viscosity is approximately 15 orders of magnitude larger than that of a normal liquid. As a result, the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near T-g, a water molecule moves less than the distance of a single molecule on a typical laboratory time scale (similar to 1000 s). For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquids at these low temperatures. ASW films can also be used for investigating the nonthermal reactions relevant to radiolysis. C1 [Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Greg A.; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Smith, RS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Scott.Smith@pnl.gov; Nikolai.Petrik@pnl.gov; Greg.Kimmel@pnl.gov; Bruce.Kay@pnl.gov RI Smith, Scott/G-2310-2015; Petrik, Nikolay/G-3267-2015; OI Smith, Scott/0000-0002-7145-1963; Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE'S Office of Biological and Environmental Research [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by DOE'S Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. NR 51 TC 28 Z9 28 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JAN PY 2012 VL 45 IS 1 SI SI BP 33 EP 42 DI 10.1021/ar200070w PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 902ZT UT WOS:000301083400005 PM 21627126 ER PT J AU Asmis, KR Neumark, DM AF Asmis, Knut R. Neumark, Daniel M. TI Vibrational Spectroscopy of Microhydrated Conjugate Base Anions SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID DOUBLY-CHARGED ANION; PHOTOELECTRON-SPECTROSCOPY; DICARBOXYLATE DIANIONS; INFRARED-SPECTROSCOPY; GAS-PHASE; IONS; WATER; HYDRATION; CLUSTERS; SPECIATION AB Conjugate-base anions are ubiquitous in aqueous solution. Understanding the hydration of these anions at the molecular level represents a long-standing goal in chemistry. A molecular-level perspective on ion hydration is also important for understanding the surface spedation and reactivity of aerosols, which are a central component of atmospheric and oceanic chemical cycles. In this Account, as a means of studying conjugate-base anions in water, we describe infrared multiple-photon dissociation spectroscopy on clusters in which the sulfate, nitrate, bicarbonate, and suberate anions are hydrated by a known number of water molecules. This spectral technique, used over the range of 550-1800 cm(-1), serves as a structural probe of these clusters. The experiments follow how the solvent network around the conjugate-base anion evolves, one water molecule at a time. We make structural assignments by comparing the experimental infrared spectra to those obtained from electronic structure calculations. Our results show how changes in anion structure, symmetry, and charge state have a profound effect on the structure of the solvent network. Conversely, they indicate how hydration can markedly affect the structure of the anion core in a microhydrated cluster. Some key results include the following. The first few water molecules bind to the anion terminal oxo groups in a bridging fashion, forming two anion-water hydrogen bonds. Each oxo group can form up to three hydrogen bonds; one structural result, for example, is the highly symmetric, fully coordinated SO42-(H2O)(6) cluster, which only contains bridging water molecules. Adding more water molecules results in the formation of a solvent network comprising water-water hydrogen bonding in addition to hydrogen bonding to the anion. For the nitrate, bicarbonate, and suberate anions, fewer bridging sites are available, namely, three, two, and one (per carboxylate group), respectively. As a result, an earlier onset of water-water hydrogen bonding is observed. When there are more than three hydrating water molecules (n>3), the formation of a particularly stable four-membered water ring is observed for hydrated nitrate and bicarbonate clusters. This ring binds in either a side-on (bicarbonate) or top-on (nitrate) fashion. In the case of bicarbonate, additional water molecules then add to this water ring rather than directly to the anion, indicating a preference for surface hydration. In contrast, doubly charged sulfate dianions are internally hydrated and characterized by the dosing of the first hydration shell at n = 12. The situation is different for the -O2C(CH2)(6)CO2- (suberate) dianion, which adapts to the hydration network by changing from a linear to a folded structure at n>15. This change is driven by the formation of additional solute-solvent hydrogen bonds. C1 [Asmis, Knut R.] Fritz Haber Inst Max Planck Gesell, D-14195 Berlin, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Asmis, KR (reprint author), Fritz Haber Inst Max Planck Gesell, Faradayweg 4-6, D-14195 Berlin, Germany. EM asmis@fhi-berlin.mpg.de; dneumark@berkeley.edu RI Asmis, Knut/N-5408-2014 OI Asmis, Knut/0000-0001-6297-5856 FU European Community; Air Force Office of Scientific Research [F49620-03-1-0085] FX We thank the Stichting voor Fundamenteel Onderzoek der Matere (FOM) for beam time and the staff for support and assistance. This research is funded by the European Community's Seventh Framework Programme (FP7/2007-2013) Grant No. 226716, and by the Air Force Office of Scientific Research under Grant No. F49620-03-1-0085. NR 48 TC 49 Z9 49 U1 3 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JAN PY 2012 VL 45 IS 1 SI SI BP 43 EP 52 DI 10.1021/ar2000748 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 902ZT UT WOS:000301083400006 PM 21675714 ER PT J AU Faubel, M Siefermann, KR Liu, Y Abel, B AF Faubel, M. Siefermann, K. R. Liu, Y. Abel, B. TI Ultrafast Soft X-ray Photoelectron Spectroscopy at Liquid Water Microjets SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID HYDRATED ELECTRON; DYNAMICS; CLUSTERS; PHASE; BOND; PHOTOEMISSION; EVAPORATION; IONIZATION; MOLECULES; BEAM AB Since the pioneering work of Kai Siegbahn, electron spectroscopy for chemical analysis (ESCA) has been developed into an indispensable analytical technique for surface science. The value of this powerful method of photoelectron spectroscopy (PES, also termed photoemission spectroscopy) and Siegbahn's contributions were recognized in the 1981 Nobel Prize in Physics. The need for high vacuum, however, originally prohibited PES of , volatile liquids, and only allowed for investigation of low-vapor-pressure molecules attached to a surface (or dose to a surface) or liquid films of low volatility. Only with the invention of liquid beams of volatile liquids compatible with high-vacuum conditions was PES from liquid surfaces under vacuum made feasible. Because of the ubiquity of water interfaces in nature, the liquid water vacuum interface became a most attractive research topic, particularly over the past 10 years. PES studies of these important aqueous interfaces remained significantly challenging because of the need to develop high-pressure PES methods. For decades, ESCA or PES (termed XPS, for X-ray photoelectron spectroscopy, in the case of soft X-ray photons) was restricted to conventional laboratory X-ray sources or beamlines in synchrotron facilities. This approach enabled frequency domain measurements, but with poor time resolution. Indirect access to time-resolved processes in the condensed phase was only achieved if line-widths could be analyzed or if processes could be related to a fast clock, that is, reference processes that are fast enough and are also well understood in the condensed phase. Just recently, the emergence of high harmonic light sources, providing short-wavelength radiation in ultrashort light pulses, added the dimension of time to the classical ESCA or XPS technique and opened the door to (soft) X-ray photoelectron spectroscopy with ultrahigh time resolution. The combination of high harmonic light sources (providing radiation with laserlike beam qualities) and liquid microjet technology recently enabled the first liquid interface PES experiments in the IR/UV-pump and extreme ultraviolet-probe (EUV-probe) configuration. In this Account, we highlight features of the technology and a number of recent applications, including extreme states of matter and the discovery and detection of short-lived transients of the solvated electron in water. Properties of the EUV radiation, such as its controllable polarization and features of the liquid microjet, will enable unique experiments in the near future. PES measures electron binding energies and angular distributions of photoelectrons, which comprise unique information about electron orbitals and their involvement in chemical bonding. One of the future goals is to use this information to trace molecular orbitals, over time, in chemical reactions or biological transformations. C1 [Liu, Y.; Abel, B.] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, D-04103 Leipzig, Germany. [Faubel, M.] Univ Gottingen, Max Planck Inst Dynamik & Selbstorg, D-37073 Gottingen, Germany. [Siefermann, K. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Abel, B (reprint author), Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, Linnestr 2, D-04103 Leipzig, Germany. EM bernd.abel@uni-leipzig.de FU Graduate School 782 of the DFG; [SPP1134]; [SFB 755] FX Financial support from the SPP1134, the SFB 755, and the Graduate School 782 of the DFG is gratefully achnowledged. NR 48 TC 36 Z9 36 U1 9 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JAN PY 2012 VL 45 IS 1 SI SI BP 120 EP 130 DI 10.1021/ar200154w PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 902ZT UT WOS:000301083400014 PM 22075058 ER PT J AU Oakes, M Weber, RJ Lai, B Russell, A Ingall, ED AF Oakes, M. Weber, R. J. Lai, B. Russell, A. Ingall, E. D. TI Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MINERAL DUST; PARTICULATE MATTER; CHEMICAL-COMPOSITION; ATMOSPHERIC AEROSOL; TRANSITION-METALS; OXIDATIVE STRESS; EPITHELIAL-CELLS; IN-VITRO; NANOPARTICLES; OCEAN AB Soluble iron in fine atmospheric particles has been identified as a public health concern by participating in reactions that generate reactive oxygen species (ROS). The mineralogy and oxidation state (speciation) of iron have been shown to influence fractional iron solubility (soluble iron/total iron). In this study, iron speciation was determined in single particles at urban and rural sites in Georgia USA using synchrotron-based techniques, such as X-ray Absorption Near-Edge Structure (XANES) spectroscopy and microscopic X-ray fluorescence measurements. Soluble and total iron content (soluble + insoluble iron) of these samples was measured using spectrophotometry and synchrotron-based techniques, respectively. These bulk measurements were combined with synchrotron-based measurements to investigate the relationship between iron speciation and fractional iron solubility in ambient aerosols. XANES measurements indicate that iron in the single particles was present as a mixture of Fe(II) and Fe(III), with Fe(II) content generally between 5 and 35% (mean: similar to 25 %). XANES and elemental analyses (e. g. elemental molar ratios of single particles based on microscopic X-ray fluorescence measurements) indicate that a majority (74 %) of iron-containing particles are best characterized as Al-substituted Fe-oxides, with a Fe/Al molar ratio of 4.9. The next most abundant group of particles (12 %) was Fe-aluminosilicates, with Si/Al molar ratio of 1.4. No correlation was found between fractional iron solubility (soluble iron/total iron) and the abundance of Al-substituted Fe-oxides and Fe-aluminosilicates present in single particles at any of the sites during different seasons, suggesting solubility largely depended on factors other than differences in major iron phases. C1 [Oakes, M.; Weber, R. J.; Ingall, E. D.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Lai, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Russell, A.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. RP Oakes, M (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM michelle.oakes@eas.gatech.edu RI Ingall, Ellery/A-5447-2008 OI Ingall, Ellery/0000-0003-1954-0317 FU U.S. National Science Foundation [ATM-0802237]; Environmental Protection Agency [RD-83283501] FX Financial support was provided by from the U.S. National Science Foundation through grant ATM-0802237 and the Environmental Protection Agency STAR Research Grant RD-83283501. The views expressed in this manuscript are solely those of the authors and EPA does not endorse any of the products or commercial services mentioned in the publication. NR 43 TC 35 Z9 35 U1 5 U2 59 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 2 BP 745 EP 756 DI 10.5194/acp-12-745-2012 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892YL UT WOS:000300321500009 ER PT J AU Matsui, N Long, CN Augustine, J Halliwell, D Uttal, T Longenecker, D Niebergall, O Wendell, J Albee, R AF Matsui, N. Long, C. N. Augustine, J. Halliwell, D. Uttal, T. Longenecker, D. Niebergall, O. Wendell, J. Albee, R. TI Evaluation of Arctic broadband surface radiation measurements SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID ENERGY BUDGET; EARTHS; INSTRUMENTATION; CLOUDS; ICE AB The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed. C1 [Matsui, N.; Longenecker, D.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Matsui, N.; Augustine, J.; Uttal, T.; Longenecker, D.; Wendell, J.; Albee, R.] Natl Ocean & Atmospher Adm, Boulder, CO USA. [Halliwell, D.; Niebergall, O.] Environm Canada, Regina, SK, Canada. [Long, C. N.] Pacific NW Lab, Richland, WA USA. [Albee, R.] Sci Technol Corp, Boulder, CO USA. RP Matsui, N (reprint author), Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM nobuki.matsui@colorado.edu FU NOAA/GMD; NOAA SEARCH; Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) FX The authors thank Dutton, E., and Michalsky, J. (NOAA/GMD) and McArthur, L. J. B. for their expertise, support and encouragement. We salute all the hard work by CANDAC and Environment Canada operators in Eureka. This work was supported by the NOAA SEARCH program and the Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) as part of the Atmospheric System Research (ASR) Program. NR 34 TC 4 Z9 4 U1 1 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2012 VL 5 IS 2 BP 429 EP 438 DI 10.5194/amt-5-429-2012 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 900HD UT WOS:000300876700012 ER PT J AU Schneider, J Jia, HF Muckerman, JT Fujita, E AF Schneider, Jacob Jia, Hongfei Muckerman, James T. Fujita, Etsuko TI Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts SO CHEMICAL SOCIETY REVIEWS LA English DT Review ID CARBON-DIOXIDE ACTIVATION; SOLVATION FREE-ENERGIES; INITIO MO/SD-CI; AQUEOUS-SOLUTION; ELECTROCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; COBALT(I) MACROCYCLE; NICKEL(II) COMPLEXES; CRYSTAL-STRUCTURES; ELECTRON-TRANSFER AB In our developing world, carbon dioxide has become one of the most abundant greenhouse gases in the atmosphere. It is a stable, inert, small molecule that continues to present significant challenges toward its chemical activation as a useful carbon end product. This tutorial review describes one approach to the reduction of carbon dioxide to carbon fuels, using cobalt and nickel molecular catalysts, with particular focus on studying the thermodynamics and kinetics of CO2 binding to metal catalytic sites. C1 [Schneider, Jacob; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Jia, Hongfei] Toyota Motor Engn & Mfg N Amer Inc, Toyota Res Inst N Amer, Mat Res Dept, Ann Arbor, MI 48105 USA. RP Schneider, J (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM jschneider@bnl.gov; fujita@bnl.gov RI Muckerman, James/D-8752-2013; Fujita, Etsuko/D-8814-2013 FU U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences under its Solar Energy Utilization initiative; Toyota Motor Engineering & Manufacturing of North America, Inc. FX We thank Dr Carol Creutz in the Chemistry Department at Brookhaven National Laboratory (BNL) for her careful reading of the manuscript and suggestions. We thank Dr David J. Szalda at Baruch College, CUNY, for making the ORTEP diagram in Fig. 8. The work at BNL is funded under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences under its Solar Energy Utilization initiative. We also thank Toyota Motor Engineering & Manufacturing of North America, Inc., for funding for the CO2 utilization research via a Cooperative Research and Development Agreement (CRADA). NR 62 TC 140 Z9 142 U1 46 U2 336 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0306-0012 J9 CHEM SOC REV JI Chem. Soc. Rev. PY 2012 VL 41 IS 6 BP 2036 EP 2051 DI 10.1039/c1cs15278e PG 16 WC Chemistry, Multidisciplinary SC Chemistry GA 899EI UT WOS:000300797700003 PM 22167246 ER PT J AU Liu, J Thallapally, PK McGrail, BP Brown, DR Liu, J AF Liu, Jian Thallapally, Praveen K. McGrail, B. Peter Brown, Daryl R. Liu, Jun TI Progress in adsorption-based CO2 capture by metal-organic frameworks SO CHEMICAL SOCIETY REVIEWS LA English DT Review ID CARBON-DIOXIDE CAPTURE; ZEOLITIC IMIDAZOLATE FRAMEWORKS; HENRYS LAW REGION; GAS-ADSORPTION; MOLECULAR SIMULATION; CU-BTC; HYDROGEN STORAGE; COORDINATION POLYMERS; SWING ADSORPTION; ACTIVATED CARBON AB Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, large surface areas, and potential applications as novel adsorbents. The recent progress in adsorption-based CO2 capture by MOFs is reviewed and summarized in this critical review. CO2 adsorption in MOFs has been divided into two sections, adsorption at high pressures and selective adsorption at approximate atmospheric pressures. Keys to CO2 adsorption in MOFs at high pressures and low pressures are summarized to be pore volumes of MOFs, and heats of adsorption, respectively. Many MOFs have high CO2 selectivities over N-2 and CH4. Water effects on CO2 adsorption in MOFs are presented and compared with benchmark zeolites. In addition, strategies appeared in the literature to enhance CO2 adsorption capacities and/or selectivities in MOFs have been summarized into three main categories, catenation and interpenetration, chemical bonding enhancement, and electrostatic force involvement. Besides the advantages, two main challenges of using MOFs in CO2 capture, the cost of synthesis and the stability toward water vapor, have been analyzed and possible solutions and path forward have been proposed to address the two challenges as well (150 references). C1 [Liu, Jian; Thallapally, Praveen K.; McGrail, B. Peter; Brown, Daryl R.; Liu, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM Praveen.Thallapally@pnnl.gov RI Liu, Jian/D-3393-2009; thallapally, praveen/I-5026-2014; Liu, Jian/C-4707-2011 OI Liu, Jian/0000-0001-5329-7408; thallapally, praveen/0000-0001-7814-4467; Liu, Jian/0000-0001-5329-7408 FU Laboratory Direct Research; U.S. Department of Energy, Office of Fossil Energy; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; U.S. Department of Energy [DE-AC05-76RL01830] FX Jian Liu would like to thank Prof. M. Douglas LeVan at Vanderbilt University for introducing him into gas adsorption in MOFs research. We would like to thank Laboratory Direct Research and U.S. Department of Energy, Office of Fossil Energy for financial support. In addition we would like to thank U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 146 TC 559 Z9 567 U1 79 U2 739 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0306-0012 EI 1460-4744 J9 CHEM SOC REV JI Chem. Soc. Rev. PY 2012 VL 41 IS 6 BP 2308 EP 2322 DI 10.1039/c1cs15221a PG 15 WC Chemistry, Multidisciplinary SC Chemistry GA 899EI UT WOS:000300797700017 PM 22143077 ER PT J AU Nancharaiah, YV Venugopalan, VP Francis, AJ AF Nancharaiah, Y. Venkata Venugopalan, V. P. Francis, A. J. TI Removal and biotransformation of U(VI) and Cr(VI) by aerobically grown mixed microbial granules SO DESALINATION AND WATER TREATMENT LA English DT Article DE Aerobic microbial granules; Aerobic granular sludge; Aerobic granules; Biosorption; Biotransformation; Bioremediation; Cr(VI) reduction; Uranium (VI) ID SEQUENCING BATCH REACTOR; SLUDGE; REDUCTION; IMMOBILIZATION; BIOFILMS; CHROMATE; URANIUM AB We assessed the potential of aerobic granular sludge consisting of mixed species of bacteria to remove and immobilize uranium (VI) and chromium (VI). Microbial granules were cultivated in a laboratory sequencing batch reactor (SBR) by feeding with acetate-containing synthetic media. Microbial granules formed in the SBR exhibited excellent settling characteristics and predominantly consisted of rod/cocci shaped bacteria. The microbial granules immobilized 218 +/- 2 mg of U(VI) g(-1) dry granular biomass. X-ray photoelectron spectroscopy (XPS) showed the association of U(VI) with the microbial granules and transformation of U(VI) to U(IV). Microbial granules reduced Cr(VI) and immobilized to Cr(III) at 0.17 mmoles/d/g under anaerobic conditions. X-ray absorption near edge spectroscopy (XANES) of chromium associated with microbial granules revealed complete conversion of Cr(VI) to Cr(III). Extended X-ray absorption fi ne structure (EXAFS) analysis of the Cr-laden microbial granules showed similarity to Cr(III)-phosphate. This study demonstrates the biotransformation and immobilization of U(VI) and Cr(VI) by mixed species microbial granules. C1 [Nancharaiah, Y. Venkata; Venugopalan, V. P.] Bhabha Atom Res Ctr, Water & Steam Chem Div, Chem Grp, Biofouling & Biofilm Proc Sect, Kalpakkam 603102, Tamil Nadu, India. [Francis, A. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Francis, A. J.] POSTECH, Div Adv Nucl Engn, Pohang, South Korea. RP Nancharaiah, YV (reprint author), Bhabha Atom Res Ctr, Water & Steam Chem Div, Chem Grp, Biofouling & Biofilm Proc Sect, Kalpakkam 603102, Tamil Nadu, India. EM venkatany@gmail.com FU American Society for Microbiology (ASM); WCU (World Class University) through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31 - 30005] FX Authors thank S. Bera, Bhabha Atomic Research Centre, Kalpakkam for XPS analysis and C.J. Dodge, Brookhaven National Laboratory, Upton for XANES/EXAFS analysis. YVN acknowledges American Society for Microbiology (ASM) for Indo-US Visiting Research Professorship Award. This research was in part supported by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31 - 30005). NR 17 TC 5 Z9 7 U1 3 U2 19 PU DESALINATION PUBL PI HOPKINTON PA 36 WALCOTT VALLEY DRIVE,, HOPKINTON, MA 01748 USA SN 1944-3994 J9 DESALIN WATER TREAT JI Desalin. Water Treat. PD JAN PY 2012 VL 38 IS 1-3 BP 90 EP 95 DI 10.5004/dwt.2012.2315 PG 6 WC Engineering, Chemical; Water Resources SC Engineering; Water Resources GA 900TA UT WOS:000300911400013 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baron-Celli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinnia, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Ceveninia, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Cioccaa, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S De Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dean, S Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luisea, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A DosAnjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, A Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Hen, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG Mc-Cubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Moenig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tian, F Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G Von der Schmitt, H Von Loeben, J Von Radziewski, H Von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A Nedden, MZ Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baron-Celli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinnia, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Ceveninia, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Cioccaa, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. De Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luisea, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. DosAnjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Hen, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J. -Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Juranek, V. Jussel, P. Rozas, A. Juste Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. Mc-Cubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Cavalcanti, T. Codina, E. Perez Perez Garcia-Estan, M. T. Perez Reale, V. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. Von der Schmitt, H. Von Loeben, J. Von Radziewski, H. Von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. Nedden, M. Zur Zutshi, V. Zwalinski, L. CA Atlas Collaboration TI Performance of missing transverse momentum reconstruction in proton-proton collisions at root s=7 TeV with ATLAS SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article AB The measurement of missing transverse momentum in the ATLAS detector, described in this paper, makes use of the full event reconstruction and a calibration based on reconstructed physics objects. The performance of the missing transverse momentum reconstruction is evaluated using data collected in pp collisions at a centre-of-mass energy of 7 TeV in 2010. Minimum bias events and events with jets of hadrons are used from data samples corresponding to an integrated luminosity of about 0.3 nb(-1) and 600 nb(-1) respectively, together with events containing a Z boson decaying to two leptons (electrons or muons) or a W boson decaying to a lepton (electron or muon) and a neutrino, from a data sample corresponding to an integrated luminosity of about 36 pb(-1). An estimate of the systematic uncertainty on the missing transverse momentum scale is presented. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; Von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Dhullipudi, R.; Ernst, J.; Greenwood, Z. D.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk; Yilmaz, M.] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vaque, F. Vives; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vaque, F. Vives; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vaque, F. Vives; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Hackenburg, R.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Griso, S. Pagan; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Haefner, P.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Cioccaa, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Cioccaa, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; Von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hadavand, H. K.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Gray, H. M.; Grognuz, J.; Haber, C.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Perez Reale, V.; Tian, F.; Tuts, P. M.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Coll Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadley, D. R.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Garcia Navarro, J. E.; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Annovi, A.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, CNRS, IN2P3, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-6900 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Haas, A.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Simoniello, R.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Simoniello, R.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Hahn, F.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; Von der Schmitt, H.; Von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Ceveninia, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Ceveninia, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinnia, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinnia, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Abdesselam, A.; Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; Mc-Cubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baron-Celli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luisea, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luisea, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, S.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Ist Nazl Fis Nucl, Grp Coll Udine, Trieste, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; DosAnjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Hen, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Carvalho, J.; Fiolhais, M. C. N.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Greenwood, Z. D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Guler, H.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Bold, T.; Grabowska-Bold, I.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; La Rosa, Alessandro/I-1856-2013; Casadei, Diego/I-1785-2013; Ishikawa, Akimasa/G-6916-2012; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Wolter, Marcin/A-7412-2012; Bergeaas Kuutmann, Elin/A-5204-2013; messina, andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Gutierrez, Phillip/C-1161-2011; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; valente, paolo/A-6640-2010; Ferrando, James/A-9192-2012; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Doyle, Anthony/C-5889-2009; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Sivoklokov, Sergey/D-8150-2012; Smirnov, Sergei/F-1014-2011 OI Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Anjos, Nuno/0000-0002-0018-0633; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; De Lotto, Barbara/0000-0003-3624-4480; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; valente, paolo/0000-0002-5413-0068; Ferrando, James/0000-0002-1007-7816; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Doyle, Anthony/0000-0001-6322-6195; Smirnov, Sergei/0000-0002-6778-073X FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 27 TC 21 Z9 21 U1 4 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1844 DI 10.1140/epjc/s10052-011-1844-6 PG 35 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800020 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alessan-Driaa, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andari, N Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chislett, RT Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MDO De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luisea, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dieli, MV Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlischa, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heine, K Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jonanda, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Laria, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquima, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzonia, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarellia, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, M Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Radora, T Ragus, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltranaa, DR Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santosa, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Selldena, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolina, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighia, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessan-Driaa, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andari, N. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chislett, R. T. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. Della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luisea, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dieli, M. V. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlischa, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heine, K. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jonanda, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Laria, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquima, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzonia, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarellia, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M-C. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oye, O. K. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Radora, T. Ragus, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltranaa, D. Romero Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santosa, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Selldena, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelina, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighia, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Performance of the ATLAS Trigger System in 2010 SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID COLLISIONS; SEARCH; LHC AB Proton-proton collisions at root s = 7 TeV and heavy ion collisions at root(NN)-N-s = 2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented. C1 [Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Dahlhoff, A.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Dhullipudi, R.; Ernst, J.; Greenwood, Z. D.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Pinfold, J. L.; Soni, N.; Subramania, Hs.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Grybel, K.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Ozcan, V. E.; Radora, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarellia, A.; Monzani, S.; Piccinini, M.; Polini, A.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighia, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Milan, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarellia, A.; Monzani, S.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquima, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, RJ, Brazil. Fed Univ Juiz de Fora UFJF, Juiz De Fora, MG, Brazil. Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, MG, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltranaa, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Milan, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Heine, K.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Heine, K.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Griesmayer, E.] Fachhochschule Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Abdesselam, A.; Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Morone, M-C.; Nektarijevic, S.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Milan, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Davygora, Y.; Dieli, M. V.; Dietzsch, T. A.; Foehlischa, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res, JINR Dubna, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Cazzato, A.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Prudent, X.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Prudent, X.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Sherman, D.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Linnemann, J. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessan-Driaa, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Laria, T.; Lazzaro, A.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragus, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragus, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Guler, H.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; Della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Abdesselam, A.; Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Crescioli, F.; Dotti, A.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abi, B.; Crescioli, F.; Dotti, A.; Khanov, A.; Reinsch, A.; Rizatdinova, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sakamoto, H.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sakamoto, H.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Buszello, C. P.; Ekelof, T.; Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Abdesselam, A.; Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzonia, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzonia, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santosa, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bacci, C.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bacci, C.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luisea, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Biglietti, M.; Ceradini, F.; Di Luisea, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci, Semlalia Dept Phys, Marrakech 40000, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Lowe, A. J.; Miller, D. W.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jonanda, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Selldena, B.; Silverstein, S. B.; Sjoelina, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jonanda, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelina, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Potter, C. J.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bobbink, G. J.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingenier Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hamacher, K.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, Ctr Calcul, IN2P3, Domaine Sci Doua, Villeurbanne, France. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Carvalho, J.; Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. Louisiana Tech Univ, Ruston, LA 71270 USA. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, D.; Meng, Z.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Mateos, D. Lopez; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Pina, Joao /C-4391-2012; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; La Rosa, Alessandro/I-1856-2013; Casadei, Diego/I-1785-2013; Ishikawa, Akimasa/G-6916-2012; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Wolter, Marcin/A-7412-2012; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; Brooks, William/C-8636-2013; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Gutierrez, Phillip/C-1161-2011; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Giordano, Raffaele/J-3695-2012; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Sivoklokov, Sergey/D-8150-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; valente, paolo/A-6640-2010; Ferrando, James/A-9192-2012; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Barreiro, Fernando/D-9808-2012; Li, Xuefei/C-3861-2012; Doyle, Anthony/C-5889-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Fullana Torregrosa, Esteban/A-7305-2016; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; McKee, Shawn/B-6435-2012; Grinstein, Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; OI Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Brooks, William/0000-0001-6161-3570; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; valente, paolo/0000-0002-5413-0068; Ferrando, James/0000-0002-1007-7816; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Barreiro, Fernando/0000-0002-3021-0258; Doyle, Anthony/0000-0001-6322-6195; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Troncon, Clara/0000-0002-7997-8524; Bailey, David C/0000-0002-7970-7839; Cataldi, Gabriella/0000-0001-8066-7718; Evans, Harold/0000-0003-2183-3127; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Nielsen, Jason/0000-0002-9175-4419; Adye, Tim/0000-0003-0627-5059; Grancagnolo, Francesco/0000-0002-9367-3380; Dell'Asta, Lidia/0000-0002-9601-4225; Chen, Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Begel, Michael/0000-0002-1634-4399; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; McKee, Shawn/0000-0002-4551-4502; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Casadei, Diego/0000-0002-3343-3529; Vivarelli, Iacopo/0000-0003-0097-123X; MARTINEZ, MARIO/0000-0002-3135-945X; Della Volpe, Domenico/0000-0001-8530-7447; Salvatore, Fabrizio/0000-0002-3709-1554; Cranmer, Kyle/0000-0002-5769-7094; Romero-Maltrana, Diego/0000-0003-2550-5243; Klinkby, Esben Bryndt/0000-0002-1908-5644; Pomarede, Daniel/0000-0003-2038-0488; Orellana, Frederik/0000-0001-7614-3882; Vos, Marcel/0000-0001-8474-5357; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Farrington, Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson, Aidan/0000-0002-1659-8284; Canelli, Florencia/0000-0001-6361-2117; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Quinonez Granados, Fernando Andres/0000-0002-0153-6160; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS; CEA-DSM/I RFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern, Switzerland; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/I RFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 42 TC 8 Z9 8 U1 7 U2 67 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1849 DI 10.1140/epjc/s10052-011-1849-1 PG 61 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800017 ER PT J AU Abramowicz, H Abt, I Adamczyk, L Adamus, M Aggarwal, R Antonelli, S Antonioli, P Antonov, A Arneodo, M Ashery, D Aushev, V Aushev, Y Bachynska, O Bamberger, A Barakbaev, AN Barbagli, G Bari, G Barreiro, F Bartosik, N Bartsch, D Basile, M Behnke, O Behr, J Behrens, U Bellagamba, L Bertolin, A Bhadra, S Bindi, M Blohm, C Bokhonov, V Bold, T Bondarenko, K Boos, EG Borras, K Boscherini, D Bot, D Brock, I Brownson, E Brugnera, R Brummer, N Bruni, A Bruni, G Brzozowska, B Bussey, PJ Bylsma, B Caldwell, A Capua, M Carlin, R Catterall, CD Chekanov, S Chwastowski, J Ciborowski, J Ciesielski, R Cifarelli, L Cindolo, F Contin, A Cooper-Sarkar, AM Coppola, N Corradi, M Corriveau, F Costa, M D'Agostini, G Dal Corso, F del Peso, J Dementiev, RK De Pasquale, S Derrick, M Devenish, RCE Dobur, D Dolgoshein, BA Dolinska, G Doyle, AT Drugakov, V Durkin, LS Dusini, S Eisenberg, Y Ermolov, PF Eskreys, S Fang, S Fazio, S Ferrando, J Ferrero, MI Figiel, J Forrest, M Foster, B Gach, G Galas, A Gallo, E Garfagnini, A Geiser, A Gialas, I Gladilin, LK Gladkov, D Glasman, C Gogota, O Golubkov, YA Gottlicher, P Grabowska-Bold, I Grebenyuk, J Gregor, I Grigorescu, G Grzelak, G Gueta, O Gurvich, E Guzik, M Gwenlan, C Haas, T Hain, W Hamatsu, R Hart, JC Hartmann, H Hartner, G Hilger, E Hochman, D Hori, R Horton, K Huttmann, A Ibrahim, ZA Iga, Y Ingbir, R Ishitsuka, M Jakob, HP Januschek, F Jones, TW Jungst, M Kadenko, I Kahle, B Kananov, S Kanno, T Karshon, U Karstens, F Katkov, II Kaur, M Kaur, P Keramidas, A Khein, LA Kim, JY Kisielewska, D Kitamura, S Klanner, R Klein, U Koffeman, E Kooijman, P Korol, I Korzhavina, IA Kotanski, A Kotz, U Kowalski, H Kuprash, O Kuze, M Lee, A Levchenko, BB Levy, A Libov, V Limentani, S Ling, TY Lisovyi, M Lobodzinska, E Lohmann, W Lohr, B Lohrmann, E Long, KR Longhin, A Lontkovskyi, D Lukina, OY Maeda, J Magill, S Makarenko, I Malka, J Mankel, R Margotti, A Marini, G Martin, JF Mastroberardino, A Mattingly, MCK Melzer-Pellmann, IA Mergelmeyer, S Miglioranzi, S Idris, FM Monaco, V Montanari, A Morris, JD Mujkic, K Musgrave, B Nagano, K Namsoo, T Nania, R Nigro, A Ning, Y Nobe, T Noor, U Notz, D Nowak, RJ Nuncio-Quiroz, AE Oh, BY Okazaki, N Oliver, K Olkiewicz, K Onishchuk, Y Papageorgiu, K Parenti, A Paul, E Pawlak, JM Pawlik, B Pelfer, PG Pellegrino, A Perlanski, W Perrey, H Piotrzkowski, K Plucinski, P Pokrovskiy, NS Polini, A Proskuryakov, AS Przybycien, M Raval, A Reeder, DD Reisert, B Ren, Z Repond, J Ri, YD Robertson, A Roloff, P Rubinsky, I Ruspa, M Sacchi, R Salii, A Samson, U Sartorelli, G Savin, AA Saxon, DH Schioppa, M Schlenstedt, S Schleper, P Schmidke, WB Schneekloth, U Schonberg, V Schorner-Sadenius, T Schwartz, J Sciulli, F Shcheglova, LM Shehzadi, R Shimizu, S Singh, I Skillicorn, IO Slominski, W Smith, WH Sola, V Solano, A Son, D Sosnovtsev, V Spiridonov, A Stadie, H Stanco, L Stern, A Stewart, TP Stifutkin, A Stopa, P Suchkov, S Susinno, G Suszycki, L Sztuk-Dambietz, J Szuba, D Szuba, J Tapper, AD Tassi, E Terron, J Theedt, T Tiecke, H Tokushuku, K Tomalak, O Tomaszewska, J Tsurugai, T Turcato, M Tymieniecka, T Vazquez, M Verbytskyi, A Viazlo, O Vlasov, NN Volynets, O Walczak, R Abdullah, WATW Whitmore, JJ Wiggers, L Wing, M Wlasenko, M Wolf, G Wolfe, H Wrona, K Yagues-Molina, AG Yamada, S Yamazaki, Y Yoshida, R Youngman, C Zarnecki, AF Zawiejski, L Zenaiev, O Zeuner, W Zhautykov, BO Zhmak, N Zhou, C Zichichi, A Zolkapli, Z Zolko, M Zotkin, DS AF Abramowicz, H. Abt, I. Adamczyk, L. Adamus, M. Aggarwal, R. Antonelli, S. Antonioli, P. Antonov, A. Arneodo, M. Ashery, D. Aushev, V. Aushev, Y. Bachynska, O. Bamberger, A. Barakbaev, A. N. Barbagli, G. Bari, G. Barreiro, F. Bartosik, N. Bartsch, D. Basile, M. Behnke, O. Behr, J. Behrens, U. Bellagamba, L. Bertolin, A. Bhadra, S. Bindi, M. Blohm, C. Bokhonov, V. Bold, T. Bondarenko, K. Boos, E. G. Borras, K. Boscherini, D. Bot, D. Brock, I. Brownson, E. Brugnera, R. Bruemmer, N. Bruni, A. Bruni, G. Brzozowska, B. Bussey, P. J. Bylsma, B. Caldwell, A. Capua, M. Carlin, R. Catterall, C. D. Chekanov, S. Chwastowski, J. Ciborowski, J. Ciesielski, R. Cifarelli, L. Cindolo, F. Contin, A. Cooper-Sarkar, A. M. Coppola, N. Corradi, M. Corriveau, F. Costa, M. D'Agostini, G. Dal Corso, F. del Peso, J. Dementiev, R. K. De Pasquale, S. Derrick, M. Devenish, R. C. E. Dobur, D. Dolgoshein, B. A. Dolinska, G. Doyle, A. T. Drugakov, V. Durkin, L. S. Dusini, S. Eisenberg, Y. Ermolov, P. F. Eskreys, S. Fang, S. Fazio, S. Ferrando, J. Ferrero, M. I. Figiel, J. Forrest, M. Foster, B. Gach, G. Galas, A. Gallo, E. Garfagnini, A. Geiser, A. Gialas, I. Gladilin, L. K. Gladkov, D. Glasman, C. Gogota, O. Golubkov, Yu. A. Goettlicher, P. Grabowska-Bold, I. Grebenyuk, J. Gregor, I. Grigorescu, G. Grzelak, G. Gueta, O. Gurvich, E. Guzik, M. Gwenlan, C. Haas, T. Hain, W. Hamatsu, R. Hart, J. C. Hartmann, H. Hartner, G. Hilger, E. Hochman, D. Hori, R. Horton, K. Huettmann, A. Ibrahim, Z. A. Iga, Y. Ingbir, R. Ishitsuka, M. Jakob, H. -P. Januschek, F. Jones, T. W. Juengst, M. Kadenko, I. Kahle, B. Kananov, S. Kanno, T. Karshon, U. Karstens, F. Katkov, I. I. Kaur, M. Kaur, P. Keramidas, A. Khein, L. A. Kim, J. Y. Kisielewska, D. Kitamura, S. Klanner, R. Klein, U. Koffeman, E. Kooijman, P. Korol, Ie. Korzhavina, I. A. Kotanski, A. Kotz, U. Kowalski, H. Kuprash, O. Kuze, M. Lee, A. Levchenko, B. B. Levy, A. Libov, V. Limentani, S. Ling, T. Y. Lisovyi, M. Lobodzinska, E. Lohmann, W. Loehr, B. Lohrmann, E. Long, K. R. Longhin, A. Lontkovskyi, D. Lukina, O. Yu. Maeda, J. Magill, S. Makarenko, I. Malka, J. Mankel, R. Margotti, A. Marini, G. Martin, J. F. Mastroberardino, A. Mattingly, M. C. K. Melzer-Pellmann, I. -A. Mergelmeyer, S. Miglioranzi, S. Idris, F. Mohamad Monaco, V. Montanari, A. Morris, J. D. Mujkic, K. Musgrave, B. Nagano, K. Namsoo, T. Nania, R. Nigro, A. Ning, Y. Nobe, T. Noor, U. Notz, D. Nowak, R. J. Nuncio-Quiroz, A. E. Oh, B. Y. Okazaki, N. Oliver, K. Olkiewicz, K. Onishchuk, Yu. Papageorgiu, K. Parenti, A. Paul, E. Pawlak, J. M. Pawlik, B. Pelfer, P. G. Pellegrino, A. Perlanski, W. Perrey, H. Piotrzkowski, K. Plucinski, P. Pokrovskiy, N. S. Polini, A. Proskuryakov, A. S. Przybycien, M. Raval, A. Reeder, D. D. Reisert, B. Ren, Z. Repond, J. Ri, Y. D. Robertson, A. Roloff, P. Rubinsky, I. Ruspa, M. Sacchi, R. Salii, A. Samson, U. Sartorelli, G. Savin, A. A. Saxon, D. H. Schioppa, M. Schlenstedt, S. Schleper, P. Schmidke, W. B. Schneekloth, U. Schoenberg, V. Schoerner-Sadenius, T. Schwartz, J. Sciulli, F. Shcheglova, L. M. Shehzadi, R. Shimizu, S. Singh, I. Skillicorn, I. O. Slominski, W. Smith, W. H. Sola, V. Solano, A. Son, D. Sosnovtsev, V. Spiridonov, A. Stadie, H. Stanco, L. Stern, A. Stewart, T. P. Stifutkin, A. Stopa, P. Suchkov, S. Susinno, G. Suszycki, L. Sztuk-Dambietz, J. Szuba, D. Szuba, J. Tapper, A. D. Tassi, E. Terron, J. Theedt, T. Tiecke, H. Tokushuku, K. Tomalak, O. Tomaszewska, J. Tsurugai, T. Turcato, M. Tymieniecka, T. Vazquez, M. Verbytskyi, A. Viazlo, O. Vlasov, N. N. Volynets, O. Walczak, R. Abdullah, W. A. T. Wan Whitmore, J. J. Wiggers, L. Wing, M. Wlasenko, M. Wolf, G. Wolfe, H. Wrona, K. Yaguees-Molina, A. G. Yamada, S. Yamazaki, Y. Yoshida, R. Youngman, C. Zarnecki, A. F. Zawiejski, L. Zenaiev, O. Zeuner, W. Zhautykov, B. O. Zhmak, N. Zhou, C. Zichichi, A. Zolkapli, Z. Zolko, M. Zotkin, D. S. CA Zeus Collaboration TI Exclusive electroproduction of two pions at HERA SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CENTRAL TRACKING DETECTOR; VECTOR-MESON PRODUCTION; RHO-MESON; FORM-FACTOR; DIFFRACTIVE ELECTROPRODUCTION; J/PSI MESONS; TAU-DECAYS; PHOTOPRODUCTION; CALORIMETER; SCATTERING AB The exclusive electroproduction of two pions in the mass range 0.4 < M-pi pi < 2.5 GeV has been studied with the ZEUS detector at HERA using an integrated luminosity of 82 pb(-1). The analysis was carried out in the kine-matic range of 2 < Q(2) < 80 GeV2, 32 < W < 180 GeV and vertical bar t vertical bar < 0.6 GeV2, where Q(2) is the photon virtuality, W is the photon-proton centre-of-mass energy and t is the squared four-momentum transfer at the proton vertex. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, vertical bar F(M-pi pi)vertical bar, assuming that the studied mass range includes the contributions of the rho, rho' and rho '' vector-meson states. The masses and widths of the resonances were obtained and the Q(2) dependence of the cross-section ratios sigma(rho ' -> pi pi)/sigma(rho) and sigma (rho '' -> pi pi)/sigma(rho) was extracted. The pion form factor obtained in the present analysis is compared to that obtained in e(+) e(-) -> pi(+) pi(-). C1 [Abramowicz, H.; Ashery, D.; Gueta, O.; Gurvich, E.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Chekanov, S.; Derrick, M.; Katkov, I. I.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Margotti, A.; Nania, R.; Polini, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ & INFN Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Mergelmeyer, S.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, Bonn, Germany. [Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Aggarwal, R.; Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Zolkapli, Z.] Univ Malaya, Jabatan Fiz, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, S.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Gach, G.; Grabowska-Bold, I.; Guzik, M.; Kisielewska, D.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagellonian Univ, Dept Phys, Krakow, Poland. [Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Kotz, U.; Kowalski, H.; Kuprash, O.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Mujkic, K.; Namsoo, T.; Notz, D.; Parenti, A.; Perrey, H.; Raval, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Spiridonov, A.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Verbytskyi, A.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zenaiev, O.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Pelfer, P. G.] Univ & INFN Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Chios, Greece. [Klanner, R.; Lohrmann, E.; Schleper, P.; Stadie, H.; Sztuk-Dambietz, J.; Szuba, D.; Turcato, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bokhonov, V.; Dolinska, G.; Gogota, O.; Korol, Ie.; Viazlo, O.; Zhmak, N.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Aushev, Y.; Bartosik, N.; Bondarenko, K.; Dolinska, G.; Gogota, O.; Kadenko, I.; Korol, Ie.; Onishchuk, Yu.; Salii, A.; Tomalak, O.; Viazlo, O.; Volynets, O.; Zolko, M.] Natl Taras Shevchenko Univ Kyiv, Dept Nucl Phys, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Stanco, L.] Ist Nazl Fis Nucl, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Dipartimento Fis Univ, Padua, Italy. [Oh, B. Y.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Okazaki, N.; Shimizu, S.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kitamura, S.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arneodo, M.; Costa, M.; Ferrero, M. I.; Monaco, V.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Jones, T. W.; Wing, M.] UCL, Phys & Astron Dept, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Univ Warsaw, Fac Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Tymieniecka, T.] Natl Ctr Nucl Res, Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Hartner, G.; Noor, U.] York Univ, Dept Phys, Toronto, ON M3J 1P3, Canada. [Singh, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tassi, E.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Chwastowski, J.] Cracow Univ Technol, Fac Phys Math & Appl Comp Sci, Krakow, Poland. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Abramowicz, H (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. EM levy@alzt.tau.ac.il RI Wiggers, Leo/B-5218-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012; Ferrando, James/A-9192-2012; Doyle, Anthony/C-5889-2009; Fazio, Salvatore /G-5156-2010; Lukina, Olga/D-8875-2012; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Shcheglova, Lydia/E-2221-2012; Katkov, Igor/E-2627-2012 OI Wiggers, Leo/0000-0003-1060-0520; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Chwastowski, Janusz/0000-0002-6190-8376; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Ferrando, James/0000-0002-1007-7816; Doyle, Anthony/0000-0001-6322-6195; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; Katkov, Igor/0000-0003-3064-0466 FU US Department of Energy; Italian National Institute for Nuclear Physics (INFN); German Federal Ministry for Education and Research (BMBF) [05 H09PDF, 05h09GUF]; Science and Technology Facilities Council, UK; FRGS from the Malaysian government; US National Science Foundation; Polish Ministry of Science and Higher Education [DPN/N188/DESY/2009]; Deutsche Forschungsgemeinschaft (DFG) [SFB 676]; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT); Korean Ministry of Education; Korea Science and Engineering Foundation; FNRS; Belgian Federal Science Policy Office; Spanish Ministry of Education and Science through CICYT; Natural Sciences and Engineering Research Council of Canada (NSERC); RF [N 4142.2010.2]; Russian Ministry of Education and Science [02.740.11.0244]; Netherlands Foundation for Research on Matter (FOM); Israel Science Foundation; Max Planck Institute for Physics, Munich, Germany; Warsaw University, Poland; DESY, Germany; Russian Foundation for Basic Research [11-02-91345-DFG_a]; National Science Foundation; [1 P03B 04529] FX Supported by the US Department of Energy; Supported by the Italian National Institute for Nuclear Physics (INFN); Supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05 H09PDF; Supported by the Science and Technology Facilities Council, UK; Supported by an FRGS grant from the Malaysian government; Supported by the US National Science Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation; Supported by the Polish Ministry of Science and Higher Education as a scientific project No. DPN/N188/DESY/2009; Supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05h09GUF, and the SFB 676 of the Deutsche Forschungsgemeinschaft (DFG); Supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research; Supported by the Korean Ministry of Education and Korea Science and Engineering Foundation; Supported by FNRS and its associated funds (IISN and FRIA) and by an Inter-University Attraction Poles Programme subsidised by the Belgian Federal Science Policy Office; Supported by the Spanish Ministry of Education and Science through funds provided by CICYT; Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC); Supported by RF Presidential grant N 4142.2010.2 for Leading Scientific Schools, by the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics and under contract No. 02.740.11.0244; Supported by the Netherlands Foundation for Research on Matter (FOM); Supported by the Israel Science Foundation; Also funded by Max Planck Institute for Physics, Munich, Germany; Supported by the research grant No. 1 P03B 04529 (2005-2008); Partially supported by Warsaw University, Poland; Supported by DESY, Germany; Partly supported by the Russian Foundation for Basic Research, grant 11-02-91345-DFG_a; This material was based on work supported by the National Science Foundation, while working at the Foundation NR 63 TC 7 Z9 7 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1869 DI 10.1140/epjc/s10052-012-1869-5 PG 12 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800002 ER PT J AU Arbey, A Battaglia, M Mahmoudi, F AF Arbey, A. Battaglia, M. Mahmoudi, F. TI Implications of LHC searches on SUSY particle spectra SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID EVEN HIGGS BOSONS; LARGE TAN-BETA; DARK-MATTER; QCD CORRECTIONS; RELIC DENSITY; FORTRAN CODE; MSSM; SUPERSYMMETRY; PROGRAM; MASSES AB We study the implications of LHC searches on SUSY particle spectra using flat scans of the 19-parameter pMSSM phase space. We apply constraints from flavour physics, g(mu) - 2, dark matter and earlier LEP and Tevatron searches. The sensitivity of the LHC SUSY searches with jets, leptons and missing energy is assessed by reproducing with fast simulation the recent CMS analyses after validation on benchmark points. We present results in terms of the fraction of pMSSM points compatible with all the constraints which are excluded by the LHC searches with 1 fb(-1) and 15 fb(-1) as a function of the mass of strongly and weakly interacting SUSY particles. We also discuss the suppression of Higgs production cross sections for the MSSM points not excluded and contrast the region of parameter space tested by the LHC data with the constraints from dark matter direct detection experiments. C1 [Arbey, A.] Univ Lyon 1, CNRS, IN2P3, IPNL UMR5822, F-69622 Villeurbanne, France. [Arbey, A.; Battaglia, M.; Mahmoudi, F.] CERN, CH-1211 Geneva 23, Switzerland. [Arbey, A.] Observ Lyon, Ecole Normale Super Lyon, CNRS, CRAL UMR5574, F-69561 St Genis Laval, France. [Battaglia, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Battaglia, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mahmoudi, F.] Univ Blaise Pascal, Univ Clermont Ferrand 2, IN2P3, CNRS,LPC, F-63000 Clermont Ferrand, France. RP Arbey, A (reprint author), Univ Lyon 1, CNRS, IN2P3, IPNL UMR5822, F-69622 Villeurbanne, France. EM mahmoudi@in2p3.fr NR 80 TC 57 Z9 57 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1847 DI 10.1140/epjc/s10052-011-1847-3 PG 14 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800019 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Trauner, C Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, S Benucci, L De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Blekman, F Blyweert, S D'Hondt, J Devroede, O Suarez, RG Kalogeropoulos, A Maes, M Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Raval, A Thomas, L Vander Marcken, G Vander Velde, C Vanlaer, P Adler, V Cimmino, A Costantini, S Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J Ceard, L Gil, EC De Jeneret, JD Delaere, C Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Ovyn, S Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Brito, L Damiao, DD Pol, ME Souza, MHG Alda, WL Carvalho, W Da Costa, EM Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Darmenov, N Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Dimitrov, A Hadjiiska, R Karadzhinova, A Kozhuharov, V Litov, L Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Ban, Y Guo, S Guo, Y Li, W Mao, Y Qian, SJ Teng, H Zhu, B Zou, W Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamel, AE Khalil, S Mahmoud, MA Radi, A Hektor, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Azzolini, V Eerola, P Fedi, G Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Verrecchia, P Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dahms, T Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beauceron, S Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Lomidze, D Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Dietz-Laursonn, E Erdmann, M Hebbeker, T Heidemann, C Hinzmann, A Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Lingemann, J Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Hoehle, F Kargoll, B Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Petrukhin, A Pitzl, D Raspereza, A Rosin, M Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Tomaszewska, J Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Gorner, M Hermanns, T Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schlieckau, E Schroder, M Schum, T Stadie, H Steinbruck, G Thomsen, J Barth, C Bauer, J Berger, J Buege, V Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Katkov, I Komaragiri, JR Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Renz, M Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Weiler, T Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Petrakou, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Hajdu, C Hidas, P Horvath, D Kapusi, A Krajczar, K Sikler, F Veres, GI Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, J Singh, SP Ahuja, S Choudhary, BC Gupta, P Kumar, A Kumar, A Malhotra, S Naimuddin, M Ranjan, K Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Gennai, S Ghezzi, A Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Ratti, SP Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeria, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Santocchia, A Taroni, S Valdata, M Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Meridiani, P Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Rovelli, C Sigamani, M Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Polujanskas, M Sabonis, T Castilla-Valdez, H De La Cruz-Burelo, E Heredia-De La Cruz, I Lopez-Fernandez, R Villalba, RM Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Tam, J Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Ansari, MH Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Brona, G Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Nayak, A Pela, J Ribeiro, PQ Seixas, J Varela, J Afanasiev, S Belotelov, I Bunin, P Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Bona, M Breuker, H Bunkowski, K Camporesi, T Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegeman, J Hegner, B Hoffmann, HF Honma, A Innocente, V Janot, P Kaadze, K Karavakis, E Lecoq, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Maurisset, A Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Cortezon, EP Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiropulu, M Stoye, M Tropea, P Tsirou, A Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Caminada, L Casal, B Chanon, N Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Milenovic, P Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Schmidt, A Snoek, H Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Volpe, R Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wan, X Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hartley, D Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L MacEvoy, BC Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardle, N Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Liu, H Henderson, C Bose, T Jarrin, EC Fantasia, C Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Rutherford, B Salur, S Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Chandra, A Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Shin, K Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Henriksson, K Hopkins, W Khukhunaishvili, A Kreis, B Liu, Y Kaufman, GN Patterson, JR Puigh, D Ryd, A Saelim, M Salvati, E Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Cooper, W Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jensen, H Johnson, M Joshi, U Klima, B Kousouris, K Kunori, S Kwan, S Leonidopoulos, C Limon, P Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Pivarski, J Pordes, R Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Mitselmakher, G Muniz, L Prescott, C Remington, R Rinkevicius, A Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Snowball, M Wang, D Yelton, J Zakaria, M Gaultney, V Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kunde, GJ Lacroix, F Malek, M O'Brien, C Silkworth, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Kenny, RP Murray, M Noonan, D Sanders, S Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Cushman, P Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Klapoetke, K Kubota, Y Mans, J Pastika, N Rekovic, V Rusack, R Sasseville, M Singovsky, A Tambe, N Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Jindal, P Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Reucroft, S Swain, J Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Vuosalo, C Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D De Mattia, M Everett, A Garfinkel, AF Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R De Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Sakumoto, W Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Atramentov, O Barker, A Contreras-Campana, C Contreras-Campana, E Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Safonov, A Sengupta, S Suarez, I Tatarinov, A Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Issah, M Johns, W Johnston, C Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goadhouse, S Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Belknap, D Bellinger, JN Carlsmith, D Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Parker, W Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Trauner, C. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, S. Benucci, L. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Raval, A. Thomas, L. Vander Marcken, G. Vander Velde, C. Vanlaer, P. Adler, V. Cimmino, A. Costantini, S. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. Ceard, L. Gil, E. Cortina De Jeneret, J. De Favereau Delaere, C. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Brito, L. De Jesus Damiao, D. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, S. S. Darmenov, N. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Dimitrov, A. Hadjiiska, R. Karadzhinova, A. Kozhuharov, V. Litov, L. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Guo, Y. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Zou, W. Cabrera, A. Gomez Moreno, B. Ocampo Rios, A. A. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Khalil, S. Mahmoud, M. A. Radi, A. Hektor, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Azzolini, V. Eerola, P. Fedi, G. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dahms, T. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beauceron, S. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Lomidze, D. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Dietz-Laursonn, E. Erdmann, M. Hebbeker, T. Heidemann, C. Hinzmann, A. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Petrukhin, A. Pitzl, D. Raspereza, A. Rosin, M. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Tomaszewska, J. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Goerner, M. Hermanns, T. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schroeder, M. Schum, T. Stadie, H. Steinbrueck, G. Thomsen, J. Barth, C. Bauer, J. Berger, J. Buege, V. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Katkov, I. Komaragiri, J. R. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Renz, M. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Weiler, T. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Petrakou, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Hajdu, C. Hidas, P. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Veres, G. I. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. Singh, S. P. Ahuja, S. Choudhary, B. C. Gupta, P. Kumar, A. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, S. Jain, S. Khurana, R. Sarkar, S. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Gennai, S. Ghezzi, A. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeria, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Santocchia, A. Taroni, S. Valdata, M. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Meridiani, P. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Rovelli, C. Sigamani, M. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, J. Y. Kim, Z. J. Song, S. Choi, S. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Polujanskas, M. Sabonis, T. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Villalba, R. Magana Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Tam, J. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Ansari, M. H. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Brona, G. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Musella, P. Nayak, A. Pela, J. Ribeiro, P. Q. Seixas, J. Varela, J. Afanasiev, S. Belotelov, I. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Bona, M. Breuker, H. Bunkowski, K. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegeman, J. Hegner, B. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Lecoq, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Maurisset, A. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiropulu, M. Stoye, M. Tropea, P. Tsirou, A. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Caminada, L. Casal, B. Chanon, N. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Milenovic, P. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. -C. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Schmidt, A. Snoek, H. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Volpe, R. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hartley, D. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. MacEvoy, B. C. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Liu, H. Henderson, C. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Rutherford, B. Salur, S. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Chandra, A. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Henriksson, K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Liu, Y. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Ryd, A. Saelim, M. Salvati, E. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cooper, W. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jensen, H. Johnson, M. Joshi, U. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Leonidopoulos, C. Limon, P. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Pivarski, J. Pordes, R. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Mitselmakher, G. Muniz, L. Prescott, C. Remington, R. Rinkevicius, A. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Gaultney, V. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kunde, G. J. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Jindal, P. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Reucroft, S. Swain, J. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Vuosalo, C. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. De Mattia, M. Everett, A. Garfinkel, A. F. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Sakumoto, W. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Atramentov, O. Barker, A. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Safonov, A. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Issah, M. Johns, W. Johnston, C. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goadhouse, S. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Parker, W. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Forward energy flow, central charged-particle multiplicities, and pseudorapidity gaps in W and Z boson events from pp collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DIFFRACTIVE W; RAPIDITY GAPS; QCD ANALYSIS; SCATTERING; POMERON AB A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 pb(-1), recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the W(Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Trauner, C.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Benucci, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Raval, A.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Gil, E. Cortina; De Jeneret, J. De Favereau; Delaere, C.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Brito, L.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Alda Junior, W. L.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, RJ, Brazil. [Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, S. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS, IN2P3,Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules IN2P3, Villeurbanne, France. [Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Dietz-Laursonn, E.; Erdmann, M.; Hebbeker, T.; Heidemann, C.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Wissing, C.; Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Goerner, M.; Hermanns, T.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schroeder, M.; Schum, T.; Stadie, H.; Steinbrueck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Bauer, J.; Berger, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Choudhary, B. C.; Gupta, P.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, S.; Jain, S.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res & Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Masetti, G.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeria, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeria, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Azzurri, P.; Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Meridiani, P.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Sigamani, M.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nuc, Sez Trieste, Trieste, Italy. [Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Z. J.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Polujanskas, M.; Sabonis, T.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Villalba, R. Magana; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzado, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bluj, M.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Hammer, J.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Jung, H.; Hajdu, C.; Sikler, F.; Mohanty, A. K.; Chiorboli, M.; Tropiano, A.; De Guio, F.; Gennai, S.; Montoya, C. A. Carrillo; Iorio, A. O. M.; Nespolo, M.; Perrozzi, L.; Lucaroni, A.; Taroni, S.; Tonelli, G.; Grassi, M.; Paramatti, R.; Rovelli, C.; Botta, C.; Graziano, A.; Gallinaro, M.; Pela, J.; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiropulu, M.; Stoye, M.; Tropea, P.; Tsirou, A.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Caminada, L.; Marchica, C.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Caminada, L.; Casal, B.; Chanon, N.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Milenovic, P.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.] Baylor Univ, Waco, TX 76798 USA. [Henderson, C.] Univ Alabama, Tuscaloosa, AL USA. [Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Rutherford, B.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Henriksson, K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Liu, Y.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Saelim, M.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Prescott, C.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois Chicago UIC, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Wyslouch, B.; Kaya, O.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Vuosalo, C.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; De Mattia, M.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Atramentov, O.; Barker, A.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Safonov, A.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goadhouse, S.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Parker, W.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Khalil, S.] British Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Krajczar, K.; Veres, G. I.; Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Kunde, G. J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Hektor, Andi/G-1804-2011; Cavallo, Nicola/F-8913-2012; Ivanov, Andrew/A-7982-2013; Markina, Anastasia/E-3390-2012; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Codispoti, Giuseppe/F-6574-2014; Liu, Chang/B-7249-2009; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Stahl, Achim/E-8846-2011; Mercadante, Pedro/K-1918-2012; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Lujan Center, LANL/G-4896-2012; Tinoco Mendes, Andre David/D-4314-2011; Fruhwirth, Rudolf/H-2529-2012; Chen, Jie/H-6210-2011; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Krammer, Manfred/A-6508-2010; Savrin, Victor/D-6213-2012; Raidal, Martti/F-4436-2012; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Belyaev, Andrey/E-1540-2012; Katkov, Igor/E-2627-2012; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Tomei, Thiago/E-7091-2012; Focardi, Ettore/E-7376-2012; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Grandi, Claudio/B-5654-2015; Leonidov, Andrey/P-3197-2014; Bernardes, Cesar Augusto/D-2408-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; vilar, rocio/P-8480-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014 OI Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Hektor, Andi/0000-0001-7873-8118; Ivanov, Andrew/0000-0002-9270-5643; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Stahl, Achim/0000-0002-8369-7506; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Novaes, Sergio/0000-0003-0471-8549; Tinoco Mendes, Andre David/0000-0001-5854-7699; Azzi, Patrizia/0000-0002-3129-828X; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; de Jesus Damiao, Dilson/0000-0002-3769-1680; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Ragazzi, Stefano/0000-0001-8219-2074; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Krammer, Manfred/0000-0003-2257-7751; Dudko, Lev/0000-0002-4462-3192; Katkov, Igor/0000-0003-3064-0466; Tomei, Thiago/0000-0002-1809-5226; Focardi, Ettore/0000-0002-3763-5267; Fassi, Farida/0000-0002-6423-7213; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Safdi, Benjamin R./0000-0001-9531-1319; Lloret Iglesias, Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq, (Brazil); CAPES, (Brazil); FAPERJ, (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS, (China); MoST, (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences (Estonia); NICPB (Estonia); Academy of Finland (Finland); ME (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF, (Germany); DFG, (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); WCU (Korea); LAS (Lithuania); CINVESTAV, (Mexico); CONACYT, (Mexico); SEP, (Mexico); UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST (Russia); MAE (Russia); MSTDS (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey); STFC (United Kingdom); DOE (USA); NSF (USA); European Union; Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We would like to thank P. Skands for many explanations and discussions concerning the different underlying event tunes. We would also like to thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie IEF program (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; and the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy). NR 30 TC 6 Z9 6 U1 0 U2 55 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1839 DI 10.1140/epjc/s10052-011-1839-3 PG 28 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800021 ER PT J AU Sobczyk, JT AF Sobczyk, Jan T. TI Transverse enhancement model and MiniBooNE charge current quasi-elastic neutrino scattering data SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID MESON-EXCHANGE CURRENTS AB Recently proposed Transverse Enhancement Model of nuclear effects in Charge Current Quasi-Elastic neutrino scattering (A. Bodek, H. S. Budd, M. E. Christy, Eur. Phys. J. C 71:1726, 2011) is confronted with the MiniBooNE high statistics experimental data. C1 [Sobczyk, Jan T.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Sobczyk, Jan T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Sobczyk, JT (reprint author), Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. EM jsobczyk@ift.uni.wroc.pl RI Sobczyk, Jan/C-9761-2016 FU [N N202 368439]; [DWM/57/T2K/2007] FX The author was supported by the grants: N N202 368439 and DWM/57/T2K/2007. NR 20 TC 8 Z9 8 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN PY 2012 VL 72 IS 1 AR 1850 DI 10.1140/epjc/s10052-011-1850-8 PG 4 WC Physics, Particles & Fields SC Physics GA 897FM UT WOS:000300631800016 ER PT J AU Venturini, G Marian, J Knap, J Campbell, G Ortiz, M AF Venturini, G. Marian, J. Knap, J. Campbell, G. Ortiz, M. TI THERMAL EXPANSION BEHAVIOR OF AL AND TA USING A FINITE-TEMPERATURE EXTENSION OF THE QUASICONTINUUM METHOD SO INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING LA English DT Article DE multiscale modeling; finite temperature; thermal expansion; Langevin equation AB Numerical methods that bridge the atomistic and continuum scales concurrently have been applied successfully to a number of materials science problems involving both nonlinear and long-range deformation fields. However, extension of these methods to finite temperature, nonequilibrium dynamics is difficult due to the intrinsic incoherency between molecular dynamics and continuum thermodynamics, which possess different crystal vibrational spectra and therefore result in unphysical wave reflections across domain boundaries. Here we review our recent finite temperature extension of the three-dimensional, non-local quasicontinuum (QC) method based on Langevin dynamics and carry out an analysis of the systematic errors associated with the entropic depletion that results from the QC reduction. We apply the method to Al and Ta structured meshes ranging from atomistic resolution to minimum-node representations using the thermal expansion coefficient as the standard metric. We find that, while Al errors scale linearly with the number of mesh nodes, Ta displays a very erratic behavior that degrades rapidly with mesh coarsening. C1 [Venturini, G.; Ortiz, M.] CALTECH, Pasadena, CA 91125 USA. [Marian, J.; Campbell, G.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Venturini, G (reprint author), CALTECH, Pasadena, CA 91125 USA. EM venturin@caltech.edu FU LDRD [06-SI-005]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the LDRD Project No. 06-SI-005, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory, under Contract No. DE-AC52-07NA27344. G.V. and M.O. gratefully acknowledge the support of the Department of Energy through Caltech's PSAAP Center for the Predictive Simulation of the Dynamic Response of Materials. NR 16 TC 2 Z9 2 U1 0 U2 9 PU BEGELL HOUSE INC PI REDDING PA 50 CROSS HIGHWAY, REDDING, CT 06896 USA SN 1543-1649 J9 INT J MULTISCALE COM JI Int. J. Multiscale Comput. Eng. PY 2012 VL 10 IS 1 BP 1 EP 11 PG 11 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 903AL UT WOS:000301085200002 ER PT J AU Pask, JE Sukumar, N Mousavi, SE AF Pask, J. E. Sukumar, N. Mousavi, S. E. TI LINEAR SCALING SOLUTION OF THE ALL-ELECTRON COULOMB PROBLEM IN SOLIDS SO INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING LA English DT Article DE density functional theory; all-electron; real-space formulation; Poisson equation; enriched finite elements ID DENSITY-FUNCTIONAL THEORY; FINITE-ELEMENT-METHOD; PERIODIC BOUNDARY-CONDITIONS; FAST MULTIPOLE METHOD; GAUSSIAN-ORBITALS; POISSONS-EQUATION; WAVE METHOD; COMPUTATIONS; PARTITION; ALGORITHM AB We present a linear scaling formulation for the solution of the all-electron Coulomb problem in crystalline solids. The resulting method is systematically improvable and well suited to large-scale quantum mechanical calculations in which the Coulomb potential and energy of a continuous electronic density and singular nuclear density are required. Linear scaling is achieved by introducing smooth, strictly local neutralizing densities to render nuclear interactions strictly local, and solving the remaining neutral Poisson problem for the electrons in real space. Although the formulation includes singular nuclear potentials without smearing approximations, the required Poisson solution is in Sobolev space H-1, as required for convergence in the energy norm. We employ enriched finite elements, with enrichments from isolated atom solutions, for an efficient solution of the resulting Poisson problem in the interacting solid. We demonstrate the accuracy and convergence of the approach by direct comparison to standard Ewald sums for a lattice of point charges and demonstrate the accuracy in all-electron quantum mechanical calculations with an application to crystalline diamond. C1 [Pask, J. E.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Sukumar, N.; Mousavi, S. E.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Pask, JE (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. EM pask1@llnl.gov RI Mousavi, Seyed Ebrahim/B-4353-2010; Sukumar, N/B-1660-2008 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program; National Science Foundation [DMS-0811025]; UC Lab FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We gratefully acknowledge support from the Laboratory Directed Research and Development Program; the National Science Foundation through contract Grant No. DMS-0811025 to the University of California at Davis; and additional financial support from the UC Lab Fees Research Program. NR 54 TC 9 Z9 9 U1 1 U2 13 PU BEGELL HOUSE INC PI DANBURY PA 50 NORTH ST, DANBURY, CT 06810 USA SN 1543-1649 EI 1940-4352 J9 INT J MULTISCALE COM JI Int. J. Multiscale Comput. Eng. PY 2012 VL 10 IS 1 BP 83 EP 99 PG 17 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 903AL UT WOS:000301085200007 ER PT J AU Yoon, S Liao, C Sun, XG Bridges, CA Unocic, RR Nanda, J Dai, S Paranthaman, MP AF Yoon, Sukeun Liao, Chen Sun, Xiao-Guang Bridges, Craig A. Unocic, Raymond R. Nanda, Jagjit Dai, Sheng Paranthaman, M. Parans TI Conductive surface modification of LiFePO4 with nitrogen-doped carbon layers for lithium-ion batteries SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; LIMPO4 M=MN; PERFORMANCE; LIQUIDS; OXIDE; PRECURSORS; ELECTRODES; FE; CO AB The surface of rod-like LiFePO4 modified with a conductive nitrogen-doped carbon layer has been prepared using hydrothermal processing followed by post-annealing in the presence of an ionic liquid. The conductive surface modified rod-like LiFePO4 exhibits good capacity retention and high rate capability as the nitrogen-doped carbon layer improves conductivity and prevents aggregation of the rods during cycling. C1 [Yoon, Sukeun; Liao, Chen; Sun, Xiao-Guang; Bridges, Craig A.; Dai, Sheng; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Unocic, Raymond R.; Nanda, Jagjit] Oak Ridge Natl Lab, Mat Sci Technol Div, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM dais@ornl.gov; paranthamanm@ornl.gov RI liao, chen/E-3755-2012; Paranthaman, Mariappan/N-3866-2015; Dai, Sheng/K-8411-2015; OI liao, chen/0000-0001-5168-6493; Paranthaman, Mariappan/0000-0003-3009-8531; Dai, Sheng/0000-0002-8046-3931; Unocic, Raymond/0000-0002-1777-8228 FU Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Basic Energy Sciences, U.S. Department of Energy; Office of the Assistant Secretary for Energy Efficiency and Renewable Energy; Office of Vehicle Technologies of the U.S. Department of Energy; ORISE FX This work was sponsored by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. Microscopy and XPS work were conducted at the ORNL SHaRE user facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. J. N. acknowledges funding support from the Office of the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy. We acknowledge Harry Meyer III for assistance with XPS data analysis. S. Yoon acknowledges the support of the ORISE postdoctoral fellowship. NR 33 TC 41 Z9 41 U1 3 U2 80 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 11 BP 4611 EP 4614 DI 10.1039/c2jm15325d PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 896MP UT WOS:000300571400008 ER PT J AU Park, CY Lee, TH Dorris, SE Balachandran, U AF Park, C. Y. Lee, T. H. Dorris, S. E. Balachandran, U. (Balu) TI Palladium based film-type cermet membranes for hydrogen separation SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID CHEMICAL-STABILITY; PERMEATION; PERMEABILITY; RESISTANCES; TRANSPORT AB Thin-film type cermet (i.e., ceramic-metal composite) membranes were made by a paste painting method, and their hydrogen transport properties were evaluated. The hydrogen permeability of a 30 mu m thick Pd/YSZ (palladium/yttrium-stabilized zirconia) film was compared with that of Pd foil (thickness of 0.1 mm). To test the reproducibility of the results and stability of the Pd/YSZ film, the film's permeability was measured over a period of similar to 300 h as a function of temperature, gas flow rate, and hydrogen partial pressure. In addition, the influence of a porous alumina substrate was investigated by measuring the hydrogen flux of the Pd foil with and without an Al2O3 substrate in front of the foil. The differences between the hydrogen permeability of the cermet film and that of the Pd foil are discussed. As additional practical information about the cermet film, its thermal expansion behavior was studied in air and in nitrogen, and changes in its microstructure were examined during stability tests. Taken together, the results indicate that thin-film Pd/YSZ cermet membranes can meet the requirements of hydrogen transport membranes. C1 [Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. (Balu)] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Park, CY (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cpark@anl.gov FU U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory [DE-AC02-06CH11357] FX Work supported by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory's Advanced Fuels Technology Program, under Contract DE-AC02-06CH11357. NR 22 TC 4 Z9 4 U1 0 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 EI 1364-5501 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 11 BP 4904 EP 4909 DI 10.1039/c2jm14741f PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 896MP UT WOS:000300571400051 ER PT J AU Yang, YQ Tu, HY Zhang, AD Du, D Lin, YH AF Yang, Yuqi Tu, Haiyang Zhang, Aidong Du, Dan Lin, Yuehe TI Preparation and characterization of Au-ZrO2-SiO2 nanocomposite spheres and their application in enrichment and detection of organophosphorus agents SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID MASS-SPECTROMETRIC ANALYSIS; SOLID-PHASE EXTRACTION; NERVE AGENTS; PHOSPHORYLATED ACETYLCHOLINESTERASE; ZIRCONIA NANOPARTICLES; SELECTIVE ENRICHMENT; CARBON NANOTUBES; PESTICIDES; EXPOSURE; PEPTIDES AB Au-ZrO2-SiO2 nanocomposite spheres were synthesized and used as selective sorbents for the solid-phase extraction (SPE) of organophosphorous agents. A non-enzymatic electrochemical sensor based on a Au-ZrO2-SiO2 modified electrode was developed for the selective detection of organophosphorous pesticides (OPs). The Au-ZrO2-SiO2 nanocomposite spheres were synthesized by the hydrolysis and condensation of zirconium n-butoxide (TBOZ) on the surface of SiO2 spheres and then the introduction of gold nanoparticles on the surface. Transmission electron microscopy and X-ray photoelectron spectroscopy were performed to characterize the formation of the nanocomposite spheres. Fast extraction of OP was achieved by the Au-ZrO2-SiO2 modified electrode within 5 min via the specific affinity between zirconia and the phosphoric group. The assay yields a broad concentration range of paraoxon-ethyl from 1.0 to 500 ng mL(-1) with a detection limit of 0.5 ng mL(-1). This selective and sensitive method holds great promise for the enrichment and detection of OPs. C1 [Yang, Yuqi; Tu, Haiyang; Zhang, Aidong; Du, Dan] Cent China Normal Univ, Coll Chem, Key Lab Pesticide & Chem Biol, Minist Educ, Wuhan 430079, Peoples R China. [Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Du, D (reprint author), Cent China Normal Univ, Coll Chem, Key Lab Pesticide & Chem Biol, Minist Educ, Wuhan 430079, Peoples R China. EM dudan@mail.ccnu.edu.cn; yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012 OI Lin, Yuehe/0000-0003-3791-7587; FU National Natural Science Foundation of China [21075047, 21172088]; Special Fund for Basic Scientific Research of Central Colleges [CCNU11C01002, CCNU10A02005]; NIH from the National Institute of Environmental Health Sciences (NIEHS) [U54 ES16015]; US-DOE [DE-AC05-76RL01830] FX This work was supported by the National Natural Science Foundation of China (21075047, 21172088) and the Special Fund for Basic Scientific Research of Central Colleges (CCNU11C01002, CCNU10A02005). Y. Lin acknowledges the financial support by a NIH grant (U54 ES16015) from the National Institute of Environmental Health Sciences (NIEHS). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Pacific Northwest National Laboratory is operated by Battelle for US-DOE under Contract DE-AC05-76RL01830. NR 32 TC 17 Z9 17 U1 5 U2 63 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 11 BP 4977 EP 4981 DI 10.1039/c2jm15129d PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 896MP UT WOS:000300571400062 ER PT J AU Nagaraja, AR Perry, NH Mason, TO Tang, Y Grayson, M Paudel, TR Lany, S Zunger, A AF Nagaraja, Arpun R. Perry, Nicola H. Mason, Thomas O. Tang, Yang Grayson, Matthew Paudel, Tula R. Lany, Stephan Zunger, Alex TI Band or Polaron: The Hole Conduction Mechanism in the p-Type Spinel Rh2ZnO4 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID AMORPHOUS OXIDE SEMICONDUCTOR; ELECTRICAL-PROPERTIES; VALENCE-BAND; TRANSPORT; CRYSTALS; ENERGY AB Given the emerging role of oxide spinels as hole conductors, we discuss in this article the traditional vs. new methodologies of determining the type of conduction mechanism at playlocalized polaronic vs. band-like transport. Applying (i) traditional small polaron analysis to our in-situ high temperature four-point conductivity and thermopower measurements, we previously found an activated mobility, which is indicative of the small polaron mechanism. However, (ii) employing the recent developments in correcting density functional methodologies for hole localization, we predict that the self-trapped hole is unstable and that Rh2ZnO4 is instead a band conductor with a large effective mass. The hole mobility measured by high-field room temperature Hall effect also suggests band rather than polaron conduction. The apparent contradiction between the conclusion of the traditional procedure (i) and first-principles theory (ii) is resolved by taking into account in the previous transport analysis the temperature dependence of the effective density of states, which leads to the result that the mobility is actually temperature-independent in Rh2ZnO4. Our case study on Rh2ZnO4 illustrates the range of experimental and theoretical approaches at hand to determine whether the transport mechanism of a semiconductor is band or small polaron conduction. C1 [Nagaraja, Arpun R.; Perry, Nicola H.; Mason, Thomas O.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Tang, Yang; Grayson, Matthew] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. [Paudel, Tula R.; Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mason, TO (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM t-mason@northwestern.edu RI Grayson, Matthew/B-7159-2009; Mason, Thomas/B-7528-2009; Zunger, Alex/A-6733-2013; OI Lany, Stephan/0000-0002-8127-8885 FU Basic Energy Science Division, U.S. Department of Energy [DE-AC36-08GO28308]; National Science Foundation's MRSEC [DMR-0520513] FX This work was supported by the Basic Energy Science Division, U.S. Department of Energy, under Grant No. DE-AC36-08GO28308 to NREL. The "Center for Inverse Design" is a DOE Energy Frontier Research Center. The high magnetic field work and use of the J. B. Cohen X-Ray Diffraction Facility were supported by the National Science Foundation's MRSEC Program (DMR-0520513) at the Materials Research Center of Northwestern University. NR 38 TC 24 Z9 24 U1 3 U2 45 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JAN PY 2012 VL 95 IS 1 BP 269 EP 274 DI 10.1111/j.1551-2916.2011.04771.x PG 6 WC Materials Science, Ceramics SC Materials Science GA 871JX UT WOS:000298735300046 ER PT J AU Bale, H Blacklock, M Begley, MR Marshall, DB Cox, BN Ritchie, RO AF Bale, Hrishikesh Blacklock, Matthew Begley, Matthew R. Marshall, David B. Cox, Brian N. Ritchie, Robert O. TI Characterizing Three-Dimensional Textile Ceramic Composites Using Synchrotron X-Ray Micro-Computed-Tomography SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID 3D WOVEN COMPOSITES; INFILTRATED SIC/SIC COMPOSITES; FIBER ARCHITECTURE; COMPRESSION; FAILURE; DEFORMATION; MECHANISMS; BEHAVIOR; GEOMETRY; CRACKING AB Three-dimensional (3-D) images of two ceramic-matrix textile composites were captured by X-ray micron-resolution computed tomography (mu CT) on a synchrotron beamline. Compared to optical images of sections, CT data reveal comprehensive geometrical information about the fiber tows; information at smaller scales, on matrix voids, individual fibers, and fiber coatings, can also be extracted but image artifacts can compromise interpretation. A statistical analysis of the shape and positioning of the fiber tows in the 3-D woven architecture is performed, based on a decomposition of the spatial variations of any geometrical characteristic of the tows into non-stochastic periodic trends and non-periodic stochastic deviations. The periodic trends are compiled by exploiting the nominal translational invariance of the textile, a process that maximizes the information content of the relatively small specimens that can be imaged at high resolution. The stochastic deviations (or geometrical defects in the textile) are summarized in terms of the standard deviation of any characteristic at a single point along the axis of a tow and correlations between the values of deviations at two different points on the same or different tows. The tow characteristics analyzed consist of the coordinates of the centroids of a tow, together with the area, aspect ratio, and orientation of its cross-section. The tabulated statistics are sufficient to calibrate a probabilistic generator (detailed elsewhere) that can create virtual specimens of any size that are individually distinct but share the statistical characteristics of the small specimens analyzed by X-ray mu CT. The data analysis presented herein forms the first step in formulating a virtual test of textile composites, by providing the statistical information required for realistic description of the textile reinforcement. C1 [Bale, Hrishikesh; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bale, Hrishikesh; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Blacklock, Matthew; Begley, Matthew R.] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Marshall, David B.; Cox, Brian N.] Teledyne Sci Co, Thousand Oaks, CA 91360 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; OI Ritchie, Robert/0000-0002-0501-6998; Blacklock, Matthew/0000-0001-5399-9231 FU Air Force Office of Scientific Research; NASA under the National Hypersonics Science Center for Materials and Structures (AFOSR) [FA9550-09-1-0477]; Office of Science of the U.S. Department of Energy [DE AC02 05CH11231] FX This work was supported by the Air Force Office of Scientific Research (Dr. Ali Sayir) and NASA (Dr. Anthony Calomino) under the National Hypersonics Science Center for Materials and Structures (AFOSR Contract No. FA9550-09-1-0477). We acknowledge the use of the X-ray synchrotron micro-tomography beam line (8.3.2) at the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract No. DE AC02 05CH11231. NR 28 TC 39 Z9 39 U1 4 U2 44 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JAN PY 2012 VL 95 IS 1 BP 392 EP 402 DI 10.1111/j.1551-2916.2011.04802.x PG 11 WC Materials Science, Ceramics SC Materials Science GA 871JX UT WOS:000298735300064 ER PT S AU Wang, GT Li, QM Wierer, J Figiel, J Wright, JB Luk, TS Brener, I AF Wang, George T. Li, Qiming Wierer, Jonathan Figiel, Jeffrey Wright, Jeremy B. Luk, Ting S. Brener, Igal BE Streubel, KP Jeon, H Tu, LW Linder, N TI Top-down fabrication of GaN-based nanorod LEDs and lasers SO LIGHT-EMITTING DIODES: MATERIALS, DEVICES, AND APPLICATIONS FOR SOLID STATE LIGHTING XVI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Light-Emitting Diodes - Materials, Devices, and Applications for Solid State Lighting XVI CY JAN 24-26, 2012 CL San Francisco, CA SP SPIE, OSRAM GmbH DE GaN; nanowire; nanorod; LED; laser; solid-state lighting; top-down; chemical vapor deposition ID EMITTING DIODE-ARRAYS; NANOWIRES AB Although planar heterostructures dominate current optoelectronic architectures, 1D nanowires and nanorods have distinct and advantageous properties that may enable higher efficiency, longer wavelength, and cheaper devices. We have developed a top-down approach for fabricating ordered arrays of high quality GaN-based nanorods with controllable height, pitch and diameter. This approach avoids many of the limitations of bottom-up synthesis methods. In addition to GaN nanorods, the fabrication and characterization of both axial and radial-type GaN/InGaN nanorod LEDs have been achieved. The precise control over nanorod geometry achiveable by this technique also enables single-mode single nanowire lasing with linewidths of less than 0.1 nm and low lasing thresholds of similar to 250kW/cm(2). C1 [Wang, George T.; Li, Qiming; Wierer, Jonathan; Figiel, Jeffrey; Wright, Jeremy B.; Luk, Ting S.; Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wang, GT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gtwang@sandia.gov RI Wang, George/C-9401-2009; Wright, Jeremy/G-7149-2011; Wierer, Jonathan/G-1594-2013 OI Wang, George/0000-0001-9007-0173; Wright, Jeremy/0000-0001-6861-930X; Wierer, Jonathan/0000-0001-6971-4835 NR 13 TC 1 Z9 1 U1 1 U2 17 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-921-0 J9 PROC SPIE PY 2012 VL 8278 AR 827816 DI 10.1117/12.909377 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BZB68 UT WOS:000301055700017 ER PT J AU Wheatley, PV Peckham, H Newsome, SD Koch, PL AF Wheatley, Patrick V. Peckham, Hoyt Newsome, Seth D. Koch, Paul L. TI Estimating marine resource use by the American crocodile Crocodylus acutus in southern Florida, USA SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Osmoregulation; Saltwater tolerance; Isotope; Reptile; Alligator; Marine iguana; Sea turtle ID CARBON-ISOTOPE DISCRIMINATION; ORGANIC-MATTER; STABLE ISOTOPES; AMBLYRHYNCHUS-CRISTATUS; ESTUARINE CROCODILES; STRONTIUM ISOTOPES; CONTINENTAL-SHELF; FORAGING ECOLOGY; CARETTA-CARETTA; FOOD WEBS AB Alligators and crocodiles differ in their physiological capacity to live in saline waters. Crocodiles can tolerate high-salinity water, at least for limited timeframes, whereas alligators and their close relatives cannot. Experiments have placed different crocodylians in various water salinities to document physiological responses, but no study has estimated the extent to which natural populations of crocodylids can live independent of fresh water. Here we estimated marine food and perhaps seawater contributions to a population of American crocodile Crocodylus acutus in southernmost Florida, USA. We evaluated the use of carbon, oxygen, and strontium isotopes as tracers of marine versus terrestrial sources. We compared C. acutus isotopic values to those of marine reptiles (marine iguanas and Pacific loggerhead turtles) and to American alligators, which require fresh water. We found that freshwater reptiles can be discriminated from those that drink seawater (or survive on metabolic and prey-included water in saline habitats) based on the magnitude of population-level oxygen isotope variation in bioapatite, whereas mean carbon isotope values discriminate between marine versus terrestrial food consumption. We used a 2 end-member (seawater and fresh water) mixing model to calculate percentage of marine resources used by C. acutus. Results indicate that adult C. acutus in southern Florida use marine food about 65% of the time and seawater or water gleaned from marine food about 80% of the time. This suggests that behavioral osmoregulatory techniques (i.e. seeking fresh water specifically for drinking, as suggested by other researchers) may not be necessary and that C. acutus is capable of being largely ecologically independent of fresh water. C1 [Wheatley, Patrick V.; Koch, Paul L.] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA. [Peckham, Hoyt] Grp Tortuguero Calif, La Paz 23060, Baja California, Mexico. [Peckham, Hoyt] Stanford Univ, Ctr Ocean Solut, Monterey, CA 93940 USA. [Newsome, Seth D.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. RP Wheatley, PV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA. EM pvwheatley@lbl.gov FU CDELSI; NSF [EAR-0819943] FX H. Schwartz, J. Zachos, and 4 anonymous reviewers made suggestions to better this manuscript, and it is much improved thanks to their efforts. We thank R, Elsey at Rockefeller Wildlife Refuge (RWR) in Louisiana for supplying samples from RWR. We thank the University of Florida (UF) curators, M. Nickerson, K. Krysko, and especially F. W. King, for access and permission to sample the UF crocodylian collection. J. Vendum at the California Academy of Sciences provided access and samples of marine iguanas. Although sampling logistics never worked out, M. Slaughter at J. D. Murphree WMA in Port Author, Texas, was very helpful in trying to supply samples for this study. Support for this research was supplied by CDELSI and by NSF Grant EAR-0819943 to P.L.K. NR 105 TC 11 Z9 12 U1 4 U2 43 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PY 2012 VL 447 BP 211 EP 229 DI 10.3354/meps09503 PG 19 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA 897OG UT WOS:000300660600015 ER PT J AU Cho, KT Mench, MM AF Cho, Kyu Taek Mench, Matthew M. TI Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID PLANE WATER DISTRIBUTION; COMPOSITE CARBON-BLACK; MICROPOROUS LAYER; DIFFUSION LAYER; MEMBRANE; TRANSPORT; EXCHANGE; PEMFCS; MEDIA; PEFCS AB In this study, the high resolution hydrogen-deuterium contrast radiography method was applied to elucidate the impact of the micro-porous layer (MPL) on water distribution in the porous fuel cell media. At the steady state, deuterium replaced hydrogen in the anode stream, and the large difference in neutron attenuation of the D2O produced at the cathode was used to track the produced water. It was found that the water content peaked in the cathode-side diffusion media (DM) for the cell without MPL, but with an MPL on the anode and cathode DM, the peak water amount was pushed toward the anode, resulting in a relatively flattened water profile through components and demonstrating a liquid barrier effect. Additionally, the dynamic water behavior in diffusion media was analyzed to understand the effect of a MPL and operating conditions. The water content in the DM changed with applied current, although there is a significant amount of residual liquid content that does not appear to be part of capillary channels. The effect of the MPL on irreducible saturation in DM and cell performance was also investigated. C1 [Mench, Matthew M.] Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Mench, Matthew M.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Mench, MM (reprint author), Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, 1512 Middle Dr,414 Dougherty Engn Bldg, Knoxville, TN 37996 USA. EM mmench@utk.edu FU NSF [CBET-0644811] FX The authors wish to thank Drs D. Hussey and D. Jacobson for valuable discussions at the NIST imaging facility. A portion of this study was funded by NSF award #CBET-0644811. NR 43 TC 16 Z9 16 U1 0 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 12 BP 4296 EP 4302 DI 10.1039/c2cp23686a PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 901FA UT WOS:000300946600031 PM 22337210 ER PT J AU Du, JC Tian, ZX Sui, Y Zhao, MX Song, QJ Cannon, SB Cregan, P Ma, JX AF Du, Jianchang Tian, Zhixi Sui, Yi Zhao, Meixia Song, Qijian Cannon, Steven B. Cregan, Perry Ma, Jianxin TI Pericentromeric Effects Shape the Patterns of Divergence, Retention, and Expression of Duplicated Genes in the Paleopolyploid Soybean SO PLANT CELL LA English DT Article ID MUTATION-RATE VARIATION; ARABIDOPSIS-THALIANA; GENOME DUPLICATION; GLYCINE-MAX; DROSOPHILA-MELANOGASTER; TRANSPOSABLE ELEMENTS; RECOMBINATION RATES; DNA METHYLATION; EVOLUTION; SEQUENCE AB The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions-the cold spots for meiotic recombination in soybean-showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes. C1 [Du, Jianchang; Tian, Zhixi; Sui, Yi; Zhao, Meixia; Ma, Jianxin] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Du, Jianchang] Jiangsu Acad Agr Sci, Inst Ind Crops, Nanjing 210014, Jiangsu, Peoples R China. [Zhao, Meixia] Chinese Acad Agr Sci, Inst Oil Crops, Wuhan 430062, Peoples R China. [Song, Qijian; Cregan, Perry] ARS, US DOE, Soybean Genom & Improvement Lab, Beltsville Agr Res Ctr W, Beltsville, MD 20705 USA. [Cannon, Steven B.] ARS, US DOE, Corn Insect & Crop Genet Res Unit, Ames, IA 50011 USA. RP Ma, JX (reprint author), Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. EM maj@purdue.edu RI ZHAO, MEIXIA/N-3124-2015 OI ZHAO, MEIXIA/0000-0001-8812-8217 FU Indiana Soybean Alliance; National Science Foundation Plant Genome Research [IOS-0822258]; Purdue Agricultural Research Award; Jiangsu Academy of Agricultural Sciences FX We thank Hon-Ming Lam and Xin Liu for providing the soybean genome resequencing data, and Brandon Gaut and Michael Purugganan for their help interpreting some observations reported in this study. This work was partially supported by Indiana Soybean Alliance (J.M.), National Science Foundation Plant Genome Research Program (IOS-0822258) (J.M., P.C.), Purdue Agricultural Research Award (J.M.), and Jiangsu Academy of Agricultural Sciences Startup Funds (J.D.). NR 80 TC 34 Z9 37 U1 0 U2 13 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 J9 PLANT CELL JI Plant Cell PD JAN PY 2012 VL 24 IS 1 BP 21 EP 32 DI 10.1105/tpc.111.092759 PG 12 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 900JA UT WOS:000300881800006 PM 22227891 ER PT J AU Gou, JY Miller, LM Hou, GC Yu, XH Chen, XY Liu, CJ AF Gou, Jin-Ying Miller, Lisa M. Hou, Guichuan Yu, Xiao-Hong Chen, Xiao-Ya Liu, Chang-Jun TI Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation, Pollen Germination, and Plant Reproduction SO PLANT CELL LA English DT Article ID ERWINIA-CHRYSANTHEMI 3937; SUGAR-BEET; GENE-EXPRESSION; TUBE GROWTH; CAPILLARY-ELECTROPHORESIS; ACETYL-ESTERIFICATION; 2-AMINOBENZOIC ACID; SEQUENCE ALIGNMENT; WALL-ACETYLATION; O-ACETYLATION AB Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cotton-wood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility. C1 [Gou, Jin-Ying; Yu, Xiao-Hong; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Hou, Guichuan] Appalachian State Univ, Boone, NC 28608 USA. [Chen, Xiao-Ya] Shanghai Inst Biol Sci, Natl Key Lab Plant Mol Genet, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM cliu@bnl.gov RI Gou, Jin-Ying/G-7628-2012; OI Chen, Xiaoya/0000-0002-2909-8414 FU U.S. Department of Energy [DEAC0298CH10886]; National Science Foundation [MCB-1051675]; Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership for Creative Research Teams in Plant Metabolisms; National Science Foundation of China [31028003]; Office of Basic Energy Sciences, U.S. Department of Energy [DEAC02-98CH10886] FX We thank Simon Park, William Willis, and Randy Smith at the National Synchrotron Light Source for their help with FTIR microspectroscopy. Sugar beet pectin was kindly provided by CP Kelco U.S. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DEAC0298CH10886 and by the National Science Foundation through Grant MCB-1051675 (to C.-J.L.), the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams in Plant Metabolisms (to X.-Y.C), and the scholarship for distinguished overseas researcher from the National Science Foundation of China (31028003; to C.-J.L.). Use of the National Synchrotron light and confocal microscope at the Center of Functional Nanomaterials was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DEAC02-98CH10886. NR 77 TC 36 Z9 37 U1 2 U2 47 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD JAN PY 2012 VL 24 IS 1 BP 50 EP 65 DI 10.1105/tpc.111.092411 PG 16 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 900JA UT WOS:000300881800008 PM 22247250 ER PT J AU Du, Q Kamm, JR Lehoucq, RB Parks, ML AF Du, Qiang Kamm, James R. Lehoucq, R. B. Parks, Michael L. TI A NEW APPROACH FOR A NONLOCAL, NONLINEAR CONSERVATION LAW SO SIAM JOURNAL ON APPLIED MATHEMATICS LA English DT Article DE conservation laws; advection; nonlocal operator; integral operator; Burgers equation; peridynamics ID DIFFUSION EQUATION; BURGERS-EQUATION; SOLID MECHANICS; WAVES; MODEL; POSEDNESS; EXISTENCE; FLUX AB We describe an approach to nonlocal, nonlinear advection in one dimension that extends the usual pointwise concepts to account for nonlocal contributions to the flux. The spatially nonlocal operators we consider do not involve derivatives. Instead, the spatial operator involves an integral that, in a distributional sense, reduces to a conventional nonlinear advective operator. In particular, we examine a nonlocal inviscid Burgers equation, which gives a basic form with which to characterize properties associated with well-posedness, and to examine numerical results for specific cases. We describe the connection to a nonlocal viscous regularization, which mimics the viscous Burgers equation in an appropriate limit. We present numerical results that compare the behavior of the nonlocal Burgers formulation to the standard local case. The developments presented in this paper form the preliminary building blocks upon which to build a theory of nonlocal advection phenomena consistent within the peridynamic theory of continuum mechanics. C1 [Du, Qiang] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Kamm, James R.; Lehoucq, R. B.; Parks, Michael L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Du, Q (reprint author), Penn State Univ, Dept Math, University Pk, PA 16802 USA. EM qdu@math.psu.edu; jrkamm@sandia.gov; rblehou@sandia.gov; mlparks@sandia.gov RI Du, Qiang/B-1021-2008 OI Du, Qiang/0000-0002-1067-8937 FU U.S. Department of Energy [DE-SC0005346, DE-AC04-94-AL85000]; NSF [DMS-1016073]; Sandia National Laboratories FX This author was supported in part by U.S. Department of Energy grant DE-SC0005346 and NSF grant DMS-1016073.; The work of these authors was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94-AL85000. NR 38 TC 19 Z9 20 U1 1 U2 18 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1399 J9 SIAM J APPL MATH JI SIAM J. Appl. Math. PY 2012 VL 72 IS 1 BP 464 EP 487 DI 10.1137/110833233 PG 24 WC Mathematics, Applied SC Mathematics GA 900LV UT WOS:000300889500024 ER PT J AU Draganescu, A Petra, C AF Draganescu, Andrei Petra, Cosmin TI MULTIGRID PRECONDITIONING OF LINEAR SYSTEMS FOR INTERIOR POINT METHODS APPLIED TO A CLASS OF BOX-CONSTRAINED OPTIMAL CONTROL PROBLEMS SO SIAM JOURNAL ON NUMERICAL ANALYSIS LA English DT Article DE multigrid; interior point methods; PDE-constrained optimization ID ILL-POSED PROBLEMS; SEMISMOOTH NEWTON METHODS; MULTILEVEL ALGORITHMS; OPTIMIZATION; CONVERGENCE; SCHEME AB In this article we construct and analyze multigrid preconditioners for discretizations of operators of the form D-lambda+ kappa*kappa, where D-lambda is the multiplication with a relatively smooth function lambda > 0 and kappa is a compact linear operator. These systems arise when applying interior point methods to the minimization problem min(u) 1/2 (parallel to kappa u-f parallel to(2) + beta parallel to u parallel to(2)) with box-constraints (u) under bar <= u <= (u) over bar on the controls. The presented preconditioning technique is closely related to the one developed by Draganescu and Dupont [Math. Comp., 77 (2008), pp. 2001-2038] for the associated unconstrained problem and is intended for large-scale problems. As in that work, the quality of the resulting preconditioners is shown to increase as h down arrow 0, but it decreases as the smoothness of lambda declines. We test this algorithm on a Tikhonov-regularized backward parabolic equation with box-constraints on the control and on a standard elliptic-constrained optimization problem. In both cases it is shown that the number of linear iterations per optimization step, as well as the total number of finest-scale matrix-vector multiplications, is decreasing with increasing resolution, thus showing the method to be potentially very efficient for truly large-scale problems. C1 [Draganescu, Andrei] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA. [Petra, Cosmin] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Draganescu, A (reprint author), Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA. EM draga@umbc.edu; petra@mcs.anl.gov FU Department of Energy [DE-SC0005455]; National Science Foundation [DMS-1016177, DMS-0821311, CCF-0728878] FX The work of this author was supported in part by the Department of Energy under contract DE-SC0005455 and by the National Science Foundation under awards DMS-1016177 and DMS-0821311.; The work of this author was supported in part by the National Science Foundation under award CCF-0728878. NR 28 TC 2 Z9 2 U1 0 U2 1 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1429 J9 SIAM J NUMER ANAL JI SIAM J. Numer. Anal. PY 2012 VL 50 IS 1 BP 328 EP 353 DI 10.1137/100786502 PG 26 WC Mathematics, Applied SC Mathematics GA 900MK UT WOS:000300891000016 ER PT J AU Anitescu, M Chen, J Wang, L AF Anitescu, Mihai Chen, Jie Wang, Lei TI A MATRIX-FREE APPROACH FOR SOLVING THE PARAMETRIC GAUSSIAN PROCESS MAXIMUM LIKELIHOOD PROBLEM SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE Gaussian process; maximum likelihood estimation; sample average approximation; preconditioned conjugate gradient; Toeplitz system; circulant preconditioner; fast multipole method ID INTERPOLATION; CALIBRATION; ALGORITHM; TREECODE; SYSTEMS AB Gaussian processes are the cornerstone of statistical analysis in many application areas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for computing the solution of the maximum likelihood problem involving Gaussian processes. The approach is based on a stochastic programming reformulation followed by sample average approximation applied to either the maximization problem or its optimality conditions. We provide statistical estimates of the approximate solution. The method is illustrated on several examples where the data is provided on a regular or irregular grid. In the latter case, the action of a covariance matrix on a vector is computed by means of fast multipole methods. For each of the examples presented, we demonstrate that the approach scales linearly with an increase in the number of sites. C1 [Anitescu, Mihai; Chen, Jie; Wang, Lei] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Anitescu, M (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM anitescu@mcs.anl.gov; jiechen@mcs.anl.gov; lwang@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy under contract DE-AC02-06CH11357. The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC02-06CH11357 with the U. S. Department of Energy. The U. S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 34 TC 17 Z9 17 U1 0 U2 5 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2012 VL 34 IS 1 BP A240 EP A262 DI 10.1137/110831143 PG 23 WC Mathematics, Applied SC Mathematics GA 901BU UT WOS:000300937500010 ER PT J AU Demmel, J Grigori, L Hoemmen, M Langou, J AF Demmel, James Grigori, Laura Hoemmen, Mark Langou, Julien TI COMMUNICATION-OPTIMAL PARALLEL AND SEQUENTIAL QR AND LU FACTORIZATIONS SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE linear algebra; QR factorization; LU factorization ID MATRIX; DECOMPOSITION; PERFORMANCE; ALGORITHMS; COMPLEXITY; SYSTEMS; SERIAL AB We present parallel and sequential dense QR factorization algorithms that are both optimal (up to polylogarithmic factors) in the amount of communication they perform and just as stable as Householder QR. We prove optimality by deriving new lower bounds for the number of multiplications done by "non-Strassen-like" QR, and using these in known communication lower bounds that are proportional to the number of multiplications. We not only show that our QR algorithms attain these lower bounds (up to polylogarithmic factors), but that existing LAPACK and ScaLAPACK algorithms perform asymptotically more communication. We derive analogous communication lower bounds for LU factorization and point out recent LU algorithms in the literature that attain at least some of these lower bounds. The sequential and parallel QR algorithms for tall and skinny matrices lead to significant speedups in practice over some of the existing algorithms, including LAPACK and ScaLAPACK, for example, up to 6.7 times over ScaLAPACK. A performance model for the parallel algorithm for general rectangular matrices predicts significant speedups over ScaLAPACK. C1 [Demmel, James] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA. [Grigori, Laura] Univ Paris 11, INRIA Saclay Ile France, Lab Rech Informat, F-91405 Orsay, France. [Hoemmen, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Langou, Julien] Univ Colorado Denver, Dept Math Sci, Denver, CO 80202 USA. [Langou, Julien] Hlth Sci Ctr, Denver, CO 80202 USA. RP Demmel, J (reprint author), Univ Calif Berkeley, EECS, 831 Evans Hall, Berkeley, CA 94720 USA. EM demmel@eecs.berkeley.edu; Laura.Grigori@inria.fr; mhoemme@sandia.gov; julien.langou@ucdenver.edu RI Langou, Julien/G-5788-2013 NR 48 TC 44 Z9 44 U1 0 U2 3 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2012 VL 34 IS 1 BP A206 EP A239 DI 10.1137/080731992 PG 34 WC Mathematics, Applied SC Mathematics GA 901BU UT WOS:000300937500009 ER PT J AU Sargsyan, K Safta, C Debusschere, B Najm, H AF Sargsyan, Khachik Safta, Cosmin Debusschere, Bert Najm, Habib TI UNCERTAINTY QUANTIFICATION GIVEN DISCONTINUOUS MODEL RESPONSE AND A LIMITED NUMBER OF MODEL RUNS SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE uncertainty quantification; polynomial chaos; Bayesian inference; discontinuity detection; Rosenblatt transformation ID FINITE-ELEMENT-METHOD; EDGE-DETECTION; PROPAGATION; SYSTEMS AB We outline a methodology for forward uncertainty quantification in systems with uncertain parameters, discontinuous model response, and a limited number of model runs. Our approach involves two stages. First we detect the discontinuity with Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve for arbitrarily distributed input parameters. Then, employing the Rosenblatt transform, we construct spectral representations of the uncertain model output, using polynomial chaos (PC) expansions on either side of the discontinuity curve, leading to an averaged PC representation of the forward model response that allows efficient uncertainty quantification. We obtain PC modes by either orthogonal projection or Bayesian inference, and argue for a hybrid approach that targets a balance between the accuracy provided by the orthogonal projection and the flexibility provided by the Bayesian inference. The uncertain model output is then computed by taking an ensemble average over PC expansions corresponding to sampled realizations of the discontinuity curve. The methodology is demonstrated on synthetic examples of discontinuous model response with adjustable sharpness and structure. C1 [Sargsyan, Khachik; Safta, Cosmin; Debusschere, Bert; Najm, Habib] Sandia Natl Labs, Livermore, CA 94550 USA. RP Sargsyan, K (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9051, Livermore, CA 94550 USA. EM ksargsy@sandia.gov; csafta@sandia.gov; bjdebus@sandia.gov; hnnajm@sandia.gov FU Sandia National Laboratories Seniors' Council LDRD; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories Seniors' Council LDRD (Laboratory Directed Research and Development) program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these rights. NR 31 TC 9 Z9 9 U1 0 U2 5 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2012 VL 34 IS 1 BP B44 EP B64 DI 10.1137/100817899 PG 21 WC Mathematics, Applied SC Mathematics GA 901BU UT WOS:000300937500024 ER PT J AU Breshears, DD Kirchner, TB Whicker, JJ Field, JP Allen, CD AF Breshears, David D. Kirchner, Thomas B. Whicker, Jeffrey J. Field, Jason P. Allen, Craig D. TI Modeling aeolian transport in response to succession, disturbance and future climate: Dynamic long-term risk assessment for contaminant redistribution SO AEOLIAN RESEARCH LA English DT Article; Proceedings Paper CT 7th International Conference on Aeolian Research (ICAR) CY JUL 05-09, 2010 CL Santa Rosa, ARGENTINA DE Aeolian; Contaminant transport; Wind erosion; Dust emission; Risk assessment; Sediment production ID GRASSLAND-FOREST CONTINUUM; CHANGE-TYPE DROUGHT; WIND EROSION; SEDIMENT TRANSPORT; SEMIARID SHRUBLAND; UNITED-STATES; NEW-MEXICO; DIE-OFF; VEGETATION; PLANT AB Aeolian sediment transport is a fundamental process redistributing sediment, nutrients, and contaminants in dryland ecosystems. Over time frames of centuries or longer, horizontal sediment fluxes and associated rates of contaminant transport are likely to be influenced by succession, disturbances, and changes in climate, yet models of horizontal sediment transport that account for these fundamental factors are lacking, precluding in large part accurate assessment of human health risks associated with persistent soil-bound contaminants. We present a simple model based on empirical measurements of horizontal sediment transport (predominantly saltation) to predict potential contaminant transport rates for recently disturbed sites such as a landfill cover. Omnidirectional transport is estimated within vegetation that changes using a simple Markov model that simulates successional trajectory and considers three types of short-term disturbances (surface fire, crown fire, and drought-induced plant mortality) under current and projected climates. The model results highlight that movement of contaminated soil is sensitive to vegetation dynamics and increases substantially (e.g., > fivefold) when disturbance and/or future climate are considered. The time-dependent responses in horizontal sediment fluxes and associated contaminant fluxes were sensitive to variability in the timing of disturbance, with longer intervals between disturbance allowing woody plants to become dominant and crown fire and drought abruptly reducing woody plant cover. Our results, which have direct implications for contaminant transport and landfill management in the specific context of our assessment, also have general relevance because they highlight the need to more fully account for vegetation dynamics, disturbance, and changing climate in aeolian process studies. (C) 2011 Published by Elsevier B.V. C1 [Breshears, David D.; Field, Jason P.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85737 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85737 USA. [Kirchner, Thomas B.] Carlsbad Environm Monitoring & Res Ctr, Carlsbad, NM 88220 USA. [Whicker, Jeffrey J.] Los Alamos Natl Lab, Environm Programs, Los Alamos, NM 87545 USA. [Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. RP Breshears, DD (reprint author), Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85737 USA. EM daveb@email.arizona.edu NR 77 TC 9 Z9 9 U1 2 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-9637 J9 AEOLIAN RES JI Aeolian Res. PD JAN PY 2012 VL 3 IS 4 SI SI BP 445 EP 457 DI 10.1016/j.aeolia.2011.03.012 PG 13 WC Geography, Physical SC Physical Geography GA 896AM UT WOS:000300537800009 ER PT J AU Chen, F Freedman, DL Falta, RW Murdoch, LC AF Chen, Fei Freedman, David L. Falta, Ronald W. Murdoch, Lawrence C. TI Henry's law constants of chlorinated solvents at elevated temperatures SO CHEMOSPHERE LA English DT Article DE Henry's law constant; Chlorinated volatile organic compound (CVOC); Thermal remediation; Vapor pressure; Solubility ID DILUTE AQUEOUS-SOLUTIONS; WATER; COEFFICIENTS; TRICHLOROETHYLENE; REMEDIATION; PREDICTION; DEPENDENCE; CHEMICALS AB Henry's law constants for 12 chlorinated volatile organic compounds (CVOCs) were measured as a function of temperature ranging from 8 to 93 degrees C, using the modified equilibrium partitioning in closed system (EPICS) method. The chlorinated compounds include tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, vinyl chloride, 1,1,1-trichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, chloroethane, carbon tetrachloride, chloroform, dichloromethane, and chloromethane. The variation in Henry's constants for these compounds as a function of temperature ranged from around 3-fold (chloroethane) to 30-fold (1.2-dichloroethane). Aqueous solubilities of the pure compounds were measured over the temperature range of 8-75 degrees C. The temperature dependence of Henry's constant was predicted using the ratio of pure vapor pressure to aqueous solubility, both of which are functions of temperature. The calculated Henry's constants are in a reasonable agreement with the measured results. With the improved data on Henry's law constants at high temperatures measured in this study, it will be possible to more accurately model subsurface remediation processes that operate near the boiling point of water. Published by Elsevier Ltd. C1 [Chen, Fei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chen, Fei; Freedman, David L.; Falta, Ronald W.; Murdoch, Lawrence C.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. RP Chen, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM feic@clemson.edu RI Chen, Fei/G-5444-2014 FU Strategic Environmental Research and Development Program [ER-1553] FX This research was supported in part by Grant ER-1553 from the Strategic Environmental Research and Development Program. NR 23 TC 15 Z9 15 U1 3 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD JAN PY 2012 VL 86 IS 2 BP 156 EP 165 DI 10.1016/j.chemosphere.2011.10.004 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA 896UC UT WOS:000300595900008 PM 22071373 ER PT J AU Dukowicz, JK AF Dukowicz, J. K. TI Reformulating the full-Stokes ice sheet model for a more efficient computational solution SO CRYOSPHERE LA English DT Article ID SUBGLACIAL LAKES; HIGHER-ORDER; DYNAMICS AB The first-order or Blatter-Pattyn ice sheet model, in spite of its approximate nature, is an attractive alternative to the full Stokes model in many applications because of its reduced computational demands. In contrast, the unapproximated Stokes ice sheet model is more difficult to solve and computationally more expensive. This is primarily due to the fact that the Stokes model is indefinite and involves all three velocity components, as well as the pressure, while the Blatter-Pattyn discrete model is positive-definite and involves just the horizontal velocity components. The Stokes model is indefinite because it arises from a constrained minimization principle where the pressure acts as a Lagrange multiplier to enforce incompressibility. To alleviate these problems we reformulate the full Stokes problem into an unconstrained, positive-definite minimization problem, similar to the Blatter-Pattyn model but without any of the approximations. This is accomplished by introducing a divergence-free velocity field that satisfies appropriate boundary conditions as a trial function in the variational formulation, thus dispensing with the need for a pressure. Such a velocity field is obtained by vertically integrating the continuity equation to give the vertical velocity as a function of the horizontal velocity components, as is in fact done in the Blatter-Pattyn model. This leads to a reduced system for just the horizontal velocity components, again just as in the Blatter-Pattyn model, but now without approximation. In the process we obtain a new, reformulated Stokes action principle as well as a novel set of Euler-Lagrange partial differential equations and boundary conditions. The model is also generalized from the common case of an ice sheet in contact with and sliding along the bed to other situations, such as to a floating ice shelf. These results are illustrated and validated using a simple but nontrivial Stokes flow problem involving a sliding ice sheet. C1 Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling COSIM Project, Grp T 3, Los Alamos, NM 87545 USA. RP Dukowicz, JK (reprint author), Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling COSIM Project, Grp T 3, MS B216, Los Alamos, NM 87545 USA. EM duk@lanl.gov FU US Department of Energy's Office of Science (Biological and Environmental Research); National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX Funding for this work was provided by the Climate Modeling program in the US Department of Energy's Office of Science (Biological and Environmental Research). Los Alamos National Laboratory is operated under the auspices of the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 19 TC 3 Z9 3 U1 0 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PY 2012 VL 6 IS 1 BP 21 EP 34 DI 10.5194/tc-6-21-2012 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 891OO UT WOS:000300226700002 ER PT J AU Lux, SF Lucas, IT Pollak, E Passerini, S Winter, M Kostecki, R AF Lux, S. F. Lucas, I. T. Pollak, E. Passerini, S. Winter, M. Kostecki, R. TI The mechanism of HF formation in LiPF6 based organic carbonate electrolytes SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium ion batteries; Hydrofluoric acid; Spectroscopic ellipsometry; LiPF6 degradation ID ION BATTERY ELECTROLYTES; RECHARGEABLE BATTERIES; STABILITY; TEMPERATURE; SALT; CONDUCTIVITY; ELECTRODES; PF5 AB Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 degrees C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 C degrees. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lux, S. F.; Passerini, S.; Winter, M.] Univ Munster, Inst Phys Chem, MEET Labs, D-48149 Munster, Germany. [Lux, S. F.; Lucas, I. T.; Pollak, E.; Kostecki, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Lux, SF (reprint author), Univ Munster, Inst Phys Chem, MEET Labs, Corrensstr 46, D-48149 Munster, Germany. EM simon.lux@uni-muenster.de RI LUCAS, Ivan /S-5742-2016; OI LUCAS, Ivan /0000-0001-8930-0437; Passerini, Stefano/0000-0002-6606-5304 FU German Ministry of Education and Research (BMBF) within the research alliance [03X4601A, LIB2015]; Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work was carried out under the joint sponsorship of the German Ministry of Education and Research (BMBF) in the project "LiVe" (03X4601A) within the "LIB2015" research alliance and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under contract no. DE-AC02-05CH11231. NR 21 TC 125 Z9 127 U1 13 U2 115 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD JAN PY 2012 VL 14 IS 1 BP 47 EP 50 DI 10.1016/j.elecom.2011.10.026 PG 4 WC Electrochemistry SC Electrochemistry GA 891EL UT WOS:000300199900013 ER PT J AU Marsh, GE AF Marsh, Gerald E. TI CLIMATE CHANGE: SOURCES OF WARMING IN THE LATE 20TH CENTURY SO ENERGY & ENVIRONMENT LA English DT Editorial Material ID NORTH-ATLANTIC OSCILLATION; TEMPERATURE AB The role of the North Atlantic Oscillation, the Pacific Decadal Oscillation, volcanic and other aerosols, as well as the extraordinary solar activity of the late 20th century are discussed in the context of the warming since the mid-1970s. Much of that warming is found to be due to natural causes. C1 [Marsh, Gerald E.] Argonne Natl Lab, Chicago, IL 60615 USA. EM gemarsh@uchicago.edu NR 15 TC 0 Z9 0 U1 0 U2 3 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 0958-305X J9 ENERG ENVIRON-UK JI Energy Environ. PY 2012 VL 23 IS 1 BP 95 EP 104 PG 10 WC Environmental Studies SC Environmental Sciences & Ecology GA 898RH UT WOS:000300759000009 ER PT B AU Vishnivetskaya, TA Raman, B Phelps, TJ Podar, M Elkins, JG AF Vishnivetskaya, Tatiana A. Raman, Babu Phelps, Tommy J. Podar, Mircea Elkins, James G. BE Anitori, RP TI Cellulolytic Microorganisms from Thermal Environments SO EXTREMOPHILES: MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article; Book Chapter ID YELLOWSTONE-NATIONAL-PARK; THERMOPHILE CALDOCELLUM-SACCHAROLYTICUM; CLOSTRIDIUM-THERMOCELLUM JW20; PAPER SLUDGE HYDROLYSATE; ICELANDIC HOT-SPRINGS; SP-NOV; CALDICELLULOSIRUPTOR-SACCHAROLYTICUS; HYDROGEN-PRODUCTION; GEN-NOV; ANAEROCELLUM-THERMOPHILUM AB Conversion of lignocellulosic biomass to liquid fuels using biological processes offers a potential solution to partially offset the world's dependence on fossil fuels for energy In nature, decomposition of organic plant biomass is brought about by the combined action of several interacting microorganisms existing in complex communities. Bioprospecting in natural environments with high cellulolytic activity (for example, thermal springs) may yield novel cellulolytic microorganisms and enzymes with elevated rates of biomass hydrolysis for use in industrial biofuel production. In this chapter, various cellulose-degrading microorganisms (in particular, thermophilic anaerobic bacteria), their hydrolytic enzymes, and recent developments in the application of biomass fermentations for production of sustainable bioenergy are reviewed. In this context, results from ongoing research at the Oak Ridge National Laboratory in the isolation and subsequent phylogenetic and metabolic characterization of thermophilic, anaerobic, cellulolytic bacteria from the hot springs of Yellowstone National Park are presented. C1 [Vishnivetskaya, Tatiana A.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. [Phelps, Tommy J.; Podar, Mircea; Elkins, James G.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. [Phelps, Tommy J.; Podar, Mircea; Elkins, James G.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Raman, Babu] Dow AgroSci, Bioproc R&D, Indianapolis, IN USA. RP Vishnivetskaya, TA (reprint author), Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. EM tvishniv@utk.edu; braman@dow.com; phelpstj@ornl.gov; podarm@ornl.gov; elkinsjg@ornl.gov RI Elkins, James/A-6199-2011 OI Elkins, James/0000-0002-8052-5688 NR 124 TC 1 Z9 1 U1 1 U2 9 PU CAISTER ACADEMIC PRESS PI WYMONDHAM PA 32 HEWITTS LANE, WYMONDHAM NR 18 0JA, ENGLAND BN 978-1-904455-98-1 PY 2012 BP 131 EP 158 PG 28 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA BYN37 UT WOS:000299435800008 ER PT J AU Houf, WG Evans, GH Merilo, E Groethe, M James, SC AF Houf, William G. Evans, Greg H. Merilo, Erik Groethe, Mark James, Scott C. TI Releases from hydrogen fuel-cell vehicles in tunnels SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen fuel-cell vehicle; Tunnel; Dispersion; Deflagration; Modeling; Experiments ID DEFLAGRATIONS AB An important issue concerning the safe use of hydrogen-powered fuel-cell vehicles is the possibility of accidents inside tunnels resulting in the release of hydrogen. To investigate the potential consequences, a combined experimental and modeling study has been performed to characterize releases from a hydrogen fuel-cell vehicle inside a tunnel. In the scenario studied, all three of the fuel-cell vehicle's onboard hydrogen tanks were simultaneously released through three thermal pressure relief devices (TPRDs) toward the road surface. Computation fluid dynamics (CFD) simulations were used to model the release of hydrogen from the fuel-cell vehicle and to study the behavior of the ignitable hydrogen cloud inside the tunnel. Deflagration overpressure simulations of the hydrogen cloud within the tunnel were also performed for different ignition delay times and ignition locations. To provide model validation data for these simulations, experiments were performed in a scaled tunnel test facility at the SRI Corral Hollow Experiment Site (CHES). The scaled tunnel tests were designed to resemble the full-scale tunnel simulations using Froude scaling. The scale factor, based on the square route of the ratio of the SRI tunnel area to the full-scale tunnel area was 1/2.53. The same computational models used in the full-scale tunnel simulations were applied to these scaled tunnel tests to validate the modeling approach. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Houf, William G.; Evans, Greg H.; James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA. [Merilo, Erik; Groethe, Mark] SRI Int, Menlo Pk, CA 94025 USA. RP Houf, WG (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM will@sandia.gov OI James, Scott/0000-0001-7955-0491 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX The authors wish to acknowledge Jeff LaChance for his helpful discussions regarding the risk analysis considerations in the paper. This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program under the Safety, Codes, and Standards subprogram element managed by Antonio Ruiz. NR 16 TC 6 Z9 6 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JAN PY 2012 VL 37 IS 1 BP 715 EP 719 DI 10.1016/j.ijhydene.2011.09.110 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 895BA UT WOS:000300470000069 ER PT J AU Zhou, YY Weng, QH Gurney, KR Shuai, YM Hu, XF AF Zhou, Yuyu Weng, Qihao Gurney, Kevin R. Shuai, Yanmin Hu, Xuefei TI Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING LA English DT Article DE Anthropogenic heat discharge; Building energy use; Multi-scale; Urban heat island; Urban remote sensing ID LANDSAT SURFACE REFLECTANCE; BALANCE ALGORITHM; URBAN CLIMATES; TEB SCHEME; ASTER; ALBEDO; EMISSIVITY; SIMULATION; SEPARATION; EMISSIONS AB This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered. (C) 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved. C1 [Zhou, Yuyu] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Weng, Qihao] Indiana State Univ, Dept Earth & Environm Syst, Ctr Urban & Environm Change, Terre Haute, IN 47809 USA. [Gurney, Kevin R.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Shuai, Yanmin] Earth Resources Technol Inc, Laurel, MD 20707 USA. [Shuai, Yanmin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hu, Xuefei] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA. RP Zhou, YY (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM zhouyuyu@gmail.com RI Shuai, Yanmin/G-1329-2012; OI Weng, Qihao/0000-0002-2498-0934 NR 39 TC 17 Z9 20 U1 4 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2716 EI 1872-8235 J9 ISPRS J PHOTOGRAMM JI ISPRS-J. Photogramm. Remote Sens. PD JAN PY 2012 VL 67 BP 65 EP 72 DI 10.1016/j.isprsjprs.2011.10.007 PG 8 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 898NU UT WOS:000300749900007 ER PT J AU Carpenter, JS Vogel, SC AF Carpenter, John S. Vogel, Sven C. TI Perspective on Neutron Diffraction as a Tool for Characterizing Minerals, Metals, and Materials SO JOM LA English DT Editorial Material C1 [Carpenter, John S.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Vogel, Sven C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Carpenter, John S.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Carpenter, JS (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM carpenter@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Vogel, Sven C./0000-0003-2049-0361; Carpenter, John/0000-0001-8821-043X NR 0 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 102 EP 103 DI 10.1007/s11837-011-0227-7 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000016 ER PT J AU Vogel, SC Carpenter, JS AF Vogel, Sven C. Carpenter, John S. TI Brief Introduction to Neutron Scattering and Global Neutron User Facilities SO JOM LA English DT Article ID DIFFRACTOMETER AB Neutrons play a vital role as a powerful tool in basic science and applied research. In this article, the basic properties of neutrons, their generation and detection, as well as some fundamental aspects of neutron instrumentation are introduced. Neutron user facilities, at which the user may obtain more specific information and apply for beam time, are also discussed. C1 [Vogel, Sven C.; Carpenter, John S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Vogel, SC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sven@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Vogel, Sven C./0000-0003-2049-0361; Carpenter, John/0000-0001-8821-043X NR 17 TC 4 Z9 4 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 104 EP 111 DI 10.1007/s11837-011-0220-1 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000017 ER PT J AU Proffen, T AF Proffen, Th. TI Neutron Total Scattering Analysis of Nanoparticles SO JOM LA English DT Article AB Nanoparticles are entering many aspects of our lives as they often possess properties their bulk counterparts lack. The arsenal of structural characterization techniques for bulk materials is well established. In the case of nanomaterials these tools are just starting to emerge. In this paper the total scattering approach applied to nanomaterials and the promises it holds are discussed. C1 Oak Ridge Natl Lab, Div Neutron Sci, Oak Ridge, TN 37831 USA. RP Proffen, T (reprint author), Oak Ridge Natl Lab, Div Neutron Sci, Oak Ridge, TN 37831 USA. EM tproffen@ornl.gov RI Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 NR 8 TC 3 Z9 3 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 112 EP 116 DI 10.1007/s11837-011-0216-x PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000018 ER PT J AU Clausen, B Brown, DW Noyan, IC AF Clausen, Bjorn Brown, Donald W. Noyan, I. C. TI Engineering Applications of Time-of-Flight Neutron Diffraction SO JOM LA English DT Article ID RESIDUAL-STRESS MEASUREMENTS; ZIRCALOY-4 WELD; REFINEMENT AB Time-of-flight neutron diffraction is widely used in characterizing the microstructure and mechanical response of heterogeneous systems. Microstructural characterization techniques include spatial or temporal mapping of the phases and determination of grain size, dislocation structure, and grain orientations (texture) within these phases. Mechanical response analysis utilizes the crystallographic selectivity of the diffraction process to measure the partitioning of strain within the system. The microstructural and mechanical response information is then used to develop more realistic constitutive models. In this article we review some examples of such measurements, based on our experiences at the Lujan Center of Los Alamos National Laboratory. C1 [Clausen, Bjorn] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. [Noyan, I. C.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. RP Clausen, B (reprint author), Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. EM icn2@columbia.edu RI Lujan Center, LANL/G-4896-2012; Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. We thank all our collaborators over the past decade whose contributions are summarized here. Special thanks are due to Prof. D.G. Carr for permission to use Figs. 9 and 10. NR 13 TC 3 Z9 4 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 117 EP 126 DI 10.1007/s11837-011-0119-x PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000019 ER PT J AU Ren, Y AF Ren, Yang TI High-Energy Synchrotron X-Ray Diffraction and Its Application to In Situ Structural Phase-Transition Studies in Complex Sample Environments SO JOM LA English DT Article ID MANGANITES; MAGNETORESISTANCE; SCIENCE AB A solid may undergo a phase transition due to internal interaction competition or external stimuli. It is increasingly recognized that the lattice degrees of freedom often play a crucial role, especially in the vicinity of competing phases, where many intriguing properties exist. A crystal structure transition is usually accompanied by a drastic change in the mechanical, electrical, magnetic, and other properties. In situ study of the microscopic structural information of materials during phase transformation is of ultimate importance not only in understanding fundamental mechanisms but also in developing and processing advanced materials for broad technological applications. The availability of synchrotron-generated high-flux and high-energy x-rays has significantly advanced the field of materials research because of the deep penetration and low absorption of high-energy x-rays. Synchrotron high-energy x-ray diffraction facilities provide great research opportunities, especially for probing structural phase transformations of bulk materials in real time and in realistic conditions. In this overview we present technical details and capabilities of a synchrotron high-energy x-ray facility and its applications to in situ structural investigations of phase transitions in advanced materials in research areas ranging from condensed-matter and materials science and engineering to energy science. C1 Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Ren, Y (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM yren@anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX We would like to thank all our colleagues, collaborators, and users, who contributed to the development and upgrade of the beamline and helped the experimental activities and worked on the scientific research projects at the beamline. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 28 TC 6 Z9 6 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 140 EP 149 DI 10.1007/s11837-011-0218-8 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000022 ER PT J AU Wang, YD Nie, ZH Ren, Y Liaw, PK AF Wang, Y. D. Nie, Z. H. Ren, Y. Liaw, P. K. TI High-Energy Synchrotron X-Ray Diffraction for In Situ Study of Phase Transformation in Shape-Memory Alloys SO JOM LA English DT Article ID NI2MNGA; CRYSTALS; STRESS; TRANSITIONS AB This overview highlights very recent progress on the application of high-energy x-ray diffraction for in situ study of the phase transformation of shape-memory alloys. The advantages of the synchrotron-based high-energy x-ray diffraction method and the experimental setup for exploring the phase-transition behavior of single crystals or textured polycrystalline materials under multiple external fields are described. Experimental investigations on the influence of external stress, magnetic, and thermal fields on the phase-transformation behaviors of thermal and ferromagnetic shape-memory alloys, and nanowire-reinforced shape-memory composites are also summarized. Special attention is given to recent scientific issues related to the microscopic "memory" of martensite variants, transition kinetics, magnetic field-induced selection of variants, magnetic field-driven phase transition, and superelasticity. C1 [Wang, Y. D.; Nie, Z. H.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Ren, Y.] Argonne Natl Lab, XRay Sci Div, Argonne, IL 60439 USA. [Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. EM ydwang@bit.edu.cn RI Nie, Zhihua/G-9459-2013; ran, shi/G-9380-2013; wang, yandong/G-9404-2013 OI Nie, Zhihua/0000-0002-2533-933X; FU National Natural Science Foundation of China [50725102, 50971031, 51001015]; National Basic Research Program of China (973 Program) [2012CB619405]; US Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357]; National Science Foundation [DMR-0231320, DMR-0909037, CMMI-0900271, CMMI-1100080] FX This work is supported by the National Natural Science Foundation of China (Grant Nos. 50725102, 50971031, and 51001015) and National Basic Research Program of China (973 Program) under Contract No. 2012CB619405. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. P.K.L. greatly appreciates the support of the National Science Foundation (DMR-0231320, DMR-0909037, CMMI-0900271, and CMMI-1100080) with Drs. C. Huber, A. Ardell, and C.V. Cooper as Program Directors. NR 34 TC 2 Z9 2 U1 1 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 150 EP 160 DI 10.1007/s11837-011-0221-0 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000023 ER PT J AU Cheng, TL Ma, FDD Zhou, JE Jennings, G Ren, Y Jin, YMM Wang, YU AF Cheng, Tian-Le Ma, Fengde D. Zhou, Jie E. Jennings, Guy Ren, Yang Jin, Yongmei M. Wang, Yu U. TI In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy SO JOM LA English DT Article ID NI2MNGA AB Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy. C1 [Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jin, Yongmei M.; Wang, Yu U.] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. [Jennings, Guy; Ren, Yang] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cheng, TL (reprint author), Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. EM wangyu@mtu.edu FU NSF [DMR-1002521]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences (DOE) [DE-FG02-09ER46674]; DOE [DE-AC02-06CH11357] FX This work was supported by NSF under Award No. DMR-1002521 and by Materials Sciences and Engineering Division, Office of Basic Energy Sciences (DOE) under Award No. DE-FG02-09ER46674. Use of the Advanced Photon Source, an Office of Science User Facility operated for US DOE Office of Science by Argonne National Laboratory, was supported by DOE under Contract No. DE-AC02-06CH11357. NR 9 TC 5 Z9 5 U1 3 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2012 VL 64 IS 1 BP 167 EP 173 DI 10.1007/s11837-011-0228-6 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 898WL UT WOS:000300773000025 ER PT J AU Boutchko, R Rayz, VL Vandehey, NT O'Neil, JP Budinger, TF Nico, PS Druhan, JL Saloner, DA Gullberg, GT Moses, WW AF Boutchko, Rostyslav Rayz, Vitaliy L. Vandehey, Nicholas T. O'Neil, James P. Budinger, Thomas F. Nico, Peter S. Druhan, Jennifer L. Saloner, David A. Gullberg, Grant T. Moses, William W. TI Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics SO JOURNAL OF APPLIED GEOPHYSICS LA English DT Article DE Nuclear emission tomography; PET; SPECT; Column flow; Imaging ID BIOREMEDIATION; VISUALIZATION; POROSITY; URANIUM; ROCK AB This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using F-18-FDG PET are used to trace flow through a 5 cm diameter x 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image Tc-99m-DTPA tracer propagation in a through-flowing column (10 cm diameter x 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems. Published by Elsevier B.V. C1 [Boutchko, Rostyslav; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Gullberg, Grant T.; Moses, William W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Radiotracer Dev & Imaging Technol, Berkeley, CA 94720 USA. [Rayz, Vitaliy L.; Saloner, David A.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. [Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Geochem, Berkeley, CA 94720 USA. [Druhan, Jennifer L.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94710 USA. RP Boutchko, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Radiotracer Dev & Imaging Technol, 1 Cyclotron Rd,MS55R0121, Berkeley, CA 94720 USA. EM rbuchko@lbl.gov RI Druhan, Jennifer/G-2584-2011; Nico, Peter/F-6997-2010; OI Nico, Peter/0000-0002-4180-9397; Vandehey, Nicholas/0000-0003-0286-7532 FU Office of Science, Office of Biological and Environmental Research, Biological Systems Science; Climate and Environmental Science Divisions of the U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health [K25NS059891] FX This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Biological Systems Science and Climate and Environmental Science Divisions of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, "Radiotracer Imaging Technologies for Plant, Microbial, and Environmental Systems" and "Subsurface Science Sustainable Systems" Scientific Focus areas, and by National Institutes of Health grant no. K25NS059891. NR 20 TC 13 Z9 13 U1 0 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-9851 J9 J APPL GEOPHYS JI J. Appl. Geophys. PD JAN PY 2012 VL 76 BP 74 EP 81 DI 10.1016/j.jappgeo.2011.10.003 PG 8 WC Geosciences, Multidisciplinary; Mining & Mineral Processing SC Geology; Mining & Mineral Processing GA 896EA UT WOS:000300547000009 PM 24917693 ER PT J AU Singh, G Thomas, R Kumar, A Katiyar, RS Manivannan, A AF Singh, Gurpreet Thomas, R. Kumar, Arun Katiyar, R. S. Manivannan, A. TI Electrochemical and Structural Investigations on ZnO Treated 0.5 Li2MnO3-0.5LiMn(0.5)Ni(0.5)O(2) Layered Composite Cathode Material for Lithium Ion Battery SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID RECHARGEABLE BATTERIES; IRREVERSIBLE CAPACITY; HIGH-VOLTAGE; ELECTRODES; MN; NI; CO; INTERCALATION; IMPROVEMENT; GRAPHITE AB 0.5Li(2)MnO(3)-0.5LiMn(0.5)Ni(0.5)O(2) composite cathode material with and without ZnO treatment has been synthesized using carbonate based co-precipitation method for rechargeable lithium ion battery. The X-ray diffraction study confirms that the material has layered LiNi0.5Mn0.5O2 structure along with the formation of the superlattice ordering of Li2MnO3; without any major change in the crystal structure with ZnO treatment. Raman spectroscopy has revealed two different types of ionic arrangements corresponding to space groups of C2/m and R (3) over barm for Li2MnO3 and LiNi0.5Mn0.5O2 respectively. Morphological studies revealed primary particles are of similar to 1 micron size and have sharp, elongated edges. The particles are present as spherical agglomerates (similar to 10 micron). Elemental mapping and X-ray photoelectron spectroscopy confirmed the presence of Zn in the ZnO treated samples. Charge/discharge capacity of the composite cathode materials (with andwithout ZnO coating) increases with number of cycles due to more andmore activation of the Li2MnO3. However, ZnO treated 0.5Li(2)MnO(3)-0.5LiMn(0.5)Ni(0.5)O(2) composite material showed higher charge/discharge capacites attaining saturation in less number of cycles. Lower resistance to charge transfer in the case of ZnO treated sample is responsible for its better performance. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.100204jes] All rights reserved. C1 [Singh, Gurpreet; Thomas, R.; Kumar, Arun; Katiyar, R. S.] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA. [Singh, Gurpreet; Thomas, R.; Kumar, Arun; Katiyar, R. S.] Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00936 USA. [Manivannan, A.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26508 USA. RP Singh, G (reprint author), Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA. EM gurpreetsingh268@gmail.com; rkatiyar@uprrp.edu RI Thomas, Reji/B-2669-2010; Singh, Gurpreet/B-5293-2012 OI Thomas, Reji/0000-0003-3588-2317; Singh, Gurpreet/0000-0001-5496-6992 NR 42 TC 59 Z9 61 U1 5 U2 74 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP A470 EP A478 DI 10.1149/2.100204jes PG 9 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300022 ER PT J AU Wu, SL Zhang, W Song, X Shukla, AK Liu, G Battaglia, V Srinivasan, V AF Wu, Shao-Ling Zhang, Wei Song, Xiangyun Shukla, Alpesh K. Liu, Gao Battaglia, Vincent Srinivasan, Venkat TI High Rate Capability of Li(Ni1/3Mn1/3Co1/3)O-2 Electrode for Li-Ion Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM INSERTION MATERIAL; SOLID-STATE CHEMISTRY; CATHODE MATERIALS; KINETIC-PARAMETERS; NICKEL-HYDROXIDE; PROTON DIFFUSION; LICO1/3NI1/3MN1/3O2; LINI1/3CO1/3MN1/3O2; DISCHARGE; LI(NI1/3CO1/3MN1/3)O-2 AB The rate capability of Li(Ni1/3Mn1/3Co1/3)O-2 (NMC) electrode is studied in this paper at the particle scale. Experimental results obtained on thin electrodes show that NMC is an extremely high-rate material capable of charge and discharge at rates exceeding 100C. The high capacity retention has not been previously reported in the literature. Even higher rate capability was seen on charge. The transport properties of the material were explored by combining experiments on thin electrodes with a continuum model of a single spherical particle. The use of thin electrodes minimized porous electrode effects and allowed the assumption of a uniform current distribution in the electrode. A qualitative estimate of the lithium diffusion coefficient in the NMC particle was obtained by comparing the experimental and simulated potentials during open-circuit relaxation at various states of charge. The fitting results show that the lithium diffusion coefficient increases with increasing state of charge. The value ranges from 10(-16) m(2)/s when completely discharged to 10(-14) m(2)/s when completely charged, suggesting that the use of a varying diffusion coefficient is necessary for studying the transport processes in this material and for further application to the macroscopic porous electrode models. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.062204jes] All rights reserved. C1 [Wu, Shao-Ling; Zhang, Wei; Song, Xiangyun; Shukla, Alpesh K.; Liu, Gao; Battaglia, Vincent; Srinivasan, Venkat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Wu, SL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM swu0226@gmail.com RI Shukla, Alpesh/B-2058-2013 NR 41 TC 32 Z9 32 U1 9 U2 78 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP A438 EP A444 DI 10.1149/2.062204jes PG 7 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300017 ER PT J AU Limmer, SJ Yelton, WG Siegal, MP Lensch-Falk, JL Pillars, J Medlin, DL AF Limmer, Steven J. Yelton, W. Graham Siegal, Michael P. Lensch-Falk, Jessica L. Pillars, Jamin Medlin, Douglas L. TI Electrochemical Deposition of Bi-2(Te,Se)(3) Nanowire Arrays on Si SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID ANODIC ALUMINUM-OXIDE; THIN-FILMS; ELECTRODEPOSITION; GLASS; GROWTH; FABRICATION; NUCLEATION; TEMPLATES; BI2TE3; PARAMETERS AB Improving device performance and extending Moore's Law can be aided through active solid-state cooling, using thermoelectric (TE) materials with a high figure of merit (zT > 1). TE nanowires promise a path to higher zT, and electrochemical deposition (ECD) is a simple and scalable means for synthesizing TE nanowires. In this paper we report the ECD of 75 nm diameter nanowire arrays with a nominal composition of Bi-2(Te0.95Se0.05)(3) onto Si substrates. These nanowires show an improved level of compositional control than previously observed for TE nanowires in this system by ECD. This results from our new non-aqueous bath combined with recently described methods for template formation on Si. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.084204jes] All rights reserved. C1 [Limmer, Steven J.; Yelton, W. Graham; Siegal, Michael P.; Pillars, Jamin] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lensch-Falk, Jessica L.; Medlin, Douglas L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Limmer, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjlimme@sandia.gov RI Limmer, Steven/B-3717-2012; OI Limmer, Steven/0000-0001-6588-372X FU Sandia National Laboratories; DARPA-MTO; U.S. Department of Energy's National-Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge Don Overmyer for film depositions and XRD measurements, and Bonnie McKenzie for SEM analysis. Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and DARPA-MTO. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National-Nuclear Security Administration under contract DE-AC04-94AL85000. NR 44 TC 6 Z9 6 U1 1 U2 25 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP D235 EP D239 DI 10.1149/2.084204jes PG 5 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300059 ER PT J AU Small, L Cook, A Apblett, C Ihlefeld, JF Brennecka, G Duquette, D AF Small, Leo Cook, Adam Apblett, Christopher Ihlefeld, Jon F. Brennecka, Geoff Duquette, David TI An Automated Electrochemical Probe for Evaluation of Thin Films SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID SCANNING DROPLET CELL; HYDROGEN ADSORPTION; PITTING CORROSION; MICROSCOPY; ELECTRODES; TITANIUM; SURFACES; STEEL; SITES AB An electrochemical probe station (EPS) for automated electrochemical testing of electronic-grade thin films is presented. Similar in design to a scanning droplet cell, this modular system features a flexible probe tip capable of contacting both metallic and oxide surfaces. Using the highly sensitive Pt-H2SO4 system, it is demonstrated that the EPS obtains results equivalent to those of a traditional electrochemical cell. Further, electrical testing of thin film PbZr0.52Ti0.48O3 shows that this system may be used to ascertain fundamental electrical properties of dielectric films. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.007205jes] All rights reserved. C1 [Small, Leo; Duquette, David] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. [Small, Leo; Cook, Adam; Apblett, Christopher; Ihlefeld, Jon F.; Brennecka, Geoff] Sandia Natl Labs, Albuquerque, NM 87105 USA. RP Small, L (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. EM smalll@rpi.edu RI Ihlefeld, Jon/B-3117-2009; Brennecka, Geoff/J-9367-2012; Small, Leo/A-3685-2013 OI Brennecka, Geoff/0000-0002-4476-7655; Small, Leo/0000-0003-0404-6287 FU Laboratory Directed Research and Development (LDRD) program; National Institute of Nano Engineering (NINE) at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program and the National Institute of Nano Engineering (NINE) at Sandia National Laboratories. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 18 TC 3 Z9 3 U1 0 U2 6 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP F87 EP F90 DI 10.1149/2.007205jes PG 4 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300075 ER PT J AU Yoon, H Woo, JH Joshi, B Ra, YM Yoon, SS Kim, HY Ahn, S Yun, JH Gwak, J Yoon, K James, SC AF Yoon, Hyun Woo, Ji Hoon Joshi, Bhavana Ra, Young Min Yoon, Sam S. Kim, Ho Young Ahn, SeJin Yun, Jae Ho Gwak, Jihye Yoon, KyungHoon James, Scott C. TI CuInSe2 (CIS) Thin Film Solar Cells by Electrostatic Spray Deposition SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID MU-M; PYROLYSIS; SEMICONDUCTOR; PHOTOVOLTAICS; ELECTROSPRAY; GENERATION; DIAMETER; LIQUIDS; DEVICE AB In this paper, we demonstrate, for the first time, the manufacture of a CuInSe2 thin film whose absorber layer is coated using an electrostatic spray deposition (ESD) technique; its complete transformation into a working device with measured conversion efficiency is presented. ESD is superior to pneumatic spraying because it produces nano-scaled, self-dispersive (non-agglomerating), highly wettable (electrowetting) and adhesive droplets to yield a uniform coating on a substrate. Furthermore, ESD's extremely low material consumption rate holds promises for practical use in the solar cell industry. Copper and indium salts are added to various solvents, which are electrostatically sprayed onto a molybdenum-coated soda-lime glass substrate. The effect of substrate temperature on the thin film characteristics is examined. Our cell is completed by adding CdS and ZnO layers onto the CuInSe2 absorber layer. Light illuminated current-density voltage (J-V) characteristics demonstrate a power conversion efficiency of eta = 1.75% +/- 0.09 with an open-circuit voltage of V-OC = 0.23 V, a short-circuit current density of J(SC) = 21.72 mA/cm(2), and fill factor of FF = 0.34. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.jes113086] All rights reserved. C1 [Yoon, Hyun; Woo, Ji Hoon; Joshi, Bhavana; Ra, Young Min; Yoon, Sam S.; Kim, Ho Young] Korea Univ, Sch Mech Engn, Seoul 136713, South Korea. [Ahn, SeJin; Yun, Jae Ho; Gwak, Jihye; Yoon, KyungHoon] Korea Inst Energy Res, Photovolta Res Ctr, Taejon 305343, South Korea. [James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Yoon, H (reprint author), Korea Univ, Sch Mech Engn, Seoul 136713, South Korea. EM skyoon@korea.ac.kr OI James, Scott/0000-0001-7955-0491 FU Center for Inorganic Photovoltaic Materials [NRF-2011-0007182, 2010-0010217]; Korean government (MEST); Converging Research Center through the Ministry of Education Science and Technology [2010K000969]; Research Center through the Korea Institute of Energy Technology Evaluation and Planning (KETEP); Ministry of Knowledge Economy [2009-3021010030-11-1] FX This work was supported by the Center for Inorganic Photovoltaic Materials NRF-2011-0007182 and 2010-0010217 funded by the Korean government (MEST). This research was also supported by the Converging Research Center Program through the Ministry of Education Science and Technology (2010K000969). This research was also supported by the Research Center of Break-through Technology Program through the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Knowledge Economy (2009-3021010030-11-1). NR 30 TC 12 Z9 12 U1 1 U2 25 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 4 BP H444 EP H449 DI 10.1149/2.jes113086 PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 895HZ UT WOS:000300488300098 ER PT J AU Desai, AV Tice, JD Apblett, CA Kenis, PJA AF Desai, Amit V. Tice, Joshua D. Apblett, Christopher A. Kenis, Paul J. A. TI Design considerations for electrostatic microvalves with applications in poly(dimethylsiloxane)-based microfluidics SO LAB ON A CHIP LA English DT Article ID MICROELECTROMECHANICAL SYSTEMS; SOFT LITHOGRAPHY; PDMS MEMBRANE; MEMS; ADHESION; DEFORMATION; STABILITY; CHIP AB Microvalves are critical in the operation of integrated microfluidic chips for a wide range of applications. In this paper, we present an analytical model to guide the design of electrostatic microvalves that can be integrated into microfluidic chips using standard fabrication processes and can reliably operate at low actuation potentials (<250 V). Based on the analytical model, we identify design guidelines and operational considerations for elastomeric electrostatic microvalves and formulate strategies to minimize their actuation potentials, while maintaining the feasibility of fabrication and integration. We specifically explore the application of the model to design microfluidic microvalves fabricated in poly(dimethylsiloxane), using only soft-lithographic techniques. We discuss the electrostatic actuation in terms of several microscale phenomena, including squeeze-film damping and adhesion-driven microvalve collapse. The actuation potentials predicted by the model are in good agreement with experimental data obtained with a microfabricated array of electrostatic microvalves actuated in air and oil. The model can also be extended to the design of peristaltic pumps for microfluidics and to the prediction of actuation potentials of microvalves in viscous liquid environments. Additionally, due to the compact ancillaries required to generate low potentials, these electrostatic microvalves can potentially be used in portable microfluidic chips. C1 [Desai, Amit V.; Tice, Joshua D.; Kenis, Paul J. A.] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. [Apblett, Christopher A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Apblett, Christopher A.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Kenis, PJA (reprint author), Univ Illinois, Dept Chem & Biomol Engn, 600 S Mathews Ave, Urbana, IL 61801 USA. EM kenis@illinois.edu RI Kenis, Paul/S-7229-2016 OI Kenis, Paul/0000-0001-7348-0381 FU Department of Energy (DOE) through the National Institute for NanoEngineering (NINE) initiative of the Lab Directed Research and Development (LDRD); National Center for Supercomputing Applications (NCSA) [MSS080036]; U.S. Department of Energy [DE-FG02-07ER46453, DE-FG02-07ER46471] FX We gratefully acknowledge financial support from the Department of Energy (DOE) through the National Institute for NanoEngineering (NINE) initiative of the Lab Directed Research and Development (LDRD) program at Sandia National Laboratories. This work was partially supported by the National Center for Supercomputing Applications (NCSA) under proposal number MSS080036 and utilized the SGI-Altix (Cobalt) for FEA simulations. Scanning electron microscopy and profilometry was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which are partially supported by the U.S. Department of Energy under grants DE-FG02-07ER46453 and DE-FG02-07ER46471. We also thank Dr R.C. Givler and Dr G.A. Ten Eyck from Sandia National Laboratories for stimulating discussions, and Tom Bassett from the University of Illinois for his help in fabrication and characterization of some of the valves. NR 54 TC 12 Z9 12 U1 6 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1473-0197 EI 1473-0189 J9 LAB CHIP JI Lab Chip PY 2012 VL 12 IS 6 BP 1078 EP 1088 DI 10.1039/c2lc21133e PG 11 WC Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology SC Biochemistry & Molecular Biology; Chemistry; Science & Technology - Other Topics GA 895QO UT WOS:000300511500010 PM 22301791 ER PT J AU Zhou, Y Leith, CE Herring, JR Kimura, Y AF Zhou, Ye Leith, Cecil E. Herring, Jackson R. Kimura, Yoshifumi TI Predictability error growth of turbulent flows SO MECHANICS RESEARCH COMMUNICATIONS LA English DT Article DE Turbulent flows; Predictability ID QUASI-GEOSTROPHIC TURBULENCE; 2-DIMENSIONAL TURBULENCE; ATMOSPHERIC PREDICTABILITY; MODEL; UNCERTAINTY; CASCADE; SCALES AB Recently, alternative viewpoints were suggested that is in contrast to the conventional picture of predictability error growth in the spectral domain. We survey key historical and current literatures and suggest that the traditional perspective has not been invalidated. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhou, Ye; Leith, Cecil E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Herring, Jackson R.] Natl Ctr Atmospher Res, Boulder, CO 80308 USA. [Kimura, Yoshifumi] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648601, Japan. RP Zhou, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM yezhou@llnl.gov FU Lawrence Livermore National Security, LLC [DE-AC52-07NA27344] FX This work was performed under the auspices of the Lawrence Livermore National Security, LLC under contract No. DE-AC52-07NA27344. The first author (Y.Z.) is extremely grateful to Professor Sir David Wallace, Director of Isaac Newton Institute for Mathematical Sciences, University of Cambridge and Professor John Huthnance, co-organiser of the Mathematical and Statistical Approaches to Climate Modelling and Prediction Programmes, for their kind invitation. NR 24 TC 0 Z9 0 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0093-6413 J9 MECH RES COMMUN JI Mech. Res. Commun. PD JAN PY 2012 VL 39 IS 1 BP 15 EP 17 DI 10.1016/j.mechrescom.2011.08.004 PG 3 WC Mechanics SC Mechanics GA 892GU UT WOS:000300275500003 ER PT S AU Rehm, KE AF Rehm, K. E. GP IOP BE Auerbach, N Hass, M Paul, M TI The Origin of Oxygen in the Universe - A new approach to an Old Question SO NUCLEAR PHYSICS IN ASTROPHYSICS V SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 5th Biannual Conference on Nuclear Physics in Astrophysics (NPA)/24th Nuclear Physics Divisional Conference of the European-Physical-Society (EPS) CY APR 03-08, 2011 CL Eilat, ISRAEL SP European Phys Soc (EPS), Nucl Phys Div, Hebrew Univ, Soreq Nucl Res Ctr, Tel Aviv Univ, Weizmann Inst Sci ID DELAYED ALPHA-SPECTRUM; CROSS-SECTION; NUCLEAR ASTROPHYSICS; MASSIVE STARS; C-12(ALPHA,GAMMA)O-16; NUCLEOSYNTHESIS; GAMMA)O-16; C-12(ALPHA; ENERGIES; N-16 AB Carbon and oxygen are not only important elements for the existence of life on Earth, but they also play an important role in the evolution of stars towards the end of their life cycle. The formation of C-12 through the so-called triple-alpha reaction is quite well understood. The next step, the formation of O-16 through the alpha capture reaction C-12(alpha,gamma) O-16 on the other hand, still has an experimental uncertainty of similar to 30%. Direct measurements of the C-12(alpha,gamma)O-16 reaction by detecting either the outgoing gamma radiation in a high acceptance Ge-detector array or the residual O-16 nuclei in a mass spectrometer do not allow for order-of-magnitude improvements. In this contribution, the possibility of using superheated bubble detectors for a measurement of the time-inverse O-16(gamma,alpha) C-12 reaction is being discussed. The first results of a 'proof-of-principle' experiment of the 19 F(gamma,alpha) N-15 reaction are also being presented. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Rehm, KE (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Av, Argonne, IL 60439 USA. EM rehm@anl.gov NR 31 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 337 AR 012006 DI 10.1088/1742-6596/337/1/012006 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear SC Astronomy & Astrophysics; Physics GA BYU54 UT WOS:000300434600006 ER PT J AU Craven-Jones, J Kudenov, MW Dereniak, EL AF Craven-Jones, Julia Kudenov, Michael W. Dereniak, Eustace L. TI Tunable interference contrast using a variable Wollaston prism SO OPTICAL ENGINEERING LA English DT Article DE birefringent interferometer; Fourier transform spectrometer; fringe contrast; sapphire; Wollaston prism AB A Fourier transform spectrometer (FTS) acquires interferogram data for spectral measurements. Conventional FTS instruments incorporate Michelson interferometers. However, limitations of the Michelson for imaging applications have produced interest in alternative interferometer configurations. Common path interferometers, such as birefringent interferometers, offer advantages for remote sensing applications. To ensure the best possible signal-to-noise ratio, the fringe contrast provided by the interferometer should be maximized. Unfortunately some birefringent interferometers, such as those that utilize Wollaston prisms (WPs), require stringent tolerances in order to ensure high fringe contrast across even a modest field of view (FOV). Fabricating an interferometer to meet these tolerances adds fabrication cost and time to the development of an instrument. We present how the introduction of additional birefringent elements into birefringent interferometer can be used to compensate for a decrease in fringe visibility due to manufacturing errors. These components form a variable angle WP (VWP), which can be used to vary the fringe visibility across the FOV. Experimental results confirming the ability of the VWP to vary the fringe visibility of a birefringent interferometer are included. These results are compared to polarization raytrace simulations for the system. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.1.013002] C1 [Craven-Jones, Julia] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kudenov, Michael W.; Dereniak, Eustace L.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Craven-Jones, J (reprint author), Sandia Natl Labs, POB 5800-0406, Albuquerque, NM 87185 USA. EM jcjone@sandia.gov FU Department of Energy, NNSA [NA-22]; State of Arizona TRIF Imaging Student Fellowship FX This work has been supported by the Department of Energy, NNSA NA-22, Dr. Victoria Franques, Program Manager, and a State of Arizona TRIF Imaging Student Fellowship. When this research was performed, J. Craven-Jones was with the College of Optical Sciences, University of Arizona. NR 10 TC 1 Z9 1 U1 1 U2 9 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD JAN PY 2012 VL 51 IS 1 AR 013002 DI 10.1117/1.OE.51.1.013002 PG 7 WC Optics SC Optics GA 896ZV UT WOS:000300611300017 ER PT J AU Simms, LM De Vries, W Riot, V Olivier, SS Pertica, A Bauman, BJ Phillion, D Nikolaev, S AF Simms, Lance M. De Vries, Willem Riot, Vincent Olivier, Scot S. Pertica, Alex Bauman, Brian J. Phillion, Don Nikolaev, Sergei TI Space-based telescopes for actionable refinement of ephemeris pathfinder mission SO OPTICAL ENGINEERING LA English DT Article DE space situational awareness; satellites; space debris; orbital refinement AB The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) program will collect the information needed to help satellite operators avoid collisions in space by using a network of nanosatellites to determine more accurate trajectories for selected space objects orbiting the Earth. In the first phase of the STARE program, two pathfinder cube-satellites (CubeSats) equipped with an optical imaging payload are being developed and deployed to demonstrate the main elements of the STARE concept. We first give an overview of the STARE program. The details of the optical imaging payload for the STARE pathfinder CubeSats are then described, followed by a description of the track detection algorithm that will be used on the images it acquires. Finally, simulation results that highlight the effectiveness of the mission are presented. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.1.011004] C1 [Simms, Lance M.; De Vries, Willem; Riot, Vincent; Olivier, Scot S.; Pertica, Alex; Bauman, Brian J.; Phillion, Don; Nikolaev, Sergei] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Simms, LM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,MS L210, Livermore, CA 94550 USA. EM simms8@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 10 TC 2 Z9 2 U1 0 U2 3 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD JAN PY 2012 VL 51 IS 1 AR 011004 DI 10.1117/1.OE.51.1.011004 PG 12 WC Optics SC Optics GA 896ZV UT WOS:000300611300006 ER PT J AU Hu, JY Ni, XL Feng, X Era, M Elsegood, MRJ Teat, SJ Yamato, T AF Hu, Jian-Yong Ni, Xin-Long Feng, Xing Era, Masanao Elsegood, Mark R. J. Teat, Simon J. Yamato, Takehiko TI Highly emissive hand-shaped pi-conjugated alkynylpyrenes: Synthesis, structures, and photophysical properties SO ORGANIC & BIOMOLECULAR CHEMISTRY LA English DT Article ID LIGHT-EMITTING-DIODES; ORGANIC ELECTRONICS; THIN-FILM; PYRENE DERIVATIVES; OPTICAL-PROPERTIES; BLUE OLEDS; ELECTROLUMINESCENCE; DEVICES; ORGANIZATION; FLUORESCENCE AB Three alkynyl-functionalised, hand-shaped, highly fluorescent and stable emitters, namely, 2-tert-butyl-4,5,7,9,10-pentakis(p-R-phenylethynyl)pyrenes have been successfully synthesized via a Pd/Cu-catalysed Sonogashira cross-coupling reaction. The chemical structures of the alkynylpyrenes were fully characterized by their H-1/C-13 NMR spectra, mass spectroscopy and elemental analysis. Synchrotron single-crystal X-ray analysis revealed that there is a 1-D, slipped, face-to-face motif with off-set, head-to-tail stacked columns, which are clearly influenced by the single, bulky, tert-butyl group in the pyrene ring at the 2-position. Detailed studies on the photophysical properties in both solutions and thin films strongly indicate that they might be promising candidates for optoelectronic applications, such as organic light-emitting devices (OLEDs) or as models for investigating the fluorescent structure-property relationship of the alkynyl-functionalised pyrene derivatives. C1 [Hu, Jian-Yong; Ni, Xin-Long; Feng, Xing; Era, Masanao; Yamato, Takehiko] Saga Univ, Dept Appl Chem, Fac Sci & Engn, Saga 840, Japan. [Hu, Jian-Yong] Yamagata Univ, Dept Organ Device Engn, Yonezawa, Yamagata 9928510, Japan. [Elsegood, Mark R. J.] Univ Loughborough, Dept Chem, Loughborough LE11 3TU, Leics, England. [Teat, Simon J.] Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Hu, JY (reprint author), Saga Univ, Dept Appl Chem, Fac Sci & Engn, Honjo Machi 1, Saga 840, Japan. EM yamatot@cc.saga-u.ac.jp RI Elsegood, Mark/K-1663-2013 OI Elsegood, Mark/0000-0002-8984-4175 FU Office of Science, Office of Basic Energy Science, of the US Department of Energy [DE-AC02-05CH11231] FX This work was performed under the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Science, of the US Department of Energy under Contract No. DE-AC02-05CH11231. We thank Dr Yong-Jin Pu (Department of Organic Device Engineering, Yamagata University) for fruitful discussions. NR 73 TC 15 Z9 15 U1 0 U2 27 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-0520 EI 1477-0539 J9 ORG BIOMOL CHEM JI Org. Biomol. Chem. PY 2012 VL 10 IS 11 BP 2255 EP 2262 DI 10.1039/c2ob06865f PG 8 WC Chemistry, Organic SC Chemistry GA 897NE UT WOS:000300656600012 PM 22307027 ER PT J AU Gallis, MA Torczynski, JR AF Gallis, M. A. Torczynski, J. R. TI Direct simulation Monte Carlo-based expressions for the gas mass flow rate and pressure profile in a microscale tube SO PHYSICS OF FLUIDS LA English DT Article ID LINEARIZED BOLTZMANN-EQUATION; ARBITRARY KNUDSEN NUMBERS; TEMPERATURE-JUMP PROBLEM; RAREFIED-GAS; POISEUILLE FLOW; CYLINDRICAL TUBE; FINITE-LENGTH; LONG TUBE; ACCOMMODATION; CHANNELS AB The direct simulation Monte Carlo (DSMC) method of Bird is used to develop simple closed-form expressions for the mass flow rate and the pressure profile for the steady isothermal flow of an ideal gas through a microscale tube connecting two infinite reservoirs at different pressures but at the temperature of the tube wall. Gas molecules reflect from the tube wall according to the Maxwell model (a linear combination of specular and diffuse reflections at the wall temperature) with a unity or sub-unity value of the accommodation coefficient (the probability that molecules reflect diffusely from the wall). The DSMC-based expressions have four parameters. Two parameters are specified so that the mass flow rate reduces to the known expression in the free-molecular regime. One parameter was previously determined by comparison to DSMC simulations in the slip regime. The remaining parameter is determined by comparison to DSMC simulations for pressures spanning the transition regime with several values of the accommodation coefficient. The expressions for the mass flow rate and the pressure profile agree well with the DSMC simulations (rms and maximum differences of 2% and 5% for all cases examined), with other more complicated expressions and with recent experiments involving microscale tubes and channels for all flow regimes. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3678337] C1 [Gallis, M. A.; Torczynski, J. R.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM magalli@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank R. P. Manginell of Sandia National Laboratories for helpful technical discussions and T. Ewart of the Institut de Mecanique des Fluides de Toulouse for helpful information about his experimental measurements. NR 55 TC 7 Z9 7 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2012 VL 24 IS 1 AR 012005 DI 10.1063/1.3678337 PG 21 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 895WI UT WOS:000300527000013 ER PT J AU Wei, MJ Qawasmeh, BR Barone, M Waanders, BGV Zhou, L AF Wei, Mingjun Qawasmeh, Bashar R. Barone, Matthew Waanders, Bart G. van Bloemen Zhou, Lin TI Low-dimensional model of spatial shear layers SO PHYSICS OF FLUIDS LA English DT Article ID MIXING LAYERS; STABILITY; FLOW; RECONSTRUCTION; TRANSITION; EQUATIONS; SYSTEMS AB The aim of this work is to develop nonlinear low-dimensional models to describe vortex dynamics in spatially developing shear layers with periodicity in time. By allowing a free variable g(x) to dynamically describe downstream thickness spreading, we are able to obtain basis functions in a scaled reference frame and construct effective models with only a few modes in the new space. To apply this modified version of proper orthogonal decomposition (POD)/Galerkin projection, we first scale the flow along y dynamically to match a template function as it is developing downstream. In the scaled space, the first POD mode can capture more than 80% energy for each frequency. However, to construct a Galerkin model, the second POD mode plays a critical role and needs to be included. Finally, a reconstruction equation for the scaling variable g is derived to relate the scaled space to physical space, where downstream spreading of shear thickness occurs. Using only two POD modes at each frequency, our models capture the basic dynamics of shear layers, such as vortex roll-up (from a one-frequency model) and vortex-merging (from a two-frequency model). When arbitrary excitation at different harmonics is added to the model, we can clearly observe the promoting or delaying/eliminating vortex merging events as a result of mode competition, which is commonly demonstrated in experiments and numerical simulations of shear layers. (C) 2012 American Institute of Physics. [doi:10.1063/1.3678016] C1 [Wei, Mingjun; Qawasmeh, Bashar R.; Zhou, Lin] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA. [Barone, Matthew; Waanders, Bart G. van Bloemen] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zhou, Lin] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Peoples R China. RP Wei, MJ (reprint author), New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA. EM mjwei@nmsu.edu RI Wei, Mingjun/C-6905-2012 OI Wei, Mingjun/0000-0001-7757-2355 FU Sandia; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Professor Clancy Rowley for constructive discussion. M.W. and B.Q. also gratefully acknowledge the support from Sandia-University Research Program (SURP). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 30 TC 1 Z9 1 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2012 VL 24 IS 1 AR 014108 DI 10.1063/1.3678016 PG 21 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 895WI UT WOS:000300527000028 ER PT J AU Rodriguez, DF Saul, L Wurz, P Fuselier, SA Funsten, HO McComas, DJ Mobius, E AF Rodriguez M, D. F. Saul, L. Wurz, P. Fuselier, S. A. Funsten, H. O. McComas, D. J. Moebius, E. TI IBEX-Lo observations of energetic neutral hydrogen atoms originating from the lunar surface SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Energetic neutral atoms; ENAs Moon albedo; Solar wind; IBEX-Lo ID INTERSTELLAR BOUNDARY EXPLORER; SCATTERING; MONITOR AB In this paper we present quantitative results of observations of energetic neutral atoms (ENAs) originating from the lunar surface. These ENAs, which are hydrogen atoms, are the result of the solar wind protons being reflected from and neutralised at the surface of the Moon. These measurements were made with IBEX-Lo on NASA's IBEX satellite. From these measurements we derive the energy spectrum of the ENAs, their flux, and the lunar albedo for ENAs (i.e., the ratio of ENAs to the incoming solar wind protons). The energy spectra of the ENAs clearly show that their origin is directly from the solar wind via backscattering, and that they are not sputtered atoms. From several observation periods we derived an average global albedo of A(H)=0.09 +/- 0.05. From the observed energy spectra we derive a generic spectrum for unshielded bodies in the solar wind. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Rodriguez M, D. F.; Saul, L.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Space Phys Dept, Palo Alto, CA 94304 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Moebius, E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Rodriguez, DF (reprint author), Univ Bern, Inst Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. EM diego.rodriguez@space.unibe.ch RI Funsten, Herbert/A-5702-2015; OI Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978 FU IBEX mission as a part of NASA FX We gratefully acknowledge provision of the IBEX data by the IBEX team and IBEX Science Operations Center (ISOC), the IBEX-Lo cross talk matrix by Lee W. Petersen, Uni. New Hampshire, and the IBEX orbits plots by Steve Petrinec. Simulation results of magnetosphere have been provided by the Community Coordinated Modeling Center (CCMC) at Goddard Space Flight Center through their public runs on request system (http://ccmc.gsfc.nasa.gov). The CCMC is a multi-agency partnership between NASA, AFMC, AFOSR, AFRL, AFWA, NOAA, NSF and ONR. The BATSRUS with RCM Model was developed by the Dr. Tamas Gombosi et al. at the CSEM. Solar wind data from the ACE is provided by the SWEPAM team. Work on this study by the U.S. authors was supported by the IBEX mission as a part of NASA's Explorers program. NR 21 TC 10 Z9 10 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JAN PY 2012 VL 60 IS 1 BP 297 EP 303 DI 10.1016/j.pss.2011.09.009 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 895GC UT WOS:000300483200033 ER PT J AU Buttler, WT Lamoreaux, SK Torgerson, JR AF Buttler, William T. Lamoreaux, Steven K. Torgerson, Justin R. TI PRACTICAL FOUR-DIMENSIONAL QUANTUM KEY DISTRIBUTION WITHOUT ENTANGLEMENT SO QUANTUM INFORMATION & COMPUTATION LA English DT Article DE Quantum key distribution; Mutually unbiased bases; four dimensional single photon ID POLARIZED PHOTONS; OPTICAL-FIBER; CRYPTOGRAPHY; SECURITY; DISTANCES; SYSTEMS; PROOF AB We describe a four-dimensional (D = 4) single-photon quantum cryptography protocol with up to twenty (D x (2(2) +1)) possible states generated by a polarization-, phase- and time-encoding transmitter. This protocol can be experimentally realized with existing technology, drawing from time- and polarization-encoded systems. The protocol is error tolerant and has a maximum raw bit rate of two raw bits per detection, which when combined with state detection efficiency yields a qubit rate of up to one per transmission under ideal assumptions, or up to twice the raw bit rate of two-dimensional protocols such as the well-known BB84 protocol. C1 [Buttler, William T.; Torgerson, Justin R.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Lamoreaux, Steven K.] Yale Univ SPL, New Haven, CT 06520 USA. RP Buttler, WT (reprint author), Los Alamos Natl Lab, Div Phys, MS H803, Los Alamos, NM 87545 USA. NR 30 TC 2 Z9 2 U1 0 U2 6 PU RINTON PRESS, INC PI PARAMUS PA 565 EDMUND TERRACE, PARAMUS, NJ 07652 USA SN 1533-7146 J9 QUANTUM INF COMPUT JI Quantum Inform. Comput. PD JAN PY 2012 VL 12 IS 1-2 BP 1 EP 8 PG 8 WC Computer Science, Theory & Methods; Physics, Particles & Fields; Physics, Mathematical SC Computer Science; Physics GA 896AO UT WOS:000300538000001 ER PT S AU Chrenek, MA Dalal, N Gardner, C Grossniklaus, H Jiang, Y Boatright, JH Nickerson, JM AF Chrenek, Micah A. Dalal, Nupur Gardner, Christopher Grossniklaus, Hans Jiang, Yi Boatright, Jeffrey H. Nickerson, John M. BE LaVail, MM Ash, JD Anderson, RE Hollyfield, JG Grimm, C TI Analysis of the RPE Sheet in the rd10 Retinal Degeneration Model SO RETINAL DEGENERATIVE DISEASES SE Advances in Experimental Medicine and Biology LA English DT Article; Book Chapter DE Retinal pigment epithelium; RPE; Morphometrics; rd10; Degeneration; Zona occludens 1 ID ROD CGMP-PHOSPHODIESTERASE; PIGMENT EPITHELIUM; BETA-SUBUNIT; MOUSE C1 [Chrenek, Micah A.; Dalal, Nupur; Gardner, Christopher; Grossniklaus, Hans; Boatright, Jeffrey H.; Nickerson, John M.] Emory Univ, Dept Ophthalmol, Atlanta, GA 30322 USA. [Jiang, Yi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Nickerson, JM (reprint author), Emory Univ, Dept Ophthalmol, 1365B Clifton Rd NE,TEC B5602, Atlanta, GA 30322 USA. EM micah.chrenek@emory.edu; ndalal@lsuhsc.cdu; christopher.gardner@emory.edu; ophtheg@emory.edu; jiang@lanl.gov; litjn@emory.edu; litjn@emory.edu FU NEI NIH HHS [P30 EY006360, P30EY06360, R01 EY014026, R01 EY016470, R01EY014026, R01EY016470, R24 EY017045, R24EY017045] NR 9 TC 12 Z9 12 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0065-2598 BN 978-1-4614-0630-3 J9 ADV EXP MED BIOL JI Adv.Exp.Med.Biol. PY 2012 VL 723 BP 641 EP 647 DI 10.1007/978-1-4614-0631-0_81 D2 10.1007/978-1-4614-0631-0 PG 7 WC Biology; Medicine, Research & Experimental; Ophthalmology SC Life Sciences & Biomedicine - Other Topics; Research & Experimental Medicine; Ophthalmology GA BYQ08 UT WOS:000299709700081 PM 22183388 ER PT J AU Wang, XJ Goswami, M Kumar, R Sumpter, BG Mays, J AF Wang, Xiaojun Goswami, Monojoy Kumar, Rajeev Sumpter, Bobby G. Mays, Jimmy TI Morphologies of block copolymers composed of charged and neutral blocks SO SOFT MATTER LA English DT Review ID POLYMER ELECTROLYTE MEMBRANES; PROTON-EXCHANGE MEMBRANE; IONIC DIBLOCK COPOLYMERS; X-RAY-SCATTERING; SULFONATED POLYSTYRENE-BLOCK-POLY(ETHYLENE-RAN-BUTYLENE)-BLOCK-POLYSTYRENE COPOLYMERS; ABA TRIBLOCK COPOLYMERS; PHASE-BEHAVIOR; TRANSPORT-PROPERTIES; MICROPHASE SEPARATION; RADICAL POLYMERIZATION AB This article reviews current experimental observations and theoretical calculations devoted towards understanding micro-phase separation in charged block copolymer systems. We discuss bulk morphologies in melt and in solution, as well as some of the new emerging research directions. Overall, a comprehensive picture is beginning to emerge on the fundamental role of electrostatics in the micro-phase separation of charged block copolymers. This understanding provides exciting new insight that may be used to direct targeted structures that endow the materials with desired properties that can have tremendous potential in technological applications. C1 [Goswami, Monojoy; Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Wang, Xiaojun; Mays, Jimmy] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Kumar, Rajeev] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.; Mays, Jimmy] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Sumpter, BG (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM sumpterbg@ornl.gov; jimmymays@utk.edu RI Wang, Xiaojun/E-5510-2012; KUMAR, RAJEEV/D-2562-2010; Goswami, Monojoy/G-7943-2012; Sumpter, Bobby/C-9459-2013; Kumar, Rajeev/Q-2255-2015 OI Goswami, Monojoy/0000-0002-4473-4888; Sumpter, Bobby/0000-0001-6341-0355; Kumar, Rajeev/0000-0001-9494-3488 FU US Department of Energy, Basic Energy Sciences, MSE Division; Center for Nanophase Materials Sciences; ORNL by DOE/BES FX This work was supported by the US Department of Energy, Basic Energy Sciences, MSE Division, and in part at the Center for Nanophase Materials Sciences, sponsored at ORNL by DOE/BES. NR 174 TC 34 Z9 34 U1 3 U2 108 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 11 BP 3036 EP 3052 DI 10.1039/c2sm07223h PG 17 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 896MR UT WOS:000300571600001 ER PT J AU Mudalige, TK Sherman, WB AF Mudalige, Thilak Kumara Sherman, William B. TI Atomic force microscopy of arrays of asymmetrical DNA motifs SO SOFT MATTER LA English DT Article ID NUCLEIC-ACID JUNCTIONS; CROSSOVER COMPLEXES; NANOSCALE SHAPES; FOLDING DNA; DESIGN; NANOSTRUCTURES; CONSTRUCTION; NANOTUBES; CRYSTALS; TILES AB DNA can easily be assembled into wide and relatively flat nanostructures that lend themselves to study via Atomic Force Microscopy (AFM). It is often important to know which side of an assembly the AFM is imaging. This is particularly crucial for characterizing nanomachines, where the movement must be measured relative to fiducial features visible to the AFM. We have developed a cheap and simple technique for building DNA arrays with distinguishable sides, a technique requiring 10 or fewer strands - dozens or hundreds of strands fewer than used for these purposes previously. Our approach involves constructing arrays out of DNA tiles that have low apparent symmetry when imaged via AFM. We have surveyed the effects of varying degrees of motif asymmetry in AFM micrographs. Even at resolutions where the individual tiles cannot be resolved (either because of sub-optimal tip quality, or very gentle tapping by the AFM tip) the larger scale features of the arrays have predictable structures that allow the determination of which side of the array is facing up. We have used this information to verify that DNA hairpins attached to either the up-or down-facing side of an array on mica can be detected in AFM height scans. We have also characterized differences in appearance between hairpins attached to different sides of the arrays. C1 [Mudalige, Thilak Kumara; Sherman, William B.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sherman, WB (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM sherman@mailaps.org FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank Dmytro Nykypanchuk for his assistance with the early AFM images, and Erik Winfree and Alexei Tkachenko for helpful discussions. Research carried out in whole at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 54 TC 1 Z9 1 U1 1 U2 13 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 11 BP 3094 EP 3104 DI 10.1039/c2sm07205j PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 896MR UT WOS:000300571600009 ER PT J AU Fraboni, B Scida, A Cavallini, A Milita, S Cosseddu, P Bonfiglio, A Wang, Y Nastasi, M AF Fraboni, B. Scida, A. Cavallini, A. Milita, S. Cosseddu, P. Bonfiglio, A. Wang, Y. Nastasi, M. TI Photocurrent spectroscopy of ion-implanted organic thin film transistors SO SYNTHETIC METALS LA English DT Article; Proceedings Paper CT Symposium N on Controlling and Characterising the Structure of Organic Semiconductor Films/Spring Meeting of the European-Material-Research-Society (E-MRS) CY MAY 09-13, 2011 CL Nice, FRANCE SP European Mat Res Soc (E-MRS) DE Organic thin film transistor; Density of electronic states distribution; Ion implantation ID FIELD-EFFECT TRANSISTORS; PENTACENE FILMS; MOBILITY AB In this paper we investigate the distribution of the electrically available states near the band-edge in pentacene thin films of different thicknesses, aiming to the identification of the active thickness of pentacene layers in fully operational devices such as organic thin film transistors (OTFTs). The film structure has been studied by X-ray diffraction technique, while their relative electronic density of states distribution (DOS) around the band-edge has been investigated by photocurrent (PC) spectroscopy analyses. The effects of ion implantation on OTFTs have been investigated by PC analyses of OTFTs implanted with N+ ions of different energy and doses. We show how PC spectroscopy has the remarkable ability to detect modifications of the DOS distribution in a non invasive way, thus allowing the direct study of the active semiconductor film in fully operational OTFTs. (C) 2011 Elsevier B.V. All rights reserved. C1 [Fraboni, B.; Scida, A.; Cavallini, A.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy. [Milita, S.] CNR IMM, I-40129 Bologna, Italy. [Cosseddu, P.; Bonfiglio, A.] Univ Cagliari, Dipartimento Ingn Elettr & Elettron, I-09123 Cagliari, Italy. [Cosseddu, P.; Bonfiglio, A.] CNR IMM S3, I-41100 Modena, Italy. [Wang, Y.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fraboni, B (reprint author), Univ Bologna, Dipartimento Fis, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. EM beatrice.fraboni@unibo.it RI Fraboni, Beatrice/I-8356-2012; Bonfiglio, Annalisa/J-7232-2012; Milita, Silvia/A-6048-2015; OI Milita, Silvia/0000-0002-9612-2541; COSSEDDU, Piero/0000-0003-4896-504X NR 18 TC 2 Z9 2 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD JAN PY 2012 VL 161 IS 23-24 BP 2585 EP 2588 DI 10.1016/j.synthmet.2011.09.017 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 897MB UT WOS:000300653700016 ER PT S AU Li, XY Biggin, MD AF Li, Xiao-Yong Biggin, Mark D. BE Vancura, A TI Genome-Wide In Vivo Cross-linking of Sequence-Specific Transcription Factors SO TRANSCRIPTIONAL REGULATION: METHODS AND PROTOCOLS SE Methods in Molecular Biology LA English DT Article; Book Chapter DE In vivo cross-linking; Sequence-specific transcription factors; ChIP-chip; Chip-seq ID CHIP-SEQ DATA; DNA-BINDING; CHROMATIN IMMUNOPRECIPITATION; PROTEINS; REGIONS; THOUSANDS; SYSTEM; SITES; MODEL AB Immunoprecipitation of cross-linked chromatin in. combination with microarrays (ChIP-chip) or ultra high-throughput sequencing (ChIP-seq) is widely used to map genome-wide in vivo transcription factor binding. Both methods employ initial steps of in vivo cross-linking, chromatin isolation, DNA fragmentation, and immunoprecipitation. For ChIP-chip, the immunoprecipitated DNA samples are then amplified, labeled, and hybridized to DNA microarrays. For ChIP-seq, the immunoprecipitated DNA is prepared for a sequencing library, and then the library DNA fragments are sequenced using ultra high-throughput sequencing platform. The protocols described here have been developed for ChIP-chip and ChIP-seq analysis of sequence-specific transcription factor binding in Drosophila embryos. A series of controls establish that these protocols have high sensitivity and reproducibility and provide a quantitative measure of relative transcription factor occupancy. The quantitative nature of the assay is important because regulatory transcription factors bind to highly overlapping sets of thousands of genomic regions and the unique regulatory specificity of each factor is determined by relative moderate differences in occupancy between factors at commonly bound regions. C1 [Li, Xiao-Yong; Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Li, XY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. NR 28 TC 4 Z9 4 U1 0 U2 2 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-61779-375-2 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2012 VL 809 BP 3 EP 26 DI 10.1007/978-1-61779-376-9_1 D2 10.1007/978-1-61779-376-9 PG 24 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA BYQ02 UT WOS:000299709100001 PM 22113265 ER PT S AU Serkland, DK Geib, KM Peake, GM Keeler, GA Hsu, AY AF Serkland, Darwin K. Geib, Kent M. Peake, Gregory M. Keeler, Gordon A. Hsu, Alan Y. BE Lei, C Choquette, KD TI 850-nm VCSELs optimized for cryogenic data transmission SO VERTICAL-CAVITY SURFACE-EMITTING LASERS XVI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Vertical-Cavity Surface-Emitting Lasers XVI (VCSELs)/SPIE Photonics West Symposium CY JAN 25-26, 2012 CL San Francisco, CA SP SPIE DE VCSEL; vertical-cavity surface-emitting laser; optical interconnects; cryogenic sensors; optical transmitters ID QUANTUM-WELLS AB We report on the development of 850-nm high-speed VCSELs optimized for low-power data transmission at cryogenic temperatures near 100 K. These VCSELs operate on the n=1 quantum well transition at cryogenic temperatures (near 100 K) and on the n=2 transition at room temperature (near 300 K) such that cryogenic cooling is not required for initial testing of the optical interconnects at room temperature. Relative to previous work at 950 nm, the shorter 850-nm wavelength of these VCSELs makes them compatible with high-speed receivers that employ GaAs photodiodes. C1 [Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Keeler, Gordon A.; Hsu, Alan Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Serkland, DK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM DKSERKL@sandia.gov NR 4 TC 1 Z9 1 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-919-7 J9 PROC SPIE PY 2012 VL 8276 AR 82760S DI 10.1117/12.909590 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BYT88 UT WOS:000300250900026 ER PT J AU Grzenia, DL Wickramasinghe, SR Schell, DJ AF Grzenia, David L. Wickramasinghe, S. Ranil Schell, Daniel J. TI Fermentation of Reactive-Membrane-Extracted and Ammonium-Hydroxide-Conditioned Dilute-Acid-Pretreated Corn Stover SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Pretreatment; Bioethanol; Membrane; Extraction; Fermentation ID REDUCING SOLVENT TOXICITY; ACETIC-ACID; ETHANOL; HYDROLYSATE; HEMICELLULOSE; REMOVAL; NANOFILTRATION; STRATEGIES; BIOETHANOL; BIOMASS AB Acid-pretreated biomass contains various compounds (acetic acid, etc.) that are inhibitory to fermentative microorganisms. Removing or deactivating these compounds using detoxification methods such as overliming or ammonium hydroxide conditioning (AHC) improves sugar-to-ethanol yields. In this study, we treated the liquor fraction of dilute-acid-pretreated corn stover using AHC and a new reactive membrane extraction technique, both separately and in combination, and then the sugars in the treated liquors were fermented to ethanol with the glucose-xylose-fermenting bacterium, Zymomonas mobilis 8b. We performed reactive extraction with mixtures of octanol/Alamine 336 or oleyl alcohol/Alamine 336. The best ethanol yields and rates were achieved for oleyl alcohol-extracted hydrolysates followed by AHC hydrolysates, while octanol-extracted hydrolysates were unfermentable because highly toxic octanol was found in the hydrolysate. Adding olive oil significantly improved yields for octanol-extracted hydrolysate. Additional work is underway to determine if this technology is a cost-effective alternative to traditional hydrolysate conditioning processes. C1 [Schell, Daniel J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Grzenia, David L.] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA. [Wickramasinghe, S. Ranil] Univ Arkansas, Dept Chem Engn, Fayetteville, AR 72701 USA. RP Schell, DJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM dan.schell@nrel.gov FU US Department of Energy's Office of the Biomass Program; National Renewable Energy Laboratory [KXDJ-0-30622-02, ZFT-8-88524-01] FX Funding for this work was provided by the US Department of Energy's Office of the Biomass Program. Funding for Colorado State University was provided by subcontracts with the National Renewable Energy Laboratory (KXDJ-0-30622-02, ZFT-8-88524-01). We wish to thank Ali Mohagheghi and Gary McMillen for help with the detoxification and fermentation processes. NR 29 TC 5 Z9 5 U1 1 U2 11 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD JAN PY 2012 VL 166 IS 2 BP 470 EP 478 DI 10.1007/s12010-011-9442-5 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 892OR UT WOS:000300296000019 PM 22161211 ER PT J AU Laursen, TA Puso, MA Sanders, J AF Laursen, Tod A. Puso, Michael A. Sanders, Jessica TI Mortar contact formulations for deformable-deformable contact: Past contributions and new extensions for enriched and embedded interface formulations SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Contact; Mortar formulations; Interface; Stabilization ID FINITE-ELEMENT-METHOD; ELASTICITY; STRATEGY AB The past 10-15 years have seen important extensions of the mortar method, a technique for joining dissimilar grids popularized by the domain decomposition community, to the more general problem of contact and impact interactions in finite element analysis. This development has taken place largely in response to several long-standing problems in computational contact mechanics: lack of robustness in solution of the nonlinear and nonsmooth equations of evolution: degradation of spatial convergence rates in problems involving nonconforming meshes on interfaces; lack of a variationally consistent technique for stress recovery on interfaces; and so on. This survey paper summarizes some of the major steps in development of mortar contact formulations. It begins with a basic summary of the mortaring idea in the context of tied contact, it discusses key concepts required for the extension of these methods to large deformation, large sliding formulations of contact-impact, and it previews new results where lessons learned from mortar contact formulations can be extended to a much broader class of interface mechanics applications, considering in particular enriched interface formulations and embedded interface approaches to fluid-structure interaction. (C) 2010 Elsevier B.V. All rights reserved. C1 [Laursen, Tod A.] Khalifa Univ Sci Technol & Res KUSTAR, Abu Dhabi, U Arab Emirates. [Puso, Michael A.] Lawrence Livermore Natl Lab, Methods Dev Grp, Livermore, CA 94550 USA. [Sanders, Jessica] Duke Univ, Pratt Sch Engn, Duke Computat Mech Lab, Durham, NC 27706 USA. RP Laursen, TA (reprint author), Khalifa Univ, Presidents Off, POB 127788, Abu Dhabi, U Arab Emirates. EM laursen@duke.edu; puso1@llnl.gov; jessica.sanders@duke.edu OI Laursen, Tod/0000-0003-4704-7730 FU Air Force Office of Scientific Research [FA9550-06-1-0108]; Department of Energy; Lawrence Livermore National Laboratory; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to acknowledge the support of the Air Force Office of Scientific Research Grant FA9550-06-1-0108, the Department of Energy, and Lawrence Livermore National Laboratory. The work of M.A. Puso was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 37 TC 17 Z9 17 U1 0 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PY 2012 VL 205 SI SI BP 3 EP 15 DI 10.1016/j.cma.2010.09.006 PG 13 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA 890FI UT WOS:000300130100002 ER PT J AU Konidaris, KF Polyzou, CD Kostakis, GE Tasiopoulos, AJ Roubeau, O Teat, SJ Manessi-Zoupa, E Powell, AK Perlepes, SP AF Konidaris, Konstantis F. Polyzou, Christina D. Kostakis, George E. Tasiopoulos, Anastasios J. Roubeau, Olivier Teat, Simon J. Manessi-Zoupa, Evy Powell, Annie K. Perlepes, Spyros P. TI Metal ion-assisted transformations of 2-pyridinealdoxime and hexafluorophosphate SO DALTON TRANSACTIONS LA English DT Article ID COORDINATION POLYMERS; CARBOXYLATE CHEMISTRY; COMPLEXES; LIGANDS; OXIME; REARRANGEMENT; HYDROLYSIS; DINUCLEAR; AMIDES; TETRANUCLEAR AB Metal-ion mediated reactions of 2-pyridinealdoxime and hexafluorophosphate lead to Zn-II complexes containing picolinic acid, picolinamide and monofluorophosphate (-2) as ligands. C1 [Konidaris, Konstantis F.; Polyzou, Christina D.; Kostakis, George E.; Powell, Annie K.] Karlsruhe Inst Technol, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany. [Polyzou, Christina D.; Manessi-Zoupa, Evy; Perlepes, Spyros P.] Univ Patras, Dept Chem, Patras 26504, Greece. [Tasiopoulos, Anastasios J.] Univ Cyprus, Dept Chem, CY-1678 Nicosia, Cyprus. [Roubeau, Olivier] Univ Zaragoza, Fac Ciencias, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Perlepes, Spyros P.] Fdn Res & Technol Hellas FORTH ICE HT, Inst Chem Engn & High Temp Chem Proc, GR-26504 Patras, Greece. RP Powell, AK (reprint author), Karlsruhe Inst Technol, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. EM annie.powell@kit.edu; perlepes@patreas.upatras.gr RI Kostakis, George/J-2066-2012; Roubeau, Olivier/A-6839-2010; Powell, Annie/B-8665-2012; OI Kostakis, George/0000-0002-4316-4369; Roubeau, Olivier/0000-0003-2095-5843; Powell, Annie/0000-0003-3944-7427; Tasiopoulos, Anastasios/0000-0002-4804-3822; Konidaris, Konstantis/0000-0002-7366-5682 FU DFG [SFB/TRR 88]; University of Patras; Karlsruhe and Alexander Onassis Public Benefit Foundation [G ZG 034/2010-2011]; Research Committee of the University of Patras [C584]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX S.P.P thanks the DFG-funded transregional collaborative research center SFB/TRR 88 "3MET" for support. C.D.P gratefully acknowledges University of Patras for an Erasmus Placement fellowship during her work in Karlsruhe and Alexander Onassis Public Benefit Foundation for a MSc fellowship (G ZG 034/2010-2011). E.M.-Z thanks the Research Committee of the University of Patras for financial support (C. Caratheodory Program, Grant 2008, C584). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank Prof. V. Nastopoulos for helpful discussions. NR 37 TC 19 Z9 19 U1 2 U2 4 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2012 VL 41 IS 10 BP 2862 EP 2865 DI 10.1039/c1dt11881a PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 894QZ UT WOS:000300443000002 PM 22119853 ER PT J AU Poineau, F Forster, PM Todorova, TK Gagliardi, L Sattelberger, AP Czerwinski, KR AF Poineau, Frederic Forster, Paul M. Todorova, Tanya K. Gagliardi, Laura Sattelberger, Alfred P. Czerwinski, Kenneth R. TI Multi-configurational quantum chemical studies of the Tc2X8n- (X = Cl, Br; n=2, 3) anions. Crystallographic structure of octabromoditechnetate(3(-)) SO DALTON TRANSACTIONS LA English DT Article ID OCTACHLORODITECHNETATE; COMPLEXES; ORDERS; ION; NP; PU AB The [Cs(2 + x)][H3O(1 -x)]Tc2Br8 center dot 4.6H(2)O (x = 0.221) salt has been synthesized and characterized by single crystal XRD. Multi-configurational quantum chemical calculations on Tc2X8n- (X = Cl, Br; n = 2, 3) have been performed and indicate the p component in the Tc-Tc bond to be stronger for n = 3. C1 [Poineau, Frederic; Forster, Paul M.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.] Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA. [Todorova, Tanya K.] Ecole Polytech Fed Lausanne, Lab Computat Mol Design, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland. [Gagliardi, Laura] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Gagliardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA. RP Poineau, F (reprint author), Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA. EM poineauf@unlv.nevada.edu RI Todorova, Tanya/M-1849-2013; OI Todorova, Tanya/0000-0002-7731-6498; Forster, Paul/0000-0003-3319-4238 FU US Department of Energy [0089445, DE-AC07-05ID14517]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-05CH11231, DE-SC002183]; University of Minnesota Supercomputing Institute FX Funding for this research was provided by a subcontract through Battelle 0089445 from the US Department of Energy, agreement no.: DE-AC07-05ID14517. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-05CH11231 and Contract No. DE-SC002183 (LG) and the University of Minnesota Supercomputing Institute. NR 23 TC 11 Z9 11 U1 0 U2 1 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PY 2012 VL 41 IS 10 BP 2869 EP 2872 DI 10.1039/c2dt11952h PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 894QZ UT WOS:000300443000004 PM 22258182 ER PT J AU Baturina, TI Postolova, SV Mironov, AY Glatz, A Baklanov, MR Vinokur, VM AF Baturina, T. I. Postolova, S. V. Mironov, A. Yu. Glatz, A. Baklanov, M. R. Vinokur, V. M. TI Superconducting phase transitions in ultrathin TiN films SO EPL LA English DT Article ID KOSTERLITZ-THOULESS TRANSITION; ELECTRON INELASTIC-SCATTERING; ANTIVORTEX PAIR DISSOCIATION; THIN-FILM; 2-DIMENSIONAL SUPERCONDUCTOR; INSULATOR TRANSITION; ALUMINUM FILMS; CRITICAL DISORDER; COULOMB-GAS; FLUCTUATION AB Building on the complete account of quantum contributions to conductivity, we demonstrate that the resistance of thin superconducting films exhibits a non-monotonic temperature behaviour due to the competition between weak localization, electron-electron interaction, and superconducting fluctuations. We show that superconducting fluctuations give rise to an appreciable decrease in the resistance even at temperatures well exceeding the superconducting transition temperature, T-c, with this decrease being dominated by the Maki-Thompson process. The transition to a global phase-coherent superconducting state occurs via the Berezinskii-Kosterlitz-Thouless (BKT) transition, which we observe both by power-law behaviour in current-voltage characteristics and by flux flow transport in the magnetic field. The ratio T-BKT/T-c follows the universal relation. Copyright (C) EPLA, 2012 C1 [Baturina, T. I.; Postolova, S. V.; Mironov, A. Yu.] AV Rzhanov Inst Semicond Phys SB RAS, Novosibirsk 630090, Russia. [Baturina, T. I.; Glatz, A.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Baklanov, M. R.] IMEC, B-3001 Louvain, Belgium. RP Baturina, TI (reprint author), AV Rzhanov Inst Semicond Phys SB RAS, 13 Lavrentjev Ave, Novosibirsk 630090, Russia. EM tatbat@isp.nsc.ru FU Russian Academy of Sciences; Russian Foundation for Basic Research [09-02-01205]; U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX This research is supported by the Program "Quantum Physics of Condensed Matter" of the Russian Academy of Sciences, by the Russian Foundation for Basic Research (Grant No. 09-02-01205), and by the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357. NR 47 TC 24 Z9 24 U1 1 U2 36 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JAN PY 2012 VL 97 IS 1 AR 17012 DI 10.1209/0295-5075/97/17012 PG 6 WC Physics, Multidisciplinary SC Physics GA 891XT UT WOS:000300250800043 ER PT J AU Rupert, BL Cherepy, NJ Sturm, BW Sanner, RD Payne, SA AF Rupert, B. L. Cherepy, N. J. Sturm, B. W. Sanner, R. D. Payne, S. A. TI Bismuth-loaded plastic scintillators for gamma-ray spectroscopy SO EPL LA English DT Article ID ORGANOMETALLIC COMPOUNDS; RADIATION AB Polyvinylcarbazole polymer scintillators with high loading of a bismuth organometallic exhibit good light yields, and are found to be capable of gamma-ray spectroscopy. When activated by a standard fluor, diphenylanthracene, a bismuth-loaded polymer produces similar to 12000 photons/MeV, exhibits an emission maximum at 420 nm, a similar to 15 ns decay, and energy resolution of 9% at 662 keV is measured. The same bismuth-loaded polymer doped with an iridium complex fluor has an emission maximum of 500 nm, a decay time of 1.2 mu s, a light yield of similar to 30000 photons/MeV, and energy resolution better than 7% FWHM at 662 keV. Copyright (C) EPLA, 2012 C1 [Rupert, B. L.; Cherepy, N. J.; Sturm, B. W.; Sanner, R. D.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Rupert, BL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM cherepy1@llnl.gov RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22) of the U.S. Department of Energy [DE-AC03-76SF00098]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22) of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 8 TC 25 Z9 25 U1 1 U2 16 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JAN PY 2012 VL 97 IS 2 AR 22002 DI 10.1209/0295-5075/97/22002 PG 4 WC Physics, Multidisciplinary SC Physics GA 892AP UT WOS:000300259100018 ER PT J AU Tsvelik, AM AF Tsvelik, A. M. TI Riding a wild horse: Majorana fermions interacting with solitons of fast bosonic fields SO EPL LA English DT Article ID MODEL AB I consider a class of one-dimensional models where Majorana fermions interact with bosonic fields. Contrary to a more familiar situation where bosonic degrees of freedom are phonons and as such form a slow subsystem, I consider fast bosons. Such situation exists when the bosonic modes appear as collective excitations of interacting electrons as, for instance, in superconductors or carbon nanotubes. It is shown that an entire new class of excitations emerge, namely bound states of solitons and Majorana fermions. The latter bound states are not topological and their existence and number depend on the interactions and the soliton's velocity. Intriguingly the number of bound states increases with the soliton's velocity. Copyright (C) EPLA, 2012 C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM tsvelik@bnl.gov FU US DOE [DE-AC02 -98 CH 10886] FX I am grateful to A. NERSESYAN and R. KONIK for interesting discussions. AMT was supported by US DOE under contract No. DE-AC02 -98 CH 10886. NR 9 TC 4 Z9 4 U1 1 U2 1 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JAN PY 2012 VL 97 IS 1 AR 17011 DI 10.1209/0295-5075/97/17011 PG 5 WC Physics, Multidisciplinary SC Physics GA 891XT UT WOS:000300250800042 ER PT S AU Ogawa, N Biggin, MD AF Ogawa, Nobuo Biggin, Mark D. BE Deplancke, B Gheldof, N TI High-Throughput SELEX Determination of DNA Sequences Bound by Transcription Factors In Vitro SO GENE REGULATORY NETWORKS: METHODS AND PROTOCOLS SE Methods in Molecular Biology LA English DT Article; Book Chapter DE Transcription factor; SELEX; DNA-binding sequence; In vitro assay ID BINDING; ENHANCERS AB SELEX (systematic evolution of ligands by exponential enrichment) was created 20 years ago as a method to enrich small populations of bound DNAs from a random sequence pool by Pat amplification. It provides a powerful way to determine the in vitro binding specificities of DNA-binding proteins such as transcription factors. Here, we present a robust version of the SELEX protocol for high-throughput analysis. Protein-bound beads prepared from insoluble recombinant 6x HIS-tagged transcription factor protein are used in a simple pull-down assay. To allow efficient determination of the enriched DNA sequences, bound oligonucleotides are concatenated, allowing approximately 1,000 oligonucleotides to be sequenced from one 96-well format plate. Successive rounds of SELEX data are statistically useful for understanding the full range of moderate affinity and high-affinity binding sites. C1 [Ogawa, Nobuo; Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Ogawa, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. FU NIGMS NIH HHS [GM704403] NR 14 TC 5 Z9 5 U1 0 U2 4 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-61779-291-5 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2012 VL 786 BP 51 EP 63 DI 10.1007/978-1-61779-292-2_3 D2 10.1007/978-1-61779-292-2 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA BYM15 UT WOS:000299299900003 PM 21938619 ER PT J AU Kao, DL Wong, PC AF Kao, David L. Wong, Pak C. TI Special issue of selected papers from visualization and data analysis 2011 SO INFORMATION VISUALIZATION LA English DT Editorial Material C1 [Kao, David L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wong, Pak C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kao, DL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1473-8716 J9 INFORM VISUAL JI Inf. Vis. PD JAN PY 2012 VL 11 IS 1 SI SI BP 3 EP 4 DI 10.1177/1473871611431117 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 892FI UT WOS:000300271700001 ER PT J AU Lereu, AL Passian, A Dumas, P AF Lereu, A. L. Passian, A. Dumas, Ph TI Near field optical microscopy: a brief review SO INTERNATIONAL JOURNAL OF NANOTECHNOLOGY LA English DT Article DE near field optical microscopy; nanoantennas; plasmons ID SINGLE-MOLECULE FLUORESCENCE; SURFACE-PLASMON INTERFERENCE; SHEAR-FORCE; APERTURE PROBES; FAR-FIELD; RESOLUTION; ANTENNAS; FABRICATION; EMISSION; LIGHT AB Near Field Optical Microscopy (NSOM) has evolved into a mature member of the family of scanning probe microscopy. In this article, we briefly go over the principle of NSOM, its breakthroughs and setbacks. We will describe some of the most commonly used NSOM modalities and conclude with the recent advances based on optical nanoantennas. We will then highlight the potential of this high-resolution optical microscopy for chemical and biological applications as well as for materials sciences. C1 [Lereu, A. L.; Dumas, Ph] CINaM CNRS, F-13288 Marseille, France. [Passian, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Passian, A.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Lereu, AL (reprint author), CINaM CNRS, Campus Luminy, F-13288 Marseille, France. EM lereu@cinam.univ-mrs.fr; passianan@ornl.gov; dumas@cinam.univ-mrs.fr RI Lereu, Aude/P-6414-2016 OI Lereu, Aude/0000-0001-7390-7832 FU CNRS; C Nano PACA; US DOE [DE-AC05-00OR22725] FX A.L. Lereu and Ph. Dumas want to acknowledge the program "Interface physique, biologie et chimie: soutien a la prise de risque" from the CNRS and the C Nano PACA program for their financial supports. A. Passian would like to acknowledge the Laboratory Directed Research and Development (LDRD) Program of ORNL. ORNL is managed by UT-Battelle, LLC, for the US DOE under contract DE-AC05-00OR22725. NR 73 TC 8 Z9 8 U1 5 U2 54 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 896, CH-1215 GENEVA, SWITZERLAND SN 1475-7435 J9 INT J NANOTECHNOL JI Int. J. Nanotechnol. PY 2012 VL 9 IS 3-7 BP 488 EP 501 DI 10.1504/IJNT.2012.045353 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 894AX UT WOS:000300400400022 ER PT J AU Carado, AJ Quarles, CD Duffin, AM Barinaga, CJ Russo, RE Marcus, RK Eiden, GC Koppenaal, DW AF Carado, Anthony J. Quarles, C. Derrick, Jr. Duffin, Andrew M. Barinaga, Charles J. Russo, Richard E. Marcus, R. Kenneth Eiden, Gregory C. Koppenaal, David W. TI Femtosecond laser ablation particle introduction to a liquid sampling-atmospheric pressure glow discharge ionization source SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID PLASMA-MASS SPECTROMETRY; ICP-MS MEASUREMENTS; PERFORMANCE; COLLISION AB This work describes the use of a compact, liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source to ionize metal particles within a laser ablation aerosol. Mass analysis was performed with a Thermo Scientific Exactive Mass Spectrometer which utilizes an orbitrap mass analyzer capable of producing mass resolution exceeding m/Delta m > 160,000. The LS-APGD source generates a low-power plasma between the surface of an electrolytic solution flowing at several mu l min(-1) through a fused silica capillary and a counter electrode consisting of a stainless steel capillary employed to deliver the laser ablation particles into the plasma. Sample particles of approximately 100 nm were generated with an Applied Spectra femtosecond laser located remotely and transported through 25 meters of polyurethane tubing by means of argon carrier gas. Samples consisted of an oxygen free copper shard, a disk of solder, and a one-cent U.S. coin. Analyte signal onset was readily detectable relative to the background signal produced by the carrier gas alone. The high mass resolution capability of the orbitrap mass spectrometer was demonstrated on the solder sample with resolution exceeding 90,000 for Pb and 160,000 for Cu. In addition, results from a laser ablation depth-profiling experiment of a one cent coin revealed retention of the relative locations of the similar to 10 mu m copper cladding and zinc rich bulk layers. C1 [Carado, Anthony J.; Duffin, Andrew M.; Barinaga, Charles J.; Eiden, Gregory C.; Koppenaal, David W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Quarles, C. Derrick, Jr.; Marcus, R. Kenneth] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Koppenaal, DW (reprint author), Pacific NW Natl Lab, Battelle Blvd, Richland, WA 99352 USA. FU US DOE by Batelle Memorial Institute [DE-AC06-76RLO-1830]; U.S. Department of Energy's Office of Biological and Environmental Research (BER); DOE Office of Non-Proliferation Research and Engineering [NA22] FX This work was performed at Pacific Northwest National Laboratory, operated for the US DOE by Batelle Memorial Institute under Contract DE-AC06-76RLO-1830. The Exactive MS capability was provided by the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research (BER) program. Support for this work was provided by the DOE Office of Non-Proliferation Research and Engineering (NA22). NR 22 TC 13 Z9 13 U1 2 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2012 VL 27 IS 3 BP 385 EP 389 DI 10.1039/c2ja10331a PG 5 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 892WL UT WOS:000300316200001 ER PT J AU Zhang, XL Ting, K Pathmanathan, D Ko, T Chen, WW Chen, F Lee, HF James, AW Siu, RK Shen, J Culiat, CT Soo, C AF Zhang, Xinli Ting, Kang Pathmanathan, Dharmini Ko, Theodore Chen, Weiwei Chen, Feng Lee, Haofu James, Aaron W. Siu, Ronald K. Shen, Jia Culiat, Cymbeline T. Soo, Chia TI Calvarial Cleidocraniodysplasia-Like Defects With ENU-Induced Nell-1 Deficiency SO JOURNAL OF CRANIOFACIAL SURGERY LA English DT Article DE Runx2; membranous bone; Sox9; endochondral bone ID OSTEOBLAST DIFFERENTIATION; BONE-FORMATION; EXPRESSION; CELLS; RUNX2; GENE; CBFA1; MICE; CRANIOSYNOSTOSIS; PROTEINS AB Nell-1, first identified by its overexpression in synostotic cranial sutures, is a novel osteoinductive growth and differentiation factor. To further define Nell-1's role in craniofacial patterning, we characterized defects of the ENU-induced Nell-1-deficient (END) mice, focusing on both intramembranous and endochondral cranial bones. Results showed that calvarial bones of neonatal END mice were reduced in thickness and density, with a phenotype resembling calvarial cleidocraniodysplasia. In addition, a global reduction in osteoblast markers was observed, including reductions in Runx2, alkaline phosphatase, and osteocalcin. Remarkably, detailed analysis of endochondral bones showed dysplasia as well. The chondrocranium in the END mouse showed enrichment for early, proliferating Sox9(+) chondrocytes, whereas in contrast markers of chondrocytes maturation were reduced. These data suggest that Nell-1 is an important growth factor for regulation of osteochondral differentiation, by regulating both Runx2 and Sox9 expression within the calvarium. In summary, Nell-1 is required for normal craniofacial membranous and endochondral skeletal development. C1 [Zhang, Xinli; Ting, Kang; Chen, Weiwei; Chen, Feng; James, Aaron W.; Shen, Jia] Univ Calif Los Angeles, Sch Dent, Dent & Craniofacial Res Inst, Los Angeles, CA 90095 USA. [Zhang, Xinli; Ting, Kang; Pathmanathan, Dharmini; Ko, Theodore; Lee, Haofu] Univ Calif Los Angeles, Sch Dent, Sect Orthodont, Los Angeles, CA 90095 USA. [Ting, Kang; Soo, Chia] Univ Calif Los Angeles, Orthopaed Hosp, Dept Orthoped Surg, Los Angeles, CA 90095 USA. [Ting, Kang; Soo, Chia] Univ Calif Los Angeles, Orthopaed Hosp, Res Ctr, Los Angeles, CA 90095 USA. [Siu, Ronald K.] Univ Calif Los Angeles, Sch Engn, Dept Bioengn, Los Angeles, CA 90095 USA. [Culiat, Cymbeline T.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Ting, K (reprint author), Univ Calif Los Angeles, Sch Dent, Dent & Craniofacial Res Inst, Le Conte Ave,CHS 30-117, Los Angeles, CA 90095 USA. EM kting@dentistry.ucla.edu FU NIH/NIDCR [R21 DE0177711, RO1 DE01607]; UC [07-10677]; Thomas R. Bales Endowed Chair FX This work was supported by the NIH/NIDCR (grants R21 DE0177711 and RO1 DE01607), UC Discovery Grant 07-10677, and the Thomas R. Bales Endowed Chair. NR 28 TC 10 Z9 11 U1 0 U2 7 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1049-2275 J9 J CRANIOFAC SURG JI J. Craniofac. Surg. PD JAN PY 2012 VL 23 IS 1 BP 61 EP 66 DI 10.1097/SCS.0b013e318240c8c4 PG 6 WC Surgery SC Surgery GA 891RS UT WOS:000300234900040 PM 22337375 ER PT J AU Carcelen, V Kim, KH Camarda, GS Bolotnikov, AE Hossain, A Yang, G Crocco, J Bensalah, H Dierre, F Dieguez, E James, RB AF Carcelen, V. Kim, K. H. Camarda, G. S. Bolotnikov, A. E. Hossain, A. Yang, G. Crocco, J. Bensalah, H. Dierre, F. Dieguez, E. James, R. B. TI Pt coldfinger improves quality of Bridgman-grown Cd0.9Zn0.1Te:Bi crystals SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Crystal structure; Bridgman technique; Cadmium compounds; Semiconducting II-VI materials ID CADMIUM ZINC TELLURIDE; SOLID-LIQUID INTERFACE; CDZNTE CRYSTALS; CDTE; DETECTORS; SHAPE; FURNACE; SYSTEM AB Cadmium zinc telluride (Cd1-xZnxTe) crystals have many applications in optoelectronics and as room-temperature detectors. We grew bismuth-doped CZT crystals by the standard Bridgman Oscillation Method, and compared them with such crystals grown in the thermal environment of a furnace modified with a Pt coldfinger (metal rod). The coldfinger serves as a tool for stabilizing the solid-liquid interface by extracting heat from the as-grown crystal, and thereby improving the ingot's crystalline quality. We detailed the crystal's quality via high-resolution X-ray diffraction (HRXRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Synchrotron-based X-ray microfluorescence (mu SXRF) images, as well as by etch-pit density (EPD) measurements. Our results demonstrated that the Pt coldfinger is an effective tool for improving the quality of CZT bulk material. (C) 2011 Elsevier B.V. All rights reserved. C1 [Carcelen, V.; Crocco, J.; Bensalah, H.; Dierre, F.; Dieguez, E.] Univ Autonoma Madrid, Dept Mat Phys, Crystal Growth Lab, Fac Ciencias, E-28049 Madrid, Spain. [Carcelen, V.; Kim, K. H.; Camarda, G. S.; Bolotnikov, A. E.; Hossain, A.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA. RP Carcelen, V (reprint author), Univ Autonoma Madrid, Dept Mat Phys, Crystal Growth Lab, Fac Ciencias, E-28049 Madrid, Spain. EM veronica.carcelen@uam.es RI Carcelen, Veronica /B-3750-2017 FU Spanish "Ministerio de Educacion y Ciencia" [E5P2006-09935]; Spanish "Comunidad de Madrid" [S-0505/MAT-0279]; European Commission [FP7-SEC-2007-01]; European Space Agency [14240/00/NL/SH]; European Space Agency; U.S. Department of Energy-Geosciences [DE-FG02-92ER14244] FX This work was supported by the following Projects: Spanish "Ministerio de Educacion y Ciencia", E5P2006-09935; Spanish "Comunidad de Madrid", S-0505/MAT-0279; European Commission, FP7-SEC-2007-01; and Contract number 14240/00/NL/SH, European Space Agency. One of the authors, VC, is grateful to the Ministry of Education and Science, Spain for financial support. Portions of this work were performed at Beam line X27A, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. X27A is supported in part by the U.S. Department of Energy-Geosciences (DE-FG02-92ER14244 to The University of Chicago-CARS) and Brookhaven National Laboratory-Department of Environmental Sciences. Use of the NSLS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. This work also was partially supported by the U.S. Department of Energy, Office of Nonproliferation Research and Development, NA-22. NR 29 TC 5 Z9 5 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JAN 1 PY 2012 VL 338 IS 1 BP 1 EP 5 DI 10.1016/j.jcrysgro.2011.09.031 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 884PQ UT WOS:000299720400001 ER PT J AU Ptak, AJ France, R Beaton, DA Alberi, K Simon, J Mascarenhas, A Jiang, CS AF Ptak, A. J. France, R. Beaton, D. A. Alberi, K. Simon, J. Mascarenhas, A. Jiang, C. -S. TI Kinetically limited growth of GaAsBi by molecular-beam epitaxy SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Atomic-Force Microscopy; Growth Models; Segregation; Molecular-Beam Epitaxy; Bismuth Compounds; Semiconducting III-V Materials ID SURFACE SEGREGATION; BISMUTH; DIFFUSION AB The growth of GaAsBi alloys is plagued by the appearance of Bi droplets due to excess Bi that accumulates during growth. Here we present an alternate growth regime that kinetically limits the amount of Bi on the surface, eliminating Bi droplets for a wide range of Bi compositions, while yielding atomically smooth surfaces. Growth rate plays a major role in the amount of Bi that accumulates on the surface, with high growth rates and low Bi fluxes leading to less surface Bi. A balance can be achieved between low Bi coverage, the resultant rough surfaces, and the excessive Bi coverage that leads to Bi droplets. Bi incorporation in this growth regime is linear with Bi flux and scales inversely with growth rate. Unlike previous studies, there is no sign of saturating Bi incorporation with increasing Bi flux, allowing for intuitive prediction and control of Hi content in this regime. (C) 2011 Published by Elsevier B.V. C1 [Ptak, A. J.; France, R.; Beaton, D. A.; Alberi, K.; Simon, J.; Mascarenhas, A.; Jiang, C. -S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ptak, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM aaron.ptak@nrel.gov RI jiang, chun-sheng/F-7839-2012 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [AC36-08G028308] FX This research was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under DE-AC36-08G028308. NR 21 TC 49 Z9 49 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JAN 1 PY 2012 VL 338 IS 1 BP 107 EP 110 DI 10.1016/j.jcrysgro.2011.10.040 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 884PQ UT WOS:000299720400020 ER PT J AU Vahidi, M Tang, ZZ Tucker, J Peshek, TJ Zhang, L Kopas, C Singh, RK van Schilfgaarde, M Newman, N AF Vahidi, M. Tang, Z. Z. Tucker, J. Peshek, T. J. Zhang, L. Kopas, C. Singh, R. K. van Schilfgaarde, M. Newman, N. TI Experimental study of the kinetically-limited decomposition of ZnGeAs2 and its role in determining optimal conditions for thin film growth SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Kinetics; Desorption; Thermodynamics; Thin film; Semiconducting ternary compounds ID EPITAXIAL-GROWTH; DEPOSITION; SEMICONDUCTOR AB To understand the thermochemistry and determine the rate limiting steps of ZnGeAs2 thin-film synthesis, experiments were performed to measure the (a) thermal decomposition rate and (b) elemental composition and deposition rate of films produced with pulsed laser deposition (PLD). The decomposition rate is kinetically limited with an activation energy of 1.08 +/- 0.05 eV and an evaporation coefficient of similar to 10(-3). We show that ZnGeAs2 thin film synthesis is a metastable process with the kinetically-limited decomposition rate playing a dominant role at the elevated temperatures needed to attain epitaxy. Our conclusions are in contrast to those of earlier reports that assumed the growth rate is limited by desorption and the resulting low reactant sticking coefficient. The thermochemical analysis presented here can be used to predict optimal conditions for ZnGeAs2 film physical vapor deposition and thermal processing. (C) 2011 Elsevier B.V. All rights reserved. C1 [Vahidi, M.; Tang, Z. Z.; Tucker, J.; Peshek, T. J.; Zhang, L.; Kopas, C.; Singh, R. K.; van Schilfgaarde, M.; Newman, N.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Peshek, T. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Newman, N (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. EM Nathan.Newman@asu.edu RI Newman, Nathan/E-1466-2011; OI Newman, Nathan/0000-0003-2819-9616; Kopas, Cameron/0000-0002-6184-2987 FU DOE-EERE [DE-FG36-08GO18002] FX This project was supported by DOE-EERE grant DE-FG36-08GO18002. The use of facilities in the LeRoy Eyring Center for Solid State Science at Arizona State University is acknowledged. NR 24 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD JAN 1 PY 2012 VL 338 IS 1 BP 267 EP 271 DI 10.1016/j.jcrysgro.2011.11.004 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 884PQ UT WOS:000299720400050 ER PT J AU Weinberger, CR Cai, W AF Weinberger, Christopher R. Cai, Wei TI Plasticity of metal nanowires SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID DISLOCATION DYNAMICS SIMULATIONS; PHASE-TRANSFORMATION; YIELD STRENGTH; GOLD NANOWIRES; DEPENDENT PLASTICITY; COPPER NANOWIRES; SILVER NANOWIRES; SURFACE-ENERGY; CU NANOWIRES; FCC METALS AB The mechanisms of plasticity in metal nanowires with diameters below 100 nm are reviewed. At these length scales, plasticity in face-centered-cubic metals subjected to uniaxial loading is dominated by dislocation nucleation from free surfaces, which has been studied extensively by molecular dynamics. These simulations show that nanowires can deform in a variety of ways including slip via perfect dislocations, partial dislocations and deformation twins. The competition between these mechanisms can be explained primarily through the Schmid factor and material properties, although surface orientation and roughness also contribute. The strength of these materials is very high and can be described by classical nucleation theory which predicts strong temperature and geometry dependence as well as a weak strain rate dependence. Additionally, nanowires exhibit, through twinning or phase transformation, pseudo-elastic and shape-memory behaviors which are attributed to their small size and the surface stress. The plasticity of nanowires subject to torsion and bending as well as those composed of body-centered-cubic metals are also summarized. C1 [Weinberger, Christopher R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cai, Wei] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Weinberger, CR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM crweinb@sandia.gov; caiwei@stanford.edu RI Weinberger, Christopher/E-2602-2011; OI Weinberger, Christopher/0000-0001-9550-6992; Cai, Wei/0000-0001-5919-8734 FU U.S. Department of Energy [DE-AC04-94AL85000]; National Science Foundation [CMS-0547681]; Army High Performance Computing Research Center at Stanford FX This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000. The work was partly supported by National Science Foundation Career Grant CMS-0547681 and the Army High Performance Computing Research Center at Stanford. NR 105 TC 59 Z9 59 U1 2 U2 81 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 8 BP 3277 EP 3292 DI 10.1039/c2jm13682a PG 16 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 884HL UT WOS:000299695400001 ER PT J AU Adelstein, N Neaton, JB Asta, M De Jonghe, LC AF Adelstein, Nicole Neaton, Jeffrey B. Asta, Mark De Jonghe, Lutgard C. TI First-principles studies of proton-Ba interactions in doped LaPO4 SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID ELECTRICAL-CONDUCTION PROPERTIES; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TRANSPORT; OXIDES; DYNAMICS; DEFECTS; DOPANTS; METALS; LAP3O9 AB The interactions between an aliovalent cation dopant, Ba, and protons in LaPO4 are studied with first-principles density functional theory. This work is motivated by the desire to use doped LaPO4 as a proton conducting solid electrolyte or hydrogen separation membrane. In this context, the strength and range of proton-dopant interactions are important factors underlying proton mobilities. Using periodic supercells, we find that similar to 3% Ba-doping stabilizes a proton at a distance 2.7 angstrom from the dopant by up to 0.2 eV relative to positions far from the dopant. The Ba-dopant creates a narrow potential energy well and only changes the proton's potential energy surface by +/- 0.05 eV when the proton is farther than 2.7 angstrom from the dopant. Electrostatic interactions between the proton and dopant account for the majority of the binding energy of proton sites and are associated with a complex redistribution of the charge induced by the dopant on the neighboring oxygen ions. In contrast, the strain field created by the Ba-dopant gives rise to a relatively small contribution to the interaction energy. C1 [Adelstein, Nicole; Asta, Mark; De Jonghe, Lutgard C.] Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Adelstein, N (reprint author), Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg, Berkeley, CA 94720 USA. EM adelstein@berkeley.edu RI Neaton, Jeffrey/F-8578-2015 OI Neaton, Jeffrey/0000-0001-7585-6135 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also gratefully acknowledge computational support from NERSC, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Hannah L. Ray for useful discussions and Alexey Zayak for help with Fig. 4. NR 27 TC 4 Z9 4 U1 1 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 9 BP 3758 EP 3763 DI 10.1039/c2jm16214h PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 890ZX UT WOS:000300187000014 ER PT J AU Guan, JG Yan, GQ Wang, W Liu, J AF Guan, Jianguo Yan, Gongqin Wang, Wei Liu, Jun TI External field-assisted solution synthesis and selectively catalytic properties of amorphous iron nanoplatelets SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID MAGNETIC-FIELD; ELECTROMAGNETIC PROPERTIES; CYCLOHEXANE OXIDATION; INDUCED GROWTH; THIN-FILMS; NANOPARTICLES; SILVER; TEMPERATURE; HYDROGEN; COBALT AB This work describes an easy and flexible approach for the synthesis of 2D nanostructures by external composite field-induced self-assembly. Amorphous iron nanoplatelets with a large aspect ratio were prepared by reducing a concentrated FeSO4 solution with NaBH4 without any templates or surfactants under a magnetic field and a shear field, and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Based on the morphological dependence of the resultant iron nanostructures on the kinetic parameters such as reactant concentration, reaction temperature, external fields as well as reaction time, etc., a novel conceivable formation mechanism of the iron nanoplatelets was substantiated to be a self-assembly of concentrated iron nuclei induced by the synergistic effect of both a magnetic field and a shear field. Due to the amorphous nature and shape anisotropy, the as-synthesized iron nanoplatelets exhibit quite different magnetic properties with an enhanced coercivity of >220 Oe from isotropic iron nanoparticles. In the oxidation of cyclohexane with hydrogen peroxide as a "green'' oxidant, the as-obtained amorphous iron nanoplatelets show a conversion more than 84% and a complete selectivity for cyclohexanol and cyclohexanone due to the unique structure. Moreover, their catalytic performances are strongly influenced by their morphology, and the iron atoms located on the faces tend to catalyze the formation of cyclohexanol while those on the sides tend to catalyze the formation of cyclohexanone. The external composite field-induced solution synthesis reported here can be readily explored for fabricating other 2D magnetic nanoplatelets, and the resulting iron nanoplatelets are promising for a number of applications such as high efficient selective catalysis, energy, environment fields and so forth. C1 [Guan, Jianguo; Yan, Gongqin; Wang, Wei] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China. [Yan, Gongqin] Guangxi Univ Technol, Dept Mech Engn, Liuzhou 545006, Guangxi, Peoples R China. [Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Guan, JG (reprint author), Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China. EM guanjg@whut.edu.cn RI Guan, Jianguo/E-1118-2011 OI Guan, Jianguo/0000-0002-2223-4524 FU National High Technology Research and Development Program of China [2006AA03A209]; Fok Ying Tung Education Foundation [101049]; Natural Science Foundation of Hubei Province [20101j0167, 20101j0157]; Subject Leadership Project of Wuhan City [201150530145] FX This work was supported by National High Technology Research and Development Program of China (no. 2006AA03A209), Young Teachers from Fok Ying Tung Education Foundation (no. 101049), the Natural Science Foundation of Hubei Province (20101j0167 and 20101j0157) and the Subject Leadership Project of Wuhan City (201150530145). NR 53 TC 4 Z9 4 U1 3 U2 42 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 9 BP 3909 EP 3915 DI 10.1039/c2jm15000j PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 890ZX UT WOS:000300187000033 ER PT J AU Xu, W Read, A Koech, PK Hu, DH Wang, CM Xiao, J Padmaperuma, AB Graff, GL Liu, J Zhang, JG AF Xu, Wu Read, Adam Koech, Phillip K. Hu, Dehong Wang, Chongmin Xiao, Jie Padmaperuma, Asanga B. Graff, Gordon L. Liu, Jun Zhang, Ji-Guang TI Factors affecting the battery performance of anthraquinone-based organic cathode materials SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID LI-ION BATTERIES; RECHARGEABLE BATTERIES; CORRELATION-ENERGY; LITHIUM BATTERIES; ACTIVE MATERIAL; SECONDARY BATTERIES; STORAGE MATERIALS; RADICAL CATHODES; DENSITY; POLYMERS AB Two organic cathode materials based on the poly(anthraquinonyl sulfide) structure with different substitution positions were synthesized and their electrochemical behavior and battery performance were investigated. The substitution positions on the anthraquinone structure, the type of binders for electrode preparation, and electrolyte formulations have been found to have significant effects on the performance of batteries containing these organic cathode materials. The polymer with less steric hindrance at the substitution positions has higher capacity, longer cycle life and better high-rate capability. Polyvinylidene fluoride binder and ether-based electrolytes are favorable for the high capacity and long cycle life of the anthraquinonyl organic cathodes. C1 [Xu, Wu; Read, Adam; Koech, Phillip K.; Xiao, Jie; Padmaperuma, Asanga B.; Graff, Gordon L.; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Read, Adam] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA. [Hu, Dehong; Liu, Jun] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Wang, Chongmin] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA. RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov RI Hu, Dehong/B-4650-2010; OI Hu, Dehong/0000-0002-3974-2963; Koech, Phillip/0000-0003-2996-0593; Xu, Wu/0000-0002-2685-8684 FU U.S. Department of Energy (DOE), Office of Vehicle Technologies (through the Lawrence Berkeley National Laboratory); Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research; PNNL FX This work was sponsored by the U.S. Department of Energy (DOE), Office of Vehicle Technologies (through the Batteries for Advanced Transportation Technologies program at Lawrence Berkeley National Laboratory) and the Laboratory Directed Research and Development Project of Pacific Northwest National Laboratory (PNNL). The TEM measurement was performed in Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 33 TC 46 Z9 46 U1 12 U2 92 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 9 BP 4032 EP 4039 DI 10.1039/c2jm15764k PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 890ZX UT WOS:000300187000050 ER PT J AU Xiao, HY Zhang, Y Snead, LL Shutthanandan, V Xue, HZ Weber, WJ AF Xiao, H. Y. Zhang, Y. Snead, L. L. Shutthanandan, V. Xue, H. Z. Weber, W. J. TI Near-surface and bulk behavior of Ag in SiC SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SILICON-CARBIDE; IMPLANTATION TEMPERATURE; BETA-SIC(001) SURFACES; DAMAGE ACCUMULATION; STRUCTURAL-ANALYSIS; FUEL-PARTICLES; NOBLE-METALS; ADSORPTION; DIFFUSION; ENERGY AB The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85-1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor. (C) 2011 Elsevier B.V. All rights reserved. C1 [Xiao, H. Y.; Zhang, Y.; Xue, H. Z.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Zhang, Y.; Snead, L. L.; Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Shutthanandan, V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Xiao, HY (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM hxiao@utk.edu RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU University of Tennessee/Oak Ridge National Laboratory (UTK/ORNL) Joint Institute for Advanced Materials; DOE Office of Nuclear Energy at UTK; ORNL FX This work was supported in part by the University of Tennessee/Oak Ridge National Laboratory (UTK/ORNL) Joint Institute for Advanced Materials, and by the DOE Office of Nuclear Energy programs at UTK and ORNL. The theoretical calculations were performed using the supercomputer resources at the National Energy Research Scientific Computing Center (NERSC) located at Lawrence Berkeley National Laboratory, and at the Environmental Molecular Sciences Laboratory (EMSL) located at Pacific Northwest National Laboratory (PNNL). A portion of experiments was performed at the EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 60 TC 19 Z9 19 U1 4 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 123 EP 130 DI 10.1016/j.jnucmat.2011.09.028 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300016 ER PT J AU Chung, CW Urn, W Valenta, MM Sundaram, SK Chun, J Parker, KE Kimura, ML Westsik, JH AF Chung, Chul-Woo Urn, Wooyong Valenta, Michelle M. Sundaram, S. K. Chun, Jaehun Parker, Kent E. Kimura, Marcia L. Westsik, Joseph H., Jr. TI Characteristics of Cast Stone cementitious waste form for immobilization of secondary wastes from vitrification process SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID AFM PHASE AB The high-temperature in vitrification process of radioactive wastes could cause radioactive technetium (Tc-99) in secondary liquid wastes to become volatile. Solidified cementitious waste forms at low temperature were developed to immobilize radioactive secondary waste. This research focuses on the characterization of a cementitious waste form called Cast Stone. Properties including compressive strength, surface area, phase composition, and technetium leaching were measured. The results indicate that technetium diffusivity is affected by simulant type. Additionally, ettringite and AFm (Al2O3-Fe2O3-mono) main crystalline phases were formed during hydration. The Cast Stone waste form passed the qualification requirements for a secondary waste form, which are compressive strength of 3.45 MPa and technetium diffusivity of 10(-9) cm(2)/sec. Cast Stone was found to be a good candidate for immobilizing secondary waste streams. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chung, Chul-Woo; Urn, Wooyong; Valenta, Michelle M.; Sundaram, S. K.; Chun, Jaehun; Parker, Kent E.; Kimura, Marcia L.; Westsik, Joseph H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chung, CW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Chul-Woo.Chung@pnnl.gov FU Washington River Protection Solutions (WRPS); Division of Advanced Nuclear Engineering (DANE) in POSTECH through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31-30005]; United States Department of Energy [DE-AC06-76RLO 1830] FX The project was supported by Washington River Protection Solutions (WRPS). Additional funding was supported by WCU (World Class University) program at the Division of Advanced Nuclear Engineering (DANE) in POSTECH through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-30005). The authors deeply appreciate the comments and discussions provided by Prof. Leslie J. Struble (University of Illinois at Urbana Champaign). The authors appreciate the assistance provided by Carolyne Burns and Stan Pitman in Pacific Northwest National Laboratory (PNNL) for particle size measurement of raw cementitious materials and compressive strength measurements of Cast Stone. We also appreciate the support of raw materials from Mr. John Harris in Lafarge North America. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the United States Department of Energy under contract DE-AC06-76RLO 1830. NR 28 TC 2 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 164 EP 174 DI 10.1016/j.jnucmat.2011.09.021 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300021 ER PT J AU Sun, C Yu, KY Lee, JH Liu, Y Wang, H Shao, L Maloy, SA Hartwig, KT Zhang, X AF Sun, C. Yu, K. Y. Lee, J. H. Liu, Y. Wang, H. Shao, L. Maloy, S. A. Hartwig, K. T. Zhang, X. TI Enhanced radiation tolerance of ultrafine grained Fe-Cr-Ni alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID AUSTENITIC STAINLESS-STEELS; HELIUM ION-IRRADIATION; NANOSTRUCTURED MATERIALS; NEUTRON-IRRADIATION; DAMAGE; BOUNDARIES; EVOLUTION; BUBBLES; METALS; COPPER AB The evolutions of microstructure and mechanical properties of Fe-14Cr-16Ni (wt.%) alloy subjected to Helium ion irradiations were investigated. Equal channel angular pressing (ECAP) process was used to significantly reduce the average grain size from 700 gm to 400 nm. At a peak fluence level of 5.5 displacement per atom (dpa), helium bubbles, 0.5-2 nm in diameter, were observed in both coarse-grained (CG) and ultrafine grained (UFG) alloy. The density of He bubbles, dislocation loops, as well as radiation hardening were reduced in the UFG Fe-Cr-Ni alloy comparing to those in its CG counterpart. The results imply that radiation tolerance in bulk metals can be effectively enhanced by refinement of microstructures. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sun, C.; Yu, K. Y.; Liu, Y.; Hartwig, K. T.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Lee, J. H.; Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Maloy, S. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Lujan Center, LANL/G-4896-2012; Sun, Cheng/G-8953-2013; Yu, Kaiyuan /B-8398-2014; Liu, Yue/H-4071-2014; Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014; Maloy, Stuart/A-8672-2009 OI Sun, Cheng/0000-0002-1368-243X; Yu, Kaiyuan /0000-0002-5442-2992; Liu, Yue/0000-0001-8518-5734; Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209; Maloy, Stuart/0000-0001-8037-1319 FU DOE-NEUP [DE-AC07-05ID14517-00088120]; US Army Research Office - Materials Science Division [W911NF-09-1-0223]; NSF [0846835] FX We acknowledges financial support by DOE-NEUP under Contract No. DE-AC07-05ID14517-00088120. Partial support by US Army Research Office - Materials Science Division is also acknowledged under Contract No. W911NF-09-1-0223. Shao acknowledges support by NSF under Grant No. 0846835. We also acknowledge the usage of microscopes at the Microscopy and Imaging Center at Texas A&M University. NR 52 TC 35 Z9 35 U1 2 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 235 EP 240 DI 10.1016/j.jnucmat.2011.10.001 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300031 ER PT J AU Usov, IO Valdez, JA Won, J Devlin, DJ AF Usov, I. O. Valdez, J. A. Won, J. Devlin, D. J. TI Ion irradiation temperature effect on HfO2/MgO multi-layer structures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ZRO2 COMPOSITE-MATERIAL; PHASE-TRANSITION; ZIRCONIA; CERAMICS; FUEL; TRANSMUTATION; FABRICATION; ACTINIDES; HAFNIA AB Properties of nuclear materials may be improved by employing composite materials. However, these properties usually degrade during the operation in a nuclear reactor environment due to radiation damage accumulation. For this study we fabricated a multi-layer structure composed of MgO and HfO2 thin films on a sapphire substrate. This multi-layer structure was designed to mimic a CERCER (ceramic-ceramic) composite fuel form. The goal of this study was to investigate features of radiation damage evolution cause by ion beam irradiation in a wide temperature range. We observed phase transformation in HfO2 from monoclinic to the tetragonal polymorph and no changes in MgO. Formation of thin amorphous regions adjacent to the MgO/HfO2 and HfO2/sapphire substrate interfaces was identified in both cases. Phase and microstructural changes demonstrated pronounced dependence on irradiation temperature, which we attributed to either enhanced annihilation of irradiation induced point defects or intermixing between the components of our multi-layered structure. (C) 2011 Elsevier B.V. All rights reserved. C1 [Usov, I. O.; Valdez, J. A.; Won, J.; Devlin, D. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Usov, IO (reprint author), Los Alamos Natl Lab, Mailstop E549, Los Alamos, NM 87545 USA. EM iusov@lanl.gov OI won, Jonghan/0000-0002-7612-1322 FU Los Alamos National Laboratory, Laboratory Directed Research and Development (LDRD); US Department of Energy FX This work was supported by a Los Alamos National Laboratory, Laboratory Directed Research and Development (LDRD) grant and US Department of Energy Advanced Fuel Cycle Campaign and Fuel Cycle R&D Program. Ion irradiation and RBS analysis was performed at the Ion Beam Materials Laboratory (IBML) and TEM analysis was performed at the Electron Microscopy Laboratory (EML) at LANL. The authors would like to thank J. Tesmer and Y. Wang from the IBML facility and R. Dickerson from EML for their technical assistance. NR 28 TC 4 Z9 4 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 262 EP 267 DI 10.1016/j.jnucmat.2011.09.024 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300035 ER PT J AU Cui, D Rondinella, VV Fortner, JA Kropf, AJ Eriksson, L Wronkiewicz, DJ Spahiu, K AF Cui, D. Rondinella, V. V. Fortner, J. A. Kropf, A. J. Eriksson, L. Wronkiewicz, D. J. Spahiu, K. TI Characterization of alloy particles extracted from spent nuclear fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; PWR FUEL; BEHAVIOR; DISSOLUTION; RESIDUES; ELECTRON; IFEFFIT; METAL; STATE AB We characterized, for the first time, submicro- and nanosized fission product-alloy particles that were extracted nondestructively from spent nuclear fuel, in terms of noble metal (Mo-Ru-Tc-Rh-Pd-Te) composition, atomic level homogeneity and lattice parameters. The evidences obtained in this work contribute to an improved understanding of the redox chemistry of radionuclides in nuclear waste repository environments and, in particular, of the catalytic properties of these unique metal alloy particles. (C) 2011 Elsevier B.V. All rights reserved. C1 [Cui, D.] Studsvik AB, S-61182 Nykoping, Sweden. [Cui, D.; Eriksson, L.] Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden. [Rondinella, V. V.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. [Fortner, J. A.; Kropf, A. J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wronkiewicz, D. J.] Missouri Univ Sci & Technol, Dept Geol Sci & Engn, Rolla, MO 65409 USA. [Spahiu, K.] SKB, SE-10240 Stockholm, Sweden. RP Cui, D (reprint author), Studsvik AB, S-61182 Nykoping, Sweden. EM daqing.cui@studsvik.se RI ID, MRCAT/G-7586-2011 FU Swedish Nuclear Fuel and Waste Management Co. (SKB) [14938]; United States Department of Energy (DOE) [DE-AC02-06CH11357] FX The experimental work and a part of manuscript writing were done at Studsvik Nuclear AB, Sweden, coordinated and supported by Swedish Nuclear Fuel and Waste Management Co. (SKB) under R & D Project 14938. Part of manuscript writing was done during D.Cui's visiting stay at JRC-ITU, European Commission. The EXAFS characterization performed at Argonne National Laboratory, USA, was supported by the United States Department of Energy (DOE) (DE-AC02-06CH11357). Thanks to H. Bergqvist, W. Sahle and M. Kallberg for microscope analysis and to J. Low for solution analysis. NR 33 TC 8 Z9 8 U1 4 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 328 EP 333 DI 10.1016/j.jnucmat.2011.10.015 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300045 ER PT J AU Yang, TF Huang, XJ Gao, Y Wang, CX Zhang, YW Xue, JM Yan, S Wang, YG AF Yang, Tengfei Huang, Xuejun Gao, Yuan Wang, Chenxu Zhang, Yanwen Xue, Jianming Yan, Sha Wang, Yugang TI Damage evolution of yttria-stabilized zirconia induced by He irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RADIATION-DAMAGE; IMPLANTATION; IONS AB The study presents an investigation of damage evolution of yttria-stabilized zirconia (YSZ) induced by irradiation of 100 key He ions at room temperature as a function of fluence. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) were used in order to study the nature and evolution of structural damage at different levels. Our study shows that various kinds of defects are formed with the increasing fluence. Firstly, at low fluences, from 1 x 10(16) to 4 x 10(16) cm(-2), of which maximum values of displacement per atom (dpa) range from 0.29 to 1.17, an elastic strain which is attributed to the accumulation of irradiation-induced discrete point defects, is presented. Secondly, in the intermediate fluences ranging from 8 x 10(16) to 1 x 10(17) cm(-2) with corresponding dpa varying from 2.33 to 2.91, a large drop of elastic strain occurs accompanied by presence of an intensive damage region, which is comprised by large and interacted defect clusters. Thirdly, at the two high fluences of 2 x 10(17) and 4 x 10(17) cm(-2). of which dpa are 5.83 and 11.65 respectively, a great amount of ribbon-like He bubbles with granular structure and cracks are presented at the depth of maximum concentration of deposited He atoms. The structural damage evolution and the mechanism of formation of He bubbles are discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yang, Tengfei; Huang, Xuejun; Gao, Yuan; Wang, Chenxu; Xue, Jianming; Yan, Sha; Wang, Yugang] Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Zhang, Yanwen] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Yanwen] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wang, YG (reprint author), Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM ygwang@pku.edu.cn OI , /0000-0003-2655-0804 FU Ministry of Science and Technology of China [2010CB832904, 2008CB717803]; National Natural Science Foundation of China [11075005]; US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was financially supported by the Ministry of Science and Technology of China (2010CB832904, 2008CB717803) and National Natural Science Foundation of China (11075005), Fundamental Research Funds for the Central Universities. Part of the research is supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Wenguang Zhao's effect in XRD measurements is appreciated. Tengfei Yang is grateful for the discussion with Aurelien Debelle. NR 27 TC 14 Z9 15 U1 7 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN PY 2012 VL 420 IS 1-3 BP 430 EP 436 DI 10.1016/j.jnucmat.2011.10.033 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 894YB UT WOS:000300462300059 ER PT J AU Ogden, MD Meier, GP Nash, KL AF Ogden, Mark D. Meier, G. Patrick Nash, Kenneth L. TI Synthesis and Evaluation of Conformationally Restricted N-4-Tetradentate Ligands for Implementation in An(III)/Ln(III) Separations SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Copper(II); Stability constants; Acid dissociation constants; Phase distribution; Ligand preorganization; Nitrogen donor complexants ID PAIR EXTRACTION BEHAVIOR; CHARGED COMPLEXES; POLYAMINE LIGANDS; METAL-CATIONS; PYRIDYL; THERMODYNAMICS; CHEMISTRY AB The previous literature demonstrates that donor atoms softer than oxygen are effective for separating trivalent lanthanides (Ln(III)) from trivalent actinides (An(III)) (Nash, K.L., in: Gschneider, K.A. Jr., et al. (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 18-Lanthanides/Actinides Chemistry, pp. 197-238. Elsevier Science, Amsterdam, 1994). It has also been shown that ligands that "restrict" their donor groups in a favorable geometry, appropriate to the steric demands of the cation, have an increased binding affinity. A series of tetradentate nitrogen containing ligands have been synthesized with increased steric "limits". The pK (a) values for these ligands have been determined using potentiometric titration methods and the formation of the colored copper(II) complex has been used as a method to determine ligand partitioning between the organic and aqueous phases. The results for the 2-methylpyridyl-substituted amine ligands are encouraging, but the results for the 2-methylpyridyl-substituted diimines indicate that these ligands are unsuitable for implementation in a solvent extraction system due to hydrolysis. C1 [Ogden, Mark D.; Meier, G. Patrick; Nash, Kenneth L.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Ogden, Mark D.] Idaho Natl Lab, Idaho Falls, ID 83514 USA. RP Nash, KL (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA. EM mark.ogden@inl.gov; knash@wsu.edu FU U.S. Department of Energy, Division of Nuclear Energy Science and Technology, Nuclear Energy Research Initiative Consortium (NERI-C) [DE-FG07-07ID14896] FX The authors would like to thank Dr. Mikael Nilsson, Dr. Sarah Pepper, Dr. Peter Zalupski and Dr. Syouhei Nishihama for their support and insight in this project. This research was conducted at WSU with funding provided by the U.S. Department of Energy, Division of Nuclear Energy Science and Technology, Nuclear Energy Research Initiative Consortium (NERI-C) program under project number DE-FG07-07ID14896. NR 21 TC 4 Z9 4 U1 2 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD JAN PY 2012 VL 41 IS 1 BP 1 EP 16 DI 10.1007/s10953-011-9784-1 PG 16 WC Chemistry, Physical SC Chemistry GA 892OT UT WOS:000300296200001 ER PT J AU Harris, WM Nelson, GJ Kiss, AM Izzo, JR Liu, Y Liu, ML Wang, S Chu, YS Chiu, WKS AF Harris, William M. Nelson, George J. Kiss, Andrew M. Izzo, John R., Jr. Liu, Yong Liu, Meilin Wang, Steve Chu, Yong S. Chiu, Wilson K. S. TI Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale SO NANOSCALE LA English DT Article ID X-RAY-ABSORPTION; OXIDE FUEL-CELLS; TOLERANT ANODE MATERIALS; 3-DIMENSIONAL MICROSTRUCTURE; ELECTRODE; RECONSTRUCTION; REGENERATION; IMPURITIES; CATALYSTS; CATHODE AB Nano-structures of nickel (Ni) and nickel subsulfide (Ni3S2) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems. C1 [Harris, William M.; Nelson, George J.; Kiss, Andrew M.; Izzo, John R., Jr.; Chiu, Wilson K. S.] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. [Liu, Yong; Liu, Meilin] Georgia Inst Technol, Ctr Innovat Fuel Cell & Battery Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Wang, Steve] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chu, Yong S.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. RP Chiu, WKS (reprint author), Univ Connecticut, Dept Mech Engn, 191 Auditorium Rd,Unit 3139, Storrs, CT 06269 USA. EM wchiu@engr.uconn.edu RI Liu, Meilin/E-5782-2010 OI Liu, Meilin/0000-0002-6188-2372 FU Energy Frontier Research Center on Science Based Nano-Structure Design and Synthesis of Heterogeneous Functional Materials for Energy Systems (HeteroFoaM Center); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001061, DE-AC02-06CH11357]; National Science Foundation [CBET-1134052]; Brookhaven Science Associates, LLC [DE-AC02-98CH10886] FX Financial support from an Energy Frontier Research Center on Science Based Nano-Structure Design and Synthesis of Heterogeneous Functional Materials for Energy Systems (HeteroFoaM Center) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Award DE-SC0001061) and the National Science Foundation (Award CBET-1134052) are gratefully acknowledged. Portions of this research were carried out at the Advanced Photon Source supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357, and by the Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886. NR 44 TC 9 Z9 9 U1 3 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 5 BP 1557 EP 1560 DI 10.1039/c2nr11690a PG 4 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 894NO UT WOS:000300433700023 PM 22297306 ER PT J AU Tian, YM Beavers, CM Busani, T Martin, KE Jacobsen, JL Mercado, BQ Swartzentruber, BS van Swol, F Medforth, CJ Shelnutt, JA AF Tian, Yongming Beavers, Christine M. Busani, Tito Martin, Kathleen E. Jacobsen, John L. Mercado, Brandon Q. Swartzentruber, Brian S. van Swol, Frank Medforth, Craig J. Shelnutt, John A. TI Binary ionic porphyrin nanosheets: electronic and light-harvesting properties regulated by crystal structure SO NANOSCALE LA English DT Article ID SELF-METALLIZATION; METAL-IONS; MACROCYCLE; NANOTUBES; COMPLEXES AB Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(II) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(IV) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room temperature preparation of the nanosheets has provided the first X-ray crystal structure of a cooperative binary ionic (CBI) solid. The unit cell contains one and one-half molecules of aquo-ZnTPPS4- (an electron donor) and three half molecules of dihydroxy-SnTNMePyP4+ (an electron acceptor). Charge balance in the solid is reached without any non-porphyrinic ions, as previously determined for other CBI nanomaterials by non-crystallographic means. The crystal structure reveals a complicated molecular arrangement with slipped pi-pi stacking only occurring in isolated dimers of one of the symmetrically unique zinc porphyrins. Consistent with the crystal structure, UV-visible J-aggregate bands indicative of exciton delocalization and extended pi-pi stacking are not observed. XRD measurements show that the structure of the Zn/Sn nanosheets is distinct from that of Zn/Sn four-leaf clover-like CBI solids reported previously. In contrast with the Zn/Sn clovers that do exhibit J-aggregate bands and are photoconductive, the nanosheets are not photoconductive. Even so, the nanosheets act as light-harvesting structures in an artificial photosynthesis system capable of reducing water to hydrogen but not as efficiently as the Zn/Sn clovers. C1 [Tian, Yongming; Martin, Kathleen E.; Swartzentruber, Brian S.; van Swol, Frank; Shelnutt, John A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Tian, Yongming; Martin, Kathleen E.; Swartzentruber, Brian S.; van Swol, Frank; Shelnutt, John A.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87106 USA. [Tian, Yongming] New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA. [Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Busani, Tito] Univ Nova Lisboa CENIMAT I3N, Dept Ciencia Mat, Fac Ciencias & Tecnol, CEMOP UNINOVA, P-2829516 Caparica, Portugal. [Busani, Tito; Martin, Kathleen E.; van Swol, Frank; Medforth, Craig J.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA. [Busani, Tito; Martin, Kathleen E.; van Swol, Frank; Medforth, Craig J.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA. [Jacobsen, John L.; Mercado, Brandon Q.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Medforth, Craig J.] Univ Porto, REQUIMTE Dept Quim & Bioquim, Fac Ciencias, P-4169007 Oporto, Portugal. [Shelnutt, John A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Shelnutt, JA (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM jasheln@unm.edu RI Beavers, Christine/C-3539-2009; Medforth, Craig/D-8210-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013; Tian, Yongming/B-9720-2009 OI Beavers, Christine/0000-0001-8653-5513; Medforth, Craig/0000-0003-3046-4909; FU Marie Curie Fellowship from the Fundacao para a Ciencia e a Tecnologia, Portugal; Marie Curie Action Cofund; United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Director, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231]; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX CJM is the recipient of a Marie Curie Fellowship from the Fundacao para a Ciencia e a Tecnologia, Portugal and the Marie Curie Action Cofund. Research supported by the United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 21 Z9 21 U1 1 U2 49 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 5 BP 1695 EP 1700 DI 10.1039/c2nr11826b PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 894NO UT WOS:000300433700047 PM 22310932 ER PT J AU Song, P Zhang, XY Sun, MX Cui, XL Lin, YH AF Song, Peng Zhang, Xiaoyan Sun, Mingxuan Cui, Xiaoli Lin, Yuehe TI Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties SO NANOSCALE LA English DT Article ID EXFOLIATED GRAPHITE OXIDE; SENSITIZED SOLAR-CELLS; DOPED TIO2; PHOTOCATALYTIC ACTIVITY; CHEMICAL-REDUCTION; PERFORMANCE; ANATASE; FILMS; NANOCRYSTALS; SCATTERING AB Novel nanocomposite films, based on graphene oxide (GO) and TiO2 nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO2 nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO2 nanotube composite electrode compared with pristine TiO2 nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO2 nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO2 nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO2 nanotube arrays. C1 [Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. [Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cui, XL (reprint author), Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. EM xiaolicui@fudan.edu.cn RI Lin, Yuehe/D-9762-2011; Sun, Mingxuan/G-1330-2015; 张, 晓艳/A-8125-2016 OI Lin, Yuehe/0000-0003-3791-7587; Sun, Mingxuan/0000-0001-8681-8951; FU National Basic Research Program of China [2012CB934300, 2011CB933302]; Shanghai Science Technology Commission [1052nm01800]; Fudan's Undergraduate Research Opportunities Program [10073]; LDRD at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830] FX This work is supported by the National Basic Research Program of China (No. 2012CB934300 and 2011CB933302), the Shanghai Science Technology Commission (No. 1052nm01800) and Fudan's Undergraduate Research Opportunities Program (No. 10073). Dr Y. Lin would like to acknowledge support from the LDRD program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. We appreciate the referees' very valuable comments, which have greatly improved the quality of the manuscript. NR 42 TC 88 Z9 92 U1 7 U2 172 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 5 BP 1800 EP 1804 DI 10.1039/c2nr11938b PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 894NO UT WOS:000300433700063 PM 22297577 ER PT J AU Peters, GP Marland, G Le Quere, C Boden, T Canadell, JG Raupach, MR AF Peters, Glen P. Marland, Gregg Le Quere, Corinne Boden, Thomas Canadell, Josep G. Raupach, Michael R. TI CORRESPONDENCE: Rapid growth in CO2 emissions after the 2008-2009 global financial crisis SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID CARBON-DIOXIDE C1 [Peters, Glen P.] CICERO, N-0318 Oslo, Norway. [Marland, Gregg] Appalachian State Univ, Res Inst Environm Energy & Econ, Boone, NC 28608 USA. [Le Quere, Corinne] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England. [Boden, Thomas] Oak Ridge Natl Lab, CDIAC, Oak Ridge, TN 37831 USA. [Canadell, Josep G.; Raupach, Michael R.] CSIRO Marine & Atmospher Res, Global Carbon Project, Canberra, ACT 2601, Australia. RP Peters, GP (reprint author), CICERO, POB 1129 Blindern, N-0318 Oslo, Norway. EM glen.peters@cicero.uio.no RI Peters, Glen/B-1012-2008; Canadell, Josep/E-9419-2010; Le Quere, Corinne/C-2631-2017 OI Peters, Glen/0000-0001-7889-8568; Canadell, Josep/0000-0002-8788-3218; Le Quere, Corinne/0000-0003-2319-0452 NR 13 TC 267 Z9 279 U1 10 U2 149 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD JAN PY 2012 VL 2 IS 1 BP 2 EP 4 PG 3 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 881OH UT WOS:000299495500002 ER PT J AU Spassov, DS Wong, CH Harris, G McDonough, S Phojanakong, P Wang, D Hann, B Bazarov, AV Yaswen, P Khanafshar, E Moasser, MM AF Spassov, D. S. Wong, C. H. Harris, G. McDonough, S. Phojanakong, P. Wang, D. Hann, B. Bazarov, A. V. Yaswen, P. Khanafshar, E. Moasser, M. M. TI A tumor-suppressing function in the epithelial adhesion protein Trask SO ONCOGENE LA English DT Article DE Trask; CDCP1; SIMA135; 3p21.3; metastasis ID DOMAIN-CONTAINING PROTEIN-1; CUB-DOMAIN; SUBSTRATE TRASK; LUNG METASTASIS; FAK INHIBITOR; CANCER-CELLS; KINASE; EXPRESSION; CDCP1; ADENOCARCINOMA AB Trask/CDCP1 is a transmembrane glycoprotein widely expressed in epithelial tissues whose functions are just beginning to be understood, but include a role as an anti-adhesive effector of Src kinases. Early studies looking at RNA transcript levels seemed to suggest overexpression in some cancers, but immunostaining studies are now providing more accurate analyses of its expression. In an immuno-histochemical survey of human cancer specimens, we find that Trask expression is retained, reduced or sometimes lost in some tumors compared with their normal epithelial tissue counterparts. A survey of human cancer cell lines also show a similar wide variation in the expression of Trask, including some cell types with the loss of Trask expression, and additional cell types that have lost the physiological detachment-induced phosphorylation of Trask. Three experimental models were established to interrogate the role of Trask in tumor progression, including two gain-of-function models with tet-inducible expression of Trask in tumor cells lacking Trask expression, and one loss-of-function model to suppress Trask expression in tumor cells with abundant Trask expression. The induction of Trask expression and phosphorylation in MCF-7 cells and in 3T3v-src cells was associated with a reduction in tumor metastases while the shRNA-induced knockdown of Trask in L3.6pl cancer cells was associated with increased tumor metastases. The results from these three models are consistent with a tumor-suppressing role for Trask. These data identify Trask as one of several potential candidates for functionally relevant tumor suppressors on the 3p21.3 region of the genome frequently lost in human cancers. Oncogene (2012) 31, 419-431; doi: 10.1038/onc.2011.246; published online 27 June 2011 C1 [Spassov, D. S.; Wong, C. H.; Harris, G.; McDonough, S.; Moasser, M. M.] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA. [Spassov, D. S.; Wong, C. H.; Phojanakong, P.; Wang, D.; Hann, B.; Moasser, M. M.] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USA. [Bazarov, A. V.; Yaswen, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Khanafshar, E.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94143 USA. RP Moasser, MM (reprint author), Univ Calif San Francisco, Dept Med, UCSF Box 1387,2340 Sutter St,Rm N-144, San Francisco, CA 94143 USA. EM mmoasser@medicine.ucsf.edu FU National Institutes of Health [CA113952]; Susan G Komen for the Cure; California Breast Cancer Research Program Postdoctoral Fellowship FX This work was funded by the National Institutes of Health CA113952 (MMM). DS is funded by a Susan G Komen for the Cure Postdoctoral Fellowship. CHW is funded by a California Breast Cancer Research Program Postdoctoral Fellowship. We wish to thank Michael McManus and the UCSF Sandler Lentiviral RNAi core facility. We acknowledge the use of core facilities of the UCSF Helen Diller Family Comprehensive Cancer Center, including the Preclinical Therapeutics Core, the immunohistochemistry core and the mouse pathology core. NR 41 TC 7 Z9 7 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD JAN PY 2012 VL 31 IS 4 BP 419 EP 431 DI 10.1038/onc.2011.246 PG 13 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 891LU UT WOS:000300219300002 PM 21706059 ER PT J AU Gaur, S Miller, JT Stellwagen, D Sanampudi, A Kumar, CSSR Spivey, JJ AF Gaur, Sarthak Miller, Jeffrey T. Stellwagen, Daniel Sanampudi, Ashwin Kumar, Challa S. S. R. Spivey, James J. TI Synthesis, characterization, and testing of supported Au catalysts prepared from atomically-tailored Au-38(SC12H25)(24) clusters SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID MONOLAYER-PROTECTED CLUSTERS; SELF-ASSEMBLED MONOLAYERS; TEMPERATURE CO OXIDATION; GOLD NANOPARTICLES; AU/TIO2 CATALYSTS; INFRARED-SPECTROSCOPY; ELECTRON-MICROSCOPY; CARBON-MONOXIDE; PARTICLE-SIZE; TIO2 AB Nearly monodispersed Au-38(SC12H25)(24) clusters (1.7 +/- 0.2 nm) were synthesized using a modified Brust process while utilizing a "thiol etching'' approach for the ligand exchange. HRTEM, MALDI, FTIR, and XAS analysis confirmed the formation of the 38-atom clusters in solution. This solution was used to impregnate a microporous TiO2 support to give 0.7% Au-38/TiO2 catalyst. Subsequent drying in air and treatment with H-2/He at 400 degrees C removed most of the sulfur ligands, and also increased the Au cluster size to 3.9 +/- 0.96 nm. XPS and EXAFS analysis of this supported catalyst showed trace levels of residual sulfides, apparently located at the Au-TiO2 interface. CO oxidation tests on these supported clusters show an activation energy and range of TOFs comparable to those reported by others. These results suggest that supported Au clusters of controllable size can be prepared with this thiol-ligated solution-based method, providing a new approach to the synthesis of these catalysts. C1 [Gaur, Sarthak; Sanampudi, Ashwin; Spivey, James J.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70820 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Stellwagen, Daniel] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 CG Utrecht, Netherlands. [Kumar, Challa S. S. R.] J Bennett Johnston Sr Ctr Adv Microstruct & Devic, Baton Rouge, LA 70806 USA. RP Spivey, JJ (reprint author), Louisiana State Univ, Cain Dept Chem Engn, 110 S Stadium Dr, Baton Rouge, LA 70820 USA. EM jjspivey@lsu.edu RI ID, MRCAT/G-7586-2011; Institute (DINS), Debye/G-7730-2014 FU Center for Atomic Level Catalyst Design, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001058, DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center FX This material is based upon work supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001058. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. JTM's effort was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. We also thank Kimberly Hutchison in the Department of Soil Science at North Carolina State University for doing the ICP-OES analysis of catalyst samples. NR 51 TC 35 Z9 35 U1 1 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 5 BP 1627 EP 1634 DI 10.1039/c1cp22438g PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 876MZ UT WOS:000299113000011 PM 22006215 ER PT J AU Zeitler, TR Greathouse, JA Cygan, RT AF Zeitler, Todd R. Greathouse, Jeffery A. Cygan, Randall T. TI Effects of thermodynamic ensembles and mineral surfaces on interfacial water structure SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; NANOCONFINED WATER; OXYHYDROXIDE; ADSORPTION; ENERGETICS; CLAY AB While performing molecular dynamics simulations of water or aqueous solutions in a slab geometry, such as at mineral surfaces, it is important to match bulk water density in the diffuse region of the model system with that expected for the appropriate experimental conditions. Typically, a slab geometry represents parallel surfaces with a variable region of confined water (this region can range in size from a few AAngstroms to many tens of Angstroms). While constant-pressure simulations usually result in appropriate density values in the bulk diffuse region removed from either surface, constant-volume simulations have also been widely used, sometimes without careful consideration of the method for determining water content. Simulations using two thermodynamic ensembles as well as two methods for calculating the water-accessible volume have been investigated for two distinct silicate surfaces-hydrophilic cristobalite (111) and hydrophobic pyrophyllite (001). In cases where NPT simulations are not feasible, a simple geometry-based treatment of the accessible volume can be sufficient to replicate bulk water density far from the surface. However, the use of the Connolly method can be more appropriate in cases where a surface is less well-defined. Specific water-surface interactions (e.g., hydrophobic repulsion) also play a role in determining water content in a confined water simulation. While reported here for planar surfaces, these results can be extended to an interface with any solvent, or to other types of surfaces and geometries. C1 [Zeitler, Todd R.; Greathouse, Jeffery A.; Cygan, Randall T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zeitler, TR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tzeitle@sandia.gov FU US Department of Energy, Office of Basic Energy Sciences, Geosciences Research; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge three reviewers who helped improve the manuscript. This work is supported by the US Department of Energy, Office of Basic Energy Sciences, Geosciences Research. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 11 Z9 11 U1 3 U2 30 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 5 BP 1728 EP 1734 DI 10.1039/c2cp22593j PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 876MZ UT WOS:000299113000024 PM 22186883 ER PT J AU Gee, RH Kuo, IFW Chinn, SC Raber, E AF Gee, Richard H. Kuo, I-Feng W. Chinn, Sarah C. Raber, Ellen TI First-principles molecular dynamics simulations of condensed-phase V-type nerve agent reaction pathways and energy barriers SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID CHEMICAL WARFARE AGENTS; NUCLEOPHILIC-SUBSTITUTION; DEGRADATION-PRODUCTS; METADYNAMICS; HYDROLYSIS; SOLVOLYSIS; PHOSPHOTRIESTERASE; DETOXIFICATION; S(N)2-AT-P; MECHANISM AB Computational studies of condensed-phase chemical reactions are challenging in part because of complexities in understanding the effects of the solvent environment on the reacting chemical species. Such studies are further complicated due to the demanding computational resources required to implement high-level ab initio quantum chemical methods when considering the solvent explicitly. Here, we use first-principles molecular dynamics simulations to examine condensed-phase decontamination reactions of V-type nerve agents in an explicit aqueous solvent. Our results include a detailed study of hydrolysis, base-hydrolysis, and nucleophilic oxidation of both VX and R-VX, as well as their protonated counterparts (i.e., VXH+ and R-VXH+). The decontamination mechanisms and chemical reaction energy barriers, as determined from our simulations, are found to be in good agreement with experiment. The results demonstrate the applicability of using such simulations to assist in understanding new decontamination technologies or other applications that require computational screening of condensed-phase chemical reaction mechanisms. C1 [Gee, Richard H.; Kuo, I-Feng W.; Chinn, Sarah C.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. [Raber, Ellen] Lawrence Livermore Natl Lab, Global Secur Directorate, Livermore, CA 94550 USA. RP Gee, RH (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. EM gee10@llnl.gov FU U. S. Department of Homeland Security Science and Technology Directorate [HSHQPM-10-X-00019]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank the U. S. Department of Homeland Security Science and Technology Directorate for financial support under Interagency Agreement HSHQPM-10-X-00019. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We also would like to thank Livermore Computing for the copious amounts of computer time required to perform this work and Dennis Reutter for technical discussions of the results. NR 42 TC 3 Z9 3 U1 3 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 10 BP 3316 EP 3322 DI 10.1039/c2cp23126c PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 892VQ UT WOS:000300314100006 PM 22298156 ER PT J AU Sankaranarayanan, SKRS Subbaraman, R Ramanathan, S AF Sankaranarayanan, Subramanian K. R. S. Subbaraman, Ram Ramanathan, Shriram TI Considerations on ultra-high frequency electric field effects on oxygen vacancy concentration in oxide thin films SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; TEMPERATURE OXIDATION; ALUMINUM-OXIDE; METAL; TECHNOLOGY; ZIRCONIUM; MECHANISM; GROWTH AB Atomistic simulations employing dynamic charge transfer between atoms are used to investigate ultra-thin oxide growth on Al(100) metal substrates in the presence of an ac electric field. In the range of 1-10 GHz frequencies, the enhancement in oxidation kinetics by similar to 12% over natural oxidation can be explained by the Cabrera-Mott mechanism. At field frequencies approaching 0.1-1 THz, however, we observe a dramatic lowering of the kinetics of oxygen incorporation by similar to 35% compared to the maximum oxidation achieved, which results in oxygen non-stoichiometry near the oxide-gas interface (O/Al approximate to 1.0). This is attributed to oxygen desorption from the oxide surface. These results suggest a general strategy to tune oxygen concentration at oxide surfaces using ac electric fields that could be of interest in diverse fields related to surface chemistry and applications such as tunnel barriers, thin dielectrics and oxide interfaces. C1 [Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Subbaraman, Ram] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Ramanathan, Shriram] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Sankaranarayanan, SKRS (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM skrssank@anl.gov FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors also thank the computational facilities provided by CNM-ANL. NR 39 TC 0 Z9 0 U1 0 U2 11 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 10 BP 3360 EP 3368 DI 10.1039/c2cp22696k PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 892VQ UT WOS:000300314100011 PM 22297437 ER PT S AU Phillips, MC Suter, JD Bernacki, BE AF Phillips, M. C. Suter, J. D. Bernacki, B. E. BE Razeghi, M Tournie, E Brown, GJ TI Hyperspectral microscopy using an external cavity quantum cascade laser and its applications for explosives detection SO QUANTUM SENSING AND NANOPHOTONIC DEVICES IX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Quantum Sensing and Nanophotonic Devices IX CY JAN 22-26, 2012 CL San Francisco, CA SP SPIE DE Infrared spectroscopy; quantum cascade laser; tunable laser; infrared microscopy; explosives detection ID FOCAL-PLANE ARRAY; RESOLUTION AB Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 mu m in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits. C1 [Phillips, M. C.; Suter, J. D.; Bernacki, B. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Phillips, MC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RI Razeghi, Manijeh/B-7265-2009; OI Suter, Jonathan/0000-0001-5709-6988 NR 19 TC 7 Z9 7 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-911-1 J9 PROC SPIE PY 2012 VL 8268 AR 82681R DI 10.1117/12.907488 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BYT71 UT WOS:000300191700047 ER PT S AU Suter, JD Bernacki, BE Phillips, MC AF Suter, Jonathan D. Bernacki, Bruce E. Phillips, Mark C. BE Razeghi, M Tournie, E Brown, GJ TI Angle-resolved scattering spectroscopy of explosives using an external cavity quantum cascade laser SO QUANTUM SENSING AND NANOPHOTONIC DEVICES IX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Quantum Sensing and Nanophotonic Devices IX CY JAN 22-26, 2012 CL San Francisco, CA SP SPIE DE Infrared spectroscopy; explosives detection; quantum cascade laser; hyperspectral imaging ID OPTICAL-PROPERTIES; CONTINUOUS-WAVE; ENERGETIC MATERIALS; STANDOFF DETECTION; ROOM-TEMPERATURE; RDX; HMX AB We present a study of the spectral and angular dependence of the diffuse scatter of mid-infrared (MIR) laser light from explosives residues on surfaces. Experiments were performed using an external cavity quantum cascade laser (ECQCL) tunable between 7 and 8 mu m (1270 to 1400 cm(-1)) for surface illumination. A mercury cadmium telluride (MCT) detector was used to detect backscattered spectra as a function of surface angle at a 2 meter standoff. A ferroelectric focal plane array was used to build hyperspectral images at a 0.5 meter standoff. Residues of RDX, tetryl, and TNT were investigated on surfaces including a painted car door for angles between zero (specular) and 50 degrees. We observe spectral signatures of the explosives in the diffuse scattering geometry which differ significantly from those observed in transmission geometries. Characterization of the scattered light spectra of explosives on surfaces will be essential for understanding the performance of standoff explosives detection instruments and developing robust spectral analysis techniques. C1 [Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Suter, JD (reprint author), Pacific NW Natl Lab, POB 999,K5-25, Richland, WA 99352 USA. RI Razeghi, Manijeh/B-7265-2009; OI Suter, Jonathan/0000-0001-5709-6988 NR 27 TC 2 Z9 2 U1 0 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-911-1 J9 PROC SPIE PY 2012 VL 8268 AR 82681O DI 10.1117/12.908653 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BYT71 UT WOS:000300191700044 ER PT S AU Taubman, MS Myers, TL Bernacki, BE Stahl, RD Cannon, BD Schiffern, JT Phillips, MC AF Taubman, Matthew S. Myers, Tanya L. Bernacki, Bruce E. Stahl, Robert D. Cannon, Bret D. Schiffern, John T. Phillips, Mark C. BE Razeghi, M Tournie, E Brown, GJ TI A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach SO QUANTUM SENSING AND NANOPHOTONIC DEVICES IX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Quantum Sensing and Nanophotonic Devices IX CY JAN 22-26, 2012 CL San Francisco, CA SP SPIE DE Infrared spectroscopy; astigmatic Herriott cell; quantum cascade laser; tunable laser; modular systems ID SPECTROSCOPY AB A multi-channel laser-based chemical sensor platform is presented, in which a modular architecture allows the exchange of complete sensor channels without disruption to overall operation. Each sensor channel contains custom optical and electronics packages, which can be selected to access laser wavelengths, interaction path lengths and modulation techniques optimal for a given application or mission. Although intended primarily to accommodate mid-infrared external cavity quantum cascade lasers and astigmatic Herriott cells, channels using visible or near infrared lasers or other gas cell architectures can also be used, making this a truly versatile platform. Analog and digital resources have been carefully chosen to facilitate small footprint, rapid spectral scanning, low-noise signal recovery, fail-safe autonomous operation, and in-situ chemometric data analysis, storage and transmission. Results from the demonstration of a two-channel version of this platform are also presented. C1 [Taubman, Matthew S.; Myers, Tanya L.; Bernacki, Bruce E.; Stahl, Robert D.; Cannon, Bret D.; Schiffern, John T.; Phillips, Mark C.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Taubman, MS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA. RI Razeghi, Manijeh/B-7265-2009 NR 11 TC 3 Z9 3 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-911-1 J9 PROC SPIE PY 2012 VL 8268 AR 82682G DI 10.1117/12.908676 PG 14 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BYT71 UT WOS:000300191700062 ER PT J AU Subin, ZM Murphy, LN Li, FY Bonfils, C Riley, WJ AF Subin, Zachary M. Murphy, Lisa N. Li, Fuyu Bonfils, Celine Riley, William J. TI Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: analyses in the Community Earth System Model 1 (CESM1) SO TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY LA English DT Article DE lake modelling; climate model evaluation; land atmosphere interactions; atmospheric dynamics; boreal climate change ID SEA-LEVEL PRESSURE; NORTHERN-HEMISPHERE WINTER; REGIONAL CLIMATE MODEL; LAURENTIAN GREAT-LAKES; INLAND WATER SURFACES; LAND-COVER CHANGE; ICE COVER; MULTIDECADAL VARIABILITY; GEOPOTENTIAL HEIGHT; STATIONARY WAVES AB We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1) to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here) caused 1 degrees C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 degrees C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 degrees C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments. C1 [Subin, Zachary M.; Murphy, Lisa N.; Li, Fuyu; Riley, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Bonfils, Celine] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. RP Subin, ZM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM zmsubin@lbl.gov RI Bonfils, Celine/H-2356-2012; Subin, Zachary/K-5168-2012; Murphy, Lisa/B-8547-2013; Li, Fuyu/B-9055-2013; Riley, William/D-3345-2015 OI Bonfils, Celine/0000-0002-4674-5708; Subin, Zachary/0000-0002-9257-9288; Murphy, Lisa/0000-0003-4343-8005; Riley, William/0000-0002-4615-2304 FU Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy [DE-AC02-05CH11231] FX Michael Wehner (Lawrence Berkeley National Lab), John Chiang (University of California, Berkeley), Benjamin Santer (Lawrence Livermore National Lab), William Collins(Lawrence Berkeley National Lab) and Sarah Kang (Columbia University) provided helpful comments on interpreting large-scale atmospheric responses to regional changes in terrestrial surface forcing. David Lawrence (National Center for Atmospheric Research) facilitated interaction with the CESM Land Model Working Group and support in running and interpreting the model. One anonymous reviewer and one named reviewer (Sumant Nigam) provided helpful comments in clarifying and improving the manuscript. This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 to Berkeley Lab. NR 120 TC 10 Z9 10 U1 1 U2 25 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6495 EI 1600-0870 J9 TELLUS A JI Tellus Ser. A-Dyn. Meteorol. Oceanol. PY 2012 VL 64 AR 15639 DI 10.3402/tellusa.v64i0.15639 PG 21 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 893ZQ UT WOS:000300396900001 ER PT J AU Kendrick, BK AF Kendrick, Brian K. TI Time-dependent wave packet propagation using quantum hydrodynamics SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article ID REACTIVE SCATTERING; DYNAMICS; EQUATIONS; MOTION; STATES; EQUIDISTRIBUTION; TRAJECTORIES; FORMULATION; MECHANICS; GRIDS AB A new approach for propagating time-dependent quantum wave packets is presented based on the direct numerical solution of the quantum hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics. A generalized iterative finite difference method (IFDM) is used to solve the resulting set of non-linear coupled equations. The IFDM is 2nd-order accurate in both space and time and exhibits exponential convergence with respect to the iteration count. The stability and computational efficiency of the IFDM is significantly improved by using a "smart" Eulerian grid which has the same computational advantages as a Lagrangian or Arbitrary Lagrangian Eulerian (ALE) grid. The IFDM is generalized to treat higher-dimensional problems and anharmonic potentials. The method is applied to a one-dimensional Gaussian wave packet scattering from an Eckart barrier, a one-dimensional Morse oscillator, and a two-dimensional (2D) model collinear reaction using an anharmonic potential energy surface. The 2D scattering results represent the first successful application of an accurate direct numerical solution of the quantum hydrodynamic equations to an anharmonic potential energy surface. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kendrick, BK (reprint author), Los Alamos Natl Lab, Div Theoret, T-1,MS B268, Los Alamos, NM 87545 USA. EM bkendric@lanl.gov FU US Department of Energy at Los Alamos National Laboratory; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was done under the auspices of the US Department of Energy at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 42 TC 8 Z9 8 U1 3 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD JAN PY 2012 VL 131 IS 1 AR 1075 DI 10.1007/s00214-011-1075-9 PG 19 WC Chemistry, Physical SC Chemistry GA 891JT UT WOS:000300213700004 ER PT J AU Cummings, ML Chien, TY Preissner, C Madhavan, V Diesing, D Bode, M Freeland, JW Rose, V AF Cummings, M. L. Chien, T. Y. Preissner, C. Madhavan, V. Diesing, D. Bode, M. Freeland, J. W. Rose, V. TI Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast SO ULTRAMICROSCOPY LA English DT Article DE Photoelectron microscopy; Scanning tunneling microscopy; Synchrotron radiation; x-Ray magnetic circular dichroism; SXSTM ID TIP AB The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-Flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chien, T. Y.; Preissner, C.; Freeland, J. W.; Rose, V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Cummings, M. L.] Rice Univ, Mech Engn & Mat Sci Dept, Houston, TX 77005 USA. [Cummings, M. L.; Bode, M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Madhavan, V.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Diesing, D.] Univ Duisburg Essen, Fac Chem, D-45141 Essen, Germany. RP Rose, V (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM vrose@anl.gov RI Rose, Volker/B-1103-2008; Bode, Matthias/S-3249-2016 OI Rose, Volker/0000-0002-9027-1052; Bode, Matthias/0000-0001-7514-5560 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Work at the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Work at the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Work at the Electron Microscopy Center was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We thank Jon Hiller for the support in scanning electron microscopy. Damian Buerstel is acknowledged for help with the sample preparation. NR 32 TC 20 Z9 20 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JAN PY 2012 VL 112 IS 1 BP 22 EP 31 DI 10.1016/j.ultramic.2011.09.018 PG 10 WC Microscopy SC Microscopy GA 894XU UT WOS:000300461600004 PM 22088505 ER PT S AU Harger, JR Crossno, PJ AF Harger, John R. Crossno, Patricia J. BE Wong, PC Kao, DL Hao, MC Chen, C Kosara, R Livingston, MA Park, J Roberts, I TI Comparison of Open Source Visual Analytics Toolkits SO VISUALIZATION AND DATA ANALYSIS 2012 SE Proceedings of SPIE LA English DT Proceedings Paper CT 19th SPIE Conference on Visualization and Data Analysis (VDA) CY JAN 23-25, 2012 CL Burlingame, CA SP Soc Imaging Sci & Technol (IS&T), SPIE, Hewlett Packard Co, Kitware Inc, Pacific NW Natl Lab, SAGE Publicat Ltd, U.S. Dept Homeland Secur DE Visual Analytics; open source; toolkits; comparison; evaluation ID VISUALIZATION; GRAPHS; DRAWINGS; SOFTWARE AB We present the results of the first stage of a two-stage evaluation of open source visual analytics packages. This stage is a broad feature comparison over a range of open source toolkits. Although we had originally intended to restrict ourselves to comparing visual analytics toolkits, we quickly found that very few were available. So we expanded our study to include information visualization, graph analysis, and statistical packages. We examine three aspects of each toolkit: visualization functions, analysis capabilities, and development environments. With respect to development environments, we look at platforms, language bindings, multi-threading/parallelism, user interface frameworks, ease of installation, documentation, and whether the package is still being actively developed. C1 [Harger, John R.; Crossno, Patricia J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Harger, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jrharge@sandia.gov; pjcross@sandia.gov NR 47 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-941-8 J9 PROC SPIE PY 2012 VL 8294 AR 82940E DI 10.1117/12.911901 PG 10 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BYT62 UT WOS:000300179600012 ER PT S AU Steed, CA Symons, CT DeNap, FA Potok, TE AF Steed, Chad A. Symons, Christopher T. DeNap, Frank A. Potok, Thomas E. BE Wong, PC Kao, DL Hao, MC Chen, C Kosara, R Livingston, MA Park, J Roberts, I TI Guided Text Analysis Using Adaptive Visual Analytics SO VISUALIZATION AND DATA ANALYSIS 2012 SE Proceedings of SPIE LA English DT Proceedings Paper CT 19th SPIE Conference on Visualization and Data Analysis (VDA) CY JAN 23-25, 2012 CL Burlingame, CA SP Soc Imaging Sci & Technol (IS&T), SPIE, Hewlett Packard Co, Kitware Inc, Pacific NW Natl Lab, SAGE Publicat Ltd, U.S. Dept Homeland Secur DE visual analytics; text visualization; machine learning; search interfaces ID VISUALIZATION AB This paper demonstrates the promise of augmenting interactive visualizations with semi-supervised machine learning techniques to improve the discovery of significant associations and insight in the search and analysis of textual information. More specifically, we have developed a system-called Gryffin-that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source publications related to national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term-frequency views, and multiple coordinated views. Furthermore, as the analyst interacts with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the Department of Homeland Security's Fusion Centers, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in search and investigative analysis of textual information. C1 [Steed, Chad A.; Symons, Christopher T.; DeNap, Frank A.; Potok, Thomas E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Steed, CA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM csteed@acm.org; symonsct@ornl.gov; denapfa@ornl.gov; potokte@ornl.gov OI Potok, Thomas/0000-0001-6687-3435; Steed, Chad/0000-0002-3501-909X NR 22 TC 0 Z9 0 U1 0 U2 8 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-941-8 J9 PROC SPIE PY 2012 VL 8294 AR 829408 DI 10.1117/12.904904 PG 14 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BYT62 UT WOS:000300179600006 ER PT J AU Chung, CW Suraneni, P Popovics, JS Struble, LJ AF Chung, Chul-Woo Suraneni, Prannoy Popovics, John S. Struble, Leslie J. TI Setting Time Measurement Using Ultrasonic Wave Reflection SO ACI MATERIALS JOURNAL LA English DT Article DE buffer; cement paste; setting; stiffening; ultrasonic shear wave reflection ID CEMENT-BASED MATERIALS; CONCRETE; MONITOR AB Ultrasonic shear wave reflection was used to investigate setting times of cement pastes by measuring the reflection coefficient at the interface between hydrating cement pastes of varying water-cement ratio (w/c) and an ultrasonic buffer material. Several different buffer materials were employed, and the choice of buffer was seen to strongly affect measurement sensitivity; high-impact polystyrene showed the highest sensitivity to setting processes because it had the lowest acoustic impedance value. The results show that ultrasonic shear-wave reflection can be used successfully to to monitor early setting processes of cement paste with good sensitivity when such a low impedance buffer is employed. Criteria are proposed to define set times, and the resulting initial and final set times agreed broadly with those determined using the standard penetration resistance test. C1 [Chung, Chul-Woo] Pacific NW Natl Lab, Richland, WA 99352 USA. [Suraneni, Prannoy] Swiss Fed Inst Technol, Inst Bldg Mat, Zurich, Switzerland. [Popovics, John S.; Struble, Leslie J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Popovics, John S.] ACI Publicat Comm, Farmington Hills, MI USA. [Popovics, John S.] ACI Comm 123, Farmington Hills, MI USA. [Popovics, John S.] ACI Comm 215, Farmigton Hills, MI USA. RP Chung, CW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. OI Suraneni, Prannoy/0000-0002-0899-2601 NR 21 TC 13 Z9 13 U1 1 U2 6 PU AMER CONCRETE INST PI FARMINGTON HILLS PA 38800 COUNTRY CLUB DR, FARMINGTON HILLS, MI 48331 USA SN 0889-325X J9 ACI MATER J JI ACI Mater. J. PD JAN-FEB PY 2012 VL 109 IS 1 BP 109 EP 117 PG 9 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA 888UT UT WOS:000300030800012 ER PT J AU Plank, H Smith, DA Haber, T Rack, PD Hofer, F AF Plank, Harald Smith, Daryl A. Haber, Thomas Rack, Philip D. Hofer, Ferdinand TI Fundamental Proximity Effects in Focused Electron Beam Induced Deposition SO ACS NANO LA English DT Article DE electron beam induced deposition; Monte Carlo simulation; nanotechnology; platinum; patterning ID MONTE-CARLO CALCULATION; ION-BEAM; RESOLUTION; REPAIR; MASK; FABRICATION; SIMULATION; MICROSCOPY; DAMAGE; TIPS AB Fundamental proximity effects for electron beam induced deposition processes on nonflat surfaces were studied experimentally and via simulation. Two specific effects were elucidated and exploited to considerably increase the volumetric growth rate of this nanoscale direct write method: (1) increasing the scanning electron pitch to the scale of the lateral electron straggle increased the volumetric growth rate by 250% by enhancing the effective forward scattered, backscattered, and secondary electron coefficients as well as by strong recollection effects of adjacent features; and (2) strategic patterning sequences are introduced to reduce precursor depletion effects which increase volumetric growth rates by more than 90%, demonstrating the strong Influence of patterning parameters on the final performance of this powerful direct write technique. C1 [Plank, Harald; Hofer, Ferdinand] Graz Univ Technol, Inst Electron Microscopy, A-8010 Graz, Austria. [Plank, Harald; Haber, Thomas; Hofer, Ferdinand] Ctr Electron Microscopy, A-8010 Graz, Austria. [Smith, Daryl A.; Rack, Philip D.] Univ Tennessee, Knoxville, TN 37996 USA. [Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Plank, H (reprint author), Graz Univ Technol, Inst Electron Microscopy, Steyrergasse 17, A-8010 Graz, Austria. EM harald.plank@felmi-zfe.at RI Smith, Daryl/K-2379-2014; OI Rack, Philip/0000-0002-9964-3254; Hofer, Ferdinand/0000-0001-9986-2193 FU Semiconductor Research Corporation; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy FX H.P. gratefully acknowledges support from Prof. Dr. G. Kothleitner and Dr. J. Wagner. P.D.R. and D.A.S. gratefully acknowledge support from Semiconductor Research Corporation (Dan Herr program Manager). P.D.R. also acknowledges that part of his time developing the single scattering Monte Carlo simulation was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 65 TC 32 Z9 32 U1 5 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 286 EP 294 DI 10.1021/nn204237h PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300037 PM 22181556 ER PT J AU Lang, MR He, L Xiu, FX Yu, XX Tang, JS Wang, Y Kou, XF Jiang, WJ Fedorov, AV Wang, KL AF Lang, Murong He, Liang Xiu, Faxian Yu, Xinxin Tang, Jianshi Wang, Yong Kou, Xufeng Jiang, Wanjun Fedorov, Alexei V. Wang, Kang L. TI Revelation of Topological Surface States in Bi2Se3 Thin Films by In Situ Al Passivation SO ACS NANO LA English DT Article DE topological insulator; aluminum passivation; thin films; Shubnikov-de Hass oscillations; weak antilocalization; surface state degradation ID HGTE QUANTUM-WELLS; SINGLE DIRAC CONE; INSULATOR NANORIBBONS; BERRYS PHASE; GRAPHENE; ANTILOCALIZATION; BI2TE3 AB Topological insulators (TIs) are extraordinary materials that possess massless, Dirac-like topological surface states in which backscattering is prohibited due to the strong spin-orbit coupling. However, there have been reports on degradation of topological surface states in ambient conditions, which presents a great challenge for probing the original topological surface states after TI materials are prepared. Here, we show that in situ Al passivation inside a molecular beam epitaxy (MBE) chamber could inhibit the degradation process and reveal the pristine topological surface states. Dual evidence from Shubnikov-de Hass (AN) oscillations and weak antilocalization (WAL) effect, originated from the pi Berry phase, suggests that the helically spin-polarized surface states are well preserved by the proposed In situ Al passivation. In contrast, we show the degradation of surface states for the unpassivated control samples, in which the 2D carrier density is increased 39.2% due to ambient n-doping, the SdH oscillations are completely absent, and a large deviation from WAL is observed. C1 [Lang, Murong; He, Liang; Yu, Xinxin; Tang, Jianshi; Kou, Xufeng; Jiang, Wanjun; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA. [Xiu, Faxian] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Wang, Yong] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China. [Fedorov, Alexei V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. RP He, L (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90095 USA. EM heliang@ee.ucla.edu; wang@ee.ucla.edu RI Xiu, Faxian/B-4985-2012; Jiang, Wanjun/E-6994-2011; Wang, Yong/A-7766-2010; He, Liang/E-5935-2012; Tang, Jianshi/I-5543-2014; OI Jiang, Wanjun/0000-0003-0918-3862; Wang, Yong/0000-0002-9893-8296; Tang, Jianshi/0000-0001-8369-0067; Kou, Xufeng/0000-0002-8860-5105 FU Focus Center; Center on Functional Engineered Nano Architectonics (FENA); Defense Advanced Research Projects Agency (DARPA) FX The authors acknowledge helpful discussions with Y. Fan, P. Upadhyaya, and technical support from L. T. Chang, X. Jiang, C. Zeng, and M. Wang from the Device Research Laboratory at UCLA. This work was in part supported by Focus Center Research Program, Center on Functional Engineered Nano Architectonics (FENA) and Defense Advanced Research Projects Agency (DARPA). NR 46 TC 39 Z9 39 U1 4 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 295 EP 302 DI 10.1021/nn204239d PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300038 PM 22147687 ER PT J AU Wild, B Cao, LN Sun, YG Khanal, BP Zubarev, ER Gray, SK Scherer, NF Pelton, M AF Wild, Barbara Cao, Lina Sun, Yugang Khanal, Bishnu P. Zubarev, Eugene R. Gray, Stephen K. Scherer, Norbert F. Pelton, Matthew TI Propagation Lengths and Group Velocities of Plasmons in Chemically Synthesized Gold and Silver Nanowires SO ACS NANO LA English DT Article DE surface plasmons; nanowires; propagation length; group velocity ID POLYOL SYNTHESIS; WAVE-GUIDE; SURFACE; POLARITONS; NANOSTRUCTURES; INTERFACE; METALS; OPTICS AB Recent advances In chemical synthesis have made it possible to produce gold and silver nanowires that are free of large-scale crystalline defects and surface roughness. Surface plasmons can propagate along the wires, allowing them to serve as optical waveguides with cross sections much smaller than the optical wavelength. Gold nanowires provide improved chemical stability as compared to silver nanowires, but at the cost of higher losses for the propagating plasmons. In order to characterize this trade-off, we measured the propagation length and group velocity of plasmons in both gold and silver nanowires. Propagation lengths are measured by fluorescence imaging of the plasmonic near fields. Group velocities are deduced from the spacing of fringes in the spectrum of coherent light transmitted by the wires. In contrast to previous work we interpret these fringes as arising from a far-field interference effect. The measured propagation characteristics agree with numerical simulations, indicating that propagation in these wires is dominated by the material properties of the metals, with additional losses due to scattering from roughness or grain boundaries providing at most a minor contribution. The propagation lengths and group velocities can also be described by a simple analytical model that considers only the lowest-order waveguide mode in a solid metal cylinder, showing that this single mode dominates in real nanowires. Comparison between experiments and theory Indicates that widely used tabulated values for dielectric functions provide a good description of plasmons in gold nanowires but significantly overestimate plasmon losses in silver nanowires. C1 [Cao, Lina; Sun, Yugang; Gray, Stephen K.; Scherer, Norbert F.; Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Wild, Barbara; Cao, Lina; Scherer, Norbert F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Wild, Barbara; Cao, Lina; Scherer, Norbert F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Khanal, Bishnu P.; Zubarev, Eugene R.] Rice Univ, Dept Chem, Houston, TX 77005 USA. RP Pelton, M (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pelton@anl.gov RI Zubarev, Eugene/C-9288-2011; Sun, Yugang /A-3683-2010; Pelton, Matthew/H-7482-2013 OI Sun, Yugang /0000-0001-6351-6977; Pelton, Matthew/0000-0002-6370-8765 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Deutsche Forschungsgemeinschaft [WI 3878/1-1]; NSF CCI at UC Irvine [CHE-0616663]; NSF [CHE-1059057, DMR-0547399, DMR-1105878]; Robert A. Welch Foundation [C-1703] FX Work at the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. B.W. was supported by Deutsche Forschungsgemeinschaft (WI 3878/1-1). L.C. was partially supported by NSF CCI at UC Irvine (CHE-0616663). N.F.S. and S.K.G. acknowledges financial support from the NSF (CHE-1059057). E.R.Z. acknowledges financial support from the NSF (DMR-0547399, DMR-1105878) and the Robert A. Welch Foundation (C-1703). We thank Dr. Stephan Link for helpful discussions and Dr. Mason Guffey for assistance with SEM imaging. NR 40 TC 84 Z9 84 U1 12 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 472 EP 482 DI 10.1021/nn203802e PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300058 PM 22185403 ER PT J AU Kim, Y Kumar, A Ovchinnikov, O Jesse, S Han, H Pantel, D Vrejoiu, I Lee, W Hesse, D Alexe, M Kalinin, SV AF Kim, Yunseok Kumar, Amit Ovchinnikov, Oleg Jesse, Stephen Han, Hee Pantel, Daniel Vrejoiu, Ionela Lee, Woo Hesse, Dietrich Alexe, Marin Kalinin, Sergei V. TI First-Order Reversal Curve Probing of Spatially Resolved Polarization Switching Dynamics in Ferroelectric Nanocapacitors SO ACS NANO LA English DT Article DE ferroelectric nanocapacitor; spatially resolved switching dynamics; PFM; BEPS; KAI; FORC ID DOMAIN NUCLEATION; HIGH-RESOLUTION; CAPACITORS; HETEROSTRUCTURES; GENERATION; DENSITY; BIFEO3; WALLS; FILMS; MODEL AB Spatially resolved polarization switching In ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model. The comparison with microstructures suggests a strong spatial variability of the switching dynamics inside the nanocapacitors. C1 [Kim, Yunseok; Kumar, Amit; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Han, Hee; Lee, Woo] KRISS, Taejon 305340, South Korea. [Pantel, Daniel; Vrejoiu, Ionela; Hesse, Dietrich; Alexe, Marin] Max Planck Inst Microstruct Phys, D-06120 Halle, Saale, Germany. RP Kim, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM kimy4@ornl.gov; sergei2@ornl.gov RI Lee, Woo/B-5268-2008; Kumar, Amit/C-9662-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Alexe, Marin/K-3882-2016 OI Lee, Woo/0000-0003-4560-8901; Kumar, Amit/0000-0002-1194-5531; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Alexe, Marin/0000-0002-0386-3026 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; German Science Foundation (DFG) [SFB 762] FX This research was supported (S.V.K., Y.K.) by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division and partially performed at the Center for Nanophase Materials Sciences (S.V.K.), a DOE-BES user facility. The work of Max Planck Institute of Microstructure Physics was supported by German Science Foundation (DFG) via SFB 762. NR 55 TC 19 Z9 19 U1 5 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 491 EP 500 DI 10.1021/nn203831h PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300060 PM 22136402 ER PT J AU Tepavcevic, S Xiong, H Stamenkovic, VR Zuo, XB Balasubramanian, M Prakapenka, VB Johnson, CS Rajh, T AF Tepavcevic, Sanja Xiong, Hui Stamenkovic, Vojislav R. Zuo, Xiaobing Balasubramanian, Mahalingam Prakapenka, Vitali B. Johnson, Christopher S. Rajh, Tijana TI Nanostructured Bilayered Vanadium Oxide Electrodes for Rechargeable Sodium-Ion Batteries SO ACS NANO LA English DT Article DE nanostructured electrodes; electrochemical deposition; bilayered V2O5; sodium-ion battery ID LITHIUM BATTERIES; V2O5 NANOWIRES; INSERTION; CATHODES; INTERCALATION; ABSORPTION; TRANSITION; PENTOXIDE; AEROGEL AB Tailoring nanoarchitecture of materials offers unprecedented opportunities In utilization of their functional properties. Nanostructures of vanadium oxide, synthesized by electrochemical deposition, are studied as a cathode material for rechargeable Na-ion batteries. Ex situ and in situ synchrotron characterizations revealed the presence of an electrochemically responsive bilayered structure with adjustable intralayer spacing that accommodates intercalation of Na+ ions. Sodium intake induces organization of overall structure with appearance of both long- and short-range order, while deintercalation is accompanied with the loss of long-range order, whereas short-range order is preserved. Nanostructured electrodes achieve theoretical reversible capacity for Na2V2O5 stochiometry of 250 mAh/g. The stability evaluation during charge discharge cycles at room temperature revealed an efficient 3 V cathode material with superb performance: energy density of similar to 760 Wh/kg and power density of 1200 W/kg. These results demonstrate feasibility of development of the ambient temperature Na-ion rechargeable batteries by employment of electrodes with tailored nanoarchitectures. C1 [Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Tepavcevic, Sanja; Xiong, Hui; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Zuo, Xiaobing; Balasubramanian, Mahalingam] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. RP Stamenkovic, VR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrstamenkovic@anl.gov; cjohnson@anl.gov; rajh@anl.gov RI Xiong, Hui/C-4216-2011; Zuo, Xiaobing/F-1469-2010 OI Xiong, Hui/0000-0003-3126-1476; FU U.S. Department of Energy; U.S. DOE-BES [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSERC (Canada); National Science Foundation-Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG02-94ER14466] FX The authors would like to thank Dr. Yuzi Liu for HRTEM measurements and useful discussions. This work was supported by the U.S. Department of Energy, U.S. DOE-BES, under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials and Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at sector 20 and research at these facilities supported by the U.S. DOE, NSERC (Canada), and Sector 13 GeoSoilEnviroCARS by the National Science Foundation-Earth Sciences (EAR-0622171) and Department of Energy-Geosciences (DE-FG02-94ER14466). NR 30 TC 116 Z9 118 U1 27 U2 333 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 530 EP 538 DI 10.1021/nn203869a PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300064 PM 22148185 ER PT J AU Li, Q Han, CB Horton, SR Fuentes-Cabrera, M Sumpter, BG Lu, WC Bernholc, J Maksymovych, P Pan, MH AF Li, Qing Han, Chengbo Horton, Scott R. Fuentes-Cabrera, Miguel Sumpter, Bobby G. Lu, Wenchang Bernholc, Jerry Maksymovych, Petro Pan, Minghu TI Supramolecular Self-Assembly of pi-Conjugated Hydrocarbons via 2D Cooperative CH/pi Interaction SO ACS NANO LA English DT Article DE phenylacetylene; self-assembly; STM; supramolecule; hydrogen bonding; magic cluster ID SCANNING-TUNNELING-MICROSCOPY; INTERMOLECULAR INTERACTIONS; CRYSTAL-STRUCTURE; AU(111) SURFACE; MONOLAYER AB Supramolecular self-assembly on well-defined surfaces provides access to a multitude of nanoscale architectures, including clusters of distinct symmetry and size. The driving forces underlying supramolecular structures generally Involve both graphoepitaxy and weak directional nonconvalent interactions. Here we show that functionalizing a benzene molecule with an ethyne group introduces attractive interactions in a 2D geometry, which would otherwise be dominated by intermolecular repulsion. Furthermore, the attractive interactions enable supramolecular self-assembly, wherein a subtle balance between very weak CH/pi bonding and molecule-surface interactions produces a well-defined "magic" dimension and chirality of supramolecular clusters. The nature of the process is corroborated by extensive scanning tunneling microscopy/spectroscopy (STM/S) measurements and ab initio calculations, which emphasize the cooperative, multicenter characters of the CH/pi Interaction. This work points out new possibilities for chemical functionalization of pi-conjugated hydrocarbon molecules that may allow for the rational design of supramolecular clusters with a desired shape and size. C1 [Li, Qing; Horton, Scott R.; Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; Maksymovych, Petro; Pan, Minghu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Han, Chengbo; Lu, Wenchang; Bernholc, Jerry] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Han, Chengbo; Lu, Wenchang; Bernholc, Jerry] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; Lu, Wenchang; Bernholc, Jerry] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Pan, MH (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM fuentescabma@ornl.gov; maksymovychp@ornl.gov; panm@ornl.gov RI Sumpter, Bobby/C-9459-2013; Fuentes-Cabrera, Miguel/Q-2437-2015; Maksymovych, Petro/C-3922-2016 OI Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera, Miguel/0000-0001-7912-7079; Maksymovych, Petro/0000-0003-0822-8459 FU Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory; DOE [DE-FG02-98ER45685] FX This research was conducted at the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The work at NCSU was supported by DOE Grant DE-FG02-98ER45685. The computations were performed using the resources of the CNMS and the National Center for Computational Sciences at Oak Ridge National Laboratory. NR 30 TC 21 Z9 21 U1 7 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 566 EP 572 DI 10.1021/nn203952e PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300068 PM 22168531 ER PT J AU Johnson, GE Priest, T Laskin, J AF Johnson, Grant E. Priest, Thomas Laskin, Julia TI Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions SO ACS NANO LA English DT Article DE cluster; monodisperse; charge; self-assembled monolayer; electrospray ionization; soft landing ID ASSEMBLED MONOLAYER SURFACES; DENSITY-FUNCTIONAL CALCULATIONS; LIGAND-EXCHANGE REACTIONS; AU NANOPARTICLES SPONGES; ELECTROSPRAY-IONIZATION; METAL-CLUSTERS; PEPTIDE IONS; GAS-PHASE; ABSORPTION-SPECTROSCOPY; MOBILITY MEASUREMENTS AB Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas phase, and mass selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane), which was delivered to surfaces at well-controlled kinetic energies. Using in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS), it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-perfluorodecanethiol self-assembled monolayer (FSAM) on gold. In contrast, when deposited onto 16-mercaptohexadecanoic add (COOH-SAM) and 1-dodecanethiol (HSAM) surfaces on gold, the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the FSAM and HSAM surfaces are investigated using in situ Fourier transform ion cyclotron resonance (FT-ICR) SIMS. It is shown that an extremely slow interfacial (harp reduction occurs on the FSAM surface while an almost instantaneous neutralization takes place on the surface of the HSAM. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected Ions onto carefully selected substrates. C1 [Johnson, Grant E.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Johnson, GE (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM grant.johnson@pnnl.gov; Julia.laskin@pnnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Johnson, Grant/0000-0003-3352-4444 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Pacific Northwest National Laboratory (PNNL); DOE at Pacific Northwest National Laboratory (PNNL) FX The authors acknowledge support for this research by a grant from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL). This work was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE of Biological and Environmental Research and located at PNNL PNNL is operated by Battelle for the U.S. DOE. T.P. acknowledges support from the DOE Science Undergraduate Laboratory Internship (SULI) program at Pacific Northwest National Laboratory (PNNL). G.E.J. is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL. NR 104 TC 22 Z9 22 U1 10 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 573 EP 582 DI 10.1021/nn2039565 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300069 PM 22136556 ER PT J AU Yan, HP Collins, BA Gann, E Wang, C Ade, H McNeill, CR AF Yan, Hongping Collins, Brian A. Gann, Eliot Wang, Cheng Ade, Harald McNeill, Christopher R. TI Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering SO ACS NANO LA English DT Article DE bulk heterojunction; polymer blends; polymer solar cells; soft X-rays; X-ray scattering ID NANOSCALE PHASE-SEPARATION; PHOTOVOLTAIC DEVICES; MDMO-PPV; MORPHOLOGY CONTROL; FULLERENE BLENDS; FILL FACTOR; PERFORMANCE; PHOTOCURRENT; DISSOCIATION; ORGANIZATION AB Enhanced scattering contrast afforded by resonant soft X-ray scattering (R-SoXS) is used to probe the nanomorphology of all-polymer solar cells based on blends of the donor polymer poly(3-hexylthiophene) (P3HT) with either the acceptor polymer poly((9,9-dioctytfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazolel-2',2 ''-diyl) (F8TBT) or poly(N,N'-bis(2-octyldodecyl)-11-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-12-bithiophene)) (P(NDI20D-T2)). Both P3HT:F8TBT and P3HT:P(NDI20D-T2) blends processed from chloroform with subsequent annealing exhibit complicated morphologies with a hierarchy of phase separation. A bimodal distribution of domain sizes is observed for P3HT:P(NDI20D-T2) blends with small domains of size 10 nm that evolve with annealing and larger domains of size 100 nm that are insensitive to annealing. P3HT:F8TBT blends In contrast show a broader distribution of domain size but with the majority of this blend structured on the 10 nm length sole. For both P3HT:P(NDI20D-T2) and P3HT:F8TBT blends, an evolution in device performance is observed that is correlated with a coarsening and purification of domains on the 5-10 nm length scale. Grazing-Incidence wide-angle X-ray scattering (GI-WAXS) is also employed to probe material crystallinity, revealing P(NDI20D-T2) crystallites 25-40 nm in thickness that are embedded In the larger domains observed by R-SoXS. A higher degree of P3HT crystallinity Is also observed in blends with P(NDI20D-T2) compared to F8TBT with the propensity of the polymers to crystallize in P3HT:P(NDI20D-T2) blends hindering the structuring of morphology on the sub-10 nm length scale. This work also underscores the complementarity of R-SoXS and GI-WAXS, with R-SoXS measuring the size of compositionally distinguishable domains and GI-WAXS providing information regarding crystallinity and crystallite thickness. C1 [Yan, Hongping; Collins, Brian A.; Gann, Eliot; Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [McNeill, Christopher R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. RP Ade, H (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM harald_ade@ncsu.edu; christopher.mcneill@monash.edu RI Gann, Eliot/A-5246-2014; McNeill, Christopher/B-4530-2008; Wang, Cheng /E-7399-2012; Collins, Brian/M-5182-2013; Ade, Harald/E-7471-2011; YAN, HONGPING/N-7549-2013; Wang, Cheng/A-9815-2014 OI McNeill, Christopher/0000-0001-5221-878X; Collins, Brian/0000-0003-2047-8418; YAN, HONGPING/0000-0001-6235-4523; FU EPSRC in UK [EP/E051804/1]; ARC in Australia [FT100100275]; DOE [DE-AC02-05CH1123]; OS; BES; MSE [DE-FG02-98ER45737] FX This work was supported in the UK by the EPSRC (EP/E051804/1) and in Australia by the ARC (FT100100275). NCSU's contribution (GI-WAXS, R-SOXS) is supported by DOE, OS, BES, MSE (DE-FG02-98ER45737). Data were acquired at beamlines 11.0.1.2, 73.3, and 5.3.2.2 at the ALS, which is supported by DOE (DE-AC02-05CH1123). The authors thank Cambridge Display Technology Ltd. for the supply of F8TBT. NR 58 TC 94 Z9 94 U1 12 U2 96 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 677 EP 688 DI 10.1021/nn204150f PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300082 PM 22168639 ER PT J AU Li, XD Meng, GW Qin, SY Xu, QL Chu, ZQ Zhu, XG Kong, MG Li, AP AF Li, Xiangdong Meng, Guowen Qin, Shengyong Xu, Qiaoling Chu, Zhaoqin Zhu, Xiaoguang Kong, Mingguang Li, An-Ping TI Nanochannel-Directed Growth of Multi-Segment Nanowire Heterojunctions of Metallic Au1-xGex and Semiconducting Ge SO ACS NANO LA English DT Article DE germanium; gold; multiple segment hybrid nanowires; electrodeposition; chemical vapor deposition ID ANODIC ALUMINA; ARRAYS; FABRICATION; SENSORS AB We report on the synthesis of multi-segment nanowire (NW) junctions of Au1-xGex and Ge inside the nanochannels of porous anodic aluminum oxide template. The one-dimensional heterostructures are grown with a low-temperature chemical vapor deposition process, assisted by electrodeposited Au nanowires (AuNWs). The Au-catalyzed vapor liquid solid growth process occurs simultaneously in multiple locations along the nanochannel, which leads to multi-segment Au1-xGex/Ge heterojunctions. The structures of the as-grown hybrid NWs, analyzed by using transmission election microscopy and energy-dispersive X-ray spectroscopy elemental mapping, show dear compositional modulation with variable modulation period and controllable junction numbers. Remarkably, both GeNW and Au1-xGexNW segments are single crystalline with abrupt Interfaces and good crystallographic coherences. The electronic and transport properties of individual NW junctions are measured by using a multi-probe scanning tunneling microscope, which confirms the semiconducting nature of Ge segments and the metallic behavior of Au1-xGex segments, respectively. The high yield of multiple segment NW junctions of a metal semiconductor can facilitate the applications In nanoelectronics and optoelectronics that harness multiple functionalities of heterointerfaces. C1 [Li, Xiangdong; Meng, Guowen; Xu, Qiaoling; Chu, Zhaoqin; Zhu, Xiaoguang; Kong, Mingguang] Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Hefei 230031, Peoples R China. [Li, Xiangdong; Meng, Guowen; Xu, Qiaoling; Chu, Zhaoqin; Zhu, Xiaoguang; Kong, Mingguang] Chinese Acad Sci, Anhui Key Lab Nanomat & Nanostruct, Inst Solid State Phys, Hefei 230031, Peoples R China. [Qin, Shengyong; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Meng, GW (reprint author), Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Hefei 230031, Peoples R China. EM gwmeng@issp.ac.cn; apli@ornl.gov RI Li, An-Ping/B-3191-2012; li, Xiangdong/K-2008-2013; Qin, Shengyong/A-7348-2012 OI Li, An-Ping/0000-0003-4400-7493; li, Xiangdong/0000-0003-2519-8757; FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy; National Natural Science Foundation of China [50525207, 50972145]; National Basic Research Program of China [2007CB936601]; China Postdoctoral Science Foundation [2011M501069] FX A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The work was financially supported by the National Natural Science Foundation of China (Grant Nos. 50525207 and 50972145), National Basic Research Program of China (Grant No. 2007CB936601), and China Postdoctoral Science Foundation funded project (No. 2011M501069). NR 28 TC 8 Z9 9 U1 6 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 831 EP 836 DI 10.1021/nn2043466 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300097 PM 22195681 ER PT J AU Lowe, SB Dick, JAG Cohen, BE Stevens, MM AF Lowe, Stuart B. Dick, John A. G. Cohen, Bruce E. Stevens, Molly M. TI Multiplex Sensing of Protease and Kinase Enzyme Activity via Orthogonal Coupling of Quantum Dot Peptide Conjugates SO ACS NANO LA English DT Article DE quantum dots; multiplexing; FRET; biosensors; bionanotechnology; enzyme activity; breast cancer ID RESONANCE ENERGY-TRANSFER; BREAST-CANCER; PROGNOSTIC RELEVANCE; POOR-PROGNOSIS; NANOPARTICLE; AMPLIFICATION; INHIBITOR; UROKINASE; INVASION; THERAPY AB Nanoparticle-based labels are emerging as simpler and more sensitive alternatives to traditional fluorescent small molecules and radioactive reporters In biomarker assays. The determination of biomarker levels is a recommended clinical practice for the assessment of many diseases, and detection of multiple analytes in a single assay, known as multiplexing, can increase predictive accuracy. While multiplexed detection can also simplify assay procedures and reduce systematic variability, combining multiple assays into a single procedure can lead to complications such as substrate cross-reactivity, signal overlap, and loss of sensitivity. By combining the specificity of biomolecular interactions with the tunability of quantum dot optical properties, we have developed a detection system capable of simultaneous evaluation of the activity of two critical enzyme classes, proteases and kinases. We avoid cross-reactivity and signal overlap by synthesizing enzyme-specific peptide sequences with orthogonal terminal functionalization for attachment to quantum dots with distinct emission spectra. Enzyme activity is reported via binding of either gold nanoparticle peptide conjugates or FRET acceptor dye-labeled antibodies, which mediate changes in quantum dot emission spectra. To the best of our knowledge, this Is the first demonstration of the multiplexed sensing of the activity of two different classes of enzymes via a nanoparticle-based activity assay. Using the quantum dot-based assay described herein, we were able to detect the protease activity of urokinase-type plasminogen activator at concentrations >= 50 ng/mL and the kinase activity of human epidermal growth factor receptor 2 at concentrations >= 7.5 nM, levels that are clinically relevant for determination of breast cancer prognosis. The modular nature of this assay design allows for the detection of different classes of enzymes simultaneously and represents a generic platform for high-throughput enzyme screening in rapid disease diagnosis and drug discovery. C1 [Lowe, Stuart B.; Dick, John A. G.; Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Lowe, Stuart B.; Dick, John A. G.; Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, London SW7 2AZ, England. [Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Dept Bioengn, London SW7 2AZ, England. [Cohen, Bruce E.] Lawrence Berkeley Natl Lab, Biol Nanostruct Facil, Mol Foundry, Berkeley, CA 94720 USA. RP Stevens, MM (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, Exhibit Rd, London SW7 2AZ, England. EM m.stevens@imperial.ac.uk FU EPSRC; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX M.M.S. thanks the EPSRC for funding of S.B.L Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 74 Z9 75 U1 11 U2 154 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 851 EP 857 DI 10.1021/nn204361s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300100 PM 22148227 ER PT J AU Telg, H Duque, JG Staiger, M Tu, XM Hennrich, F Kappes, MM Zheng, M Maultzsch, J Thomsen, C Doorn, SK AF Telg, Hagen Duque, Juan G. Staiger, Matthias Tu, Xiaomin Hennrich, Frank Kappes, Manfred M. Zheng, Ming Maultzsch, Janina Thomsen, Christian Doorn, Stephen K. TI Chiral Index Dependence of the G(+) and G(-) Raman Modes in Semiconducting Carbon Nanotubes SO ACS NANO LA English DT Article DE single-wall carbon nanotubes; Raman spectroscopy; G mode; LO/TO phonons; diameter determination; (n,m) assignment ID SINGLE-WALL; SPECTROSCOPY; SCATTERING; SYMMETRY; GRAPHITE AB Raman spectroscopy on the radial breathing mode Is a common tool to determine the diameter d or chiral indices (n,m) of single-wall carbon nanotubes. In this work we present an alternative technique to determine d and (n,m) based on the high-energy G(-) mode. From resonant Raman scattering experiments on 14 highly purified single chirality (n,m) samples we obtain the diameter, chiral angle, and family dependence of the G(-) and G(+) peak position. Considering theoretical predictions we discuss the origin of these dependences with respect to rehybridization of the carbon orbitals, confinement, and electron-electron interactions. The relative Raman intensities of the two peaks have a systematic chiral angle dependence in agreement with theories considering the symmetry of nanotubes and the associated phonons. C1 [Telg, Hagen; Duque, Juan G.; Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Staiger, Matthias; Maultzsch, Janina; Thomsen, Christian] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Tu, Xiaomin; Zheng, Ming] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA. [Hennrich, Frank; Kappes, Manfred M.] Karlsruher Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany. [Duque, Juan G.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect C PCS, Los Alamos, NM 87545 USA. RP Telg, H (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM hagen@lanl.gov; skdoorn@lanl.gov RI Thomsen, Christian/E-2295-2012; Telg, Hagen/O-3348-2013; Thomsen, Christian/B-5014-2015; Maultzsch, Janina/A-4781-2017 OI Telg, Hagen/0000-0002-4911-2703; Thomsen, Christian/0000-0001-6057-1401; FU U.S. Department of Energy; NSF [CMS-060950]; European Research Council, ERC [259286]; DFG; Helmholtz Association FX H.T, J.G.D., and S.K.D. acknowledge support of the U.S. Department of Energy through the LANL-LDRD program. X.T. and M.Z. acknowledge the support of NSF Grant CMS-060950. J.M. acknowledges support from the European Research Council, ERC grant no. 259286. F.H. and M.K. acknowledge support by the DFG-funded Center for Functional Nanostructures (CFN) and by the Helmholtz Association. This work was performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences, user facility. NR 33 TC 30 Z9 30 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JAN PY 2012 VL 6 IS 1 BP 904 EP 911 DI 10.1021/nn2044356 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 879YH UT WOS:000299368300107 PM 22175270 ER PT J AU Terlyga, O Bellout, H Bloom, F AF Terlyga, Olga Bellout, Hamid Bloom, Frederick TI GLOBAL EXISTENCE, UNIQUENESS, AND STABILITY FOR A NONLINEAR HYPERBOLIC-PARABOLIC PROBLEM IN PULSE COMBUSTION SO ACTA MATHEMATICA SCIENTIA LA English DT Article DE pulse combustion; hyperbolic-parabolic system; global existence; regularity ID PULSATING COMBUSTION; MODEL AB A global existence theorem is established for an initial-boundary value problem; with time-dependent boundary data, arising in a lumped parameter model of pulse combustion; the model in question gives rise to a nonlinear mixed hyperbolic-parabolic system. Using results previously established for the associated linear problem, a fixed point argument is employed to prove local existence for a regularized version of the nonlinear problem with artificial viscosity. Appropriate a-priori estimates are then derived which imply that the local existence result can be extended to a global existence theorem for the regularized problem. Finally, a different set of a priori estimates is generated which allows for taking the limit as the artificial viscosity parameter converges to zero; the corresponding solution of the regularized problem is then proven to converge to the unique solution of the initial-boundary value problem for the original, nonlinear, hyperbolic-parabolic system. C1 [Bellout, Hamid; Bloom, Frederick] No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA. [Terlyga, Olga] Fermi Natl Lab, Batavia, IL 60510 USA. RP Bloom, F (reprint author), No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA. EM terlyga@fnal.gov; bellout@math.niu.edu; bloom@math.niu.edu NR 22 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0252-9602 J9 ACTA MATH SCI JI Acta Math. Sci. PD JAN PY 2012 VL 32 IS 1 BP 41 EP 74 PG 34 WC Mathematics SC Mathematics GA 890BJ UT WOS:000300119800004 ER PT J AU Lim, H Kaman, T Yu, Y Mahadeo, V Xu, Y Zhang, H Glimm, J Dutta, S Sharp, DH Plohr, B AF Lim, H. Kaman, T. Yu, Y. Mahadeo, V. Xu, Y. Zhang, H. Glimm, J. Dutta, S. Sharp, D. H. Plohr, B. TI A MATHEMATICAL THEORY FOR LES CONVERGENCE SO ACTA MATHEMATICA SCIENTIA LA English DT Article DE numerical methods; turbuent mixing ID NUMERICAL SIMULATIONS; TURBULENCE; TRANSPORT; INSTABILITY; FLOW AB Practical simulations of turbulent processes are generally cutoff, with a grid resolution that stops within the inertial range, meaning that multiple active regions and length scales occur below the grid level and are not resolved. This is the regime of large eddy simulations (LES), in which the larger but not the smaller of the turbulent length scales are resolved. Solutions of the fluid Navier-Stokes equations, when considered in the inertial regime, are conventionally regarded as solutions of the Euler equations. In other words, the viscous and diffusive transport terms in the Navier-Stokes equations can be neglected in the inertial regime and in LES simulations, while the Euler equation becomes fundamental. For such simulations, significant new solution details emerge as the grid is refined. It follows that conventional notions of grid convergence are at risk of failure, and that a new, and weaker notion of convergence may be appropriate. It is generally understood that the LES or inertial regime is inherently fluctuating and its description must be statistical in nature. Here we develop such a point of view systematically, based on Young measures, which are measures depending on or indexed by space time points. In the Young measure dv(xi)(x,t), the random variable xi of the measure is a solution state variable, i.e., a solution dependent variable, representing momentum, density, energy and species concentrations, while the space time coordinates, x, t, serve to index the measure. Theoretical evidence suggests that convergence via Young measures is sufficiently weak to encompass the LES/inertial regime; numerical and theoretical evidence suggests that this notion may be required for passive scalar concentration and thermal degrees of freedom. Our objective in this research is twofold: turbulent simulations without recourse to adjustable parameters (calibration) and extension to more complex physics, without use of additional models or parameters, in both cases with validation through comparison to experimental data. C1 [Lim, H.; Kaman, T.; Yu, Y.; Mahadeo, V.; Xu, Y.; Zhang, H.; Glimm, J.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Dutta, S.] Coll St Catherine, Madison, NJ USA. [Sharp, D. H.; Plohr, B.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Lim, H (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM hyulim@ams.sunysb.edu; tkaman@ams.sunysb.edu; yan2000@ams.sunsb.edu; vmahadeo@ams.sunysb.edu; yxu@ams.sunysb.edu; hazhang@ams.sunysb.edu; glimm@ams.sunysb.edu; srabastidutta@gmail.com; dhs@lanl.gov; plohr@lanl.gov FU Department of Energy [NEUP-09-349]; Battelle Energy Alliance LLC [00088495]; Leland Stanford Junior University [2175022040367A]; Army Research Office [W911NF0910306]; US Department of Energy [DEAC 5206NA25396]; DOE; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357] FX Received November 2, 2011. This work is supported in part by the Nuclear Energy University Program of the Department of Energy, project NEUP-09-349, Battelle Energy Alliance LLC 00088495 (subaward with DOE as prime sponsor), Leland Stanford Junior University 2175022040367A (subaward with DOE as prime sponsor), Army Research Office W911NF0910306. The work of D.H. Sharp was supported by the US Department of Energy under Contract DEAC 5206NA25396.; Computational resources were provided by the Stony Brook Galaxy cluster and the Stony Brook/BNL New York Blue Gene/L IBM machine. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. NR 41 TC 5 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0252-9602 J9 ACTA MATH SCI JI Acta Math. Sci. PD JAN PY 2012 VL 32 IS 1 BP 237 EP 258 PG 22 WC Mathematics SC Mathematics GA 890BJ UT WOS:000300119800015 ER PT J AU Gamazo, P Saaltink, MW Carrera, J Slooten, L Bea, S AF Gamazo, P. Saaltink, M. W. Carrera, J. Slooten, L. Bea, S. TI A consistent compositional formulation for multiphase reactive transport where chemistry affects hydrodynamics SO ADVANCES IN WATER RESOURCES LA English DT Article DE Multiphase reactive transport; Coupling effects; Arid soil evaporation; Hydrated minerals; Invariant point ID NATURAL-WATERS; POROUS-MEDIA; GROUNDWATER CONTAMINATION; ORGANIC-COMPOUNDS; MODEL DEVELOPMENT; SIMULATION; REMEDIATION; EVAPORATION; PREDICTION; COMPONENTS AB Multiphase reactive transport formulations usually decouple flow (i.e., phase conservation) from reactive transport calculations (i.e., species conservation). Decoupling is not appropriate when reactions affect flow controlling variables (such as the partial pressure of gaseous components or the activity of water). We present a consistent compositional formulation that couples the conservation of all components. No explicit conservation of phases mass is required since they result from the conservation of all species in each phase. The formulation acknowledges that constant activity species do not affect speciation and can be eliminated, which reduces the number of unknowns. We discuss the formulation, the numerical solution, and the implementation into an object oriented code. The advantages of the formulation are illustrated by simulating the effect of mineral dehydration (including invariant points) on the hydrodynamic processes in an unsaturated column that reaches extremely dry conditions. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gamazo, P.] Univ Republ, Water Dept, Gral Rivera 50000, Salto, Uruguay. [Gamazo, P.; Saaltink, M. W.] Univ Politecn Cataluna, GHS, Dept Geotech Engn & Geosci, UPC BarcelonaTech, ES-08034 Barcelona, Spain. [Carrera, J.; Slooten, L.] CSIC, GHS, Inst Environm Assessment & Water Res IDAEA, E-08028 Barcelona, Spain. [Bea, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Gamazo, P (reprint author), Univ Republ, Water Dept, Gral Rivera 50000, Salto, Uruguay. EM pablogamazo@gmail.com RI Gamazo Rusnac, Pablo Andres/A-9253-2012; Bea, Sergio /A-9056-2012; OI Bea, Sergio /0000-0001-9237-4103; Saaltink, Maarten W./0000-0003-0553-4573 NR 45 TC 8 Z9 8 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD JAN PY 2012 VL 35 BP 83 EP 93 DI 10.1016/j.advwatres.2011.09.006 PG 11 WC Water Resources SC Water Resources GA 888UV UT WOS:000300031000008 ER PT J AU Foston, MB McGaughey, J O'Neill, H Evans, BR Ragauskas, A AF Foston, Marcus B. McGaughey, Joseph O'Neill, Hugh Evans, Barbara R. Ragauskas, Arthur TI Deuterium incorporation in biomass cell wall components by NMR analysis SO ANALYST LA English DT Article ID BIOLOGY; RATIO; SANS AB A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution H-2 and H-1 nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample. C1 [Foston, Marcus B.; Ragauskas, Arthur] Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. [McGaughey, Joseph; Evans, Barbara R.] Oak Ridge Natl Lab, Div Chem Sci, Mol Biosci & Biotechnol Grp, Oak Ridge, TN 37831 USA. [O'Neill, Hugh] Oak Ridge Natl Lab, Div Chem Sci, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. RP Ragauskas, A (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. EM arthur.ragauskas@chemistry.gatech.edu OI O'Neill, Hugh/0000-0003-2966-5527; Ragauskas, Arthur/0000-0002-3536-554X FU Office of Biological and Environmental Research, U. S. Department of Energy [FWP ERKP752] FX This research is funded by the Genomic Science Program, Office of Biological and Environmental Research, U. S. Department of Energy, under FWP ERKP752. NR 17 TC 6 Z9 6 U1 2 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 J9 ANALYST JI Analyst PY 2012 VL 137 IS 5 BP 1090 EP 1093 DI 10.1039/c2an16025k PG 4 WC Chemistry, Analytical SC Chemistry GA 888XR UT WOS:000300038400005 PM 22223179 ER PT J AU Kumari, H Mossine, AV Kline, SR Dennis, CL Fowler, DA Teat, SJ Barnes, CL Deakyne, CA Atwood, JL AF Kumari, Harshita Mossine, Andrew V. Kline, Steven R. Dennis, Cindi L. Fowler, Drew A. Teat, Simon J. Barnes, Charles L. Deakyne, Carol A. Atwood, Jerry L. TI Controlling the Self-Assembly of Metal-Seamed Organic Nanocapsules SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE molecular capsules; pyrogallol[4]arenes; small-angle neutron scattering; supramolecular chemistry ID ANGLE NEUTRON-SCATTERING C1 [Kumari, Harshita; Mossine, Andrew V.; Fowler, Drew A.; Barnes, Charles L.; Deakyne, Carol A.; Atwood, Jerry L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Kline, Steven R.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Dennis, Cindi L.] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Deakyne, CA (reprint author), Univ Missouri, Dept Chem, 601 S Coll Ave, Columbia, MO 65211 USA. EM deakynec@missouri.edu; atwoodj@missouri.edu FU National Science Foundation [DMR-0944772, CHE1012998] FX This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772 (S.R.K.) and CHE1012998 (J.L.A.). The use of specific trade names does not imply endorsement of products or companies by NIST but are used to fully describe the experimental procedures. NR 16 TC 45 Z9 45 U1 5 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2012 VL 51 IS 6 BP 1452 EP 1454 DI 10.1002/anie.201107182 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 884VG UT WOS:000299736300031 PM 22294358 ER PT J AU You, LY Chen, SG Zhao, X Liu, Y Lan, WX Zhang, Y Lu, HJ Cao, CY Li, ZT AF You, Li-Yan Chen, Shi-Gui Zhao, Xin Liu, Yi Lan, Wen-Xian Zhang, Ying Lu, Hao-Jie Cao, Chun-Yang Li, Zhan-Ting TI C?H center dot center dot center dot O Hydrogen Bonding Induced Triazole Foldamers: Efficient Halogen Bonding Receptors for Organohalogens SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE foldamer; halogen bonds; hydrogen bonds; molecular recognition; nitrogen heterocycles ID SUPRAMOLECULAR CHEMISTRY; COMPLEXES; BINDING; COOPERATIVITY; AGGREGATION; RECOGNITION; PERSISTENT; IONS C1 [You, Li-Yan; Chen, Shi-Gui; Zhao, Xin; Lan, Wen-Xian; Cao, Chun-Yang; Li, Zhan-Ting] Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, Shanghai 200032, Peoples R China. [Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Zhang, Ying; Lu, Hao-Jie; Li, Zhan-Ting] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China. RP Zhao, X (reprint author), Chinese Acad Sci, Shanghai Inst Organ Chem, State Key Lab Bioorgan & Nat Prod Chem, 345 Lingling Lu, Shanghai 200032, Peoples R China. EM xzhao@mail.sioc.ac.cn; ztli@mail.sioc.ac.cn FU NSFC [20921091, 20974118]; STCSM [10J1412200, 09XD1405300] FX We thank NSFC (20921091 and 20974118) and STCSM (10J1412200 and 09XD1405300) for financial support. NR 60 TC 43 Z9 44 U1 6 U2 66 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2012 VL 51 IS 7 BP 1657 EP 1661 DI 10.1002/anie.201106996 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 887RJ UT WOS:000299946400029 PM 22238223 ER PT J AU Kosuda, KM Wittstock, A Friend, CM Baumer, M AF Kosuda, Kathryn M. Wittstock, Arne Friend, Cynthia M. Baeumer, Marcus TI Oxygen-Mediated Coupling of Alcohols over Nanoporous Gold Catalysts at Ambient Pressures SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE alcohols; cross-coupling; heterogeneous catalysis; nanoporous gold; selective oxidation ID AEROBIC OXIDATION; LOW-TEMPERATURE; CO OXIDATION; CHEMISTRY; METHANOL; ETHANOL; ACID C1 [Wittstock, Arne; Baeumer, Marcus] Univ Bremen, Zentrum Umweltforsch & Nachhaltige Technol, D-28359 Bremen, Germany. [Kosuda, Kathryn M.; Friend, Cynthia M.] Harvard Univ, Sch Engn & Appl Sci, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Wittstock, Arne] Lawrence Livermore Natl Lab, NSCL, Livermore, CA 94550 USA. [Wittstock, Arne; Baeumer, Marcus] Univ Bremen, Inst Angew & Phys Chem, D-28359 Bremen, Germany. RP Wittstock, A (reprint author), Univ Bremen, Zentrum Umweltforsch & Nachhaltige Technol, Leobener Str NW2, D-28359 Bremen, Germany. EM awittstock@uni-bremen.de RI Baumer, Marcus/S-5441-2016 OI Baumer, Marcus/0000-0002-8620-1764 FU NSF through Harvard NSEC [PHY-0646094]; MRSEC [DMR-0820484]; U.S. Department of Energy through LLNL [DE-AC52-07NA27344] FX This work was supported in part by the NSF through Harvard NSEC (PHY-0646094) and by MRSEC (DMR-0820484). A.W. was supported in part by the U.S. Department of Energy through LLNL under contract DE-AC52-07NA27344. NR 33 TC 57 Z9 59 U1 1 U2 84 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2012 VL 51 IS 7 BP 1698 EP 1701 DI 10.1002/anie.201107178 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 887RJ UT WOS:000299946400038 PM 22223430 ER PT J AU Burling, IR Yokelson, RJ Akagi, SK Urbanski, SP Wold, CE Griffith, DWT Johnson, TJ Reardon, J Weise, DR AF Burling, I. R. Yokelson, R. J. Akagi, S. K. Urbanski, S. P. Wold, C. E. Griffith, D. W. T. Johnson, T. J. Reardon, J. Weise, D. R. TI Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States (vol 11, pg 12197, 2011) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Correction C1 [Burling, I. R.; Yokelson, R. J.; Akagi, S. K.] Univ Montana, Dept Chem, Missoula, MT 59812 USA. [Urbanski, S. P.; Wold, C. E.; Reardon, J.] US Forest Serv, USDA, Rocky Mt Res Stn, Fire Sci Lab, Missoula, MT 59808 USA. [Griffith, D. W. T.] Univ Wollongong, Dept Chem, Wollongong, NSW 2500, Australia. [Johnson, T. J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Weise, D. R.] US Forest Serv, USDA, Pacific SW Res Stn, Riverside, CA USA. RP Yokelson, RJ (reprint author), Univ Montana, Dept Chem, Missoula, MT 59812 USA. EM bob.yokelson@umontana.edu NR 1 TC 0 Z9 0 U1 0 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 1 BP 103 EP 103 DI 10.5194/acp-12-103-2012 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892XZ UT WOS:000300320200003 ER PT J AU Kleinman, LI Daum, PH Lee, YN Lewis, ER Sedlacek, AJ Senum, GI Springston, SR Wang, J Hubbe, J Jayne, J Min, Q Yum, SS Allen, G AF Kleinman, L. I. Daum, P. H. Lee, Y. -N. Lewis, E. R. Sedlacek, A. J. Senum, G. I. Springston, S. R., III Wang, J. Hubbe, J. Jayne, J. Min, Q. Yum, S. S. Allen, G. TI Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MARINE STRATOCUMULUS CLOUDS; BOUNDARY-LAYER; OZONE CONCENTRATIONS; CONDENSATION NUCLEI; HYGROSCOPIC GROWTH; SOUTHEAST PACIFIC; ACTIVATION; AIR; PARTICLES; EVOLUTION AB During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O-3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 degrees C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D-p > 100 nm) gives a linear relation up to a number concentration of similar to 150 cm(-3), followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that similar to 25% of aerosol with D-p > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background, upon which is superimposed a high frequency signal that contains the anti-correlation. The anti-correlation is a possible source of information on particle activation or evaporation. C1 [Kleinman, L. I.; Daum, P. H.; Lee, Y. -N.; Lewis, E. R.; Sedlacek, A. J.; Senum, G. I.; Springston, S. R., III; Wang, J.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Hubbe, J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Jayne, J.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Min, Q.] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA. [Yum, S. S.] Yonsei Univ, Dept Atmospher Sci, Seoul 120749, South Korea. [Allen, G.] Univ Manchester, Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England. RP Kleinman, LI (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. EM kleinman@bnl.gov RI Allen, Grant /A-7737-2013; Wang, Jian/G-9344-2011 OI Allen, Grant /0000-0002-7070-3620; FU Korean Meteorological Administration [RACS 2010-5001]; US DOE [DE-AC02-98CH10886] FX We thank chief pilot Bob Hannigan and the flight crew from PNNL for a job well done. Thanks to Robert McGraw of BNL for droplet evaporation calculations. We gratefully acknowledge the Atmospheric Science Program within the Office of Biological and Environmental Research of DOE for supporting field and analysis activities and for providing the G-1 aircraft. Use of a c-ToF-AMS provided by EMSL is appreciated. The VOCALS Regional Experiment owes its success to many people. We would like to single out Robert Wood (Univ. of Washington), Christopher Bretherton (Univ. of Washington), and C.'Roberto Mechoso (UCLA) for their organizational skills and scientific leadership. S. S. Yum is partially supported by the Korean Meteorological Administration Research and Development Program under Grant RACS 2010-5001. This research was performed under sponsorship of the US DOE under contracts DE-AC02-98CH10886. NR 55 TC 24 Z9 24 U1 0 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 1 BP 207 EP 223 DI 10.5194/acp-12-207-2012 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892XZ UT WOS:000300320200010 ER PT J AU Lauvaux, T Schuh, AE Uliasz, M Richardson, S Miles, N Andrews, AE Sweeney, C Diaz, LI Martins, D Shepson, PB Davis, KJ AF Lauvaux, T. Schuh, A. E. Uliasz, M. Richardson, S. Miles, N. Andrews, A. E. Sweeney, C. Diaz, L. I. Martins, D. Shepson, P. B. Davis, K. J. TI Constraining the CO2 budget of the corn belt: exploring uncertainties from the assumptions in a mesoscale inverse system SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ATMOSPHERIC TRANSPORT MODELS; CARBON-DIOXIDE EXCHANGE; REGIONAL-SCALE FLUXES; SYNTHETIC DATA; PART 1; SINKS; LAND; SENSITIVITY; CONTINENT; AIRBORNE AB We performed an atmospheric inversion of the CO2 fluxes over Iowa and the surrounding states, from June to December 2007, at 20 km resolution and weekly timescale. Eight concentration towers were used to constrain the carbon balance in a 1000x1000 km(2) domain in this agricultural region of the US upper midwest. The CO2 concentrations of the boundaries derived from CarbonTracker were adjusted to match direct observations from aircraft profiles around the domain. The regional carbon balance ends up with a sink of 183 Tg C +/- 35 Tg C over the area for the period June-December, 2007. Potential bias from incorrect boundary conditions of about 0.55 ppm over the 7 months was corrected using mixing ratios from four different aircraft profile sites operated at a weekly time scale, acting as an additional source of uncertainty of 24 Tg C. We used two different prior flux estimates, the SiBCrop model and the inverse flux product from the CarbonTracker system. We show that inverse flux estimates using both priors converge to similar posterior estimates (20 Tg C difference), in our reference inversion, but some spatial structures from the prior fluxes remain in the posterior fluxes, revealing the importance of the prior flux resolution and distribution despite the large amount of atmospheric data available. The retrieved fluxes were compared to eddy flux towers in the corn and grassland areas, revealing an improvement in the seasonal cycles between the two compared to the prior fluxes, despite large absolute differences due to representation errors. The uncertainty of 34 Tg C (or 34 g C m(2)) was derived from the posterior uncertainty obtained with our reference inversion of about 25 to 30 Tg C and from sensitivity tests of the assumptions made in the inverse system, for a mean carbon balance over the region of -183 Tg C, slightly weaker than the reference. Because of the potential large bias (similar to 24 Tg C in this case) due to choice of background conditions, proportional to the surface but not to the regional flux, this methodology seems limited to regions with a large signal (sink or source), unless additional observations can be used to constrain the boundary inflow. C1 [Lauvaux, T.; Richardson, S.; Miles, N.; Diaz, L. I.; Martins, D.; Davis, K. J.] Penn State Univ, Dept Meteorol, Inversity Pk, PA USA. [Schuh, A. E.] NREL, Ft Collins, CO USA. [Shepson, P. B.] Purdue Univ, W Lafayette, IN 47907 USA. [Andrews, A. E.; Sweeney, C.] Natl Ocean & Atmospher Assoc, ESRL GMD, Boulder, CO USA. [Schuh, A. E.; Uliasz, M.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Lauvaux, T (reprint author), Penn State Univ, Dept Meteorol, Inversity Pk, PA USA. EM lauvaux@meteo.psu.edu RI Shepson, Paul/E-9955-2012; Andrews, Arlyn/K-3427-2012; OI Lauvaux, Thomas/0000-0002-7697-742X FU NOAA/ESRL division; CarbonTracker products; Office of Science (BER) US Department of Energy; US National Aeronautics and Space Administration; US National Oceanographic and Atmospheric Administration, Office of Global Programs FX We thank Andy Jacobson from NOAA/ESRL division for discussions and support with CarbonTracker products, Arlyn Andrews from NOAA/ESRL division for data support and management for the West Branch tall tower, Colm Sweeney and Gabrielle Petron from NOAA/ESRL division for data from the aircraft program, Tim Griffis from University of Minnesota for his comments and the eddy-covariance flux data from Rosemount, Shashi Verma and Andrew Suyker from University of Nebraska-Lincoln for eddy-covariance flux data from Mead, Tilden Meyers from NOAA/ARL division for eddy-covariance flux data from Brookings and Bondville, and Roser Matamala from Argonne National Laboratory for eddy-covariance flux data from Fermi. This research was supported by the Office of Science (BER) US Department of Energy, Terrestrial Carbon Program, the US National Aeronautics and Space Administration's Terrestrial Ecology Program, and the US National Oceanographic and Atmospheric Administration, Office of Global Programs, Global Carbon Cycle program. NR 60 TC 43 Z9 44 U1 0 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 1 BP 337 EP 354 DI 10.5194/acp-12-337-2012 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892XZ UT WOS:000300320200018 ER PT J AU Zuidema, P Leon, D Pazmany, A Cadeddu, M AF Zuidema, P. Leon, D. Pazmany, A. Cadeddu, M. TI Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MARINE STRATOCUMULUS; SOUTHEAST PACIFIC; MODELS; PATH; RADIOMETER; OCEAN; PERMITTIVITY; FREQUENCIES; RETRIEVALS; VALIDATION AB Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upward-pointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the G-band (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (above-cloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to two mm and near-coastal values reaching tenmm. The VOCALS-REx free troposphere was drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and in-situ thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (similar to 100 m) resolution was estimated at 20 gm(-2) and 3 g m(-2) respectively for well-mixed conditions, and 25 g m(-2) absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs < 100 (40) gm(-2). Coastal LWPs values were lower than those offshore. For the four dedicated 20 degrees S flights, the mean (median) coastal LWP was 67 (61) gm(-2), increasing to 166 (120) gm(-2) 1500 km offshore. The overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds. C1 [Zuidema, P.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Leon, D.] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Pazmany, A.] Prosensing Inc, Amherst, MA USA. [Cadeddu, M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Zuidema, P (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM pzuidema@rsmas.miami.edu RI Zuidema, Paquita/C-9659-2013 OI Zuidema, Paquita/0000-0003-4719-372X FU NSF Large-Scale Dynamics Division [0745470]; VOCALS-REx PIs FX PZ acknowledges support from the NSF Large-Scale Dynamics Division under Award 0745470. We thank Walt Robinson and the VOCALS-REx PIs Rob Wood and Roberto Mechoso for their support and leadership. NR 45 TC 18 Z9 18 U1 0 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2012 VL 12 IS 1 BP 355 EP 369 DI 10.5194/acp-12-355-2012 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 892XZ UT WOS:000300320200019 ER PT J AU Feng, R Xenos, M Girdhar, G Kang, W Davenport, JW Deng, YF Bluestein, D AF Feng, Rui Xenos, Michalis Girdhar, Gaurav Kang, Wei Davenport, James W. Deng, Yuefan Bluestein, Danny TI Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD SO BIOMECHANICS AND MODELING IN MECHANOBIOLOGY LA English DT Article DE Viscous flow; Lennard-Jones potential; Computational fluid dynamics; Molecular dynamics; Discrete particle dynamics; Parallelcomputing ID SCALABLE MOLECULAR-DYNAMICS; LOW REYNOLDS-NUMBERS; BLUE-GENE/L SYSTEM; TRANSPORT-COEFFICIENTS; BOUNDARY-CONDITIONS; POROUS-MEDIA; FLUID; NAMD; HYDRODYNAMICS; PARALLEL AB Flow and stresses induced by blood flow acting on the blood cellular constituents can be represented to a certain extent by a continuum mechanics approach down to the order of the mu m level. However, the molecular effects of, e. g., adhesion/aggregation bonds of blood clotting can be on the order of nm. The coupling of the disparate length and timescales between such molecular levels and macroscopic transport represents a major computational challenge. To address this challenge, a multiscale numerical approach based on discrete particle dynamics (DPD) methodology derived from molecular dynamics (MD) principles is proposed. The feasibility of the approach was firstly tested for its ability to simulate viscous flow conditions. Simulations were conducted in low Reynolds numbers flows (Re = 25-33) through constricted tubes representing blood vessels with various degrees of stenosis. Multiple discrete particles interacting with each other were simulated, with 1.24-1.36 million particles representing the flow domain and 0.4 million particles representing the vessel wall. The computation was carried out on the massive parallel supercomputer NY BlueGene/L employing NAMD-a parallel MD package for high performance computing (HPC). Typical recirculation zones were formed distal to the stenoses. The velocity profiles and recirculation zones were in excellent agreement with computational fluid dynamics (CFD) 3D Navier-Stokes viscous fluid flow simulations and with classic numerical and experimental results by YC Fung in constricted tubes. This feasibility analysis demonstrates the potential of a methodology that widely departs from a continuum approach to simulate multiscale phenomena such as flow induced blood clotting. C1 [Xenos, Michalis; Girdhar, Gaurav; Bluestein, Danny] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11790 USA. [Feng, Rui; Davenport, James W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Feng, Rui] Beihang Univ, Sch Comp Sci & Engn, Beijing 100083, Peoples R China. [Kang, Wei; Davenport, James W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Deng, Yuefan] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11790 USA. RP Bluestein, D (reprint author), SUNY Stony Brook, Dept Biomed Engn, HSC T18-030, Stony Brook, NY 11790 USA. EM danny.bluestein@sunysb.edu RI Kang, Wei/A-9784-2012; OI Kang, Wei/0000-0001-9989-0485; Deng, Yuefan/0000-0002-5224-3958; Xenos, Michalis/0000-0001-8441-1306 FU National Institute of Biomedical Imaging and Bioengineering [1R01 EB008004-01]; US Department of Energy [DE-AC02-98CH10886]; State of New York FX This publication was made possible by grant number 1R01 EB008004-01 (DB) from the National Institute of Biomedical Imaging and Bioengineering. This research utilized resources at the New York Center for Computational Sciences at Stony Brook University/Brookhaven National Laboratory, which is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886 and by the State of New York. NR 40 TC 12 Z9 12 U1 1 U2 19 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-7959 J9 BIOMECH MODEL MECHAN JI Biomech. Model. Mechanobiol. PD JAN PY 2012 VL 11 IS 1-2 BP 119 EP 129 DI 10.1007/s10237-011-0297-z PG 11 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 891QB UT WOS:000300230600009 PM 21369918 ER PT J AU Torrens, PM Nara, A Li, X Zhu, HJ Griffin, WA Brown, SB AF Torrens, Paul M. Nara, Atsushi Li, Xun Zhu, Haojie Griffin, William A. Brown, Scott B. TI An extensible simulation environment and movement metrics for testing walking behavior in agent-based models SO COMPUTERS ENVIRONMENT AND URBAN SYSTEMS LA English DT Article DE Walking; Agent-based modeling; Movement; Trajectory measurement ID PEDESTRIAN BEHAVIOR; CROWD DYNAMICS; FRACTAL DIMENSION; SAFETY; PATHS; SEGREGATION; EVACUATION; NAVIGATION; MOBILITY; DOWNTOWN AB Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems' complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-used methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be "good enough" for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Torrens, Paul M.; Nara, Atsushi; Li, Xun; Zhu, Haojie] Univ Maryland, Dept Geog, Geosimulat Res Lab, College Pk, MD 20742 USA. [Griffin, William A.] Arizona State Univ, Ctr Social Dynam & Complex, Tempe, AZ 85287 USA. [Brown, Scott B.] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Torrens, PM (reprint author), Univ Maryland, Dept Geog, Geosimulat Res Lab, 2181 LeFrak Hall, College Pk, MD 20742 USA. EM torrens@geosimulation.com; atsushi.nara@asu.edu; Xun.Li@asu.edu; Haojie.Zhu@asu.edu; WILLIAM.GRIFFIN@asu.edu; scott.brown@spatial-reasoning.org OI Li, Xun/0000-0002-1367-2901 NR 102 TC 20 Z9 20 U1 1 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0198-9715 EI 1873-7587 J9 COMPUT ENVIRON URBAN JI Comput. Environ. Urban Syst. PD JAN PY 2012 VL 36 IS 1 BP 1 EP 17 DI 10.1016/j.compenvurbsys.2011.07.005 PG 17 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Studies; Geography; Operations Research & Management Science SC Computer Science; Engineering; Environmental Sciences & Ecology; Geography; Operations Research & Management Science GA 890EN UT WOS:000300128000001 ER PT J AU Middleton, RS Kuby, MJ Bielicki, JM AF Middleton, Richard S. Kuby, Michael J. Bielicki, Jeffrey M. TI Generating candidate networks for optimization: The CO2 capture and storage optimization problem SO COMPUTERS ENVIRONMENT AND URBAN SYSTEMS LA English DT Article DE CO2 capture and storage (CCS); Carbon sequestration; Network optimization; Network design; SimCCS; Infrastructure optimization ID GAS TRANSMISSION NETWORKS; CCS INFRASTRUCTURE; CARBON CAPTURE; SEQUESTRATION SITE; PIPELINE DESIGN; PLANNING-MODEL; COST; SYSTEM; GIS; TECHNOLOGY AB We develop a new framework for spatially optimizing infrastructure for CO2 capture and storage (CCS). CCS is a complex and challenging problem: domestically deploying CCS at a meaningful scale will require linking hundreds of coal-fired power plants with CO2 sequestration reservoirs through a dedicated and extensive (many tens-of-thousands of miles) CO2 pipeline network. We introduce a unique method for generating a candidate network from scratch, from which the optimization model selects the optimal set of arcs to form the pipeline network. This new generation method can be applied to any network optimization problem including transmission line, roads, and telecommunication applications. We demonstrate the model and candidate network methodology using a real example of capturing CO2 from coal-fired power plants in the US Midwest and storing the CO2 in depleted oil and gas fields. Results illustrate the critical need to balance CCS investments with generating a candidate network of arcs. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Middleton, Richard S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kuby, Michael J.] Arizona State Univ, Sch Geog Sci & Urban Planning, Tempe, AZ 85287 USA. [Bielicki, Jeffrey M.] Univ Minnesota, Humphrey Sch Publ Affairs, Minneapolis, MN 55455 USA. RP Middleton, RS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rsm@lanl.gov; mikekuby@asu.edu; jbielick@umn.edu RI Middleton, Richard/A-5470-2011; Bielicki, Jeffrey/D-4239-2016; OI Bielicki, Jeffrey/0000-0001-8449-9328; Middleton, Richard/0000-0002-8039-6601; Kuby, Michael/0000-0002-7988-5766 NR 57 TC 26 Z9 27 U1 4 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0198-9715 J9 COMPUT ENVIRON URBAN JI Comput. Environ. Urban Syst. PD JAN PY 2012 VL 36 IS 1 BP 18 EP 29 DI 10.1016/j.compenvurbsys.2011.08.002 PG 12 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Studies; Geography; Operations Research & Management Science SC Computer Science; Engineering; Environmental Sciences & Ecology; Geography; Operations Research & Management Science GA 890EN UT WOS:000300128000002 ER PT J AU Zhang, B Zhao, BT Huang, SH Zhang, RY Xu, P Wang, HL AF Zhang, Bin Zhao, Botao Huang, Shenghui Zhang, Ruiying Xu, Ping Wang, Hsing-Lin TI One-pot interfacial synthesis of Au nanoparticles and Au-polyaniline nanocomposites for catalytic applications SO CRYSTENGCOMM LA English DT Article ID CHEMICAL-DEPOSITION; FACILE SYNTHESIS; NANOFIBERS; PARTICLES; NANOTUBES; CHEMISTRY; CLUSTERS; GOLD AB We demonstrate here a facile one-pot interfacial synthesis of Au nanoparticles and Au-polyaniline nanocomposites through the polymerization of aniline by HAuCl4, and the nanocomposites are efficient catalysts for the reduction of rhodamine B. C1 [Zhang, Bin; Zhao, Botao; Huang, Shenghui; Zhang, Ruiying; Xu, Ping] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. [Xu, Ping; Wang, Hsing-Lin] Los Alamos Natl Lab, C PCS, Los Alamos, NM 87545 USA. RP Xu, P (reprint author), Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. EM pxu@hit.edu.cn; hwang@lanl.gov RI Xu, Ping/I-1910-2013 OI Xu, Ping/0000-0002-1516-4986 FU NSFC [21101041, 20776032, 91122002]; China Postdoctoral Fund; Fundamental Research Funds for the Central Universities [HIT. NSRIF. 2010065, 2011017]; LANL FX PX thanks the support from the China Postdoctoral Fund, NSFC (no. 21101041, 20776032, 91122002), Fundamental Research Funds for the Central Universities (grant no. HIT. NSRIF. 2010065 and 2011017), and Director's Postdoctoral Fellow from LANL. NR 24 TC 34 Z9 34 U1 0 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1466-8033 J9 CRYSTENGCOMM JI Crystengcomm PY 2012 VL 14 IS 5 BP 1542 EP 1544 DI 10.1039/c2ce06396d PG 3 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 889AF UT WOS:000300045200006 ER PT J AU Dekker, SC Vrugt, JA Elkington, RJ AF Dekker, Stefan C. Vrugt, Jasper A. Elkington, Rebecca J. TI Significant variation in vegetation characteristics and dynamics from ecohydrological optimality of net carbon profit SO ECOHYDROLOGY LA English DT Article DE soil moisture dynamics; gas exchange; photosynthesis; optimality principle; net carbon profit; leaf area index; DiffeRential Evolution Adaptive Metropolis; eddy correlation measurements; Markov Chain Monte Carlo simulation; Douglas-fir ID HYDRAULIC CONDUCTIVITY; CANOPY PHOTOSYNTHESIS; TEMPERATURE RESPONSE; FOREST TRANSPIRATION; MODEL PARAMETERS; SOIL; LEAVES; OPTIMIZATION; SIMULATION; EVOLUTION AB Recent contributions to the ecological literature have questioned the continued usefulness of the classical model calibration paradigm in estimating parameters in coupled ecohydrological models. Schymanski (2007) and Schymanski et al. (2007, 2008) have demonstrated that the assumption of vegetation optimality precludes the need for site-specific data for estimating vegetation properties, transpiration fluxes, and CO2 assimilation. The goal of this article is twofold. We first show that significant advances in optimality-based vegetation modelling can be made if we embrace a novel concept of stochastic optimization that includes explicit recognition of parameter uncertainty. We adapted the original Vegetation Optimality Model (VOM) to a multi-layer soil and canopy vegetation optimality model, VOMmlsc with dynamically varying throughfall fraction. The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm is used to find parameter values with high values of net carbon profit (NCP), a proxy for biological fitness. We then show that significant variability exists in optimized vegetation properties and primarily transpiration fluxes from optimality of NCP. Seemingly, a myriad of vegetation species is possible that results in optimal values of NCP. Using data from a Douglas-fir plantation in The Netherlands, we found relative poor correspondence between modelled and measured ET and CO2-fluxes. The fitting of these two fluxes and values of the model parameters can be much improved when VOMmlsc is calibrated directly against these respective observations. Yet, the NCP values derived this way deviate considerably from their maximum possible value. This challenges the appropriateness of current weights to aggregate the various carbon costs and benefits into a single NCP scalar. Copyright (c) 2010 John Wiley & Sons, Ltd. C1 [Dekker, Stefan C.; Elkington, Rebecca J.] Univ Utrecht, Dept Environm Sci, NL-3508 TC Utrecht, Netherlands. [Vrugt, Jasper A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, NL-1018 WV Amsterdam, Netherlands. [Vrugt, Jasper A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Dekker, SC (reprint author), Univ Utrecht, Dept Environm Sci, POB 80115, NL-3508 TC Utrecht, Netherlands. EM s.dekker@geo.uu.nl RI Dekker, Stefan/F-5581-2013; Vrugt, Jasper/C-3660-2008 OI Dekker, Stefan/0000-0001-7764-2464; FU Utrecht University; Los Alamos National Laboratory FX We acknowledge the many constructive and useful comments of the reviewers that helped us to improve our manuscript. In particular, we thank Stan Schymanski for his valuable comments and suggestions regarding the development of VOMmlsc, and Norman Bean for help with the figures. The first author is sponsored by a High Potential Program of Utrecht University, and the second author is supported by a J. Robert Oppenheimer Fellowship of the Los Alamos National Laboratory Postdoctoral Program. The source code of DREAM and VOMmlsc used throughout this article is written in MATLAB and can be obtained from the second author (jasper@uci.edu) upon request. NR 46 TC 7 Z9 7 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1936-0584 EI 1936-0592 J9 ECOHYDROLOGY JI Ecohydrology PD JAN PY 2012 VL 5 IS 1 BP 1 EP 18 DI 10.1002/eco.177 PG 18 WC Ecology; Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA 885JZ UT WOS:000299776600001 ER PT J AU Deng, ZD Martinez, JJ Colotelo, AH Abel, TK LeBarge, AP Brown, RS Pflugrath, BD Mueller, RP Carlson, TJ Seaburg, AG Johnson, RL Ahmann, ML AF Deng, Z. Daniel Martinez, Jayson J. Colotelo, Alison H. Abel, Tylor K. LeBarge, Andrea P. Brown, Richard S. Pflugrath, Brett D. Mueller, Robert P. Carlson, Thomas J. Seaburg, Adam G. Johnson, Robert L. Ahmann, Martin L. TI Development of external and neutrally buoyant acoustic transmitters for juvenile salmon turbine passage evaluation SO FISHERIES RESEARCH LA English DT Article DE Juvenile Salmon; Turbine passage; Fish telemetry; Acoustic transmitter ID SWIMMING PERFORMANCE; RADIO TRANSMITTERS; CHINOOK SALMON; TELEMETRY TRANSMITTERS; RAINBOW-TROUT; SURGICAL IMPLANTATION; TAGGING LESION; SUTURE TYPE; FISH; SYSTEM AB Fish can sustain injury or mortality when they pass through hydroelectric facilities. To develop a method to monitor the passage and survival of juvenile salmonids without bias through turbines within the Federal Columbia River Power System, we developed and fabricated two designs of neutrally buoyant transmitters: Type A (sutured to the dorsal musculature of the fish anterior to the dorsal fin) and Type B (two-part design attached with wire pushed through the dorsal musculature, ventral to the dorsal fin). To determine the efficacy of the two designs under non-turbine passage-related conditions, fish had one of the tags attached and were held for 14 days to determine any potential effects of the tags on growth, survival and tissue damage. We also evaluated the attachment method by monitoring tag retention. These two neutrally buoyant tag designs were compared to nontagged individuals and those surgically implanted with current Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters and passive integrated responder (PIT) tags. In addition, two suture materials (Monocryl and Vicryl Rapide) were tested for attachment of Type A tags. When compared with non-tagged individuals, fish tagged with Type A tags did not differ significantly with respect to growth or mortality over a 14-d holding period. However, fish tagged with Type B transmitters had lower growth rates than the nontagged controls or other tag treatments. The efficacy of two designs was also compared to nontagged individuals under shear exposure. Fish were exposed to a submerged, 6.35-cm-diameter water jet at velocities ranging from 3.0 to 12.2 m/s in a water flume to simulate turbine conditions within the Columbia River basin. Throughout the shear exposure study, no mortalities or tag loss were observed. There was also no significant difference in the rates of shear injury between untagged fish and fish tagged with Type A or Type B tags. When tissue damage was assessed for tagged individuals exposed to shear forces, those tagged with Type A tags showed lower rates and severity of injury when compared to Type B-tagged fish. Overall, Type A tags may be a viable tag design for juvenile Chinook salmon passing through hydropower facilities. Published by Elsevier B.V. C1 [Deng, Z. Daniel; Martinez, Jayson J.; Colotelo, Alison H.; Abel, Tylor K.; LeBarge, Andrea P.; Brown, Richard S.; Pflugrath, Brett D.; Mueller, Robert P.; Carlson, Thomas J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Seaburg, Adam G.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98101 USA. [Johnson, Robert L.; Ahmann, Martin L.] USA, Corps Engineers, Walla Walla, WA 99362 USA. RP Deng, ZD (reprint author), POB 999,K9-33, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Army Corps of Engineers (USACE), Portland District; U.S. Department of Energy [DE-AC05-76RL01830] FX The work described in this article was funded by the U.S. Army Corps of Engineers (USACE), Portland District. The authors thank USACE staff, including Brad Eppard, Dennis Schwartz, and Mike Langeslay, and the USACE Turbine Survival Technical Team, for their commitment, assistance, and oversight. Author appreciation also goes out to Duane Balvage, Andrea Currie, Marybeth Gay, Jill Janak, Curt Lavender, Tim Linley, Geoff McMichael, Mitchell Myjak, Jes Smart, Cory Overman, John Stephenson, Noel Tavan, Ricardo Walker, Mark Weiland, all of Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory animal facilities used in this research are AAALAC-certified; fish were handled in accordance with federal guidelines for the care and use of laboratory animals, and protocols for our study were approved by the Institutional Animal Care and Use Committee at Battelle - Pacific Northwest Division. The study was conducted at Pacific Northwest National Laboratory in Richland, WA, which is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 55 TC 13 Z9 13 U1 4 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 J9 FISH RES JI Fish Res. PD JAN PY 2012 VL 113 IS 1 BP 94 EP 105 DI 10.1016/j.fishres.2011.08.018 PG 12 WC Fisheries SC Fisheries GA 887EZ UT WOS:000299911000010 ER PT J AU Field, JJ Sheetz, KE Chandler, EV Hoover, EE Young, MD Ding, SY Sylvester, AW Kleinfeld, D Squier, JA AF Field, Jeffrey J. Sheetz, Kraig E. Chandler, Eric V. Hoover, Erich E. Young, Michael D. Ding, Shi-you Sylvester, Anne W. Kleinfeld, David Squier, Jeff A. TI Differential Multiphoton Laser Scanning Microscopy SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Fluorescence microscopy; nonlinear microscopy; nonlinear optics; second-harmonic generation (SHG); two-photon microscopy; ultrafast optics ID STOKES-RAMAN SCATTERING; PHOTONIC CRYSTAL FIBER; SUPERCONTINUUM LIGHT-SOURCE; 3RD HARMONIC-GENERATION; FLUORESCENCE MICROSCOPY; 2-PHOTON EXCITATION; MULTIFOCAL MICROSCOPY; COUNTING MICROSCOPY; RESOLUTION; COHERENT AB Multifocal multiphoton laser scanning microscopy (mfMPLSM) in the biological and medical sciences has the potential to become a ubiquitous tool for obtaining high-resolution images at video rates. While current implementations of mfMPLSM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for mfMPLSM in which whole-field detection with a single detector, rather than detection with a matrix of detectors, such as a charge-coupled device (CCD) camera, is implemented. This advance makes mfMPLSM fully compatible for use in imaging through scattering media. Further, we demonstrate that this method makes it possible to simultaneously obtain multiple images and view differences in excitation parameters in a single scan of the specimen. C1 [Field, Jeffrey J.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Squier, Jeff A.] Colorado Sch Mines, Dept Phys, Ctr Microintegrated Opt Adv Bioimaging & Control, Golden, CO 80401 USA. [Sheetz, Kraig E.] US Mil Acad, Dept Phys & Nucl Engn, West Point, NY 10996 USA. [Ding, Shi-you] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sylvester, Anne W.] Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA. [Kleinfeld, David] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Field, JJ (reprint author), Colorado Sch Mines, Dept Phys, Ctr Microintegrated Opt Adv Bioimaging & Control, Golden, CO 80401 USA. EM jjfield@gmail.com; kraigsheetz@gmail.com; echandle@mines.edu; ehoover@mines.edu; miyoung@mines.edu; Shi.you.Ding@nrel.gov; annesyl@uwyo.edu; dk@physics.ucsd.edu; jsquier@mines.edu FU National Institute for Biomedical Imaging and Bioengineering [BRP EB-003832]; National Science Foundation (Renewable Energy Materials Research Science and Engineering Center); Division of Biological Instrumentation [0501862] FX This work was supported by the National Institute for Biomedical Imaging and Bioengineering under Grant BRP EB-003832 and by the National Science Foundation (Renewable Energy Materials Research Science and Engineering Center). The work of A. W. Sylvester was supported by Division of Biological Instrumentation under Grant 0501862. NR 71 TC 4 Z9 4 U1 2 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 14 EP 28 DI 10.1109/JSTQE.2010.2077622 PG 15 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700004 PM 27390511 ER PT J AU Chollet, M Ahr, B Walko, DA Rose-Petruck, C Adams, B AF Chollet, Matthieu Ahr, Brian Walko, Donald A. Rose-Petruck, Christoph Adams, Bernhard TI 2-ps Hard X-Ray Streak Camera Measurements at Sector 7 Beamline of the Advanced Photon Source SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Diffraction; streak camera; time resolved; X-ray absorption near-edge spectroscopy (XANES); X-ray ID FEMTOSECOND TRANSIENT ABSORPTION; SOLVATED FE(CO)(5); DYNAMICS; SPECTROSCOPY; DISSOCIATION; TRANSITION; FTIR AB A hard X-ray streak camera capable of 2-ps time resolution is in operation at the Sector 7 beamline of the Advanced Photon Source. It is used for laser-pump, X-ray probe experiments using the Ti:Sapphire femtosecond laser system installed on the beamline. This streak camera, combined with standardized and prealigned experimental setups, can perform time-resolved liquid-phase absorption spectroscopy, reflectivity, and diffraction experiments. C1 [Chollet, Matthieu; Walko, Donald A.; Adams, Bernhard] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ahr, Brian; Rose-Petruck, Christoph] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Chollet, M (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM chollet@aps.anl.gov; brianahr@brown.edu; d-walko@anl.gov; crosepet@brown.ed; ams@aps.anl.gov FU U.S. Department of Energy (DOE) [DE-FG02-08ER15937, DE-AC02-06CH11357] FX This work was supported in part by the U.S. Department of Energy (DOE) under Grant DE-FG02-08ER15937 and in part by the U.S. DOE under Contract DE-AC02-06CH11357. NR 24 TC 2 Z9 3 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 66 EP 73 DI 10.1109/JSTQE.2011.2105464 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700008 ER PT J AU Wall, S Rini, M Dhesi, SS Schoenlein, RW Cavalleri, A AF Wall, Simon Rini, Matteo Dhesi, Sarnjeet S. Schoenlein, Robert W. Cavalleri, Andrea TI Advances in Ultrafast Control and Probing of Correlated-Electron Materials SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Manganites; photoinduced phase transitions; ultrafast spectroscopy; vibrational excitation ID X-RAY-ABSORPTION; INSULATOR-METAL TRANSITION; MAGNETORESISTIVE MANGANITE; SPECTROSCOPY; FIELD; PR0.7CA0.3MNO3; INSTABILITY; DISTORTION; DYNAMICS; PHASE AB In this paper, we present recent results on ultrafast control and probing of strongly correlated-electron materials. We focus on magnetoresistive manganites, applying excitation and probing wavelengths that cover the mid-IR to the soft X-rays. In analogy with near-equilibrium "filling" and "bandwidth" control of phase transitions, our approach uses both visible and mid-IR pulses to stimulate the dynamics by exciting either charges across electronic bandgaps or specific vibrational resonances. X-rays are used to unambiguously measure the microscopic electronic, orbital, and structural dynamics. Our experiments dissect and separate the nonequilibrium physics of these compounds, revealing the complex interplay and evolution of spin, lattice, charge, and orbital degrees of freedoms in the time domain. C1 [Wall, Simon; Cavalleri, Andrea] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Rini, Matteo; Schoenlein, Robert W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Dhesi, Sarnjeet S.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Cavalleri, Andrea] Univ Hamburg CFEL, Max Planck Res Dept Struct Dynam, D-22607 Hamburg, Germany. RP Wall, S (reprint author), Fritz Haber Inst, Dept Phys Chem, D-14195 Berlin, Germany. EM wall@fhi-berlin.mpg.de; matteo.rini@ec.europa.eu; dhesi@diamond.ac.uk; rwschoenlein@lbl.gov; andrea.cavalleri@mpsd.cfel.de RI Wall, Simon/E-3771-2012; Schoenlein, Robert/D-1301-2014 OI Wall, Simon/0000-0002-6136-0224; Schoenlein, Robert/0000-0002-6066-7566 FU U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231]; Scientific User Facilities Division [DE-AC02-05CH11231]; Alexander von Humboldt Foundation FX The work of M. Rini and R. W. Schoenlein at LBNL Materials Sciences Division and the Advanced Light Source was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and the Scientific User Facilities Division respectively under Contract DE-AC02-05CH11231. The work of S. Wall was supported by the Alexander von Humboldt Foundation. NR 49 TC 7 Z9 7 U1 2 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 81 EP 91 DI 10.1109/JSTQE.2011.2105465 PG 11 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700010 ER PT J AU Zholents, A AF Zholents, Alexander TI Next-Generation X-Ray Free-Electron Lasers SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Attosecond (as); brightness; echo-enabled harmonic generation (EEHG); electron gun; emittance; femtosecond; free-electron laser (FEL); high-gain harmonic generation (HGHG); linac; oscillator; self-amplified spontaneous emission (SASE); self-seeding; X-rays; x-ray free-electron laser oscillator (XFELO) ID HARMONIC-GENERATION; EXTREME-ULTRAVIOLET; FEL OSCILLATOR; RADIATION; INTENSE; REGION; LIGHT; ACCELERATORS; PERFORMANCE; UNDULATOR AB Research frontiers for future free-electron lasers are discussed. Attention is given to ideas for improving the temporal coherence and obtaining subfemtosecond X-ray pulses. Improving brightness of the electron bunches is considered to be a major step forward for an electron beam accelerator simultaneously supporting multiple free-electron laser lines. C1 Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. RP Zholents, A (reprint author), Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. EM azholents@aps.anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Manuscript received December 7, 2010; revised January 10, 2011; accepted January 16, 2011. Date of publication April 5, 2011; date of current version January 31, 2012. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 95 TC 1 Z9 1 U1 2 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 248 EP 257 DI 10.1109/JSTQE.2011.2108641 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700027 ER PT J AU Schlau-Cohen, GS Dawlaty, JM Fleming, GR AF Schlau-Cohen, Gabriela S. Dawlaty, Jahan M. Fleming, Graham R. TI Ultrafast Multidimensional Spectroscopy: Principles and Applications to Photosynthetic Systems SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Four-wave mixing; nonlinear optics; ultrafast optics ID 2-DIMENSIONAL ELECTRONIC SPECTROSCOPY; LIGHT-HARVESTING COMPLEX; 2D IR SPECTROSCOPY; QUANTUM COHERENCE; ENERGY-TRANSFER; PHYSIOLOGICAL TEMPERATURE; FEMTOSECOND SPECTROSCOPY; SPECTRAL INTERFEROMETRY; HIGHER-PLANTS; PHASE AB We present the utility of 2-D electronic spectroscopy for the investigation of energy transfer dynamics in photosynthetic light-harvesting systems. Elucidating ultrafast energy transfer within photosynthetic systems is difficult due to the large number of molecules and complex environments involved in the process. In many spectroscopic methods, these systems appear as overlapping peaks with broad linewidths, obscuring the details of the dynamics. 2-D spectroscopy is a nonlinear, ultrafast method that yields a correlation map between excitation and emission energies, and can track incoherent and coherent energy transfer processes with femtosecond resolution. A 2-D spectrum can provide important insight into the structure and the mechanisms behind the excited state dynamics. We review the principles behind 2-D spectroscopy and describe the content of a 2-D electronic spectrum. Several recent applications of this technique to the major light-harvesting complex of Photosystem II are presented, including monitoring the time scales of energy transfer processes, investigation of the excited state energies, and determination of the relative orientations of the excited state transition dipole moments. C1 [Schlau-Cohen, Gabriela S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schlau-Cohen, Gabriela S.; Dawlaty, Jahan M.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dawlaty, Jahan M.] Quantitat Biosci Inst, Berkeley, CA 94720 USA. RP Schlau-Cohen, GS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM grfleming@lbl.gov FU U.S. Department of Energy; Office of Basic Energy Sciences, the Office of Science [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences, and Biosciences (at Lawrence Berkeley National Laboratory and University of California Berkeley) [DE-AC03-76SF000098]; Defense Advanced Research Projects Agency [N66001-09-1-2026]; American Association of University Women American; QB3 Distinguished Postdoctoral fellowship FX Manuscript received November 3, 2010; revised January 4, 2011; accepted January 21, 2011. Date of publication April 7, 2011; date of current version January 31, 2012. This work was supported by the U.S. Department of Energy, by the Office of Basic Energy Sciences, the Office of Science under Contract DE-AC02-05CH11231, and the Division of Chemical Sciences, Geosciences, and Biosciences under Grant DE-AC03-76SF000098 (at Lawrence Berkeley National Laboratory and University of California Berkeley), and by the Defense Advanced Research Projects Agency under Grant N66001-09-1-2026. The work of G. S. Schlau-Cohen was supported by the American Association of University Women American Dissertation Fellowship. The work of J. M. Dawlaty was supported by the QB3 Distinguished Postdoctoral fellowship. NR 73 TC 16 Z9 17 U1 4 U2 56 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 283 EP 295 DI 10.1109/JSTQE.2011.2112640 PG 13 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700030 ER PT J AU Bunermann, O Kornilov, O Leone, SR Neumark, DM Gessner, O AF Buenermann, Oliver Kornilov, Oleg Leone, Stephen R. Neumark, Daniel M. Gessner, Oliver TI Femtosecond Extreme Ultraviolet Ion Imaging of Ultrafast Dynamics in Electronically Excited Helium Nanodroplets SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Photochemistry; physics; photonics; UV sources ID SUPERFLUID-HELIUM; LIQUID-HELIUM; SURFACE-BARRIER; CLUSTERS; DROPLETS; MOLECULES; HE-4; PHOTOIONIZATION; SPECTROSCOPY; DENSITY AB A novel femtosecond extreme ultraviolet (EUV) ion-imaging technique is applied to study ultrafast dynamics in electronically excited helium nanodroplets. Ion mass spectra recorded by single-photon EUV ionization and by transient EUV-pump/IR-probe two-photon ionization differ significantly for EUV photon energies below and above similar to 24 eV, in agreement with recently performed synchrotron measurements. Pump-probe time-delay-dependent ion kinetic energy (KE) spectra exhibit two major contributions: a decaying high KE component and a rising low KE component, which are attributed to the different excitation regimes. A model is presented that describes the excitation energy dependence of the relaxation and ionization dynamics within the framework of bulk and surface states. The model is supported by recent ab initio calculations on electronically excited states of 25-atom clusters. An intraband relaxation mechanism is proposed that proceeds on a similar to 10-20-ps time scale and that corresponds to the transfer of electronic excitation in the Rydberg n = 2 manifold from bulk to surface states. C1 [Buenermann, Oliver] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany. [Buenermann, Oliver; Kornilov, Oleg; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ultrafast X Ray Sci Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Buenermann, Oliver; Kornilov, Oleg; Leone, Stephen R.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Bunermann, O (reprint author), Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany. EM ogessner@lbl.gov RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft FX Manuscript received October 16, 2010; revised December 14, 2010; accepted January 21, 2011. Date of publication April 7, 2011; date of current version January 31, 2012. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy under Contract DE-AC02-05CH11231. The tenure of O. Bunermann at the Ultrafast X-ray Science Laboratory was supported by a Research Fellowship from the Deutsche Forschungsgemeinschaft. NR 51 TC 8 Z9 8 U1 3 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 308 EP 317 DI 10.1109/JSTQE.2011.2109054 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700032 ER PT J AU Talbayev, D Chia, EEM Trugman, SA Zhu, JX Taylor, AJ AF Talbayev, Diyar Chia, Elbert E. M. Trugman, Stuart A. Zhu, Jian-Xin Taylor, Antoinette J. TI Relaxation of Photoinduced Quasi-Particles in Correlated Electron Metals SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Correlated electrons; heavy fermions; high-temperature superconductors; spin density wave (SDW); ultrafast optics ID NODELESS SUPERCONDUCTING GAPS; FERMI-SURFACE; UNCONVENTIONAL SUPERCONDUCTIVITY; PHOTOEMISSION-SPECTROSCOPY; FEMTOSECOND SPECTROSCOPY; ANTIFERROMAGNET UNIGA5; DYNAMICS; BA0.6K0.4FE2AS2; PSEUDOGAP; CRYSTAL AB We present our studies of photoinduced quasi-particle dynamics in correlated electron metals. At room temperature, these materials exhibit metallic behavior characterized by the presence of a Fermi surface. Electronic correlations lead to a modification of the low-energy electronic structure near the Fermi level resulting in the opening of gaps or partial gaps due to such phenomena as density waves or superconductivity. We describe the results of optical pump-probe studies of quasi-particle dynamics in the spin density wave metal UNiGa5, the heavy-fermion superconductor PuCoGa5, and the pnictide high-temperature superconductor (Ba,K)Fe2As2 C1 [Talbayev, Diyar] Yale Univ, Dept Chem, New Haven, CT 06511 USA. [Chia, Elbert E. M.] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore. [Trugman, Stuart A.; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Taylor, Antoinette J.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Talbayev, D (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06511 USA. EM diyar.talbayev@yale.edu; elbertchia@ntu.edu.sg; sat@lanl.gov; jxzhu@lanl.gov; ttaylor@lanl.gov RI Chia, Elbert/B-6996-2011; Talbayev, Diyar/C-5525-2009; OI Chia, Elbert/0000-0003-2066-0834; Talbayev, Diyar/0000-0003-3537-1656; Trugman, Stuart/0000-0002-6688-7228; Zhu, Jianxin/0000-0001-7991-3918 FU Los Alamos National Laboratory LDRD; Center for Integrated Nanotechnologies, U.S.; Singapore Ministry of Education AcRF [Tier 1 (RG 41/07), Tier 2 (ARC 23/08)]; National Research Foundation of Singapore [NRF-CRP4-2008-04]; DOE/BES Materials Science Division; Center for Integrated Nanotechnologies FX Manuscript received November 5, 2010; revised January 28, 2011; accepted January 29, 2011. Date of publication May 12, 2011; date of current version January 31, 2012. This work was supported in part by the Los Alamos National Laboratory LDRD program and the Center for Integrated Nanotechnologies, U.S., in part by the Singapore Ministry of Education AcRF under Grant Tier 1 (RG 41/07) and Grant Tier 2 (ARC 23/08), in part by the National Research Foundation of Singapore under Grant NRF-CRP4-2008-04, in part by the DOE/BES Materials Science Division, and in part by the Center for Integrated Nanotechnologies. NR 63 TC 6 Z9 6 U1 4 U2 23 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 340 EP 350 DI 10.1109/JSTQE.2011.2136373 PG 11 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700035 ER PT J AU Miao, JW Sandberg, RL Song, CY AF Miao, Jianwei Sandberg, Richard L. Song, Changyong TI Coherent X-Ray Diffraction Imaging SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Ankylography; coherent diffraction imaging (CDI); equally sloped tomography (EST); high harmonic generation (HHG); lensless imaging; oversampling; phase retrieval; X-ray free-electron lasers (XFEL) ID FREE-ELECTRON LASER; HIGH-HARMONIC-GENERATION; HIGH-ORDER HARMONICS; EQUALLY-SLOPED TOMOGRAPHY; PHASE-MATCHED GENERATION; FOURIER-TRANSFORM; HOLOGRAPHIC MICROSCOPY; WAVELENGTH RESOLUTION; NONLINEAR OPTICS; 32 NM AB For centuries, lens-based microscopy, such as optical, phase-contrast, fluorescence, confocal, and electron microscopy, has played an important role in the evolution of modern science and technology. In 1999, a novel form of microscopy, i.e., coherent diffraction imaging (also termed coherent diffraction microscopy or lensless imaging), was developed and transformed our conventional view of microscopy, in which the diffraction pattern of a noncrystalline specimen or a nanocrystal was first measured and then directly phased to obtain a high-resolution image. The well-known phase problem was solved by combining the oversampling method with iterative algorithms. In this paper, we will briefly discuss the principle of coherent diffraction imaging, present various implementation schemes of this imaging modality, and illustrate its broad applications in materials science, nanoscience, and biology. As coherent X-ray sources such as high harmonic generation and X-ray free-electron lasers are presently under rapid development worldwide, coherent diffraction imaging can potentially be applied to perform high-resolution imaging of materials/nanoscience and biological specimens at the femtosecond time scale. C1 [Miao, Jianwei] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Miao, Jianwei] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Sandberg, Richard L.] Los Alamos Natl Lab, Phys Chem & Adv Spect Grp, Div Chem, Los Alamos, NM 87544 USA. [Song, Changyong] RIKEN SPring 8 Ctr, Mikazuki, Hyogo 6795148, Japan. RP Miao, JW (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM miao@physics.ucla.edu; sandberg@lanl.gov; cysong@spring8.or.jp OI Sandberg, Richard/0000-0001-9719-8188 FU National Institute of Health [GM081409-01A1]; U.S. Department of Energy, Basic Energy Service [DE-FG02-06ER46276]; Los Alamos National Laboratory; RIKEN, Hyogo, Japan FX Manuscript received January 1, 2011; revised April 26, 2011; accepted May 14, 2011. Date of publication May 27, 2011; date of current version January 31, 2012. This work was supported in part by the National Institute of Health under Grant GM081409-01A1; U.S. Department of Energy, Basic Energy Service, under the Contract DE-FG02-06ER46276; and Los Alamos National Laboratory Director's Postdoctoral Fellowship. Use of the RIKEN beamline (BL29XUL) at SPring-8 Center was supported by RIKEN, Hyogo, Japan. NR 153 TC 42 Z9 42 U1 7 U2 77 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 399 EP 410 DI 10.1109/JSTQE.2011.2157306 PG 12 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700041 ER PT J AU DiChiara, AD Ghimire, S Blaga, CI Sistrunk, E Power, EP March, AM Miller, TA Reis, DA Agostini, P DiMauro, LF AF DiChiara, Anthony D. Ghimire, Shambhu Blaga, Cosmin I. Sistrunk, Emily Power, Erik P. March, Anne M. Miller, Terry A. Reis, David A. Agostini, Pierre DiMauro, Louis F. TI Scaling of High-Order Harmonic Generation in the Long Wavelength Limit of a Strong Laser Field SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Atomic physics; frequency conversion; laser amplifiers; optical propagation in absorbing media; photoionization ID MULTIPHOTON IONIZATION; THRESHOLD IONIZATION; PULSES; PHASE; GASES; PHYSICS; LIGHT; ATOMS; RADIATION; MODEL AB The development of intense, ultrashort, table-top lasers operating in the mid-infrared spectral region, offers many new avenues for strong-field physics. Atoms submitted to such radiation allow photoelectrons to acquire huge quiver energies well over an order of magnitude larger than the binding energy of the neutral. Consequently, many interesting phenomena arise. First, wavelength offers a convenient experimental knob to tune the ionization regime by controlling the Keldysh parameter. Second, high harmonic generation depends directly on the quiver energy and can, therefore, be pushed to unprecedented limits. Third, wavelength controls the spectral phase of harmonics, and hence the possibility to improve the generation of pulses in the attosecond regime. The use of long wavelength lasers is critical to studying high-order harmonic generation in condensed phase systems, because they facilitate harmonic generation within the transmission window of the material and increase the damage threshold. We review some of the recent discoveries in long wavelength driven high-order harmonic generation in the case of isolated atoms, bulk crystals, and liquid. C1 [DiChiara, Anthony D.; Blaga, Cosmin I.; Sistrunk, Emily; Miller, Terry A.; Agostini, Pierre; DiMauro, Louis F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Ghimire, Shambhu; Reis, David A.] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. [Reis, David A.] Stanford Univ, Dept Photon Sci, Stanford, CA 94305 USA. [Reis, David A.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Power, Erik P.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [March, Anne M.] Argonne Natl Lab, XSD, Argonne, IL 60439 USA. RP DiChiara, AD (reprint author), Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. EM dichiara@mps.ohio-state.edu; shambhu@slac.stanford.edu; cblaga@mps.ohio-state.edu; sistrunk@mps.ohio-state.edu; eppower@umich.edu; amarch@anl.gov; tamiller@chemistry.ohio-state.edu; dreis@slac.stanford.edu; agostini@mps.ohio-state.edu; dimauro@mps.ohio-state.edu RI Miller, Terry/F-6607-2014 OI Miller, Terry/0000-0003-0731-8006 FU US Department of Energy/Basic Energy Sciences [DE-FG02-06ER15833X, DE-FG02-04ER15614]; National Science Foundation [PHY-0653022]; OSU Hagenlocker chair FX Manuscript received November 15, 2010; revised March 9, 2011; accepted May 14, 2011. Date of publication June 2, 2011; date of current version January 31, 2012. This work was supported by the US Department of Energy/Basic Energy Sciences contracts DE-FG02-06ER15833X and DE-FG02-04ER15614. The work of C. I. Blaga and E. Sistrunk was supported by the National Science Foundation under contract PHY-0653022, while the work of L. F. DiMauro was supported by the OSU Hagenlocker chair. NR 70 TC 5 Z9 5 U1 2 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 419 EP 433 DI 10.1109/JSTQE.2011.2158391 PG 15 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700043 ER PT J AU Bravo, H Szapiro, BT Wachulak, PW Marconi, MC Chao, WL Anderson, EH Menoni, CS Rocca, JJ AF Bravo, Herman Szapiro, Ben T. Wachulak, Przemyslaw W. Marconi, Mario C. Chao, Weilun Anderson, Erik H. Menoni, Carmen S. Rocca, Jorge J. TI Demonstration of Nanomachining With Focused Extreme Ultraviolet Laser Beams SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Extreme ultraviolet (EUV) lasers; laser ablation; nanomachining; nanotechology ID X-RAY LASER; HZ REPETITION RATE; FEMTOSECOND LASER; ORGANIC POLYMERS; ABLATION; PULSES; RADIATION AB A major challenge in laser machining of microstructures is that of extending the spatial domain to the smaller dimensions of interest in nanotechnology. We demonstrate the feasibility of directly machining nanoscale structures with a focused extreme ultraviolet (EUV) laser beam. Clean sub-200-nm-wide trenches (130-nm full width at half maximum) were ablated on polymethyl methacrylate photoresist by focusing the 46.9-nm wavelength beam from a Ne-like Ar capillary discharge tabletop laser with a Fresnel zone plate lens. Considering that clean 82-nm holes were also ablated using the same laser, it can be expected that focused EUV laser light will enable the machining of significantly smaller features. C1 [Bravo, Herman; Marconi, Mario C.; Menoni, Carmen S.; Rocca, Jorge J.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Szapiro, Ben T.] Univ South, Dept Phys, Sewanee, TN 37383 USA. [Wachulak, Przemyslaw W.] Mil Univ Technol, Inst Optoelect, Warsaw, Poland. [Chao, Weilun; Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr X Ray Opt, Berkeley, CA 94720 USA. RP Bravo, H (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM herman.bravo@colostate.edu; bszapiro@sewanee.edu; przemek@engr.colostate.edu; marconi@engr.colostate.edu; wlchao@lbl.gov; ehanderson@lbl.gov; c.menoni@ieee.org; Jorge.rocca@colostate.edu RI Menoni, Carmen/B-4989-2011 FU National Science Foundation (NSF) Engineering Research Center under NSF [EEC-0310717]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231] FX Manuscript received December 15, 2010; revised March 25, 2011; accepted May 14, 2011. Date of publication June 2, 2011; date of current version January 31, 2012. This work was supported by the National Science Foundation (NSF) Engineering Research Centers Program under NSF Award EEC-0310717, and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract DE-AC02-05CH11231 for E. H. Anderson and W. Chao NR 24 TC 16 Z9 16 U1 1 U2 26 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JAN-FEB PY 2012 VL 18 IS 1 BP 443 EP 448 DI 10.1109/JSTQE.2011.2158392 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 887ND UT WOS:000299933700045 ER PT J AU Ritalahti, KM Justicia-Leon, SD Cusick, KD Ramos-Hernandez, N Rubin, M Dornbush, J Loffler, FE AF Ritalahti, Kirsti M. Justicia-Leon, Shandra D. Cusick, Kathleen D. Ramos-Hernandez, Natalia Rubin, Michael Dornbush, Jessica Loeffler, Frank E. TI Sphaerochaeta globosa gen. nov., sp nov and Sphaerochaeta pleomorpha sp nov., free-living, spherical spirochaetes SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID MICROBIAL DIVERSITY; FATTY-ACIDS; SPIROCHAETA; BACTERIOLOGY; INVOLVEMENT; ANTARCTICA; LEPTOSPIRA; ENRICHMENT; SEQUENCES; COMMITTEE AB Free-living bacteria with spherical cells 0.5-2.5 mu m in diameter were isolated from freshwater sediment. 16S rRNA gene sequence analysis placed the new isolates within the phylum Spirochaetes ('spirochaetes'). The isolates never displayed a helical morphology or motility. Growth occurred in the presence of 100 mg ampicillin l(-1) in complex and defined mineral salts medium amended with vitamins, yeast extract and monosaccharides, disaccharides or soluble starch as fermentable substrates. Two distinct isolates, designated Buddy(T) and Grapes(T), exhibited doubling times of 21 +/- 2 and 15 +/- 1 h in glucose-amended medium and grew at 15-37 and 15-30 degrees C. Optimum growth was observed between 25 and 30 degrees C and pH 6.5-7.5, with no growth below pH 5 or above pH 10. Hexose and pentose fermentation yielded ethanol, acetate and formate as major end products. Growth was strictly fermentative and anaerobic, but the isolates tolerated brief oxygen exposure. Nitrate, sulfate, thiosulfate and carbon dioxide were not used as electron acceptors, but soluble Fe(III) was reduced to Fe(II) in glucose-amended medium. The DNA G + C base contents of isolates Buddy(T) and Grapes(T) were 45.5-46.4 and 47.0-49.2 mol%, respectively. Phospholipid fatty acid (PLFA) profiles contained large proportions of C-14 : 0 and C-16 : 0 straight-chain saturated fatty acids; C-16 : 1 omega 7c and C-16 : 1 omega 9c dominated the mono-unsaturated PLFAs in isolate Grapes(T), whereas isolate Buddy(T) also possessed C-18 : 1 omega 5C, C-18 : 1 omega 7c and C-18 : 1 omega 9c fatty acids. Branched monoenoic acids accounted for up to 12.4 and 30% of the total PLFA in isolates Grapes(T) and Buddy(T), respectively. Based on their unique morphological features and the phylogenetic distance from their closest relatives, we propose the new genus, Sphaerochaeta gen. nov., to accommodate the new isolates within the novel species Sphaerocha eta globosa sp. nov. (type strain Buddy(T) = DSM 22777(T) =ATCC BAA-1886(T)) and Sphaerochaeta pleomorpha sp. nov. (type strain Grapes(T) = DSM 22778(T) =ATCC BAA-1885(T)). Sphaerochaeta globosa is the type species of the genus. C1 [Ritalahti, Kirsti M.; Cusick, Kathleen D.; Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Ritalahti, Kirsti M.; Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Justicia-Leon, Shandra D.; Ramos-Hernandez, Natalia; Rubin, Michael; Dornbush, Jessica] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Justicia-Leon, Shandra D.; Ramos-Hernandez, Natalia; Rubin, Michael; Dornbush, Jessica] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. EM frank.loeffler@utk.edu RI Loeffler, Frank/M-8216-2013 FU National Science Foundation [0919251] FX We are indebted to John Breznak for encouragement and many helpful discussions, and Noha M. Mesbah for determining the G C content of isolates Buddy and Grapes. Appreciation to all the microscopists who participated in imaging, particularly Shirley Owens, Jeanette Taylor, and the late Rob Apkarian. Thanks also to Jarrod Pollock for help with the iron analysis. This material is based upon work supported by the National Science Foundation under grant no. 0919251. NR 35 TC 20 Z9 20 U1 5 U2 23 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD JAN PY 2012 VL 62 BP 210 EP 216 DI 10.1099/ijs.0.023986-0 PN 1 PG 7 WC Microbiology SC Microbiology GA 890HR UT WOS:000300136200035 PM 21398503 ER PT J AU Brothers, MC Nesbitt, AE Hallock, MJ Rupasinghe, SG Tang, M Harris, J Baudry, J Schuler, MA Rienstra, CM AF Brothers, Michael C. Nesbitt, Anna E. Hallock, Michael J. Rupasinghe, Sanjeewa G. Tang, Ming Harris, Jason Baudry, Jerome Schuler, Mary A. Rienstra, Chad M. TI VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy SO JOURNAL OF BIOMOLECULAR NMR LA English DT Article DE Protein structure prediction; Homology modeling; Solid-state NMR spectroscopy; TALOS database; Chemical shift analysis ID SOLID-STATE NMR; PROTEIN-STRUCTURE DETERMINATION; MEMBRANE-PROTEINS; 3-DIMENSIONAL STRUCTURES; MOLECULAR-DYNAMICS; QUALITY ASSESSMENT; COUPLED RECEPTORS; DIPOLAR COUPLINGS; HIGH-THROUGHPUT; SPECTROSCOPY AB Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., C-13-C-13 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality. C1 [Rienstra, Chad M.] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. [Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J.; Tang, Ming; Rienstra, Chad M.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Rupasinghe, Sanjeewa G.; Schuler, Mary A.] Univ Illinois, Dept Cell & Dev Biol, Urbana, IL 61801 USA. [Harris, Jason; Baudry, Jerome] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. [Baudry, Jerome] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA. [Schuler, Mary A.; Rienstra, Chad M.] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA. RP Rienstra, CM (reprint author), Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. EM rienstra@illinois.edu RI Tang, Ming/A-5348-2010 OI Tang, Ming/0000-0001-7479-6206 FU National Institute of Health [R01GM79530, R01GM75937]; NRSA [F32 GM095344]; Ruth L. Kirschstein National Research Service; Chemical Biology Interface Training Program [GM070421-06]; Department of Homeland Security FX The authors thank the National Institute of Health for funding through R01GM79530, R01GM75937, NRSA (F32 GM095344), the Ruth L. Kirschstein National Research Service Award to AEN and the Chemical Biology Interface Training Program (GM070421-06) to MCB and the Department of Homeland Security Fellowship Program to MCB, as well as Dr. Ying Li, Dr. Aleksandra Kijac, and Dr. Andrew Nieuwkoop for early assistance on this project. NR 80 TC 2 Z9 2 U1 0 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0925-2738 J9 J BIOMOL NMR JI J. Biomol. NMR PD JAN PY 2012 VL 52 IS 1 BP 41 EP 56 DI 10.1007/s10858-011-9576-3 PG 16 WC Biochemistry & Molecular Biology; Spectroscopy SC Biochemistry & Molecular Biology; Spectroscopy GA 890TC UT WOS:000300167000006 PM 22183804 ER PT J AU Simonetti, DA Carr, RT Iglesia, E AF Simonetti, Dante A. Carr, Robert T. Iglesia, Enrique TI Acid strength and solvation effects on methylation, hydride transfer, and isomerization rates during catalytic homologation of C-1 species SO JOURNAL OF CATALYSIS LA English DT Article DE Dimethyl ether; Solid acid catalysis; Acid strength; Confinement effects; Zeolites; Carbenium ion; Homologation ID DENSITY-FUNCTIONAL THEORY; 2,2,3-TRIMETHYLBUTANE TRIPTANE; PROPANE CONVERSION; MOLECULAR-SIEVES; ALKANE SORPTION; LIGHT ALKANES; SOLID ACIDS; ZINC IODIDE; ZEOLITES; CRACKING AB Dimethyl ether (DME) homologation forms isobutane and triptane (2,2,3-trimethylbutane) with supra-equilibrium selectivities within C-4 and C-7 hydrocarbons on both mesoporous solid acids (SiO2-Al2O3, H3PW12O40/SiO2) and the acid forms of various zeolites (BEA, FAU, MFI) via methylation and hydride transfer steps that favor isobutane and triptane formation because of the relative stabilities of ion-pairs at transition states for chains along the preferred growth path. The stabilities of ion-pair transition states increase as acid sites become stronger and energies for charge separation decrease and as van der Waals interactions within pores become stronger, which respectively lead to higher rates on H3PW12O40/SiO2 and aluminosilicate zeolites than on amorphous SiO2-Al2O3. Solid acids with different strengths and abilities to solvate ion-pairs by confinement differ in selectivity because strength and solvation influence transition states for the hydride transfer, methylation, and isomerization steps to different extents. Stronger acid sites on H3PW/O-2(40)/SiO2 favor isomerization and hydride transfer over methylation: they lead to higher selectivities to n-butane and non-triptane C-7 isomers than the weaker acid sites on BEA, FAU, and mesoporous SiO2-Al2O3. This preference for hydride transfer and isomerization on stronger acids reflects transition states with more diffuse cationic charge, which interact less effectively with conjugate anions than more localized cations at methylation transition states. The latter recover a larger fraction of the energy required to form the ion-pair, and their stabilities are less sensitive to acid strength than for diffuse cations. Large-pore zeolites (BEA, FAU) form triptane with higher selectivity than SiO2-Al2O3 because confinement within large pores preferentially solvates the larger transition states for hydride transfer and methylation, which preserve the four-carbon backbone in triptane, over smaller transition states for alkoxide isomerization steps, which disrupt this backbone and cause growth beyond C-7 chains and subsequent facile beta-scission to form isobutane. MFI forms isobutane and triptane with much lower selectivity than mesoporous acids or large-pore zeolites, because smaller pores restrict the formation of bimolecular methylation and hydride transfer transition states required for chain growth and termination steps to a greater extent than those for monomolecular alkoxide isomerization. These data and their mechanistic interpretations show that the selective formation of isobutane and triptane from C-7 precursors like DME is favored on all acids as a result of the relative stability of methylation, hydride transfer, and isomerization transition states, but to a lesser extent when small confining voids and stronger acid sites preferentially stabilize monomolecular isomerization transition states. The observed effects of acid strength and confinement on rates and selectivities reflect the more effective stabilization of all ion-pairs on stronger acids and within solvating environments, but a preference for transition states with more diffuse charge on stronger acids and for ion-pairs with the appropriate solvation within voids of molecular dimensions. (C) 2011 Elsevier Inc. Al rights reserved. C1 [Simonetti, Dante A.; Carr, Robert T.; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM iglesia@cchem.berkeley.edu RI Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU BP p.l.c; Chemical Sciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-03ER15479] FX We acknowledge partial financial support from BP p.l.c as part of the Methane Conversion Cooperative Program at the UC-Berkeley and from the Chemical Sciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy under Grant No. DE-FG02-03ER15479. We thank Rajamani Gounder for valuable discussions about thermochemical cycles in acid catalysis and about the effects of confinement in zeolite catalysis. We also thank Professor Matthew Neurock (University of Virginia) for useful discussions during the course of this study and Dr. Wei Qi for the synthesis of 5 wt.% H3PW12O40/SiO2 and the titration data on this sample. NR 47 TC 17 Z9 18 U1 9 U2 88 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JAN PY 2012 VL 285 IS 1 BP 19 EP 30 DI 10.1016/j.jcat.2011.09.007 PG 12 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 889LD UT WOS:000300074300004 ER PT J AU Wu, ZL Li, MJ Overbury, SH AF Wu, Zili Li, Meijun Overbury, Steven H. TI On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes SO JOURNAL OF CATALYSIS LA English DT Article DE Ceria nanoshapes; Rods; Cubes; Octahedra; CO oxidation; Structure dependence; In situ spectroscopy; Reaction mechanism ID GAS SHIFT REACTION; TRANSFORM INFRARED-SPECTROSCOPY; CERIUM OXIDE; ROOM-TEMPERATURE; CARBON-MONOXIDE; OXYGEN STORAGE; RAMAN-SPECTROSCOPY; CATALYTIC-ACTIVITY; ISOTOPIC EXCHANGE; VACANCY FORMATION AB CO oxidation is a model reaction for probing the redox property of ceria-based catalysts. In this study. CO oxidation was investigated over ceria nanocrystals with defined surface planes (nanoshapes) including rods ({1 1 0} + {1 0 0}), cubes ({1 0 0}), and octahedra ({1 1 1}). To understand the strong dependence of CO oxidation observed on these different ceria nanoshapes, in situ techniques including infrared and Raman spectroscopy coupled with online mass spectrometer, and temperature-programmed reduction (TPR) were employed to reveal how CO interacts with the different ceria surfaces, while the mobility of ceria lattice oxygen was investigated via oxygen isotopic exchange experiment. CO adsorption at room temperature leads to strongly bonded carbonate species on the more reactive surfaces of rods and cubes but weakly bonded ones on the rather inert octahedra surface. CO-TPR, proceeding via several channels including CO removal of lattice oxygen, surface water-gas shift reaction, and CO disproportionation reaction, reveals that the reducibility of these ceria nanoshapes is in line with their CO oxidation activity, i.e., rods > cubes > octahedra. The mobility of lattice oxygen also shows similar dependence. It is suggested that surface oxygen vacancy formation energy, defect sites, and coordinatively unsaturated sites on ceria play a direct role in facilitating both CO interaction with ceria surface and the reactivity and mobility of lattice oxygen. The oxygen vacancy formation energy, nature and amount of the defect and low coordination sites are intrinsically affected by the surface planes of the ceria nanoshapes. Several reaction pathways for CO oxidation over the ceria nanoshapes are proposed, and certain types of carbonates, especially those associated with reduced ceria surface, are considered among the reaction intermediates to form CO2, while the majority of carbonate species observed under CO oxidation condition are believed to be spectators. (C) 2011 Elsevier Inc. All rights reserved. C1 [Wu, Zili; Li, Meijun; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wu, Zili; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM wuz1@ornl.gov; overburysh@ornl.gov RI Wu, Zili/F-5905-2012; Overbury, Steven/C-5108-2016 OI Wu, Zili/0000-0002-4468-3240; Overbury, Steven/0000-0002-5137-3961 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy; Oak Ridge National Laboratory, by the Office of Basic Energy Science, US Department of Energy FX This Research is sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Part of the work including Raman and TEM/SEM was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory, by the Office of Basic Energy Science, US Department of Energy. The research was supported in part by the appointment for M.J. Li to the ORNL Postdoctoral Research Associates Program, administered jointly by ORNL and the Oak Ridge Associated Universities. NR 69 TC 177 Z9 181 U1 41 U2 307 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JAN PY 2012 VL 285 IS 1 BP 61 EP 73 DI 10.1016/j.jcat.2011.09.011 PG 13 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 889LD UT WOS:000300074300008 ER PT J AU Ojeda, M Zhan, BZ Iglesia, E AF Ojeda, Manuel Zhan, Bi-Zeng Iglesia, Enrique TI Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters SO JOURNAL OF CATALYSIS LA English DT Article DE CO oxidation; Au; H2O effect; Mechanism; Hydroperoxy ID CARBON-MONOXIDE OXIDATION; GOLD-BASED CATALYSTS; HYDROGEN-PEROXIDE; AU/TIO2 CATALYST; PREFERENTIAL OXIDATION; SELECTIVE OXIDATION; OXYGEN ACTIVATION; ROOM-TEMPERATURE; H-2; NANOPARTICLES AB Kinetic and isotopic data are used to interpret the mechanistic role of gaseous H2O molecules and of non-reducible (Al2O3) and reducible (TiO2, Fe2O3) supports on CO oxidation turnovers catalyzed by small Au clusters (<5 nm). H2O acts as a co-catalyst essential for O-2 activation and for catalyst stability in CO oxidation at near-ambient temperatures, but also inhibits rates via competitive adsorption at higher H2O pressures. The effects of CO, O-2, and H2O pressures on CO oxidation turnover rates, the absence of O-16(2)/O-18(2) v and O-16(2)/(H2O)-O-18 exchange, and the small H2O/D2O kinetic isotope effects are consistent with quasi-equilibrated molecular adsorption of CO, O-2, and H2O on Au clusters with the kinetic relevance of H2O-mediated O-2 activation via the formation of hydroperoxy intermediates ((OOH)-O-center dot), which account for the remarkable reactivity and H2O effects on Au clusters. These elementary steps proceed on Au clusters without detectable requirements for support interface sites, which are no longer required when H2O is present and mediates O-2 activation steps. Rate enhancements by H2O were also observed for CO oxidation on Pt clusters (1.3 nm), which is also limited by O-2 activation steps, suggesting H2O-aided O-2 activation and (OOH)-O-center dot species in oxidations involving kinetically-relevant O-2 activation. These intermediates have also been proposed to account for the ability of O-2/H2O mixtures to act as reactants in alkene epoxidation on Au-based catalysts. Published by Elsevier Inc. C1 [Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu RI Ojeda, Manuel/A-8584-2008; Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy [DE-AC02-05CH11231]; European Union [MOIF-CT2005-007651]; Spanish Ministry of Science and Innovation [RYC-2010-06067] FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract DE-AC02-05CH11231. M. Ojeda acknowledges the financial support from the European Union (Marie Curie Actions, MOIF-CT2005-007651) and Spanish Ministry of Science and Innovation (RYC-2010-06067). H. Kung and M. Kung (Northwestern University) kindly provided the initial Au/Al2O3 catalysts and synthetic protocols. We thank Dr. David Flaherty for proofreading and helpful discussions. We are also grateful for the electron microscopy data provided by Dr. M. Avalos, L. Rendon and F. Ruiz from the Centro de Ciencias de la Materia Condensada, UNAM, Mexico. The World Gold Council (WGC) is also acknowledged for supplying the reference Au samples. NR 65 TC 48 Z9 48 U1 10 U2 99 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD JAN PY 2012 VL 285 IS 1 BP 92 EP 102 DI 10.1016/j.jcat.2011.09.015 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 889LD UT WOS:000300074300011 ER PT J AU von Deak, D Singh, D Biddinger, EJ King, JC Bayram, B Miller, JT Ozkan, US AF von Deak, Dieter Singh, Deepika Biddinger, Elizabeth J. King, Jesaiah C. Bayram, Burcu Miller, Jeffrey T. Ozkan, Umit S. TI Investigation of sulfur poisoning of CNx oxygen reduction catalysts for PEM fuel cells SO JOURNAL OF CATALYSIS LA English DT Article DE CNx; X-ray absorption spectroscopy; Oxygen reduction; Sulfur poisoning; Active site ID FE-BASED CATALYSTS; NITROGEN-CONTAINING CARBON; SUPPORTED METAL PARTICLES; HIGH-AREA CARBON; ELECTROCHEMICAL REDUCTION; O-2 REDUCTION; DIOXYGEN REDUCTION; HIGH-TEMPERATURE; BLACK SUPPORTS; HEAT-TREATMENT AB The role of the transition metal used during the growth of non-noble metal electrochemical oxygen reduction CNx catalysts was investigated through sulfur treatment, a well-known poison for transition metal-based catalysts. The intent of sulfur poisoning was to show the existence of an electrocatalytic active site in CNx that did not depend on iron. The sulfur treatment was shown to be effective on a platinum catalyst, as seen by the decreasing onset potential. The same treatment, however, not only showed no negative effect on the CNx catalyst, but enhanced its performance, as seen by the increase in the onset potential. This suggests that, if there are iron-based active sites in these catalysts, they are either sulfur tolerant or they do not participate in the electrocatalytic oxygen reduction. The deposition of sulfur onto CNx catalyst was verified by temperature-programmed oxidation and X-ray photoelectron spectroscopy. Iron K-edge X-ray absorption near edge structural analysis of the CNx catalyst suggested that the iron phase, which was primarily composed of nanometer-sized metallic particles, was unchanged by sulfur poisoning, suggesting that the residual iron left in these materials is not catalytically accessible. (C) 2011 Elsevier Inc. All rights reserved. C1 [von Deak, Dieter; Singh, Deepika; Biddinger, Elizabeth J.; King, Jesaiah C.; Bayram, Burcu; Ozkan, Umit S.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ozkan, US (reprint author), Ohio State Univ, Dept Chem & Biomol Engn, 140 W 19th Ave, Columbus, OH 43210 USA. EM ozkan.1@osu.edu RI Ozkan, Umit/K-8483-2012; Bayram, Burcu/F-9279-2013; ID, MRCAT/G-7586-2011 FU US Department of Energy Basic Energy Sciences [DE-FG02-07ER15896]; E.I. DuPont de Nemours Co.; Dow Chemical Company; State of Illinois; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [0114098] FX The authors acknowledge the financial support for this work from US Department of Energy Basic Energy Sciences through the Grant DE-FG02-07ER15896. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and the State of Illinois. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors also acknowledge the NSF support for acquisition of the XPS system under NSF-DMR Grant #0114098. NR 66 TC 27 Z9 27 U1 6 U2 32 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JAN PY 2012 VL 285 IS 1 BP 145 EP 151 DI 10.1016/j.jcat.2011.09.027 PG 7 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 889LD UT WOS:000300074300016 ER PT J AU Vining, WC Strunk, J Bell, AT AF Vining, William C. Strunk, Jennifer Bell, Alexis T. TI Investigation of the structure and activity of VOx/CeO2/SiO2 catalysts for methanol oxidation to formaldehyde SO JOURNAL OF CATALYSIS LA English DT Article DE Methanol oxidation; Vanadia; Ceria; Silica ID SUPPORTED VANADIUM-OXIDE; HIGH-SURFACE-AREA; SELECTIVE OXIDATION; RUTILE TIO2(110); DYNAMIC STATES; SILICA; RAMAN; XPS; SPECTROSCOPY; CEO2(111) AB The effect of ceria on the partial oxidation of methanol to formaldehyde over VOx/CeO2/SiO2 catalysts was investigated. A two-dimensional layer of ceria on silica was prepared by grafting cerium (IV) t-butoxide (Ce(OC4H9)(4)) onto high surface area, mesoporous silica, SBA-15, and then calcining the resulting product in air at 773 K. Ce surface concentrations obtained this way ranged from 0.2 to 0.9 Ce nm(-2). Next, V was introduced by grafting VO((OPr)-Pr-i)(3) onto CeO2/SiO2 in order to achieve a surface concentration of 0.6 V nm(-2). XANEs spectra indicate that all of the V is in the 5+ oxidation state and Raman spectra show that vanadia exist as pseudo-tetrahedra bonded to either silica or ceria. Data from Raman spectroscopy and temperature-programmed desorption of adsorbed methanol indicate that with increasing Ce surface density, most of the V becomes associated with the deposited ceria. The turnover frequency for methanol oxidation is nearly two orders of magnitude higher for VOx/CeO2/SiO2 than for VOx/SiO2, whereas the apparent activation energy and apparent first-order pre-exponential factor are 17 kcal/mol and 1.4 x 10(6) mol CH2O (mol V atm s)(-1), respectively, for VOx(/)CeO(2)/SiO2 and 23 kcal/mol and 2.3 x 10(7) mol CH2O (mol V atm s)(-1), respectively, for VOx/SiO2. (C) 2011 Elsevier Inc. All rights reserved. C1 [Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division, of the US Department of Energy [DE-AC02-05CH11231]; US DOE [DE-AC02-06CH11357] FX The authors would like to thank Dr. Edward Lang and Dr. John Katsoudas for their assistance in operating the beamline at the APS. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 49 TC 17 Z9 18 U1 4 U2 82 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JAN PY 2012 VL 285 IS 1 BP 160 EP 167 DI 10.1016/j.jcat.2011.09.024 PG 8 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 889LD UT WOS:000300074300018 ER PT J AU Raboin, L Yano, J Tilley, TD AF Raboin, Lorraine Yano, Junko Tilley, T. Don TI Epoxidation catalysts derived from introduction of titanium centers onto the surface of mesoporous aluminophosphate: Comparisons with analogous catalysts based on mesoporous silica SO JOURNAL OF CATALYSIS LA English DT Article DE Mesoporous aluminophosphates; Titanium isopropoxide; Ti-grafted aluminophosphates; Ti-grafted SBA-15; Cyclohexene catalytic oxidation ID PHOSPHATE MOLECULAR-SIEVES; SINGLE-SITE TITANIUM; BRONSTED ACID SITES; HYDROGEN-PEROXIDE; DIFFUSE-REFLECTANCE; SELECTIVE OXIDATION; OLEFIN EPOXIDATION; CRYSTAL-STRUCTURE; AMORPHOUS SILICA; TI-O AB Titanium/AlPO materials were prepared by grafting a titanium alkoxide (titanium isopropoxide) onto a mesoporous aluminophosphate. The structures of the surface-bound titanium species were investigated by UV-vis, FTIR, MAS NMR, and XANES/EXAFS spectroscopies. The titanium anchoring occurs by reaction between the alkoxide precursor and surface Al-OH and P-OH groups of the AlPO support. The titanium species exist in isolated tetrahedral coordination environments, and as oligomerized species. The catalysts prepared are selective and active for the liquid-phase epoxidation of cyclohexene in the presence of TBHP. The observed activities and selectivities were comparable with those obtained for similarly prepared titanium/SBA-15 samples of similar Ti content (but higher BET surface area). Published by Elsevier Inc. C1 [Raboin, Lorraine; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Raboin, Lorraine; Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM lraboin@chem.ucla.edu; jyano@lbl.gov; tdtilley@berkeley.edu FU Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; "Direction generale des Armements" (France, DGA); DOE, OBES; DOE, Office of Biological and Environmental Research; NIH, National Center for Research Resources (NCRR) FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. L.R. acknowledges funding provided by the "Direction generale des Armements" (France, DGA). The authors are grateful to Dr. Chris Canlas for recording the solid-state NMR spectra. Parts of this research were carried out at ALS and SSRL funded by DOE, OBES. The SSRL SMB Program is supported by the DOE, Office of Biological and Environmental Research and by the NIH, National Center for Research Resources (NCRR). NR 76 TC 7 Z9 7 U1 6 U2 56 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JAN PY 2012 VL 285 IS 1 BP 168 EP 176 DI 10.1016/j.jcat.2011.09.023 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 889LD UT WOS:000300074300019 ER PT J AU Aleksandrov, HA Moskaleva, LV Zhao, ZJ Basaran, D Chen, ZX Mei, DH Rosch, N AF Aleksandrov, Hristiyan A. Moskaleva, Lyudmila V. Zhao, Zhi-Jian Basaran, Duygu Chen, Zhao-Xu Mei, Donghai Roesch, Notker TI Ethylene conversion to ethylidyne on Pd(111) and Pt(111): A first-principles-based kinetic Monte Carlo study SO JOURNAL OF CATALYSIS LA English DT Article DE Ethylene conversion; Ethylidyne; Vinylidene; First-principles-based kinetic Monte Carlo simulations; Pd(111); Pt(111); Metal catalysts; DFT calculations ID TRANSITION-METAL SURFACES; DENSITY-FUNCTIONAL THEORY; ABSORPTION FINE-STRUCTURE; FT-IR SPECTROSCOPY; INFRARED-SPECTROSCOPY; REACTIVE PROPERTIES; C2H4 HYDROGENATION; PT/AL2O3 CATALYST; REACTION PATHWAY; BONDED ETHYLENE AB We present kinetic Monte Carlo simulations of ethylene conversion to ethylidyne on Pd(1 1 1) and Pt(1 1 1) surfaces, on the basis of reaction enthalpies and barriers obtained from periodic density functional calculations. We considered three possible mechanisms encompassing four different intermediates, ethyl, vinyl, ethylidene, and vinylidene. Our simulations predict that the most plausible pathway on both surfaces is ethylene --> vinyl --> vinylidene --> ethylidyne. In contrast to earlier suggestions that the dehydrogenation to vinyl is rate-limiting on Pt(1 1 1), we found the hydrogenation of vinylidene to ethylidyne to be crucial on this surface. On Pd(1 1 1), the initial dehydrogenation of ethylene is rate-limiting. Hence, vinylidene species accumulate on Pt(1 1 1), while all intermediates on Pd(1 1 1) convert rapidly to ethylidyne without accumulation. The simulated apparent activation energies for the formation of ethylidyne on Pd(1 11 ), 94 kJ mol(-1), and on Pt(1 1 1), 65 kJ mol(-1), agree well with experimental results. (C) 2011 Elsevier Inc. All rights reserved. C1 [Mei, Donghai] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Aleksandrov, Hristiyan A.; Moskaleva, Lyudmila V.; Zhao, Zhi-Jian; Basaran, Duygu; Chen, Zhao-Xu; Roesch, Notker] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany. [Aleksandrov, Hristiyan A.; Moskaleva, Lyudmila V.; Zhao, Zhi-Jian; Basaran, Duygu; Chen, Zhao-Xu; Roesch, Notker] Tech Univ Munich, Catalysis Res Ctr, D-85747 Garching, Germany. [Aleksandrov, Hristiyan A.] Univ Sofia, Fac Chem, BU-1126 Sofia, Bulgaria. [Moskaleva, Lyudmila V.] Univ Bremen, Inst Angew & Phys Chem, D-28359 Bremen, Germany. [Chen, Zhao-Xu] Nanjing Univ, Sch Chem & Chem Engn, Inst Theoret & Computat Chem, Key Lab Mesoscop Chem,MOE, Nanjing 210093, Jiangsu, Peoples R China. RP Mei, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM roesch@mytum.de RI Moskaleva, Lyudmila/D-1889-2012; Zhao, Zhi-Jian/C-8965-2009; Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011; Aleksandrov, Hristiyan/R-4055-2016 OI Moskaleva, Lyudmila/0000-0003-0168-7126; Zhao, Zhi-Jian/0000-0002-8856-5078; Mei, Donghai/0000-0002-0286-4182; FU National Center of Advanced Materials UNION; Laboratory Directed Research and Development (LDRD) at the Pacific Northwest National Laboratory (PNNL); Deutsche Forschungsgemeinschaft; Fonds der Chemischen Industrie (Germany) FX H.A.A. thanks the Bulgarian National Science Fund (National Center of Advanced Materials UNION) for support. This work was supported by a Laboratory Directed Research and Development (LDRD) project at the Pacific Northwest National Laboratory (PNNL). N.R. acknowledges financial support by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie (Germany). NR 75 TC 33 Z9 33 U1 5 U2 53 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JAN PY 2012 VL 285 IS 1 BP 187 EP 195 DI 10.1016/j.jcat.2011.09.035 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 889LD UT WOS:000300074300021 ER PT J AU Garcia-Dieguez, M Chin, YH Iglesia, E AF Garcia-Dieguez, Monica Chin, Ya-Huei (Cathy) Iglesia, Enrique TI Catalytic reactions of dioxygen with ethane and methane on platinum clusters: Mechanistic connections, site requirements, and consequences of chemisorbed oxygen SO JOURNAL OF CATALYSIS LA English DT Article DE CH4 oxidation; C2H6 oxidation; Combustion; Platinum; C-H bond activation; Oxygen reactivity; Alkane oxidation ID PARTIAL OXIDATION; STRUCTURAL REQUIREMENTS; CHEMICAL CONVERSION; ORGANIC-MOLECULES; REACTION PATHWAYS; ELEMENTARY STEPS; SYNTHESIS GAS; METAL-OXIDE; ADSORPTION; ACTIVATION AB C2H6 reactions with O-2 only form CO2 and H2O on dispersed Pt clusters at 0.2-28 O-2/C2H6 reactant ratios and 723-913 K without detectable formation of partial oxidation products. Kinetic and isotopic data, measured under conditions of strict kinetic control, show that CH4 and C2H6 reactions involve similar elementary steps and kinetic regimes. These kinetic regimes exhibit different rate equations, kinetic isotope effects and structure sensitivity, and transitions among regimes are dictated by the prevalent coverages of chemisorbed oxygen (O*). At O-2/C2H6 ratios that lead to O*-saturated surfaces, kinetically-relevant C-H bond activation steps involve O*-O* pairs and transition states with radical-like alkyls. As oxygen vacancies (*) emerge with decreasing O-2/alkane ratios, alkyl groups at transition states are effectively stabilized by vacancy sites and C-H bond activation occurs preferentially at O*-* site pairs. Measured kinetic isotope effects and the catalytic consequences of Pt cluster size are consistent with a monotonic transition in the kinetically-relevant step from C-H bond activation on O*-O* site pairs, to C-H bond activation on O*-* site pairs, to O-2 dissociation on *-* site pairs as O* coverage decrease for both C2H6 and CH4 reactants. When C-H bond activation limits rates, turnover rates increase with increasing Pt cluster size for both alkanes because coordinatively unsaturated corner and edge atoms prevalent in small clusters lead to more strongly-bound and less-reactive O* species and lower densities of vacancy sites at nearly saturated cluster surfaces. In contrast, the highly exothermic and barrierless nature of O-2 activation steps on uncovered clusters leads to similar turnover rates on Pt clusters with 1.8-8.5 nm diameter when this step becomes kinetically-relevant at low O-2/alkane ratios. Turnover rates and the O-2/alkane ratios required for transitions among kinetic regimes differ significantly between CH4 and C2H6 reactants, because of the different C-H bond energies, strength of alkyl-O* interactions, and O-2 consumption stoichiometries for these two molecules. Vacancies emerge at higher O-2/alkane ratios for C2H6 than for CH4 reactants, because their weaker C-H bonds lead to faster scavenging of O* and to lower O* coverages, which are set by the kinetic coupling between C=H and O=O activation steps. The elementary steps, kinetic regimes, and mechanistic analogies reported here for C2H6 and CH4 reactions with O-2 are consistent with all rate and isotopic data, with their differences in C-H bond energies and in alkyl binding, and with the catalytic consequences of surface coordination and cluster size. The rigorous mechanistic interpretation of these seemingly complex kinetic data and cluster size effects provides useful kinetic guidance for larger alkanes and other catalytic surfaces based on the thermodynamic properties of these molecules and on the effects of metal identity and surface coordination on oxygen binding and reactivity. (C) 2011 Elsevier Inc. All rights reserved. C1 [Garcia-Dieguez, Monica; Chin, Ya-Huei (Cathy); Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu RI Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU BP, University of California at Berkeley FX This study has been funded by BP as part of the Methane Conversion Cooperative Research Program at the University of California at Berkeley. We thank Professor Matthew Neurock and Dr. Corneliu Buda (University of Virginia) for helpful technical discussions and for their collaboration and contributions to the CH4 part of this work, the details of which have been published elsewhere. NR 38 TC 25 Z9 27 U1 2 U2 64 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JAN PY 2012 VL 285 IS 1 BP 260 EP 272 DI 10.1016/j.jcat.2011.09.036 PG 13 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 889LD UT WOS:000300074300029 ER PT J AU Kellogg, CA Piceno, YM Tom, LM DeSantis, TZ Zawada, DG Andersen, GL AF Kellogg, Christina A. Piceno, Yvette M. Tom, Lauren M. DeSantis, Todd Z. Zawada, David G. Andersen, Gary L. TI PhyloChip (TM) microarray comparison of sampling methods used for coral microbial ecology SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Bacteria; Coral; Microarray; 16S; Method; Disease ID BLACK BAND DISEASE; PLAGUE-LIKE DISEASE; GREAT-BARRIER-REEF; SCLERACTINIAN CORALS; BACTERIAL COMMUNITY; CAUSATIVE AGENT; SURFACE MUCUS; DIVERSITY; POPULATIONS; DNA AB Interest in coral microbial ecology has been increasing steadily over the last decade, yet standardized methods of sample collection still have not been defined. Two methods were compared for their ability to sample coral-associated microbial communities: tissue punches and foam swabs, the latter being less invasive and preferred by reef managers. Four colonies of star coral, Montastraea annularis, were sampled in the Dry Tortugas National Park (two healthy and two with white plague disease). The PhyloChip(TM) G3 microarray was used to assess microbial community structure of amplified 16S rRNA gene sequences. Samples clustered based on methodology rather than coral colony. Punch samples from healthy and diseased corals were distinct. All swab samples clustered closely together with the seawater control and did not group according to the health state of the corals. Although more microbial taxa were detected by the swab method, there is a much larger overlap between the water control and swab samples than punch samples, suggesting some of the additional diversity is due to contamination from water absorbed by the swab. While swabs are useful for noninvasive studies of the coral surface mucus layer, these results show that they are not optimal for studies of coral disease. Published by Elsevier B.V. C1 [Kellogg, Christina A.; Zawada, David G.] US Geol Survey, St Petersburg, FL 33701 USA. [Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kellogg, CA (reprint author), US Geol Survey, 600 4th St S, St Petersburg, FL 33701 USA. EM ckellogg@usgs.gov; ympiceno@lbl.gov; ltom@lbl.gov; tdesantis@lbl.gov; dzawada@usgs.gov; GLAndersen@lbl.gov RI Tom, Lauren/E-9739-2015; Andersen, Gary/G-2792-2015; Piceno, Yvette/I-6738-2016 OI Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699 FU Coral Reef Ecosystems Study (CREST) of the U.S. Geological Survey; U.S. Department of Energy [DE-AC02-05CH11231] FX Although funding for this research project was provided by the Coral Reef Ecosystems Study (CREST) of the U.S. Geological Survey's Coastal and Marine Geology Program (CMGP), the CMGP played no active role in the design of the study, the collection of the data and their analysis and interpretation, the writing of the report, or the decision to submit this paper for publication. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government. We thank T. McDole and B.J. Reynolds for assistance during field collection of the samples. Coral samples were collected in the Dry Tortugas National Park as authorized by permit DRTO-2009-SCI-0018 to CAK. A portion of this work was performed under the auspices of the U.S. Department of Energy under contract DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory (LBNL). NR 50 TC 17 Z9 17 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD JAN PY 2012 VL 88 IS 1 BP 103 EP 109 DI 10.1016/j.mimet.2011.10.019 PG 7 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 888BA UT WOS:000299977600016 PM 22085912 ER PT J AU Wang, ML Hada, M Huff, J Pluth, JM Anderson, J O'Neill, P Cucinotta, FA AF Wang, Minli Hada, Megumi Huff, Janice Pluth, Janice M. Anderson, Jennifer O'Neill, Peter Cucinotta, Francis A. TI Heavy Ions Can Enhance TGF beta Mediated Epithelial to Mesenchymal Transition SO JOURNAL OF RADIATION RESEARCH LA English DT Article DE Space radiation; Heavy ions; HZE nuclei; EMT; TGF beta ID GROWTH-FACTOR-BETA; SIGNALING PATHWAYS; CARCINOMA-CELLS; MAMMARY-GLAND; ACTIVATION; IRRADIATION; PROGRESSION; INHIBITION; EXPRESSION; TGF-BETA-1 AB TGF beta is a key modulator of the Epithelial Mesenchymal Transition (EMT), a process important in cancer progression and metastasis, which leads to the suppression of epithelial genes and expression of mesenchymal proteins. Ionizing radiation was found to specifically induce expression of the TGF-beta 1 isoform, which can modulate late post-radiation changes and increase the risk of tumor development and metastasis. Interactions between TGF beta induced EMT and DNA damage responses have not been fully elucidated, particularly at low doses and following different radiation quality exposures. Further characterization of the relationship between radiation quality, EMT and cancer development is warranted. We investigated whether space radiation induced TGF beta dependent EMT, using hTERT immortalized human esophageal epithelial cells (EPC2-hTERT) and non-transformed mink lung epithelial cells (Mv1Lu). We have observed morphologic and molecular alterations in EPC2 and Mv1Lu cells consistent with EMT after pre-treatment with TGF beta 1. This effect could be efficiently inhibited in both cell lines by the use of a TGF beta RI inhibitor. High-energy silicon or iron nuclei were each able to cause a mild induction of EMT, with the inclusion of TGF beta 1 inducing a greatly enhanced EMT phenotype even when cells were irradiated with doses as low as 0.1 Gy. A further enhancement of EMT was achieved at a higher dose of 2 Gy. TGF beta RI inhibitor was able to reverse the EMT induced by the combination of TGF beta 1 and radiation. These studies indicate that heavy ions, even at a low dose, may trigger the process of TGF beta 1-induced EMT, and suggest further studies are needed to determine whether the chronic exposures received in space may potentiate this process in astronauts, leading to an increased risk of cancer. C1 [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Wang, Minli; Hada, Megumi; Huff, Janice] USRA, Div Life Sci, Houston, TX 77058 USA. [Pluth, Janice M.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Anderson, Jennifer; O'Neill, Peter] Univ Oxford, Gray Inst Radiat Oncol & Biol, Oxford OX3 7DQ, England. RP Cucinotta, FA (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM francis.a.cucinotta@nasa.gov FU DoE; NASA; Medical and Accelerator Departments at BNL FX This research is supported by DoE Low Dose Program and NASA Space Radiation Program. We are indebted to Medical and Accelerator Departments at BNL for support at NSRL. NR 27 TC 6 Z9 7 U1 0 U2 3 PU JAPAN RADIATION RESEARCH SOC PI CHIBA PA C/O NAT INST RADIOLOGICAL SCI 9-1 ANAGAWA-4-CHOME INAGE-KU, CHIBA, 263, JAPAN SN 0449-3060 J9 J RADIAT RES JI J. Radiat. Res. PD JAN PY 2012 VL 53 IS 1 BP 51 EP 57 DI 10.1269/jrr.11121 PG 7 WC Biology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Radiology, Nuclear Medicine & Medical Imaging GA 890IV UT WOS:000300139200007 PM 22302045 ER PT J AU Beydoun, HA Beydoun, MA Wiggins, N Stadtmauer, L AF Beydoun, Hind A. Beydoun, May A. Wiggins, Natasha Stadtmauer, Laurel TI Relationship of obesity-related disturbances with LH/FSH ratio among post-menopausal women in the United States SO MATURITAS LA English DT Article DE Chronic inflammation; Follicular stimulating hormone; Insulin resistance; Luteinizing hormone; Obesity ID POLYCYSTIC-OVARY-SYNDROME; PROSTATE-SPECIFIC ANTIGEN; INSULIN-RESISTANCE; CHRONIC INFLAMMATION; NATIONAL-HEALTH; NONOBESE WOMEN; PATHOGENESIS; METFORMIN; DRUGS AB Objectives: Although luteinizing hormone to follicular stimulating hormone (LH/FSH) ratio is a controversial criterion for identifying a sub-group of infertile women with polycystic ovary syndrome (PCOS) and. abnormalities at the level of the hypothalamic-pituitary-ovarian axis, an elevated LH/FSH ratio is frequently observed in PCOS cases. Obesity and insulin resistance are highly prevalent among PCOS women. To date, no studies have examined the associations of LH/FSH ratio with these co-morbid conditions outside the context of pre- and peri-menopausal PCOS women. The objective of this study is to evaluate whether the LH/FSH ratio is associated with obesity, insulin resistance, metabolic disturbances and chronic inflammation among post-menopausal U.S. women, 35-60 years of age. Study design: Cross-sectional study of 693 women who participated in the 1999-2002 National Health and Nutrition Examination Survey. Main outcome measures: Body mass index, waist circumference, triglycerides, high-density lipoprotein (HDL) cholesterol, systolic and diastolic blood pressures, fasting glucose, metabolic syndrome, Homeostasis Model Assessment for Insulin Resistance and C-reactive protein (CRP). Results: Age- and hysterectomy-adjusted regression models suggest that CRP level is positively associated with LH/FSH ratio and LH/FSH > 1, high glucose level and LH/FSH > 2 are inversely related and HDL < 50 mg/dL is positively associated with both LH/FSH > 1 and LH/FSH > 2. Conclusions: In a nationally representative sample of post-menopausal women, markers of chronic inflammation and dyslipidemia which are characteristics of PCOS-associated morbidities were also significantly associated with LH/FSH ratio, meriting further investigation. (C) 2011 Elsevier Ireland Ltd. All rights reserved. C1 [Beydoun, Hind A.] Eastern Virginia Med Sch, Grad Program Publ Hlth, Norfolk, VA 23501 USA. [Beydoun, May A.] NIA, NIH, Intramural Res Program, Baltimore, MD 21224 USA. [Wiggins, Natasha] ORISE NMPHC, Portsmouth, VA USA. [Stadtmauer, Laurel] Eastern Virginia Med Sch, Jones Inst Reprod Med, Norfolk, VA 23501 USA. RP Beydoun, HA (reprint author), Eastern Virginia Med Sch, Grad Program Publ Hlth, POB 1980, Norfolk, VA 23501 USA. EM baydouha@evms.edu FU NIH, National Institute on Aging FX This research was partly supported by the Intramural Research Program of the NIH, National Institute on Aging. We would like to thank Dr. Melissa Kitner-Triolo and Dr. Alyssa Gamaldo for their thoughtful comments. NR 29 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-5122 J9 MATURITAS JI Maturitas PD JAN PY 2012 VL 71 IS 1 BP 55 EP 61 DI 10.1016/j.maturitas.2011.10.010 PG 7 WC Geriatrics & Gerontology; Obstetrics & Gynecology SC Geriatrics & Gerontology; Obstetrics & Gynecology GA 888CO UT WOS:000299981600012 PM 22088801 ER PT J AU Pennycook, SJ Colliex, C AF Pennycook, Stephen J. Colliex, Christian TI Spectroscopic imaging in electron microscopy SO MRS BULLETIN LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; 3D TRANSITION-METALS; RESOLUTION; INFORMATION; OXIDES; STEM; POLARIZATION; FUTURE; OXYGEN; ATOMS AB In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-Angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology. C1 [Pennycook, Stephen J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Colliex, Christian] Univ Paris 11, Orsay, France. RP Pennycook, SJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM pennycooksj@ornl.gov; colliex@lps.u-psud.fr FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; CNRS, of Universite Paris Sud and of EC [026019] FX S.J.P. acknowledges support from the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. C.C. acknowledges the permanent support of CNRS, of Universite Paris Sud and of EC programs, in particular the ESTEEM integrated infrastructure 026019. NR 61 TC 8 Z9 8 U1 1 U2 22 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD JAN PY 2012 VL 37 IS 1 BP 13 EP 18 DI 10.1557/mrs.2011.332 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 889AJ UT WOS:000300045600009 ER PT J AU Varela, M Gazquez, J Pennycook, SJ AF Varela, Maria Gazquez, Jaume Pennycook, Stephen J. TI STEM-EELS imaging of complex oxides and interfaces SO MRS BULLETIN LA English DT Article ID ELECTRON-ENERGY-LOSS; TRANSITION-METAL OXIDES; COLOSSAL IONIC-CONDUCTIVITY; MAGNETIC PHASE-SEPARATION; EDGE STRUCTURES; THIN-FILMS; OXYGEN; SPECTRA; HETEROSTRUCTURES; MICROSCOPE AB The success of the correction of spherical aberration in the electron microscope has revolutionized our view of oxides. This is a very important class of materials that is promising for future applications of some of the most intriguing phenomena in condensed matter physics: colossal magnetoresistance, colossal ionic conductivity, high T c superconductivity, and ferroelectricity. Understanding the physics underlying such phenomena, especially in low dimensional systems (thin films, interfaces, nanowires, nanoparticles), relies on the availability of techniques capable of looking at these systems in real space and with atomic resolution and even beyond, with single atom sensitivity; in many cases, the system properties depend on minuscule amounts of point defects that alter the material's properties dramatically. Atomic resolution spectroscopy in the aberration-corrected electron microscope is one of the most powerful techniques available to materials scientists today. This article will briefly review some state-of-the-art applications to oxide materials: from atomic resolution elemental mapping and single atom imaging to applications to real systems, including oxide interfaces and mapping of physical properties such as the spin state of magnetic atoms. C1 [Varela, Maria; Pennycook, Stephen J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gazquez, Jaume] Inst Mat Sci Barcelona, Barcelona, Spain. RP Varela, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mvarela@ornl.gov; jgazquez@icmab.es; pennycooksj@ornl.gov RI Gazquez, Jaume/C-5334-2012; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014 OI Gazquez, Jaume/0000-0002-2561-328X; Varela, Maria/0000-0002-6582-7004 FU Materials Sciences and Engineering Division of the U.S. Department of Energy; European Research Council FX The authors acknowledge support from the Materials Sciences and Engineering Division of the U.S. Department of Energy (MV, SJP) and the European Research Council Starting Investigator Award (JG). The authors are also grateful to all the collaborators that made this work possible, among others: Les Allen and his research group, Mike Biegalski, Hans Christen, Chris Leighton and his research group, Ondrej Krivanek and the crew at Nion Co., Julia Luck, Weidong Luo, Andy Lupini, David Mandrus, Mark Oxley, Sokrates Pantelides, Tim Pennycook, Jacobo Santamaria and his research group, Bill Sides, Jing Tao, and Masashi Watanabe. NR 70 TC 18 Z9 18 U1 6 U2 67 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD JAN PY 2012 VL 37 IS 1 BP 29 EP 35 DI 10.1557/mrs.2011.330 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 889AJ UT WOS:000300045600011 ER PT J AU Li, FY Jiang, DE Zeng, XC Chen, ZF AF Li, Fengyu Jiang, De-en Zeng, Xiao Cheng Chen, Zhongfang TI Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study SO NANOSCALE LA English DT Article ID DENSITY-FUNCTIONAL THEORY; SUPPORTED RHODIUM CATALYSTS; CO HYDROGENATION; CARBON-MONOXIDE; METAL-SURFACES; CHEMISORPTION BEHAVIOR; PROMOTED RHODIUM; STEPPED RH(553); SYNTHESIS GAS; DISSOCIATION AB Rh is unique in its ability to convert syngas to ethanol with the help of promoters. We performed systematic first-principles computations to examine the catalytic performance of pure and Mn modified Rh(100) surfaces for ethanol formation from syngas. CO dissociation on the surface as well as CO insertion between the chemisorbed CH3 and the surface are the two key steps. The CO dissociation barrier on the Mn monolayer modified Rh(100) surface is remarkably lowered by similar to 1.5 eV compared to that on Rh(100). Moreover, the reaction barrier of CO insertion into the chemisorbed CH3 group on the Mn monolayer modified Rh(100) surface is 0.34 eV lower than that of methane formation. Thus the present work provides new mechanistic insight into the role of Mn promoters in improving Rh's selectivity to convert syngas to ethanol. C1 [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Fengyu; Chen, Zhongfang] Univ Puerto Rico, Dept Chem, Dept Phys, San Juan, PR 00931 USA. [Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Zeng, Xiao Cheng] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov; zhongfangchen@gmail.com RI Chen, Zhongfang/A-3397-2008; Jiang, De-en/D-9529-2011; Li, Fengyu/G-9433-2012 OI Jiang, De-en/0000-0001-5167-0731; FU Nebraska Center for Energy Sciences Research; FIPI University of Puerto Rico; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Oak Ridge National Laboratory; NSF [EPS-1010094, EPS-1010674] FX This research was supported by Laboratory Directed Research and Development fund at Oak Ridge National Laboratory and by the NSF grants (EPS-1010094 and EPS-1010674), a seed grant by the Nebraska Center for Energy Sciences Research, and FIPI fund of University of Puerto Rico. Z. C. also thanks the 2010 HBCU/MEI Summer Faculty Program to support his stay at Oak Ridge National Lab during which this project was initiated. This research used the resources of the HPCf computational facility at University of Puerto Rico, and the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 82 TC 14 Z9 14 U1 4 U2 44 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 4 BP 1123 EP 1129 DI 10.1039/c1nr11121c PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 888ZM UT WOS:000300043300010 PM 22071543 ER PT J AU Negreiros, FR Apra, E Barcaro, G Sementa, L Vajda, S Fortunelli, A AF Negreiros, Fabio R. Apra, Edoardo Barcaro, Giovanni Sementa, Luca Vajda, Stefan Fortunelli, Alessandro TI A first-principles theoretical approach to heterogeneous nanocatalysis SO NANOSCALE LA English DT Article ID MGO(100) SURFACE; GLOBAL OPTIMIZATION; SILVER CLUSTERS; GOLD CLUSTERS; DEFECT SITES; F-S; NANOPARTICLES; CATALYSIS; AG; PSEUDOPOTENTIALS AB A theoretical approach to heterogeneous catalysis by sub-nanometre supported metal clusters and alloys is presented and discussed. Its goal is to perform a computational sampling of the reaction paths in nanocatalysis via a global search in the phase space of structures and stoichiometry combined with filtering which takes into account the given experimental conditions (catalytically relevant temperature and reactant pressure), and corresponds to an incremental exploration of the disconnectivity diagram of the system. The approach is implemented and applied to the study of propylene partial oxidation by Ag-3 supported on MgO(100). First-principles density-functional theory calculations coupled with a Reactive Global Optimization algorithm are performed, finding that: (1) the presence of an oxide support drastically changes the potential energy landscape of the system with respect to the gas phase, favoring configurations which interact positively with the electrostatic field generated by the surface; (2) the reaction energy barriers for the various mechanisms are crucial in the competition between thermodynamically and kinetically favored reaction products; (3) a topological database of structures and saddle points is produced which has general validity and can serve for future studies or for deriving general trends; (4) the MgO(100) surface captures some major features of the effect of an oxide support and appears to be a good model of a simple oxide substrate; (5) strong cooperative effects are found in the co-adsorption of O-2 and other ligands on small metal clusters. The proposed approach appears as a viable route to advance the role of predictive computational science in the field of heterogeneous nanocatalysis. C1 [Negreiros, Fabio R.; Barcaro, Giovanni; Sementa, Luca; Fortunelli, Alessandro] CNR, IPCF, I-56124 Pisa, Italy. [Apra, Edoardo] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Vajda, Stefan] Argonne Natl Lab, Div Mat Sci, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Vajda, Stefan] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA. RP Fortunelli, A (reprint author), CNR, IPCF, I-56124 Pisa, Italy. EM alessandro.fortunelli@cnr.it RI Apra, Edoardo/F-2135-2010; Barcaro, Giovanni/M-2614-2013; OI Apra, Edoardo/0000-0001-5955-0734; Barcaro, Giovanni/0000-0002-5520-5914 FU SEPON within European Research Council; Office of Science of the Department of Energy [DE-AC05-00OR22725]; US Department of Energy, BES-Materials Sciences [DE-AC-02-06CH11357]; UChicago Argonne, LLC FX Financial support from the SEPON project within the Advanced Grants of the European Research Council is gratefully acknowledged. Part of the calculations were performed on the CASPUR supercomputing center (Italy) within the TheoNano-Cat project. This research used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. S.V. thanks for the support of his effort the US Department of Energy, BES-Materials Sciences, under Contract DE-AC-02-06CH11357 with UChicago Argonne, LLC, operator of Argonne National Laboratory. Networking from the MP0903 COST action is also acknowledged. NR 59 TC 28 Z9 28 U1 6 U2 68 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 4 BP 1208 EP 1219 DI 10.1039/c1nr11051a PG 12 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 888ZM UT WOS:000300043300022 PM 22057595 ER PT J AU Wong, BM Ye, SH O'Bryan, G AF Wong, Bryan M. Ye, Simon H. O'Bryan, Greg TI Reversible, opto-mechanically induced spin-switching in a nanoribbon-spiropyran hybrid material SO NANOSCALE LA English DT Article ID DENSITY-FUNCTIONAL THEORY; 2-PHOTON ABSORPTION-SPECTRA; OPTOELECTRONIC PROPERTIES; GRAPHENE NANORIBBONS; ELECTRON-TRANSPORT; CARBON NANORINGS; ANTHRACENE-9-CARBOXYLATE; SPINTRONICS; DEVICES; FILMS AB It has recently been shown that electronic transport in zigzag graphene nanoribbons becomes spin-polarized upon application of an electric field across the nanoribbon width. However, the electric fields required to experimentally induce this magnetic state are typically large and difficult to apply in practice. Here, using both first-principles density functional theory (DFT) and time-dependent DFT, we show that a new spiropyran-based, mechanochromic polymer noncovalently deposited on a nanoribbon can collectively function as a dual opto-mechanical switch for modulating its own spin-polarization. These calculations demonstrate that upon mechanical stress or photoabsorption, the spiropyran chromophore isomerizes from a closed-configuration ground-state to a zwitterionic excited-state, resulting in a large change in dipole moment that alters the electrostatic environment of the nanoribbon. We show that the electronic spin-distribution in the nanoribbon-spiropyran hybrid material can be reversibly modulated via noninvasive optical and mechanical stimuli without the need for large external electric fields. Our results suggest that the reversible spintronic properties inherent to the nanoribbon-spiropyran material allow the possibility of using this hybrid structure as a resettable, molecular-logic quantum sensor where opto-mechanical stimuli are used as inputs and the spin-polarized current induced in the nanoribbon substrate is the measured output. C1 [Wong, Bryan M.; O'Bryan, Greg] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. [Ye, Simon H.] Stanford Univ, Dept Chem, Stanford, CA 94309 USA. RP Wong, BM (reprint author), Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. EM bmwong@sandia.gov RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU National Science Foundation [TG-CHE1000066N]; Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories; United States Department of Energy [DE-AC04-94AL85000] FX This research was supported in part by the National Science Foundation through TeraGrid resources (Grant No. TG-CHE1000066N) provided by the National Center for Super-computing Applications. Funding for this effort was provided by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 48 TC 18 Z9 18 U1 3 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 4 BP 1321 EP 1327 DI 10.1039/c2nr11543c PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 888ZM UT WOS:000300043300039 PM 22228399 ER PT J AU Hursey, J Graham, RL AF Hursey, Joshua Graham, Richard L. TI Analyzing fault aware collective performance in a process fault tolerant MPI SO PARALLEL COMPUTING LA English DT Article DE MPI; Fault tolerance; Collective communication; Algorithm Based Fault Tolerance; Run-through stabilization ID SYSTEMS; ALGORITHMS; OPERATIONS AB Application developers are investigating Algorithm Based Fault Tolerance (ABET) techniques to improve the efficiency of application recovery beyond what traditional techniques alone can provide. Applications will depend on libraries to sustain failure-free performance across process failure to continue to use High Performance Computing (HPC) systems efficiently even in the presence of process failure. Optimized Message Passing Interface (MPI) collective operations are a critical component of many scalable HPC applications. However, most of the collective algorithms are not able to handle process failure. Next generation MPI implementations must provide fault aware versions of such algorithms that can sustain performance across process failure. This paper discusses the design and implementation of fault aware collective algorithms for tree structured communication patterns. The three design approaches of rerouting, lookup avoiding and rebalancing are described, and analyzed for their performance impact relative to similar fault unaware barrier and broadcast collective algorithms. The analysis shows that the rerouting approach causes a significant performance degradation while the rebalancing approach can bring the performance within 1% of the fault unaware performance. This paper also presents the impact of the run-through stabilization prototype on point-to-point communication, and analyzes the time to rebalance the tree while accounting for process failures. Published by Elsevier B.V. C1 [Hursey, Joshua; Graham, Richard L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hursey, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM hurseyjj@ornl.gov; rlgraham@ornl.gov FU Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC. FX Research sponsored by the Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research, US Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 29 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD JAN-FEB PY 2012 VL 38 IS 1-2 SI SI BP 15 EP 25 DI 10.1016/j.parco.2011.10.010 PG 11 WC Computer Science, Theory & Methods SC Computer Science GA 890HC UT WOS:000300134700003 ER PT J AU Bosilca, G Bouteiller, A Danalis, A Herault, T Lemarinier, P Dongarra, J AF Bosilca, George Bouteiller, Aurelien Danalis, Anthony Herault, Thomas Lemarinier, Pierre Dongarra, Jack TI DAGuE: A generic distributed DAG engine for High Performance Computing SO PARALLEL COMPUTING LA English DT Article DE HPC; Micro-task DAG; Heterogeneous architectures; Architecture aware scheduling ID FACTORIZATION; ARCHITECTURES AB The frenetic development of the current architectures places a strain on the current state-of-the-art programming environments. Harnessing the full potential of such architectures is a tremendous task for the whole scientific computing community. We present DAGuE a generic framework for architecture aware scheduling and management of micro-tasks on distributed many-core heterogeneous architectures. Applications we consider can be expressed as a Direct Acyclic Graph of tasks with labeled edges designating data dependencies. DAGs are represented in a compact, problem-size independent format that can be queried on-demand to discover data dependencies, in a totally distributed fashion. DAGuE assigns computation threads to the cores, overlaps communications and computations and uses a dynamic, fully-distributed scheduler based on cache awareness, data-locality and task priority. We demonstrate the efficiency of our approach, using several micro-benchmarks to analyze the performance of different components of he framework, and a linear algebra factorization as a use case. Published by Elsevier E.V. C1 [Bosilca, George; Bouteiller, Aurelien; Danalis, Anthony; Herault, Thomas; Dongarra, Jack] Univ Tennessee, Innovat Comp Lab, Knoxville, TN 37996 USA. [Lemarinier, Pierre] Univ Rennes 1, IRISA, F-35014 Rennes, France. [Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bouteiller, A (reprint author), Univ Tennessee, Innovat Comp Lab, Knoxville, TN 37996 USA. EM bosilca@eecs.utk.edu; bouteill@eecs.utk.edu; danalis@eecs.utk.edu; herault@eecs.utk.edu; lemarini@eecs.utk.edu; dongarra@eecs.utk.edu RI Dongarra, Jack/E-3987-2014 NR 33 TC 62 Z9 62 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JAN-FEB PY 2012 VL 38 IS 1-2 SI SI BP 37 EP 51 DI 10.1016/j.parco.2011.10.003 PG 15 WC Computer Science, Theory & Methods SC Computer Science GA 890HC UT WOS:000300134700005 ER PT J AU Prati, L Villa, A Lupini, AR Veith, GM AF Prati, Laura Villa, Alberto Lupini, Andrew R. Veith, Gabriel M. TI Gold on carbon: one billion catalysts under a single label SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID LIQUID-PHASE OXIDATION; SUPPORTED RUTHENIUM CATALYSTS; SELECTIVE OXIDATION; GLYCEROL OXIDATION; AEROBIC OXIDATION; ACTIVATED CARBON; ALCOHOL OXIDATION; SURFACE-CHEMISTRY; PARTICLE-SIZE; FUEL-CELLS AB Despite the wide use of carbon materials as supports for heterogeneous catalysis, generic labels are often used to describe the catalysts, i.e. Au/C, making comparisons between different Au/C catalysts difficult even for the same application. A variety of structures and chemically modified surfaces are in fact available, making gold nanoparticles supported on carbonaceous supports extremely versatile catalysts. C1 [Prati, Laura; Villa, Alberto] Univ Milan, Dipartimento Chim Inorgan Met Organ & Analit, I-20133 Milan, Italy. [Lupini, Andrew R.; Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Prati, L (reprint author), Univ Milan, Dipartimento Chim Inorgan Met Organ & Analit, Via Venezian 21, I-20133 Milan, Italy. EM laura.prati@unimi.it; alberto.villa@unimi.it; arl1000@ornl.gov; veithgm@ornl.gov RI Villa, Alberto/H-7355-2013; Prati, Laura/Q-3970-2016 OI Villa, Alberto/0000-0001-8656-6256; Prati, Laura/0000-0002-8227-9505 FU Fondazione Cariplo; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; UT-Battelle, LLC FX The authors gratefully acknowledge Fondazione Cariplo for financial support. Microscopy studies at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences (Hitachi STEM) were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. A portion of this research (GMV, ARL) was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy, under contract with UT-Battelle, LLC. NR 84 TC 38 Z9 39 U1 4 U2 50 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 9 BP 2969 EP 2978 DI 10.1039/c2cp23405j PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 889AV UT WOS:000300046800001 PM 22282023 ER PT J AU Du, Y Petrik, NG Deskins, NA Wang, Z Henderson, MA Kimmel, GA Lyubinetsky, I AF Du, Y. Petrik, N. G. Deskins, N. A. Wang, Z. Henderson, M. A. Kimmel, G. A. Lyubinetsky, I. TI Hydrogen reactivity on highly-hydroxylated TiO2(110) surfaces prepared via carboxylic acid adsorption and photolysis SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; REDUCED TIO2(110); DISSOCIATIVE ADSORPTION; O-2 DISSOCIATION; OXYGEN ADATOMS; RUTILE TIO2; WATER FILMS; DESORPTION; DIFFUSION; OXIDATION AB Combined scanning tunneling microscopy, temperature programmed desorption, photo stimulated desorption, and density functional theory studies have probed the formation and reactivity of highly-hydroxylated rutile TiO2(110) surfaces, which were prepared via a novel, photochemical route using trimethyl acetic acid (TMAA) dissociative adsorption and subsequent photolysis at 300 K. Deprotonation of TMAA molecules upon adsorption produces both surface bridging hydroxyls (OHb) and bidentate trimethyl acetate (TMA) species with a saturation coverage of nearly 0.5 monolayers (ML). Ultra-violet light irradiation selectively removes TMA species, producing a highly-hydroxylated surface with up to similar to 0.5 ML OHb coverage. At high coverages, the OHb species typically occupy second-nearest neighbor sites along the bridging oxygen row locally forming linear (2 x 1) structures of different lengths, although the surface is less ordered on a long scale. The annealing of the highly-hydroxylated surface leads to hydroxyl recombination and H2O desorption with similar to 100% yield, thus ruling out the diffusion of H into the bulk that has been suggested in the literature. In agreement with experimental data, theoretical results show that the recombinative H2O desorption is preferred over both H bulk diffusion and H-2 desorption processes. C1 [Petrik, N. G.; Henderson, M. A.; Kimmel, G. A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Du, Y.; Wang, Z.; Lyubinetsky, I.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Du, Y.; Petrik, N. G.; Wang, Z.; Henderson, M. A.; Kimmel, G. A.; Lyubinetsky, I.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Deskins, N. A.] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA. RP Petrik, NG (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM nikolai.petrik@pnnl.gov; nadeskins@wpi.edu; igor.lyubinetsky@pnnl.gov RI Deskins, Nathaniel/H-3954-2012; Petrik, Nikolay/G-3267-2015 OI Petrik, Nikolay/0000-0001-7129-0752 FU U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences; Office of Biological and Environmental Research FX We thank M. Dupuis, Z. Dohnalek, and R. Rousseau for stimulating discussions. This work was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, and performed at EMSL, a DOE User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We also acknowledge the National Energy Research Scientific Computing Center in Berkeley, CA, for providing computational resources. NR 59 TC 25 Z9 25 U1 5 U2 60 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 9 BP 3066 EP 3074 DI 10.1039/c1cp22515d PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 889AV UT WOS:000300046800013 PM 22108618 ER PT J AU Welz, O Zador, J Savee, JD Ng, MY Meloni, G Fernandes, RX Sheps, L Simmons, BA Lee, TS Osborn, DL Taatjes, CA AF Welz, Oliver Zador, Judit Savee, John D. Ng, Martin Y. Meloni, Giovanni Fernandes, Ravi X. Sheps, Leonid Simmons, Blake A. Lee, Taek Soon Osborn, David L. Taatjes, Craig A. TI Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550 K-750 K) oxidation chemistry of isopentanol SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID PLUS O-2 REACTIONS; PHOTOIONIZATION MASS-SPECTROMETRY; GAS-PHASE OXIDATION; SET MODEL CHEMISTRY; PRODUCT FORMATION; ALKYLPEROXY RADICALS; RATE COEFFICIENTS; CROSS-SECTIONS; OH; KINETICS AB The branched C-5 alcohol isopentanol (3-methylbutan-1-ol) has shown promise as a potential biofuel both because of new advanced biochemical routes for its production and because of its combustion characteristics, in particular as a fuel for homogeneous-charge compression ignition (HCCI) or related strategies. In the present work, the fundamental autoignition chemistry of isopentanol is investigated by using the technique of pulsed-photolytic Cl-initiated oxidation and by analyzing the reacting mixture by time-resolved tunable synchrotron photoionization mass spectrometry in low-pressure (8 Torr) experiments in the 550-750 K temperature range. The mass-spectrometric experiments reveal a rich chemistry for the initial steps of isopentanol oxidation and give new insight into the low-temperature oxidation mechanism of medium-chain alcohols. Formation of isopentanal (3-methylbutanal) and unsaturated alcohols (including enols) associated with HO2 production was observed. Cyclic ether channels are not observed, although such channels dominate OH formation in alkane oxidation. Rather, products are observed that correspond to formation of OH via beta-C-C bond fission pathways of QOOH species derived from beta- and gamma-hydroxyisopentylperoxy (RO2) radicals. In these pathways, internal hydrogen abstraction in the RO2 reversible arrow QOOH isomerization reaction takes place from either the -OH group or the C-H bond in alpha-position to the -OH group. These pathways should be broadly characteristic for longer-chain alcohol oxidation. Isomer-resolved branching ratios are deduced, showing evolution of the main products from 550 to 750 K, which can be qualitatively explained by the dominance of RO2 chemistry at lower temperature and hydroxyisopentyl decomposition at higher temperature. C1 [Welz, Oliver; Zador, Judit; Savee, John D.; Fernandes, Ravi X.; Sheps, Leonid; Osborn, David L.; Taatjes, Craig A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Ng, Martin Y.; Meloni, Giovanni] Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA. [Fernandes, Ravi X.] Rhein Westfal TH Aachen, D-52056 Aachen, Germany. [Simmons, Blake A.] Sandia Natl Labs, Biofuels & Biomat Sci & Technol Grp, Livermore, CA 94551 USA. [Simmons, Blake A.] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. [Lee, Taek Soon] Joint BioEnergy Inst, Fuels Synth Div, Emeryville, CA 94608 USA. RP Welz, O (reprint author), Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. EM onwelz@sandia.gov; cataatj@sandia.gov RI Zador, Judit/A-7613-2008; Welz, Oliver/C-1165-2013; OI Zador, Judit/0000-0002-9123-8238; Welz, Oliver/0000-0003-1978-2412; Simmons, Blake/0000-0002-1332-1810 FU Sandia National Laboratories; multiprogram laboratory operated by Sandia Corporation; Lockheed Martin Company [DE-AC04-94AL85000]; Division of Chemical Sciences, Geosciences, and Bio-sciences; Office of Basic Energy Sciences, U.S. DOE; American Chemical Society [51170-UNI6]; University of San Francisco; U.S. DOE Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. DOE FX We thank Howard Johnsen for technical support of these experiments. This work is funded by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (U.S. DOE), under contract DE-AC04-94AL85000. JZ, JDS, LS, and DLO receive support from Division of Chemical Sciences, Geosciences, and Bio-sciences, the Office of Basic Energy Sciences, U.S. DOE. GM acknowledges the American Chemical Society-Petroleum Research Fund Grant #51170-UNI6 and the Faculty Development Fund from the University of San Francisco. The Joint BioEnergy Institute is supported by the U.S. DOE Office of Science, Office of Biological and Environmental Research under contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. DOE. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. DOE, also under contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. DOE. NR 60 TC 43 Z9 43 U1 2 U2 69 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 9 BP 3112 EP 3127 DI 10.1039/c2cp23248k PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 889AV UT WOS:000300046800018 PM 22286869 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Presidential pledges SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JAN PY 2012 VL 25 IS 1 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 882XG UT WOS:000299596600019 ER PT J AU Ofek, EO Laher, R Law, N Surace, J Levitan, D Sesar, B Horesh, A Poznanski, D van Eyken, JC Kulkarni, SR Nugent, P Zolkower, J Walters, R Sullivan, M Agueros, M Bildsten, L Bloom, J Cenko, SB Gal-Yam, A Grillmair, C Helou, G Kasliwal, MM Quimby, R AF Ofek, E. O. Laher, R. Law, N. Surace, J. Levitan, D. Sesar, B. Horesh, A. Poznanski, D. van Eyken, J. C. Kulkarni, S. R. Nugent, P. Zolkower, J. Walters, R. Sullivan, M. Agueeros, M. Bildsten, L. Bloom, J. Cenko, S. B. Gal-Yam, A. Grillmair, C. Helou, G. Kasliwal, M. M. Quimby, R. TI The Palomar Transient Factory Photometric Calibration SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID DIGITAL SKY SURVEY; RESOLVED CCD PHOTOMETRY; STARS; ENSEMBLE; MAGNITUDES; EXTINCTION; CATALOG; OBJECTS; SYSTEM AB The Palomar Transient Factory (PTF) provides multiple epoch imaging for a large fraction of the celestial sphere. Here, we describe the photometric calibration of the PTF data products that allows the PTF magnitudes to be related to other magnitude systems. The calibration process utilizes Sloan Digital Sky Survey (SDSS) r similar to 16 mag point-source objects as photometric standards. During photometric conditions, this allows us to solve for the extinction coefficients and color terms and to estimate the camera illumination correction. This also enables the calibration of fields that are outside the SDSS footprint. We test the precision and repeatability of the PTF photometric calibration. Given that PTF is observing in a single filter each night, we define a PTF calibrated magnitude system for the R band and g band. We show that, in this system, approximate to 59% (47%) of the photometrically calibrated PTF R-band (g-band) data achieve a photometric precision of 0.02-0.04 mag and have color terms and extinction coefficients that are close to their average values. Given the objects' color, the PTF magnitude system can be converted to other systems. Moreover, a night-by-night comparison of the calibrated magnitudes of individual stars observed on multiple nights shows that they are consistent to a level of approximate to 0.02 mag. Most of the data that were taken under nonphotometric conditions can be calibrated relative to other epochs of the same sky footprint obtained during photometric conditions. We provide a concise guide describing how to use the PTF photometric-calibration data products, as well as the transformations between the PTF magnitude system and the SDSS and Johnson-Cousins systems. C1 [Ofek, E. O.; Levitan, D.; Sesar, B.; Horesh, A.; Kulkarni, S. R.; Kasliwal, M. M.; Quimby, R.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Ofek, E. O.; Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Laher, R.; Surace, J.; Grillmair, C.; Helou, G.] CALTECH, Jet Prop Lab, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Law, N.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Poznanski, D.; Nugent, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Poznanski, D.; Bloom, J.; Cenko, S. B.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [van Eyken, J. C.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Zolkower, J.; Walters, R.] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Sullivan, M.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Agueeros, M.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Bildsten, L.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bildsten, L.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. RP Ofek, EO (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. RI Agueros, Marcel/K-7998-2014; Horesh, Assaf/O-9873-2016; OI Agueros, Marcel/0000-0001-7077-3664; Horesh, Assaf/0000-0002-5936-1156; Sullivan, Mark/0000-0001-9053-4820 FU Einstein fellowship; NSF [AST-0507734, AST-0908886]; Gary and Cynthia Bengier; Richard and Rhoda Goldman Fund; NASA [NNX10AI21G, GO-7100028]; TABASGO Foundation FX We thank Andrew Pickles and an anonymous referee for useful comments on the article. This article is based on observations obtained with the Samuel Oschin Telescope as part of the Palomar Transient Factory project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. E. O. O. is supported by an Einstein fellowship and NASA grants. S. R. K. and his group are partially supported by the NSF grant AST-0507734. S. B. C. acknowledges generous financial assistance from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, NASA/Swift grants NNX10AI21G and GO-7100028, the TABASGO Foundation, and NSF grant AST-0908886. NR 30 TC 75 Z9 75 U1 0 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JAN PY 2012 VL 124 IS 911 BP 62 EP 73 DI 10.1086/664065 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 888ZF UT WOS:000300042600007 ER PT J AU Close, D Xu, TT Smartt, A Rogers, A Crossley, R Price, S Ripp, S Sayler, G AF Close, Dan Xu, Tingting Smartt, Abby Rogers, Alexandra Crossley, Robert Price, Sarah Ripp, Steven Sayler, Gary TI The Evolution of the Bacterial Luciferase Gene Cassette (lux) as a Real-Time Bioreporter SO SENSORS LA English DT Review DE mammalian cells; bacterial luciferase (lux); bioreporter; biosensor; cell culture; small animal models ID WHOLE-CELL BIOSENSORS; ESCHERICHIA-COLI; BIOLUMINESCENT-BIOREPORTER; SACCHAROMYCES-CEREVISIAE; VIBRIO-HARVEYI; ALCALIGENES-EUTROPHUS; INTEGRATED-CIRCUITS; DNA-DAMAGE; REPORTER; EXPRESSION AB The bacterial luciferase gene cassette (lux) is unique among bioluminescent bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate compounds required for its production of light. As a result, the lux system has the unique ability to autonomously produce a luminescent signal, either continuously or in response to the presence of a specific trigger, across a wide array of organismal hosts. While originally employed extensively as a bacterial bioreporter system for the detection of specific chemical signals in environmental samples, the use of lux as a bioreporter technology has continuously expanded over the last 30 years to include expression in eukaryotic cells such as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, the lux system has been developed for use as a biomedical detection tool for toxicity screening and visualization of tumors in small animal models. As the technologies for lux signal detection continue to improve, it is poised to become one of the first fully implantable detection systems for intra-organismal optical detection through direct marriage to an implantable photon-detecting digital chip. This review presents the basic biochemical background that allows the lux system to continuously autobioluminesce and highlights the important milestones in the use of lux-based bioreporters as they have evolved from chemical detection platforms in prokaryotic bacteria to rodent-based tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit microluminometry to image directly within a living host in real-time will be introduced and its role in the development of dose/response therapeutic systems will be highlighted. C1 [Close, Dan; Sayler, Gary] Oak Ridge Natl Lab, Joint Inst Biol Sci, Knoxville, TN 37996 USA. [Xu, Tingting; Smartt, Abby; Rogers, Alexandra; Crossley, Robert; Price, Sarah; Ripp, Steven; Sayler, Gary] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. RP Sayler, G (reprint author), Oak Ridge Natl Lab, Joint Inst Biol Sci, 676 Dabney Hall, Knoxville, TN 37996 USA. EM dclose@utk.edu; txu2@utk.edu; asmartt@utk.edu; aroger24@utk.edu; rcrossl1@utk.edu; sprice12@utk.edu; saripp@utk.edu; sayler@utk.edu RI Ripp, Steven/B-2305-2008; Close, Dan/A-4417-2012 OI Ripp, Steven/0000-0002-6836-1764; FU National Institutes of Health, National Cancer Institute [CA127745-01]; University of Tennessee Research Foundation; National Science Foundation Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) [CBET-0853780]; Army Defense University FX Portions of this review reflecting work by the authors was supported by the the National Institutes of Health, National Cancer Institute, Cancer Imaging Program, award number CA127745-01, the University of Tennessee Research Foundation Technology Maturation Funding program, National Science Foundation Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) under award number CBET-0853780, and the Army Defense University Research Instrumentation Program. NR 84 TC 25 Z9 26 U1 4 U2 55 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JAN PY 2012 VL 12 IS 1 BP 732 EP 752 DI 10.3390/s120100732 PG 21 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 882BU UT WOS:000299537100039 PM 22368493 ER PT J AU Dugger, MT AF Dugger, Michael T. TI In praise of service SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Editorial Material C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dugger, MT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mtdugge@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD JAN PY 2012 VL 68 IS 1 BP 4 EP 4 PG 1 WC Engineering, Mechanical SC Engineering GA 873PP UT WOS:000298895600001 ER PT J AU Mukundan, H Price, DN Goertz, M Parthasarathi, R Montano, GA Kumar, S Scholfield, MR Anderson, AS Gnanakaran, S Iyer, S Schmidt, J Swanson, BI AF Mukundan, Harshini Price, Dominique N. Goertz, Matthew Parthasarathi, Ramakrishnan Montano, Gabriel A. Kumar, Sandeep Scholfield, Matthew R. Anderson, Aaron S. Gnanakaran, S. Iyer, Srinivas Schmidt, Jurgen Swanson, Basil I. TI Understanding the interaction of Lipoarabinomannan with membrane mimetic architectures SO TUBERCULOSIS LA English DT Article DE Lipoarabinomannan; Amphiphiles; Diagnostics; Supported lipid bilayers; Biosensor; LAM atomistic model; Atomic force microscopy; Mass spectrometry ID T-CELL PROLIFERATION; TOLL-LIKE RECEPTORS; MYCOBACTERIUM-TUBERCULOSIS; MASS-SPECTROMETRY; STRUCTURAL-CHARACTERIZATION; CAPILLARY-ELECTROPHORESIS; PATHOGEN DETECTION; LAM-ELISA; BIOSYNTHESIS; STRAINS AB Lipoarabinomannan (LAM) is a critical virulence factor in the pathogenesis of Mycobacterium tuberculosis, the causative agent of tuberculosis. LAM is secreted in urine and serum from infected patients and is being studied as a potential diagnostic indicator for the disease. Herein, we present a novel ultra-sensitive and specific detection strategy for monomeric LAM based on its amphiphilic nature and consequent interaction with supported lipid bilayers. Our strategy involves the capture of LAM on waveguides functionalized with membrane mimetic architectures, followed by detection with a fluorescently labeled polyclonal antibody. This approach offers ultra-sensitive detection of lipoarabinomannan (10 fM, within 15 min) and may be extended to other amphiphilic markers. We also show that chemical deacylation of LAM completely abrogates its association with the supported lipid bilayers. The loss of signal using the waveguide assay for deacylated LAM, as well as atomic force microscopy (AFM) images that show no change in height upon addition of deacylated LAM support this hypothesis. Mass spectrometry of chemically deacylated LAM indicates the presence of LAM-specific carbohydrate chains, which maintain antigenicity in immunoassays. Further, we have developed the first three-dimensional structural model of mannose-capped LAM that provides insights into the orientation of LAM on supported lipid bilayers. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Mukundan, Harshini] Los Alamos Natl Lab, Div Chem, MS J567, C PCS, Los Alamos, NM 87545 USA. [Swanson, Basil I.] Los Alamos Natl Lab, Div Chem, MS J515, C DO, Los Alamos, NM 87545 USA. [Goertz, Matthew] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Montano, Gabriel A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Iyer, Srinivas] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Parthasarathi, Ramakrishnan; Gnanakaran, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mukundan, H (reprint author), Los Alamos Natl Lab, Div Chem, MS J567, C PCS, POB 1663, Los Alamos, NM 87545 USA. EM Harshini@lanl.gov; basil@lanl.gov RI Parthasarathi, Ramakrishnan/C-2093-2008; OI Parthasarathi, Ramakrishnan/0000-0001-5417-5867; Schmidt, Jurgen/0000-0002-8192-9940; Gnanakaran, S/0000-0002-9368-3044 FU Department of Energy; Los Alamos National Laboratory FX The authors thank Mr. W. Kevin Grace for help with the waveguide-instrumentation. We thank Dr. Delphi Chatterjee (Colorado State University), Drs. C. Barry 3rd and L. Via (NIAID, TB Research Section), and Drs. Anu Chaudhary and Ramamurthy Sakamuri (LANL), for helpful suggestions and experimental discussions, especially concerning the chemical digestion of LAM. We thank the Colorado State University (BEI Resources, operated by the NIAID) for purified LAM and antibodies used in this study. AFM studies were performed at the Centers for Integrated Nanotechnology, in Albuquerque. The work was supported by a Department of Energy and Los Alamos National Laboratory LDRD Directed Research Award to Drs. B.T. Korber and B.I. Swanson.; The work was supported by a Department of Energy Laboratory Directed Research and Development Award to Drs. B.T. Korber and B.I. Swanson. NR 35 TC 12 Z9 12 U1 0 U2 7 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 1472-9792 J9 TUBERCULOSIS JI Tuberculosis PD JAN PY 2012 VL 92 IS 1 BP 38 EP 47 DI 10.1016/j.tube.2011.09.006 PG 10 WC Immunology; Microbiology; Respiratory System SC Immunology; Microbiology; Respiratory System GA 887UV UT WOS:000299957400005 PM 22033469 ER PT J AU Zhang, HX Feng, PX AF Zhang, H. X. Feng, P. X. TI Controlling Bandgap of Rippled Hexagonal Boron Nitride Membranes via Plasma Treatment SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE h-BN membrane; ripples; bandgap; hydrogenation; plasma; TEM ID ELECTRONIC-PROPERTIES; NANOTUBES; NANOPARTICLES; GRAPHENE; NANORIBBONS; STABILITY; SHEETS; LAYERS; BN AB Few-layer rippled hexagonal boron nitride (h-BN) membranes were processed with hydrogen plasma, which exhibit distinct and pronounced changes in its electronic properties after the plasma treatment. The bandgaps of the h-BN membrane reduced from similar to 5.6 eV at 0 s to similar to 4.25 eV at 250s, which is a signature of transition from the insulating to the semiconductive regime. It typically required 250 s of plasma treatment to reach the saturation. It illustrates that two-dimensional material with engineered electronic properties can be created by attaching other atoms or molecules. C1 [Zhang, H. X.; Feng, P. X.] Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00925 USA. [Zhang, H. X.; Feng, P. X.] Univ Puerto Rico, Dept Phys, San Juan, PR 00925 USA. [Zhang, H. X.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Feng, PX (reprint author), Univ Puerto Rico, Inst Funct Nanomat, Rio Piedras Campus,POB 23343, San Juan, PR 00925 USA. EM pfeng@upr.edu FU NSF/DMR [0706147]; IFN; National Science Foundation of China [20921004] FX This work was supported by NSF/DMR (0706147), and IFN Fellowship. We also thank the National Science Foundation of China (Grant No. 20921004). We would like to thank Mr. Oscar for assistance of TEM measurements, and Mr. Josuel for SEM measurements. NR 32 TC 18 Z9 18 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JAN PY 2012 VL 4 IS 1 BP 30 EP 33 DI 10.1021/am201435z PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 880LV UT WOS:000299409500006 PM 22201217 ER PT J AU Taylor, LC Kirchner, TB Lavrik, NV Sepaniak, MJ AF Taylor, Lisa C. Kirchner, Teresa B. Lavrik, Nickolay V. Sepaniak, Michael J. TI Surface enhanced Raman spectroscopy for microfluidic pillar arrayed separation chips SO ANALYST LA English DT Article ID SENSITIVE TRACE ANALYSIS; LIQUID-CHROMATOGRAPHY; MASS-SPECTROMETRY; SCATTERING; SERS; COLUMNS; OPTIMIZATION; MOLECULES; CHANNEL; SYSTEM AB Numerous studies have addressed the challenges of implementing miniaturized microfluidic platforms for chemical and biological separation applications. However, the integration of real time detection schemes capable of providing valuable sample information under continuous, ultra low volume flow regimes has not fully been addressed. In this report we present a chip based chromatography system comprising of a pillar array separation column followed by a reagent channel for passive mixing of a silver colloidal solution into the eluent stream to enable surface enhanced Raman spectroscopy (SERS) detection. Our design is the first integrated chip based microfluidic device to combine pressure driven separation capability with real time SERS detection. With this approach we demonstrate the ability to collect distinctive SERS spectra with or without complete resolution of chromatographic bands. Computational fluidic dynamic (CFD) simulations are used to model the diffusive mixing behaviour and velocity profiles of the two confluent streams in the microfluidic channels. We evaluate the SERS spectral band intensity and chromatographic efficiency of model analytes with respect to kinetic factors as well as signal acquisition rates. Additionally, we discuss the use of a pluronic modified silver colloidal solution as a means of eliminating contamination generally caused by nanoparticle adhesion to channel surfaces. C1 [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Taylor, Lisa C.; Kirchner, Teresa B.; Sepaniak, Michael J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Lavrik, NV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. EM lavriknv@ornl.gov; msepaniak@utk.edu RI Kirchner, Teresa/O-4771-2014; Lavrik, Nickolay/B-5268-2011 OI Kirchner, Teresa/0000-0003-3984-0624; Lavrik, Nickolay/0000-0002-9543-5634 FU Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Environmental Protection Agency; U.S. Department of Energy, National Transportation Research Center FX A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. Nickolay V. Lavrik would like to acknowledge support from Office of Basic Energy Sciences, U.S. Department of Energy. Michael J. Sepaniak would like to acknowledge contributing grants to the University of Tennessee from the U.S. Environmental Protection Agency STAR program and the U.S. Department of Energy, National Transportation Research Center. NR 61 TC 10 Z9 10 U1 8 U2 72 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 J9 ANALYST JI Analyst PY 2012 VL 137 IS 4 BP 1005 EP 1012 DI 10.1039/c2an16239c PG 8 WC Chemistry, Analytical SC Chemistry GA 881IK UT WOS:000299476300031 PM 22193421 ER PT J AU Wipfler, B Wieland, F DeCarlo, F Hornschemeyer, T AF Wipfler, B. Wieland, F. DeCarlo, F. Hoernschemeyer, T. TI Cephalic morphology of Hymenopus coronatus (Insecta: Mantodea) and its phylogenetic implications SO ARTHROPOD STRUCTURE & DEVELOPMENT LA English DT Article DE Head; morphology; phylogeny; Micro-CT; Mantodea; Dictyoptera ID WOOD-FEEDING COCKROACHES; MOLECULAR PHYLOGENY; DICTYOPTERA INSECTA; CIRCULATORY ORGANS; EVOLUTION; HEXAPODA; ORDERS; HEAD; MANTOPHASMATODEA; BLATTODEA AB External and internal head structures of the mantodean Hymenopus coronatus are examined and described in detail. The results are elaborately compared with the literature. Strong crests on the anterior tentorial arms that articulate with the subantennal suture, a parietal suture and glossae and paraglossae with anteriorly bent tips are proposed as new potential apomorphies for Mantodea while a head capsule being wider than long, enlarged compound eyes, the presence of a frontal shield or scutellum, lateral lobes in the anterior tentorial arms, the presence of a transverse and an interantennal suture and the reduction of the mentum are confirmed as apomorphies, As potential apomorphies for Dictyoptera the reduction of Musculus tentoriobuccalis lateralis (M. 49) is newly presented and a "perforate" tentorium, lacinial incisivi that are located in a galeal pouch and the presence of a postmola are confirmed. The present study shows the value of cephalic morphology for phylogenetic analysis but also points out that further studies including evolutionary key taxa are essential for resolving the evolutionary adaptations among dictyopterans. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Wipfler, B.] Univ Jena, Entomol Grp, Inst Spezielle Zool & Evolut Biol, D-07743 Jena, Germany. [Wieland, F.] Univ Hamburg, Biozentrum Grindel, Abt Entomol, D-20146 Hamburg, Germany. [DeCarlo, F.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hoernschemeyer, T.] Univ Gottingen, Abt Morphol & Systemat, Inst Zool & Anthropol, D-37073 Gottingen, Germany. RP Wipfler, B (reprint author), Univ Jena, Entomol Grp, Inst Spezielle Zool & Evolut Biol, Erbertstr 1, D-07743 Jena, Germany. EM bwipfle@gwdg.de; fwielan@googlemail.com; decarlo@aps.anl.gov; thoerns@gwdg.de RI Wipfler, Benjamin/M-2926-2015; OI Hornschemeyer, Thomas/0000-0002-4924-5389 FU DFG [Wi 599/12-1, Wi 599/12-2, HO 2306/4-1]; Lindemann-Stiftung of the University of Gottingen; [GUP-5763] FX Many thanks to R.G. Beutel, Jena, Germany for comments and discussions on the manuscript. F. Wieland was supported by a DFG grant (Wi 599/12-1 & 2). T. Hornschemeyer and F. Wieland want to thank R. Willmann, Gottingen, Germany for the general support of their work. Beamtime at the APS was granted to T. Hornschemeyer under proposal no. GUP-5763. The trip of T. Hornschemeyer and B. Wipfler to Argonne was financially supported by the Lindemann-Stiftung of the University of Gottingen and by DFG HO 2306/4-1. F. Wieland would like to thank Tobias Schulze, Germany for providing specimens. NR 86 TC 17 Z9 18 U1 1 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1467-8039 J9 ARTHROPOD STRUCT DEV JI Arthropod Struct. Dev. PD JAN PY 2012 VL 41 IS 1 BP 87 EP 100 DI 10.1016/j.asd.2011.06.005 PG 14 WC Entomology SC Entomology GA 886KY UT WOS:000299854500010 PM 22075128 ER PT J AU Veiseh, M Breadner, D Ma, JN Akentieva, N Savani, RC Harrison, R Mikilus, D Collis, L Gustafson, S Lee, TY Koropatnick, J Luyt, LG Bissell, MJ Turley, EA AF Veiseh, Mandana Breadner, Daniel Ma, Jenny Akentieva, Natalia Savani, Rashmin C. Harrison, Rene Mikilus, David Collis, Lisa Gustafson, Stefan Lee, Ting-Yim Koropatnick, James Luyt, Leonard G. Bissell, Mina J. Turley, Eva A. TI Imaging of Homeostatic, Neoplastic, and Injured Tissues by HA-Based Probes SO BIOMACROMOLECULES LA English DT Article ID MOLECULAR-WEIGHT HYALURONAN; SMOOTH-MUSCLE-CELLS; IN-STENT RESTENOSIS; MRI CONTRAST AGENTS; CANCER-CELLS; SIGNALING PATHWAYS; VASCULAR-DISEASE; RECEPTORS CD44; IMMUNE-SYSTEM; WOUND REPAIR AB An increase in hyaluronan (HA) synthesis, cellular uptake, and metabolism occurs during the remodeling of tissue microenvironments following injury and during disease processes such as cancer. We hypothesized that multimodality HA-based probes selectively target and detectably accumulate at sites of high HA metabolism, thus providing a flexible imaging strategy for monitoring disease and repair processes. Kinetic analyses confirmed favorable available serum levels of the probe following intravenous (i.v.) or subcutaneous (s.c.) injection. Nuclear (technetium-HA, Tc-99m-HA, and iodine-HA, I-125-HA), optical (fluorescent Texas Red-HA, TR-HA), and magnetic resonance (gadolinium-HA, Gd-HA) probes imaged liver (Tc-99m-HA), breast cancer. cells/xenografts (TR-HA, Gd-HA), and vascular injury (I-125-HA, TR-HA). Targeting of HA probes to these sites. appeared to result from selective HA receptor-dependent localization. Our results suggest that HA-based probes, which do not require, polysaccharide backbone modification to achieve favorable half-life and distribution, can detect elevated HA metabolism in homeostatic, injured, and diseased tissues. C1 [Ma, Jenny; Akentieva, Natalia; Koropatnick, James; Luyt, Leonard G.; Turley, Eva A.] Univ Western Ontario, Lawson Hlth Res Inst, London, ON, Canada. [Ma, Jenny; Akentieva, Natalia; Koropatnick, James; Luyt, Leonard G.; Turley, Eva A.] Univ Western Ontario, London Reg Canc Program, London Hlth Sci Ctr, London, ON, Canada. [Veiseh, Mandana; Bissell, Mina J.] Lawrence Berkeley Natl Labs, Div Life Sci, Berkeley, CA USA. [Ma, Jenny; Akentieva, Natalia; Koropatnick, James; Luyt, Leonard G.; Turley, Eva A.] Univ Western Ontario, Dept Oncol, London, ON, Canada. [Ma, Jenny; Akentieva, Natalia; Turley, Eva A.] Univ Western Ontario, Dept Biochem, London, ON, Canada. [Breadner, Daniel; Luyt, Leonard G.] Univ Western Ontario, Dept Chem, London, ON, Canada. [Lee, Ting-Yim] Univ Western Ontario, Dept Med Biophys, London, ON, Canada. [Lee, Ting-Yim; Koropatnick, James; Luyt, Leonard G.] Univ Western Ontario, Dept Med Imaging Microbiol & Immunol, London, ON, Canada. Univ Western Ontario, Dept Physiol & Pharmacol, London, ON, Canada. [Koropatnick, James] Univ Western Ontario, Dept Pathol, London, ON, Canada. [Savani, Rashmin C.] Univ Texas SW Med Sch, Dept Pediat, Dallas, TX USA. [Harrison, Rene] Univ Toronto Scarborough, Dept Biol Sci, Toronto, ON, Canada. [Mikilus, David] Univ Toronto, Inst Med Sci, Dept Med Imaging, Toronto, ON M5S 1A1, Canada. [Collis, Lisa] Hosp Sick Children, Div Cardiovasc Res, Toronto, ON M5G 1X8, Canada. [Gustafson, Stefan] Uppsala Univ, Dept Med & Physiol Chem, Uppsala, Sweden. RP Turley, EA (reprint author), Univ Western Ontario, Lawson Hlth Res Inst, London, ON, Canada. EM Eva.Turley@lhsc.on.ca RI Lee, Ting-Yim/M-1721-2013; akentieva, natalia/L-2041-2014; Luyt, Leonard/B-3543-2015 OI Luyt, Leonard/0000-0002-0941-4731 FU DOD-BCRP IDEA [BC044087]; U.S. Department of Energy, Office of Biological and Environmental Research; Low Dose Radiation Program [DE-AC02-05CH1123]; National Cancer Institute [R37CA064786, U54CA126552, R01CA057621, U54CA112970, U01CA143233, U54CA143836]; U.S. Department of Defense [W81XWH0810736]; Hyal Pharma Corp. (Mississauga, ON, Canada); National Institute of Health [HL075930, HL62472, HL62868]; Canadian Institutes of Health Research [MOP82720]; Ruth L. Kirschstein National Research Service; National Cancer Institute of National Institute of Health [FCA132491A] FX This work was supported by a DOD-BCRP IDEA award to M.J.B. and E.A.T. (BC044087); grants from the U.S. Department of Energy, Office of Biological and Environmental Research and Low Dose Radiation Program (contract no. DE-AC02-05CH1123); by National Cancer Institute (awards R37CA064786, U54CA126552, R01CA057621, U54CA112970, U01CA143233, and U54CA143836 - Bay Area Physical Sciences-Oncology Center, University of California, Berkeley, California); and by U.S. Department of Defense (W81XWH0810736) to M.J.B.; funding from Hyal Pharma Corp. (Mississauga, ON, Canada) to E.A.T. and D.M.; National Institute of Health awards (HL075930, HL62472, HL62868) to R.S., the Ontario Institute for Cancer Research) to L.G.L., E.A.T., and T.-Y.L., and the Canadian Institutes of Health Research (MOP82720) to J.K.; and a Ruth L. Kirschstein National Research Service Award F32 postdoctoral fellowship from National Cancer Institute of National Institute of Health (FCA132491A) to M.V. NR 85 TC 8 Z9 8 U1 3 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD JAN PY 2012 VL 13 IS 1 BP 12 EP 22 DI 10.1021/bm201143c PG 11 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 873QE UT WOS:000298897300002 PM 22066590 ER PT J AU Wang, LJ Prozorov, T Palo, PE Liu, XP Vaknin, D Prozorov, R Mallapragada, S Nilsen-Hamilton, M AF Wang, Lijun Prozorov, Tanya Palo, Pierre E. Liu, Xunpei Vaknin, David Prozorov, Ruslan Mallapragada, Surya Nilsen-Hamilton, Marit TI Self-Assembly and Biphasic Iron-Binding Characteristics of Mms6, A Bacterial Protein That Promotes the Formation of Superparamagnetic Magnetite Nanoparticles of Uniform Size and Shape SO BIOMACROMOLECULES LA English DT Article ID MAGNETOTACTIC BACTERIA; MAGNETOSOME FORMATION; AMELOGENIN NANOSPHERES; BIOMINERALIZATION; MEMBRANE; NANOCRYSTALS; CRYSTAL; MATRIX; BETA AB Highly ordered mineralized structures created by living organisms are often hierarchical in structure with fundamental structural elements at nanometer scales. Proteins have been found responsible for forming many of these structures, but the mechanisms by which these biomineralization proteins function are generally poorly understood. To better understand its role in biomineralization, the magnetotactic bacterial protein, Mms6, which promotes the formation in vitro of superparamagnetic magnetite nanoparticles of uniform size and shape, was studied for its structure and function. Mms6 is shown to have two phases of iron binding: one high affinity and stoichiometric and the other low affinity, high capacity, and cooperative with respect to iron. The protein is amphipathic with a hydrophobic N-terminal domain and hydrophilic C-terminal domain. It self-assembles to form a micelle, with most particles consisting of 20-40 monomers, with the hydrophilic C-termini exposed on the outside. Studies of proteins with mutated C-terminal domains show that the C-terminal domain contributes to the stability of this multisubunit particle and binds iron by a mechanism that is sensitive to the arrangement of carboxyl/hydroxyl groups in this domain. C1 [Wang, Lijun; Prozorov, Tanya; Palo, Pierre E.; Liu, Xunpei; Vaknin, David; Prozorov, Ruslan; Mallapragada, Surya; Nilsen-Hamilton, Marit] US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, Lijun; Nilsen-Hamilton, Marit] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. [Prozorov, Tanya; Liu, Xunpei; Mallapragada, Surya] Iowa State Univ, Dept Biol & Chem Engn, Ames, IA 50011 USA. [Prozorov, Ruslan] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Nilsen-Hamilton, M (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM marit@iastate.edu RI Prozorov, Ruslan/A-2487-2008; Mallapragada, Surya/F-9375-2012; Vaknin, David/B-3302-2009 OI Prozorov, Ruslan/0000-0002-8088-6096; Vaknin, David/0000-0002-0899-9248 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. We thank Lee Bendickson for helping to identify the appropriate Mms6 mutant sequences and designing the cloning strategy for m2Mms6 and m3Mms6. NR 33 TC 39 Z9 40 U1 1 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD JAN PY 2012 VL 13 IS 1 BP 98 EP 105 DI 10.1021/bm201278u PG 8 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 873QE UT WOS:000298897300011 PM 22112204 ER PT J AU Sawada, D Nishiyama, Y Langan, P Forsyth, VT Kimura, S Wada, M AF Sawada, Daisuke Nishiyama, Yoshiharu Langan, Paul Forsyth, V. Trevor Kimura, Satoshi Wada, Masahisa TI Direct Determination of the Hydrogen Bonding Arrangement in Anhydrous beta-Chitin by Neutron Fiber Diffraction SO BIOMACROMOLECULES LA English DT Article ID SYNCHROTRON X-RAY; CRYSTAL-STRUCTURE; CELLULOSE-II; RESOLUTION; SYSTEM AB The hydrogen bonding arrangement in anhydrous beta-chitin, a homopolymer of N-acetylglucosamine, was directly determined by neutron fiber diffraction. Data were collected from a sample prepared from the bathophilous tubeworm Lamellibrachia satsuma in which all labile hydrogen atoms had been replaced by deuterium. Initial positions of deuterium atoms on hydroxyl and acetarnide groups were directly located in Fourier maps synthesized using phases calculated from the Xray structure and amplitudes measured from the neutron data. The hydrogen bond arrangement in the refined structure is in general it agreement with predictions based on the X-ray structure: O3 donates a hydrogen bond to the O5 ring oxygen atom of a neighboring residue in the same chain; N2 and O6 donate hydrogen bonds to the same carbonyl oxygen O7 of an adjacent chain. The intramolecular O3 ... O5 hydrogen bond has the most energetically, favorable geometry with a hydrogen to acceptor distance of 1.77 angstrom and a hydrogen bond angle of 171 degrees. C1 [Nishiyama, Yoshiharu] Ctr Rech Macromol Vegetales CERMAV CNRS, F-38041 Grenoble 9, France. [Sawada, Daisuke; Kimura, Satoshi; Wada, Masahisa] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biomat & Life Sci, Bunkyo Ku, Tokyo, Japan. [Langan, Paul] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37830 USA. [Forsyth, V. Trevor] Inst Laue Langevin, F-38042 Grenoble, France. [Forsyth, V. Trevor] Univ Keele, EPSAM ISTM, Keele ST5 5BG, Staffs, England. [Kimura, Satoshi; Wada, Masahisa] Kyung Hee Univ, Coll Life Sci, Dept Plant & Environm New Resources, Yongin 446701, Gyeonggi Do, South Korea. RP Nishiyama, Y (reprint author), Ctr Rech Macromol Vegetales CERMAV CNRS, BP 53, F-38041 Grenoble 9, France. EM yoshi@cermav.cnrs.fr; awadam@mail.ecc.u-tokyo.ac.jp RI Forsyth, V. Trevor/A-9129-2010; Nishiyama, Yoshiharu/A-3492-2012; Langan, Paul/N-5237-2015 OI Forsyth, V. Trevor/0000-0003-0380-3477; Nishiyama, Yoshiharu/0000-0003-4069-2307; Langan, Paul/0000-0002-0247-3122 FU Agence National de la Recherche [ANR-07-JCJC-21]; Oak Ridge National Laboratory FX Authors thank the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) for collecting samples of L. satsuma using a remotely operated vehicle, Hyper-Dolphin. Authors thank the Japan Synchrotron Research Institute (JASRI) for the provision of beam time at BL38B1 in SPring-8. Authors thank the Institute Laue Langevin (ILL) for the provision of beam time at D19. Part of the study was financed by the Agence National de la Recherche (ANR-07-JCJC-21). P.L. was supported by a Program Development grant from Oak Ridge National Laboratory. NR 19 TC 15 Z9 15 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD JAN PY 2012 VL 13 IS 1 BP 288 EP 291 DI 10.1021/bm201512t PG 4 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 873QE UT WOS:000298897300034 PM 22145696 ER PT J AU Kumar, G Agarwal, R Swaminathan, S AF Kumar, Gyanendra Agarwal, Rakhi Swaminathan, Subramanyam TI Discovery of a fluorene class of compounds as inhibitors of botulinum neurotoxin serotype E by virtual screening SO CHEMICAL COMMUNICATIONS LA English DT Article ID NEUROTRANSMITTER RELEASE; NERVE-TERMINALS; MOTOR NERVES; TETANUS; BINDING; IDENTIFICATION; CLEAVAGE; REVEALS; SNAP-25 AB Botulinum neurotoxins are one of the most poisonous biological substances known to humans and present a potential bioterrorism threat. There are no therapeutic interventions developed so far. Here, we report the first small molecule non-peptide inhibitor for botulinum neurotoxin serotype E discovered by structure-based virtual screening and propose a mechanism for its inhibitory activity. C1 [Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov RI Kumar, Gyanendra/B-1751-2009 OI Kumar, Gyanendra/0000-0001-7593-0737 NR 23 TC 9 Z9 9 U1 0 U2 5 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PY 2012 VL 48 IS 18 BP 2412 EP 2414 DI 10.1039/c2cc17158a PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 884XA UT WOS:000299741000011 PM 22274537 ER PT J AU Warren, SC Thimsen, E AF Warren, Scott C. Thimsen, Elijah TI Plasmonic solar water splitting SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID METAL NANOPARTICLES; CONVERSION EFFICIENCY; TIO2 FILMS; THIN-FILM; SEMICONDUCTOR ELECTRODES; OPTICAL-ABSORPTION; ENERGY-CONVERSION; SURFACE-PLASMONS; CELLS; GOLD AB The study of the optoelectronic effects of plasmonic metal nanoparticles on semiconductors has led to compelling evidence for plasmon-enhanced water splitting. We review the relevant physics, device geometries, and research progress in this area. We focus on localized surface plasmons and their effects on semiconductors, particularly in terms of energy transfer, scattering, and hot electron transfer. C1 [Warren, Scott C.; Thimsen, Elijah] Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Lausanne, Switzerland. [Warren, Scott C.] Northwestern Univ, Nonequilibrium Energy Res Ctr, Evanston, IL 60208 USA. [Thimsen, Elijah] Argonne Natl Lab, Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Warren, SC (reprint author), Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Lausanne, Switzerland. EM s-warren@northwestern.edu; EThimsen@anl.gov RI Warren, Scott/B-8749-2013; Wei, Zhanhua/D-7544-2013; OI Wei, Zhanhua/0000-0003-2687-0293; Warren, Scott/0000-0002-2883-0204 NR 74 TC 340 Z9 342 U1 37 U2 388 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JAN PY 2012 VL 5 IS 1 BP 5133 EP 5146 DI 10.1039/c1ee02875h PG 14 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 875PX UT WOS:000299046100003 ER PT J AU Kuttiyiel, KA Sasaki, K Choi, Y Su, D Liu, P Adzic, RR AF Kuttiyiel, Kurian A. Sasaki, Kotaro Choi, YongMan Su, Dong Liu, Ping Adzic, Radoslav R. TI Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CATALYTIC-ACTIVITY; ALLOY CATALYSTS; O-2 REDUCTION; FUEL-CELLS; STABILITY; NANOPARTICLES; ADSORPTION; ELECTRODE; SURFACES AB We synthesized a low-Pt content electrocatalyst consisting of a Pt monolayer placed on carbon-supported thermally treated IrNi core-shell structured nanoparticles using galvanic displacement of a Cu monolayer deposited at underpotentials. The Pt mass activity of the PtML/IrNi/C electrocatalyst obtained in a scale-up synthesis is approximately 3 times higher than that of the commercial Pt/C electrocatalyst. The electronic and geometrical effects of the IrNi substrate on the Pt monolayer result in its higher catalytic activity than that of Pt nanoparticles. The structure and composition of the coreshell nanoparticles were verified using transmission electron microscopy and in situ X-ray absorption spectroscopy, while a potential cycling test was employed to confirm the stability of the electrocatalyst. Our experimental results, supported by the density functional calculations using a sphere-like model, demonstrate an effective way of using Pt that can resolve key problems of cathodic oxygen reduction hampering fuel cell commercialization. C1 [Kuttiyiel, Kurian A.; Sasaki, Kotaro; Choi, YongMan; Liu, Ping; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Kuttiyiel, KA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM adzic@bnl.gov RI Su, Dong/A-8233-2013; Choi, YongMan/N-3559-2014 OI Su, Dong/0000-0002-1921-6683; Choi, YongMan/0000-0003-4276-1599 FU U.S. Department of Energy, Divisions of Chemical and Material Sciences [DE-AC02-98CH10886]; DOE BES [DE-FG02-03ER15476]; Synchrotron Catalysis Consortium, U.S. Department of Energy [DE-FG02-05ER15688] FX This work is supported by U.S. Department of Energy, Divisions of Chemical and Material Sciences under the Contract No. DE-AC02-98CH10886. AIF acknowledges support by DOE BES Grant DE-FG02-03ER15476. Beamlines X19A at the NSLS are supported in part by the Synchrotron Catalysis Consortium, U.S. Department of Energy Grant No DE-FG02-05ER15688. We thank the National Energy Research Scientific Computing (NERSC) Center, BNL's Center for Functional Nanomaterials (CFN), and Prof. M. C. Lin for CPU time. NR 32 TC 90 Z9 90 U1 11 U2 118 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JAN PY 2012 VL 5 IS 1 BP 5297 EP 5304 DI 10.1039/c1ee02067f PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 875PX UT WOS:000299046100020 ER PT J AU Jung, JW Jang, J Santamarina, JC Tsouris, C Phelps, TJ Rawn, CJ AF Jung, J. W. Jang, J. Santamarina, J. C. Tsouris, C. Phelps, T. J. Rawn, C. J. TI Gas Production from Hydrate-Bearing Sediments: The Role of Fine Particles SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies CY DEC 09-11, 2011 CL Wuhan, PEOPLES R CHINA ID METHANE HYDRATE; DISSOCIATION; SOIL AB Even a small fraction of fine particles can have a significant effect on gas production from hydrate-bearing sediments and sediment stability. Experiments were conducted to investigate the role of fine particles on gas production using a soil chamber that allows for the application of an effective stress to the sediment. This chamber was instrumented to monitor shear-wave velocity, temperature, pressure, and volume change during CO2 hydrate formation and gas production. The instrumented chamber was placed inside the Oak Ridge National Laboratory Seafloor Process Simulator (SPS), which was used to control the fluid pressure and temperature. Experiments were conducted with different sediment types and pressure-temperature histories. Fines migrated within the sediment in the direction of fluid flow. A vuggy structure formed in the sand; these small cavities or vuggs were precursors to the development of gas-driven fractures during depressurization under a constant effective stress boundary condition. We define the critical fines fraction as the clay-to-sand mass ratio when clays fill the pore space in the sand. Fines migration, clogging, vugs, and gas-driven fracture formation developed even when the fines content was significantly lower than the critical fines fraction. These results show the importance of fines in gas production from hydrate-bearing sediments, even when the fines content is relatively low. C1 [Jung, J. W.; Santamarina, J. C.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Jang, J.] Wayne State Univ, Dept Civil & Environm Engn, Detroit, MI 48202 USA. [Tsouris, C.; Phelps, T. J.; Rawn, C. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Jung, JW (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM kocee76@hotmail.com RI Tsouris, Costas/C-2544-2016; OI Tsouris, Costas/0000-0002-0522-1027; Jang, Jaewon/0000-0002-9749-4072 FU U.S. Department of Energy [DE-AC05-00OR22725]; Goizueta Foundation; U.S. DOE, Office of Fossil Energy under FWP [FEAB111] FX Support for this research was provided by the U.S. Department of Energy through The National Methane Hydrate R&D Program. Additional funding was provided by the Goizueta Foundation. We are grateful to Connor Barrett for editing the manuscript and J. Alford for helping during the experiments. The Oak Ridge National Laboratory Methane Hydrates project is sponsored by the U.S. DOE, Office of Fossil Energy under FWP FEAB111. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 35 TC 8 Z9 8 U1 2 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2012 VL 26 IS 1 BP 480 EP 487 DI 10.1021/ef101651b PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 882SE UT WOS:000299583400050 ER PT J AU Walker, LS Miller, JE Hilmas, GE Evans, LR Corral, EL AF Walker, Luke S. Miller, James E. Hilmas, Greg E. Evans, Lindsey R. Corral, Erica L. TI Coextrusion of Zirconia-Iron Oxide Honeycomb Substrates for Solar-Based Thermochemical Generation of Carbon Monoxide for Renewable Fuels SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies CY DEC 09-11, 2011 CL Wuhan, PEOPLES R CHINA ID HYDROGEN-PRODUCTION; WATER; CYCLES; ELECTROLYSIS; PARTICLES; REACTOR; CELLS AB Ceramic honeycombs based on homogeneous composites of zirconia and iron oxide are formed using polymer-based coextrusion for testing in thermochemical reactors to generate CO for renewable fuels. The honeycomb substrates possess controlled surface areas and are processed using zirconia with 3 and 8 mol % yttria additions to investigate the influence of surface area and oxygen conductivity of the substrate on the CO generation properties. CO generation was tested using a gas chromatography mass spectrometer and a laboratory scale thermochemical reactor capable of precisely controlling temperature and gas conditions. Results showed that reaction temperature and reactant gas flow rate effect CO generation. The yttria content of the zirconia support phase was also found to have a significant impact on the long-term CO generation, improving iron oxide conversion from 41 to 58%. Yttria content did not markedly impact the short-term reaction properties. Increasing the surface area of the substrates, from 2.6 up to 8.5 cm(2), did not result in improvements in CO generation within the resolution of the test equipment. The substrates reacted by two distinct mechanisms, an initial, spontaneous surface reaction that changed over time to a diffusion-based mechanism utilizing reaction material from the bulk. These substrate systems exhibit the high reactivity necessary for large-scale thermochemical reactors, while being based on common materials. C1 [Walker, Luke S.; Corral, Erica L.] Univ Arizona, Dept Mat Sci & Engn, Arizona Mat Lab, Tucson, AZ 85721 USA. [Hilmas, Greg E.; Evans, Lindsey R.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Miller, James E.] Sandia Natl Labs, Inorgan Mat & Ceram Proc Dept, Albuquerque, NM 87123 USA. RP Corral, EL (reprint author), Univ Arizona, Dept Mat Sci & Engn, Arizona Mat Lab, Tucson, AZ 85721 USA. EM elcorral@email.arizona.edu RI Miller, James/C-1128-2011 OI Miller, James/0000-0001-6811-6948 FU Sandia National Laboratories; Laboratory Directed Research and Development (LDRD); Sandia Corporation; National Laboratories under its U.S. Department of Energy [DE-AC04-94AL85000]; Science Foundation [OER-11-CON-GS-45] FX This research was supported by the Sandia National Laboratories Graduate Research Program, which is funded by Laboratory Directed Research and Development (LDRD) and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000. L.S. Walker is also supported by a Science Foundation Arizona Graduate Research Fellowship under contract number OER-11-CON-GS-45. NR 37 TC 5 Z9 5 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2012 VL 26 IS 1 BP 712 EP 721 DI 10.1021/ef201346g PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 882SE UT WOS:000299583400073 ER PT J AU Fleming, GR Schlau-Cohen, GS Amarnath, K Zaks, J AF Fleming, Graham R. Schlau-Cohen, Gabriela S. Amarnath, Kapil Zaks, Julia TI Design principles of photosynthetic light-harvesting SO FARADAY DISCUSSIONS LA English DT Article ID EXCITATION-ENERGY TRANSFER; PHOTOSYSTEM-II; SOLAR-ENERGY; QUANTUM COHERENCE; CRYSTAL-STRUCTURE; REACTION CENTERS; CHLOROPHYLL FLUORESCENCE; SPECTROSCOPIC PROPERTIES; ANGSTROM RESOLUTION; CATION FORMATION AB Photosynthetic organisms are capable of harvesting solar energy with near unity quantum efficiency. Even more impressively, this efficiency can be regulated in response to the demands of photosynthetic reactions and the fluctuating light-levels of natural environments. We discuss the distinctive design principles through which photosynthetic light-harvesting functions. These emergent properties of photosynthesis appear both within individual pigment-protein complexes and in how these complexes integrate to produce a functional, regulated apparatus that drives downstream photochemistry. One important property is how the strong interactions and resultant quantum coherence, produced by the dense packing of photosynthetic pigments, provide a tool to optimize for ultrafast, directed energy transfer. We also describe how excess energy is quenched to prevent photodamage under high-light conditions, which we investigate through theory and experiment. We conclude with comments on the potential of using these features to improve solar energy devices. C1 [Fleming, Graham R.; Schlau-Cohen, Gabriela S.; Amarnath, Kapil] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Fleming, Graham R.; Schlau-Cohen, Gabriela S.; Amarnath, Kapil; Zaks, Julia] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys Biosci, Berkeley, CA 94720 USA. [Zaks, Julia] Univ Calif Berkeley, Grad Program Appl Sci & Technol, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov FU Division of Chemical Sciences, Office of Basic Energy Sciences of the Department of Energy [DE-AC03-76SF000098]; Helios Solar Energy Research Center; Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy [DE-AC02-05CH1123]; AAUW; UC Berkeley; NSF FX We would like to thank Professor Krishna K. Niyogi, Thuy B. Truong, and Matthew Brooks for helpful discussions, use of their lab, and their gift of mutants. We would also like to thank Professor Roberto Bassi and Dr Matteo Ballottari for providing isolated light harvesting complexes. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences of the Department of Energy through Grant DE-AC03-76SF000098 and by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy under Contract No. DE-AC02-05CH1123. G. S. S.-C. acknowledges a AAUW American fellowship, J.Z. a Chancellor's Fellowship from UC Berkeley, and K. A. an NSF Graduate Research Fellowship. NR 76 TC 48 Z9 48 U1 3 U2 50 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-6640 J9 FARADAY DISCUSS JI Faraday Discuss. PY 2012 VL 155 BP 27 EP 41 DI 10.1039/c1fd00078k PG 15 WC Chemistry, Physical SC Chemistry GA 885QD UT WOS:000299793100002 PM 22470965 ER PT J AU Cohen, BW Polyansky, DE Achord, P Cabelli, D Muckerman, JT Tanaka, K Thummel, RP Zong, RF Fujita, E AF Cohen, Brian W. Polyansky, Dmitry E. Achord, Patrick Cabelli, Diane Muckerman, James T. Tanaka, Koji Thummel, Randolph P. Zong, Ruifa Fujita, Etsuko TI Steric effect for proton, hydrogen-atom, and hydride transfer reactions with geometric isomers of NADH-model ruthenium complexes SO FARADAY DISCUSSIONS LA English DT Article ID EFFECTIVE CORE POTENTIALS; COUPLED ELECTRON-TRANSFER; MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; AQUEOUS-SOLUTION; CARBENIUM IONS; 3RD-ROW ATOMS; BASIS-SETS; ORGANIC-MOLECULES; CATION RADICALS AB Two isomers, [Ru(1)](2+) (Ru = Ru(bpy)(2), bpy = 2,2'-bipyridine, 1 = 2-(pyrid-2'-yl)-1-azaacridine) and [Ru(2)](2+) (2 = 3-(pyrid-2'-yl)-4-azaacridine), are bio-inspired model compounds containing the nicotinamide functionality and can serve as precursors for the photogeneration of C-H hydrides for studying reactions pertinent to the photochemical reduction of metal-C-1 complexes and/or carbon dioxide. While it has been shown that the structural differences between the azaacridine ligands of [Ru(1)](2+) and [Ru(2)](2+) have a significant effect on the mechanism of formation of the hydride donors, [Ru(1HH)](2+) and [Ru(2HH)](2+), in aqueous solution, we describe the steric implications for proton, net-hydrogen-atom and net-hydride transfer reactions in this work. Protonation of [Ru(2(center dot-))](+) in aprotic and even protic media is slow compared to that of [Ru(1(center dot))](+). The net hydrogen-atom transfer between *[Ru(1)](2+) and hydroquinone (H(2)Q) proceeds by one-step EPT, rather than stepwise electron-proton transfer. Such a reaction was not observed for *[Ru(2)](2+) because the non-coordinated N atom is not easily available for an interaction with H(2)Q. Finally, the rate of the net hydride ion transfer from [Ru(1HH)](2+) to [Ph3C](+) is significantly slower than that of [Ru (2HH)](2+) owing to steric congestion at the donor site. C1 [Cohen, Brian W.; Polyansky, Dmitry E.; Achord, Patrick; Cabelli, Diane; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Tanaka, Koji] Inst Mol Sci, Okazaki, Aichi 4448787, Japan. [Thummel, Randolph P.; Zong, Ruifa] Univ Houston, Dept Chem, Houston, TX 77204 USA. RP Polyansky, DE (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM dmitriyp@bnl.gov; fujita@bnl.gov RI Muckerman, James/D-8752-2013; Fujita, Etsuko/D-8814-2013; Polyansky, Dmitry/C-1993-2009 OI Polyansky, Dmitry/0000-0002-0824-2296 FU U.S. Department of Energy [DE-FG02-07ER15888]; Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences; U.S Department of Energy under the BES Hydrogen Fuel Initiative; [DE-AC02-98CH10886] FX We thank Drs Norman Sutin and Carol Creutz for valuable discussions. The work at Brookhaven National Laboratory (BNL) is funded under contract DE-AC02-98CH10886 and the work at Houston is funded under contract DE-FG02-07ER15888 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences. The BNL authors also thank the U.S Department of Energy for funding under the BES Hydrogen Fuel Initiative. RZ and RPT also thank the Robert A. Welch Foundation (E-621). Calculations were carried out in part at the U.S. DOE National Energy Research Scientific Computing Center (NERSC). NR 84 TC 6 Z9 6 U1 1 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-6640 J9 FARADAY DISCUSS JI Faraday Discuss. PY 2012 VL 155 BP 129 EP 144 DI 10.1039/c1fd00094b PG 16 WC Chemistry, Physical SC Chemistry GA 885QD UT WOS:000299793100009 PM 22470971 ER PT J AU Dayal, S Kopidakis, N Rumbles, G AF Dayal, Smita Kopidakis, Nikos Rumbles, Garry TI Photoinduced electron transfer in composites of conjugated polymers and dendrimers with branched colloidal nanoparticles SO FARADAY DISCUSSIONS LA English DT Article ID CHARGE SEPARATION EFFICIENCY; CDSE QUANTUM DOTS; SOLAR-CELLS; PHOTOVOLTAIC DEVICES; BULK HETEROJUNCTION; MORPHOLOGY; PHOTOCONDUCTIVITY; PERFORMANCE; DYNAMICS; BILAYERS AB Charge generation and separation dynamics in donor: acceptor systems based on composites of branched CdSe nanoparticles with a phenyl-cored thiophene-containing dendrimer (4G1-3S), or a low-bandgap conjugated polymer (PCPDTBT) are reported upon exclusive excitation of the donor or the acceptor. Time-resolved microwave conductivity is used to study the dynamics of either transfer of holes from the nanoparticle to dendrimer, or conversely the transfer of electrons from the polymer to the nanoparticle. Higher photoconductance signals and longer decay-times are correlated with device efficiencies, where composites with higher nanoparticle concentration exhibit higher solar photovoltaic power conversion efficiencies and an increase in external quantum efficiencies. This work evaluates the contribution of both components to device performance, but specifically the role of photoexcited nanoparticles. C1 [Dayal, Smita; Kopidakis, Nikos; Rumbles, Garry] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Rumbles, Garry] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Rumbles, G (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM garry.rumbles@nrel.gov RI Rumbles, Garry/A-3045-2014; Kopidakis, Nikos/N-4777-2015; OI Rumbles, Garry/0000-0003-0776-1462 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U. S. Department of Energy [DE-AC36-08GO28308] FX This work was funded by the Solar Photochemistry Program of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U. S. Department of Energy through Grant DE-AC36-08GO28308 to NREL. The authors would like to thank Benjamin Rupert for providing the dendrimer sample, and Konarka for the polymer sample. The authors would also like to thank Andrew Ferguson and Obadiah Reid for helpful discussions. NR 33 TC 13 Z9 13 U1 2 U2 21 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-6640 J9 FARADAY DISCUSS JI Faraday Discuss. PY 2012 VL 155 BP 323 EP 337 DI 10.1039/c1fd00081k PG 15 WC Chemistry, Physical SC Chemistry GA 885QD UT WOS:000299793100023 PM 22470983 ER PT J AU Moses, EI AF Moses, E. I. TI THE NATIONAL IGNITION FACILITY: STATUS AND PROGRESS TOWARDS FUSION IGNITION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA AB The National Ignition Facility (NIF), the world's largest and most energetic laser system, built for studying inertial confinement fusion (ICF) and high-energy-density (HED) science, is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of the early experimental campaign on NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn with gain. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC) effort to achieve fusion ignition. NIC is a multi-institution partnership between LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory, and the University of Rochester Laboratory for Energetics (LLE). NIC also includes a variety of collaborators from universities, national laboratories as well as international collaborators. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition in the laboratory and developing a predictable fusion experimental platform. The results from experiments completed so far are encouraging and show promise for the achievement of ignition. Capsule implosion experiments at energies up to 1.3 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will focus the world's attention on the possibility of IFE as a carbon-free, practically limitless energy option. This paper describes the unprecedented experimental capabilities of NIF and the results achieved so far on the path toward ignition, for stockpile stewardship, and the beginning of frontier science experiments. The paper will also address plans to transition NIF to a national user facility, providing access for researchers in the international high energy density science field. C1 Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. RP Moses, EI (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94450 USA. EM moses1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-CONF-484536] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-CONF-484536. NR 12 TC 4 Z9 4 U1 2 U2 24 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 3 EP 8 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100002 ER PT J AU Meier, WR AF Meier, Wayne R. TI FIFTEENTH INTERNATIONAL CONFERENCE ON EMERGING NUCLEAR ENERGY SYSTEMS PREFACE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Meier, WR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP VII EP VII PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100001 ER PT J AU Gerhardt, SP Mastrovito, D Bell, MG Cropper, M Gates, DA Kolemen, E Lawson, J Marsala, B Menard, JE Mueller, D Stevenson, T AF Gerhardt, S. P. Mastrovito, D. Bell, M. G. Cropper, M. Gates, D. A. Kolemen, E. Lawson, J. Marsala, B. Menard, J. E. Mueller, D. Stevenson, T. TI IMPLEMENTATION OF beta(N) CONTROL IN THE NATIONAL SPHERICAL TORUS EXPERIMENT SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE NSTX; spherical torus; neutral beam injection ID RESISTIVE WALL MODE; TIME EQUILIBRIUM RECONSTRUCTION; PLASMA CONTROL-SYSTEM; FEEDBACK-CONTROL; TOKAMAK PLASMAS; STABILITY LIMITS; EXPERIMENT NSTX; OPERATION; PHYSICS; STABILIZATION AB We have designed and constructed a system for control of the normalized beta (beta(N)) in the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion, Vol. 40, p. 557 (2000)]. A proportional-integral-derivative operator is applied to the difference between the present value of beta(N) (from real-time equilibrium reconstruction) and a time-dependent request in order to calculate the required injected power. This injected power request is then turned into modulations of the neutral beams. The details of this algorithm are described, including the techniques used to develop the appropriate control gains. Example uses of the system are shown. C1 [Gerhardt, S. P.; Mastrovito, D.; Bell, M. G.; Cropper, M.; Gates, D. A.; Kolemen, E.; Lawson, J.; Marsala, B.; Menard, J. E.; Mueller, D.; Stevenson, T.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM sgerhard@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 FU U.S. Department of Energy [DE-AC02-09CH11466] FX The authors thank L. Grisham and S. Kaye for helpful discussion and the neutral beam and plasma operations groups for their technical support in the implementation of this system. This research was funded by the U.S. Department of Energy under contract DE-AC02-09CH11466. NR 45 TC 7 Z9 7 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1 BP 11 EP 18 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 882UH UT WOS:000299588900002 ER PT J AU Nygren, RE AF Nygren, R. E. TI SCIENCE IN FUSION TECHNOLOGY SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA ID 1ST WALL; BLANKET; DIVERTOR; DESIGN; FLOW; MHD; TBM AB This paper presents examples from work in developing the technology needed for fusion. The purpose is to illustrate how our research ranges from very basic investigations to more directed applications. The paper draws primarily from work by others on the critical goals of extracting heat in a useful way from a fusion reactor and producing and handling tritium as a self-sufficient filet C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nygren, RE (reprint author), Sandia Natl Labs, MS-1129,POB 5800, Albuquerque, NM 87185 USA. EM renygre@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 0 Z9 0 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 52 EP 57 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100010 ER PT J AU Renk, TJ Provencio, PP Tanaka, TJ Blanchard, JP Martin, CJ Knowles, TR AF Renk, T. J. Provencio, P. P. Tanaka, T. J. Blanchard, J. P. Martin, C. J. Knowles, T. R. TI SURVIVABILITY OF FIRST-WALL MATERIALS IN FUSION DEVICES: AN EXPERIMENTAL STUDY OF MATERIAL EXPOSURE TO PULSED ENERGETIC IONS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE intense ion beam; inertial confinement fusion; first-wall materials ID WALL MATERIALS RESPONSE; PLANT LEVEL FLUENCES; POWER-PLANT; HEAT PULSES; TUNGSTEN; CHAMBER; IFE; COMPONENTS; BEHAVIOR; REACTOR AB The confining walls in future fusion power plants will be subjected to an intense energetic bombardment from X-rays, ions, and neutrons. This is true for both direct-drive inertial fusion energy (IFE) and magnetic fusion energy (MFE) designs. We focus in this paper on the threat spectra presented by energetic ions. X-rays are predicted to present a less significant threat indirect-drive IFE, and neutron effects cannot be readily simulated in current experimental facilities. For the experimental results presented herein, the energetic ions are generated in the Repetitive High-Energy Pulsed Power 1 (RHEPP-1) facility at Sandia National Laboratories. Depending upon whether the ion pulses are of nitrogen (previous database) or helium (this paper), the pulse width varies from 100 ns to as much as 500 ns, respectively. While this is short compared to similar to 500-mu s transient events anticipated in MFE operation, data from both IFE and MFE experiments for tungsten exposure are shown to exhibit similar fluence thresholds when thermal diffusion is taken into account by use of the heat flux parameter H = Power density x t(1/2), where t is the characteristic event time duration. Long-term exposure of tungsten to RHEPP-1 nitrogen pulses indicates that above a level of similar to 1 J.cm(-2)/pulse, polycrystalline tungsten roughens severely, the cause of which appears to be thermomechanical distress, with loosening of grains near the surface the primary result. This roughening is correlated with unacceptable mass loss. While this occurs below melting temperatures, allowing the surface to melt by raising the per-pulse fluence does not appear to be a viable approach to smoothing the surface. Oriented grain material such as ITER-specified tungsten performs significantly better than polycrystalline tungsten, but under helium exposure it appears to suffer additional surface deterioration that appears to be connected to helium pore and bubble formation at absorbed implantation levels of mid-10(15) He/cm(2). This level is below previously reported levels of concern for helium retention effects and well short of required survival duration. Experiments with three-dimensional "needle" geometries, designed to increase the effective surface area for heat absorption and reduce helium implantation in depth, show promising results that need further investigation to confirm long-term survival. C1 [Renk, T. J.; Provencio, P. P.; Tanaka, T. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Blanchard, J. P.; Martin, C. J.] Univ Wisconsin, Madison, WI USA. [Knowles, T. R.] Energy Sci Labs, San Diego, CA USA. RP Renk, TJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tjrenk@sandia.gov FU Lockheed Martin Corporation [DE-AC04-94AL85000]; Naval Research Laboratory through DOE, NNSA, Office of Defense Programs FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration (NNSA) under contract DE-AC04-94AL85000. This work was supported by Naval Research Laboratory through the High Average Power Laser Program by the DOE, NNSA, Office of Defense Programs. NR 36 TC 6 Z9 6 U1 2 U2 13 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1 BP 57 EP 80 PG 24 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 882UH UT WOS:000299588900005 ER PT J AU Molvik, AW Moir, RW Ryutov, DD Simonen, TC AF Molvik, A. W. Moir, R. W. Ryutov, D. D. Simonen, T. C. TI AXISYMMETRIC MAGNETIC MIRROR APPLICATIONS - DIVERTOR TEST STAND TO FUSION POWER PLANT SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA ID GAS-DYNAMIC TRAP; NEUTRON SOURCE; FACILITY; CONFINEMENT; PLASMA AB Axisymmetric mirrors can be MHD-stabilized by end losses. Neutral-beam-sustained operation to beta similar to 0.6, and T-e similar to 0.2 keV, with 5 ms 5 MW neutral beams on the Gas Dynamic Trap (GDT) has been demonstrated at the Budker Institute in Novosibirsk, Russia. Applications of this concept can reduce risks in the fusion program. A GDT-scale facility could test plasma-material interactions (PM!) at up to 400 MW/m(2) and 5 s pulse duration for divertor development. Extrapolation of the GDT to a Dynamic Trap Neutron Source, DTNS, provides a DT-fusion neutron flux of 2 MW/m(2) over 1 m(2), at a power-plant efficiency of Q similar to 0.07. (A DTNS enables development and testing of materials and sub-component structures, for fusion power plants, MFE or IFE. A DTNS functions regardless of whether the tested components work. These developments would reduce risks for a tokamak Fusion Nuclear Science Facility (FNSF)). Further extrapolation to 0.2 <= Q <= 10 single-cell or tandem mirror yields several fusion-fission hybrid applications. Further extension to a pure-fusion axisymmetric-tandem-mirror power plant, requires Q> 10. Tandem mirrors demand the use of different stabilization techniques that are not dependent on out-flowing plasma, a number of which have been proposed, and could be experimentally tested on the GDT C1 [Molvik, A. W.; Moir, R. W.; Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Simonen, T. C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Molvik, AW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM AWMolvik@lbl.gov FU U.S. Department of Energy; Oak Ridge Associated Universities; University of California, Berkeley; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors are grateful to Curt Bolton for valuable discussions and encouragement. Work performed under auspices of the U.S. Department of Energy, Oak Ridge Associated Universities, the University of California, Berkeley, and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 24 TC 0 Z9 0 U1 2 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 70 EP 76 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100013 ER PT J AU Myers, CE Edwards, MR Berlinger, B Brooks, A Cohen, SA AF Myers, C. E. Edwards, M. R. Berlinger, B. Brooks, A. Cohen, S. A. TI PASSIVE SUPERCONDUCTING FLUX CONSERVERS FOR ROTATING-MAGNETIC-FIELD-DRIVEN FIELD-REVERSED CONFIGURATIONS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE field-reversed configuration; rotating magnetic field; flux conserver AB The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating-magnetic-field (RMFo) current drive and plasma heating system to form and sustain high-beta plasmas. For radial confinement, an array of coaxial, internal, passive flux conserver (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3-ms pulse duration of the present experiment is limited by the skin time tau(fc), of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with tau(fc) >300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher-performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied, and a wide range of extended skin times, from 0.4 s to >10(3) s, has been achieved. The new FC rings must carry up to 2.5 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and operating temperature has also been studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced. C1 [Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Myers, CE (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM cmyers@pppl.gov FU U.S. Department of Energy [DE-AC02-76-CHO-3073] FX We thank H. Feder, B. Fisch, J. Gumbas, and T. Kornack for technical contributions. This work was supported, in part, by U.S. Department of Energy contract DE-AC02-76-CHO-3073. NR 13 TC 2 Z9 2 U1 1 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1 BP 86 EP 103 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 882UH UT WOS:000299588900007 ER PT J AU VanDevender, JP Cuneo, ME Slutz, SA Herrmann, M Vesey, RA Sinars, DB Seidel, DB Schneider, LX Mikkelson, KA Harper-Slaboszewicz, VJ Peyton, BP Sefkow, AB Matzen, MK AF VanDevender, J. P. Cuneo, M. E. Slutz, S. A. Herrmann, M. Vesey, R. A. Sinars, D. B. Seidel, D. B. Schneider, L. X. Mikkelson, K. A. Harper-Slaboszewicz, V. J. Peyton, B. P. Sefkow, A. B. Matzen, M. K. TI PLASMA POWER STATION WITH QUASI SPHERICAL DIRECT DRIVE CAPSULE FOR FUSION YIELD AND INVERSE DIODE FOR DRIVER-TARGET COUPLING SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA ID INERTIAL CONFINEMENT FUSION; RELATIVISTIC ELECTRON-BEAM; AUTOACCELERATION; ENERGY AB The Meier-Moir economic model for Pulsed Power Driven Inertial Fusion Energy shows at least two approaches for fusion energy at 7 to 8 cents/kw-hr: One with large yield at 0.1 Hz and presented by M E. Cuneo at ICENES 2011 and one with smaller yield at 3 Hz presented in this paper. Both use very efficient and low cost Linear Transformer Drivers (LTDs) for the pulsed power. We report the system configuration and end-to-end simulation for the latter option, which is called the Plasma Power Station (PPS), and report the first results on the two, least mature, enabling technologies: a magnetically driven Quasi Spherical Direct Drive (QSDD) capsule for the fusion yield and an Inverse Diode for coupling the driver to the target. In addition, we describe the issues and propose to address the issues with a prototype of the PPS on the Saturn accelerator and with experiments on a short pulse modification of the Z accelerator test the validity of simulations showing megajoule thermonuclear yield with DT on a modified Z. C1 [VanDevender, J. P.] VanDevender Entreprises, Albuquerque, NM 87109 USA. [VanDevender, J. P.; Cuneo, M. E.; Slutz, S. A.; Herrmann, M.; Vesey, R. A.; Sinars, D. B.; Seidel, D. B.; Schneider, L. X.; Mikkelson, K. A.; Harper-Slaboszewicz, V. J.; Sefkow, A. B.; Matzen, M. K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Peyton, B. P.] Ktech Corp Inc, Albuquerque, NM 87123 USA. RP VanDevender, JP (reprint author), VanDevender Entreprises, 7604 Lamplighter Ln NE, Albuquerque, NM 87109 USA. EM pace@vandevender.com FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 1 Z9 1 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 101 EP 106 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100018 ER PT J AU Gopalapillai, B Curd, W Ployhar, S Dell'Orco, G Chang, KP Li, F Somboli, F Petrov, A Gupta, D Kumar, A AF Gopalapillai, Babulal Curd, Warren Ployhar, Steve Dell'Orco, Giovanni Chang, Keun-Pack Li, Fan Somboli, Fabio Petrov, Andrei Gupta, Dinesh Kumar, Ajith TI DESIGN FEATURES OF ITER COOLING WATER SYSTEMS TO MINIMIZE ENVIRONMENTAL IMPACTS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA AB ITER is a joint international fusion facility which is being built in France to demonstrate the scientific and technological feasibility of fusion power. ITER will pave the way for the commercial exploitation of nuclear fusion to meet the ever increasing energy needs of mankind. Fusion power at ITER is generated using a Tokamak machine in which burning plasma inside the vacuum vessel at temperatures in excess of 150 million degrees C. is confined by magnetic fields. The heat energy generated from the Tokamak and the auxiliary systems is removed by the Cooling Water System (CWS). The cooling water system is designed to remove the total peak heat load of about 1100 MW to the atmosphere by circulating approximately 25,000 m(3) of water of diverse chemical specifications in multiple loops. The design of the cooling water systems considers occupational health and safety, nuclear safety, radiation protection, and environmental protection requirements. Minimizing environmental impact is a major factor in demonstrating the viability of fusion energy as a future energy source. This paper presents the features in the design of CWS for making it environmentally friendly. C1 [Gopalapillai, Babulal; Curd, Warren; Ployhar, Steve; Dell'Orco, Giovanni; Chang, Keun-Pack; Li, Fan; Somboli, Fabio] ITER Org, F-13115 St Paul Les Durance, France. [Petrov, Andrei] Oak Ridge Natl Lab, US ITER, Oak Ridge, TN 37831 USA. [Gupta, Dinesh; Kumar, Ajith] Inst Plasma Res, ITER INDIA, Gandhinagar 382428, Gujarat, India. RP Gopalapillai, B (reprint author), ITER Org, Route Vinon Verdon, F-13115 St Paul Les Durance, France. EM babulal.gopalapillai@iter.org FU ITER Organization FX This report is based on work undertaken within the framework of the ITER Project and supported by the ITER Organization and/or its Members, i.e. China, European Union, India, Japan, Korea, Russia and the United States of America. Dissemination of information contained in this paper is governed by the applicable terms of the ITER agreement. NR 13 TC 1 Z9 1 U1 0 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 113 EP 118 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100020 ER PT J AU Chapline, GF Nakae, LF Snyderman, N Verbeke, JM Wurtz, R AF Chapline, G. F. Nakae, L. F. Snyderman, N. Verbeke, J. M. Wurtz, R. TI MONITORING SPENT OR REPROCESSED NUCLEAR FUEL USING FAST NEUTRONS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA AB Over the past few years a number of experiments have been carried out at LLNL with a scintillator array that has the ability to count individual MeV neutrons and gamma-rays with nanosecond timing. It has been demonstrated that this array can be used to measure the statistical properties of the neutrons emitted in single fission chains. The multiple time scales over which these fission neutrons are correlated allow one to deduce quite a lot regarding the nature of the fissile assembly. In this paper we will describe how neutron correlations measured with a liquid scintillator array can be used to assay the amounts of fissile elements in reprocessed and spent nuclear fuels. C1 [Chapline, G. F.; Nakae, L. F.; Snyderman, N.; Verbeke, J. M.; Wurtz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Chapline, GF (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM chapline1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 3 TC 0 Z9 0 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 150 EP 154 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100026 ER PT J AU Moir, RW Martovetsky, NN Molvik, AW Ryutov, DD Simonen, TC AF Moir, R. W. Martovetsky, N. N. Molvik, A. W. Ryutov, D. D. Simonen, T. C. TI AXISYMMETRIC MAGNETIC MIRROR FUSION-FISSION HYBRID SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA ID NEUTRON SOURCE; PERFORMANCE; RADIATION; OPERATION; CERAMICS; SYSTEMS; REACTOR; FIELDS; CELL AB Early application of the simple axisymmetric mirror, requiring intermediate performance between a neutron source for materials testing Q=P-fusion/P-input similar to 0.05 and pure fusion Q>10, are the hybrid applications. The Axisymmetric Mirror has attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, as well as the typical mirror features of inherently steady-state operation, and natural divertors in the form of end tanks. This level of physics performance has the virtue of being low risk with only modest R&D needed; and its simplicity promises economy advantages. Operation at Q similar to 1 allows for relatively low electron temperatures, in the range of 3 keV, for the DT injection energy similar to 80 keV from existing positive ion neutral beams designed for steady state. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 40 m is discussed. Simple circular steady state superconducting coils are based on 15 T technology development of the ITER central solenoid. Three groups of physics issues are presented: axial heat loss, MHD stability, and microstability of sloshing ions. Burning fission reactor wastes by fissioning transuranics in the hybrid will multiply fusion's neutron energy by a factor of similar to 10 or more and diminish the Q needed to overcome the cost of recirculating power for good economics to less than 2 and for minor actinides with multiplication over 50 to Q similar to 0.2. Hybrids that obtain revenues from sale of both electricity and production of fissile fuel with fissioning blankets might need Q<2 while suppressing,fissioning might be the most economical application of fusion but will require Q>4. C1 [Moir, R. W.; Martovetsky, N. N.; Molvik, A. W.; Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Simonen, T. C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Moir, RW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ralph@ralphmoir.com; martovetskyn@ornl.gov; AWMolvik@lbl.gov; ryutov1@llnl.gov; simonen42@yahoo.com FU U.S. Department of Energy; Oak Ridge Associated Universities; University of California, Berkeley; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors are grateful to Curt Bolton for valuable discussions and encouragement. Work performed under the auspices of the U.S. Department of Energy, Oak Ridge Associated Universities, the University of California, Berkeley, and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 32 TC 2 Z9 2 U1 3 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 206 EP 215 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100035 ER PT J AU Zakharov, LE AF Zakharov, Leonid E. TI BASICS OF FUSION-FISSION RESEARCH FACILITY (FFRF) AS A FUSION NEUTRON SOURCE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA ID ITER; TOKAMAKS AB FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1 m/m, I-pl = 5 MA, B-tor=4-6 T; P-DT=50-100 MW P-fission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications. C1 Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zakharov, LE (reprint author), Princeton Univ, Princeton Plasma Phys Lab, MS-27,POB 451, Princeton, NJ 08543 USA. EM zakharov@pppl.gov FU Princeton University [DE-AC02-09CH11466] FX "Notice: This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes." NR 16 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 237 EP 242 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100040 ER PT J AU Youchison, DL Garde, JM AF Youchison, D. L. Garde, J. M. TI THERMO-MECHANICAL EVALUATION OF HIGH-TEMPERATURE REFRACTORY FOAMS USED IN THERMAL MANAGEMENT SYSTEMS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA ID FLOW AB Refractory metallic foams can increase heat transfer efficiency in gas-to-gas and liquid metal-to-gas heat exchangers by providing an extended surface area for better convection, i.e. conduction into the foam ligaments providing a 'fin-effect," and by disruption of the thermal boundary layer near the hot wall and ligaments by turbulence promotion. We present the relative contributions of the heat transfer mechanisms stated above, and show how the design of a gas regenerator or liquid metal-to-gas heat exchanger can be optimized for use in high-temperature Brayton cycle applications for nuclear power generation or hydrogen production. Our results include temperature and thermal stress distributions for several densities of Nb1Zr, Mo and W foams compared to Cu. For instance, the simulations reveal that unconnected W foam can increase the convective heat transfer coefficient by almost a factor of two compared to an open rectangular channel and a factor of three if the foam ligaments are thermally connected to the sidewalls under the same flow conditions. The effect of ligament thermal conductivity is also highlighted by comparing the performance of W foams to identical Cu foams and the use of SiC foams in thermal barrier applications. The studies indicate that thermal stresses increase with foam density, but are not clearly correlated with pore cell size. For thermal management applications, the presence of the connected foam minimizes the thermal stresses in the wall, by concentrating them in the ligaments where the temperature gradients are higher. In addition, the large number of small connected ligaments provides a modest degree of compliance for thermal expansion of the hotter walls in relation to the colder portions of the heat exchanger. These CFD studies have led to design strategies for creating compact, high-temperature, high-pressure heat exchangers that are easily fabricated and perform better than plate-type heat exchangers. C1 [Youchison, D. L.; Garde, J. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Youchison, DL (reprint author), Sandia Natl Labs, MS 1129,POB 5800, Albuquerque, NM 87185 USA. EM dlyouch@sandia.gov; jmgarde@sandia.gov OI Youchison, Dennis/0000-0002-7366-1710 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors wish to thank Brian Williams and Matt Wright of Ultramet, Inc. for supplying the foam samples and foam cores in the heat exchangers. We also gratefully acknowledge the insightful discussions provided by Shahram Sharafat of the University of California, Los Angeles regarding tomography and CFD of foam structures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 17 TC 2 Z9 2 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 322 EP 328 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100054 ER PT J AU Pawel, SJ AF Pawel, S. J. TI COMPATIBILITY ASSESSMENT OF ADVANCED STAINLESS STEELS IN SODIUM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA ID ENVIRONMENT; CARBON AB Type 316L stainless steel capsules containing commercially pure sodium and miniature tensile specimens of HT-UPS (austenitic, 14Cr-16Ni, NF-616 (ferritic/martensitic, 9Cr-2W-0.5Mo), or 316L (austenitic, 17Cr-10Ni-2Mo) stainless steel were exposed at 600 and 700 degrees C for 100 and 400 h as a screening test for compatibility. Specimen weight, tensile properties, and microstructure of HT-UPS and 316L were found to be largely immune to changes resulting from sodium exposure, but NF-616 was susceptible to substantial decarburization at 700 degrees C. Subsequently, two thermal convection loops (TCLs) constructed of 316L and loaded with commercially pure sodium and miniature tensile specimens of HT-UPS and 316L were operated for 2000 h each - one between 500 and 650 degrees C, the other between 565 and 725 degrees C at a flow, rate of about 1.5 cm/s. Under these dynamic conditions, changes in specimen appearance, weight, and tensile properties were observed to be very minor in all cases, and there was no metallographic evidence of microstructural changes, composition gradients, or mass transfer resulting from prolonged exposure in a TCL. Thus, it appears that HT-UPS and 316L stainless steels are similarly compatible with commercially pure sodium under these conditions. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Pawel, SJ (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,Bldg 4500-S, Oak Ridge, TN 37831 USA. EM pawelsj@ornl.gov FU U.S. Department of Energy, Office of Nuclear Energy FX This research was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, for the Gen IV-Sodium Fast Reactor Program, managed at ORNL by J. Busby. C. Herd, R. Lovelace, S. Malone contributed to the design and construction of the capsules and loops as did A. Willoughby, who was also instrumental in the operation of the experiments and pre- and post-test management of specimens and sodium. E. Manneschmidt performed the tensile testing experiments, and H. Longmire provided metallographic services. L. Walker and T. Lowe provided scanning electron microscopy and microprobe chemical analysis of selected specimens. J. DiStefano, J. Keiser, and J. Thomson provided helpful comments and review of the manuscript. NR 4 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 369 EP 374 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100061 ER PT J AU Cisneros, A Zweibaum, N Di Sanzo, C Cohen, J Greenspan, E Peterson, P Ludwigt, B AF Cisneros, Anselmo Zweibaum, Nicholas Di Sanzo, Christian Cohen, Jeremie Greenspan, Ehud Peterson, Per Ludwigt, Bernhard TI FEASIBILITY OF ONCE THROUGH SUBCRITICAL CORES DRIVEN BY AN ACCELERATOR SPALLATION NEUTRON SOURCE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA AB The proliferation resistance of the nuclear fuel cycle would be increased if one could eliminate the need for both uranium enrichment and spent fuel reprocessing. Heavy-water and graphite moderated critical reactors can extract energy from natural uranium but offer a very low uranium utilization (low discharge burnup). The objective of the present study is to explore the feasibility of achieving high fuel utilization without resorting to enrichment and reprocessing using spallation neutron source driven subcritical reactors. Three different high burnup once through subcritical nuclear systems are investigated: a fluoride salt cooled high temperature reactor (FHR) with pebble fuel, a helium cooled core with sphere pack fuel based on General Atomics' EM2 reactor concept, and a sodium cooled fast reactor that is loaded with fuel discharged from a high burnup Breed-and-Burn (B&B) fast reactor that is fed with depleted uranium, after removing the gaseous fission products and inserting the voided fuel rods into a new clad (without removing the old one). The pebble fuel design and fuel cycle for the FHR concept was optimized for maximum electric power multiplication using natural thorium fuelled subcritical core. The maximum attainable power multiplication was not high enough to merit future studies. The optimal discharge burnup of the fuel in the EM2 type subcritical core was found to be approximately 30% FIMA and the corresponding power multiplication was found higher than in the FHR but still not high enough for practical applications. Significantly better performance was obtained from the sodium-cooled source-driven core that is fed with metallic U-TRU-Zr fuel discharged at 20% FIMA from a critical B&B fast reactor that underwent recladding. The maximum attainable power multiplication was found to be close to 10 while fissioning an additional 20% of the loaded heavy metal. C1 [Cisneros, Anselmo; Ludwigt, Bernhard] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cohen, Jeremie] Ecole Polytech, Palaiseau, France. RP Cisneros, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 4155 Etcheverry Hall,MC 1730, Berkeley, CA 94720 USA. EM tommycisneros@berkeley.edu FU Lawrence Berkeley National Laboratory FX This work was supported by Lawrence Berkeley National Laboratory. NR 12 TC 0 Z9 0 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 431 EP 435 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100072 ER PT J AU Robertson, EP McKellar, MG Nelson, LO AF Robertson, Eric P. McKellar, Michael G. Nelson, Lee O. TI INTEGRATION OF HIGH TEMPERATURE GAS REACTORS WITH IN SITU OIL SHALE RETORTING SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Emerging Nuclear Energy Systems CY MAY 15-19, 2011 CL San Francisco, CA AB This paper evaluates the integration of a high-temperature gas-cooled reactor (HTGR) to an in situ oil shale retort operation producing 7950 m(3)/D (50,000 bbl/day). The large amount of heat required to pyrolyze the oil shale and produce oil would typically be provided by combustion of fossil fuels, but can also be delivered by an HTGR. Two cases were considered: a base case which includes no nuclear integration, and an HTGR-integrated case. The HTGR was assumed to be physically located near the oil shale operation such that heat losses during surface transport of the heating fluid were negligible. Transferring the required retort heat for all three cases to the underground oil shale was modeled by a series of closed-loop pipes. The pipes ran from the surface to the desired subsurface zone where the majority of the heat was transferred to the oil shale; the cooled fluid was then returned to the heat source at the surface for reheating. The heat source was a natural gas fired boiler for the base case and was an HTGR for the HTGR-integrated case. The fluid and heat flows through the circulation systems were modeled using Hyprotech's HYSYS.Plant (TM) process modeling software. A mass and energy balance model was developed to evaluate oil production, gas production and usage, electricity generation and usage, heat requirements, and CO2 emissions for each case. Integrating an HTGR to an in situ oil shale retort operation appeared quite feasible and had some notable advantages over the base case. The HTGR-integrated case produced the same amount of refinery-ready oil, Jour times the amount of gas, 8% of the amount of CO2, and 70% of amount of electricity as the base case evaluated with retort heat coming from combustion of fossil fuels. C1 [Robertson, Eric P.; McKellar, Michael G.; Nelson, Lee O.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Robertson, EP (reprint author), Idaho Natl Lab, POB 1625,MS 2107, Idaho Falls, ID 83415 USA. EM eric.robertson@inl.gov; michael.mckellar@inl.gov; lee.nelson@inl.gov FU Idaho National Laboratory; U.S. Department of Energy, Office of Nuclear Energy FX The authors would like to thank Rick Wood for his contributions to the content of the paper and management at Idaho National Laboratory (Phil Mills) for permission to publish this work which was supported by the Idaho National Laboratory and by the U.S. Department of Energy, Office of Nuclear Energy, Next Generation Nuclear Plant program. NR 6 TC 0 Z9 0 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN PY 2012 VL 61 IS 1T BP 452 EP 457 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 883BR UT WOS:000299608100076 ER PT J AU Gestner, B Ma, XL Anderson, DV AF Gestner, Brian Ma, Xiaoli Anderson, David V. TI Incremental Lattice Reduction: Motivation, Theory, and Practical Implementation SO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS LA English DT Article DE MIMO; lattice reduction; complexity reduction; early termination ID MIMO; PERFORMANCE; COMPLEXITY; EQUALIZERS; SYSTEMS AB For multiple-input multiple-output communication systems that employ four or more transmit and four or more receive antennas, symbol detection remains a challenge in communication systems research. Lattice-reduction-aided detectors are attractive solutions to this problem because these detectors achieve the same diversity as the maximum-likelihood detector while exhibiting lower complexity. Current applications of lattice-reduction-aided detectors involve executing a lattice reduction algorithm to completion and then utilizing this result in the subsequent symbol detection. In this article, however, we examine the possibility of partially executing the lattice reduction algorithm. We first demonstrate using a hypothetical lattice-reduction-aided detector that early termination of lattice reduction algorithms is possible in the context of MIMO detection. Encouraged by these results, we develop and introduce incremental lattice reduction, which utilizes a practical early termination condition. We then apply this idea to develop a joint symbol detection and lattice reduction algorithm that is based on the Lenstra, Lenstra, Lovasz algorithm and successive interference cancellation. An evaluation using a spatial correlation channel model demonstrates that the proposed algorithm effectively distributes the lattice reduction processing over the length of each received packet. This behavior naturally enables the relaxation of throughput and latency requirements of lattice reduction algorithm hardware realizations. C1 [Gestner, Brian; Ma, Xiaoli; Anderson, David V.] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA. RP Gestner, B (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM brian.gestner@gmail.com FU Army Research Office [W911NF-10-1-0469] FX This work is funded under the Army Research Office W911NF-10-1-0469 contract. NR 24 TC 4 Z9 5 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-1276 J9 IEEE T WIREL COMMUN JI IEEE Trans. Wirel. Commun. PD JAN PY 2012 VL 11 IS 1 BP 188 EP 198 DI 10.1109/TWC.2011.120511.102286 PG 11 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 881YI UT WOS:000299527700023 ER PT J AU Mohaghegh, SD Gruic, O Zargari, S Kalantari-Dahaghi, A Bromhal, GS AF Mohaghegh, Shahab D. Gruic, Ognjen Zargari, Saeed Kalantari-Dahaghi, Amirmasoud Bromhal, Grant S. TI Top-down, intelligent reservoir modelling of oil and gas producing shale reservoirs: case studies SO INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY LA English DT Article DE top-down modelling; TDM; shale reservoir; reservoir modelling; reservoir simulation AB Producing hydrocarbon from shale plays has attracted much attention in recent years. Advances in horizontal drilling and multi-stage hydraulic fracturing have made shale reservoirs a focal point for many operators. Our understanding of the complexities associated with the flow mechanism in shale has not kept up with our interest in shale formations. We present the application of a new reservoir modelling approach to history matching, forecasting and predicting hydrocarbon production from shale reservoirs, where instead of imposing our understanding on the reservoir model, we allow the production history, well log, and hydraulic fracturing data to force their will on our model. By carefully listening to the data, we developed a data-driven model and history match the production process and validate our model (using blind production history). Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken shale (oil producing) are presented in this article. [Received: June 20, 2011; Accepted: July 21,2011] C1 [Mohaghegh, Shahab D.] W Virginia Univ, Intelligent Solut Inc, Dept Petr & Nat Gas Engn, Morgantown, WV 26506 USA. [Zargari, Saeed] Colorado Sch Mines, Dept Petr Engn, Golden, CO 80401 USA. [Bromhal, Grant S.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Mohaghegh, SD (reprint author), W Virginia Univ, Intelligent Solut Inc, Dept Petr & Nat Gas Engn, Morgantown, WV 26506 USA. EM shahab@wvu.edu; ogrujic@mix.wvu.edu; szargari@mines.edu; akalanta@mix.wvu.edu; Grant.Bromhal@netl.doe.gov NR 14 TC 2 Z9 2 U1 1 U2 18 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 896, CH-1215 GENEVA, SWITZERLAND SN 1753-3309 J9 INT J OIL GAS COAL T JI Int. J. Oil Gas Coal Technol. PY 2012 VL 5 IS 1 BP 3 EP 28 PG 26 WC Energy & Fuels; Engineering, Chemical; Engineering, Petroleum SC Energy & Fuels; Engineering GA 882XW UT WOS:000299598200002 ER PT J AU Spivak-Birndorf, LJ Stewart, BW Capo, RC Chapman, EC Schroeder, KT Brubaker, TM AF Spivak-Birndorf, Lev J. Stewart, Brian W. Capo, Rosemary C. Chapman, Elizabeth C. Schroeder, Karl T. Brubaker, Tonya M. TI Strontium Isotope Study of Coal Utilization By-Products Interacting with Environmental Waters SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID FIRED POWER-PLANTS; FUEL COMBUSTION RESIDUES; FLY-ASH; TRACE-ELEMENTS; INORGANIC CONSTITUENTS; MASS-SPECTROMETRY; RIVER; SYSTEMATICS; SPECIATION; SELENIUM AB Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements-including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc-during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios (Sr-87/Sr-86) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-Sr-87/Sr-86) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB-water interaction. C1 [Spivak-Birndorf, Lev J.; Stewart, Brian W.; Capo, Rosemary C.; Chapman, Elizabeth C.; Brubaker, Tonya M.] Univ Pittsburgh, Dep Geol & Planetary Sci, Pittsburgh, PA 15260 USA. [Schroeder, Karl T.] DOE NETL, Pittsburgh, PA 15236 USA. RP Stewart, BW (reprint author), Univ Pittsburgh, Dep Geol & Planetary Sci, Pittsburgh, PA 15260 USA. EM bstewart@pitt.edu RI Schneider, Larissa/C-9863-2012 FU DOE-NETL FX We thank Brian Games and Robert Thompson for their assistance in the laboratory with chemical and isotopic analyses. Comments and suggestions from Associate Editor Daniel Kaplan and three anonymous reviewers greatly improved the manuscript. Support by DOE-NETL is gratefully acknowledged. This paper constitutes a portion of the M. S. degree of the first author at the University of Pittsburgh. NR 55 TC 10 Z9 10 U1 1 U2 19 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 J9 J ENVIRON QUAL JI J. Environ. Qual. PD JAN PY 2012 VL 41 IS 1 BP 144 EP 154 DI 10.2134/jeq2011.0222 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA 877WR UT WOS:000299213900016 PM 22218183 ER PT J AU Neethirajan, S Tsukamoto, K Kanahara, H Sugiyama, S AF Neethirajan, Suresh Tsukamoto, Kazumi Kanahara, Hiroko Sugiyama, Shigeru TI Ultrastructural Analysis of Buckwheat Starch Components Using Atomic Force Microscopy SO JOURNAL OF FOOD SCIENCE LA English DT Article DE atomic force microscopy; bionanocomposites; buckwheat; starch granules; starch nanocrystals ID SMALL GRANULE STARCHES; CHEMICAL-COMPOSITION; INTERNAL STRUCTURE; PEA STARCH; AMYLOPECTIN; GELATINIZATION; SURFACE; POTATO; FILMS; IMAGE AB Morphological and structural features of buckwheat starch granules and nanocrystals were examined using atomic force microscopy and dynamic light scattering. Partially digested starch granules revealed a clear pattern of growth rings with the central core revealing lamellar structure. Atomic force microscopy and dynamic light scattering experiments revealed that the buckwheat starch granules were polygonal in shape and were in the range of 2 to 19 mu m in diameter. The optimized acid hydrolysis process produced nanocrystals with the shape of spherical structure with lengths ranging from 120 to 200 nm, and the diameter from 4 to 30 nm from aqueous suspensions of buckwheat starch solution. The sorption isotherms on buckwheat starch nanocrystal/glycerol composite exhibited a 3-stage transition of moisture in the blending. The biocompatible nature of buckwheat starch nanocrystals and their structural properties make them a promising green nanocomposite material. C1 [Neethirajan, Suresh] Oak Ridge Natl Lab, Biol & Nanoscale Syst Grp, Biosci Div, Oak Ridge, TN 37831 USA. [Kanahara, Hiroko; Sugiyama, Shigeru] Natl Food Res Inst, Nanobiotechnol Lab, Tsukuba, Ibaraki 3058642, Japan. RP Neethirajan, S (reprint author), Oak Ridge Natl Lab, Biol & Nanoscale Syst Grp, Biosci Div, Oak Ridge, TN 37831 USA. EM s.neethi@uoguelph.ca OI Neethirajan, Suresh/0000-0003-0990-0235 FU Japan Society for the Promotion of Science; Natural Sciences and Engineering Research Council of Canada; Ministry of Agriculture, Forestry, and Fisheries of Japan FX The authors gratefully acknowledge the Japan Society for the Promotion of Science for providing Obei-Tanki Fellowship, and the Natural Sciences and Engineering Research Council of Canada for providing NSERC Postdoctoral Fellowship to Dr. Neethirajan. The authors also thank the Food Nanotechnology Project of the Ministry of Agriculture, Forestry, and Fisheries of Japan for funding this study. Thanks are also due to Dr. Takeo Shiina, Distribution Engineering Laboratory, National Food Research Institute, Japan for providing access to the DLS equipment. NR 34 TC 3 Z9 3 U1 1 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1147 EI 1750-3841 J9 J FOOD SCI JI J. Food Sci. PD JAN PY 2012 VL 77 IS 1 BP N2 EP N7 DI 10.1111/j.1750-3841.2011.02442.x PG 6 WC Food Science & Technology SC Food Science & Technology GA 878KX UT WOS:000299257000016 PM 22260119 ER PT J AU Best, M Gifford, AN Kim, SW Babst, B Piel, M Rosch, F Fowler, JS AF Best, Marcel Gifford, Andrew N. Kim, Sung Won Babst, Ben Piel, Markus Roesch, Frank Fowler, Joanna S. TI Rapid radiosynthesis of [11C] and [14C]azelaic, suberic, and sebacic acids for in vivo mechanistic studies of systemic acquired resistance in plants SO JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS LA English DT Article DE azelaic acid; 1; 9-nonanedioic acid; systemic acquired resistance; plant signaling; plant hormone ID SIGNAL AB A recent report that the aliphatic dicarboxylic acid, azelaic acid (1,9-nonanedioic acid) but not related acids, suberic acid (1,8-octanedioic acid) or sebacic (1,10-decanedioic acid) acid induces systemic acquired resistance to invading pathogens in plants stimulated the development of a rapid method for labeling these dicarboxylic acids with 11C and 14C for in vivo mechanistic studies in whole plants. 11C-labeling was performed by reaction of ammonium [11C]cyanide with the corresponding bromonitrile precursor followed by hydrolysis with aqueous sodium hydroxide solution. Total synthesis time was 60 min. Median decay-corrected radiochemical yield for [11C]azelaic acid was 40% relative to trapped [11C]cyanide, and specific activity was 15 GBq/mu mol. Yields for [11C]suberic and sebacic acids were similar. The 14C-labeled version of azelaic acid was prepared from potassium [14C]cyanide in 45% overall radiochemical yield. Radiolabeling procedures were verified using 13C-labeling coupled with 13C-NMR and liquid chromatographymass spectrometry analysis. The 11C and 14C-labeled azelaic acid and related dicarboxylic acids are expected to be of value in understanding the mode-of-action, transport, and fate of this putative signaling molecule in plants. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Best, Marcel; Gifford, Andrew N.; Babst, Ben; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Best, Marcel; Piel, Markus; Roesch, Frank] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55128 Mainz, Germany. [Kim, Sung Won] Natl Inst Alcohol & Alcoholism, NIH, Bethesda, MD 20892 USA. RP Gifford, AN (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM gifforda@bnl.gov RI Piel, Markus/L-8787-2016; OI Babst, Benjamin/0000-0001-5657-0633 FU US Department of Energy, Office of Biological and Environmental Research [DE-AC02-98CH10886]; National Institute on Alcohol Abuse and Alcoholism FX This work was supported by the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-98CH10886. Additional support was from the National Institute on Alcohol Abuse and Alcoholism (S. W. K.). We thank Michael Schueller for the cyclotron operations, DohyunKim and David Alexoff for the help with the optimization of [11C]cyanide production, Lisa Muench for the assistance with 11C-labeling, Laura Reffert for measuring the 13C-NMR spectra, and Richard Ferrieri for the advice on the plant studies. NR 8 TC 6 Z9 6 U1 0 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0362-4803 J9 J LABELLED COMPD RAD JI J. Label. Compd. Radiopharm. PD JAN PY 2012 VL 55 IS 1 BP 39 EP 43 DI 10.1002/jlcr.1951 PG 5 WC Biochemical Research Methods; Chemistry, Medicinal; Chemistry, Analytical SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Chemistry GA 882HZ UT WOS:000299555700007 ER PT J AU Ahn, TH Oh, CS Lee, K George, EP Han, HN AF Ahn, Tae-Hong Oh, Chang-Seok Lee, Kyooyoung George, Easo P. Han, Heung Nam TI Relationship between yield point phenomena and the nanoindentation pop-in behavior of steel SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID INDUCED MARTENSITIC-TRANSFORMATION; SUPER-COOLED AUSTENITE; DISLOCATION NUCLEATION; DEFORMATION-BEHAVIOR; INCIPIENT PLASTICITY; PHASE-TRANSFORMATION; INDENTATION; SILICON; LOAD; HYSTERESIS AB Pop-ins on nanoindentation load-displacement curves of a ferritic steel were correlated with yield drops on its tensile stress-strain curves. To investigate the relationship between these two phenomena, nanoindentation and tensile tests were performed on annealed specimens, prestrained specimens, and specimens aged for various times after prestraining. Clear nanoindentation pop-ins were observed on annealed specimens, which disappeared when specimens were indented right after the prestrain, but reappeared to varying degrees after strain aging. Yield drops in tensile tests showed similar disappearance and appearance, indicating that the two phenomena, at the nano- and macro-scale, respectively, are closely related and influenced by dislocation locking by solutes (Cottrell atmospheres). C1 [Ahn, Tae-Hong; Han, Heung Nam] Seoul Natl Univ, RIAM, Dept Mat Sci & Engn, Seoul 151744, South Korea. [Ahn, Tae-Hong; Han, Heung Nam] Seoul Natl Univ, RIAM, Ctr Iron & Steel Res, Seoul 151744, South Korea. [George, Easo P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lee, Kyooyoung] POSCO, Tech Res Labs, Kwangyang 545090, Jeonnam, South Korea. [Oh, Chang-Seok] Korea Inst Mat Sci, Adv Mat Res & Implementat Ctr, Chang Won 641831, South Korea. RP Han, HN (reprint author), Seoul Natl Univ, RIAM, Dept Mat Sci & Engn, Seoul 151744, South Korea. EM hnhan@snu.ac.kr RI George, Easo/L-5434-2014; Han, Heung Nam/D-6461-2013; Han, Heung Nam/I-7675-2016 OI Han, Heung Nam/0000-0001-5271-9023; FU National Research Foundation of Korea; Ministry of Education, Science and Technology [2010-0018936]; Fundamental R&D Program for Core Technology of Materials; Ministry of Knowledge Economy, Republic of Korea; Materials Sciences and Engineering Division, Basic Energy Sciences, U.S. Department of Energy FX This study was supported by National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (2010-0018936). CSO is thankful for the support by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea. EPG was supported by the Materials Sciences and Engineering Division, Basic Energy Sciences, U.S. Department of Energy. NR 47 TC 5 Z9 5 U1 0 U2 23 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD JAN PY 2012 VL 27 IS 1 BP 39 EP 44 DI 10.1557/jmr.2011.208 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 886TM UT WOS:000299876800006 ER PT J AU Lee, JH Gao, YF Pharr, GM AF Lee, J. H. Gao, Y. F. Pharr, G. M. TI Effective Poisson's ratio from combined normal and lateral contacts of single crystals SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID TANGENTIAL CONTACT; NUMERICAL APPROACH; ELASTIC-MODULUS; ANISOTROPY; STIFFNESS AB When an elastic half-space is subjected to both normal and tangential contact, the ratio of normal and tangential contact stiffnesses can be measured by various scanning force microscopy techniques. For elastically isotropic solids, this stiffness ratio depends on Poisson's ratio as given by the Mindlin solution. An anisotropic elastic contact analysis here shows the difference between the effective Poisson's ratio as defined from the stiffness ratio and its uniaxial counterpart with respect to various crystal structures and various normal/tangential contact directions. Closed-form analytical solutions of effective indentation moduli are derived for materials with at least one plane of transverse isotropy. Since the Sneddon (normal contact) and Mindlin (lateral contact) solutions are derived under different frictional conditions, finite element simulations were performed which show that the effects of elastic dissimilarity and contact shape are generally small but not negligible. The predicted dependence on crystallographic orientation and elastic anisotropy has been compared favorably with previously reported multiaxial contact experiments for a number of cubic single crystals. Implications for atomic force microscopy based experiments are also discussed. C1 [Lee, J. H.] Korea Atom Energy Res Inst, Div Res Reactor, Taejon 305353, South Korea. [Gao, Y. F.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Lee, JH (reprint author), Korea Atom Energy Res Inst, Div Res Reactor, Taejon 305353, South Korea. EM jinhaeng@kaeri.re.kr; ygao7@utk.edu RI Gao, Yanfei/F-9034-2010 OI Gao, Yanfei/0000-0003-2082-857X FU National Science Foundation CMMI [0800168] FX The authors are grateful to National Science Foundation CMMI 0800168 for financial support and to B.N. Lucas, W.C. Oliver, D.C. Hurley, and R.F. Cook for helpful discussions on their experimental work. NR 22 TC 4 Z9 4 U1 0 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD JAN PY 2012 VL 27 IS 1 BP 182 EP 191 DI 10.1557/jmr.2011.330 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 886TM UT WOS:000299876800023 ER PT J AU Douglass, EM Jayne, SR Peacock, S Bryan, FO Maltrud, ME AF Douglass, Elizabeth M. Jayne, Steven R. Peacock, Synte Bryan, Frank O. Maltrud, Mathew E. TI Subtropical Mode Water Variability in a Climatologically Forced Model in the Northwestern Pacific Ocean SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID NORTH PACIFIC; INTERANNUAL VARIATIONS; 137-DEGREES-E SECTION; KUROSHIO; GYRE; DISTRIBUTIONS; TRANSPORT; EDDIES; AREA; PATH AB A climatologically forced high-resolution model is used to examine variability of subtropical mode water (STMW) in the northwestern Pacific Ocean. Despite the use of annually repeating atmospheric forcing, significant interannual to decadal variability is evident in the volume, temperature, and age of STMW formed in the region. This long time-scale variability is intrinsic to the ocean. The formation and characteristics of STMW are comparable to those observed in nature. STMW is found to be cooler, denser, and shallower in the east than in the west, but time variations in these properties are generally correlated across the full water mass. Formation is found to occur south of the Kuroshio Extension, and after formation STMW is advected westward, as shown by the transport streamfunction. The ideal age and chlorofluorocarbon tracers are used to analyze the life cycle of STMW. Over the full model run, the average age of STMW is found to be 4.1 yr, but there is strong geographical variation in this, from an average age of 3.0 yr in the east to 4.9 yr in the west. This is further evidence that STMW is formed in the east and travels to the west. This is qualitatively confirmed through simulated dye experiments known as transit-time distributions. Changes in STMW formation are correlated with a large meander in the path of the Kuroshio south of Japan. In the model, the large meander inhibits STMW formation just south of Japan, but the export of water with low potential vorticity leads to formation of STMW in the east and an overall increase in volume. This is correlated with an increase in the outcrop area of STMW. Mixed layer depth, on the other hand, is found to be uncorrelated with the volume of STMW. C1 [Douglass, Elizabeth M.; Jayne, Steven R.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Peacock, Synte; Bryan, Frank O.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Maltrud, Mathew E.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Douglass, EM (reprint author), Woods Hole Oceanog Inst, MS 29,266 Woods Hole Rd, Woods Hole, MA 02543 USA. EM edouglass@whoi.edu RI Bryan, Frank/I-1309-2016 OI Bryan, Frank/0000-0003-1672-8330 FU National Science Foundation [OCE-0849808]; Doherty Foundation; National Center for Atmospheric Research FX The model integrations were performed at the National Center for Atmospheric Research, which is supported by the National Science Foundation. E.M.D. acknowledges support of the Doherty Foundation and National Science Foundation (OCE-0849808). S.R.J was sponsored by the National Science Foundation (OCE-0849808). Participation of S.P. and F.B. was supported by the National Science Foundation by its sponsorship of the National Center for Atmospheric Research. The simulation was performed at the National Center for Computational Sciences at Oak Ridge National Laboratory with computer time awarded under the INCITE program and at the National Center for Atmospheric Research Computational and Information Systems Laboratory. NR 26 TC 5 Z9 5 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD JAN PY 2012 VL 42 IS 1 BP 126 EP 140 DI 10.1175/2011JPO4513.1 PG 15 WC Oceanography SC Oceanography GA 882SK UT WOS:000299584000008 ER PT J AU Halvorsen, MB Zeddies, DG Ellison, WT Chicoine, DR Popper, AN AF Halvorsen, Michele B. Zeddies, David G. Ellison, William T. Chicoine, David R. Popper, Arthur N. TI Effects of mid-frequency active sonar on hearing in fish SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID BRAIN-STEM RESPONSE; HIGH-INTENSITY; RAINBOW-TROUT AB Caged fish were exposed to sound from mid-frequency active (MFA) transducers in a 5 x 5 planar array which simulated MFA sounds at received sound pressure levels of 210 dB SPL(re 1 mu Pa). The exposure sound consisted of a 2 s frequency sweep from 2.8 to 3.8 kHz followed by a 1 s tone at 3.3 kHz. The sound sequence was repeated every 25 s for five repetitions resulting in a cumulative sound exposure level (SELcum) of 220 dB re 1 mu Pa-2 s. The cumulative exposure level did not affect the hearing sensitivity of rainbow trout, a species whose hearing range is lower than the frequencies in the presented MFA sound. In contrast, one cohort of channel catfish showed a statistically significant temporary threshold shift of 4-6 dB at 2300 Hz, but not at lower tested frequencies, whereas a second cohort showed no change. It is likely that this threshold shift resulted from the frequency spectrum of the MFA sound overlapping with the upper end of the hearing frequency range of the channel catfish. The observed threshold shifts in channel catfish recovered within 24 h. There was no mortality associated with the MFA sound exposure used in this test. (C) 2012 Acoustical Society of America. [DOI:10.1121/1.3664082] C1 [Halvorsen, Michele B.; Zeddies, David G.; Popper, Arthur N.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Halvorsen, Michele B.; Zeddies, David G.; Popper, Arthur N.] Univ Maryland, Ctr Comparat & Evolutionary Biol Hearing, College Pk, MD 20742 USA. [Ellison, William T.] Marine Acoust Inc, Arlington, VA 22203 USA. [Chicoine, David R.] New York Chiropract Coll, Doctor Chiropract Program, Seneca Falls, NY 13148 USA. RP Halvorsen, MB (reprint author), Pacific NW Natl Lab, Marine Sci Lab, Marine Biotechnol Grp, Sequim, WA 98382 USA. EM Michele.Halvorsen@pnnl.gov FU U.S. Chief of Naval Operations (Environmental Readiness Division); Office of the U.S. Chief of Naval Operations FX This work was supported by the U.S. Chief of Naval Operations (Environmental Readiness Division). We are grateful to K. White and J. Michalec for help with experiments and N. Elias and his staff at the U. S. Navy Sonar Test Facility at Seneca Lake, particularly E. Dobbertin and B. Ford, for logistic and technical support. J. Hill, K. Montey, J. Liang, and Kevin Anderson (NUWC) provided substantial experimental support. We also thank P. Stein and A. Bahlavouni, Scientific Solutions, Inc. for acoustic analyses, design of the test tanks and facilitating the complex operational procedures. Invaluable assistance was provided by individuals from Marine Acoustics, Inc. (MAI), including G. Sisson who provided on-site technical support and C. Spikes who provided logistical support and guidance. We are grateful to V. F. Stone of the Office of the U.S. Chief of Naval Operations for his support of these projects and their trust in the scientific process that resulted in their permitting us to design and conduct the experiments independently, with the only involvement being to provide the necessary funding. M. B. H. and D.G.Z. contributed equally to this work. NR 26 TC 13 Z9 13 U1 1 U2 20 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD JAN PY 2012 VL 131 IS 1 BP 599 EP 607 DI 10.1121/1.3664082 PN 1 PG 9 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 876TN UT WOS:000299130700070 PM 22280622 ER PT J AU Shin, D Wolverton, C Croy, JR Balasubramanian, M Kang, SH Rivera, CML Thackeray, MM AF Shin, D. Wolverton, C. Croy, J. R. Balasubramanian, M. Kang, S. -H. Rivera, C. M. Lopez Thackeray, Michael M. TI First-Principles Calculations, Electrochemical and X-ray Absorption Studies of Li-Ni-PO4 Surface-Treated xLi(2)MnO(3) center dot (1-x)LiMO2 (M = Mn, Ni, Co) Electrodes for Li-Ion Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CATHODE MATERIALS; HIGH-CAPACITY; AB-INITIO; LITHIUM BATTERIES; INTERCALATION; LIXCOO2; CELLS; FE AB It has been previously hypothesized that the enhanced rate capability of Li-Ni-PO4-treated xLi(2)MnO(3) center dot (1-x)LiMO2 positive electrodes (M = Mn, Ni, Co) in Li-ion batteries might be associated with a defect Ni-doped Li3PO4 surface structure [i.e., Li3-2yNiyPO4 (0 < y < 1)], thereby promoting fast Li+-ion conduction at the xLi(2)MnO(3) center dot (1-x)LiMO2 particle surface. In this paper, the solubility of divalent metals (Fe, Mn, Ni, Mg) in gamma-Li3PO4 is predicted with the first-principles GGA+U method in an effort to understand the enhanced rate capability. The predicted solubility (x) is extremely small; this finding is consistent with experimental evidence: 1) X-ray diffraction data obtained from Li-Ni-PO4-treated xLi(2)MnO(3) center dot (1-x)LiMO2 electrodes that show that, after annealing at 550 degrees C, a Li3PO4-like structure forms as a second phase at the electrode particle surface, and 2) X-ray absorption spectroscopy, which indicate that the nickel ions are accommodated in the transition metal layers of the Li2MnO3 component during the annealing process. However, electrochemical studies of Li3-2yNiyPO4-treated xLi(2)MnO(3) center dot (1-x) LiMO2 electrodes indicate that their rate capability increases as a function of y over the range y = 0 (Li3PO4) to y = 1 (LiNiPO4), strongly suggesting that, at some level, the nickel ions play a role in reducing electrochemical impedance and increasing electrode stability at the electrode particle surface. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.098202jes] All rights reserved. C1 [Shin, D.; Wolverton, C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Croy, J. R.; Kang, S. -H.; Rivera, C. M. Lopez; Thackeray, Michael M.] Argonne Natl Lab, Electromech Energy Storage Dept, Argonne, IL 60439 USA. [Balasubramanian, M.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Shin, D (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM c-wolverton@northwestern.edu RI Wolverton, Christopher/B-7542-2009; Shin, Dongwon/C-6519-2008 OI Shin, Dongwon/0000-0002-5797-3423 FU U.S. Department of Energy; Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; DOE's Office of Energy and Renewable Energy FX Financial support from the U.S. Department of Energy is gratefully acknowledged. The theoretical work (DS, CMW) and MMT were supported by the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The experimental work (JRC, MB, SHK, CMLR) was supported by DOE's Office of Energy and Renewable Energy, Vehicle Technologies Program. Use of the facilities at Argonne's Electron Microscopy Center and at the Sector 20 Beamline of the Advanced Photon Source are gratefully acknowledged. NR 41 TC 30 Z9 31 U1 3 U2 122 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 2 BP A121 EP A127 DI 10.1149/2.098202jes PG 7 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 869YY UT WOS:000298637500008 ER PT J AU Sheng, WC Chen, S Vescovo, E Shao-Horn, Y AF Sheng, Wenchao Chen, Shuo Vescovo, Elio Shao-Horn, Yang TI Size Influence on the Oxygen Reduction Reaction Activity and Instability of Supported Pt Nanoparticles SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID PROTON-EXCHANGE MEMBRANE; PARTICLE-SIZE; PLATINUM DISSOLUTION; FUEL-CELLS; CATALYSTS; ELECTROCATALYSTS; ELECTRODE; SURFACES; MODEL; CO AB Size-dependent oxygen reduction reaction activity (ORR) and instability of Pt nanoparticles is of great importance in proton exchange membrane fuel cell applications. In this study, the size-dependence of ORR activity on Pt nanoparticles (NPs) was investigated on high-surface-area carbon supported Pt NPs below 5 nm in acidic electrolytes using rotating disk electrode method. The ORR activity was correlated to the estimated surface coverage by OH anion from cyclic voltammogram measurements and the surface composition and electronic structure of Pt NPs, which was studied using X-ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy. The results revealed a size-independent ORR activity on Pt NPs below 5 nm, which was attributed to similar surface compositions and surface electronic structures of Pt NPs below 5 nm as well as comparable OH anion coverage at the potential where ORR was evaluated. In contrast, the instability of Pt NPs under accelerated potential cycling was found to be strongly dependent on the particle size. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.009202jes] All rights reserved. C1 [Sheng, Wenchao] MIT, Dept Chem, Cambridge, MA 02139 USA. [Chen, Shuo; Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Shao-Horn, Yang] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Vescovo, Elio] Brookhaven Natl Lab, Upton, NY 11937 USA. RP Sheng, WC (reprint author), MIT, Dept Chem, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Sheng, Wenchao/E-6196-2012; Chen, Shuo/H-2491-2011 OI Chen, Shuo/0000-0002-7145-1269 FU DOE Hydrogen Initiative [DE-FG02-05ER15728]; National Science Foundation [DMR 02-13282]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors would like to thank Ethan J. Crumlin for XPS measurements and Prof. Dane Morgan (Materials Science and Engineering, University of Wisconsin, Madison) for discussion. This work was supported in part by the DOE Hydrogen Initiative program under award number DE-FG02-05ER15728. This research made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation under award number DMR 02-13282. The National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 50 TC 46 Z9 46 U1 5 U2 59 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 2 BP B96 EP B103 DI 10.1149/2.009202jes PG 8 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 869YY UT WOS:000298637500018 ER PT J AU Xu, XF Rouson, DWI Kassinos, SC Radhakrishnan, H AF Xu, Xiaofeng Rouson, Damian W. I. Kassinos, Stavros C. Radhakrishnan, Hari TI Dispersed-phase structure in sheared MHD turbulence SO JOURNAL OF TURBULENCE LA English DT Article DE direct numerical simulation; sheared MHD turbulence; dispersed-phase anisotropy ID MAGNETIC REYNOLDS-NUMBER; DEVELOPED CHANNEL FLOW; MAGNETOHYDRODYNAMIC TURBULENCE AB Direct numerical simulations are performed to examine particle dispersion in homogeneous turbulence subjected to mean shear and an externally applied magnetic field. We employ the Brucker et al. algorithm for simulating mean shear without the remeshing required in the traditional Rogallo scheme. We demonstrate that the Rogallo approach requires higher grid resolution to match the Brucker et al. approach at high shear rates. Both the shear and the magnetic field are uniform. The applied magnetic field is aligned with the direction normal to the plane of the mean shear. Results are presented for three values of the ratio, M, of the mean shear time scale tau(shear) to the Joule time scale tau(m). The dispersed particles all have response times near unity when scaled on the Kolmogorov time scale at the instant of magnetic field application. We find that the dispersed-phase structural anisotropy deviates noticeably from the anisotropy of the velocity field structure. The dispersed-phase anisotropy is determined by M and by the magnetic Reynolds number Re-m. When M is small, the mean shear dominates and the particle distribution appears isotropic even though the turbulent eddies align preferentially along the streamwise direction. When tau(shear) is much larger than tau(m), sheets of particles align along both streamwise and spanwise directions. Stronger particle clustering in the streamwise direction is observed when Re-m = 20, indicating that the magnetic effect on dispersed-phase structure is less significant at moderately higher magnetic Reynolds numbers. When tau(shear) is comparable to tau(m), the particles disperse broadly across the flow at Re-m = 1 because the mean shear and the magnetic field are equally effective in inducing dispersed-phase anisotropy. Particle clustering along the mean streamwise direction is obtained when Re-m = 20 due to weaker influence of the magnetic field. C1 [Xu, Xiaofeng] Gen Motors LLC, Pontiac, MI 48341 USA. [Rouson, Damian W. I.] Sandia Natl Labs, Reacting Flow Res Dept, Livermore, CA USA. [Kassinos, Stavros C.; Radhakrishnan, Hari] Univ Cyprus, Dept Mech & Mfg Engn, Computat Sci Lab UCY CompSci, Nicosia, Cyprus. RP Xu, XF (reprint author), Gen Motors LLC, Pontiac, MI 48341 USA. EM xiaofeng.xu@gm.com RI Radhakrishnan, Hari/F-5653-2013; Kassinos, Stavros/B-6404-2016 OI Radhakrishnan, Hari/0000-0003-4681-5638; Kassinos, Stavros/0000-0002-3501-3851 FU Office of Naval Research via the Research Foundation of the City University of New York [N00014-08-1-0086]; Lockheed Martin Company, for the United States Department of Energy [DE-AC04-94AL85000]; European Atomic Energy Community [ERB 5005 CT 99 0100]; Hellenic Republic FX The first author acknowledges supported from the Office of Naval Research (contract N00014-08-1-0086) via the Research Foundation of the City University of New York. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. SCK and HR gratefully acknowledge partial support under the contract of association ERB 5005 CT 99 0100 between the European Atomic Energy Community and the Hellenic Republic. NR 32 TC 1 Z9 1 U1 2 U2 9 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1468-5248 J9 J TURBUL JI J. Turbul. PY 2012 VL 13 IS 2 BP 1 EP 24 AR 2 DI 10.1080/14685248.2011.636046 PG 24 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 884FY UT WOS:000299691500001 ER PT J AU Waller, GH Stein, A Abiade, JT AF Waller, Gordon H. Stein, Aaron Abiade, Jeremiah T. TI Nanofabrication of doped, complex oxides SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID PULSED-LASER DEPOSITION AB Complex oxides have many promising attributes, including wide band gaps for high temperature semiconductors, ion conducting electrolytes in fuel cells, ferroelectricity and ferromagnetism. Bulk and thin film oxides can be readily manufactured and tested however these physically hard and chemically inert materials cannot be nanofabricated by direct application of conventional methods. In order to study these materials at the nanoscale there must first be a simple and effective means to achieve the desired structures. Here we discuss the use of pulsed laser deposition at room temperature onto electron beam lithography defined templates of poly methyl methacrylate photoresist. Following a resist liftoff in organic solvents, a heat treatment was used to crystallize the nanostructures. The morphology of these structures was studied using scanning electron microscopy and atomic force microscopy. Crystallinity and composition as determined by x ray diffraction and photo-electron spectroscopy respectively is reported for thin film analogues of the nanostructured oxide. The oxide studied in this report is Nb doped SrTiO3, which has been investigated for use as a high temperature thermoelectric material; however the approach used is not materials-dependent. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3669645] C1 [Waller, Gordon H.] Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. [Stein, Aaron] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Abiade, Jeremiah T.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. RP Waller, GH (reprint author), Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. EM gwaller@vt.edu OI Stein, Aaron/0000-0003-4424-5416 FU United States National Science Foundation [NSF-BRIGE EEC-0824340]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was partially supported by the United States National Science Foundation Grant No. NSF-BRIGE EEC-0824340. A part of this research was conducted at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Grant No. DE-AC02-98CH10886. NR 24 TC 2 Z9 2 U1 2 U2 34 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JAN PY 2012 VL 30 IS 1 AR 011804 DI 10.1116/1.3669645 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 880ES UT WOS:000299388200024 ER PT J AU Glasser, J Feng, ZL Moylan, A Del Valle, S Castillo-Chavez, C AF Glasser, John Feng, Zhilan Moylan, Andrew Del Valle, Sara Castillo-Chavez, Carlos TI Mixing in age-structured population models of infectious diseases SO MATHEMATICAL BIOSCIENCES LA English DT Article DE Interpersonal contacts; Preferential mixing; Transmission modeling; Intervention assessment; Indirect effects ID TRANSMISSION PARAMETERS; INFLUENZA; SPREAD; HOUSEHOLD; NETWORKS; PATTERNS; MEASLES AB Infectious diseases are controlled by reducing pathogen replication within or transmission between hosts. Models can reliably evaluate alternative strategies for curtailing transmission, but only if interpersonal mixing is represented realistically. Compartmental modelers commonly use convex combinations of contacts within and among groups of similarly aged individuals, respectively termed preferential and proportionate mixing. Recently published face-to-face conversation and time-use studies suggest that parents and children and co-workers also mix preferentially. As indirect effects arise from the off-diagonal elements of mixing matrices, these observations are exceedingly important. Accordingly, we refined the formula published by Jacquez et al. [19] to account for these newly-observed patterns and estimated age-specific fractions of contacts with each preferred group. As the ages of contemporaries need not be identical nor those of parents and children to differ by exactly the generation time, we also estimated the variances of the Gaussian distributions with which we replaced the Kronecker delta commonly used in theoretical studies. Our formulae reproduce observed patterns and can be used, given contacts, to estimate probabilities of infection on contact, infection rates, and reproduction numbers. As examples, we illustrate these calculations for influenza based on "attack rates" from a prospective household study during the 1957 pandemic and for varicella based on cumulative incidence estimated from a cross-sectional serological survey conducted from 1988-94, together with contact rates from the several face-to-face conversation and time-use studies. Susceptibility to infection on contact generally declines with age, but may be elevated among adolescents and adults with young children. Published by Elsevier Inc. C1 [Glasser, John] Ctr Dis Control & Prevent, Atlanta, GA USA. [Feng, Zhilan] Purdue Univ, W Lafayette, IN 47907 USA. [Moylan, Andrew] Wolfram Res, Champaign, IL USA. [Del Valle, Sara] Los Alamos Natl Lab, Los Alamos, NM USA. [Castillo-Chavez, Carlos] Arizona State Univ, Tempe, AZ USA. [Castillo-Chavez, Carlos] Santa Fe Inst, Santa Fe, NM 87501 USA. [Castillo-Chavez, Carlos] Cornell Univ, Ithaca, NY USA. RP Glasser, J (reprint author), 1600 Clifton Rd NE,Mail Stop A-34, Atlanta, GA 30333 USA. EM jglasser@cdc.gov RI Castillo-Chavez, Carlos/E-1412-2014 OI Castillo-Chavez, Carlos/0000-0002-1046-3901 FU CDC [IPA908630]; Purdue University; NSF [DMS-1022758] FX We are grateful to Roger Germundsson for guiding J.G. during the 2009 Advanced Mathematica (TM) Summer School, Karl Hadeler for helpful discussions, two anonymous reviewers for constructive suggestions, and Nathaniel Hupert and Michael Washington for support. Recognizing the importance of mixing in population modeling, John Edmunds pioneered empirical studies of inter-personal contacts, several of which permitted this theoretical study and applications. Z.F.'s research is partially supported by IPA908630 between the CDC and Purdue University and NSF grant DMS-1022758. NR 31 TC 10 Z9 11 U1 2 U2 20 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0025-5564 J9 MATH BIOSCI JI Math. Biosci. PD JAN PY 2012 VL 235 IS 1 BP 1 EP 7 DI 10.1016/j.mbs.2011.10.001 PG 7 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 885EM UT WOS:000299761300001 PM 22037144 ER PT J AU Baker, SE Perrone, G Richardson, NM Gallo, A Kubicek, CP AF Baker, Scott E. Perrone, Giancarlo Richardson, Nathan M. Gallo, Antonia Kubicek, Christian P. TI Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma SO MICROBIOLOGY-SGM LA English DT Article ID NONRIBOSOMAL PEPTIDE SYNTHETASES; RED PIGMENT BIKAVERIN; ASPERGILLUS-FUMIGATUS; NEUROSPORA-CRASSA; FUSARIUM-GRAMINEARUM; FUNCTIONAL-ANALYSIS; DNA POLYMORPHISM; GIBBERELLA-ZEAE; GENOME SEQUENCE; BIOSYNTHESIS AB Members of the economically important ascomycete genus Trichoderma are ubiquitously distributed around the world. The mycoparasitic lifestyle and plant defence-inducing interactions of Trichoderma spp. make them ideal biocontrol agents. Of the Trichoderma enzymes that produce secondary metabolites, some of which likely play important roles in biocontrol processes, polyketide synthase (PKSs) have garnered less attention than non-ribosomal peptide synthetases such as those that produce peptaibols. We have taken a phylogenomic approach to study the PKS repertoire encoded in the genomes of Trichoderma reesei, Trichoderma atroviride and Trichoderma virens. Our analysis lays a foundation for future research related to PKSs within the genus Trichoderma and in other filamentous fungi. C1 [Baker, Scott E.] Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA. [Perrone, Giancarlo; Gallo, Antonia] Natl Res Council CNR, Inst Sci Food Prod ISPA, Bari, Italy. [Richardson, Nathan M.] Washington State Univ, Richland, WA USA. [Kubicek, Christian P.] Vienna Univ Technol, Inst Chem Engn, Area Biotechnol & Microbiol, A-1040 Vienna, Austria. RP Baker, SE (reprint author), Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA. EM scott.baker@pnnl.gov RI Perrone, Giancarlo/O-7475-2014; Gallo, Antonia/C-1491-2015; OI Perrone, Giancarlo/0000-0002-3841-6066; GALLO, ANTONIA/0000-0002-1445-2484 FU DoE Office of the Biomass Program; Washington State University Pullman FX S. E. B. is funded by the DoE Office of the Biomass Program. N. M. R. is funded by an undergraduate research fellowship from Washington State University Pullman. NR 40 TC 30 Z9 30 U1 1 U2 29 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1350-0872 J9 MICROBIOL-SGM JI Microbiology-(UK) PD JAN PY 2012 VL 158 BP 147 EP 154 DI 10.1099/mic.0.053462-0 PN 1 PG 8 WC Microbiology SC Microbiology GA 885DH UT WOS:000299758200015 PM 22096146 ER PT J AU Richards, JW Homrighausen, D Freeman, PE Schafer, CM Poznanski, D AF Richards, Joseph W. Homrighausen, Darren Freeman, Peter E. Schafer, Chad M. Poznanski, Dovi TI Semi-supervised learning for photometric supernova classification SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; methods: statistical; techniques: photometric; surveys; supernovae: general ID IA SUPERNOVAE; VARIABLE-STARS; DIFFUSION MAPS; REDSHIFT; CANDIDATES; COSMOLOGY AB We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5 per cent improvement in Type Ia purity and 13 per cent improvement in Type Ia efficiency. C1 [Richards, Joseph W.; Poznanski, Dovi] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Richards, Joseph W.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Homrighausen, Darren; Freeman, Peter E.; Schafer, Chad M.] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA. [Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. RP Richards, JW (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM jwrichar@stat.berkeley.edu OI Freeman, Peter/0000-0001-9627-0053 FU National Science Foundation [0941742]; NSF [0707059]; NASA AISR [NNX09AK59G]; Einstein Fellowship FX JWR acknowledges the generous support of a Cyber-Enabled Discovery and Innovation (CDI) grant (0941742) from the National Science Foundation. Part of this work was performed in the CDI-sponsored Center for Time Domain Informatics (http://cftd.info). PEF and CMS acknowledge NSF grant 0707059 and NASA AISR grant NNX09AK59G. DP is supported by an Einstein Fellowship. NR 38 TC 16 Z9 16 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN PY 2012 VL 419 IS 2 BP 1121 EP 1135 DI 10.1111/j.1365-2966.2011.19768.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867VG UT WOS:000298482300017 ER PT J AU Sutter, PM Yang, HYK Ricker, PM Foreman, G Pugmire, D AF Sutter, P. M. Yang, H. -Y. Karen Ricker, P. M. Foreman, G. Pugmire, D. TI An examination of magnetized outflows from active galactic nuclei in galaxy clusters SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: numerical; MHD; galaxies: clusters: intracluster medium; galaxies: magnetic fields; galaxies: active ID SUPERMASSIVE BLACK-HOLES; THERMAL CONDUCTION; 3-DIMENSIONAL SIMULATIONS; COSMOLOGICAL SIMULATIONS; NUMERICAL SIMULATIONS; RADIO BUBBLES; AGN FEEDBACK; COSMIC-RAYS; NGC 1275; FIELDS AB We present 3D adaptive mesh refinement magnetohydrodynamic (MHD) simulations of an isolated galaxy cluster that include injection of kinetic, thermal and magnetic energy via a central active galactic nucleus (AGN) in order to study and evaluate the role that AGN may play in producing the observed cluster-wide magnetic fields. Using the MHD solver in flash 3.3, we compare several subresolution approaches to the evolution of AGN, specifically focusing on large-scale jet and bubble models. We examine the effects of magnetized outflows on the accretion history of the black hole and cluster thermodynamic properties, discuss the ability of various models to magnetize the cluster medium, and assess the sensitivity of these models to their underlying subgrid parameters. We find that magnetized jet-based models suffer a severe reduction in accretion rate compared to hydrodynamic jets; however, bubble models remain largely unaffected. While both jets and sporadically placed bubbles have difficulty reproducing the observed strength and topology of cluster magnetic fields, models based on centrally located bubbles come closest to observations. Finally, whereas jet models are relatively insensitive to changes in their subgrid parameters, the accretion rate and average magnetic field produced by the bubbles vary by as much as an order of magnitude depending on the grid resolution and accretion strength. C1 [Sutter, P. M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Yang, H. -Y. Karen; Ricker, P. M.; Foreman, G.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Pugmire, D.] Oak Ridge Natl Lab, Oak Ridge Leadership Comp Facil, Oak Ridge, TN 37831 USA. RP Sutter, PM (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA. EM psutter2@illinois.edu OI Yang, Hsiang-Yi Karen/0000-0003-3269-4660 FU DOE [DE-FG02-97ER25308]; US Department of Energy, Lawrence Livermore National Laboratory [B532720]; Office of Science of the US Department of Energy [DE-AC05-00OR22725]; Flash Center for Computational Science at the University of Chicago FX The authors acknowledge support under a DOE Computational Science Graduate Fellowship (DE-FG02-97ER25308) and a Presidential Early Career Award from the US Department of Energy, Lawrence Livermore National Laboratory (contract B532720). Computing resources were supplied by an allocation provided by the National Science Foundation (TG-AST040034N) on Kraken at the National Institute for Computational Sciences, as well as the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. The software used in this work was in part developed by the DOE-supported Flash Center for Computational Science at the University of Chicago. Visualizations were created using the DOE-supported VisIt program. NR 69 TC 2 Z9 2 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN PY 2012 VL 419 IS 3 BP 2293 EP 2314 DI 10.1111/j.1365-2966.2011.19875.x PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 872XI UT WOS:000298844300034 ER PT J AU Quataert, E Kasen, D AF Quataert, E. Kasen, D. TI Swift 1644+57: the longest gamma-ray burst? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gamma-ray burst: general; stars: neutron; supernovae: general ID CORE-COLLAPSE SUPERNOVAE; MASSIVE BLACK-HOLES; TIDAL DISRUPTION; II SUPERNOVAE; GALAXY; PROGENITORS; EXPLOSIONS; ACCRETION; EVOLUTION; STARS AB Swift recently discovered an unusual gamma-ray and X-ray transient (Swift 1644+57) that was initially identified as a long-duration gamma-ray burst (GRB). However, the similar to 10 keV X-ray emission has persisted for over approximately a month with a luminosity comparable to its peak value. The astrometric coincidence of the source with the centre of its host galaxy, together with other considerations, motivated the interpretation that Swift 1644+57 was produced by an outburst from a similar to 106107 M? black hole at the centre of the galaxy. Here we consider the alternate possibility that Swift 1644+57 is indeed a long-duration GRB, albeit a particularly long one! We discuss the general properties of very long-duration, low-power GRB-like transients associated with the core-collapse of a massive star. Both neutron star (magnetar) spin-down and black hole accretion can power such events. The requirements for producing low-power, very long duration GRBs by magnetar spin-down are similar to those for powering extremely luminous supernovae by magnetar spin-down, suggesting a possible connection between these two unusual types of transients. Alternatively, Swift 1644+57 could be associated with the faintest core-collapse explosions: the collapse of a rotating red supergiant in a nominally failed supernova can power accretion on to a solar-mass black hole for up to similar to 100 d; the jet produced by black hole accretion inevitably unbinds the outer envelope of the progenitor, leading to a weak similar to 1049 erg explosion. In both neutron-star and black hole models, a jet can burrow through the host star in a few days, with a kinetic luminosity similar to 10451046 erg s-1, sufficient to power the observed emission of Swift 1644+57. C1 [Quataert, E.; Kasen, D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Quataert, E.; Kasen, D.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Quataert, E.; Kasen, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Quataert, E (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM eliot@berkeley.edu; kasen@berkeley.edu FU DOE SciDAC [DE-FC02-06ER41438]; David and Lucile Packard Foundation FX We are grateful to J. Bloom, N. Butler, B. Cenko, B. Metzger, D. Perley and E. Ramirez-Ruiz for very helpful discussions. This research has been supported by the DOE SciDAC Program (DE-FC02-06ER41438). EQ was supported in part by the David and Lucile Packard Foundation. NR 38 TC 34 Z9 34 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN PY 2012 VL 419 IS 1 BP L1 EP L5 DI 10.1111/j.1745-3933.2011.01151.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 865HZ UT WOS:000298303300001 ER PT J AU Fischer, SA Crotty, AM Kilina, SV Ivanov, SA Tretiak, S AF Fischer, Sean A. Crotty, Angela M. Kilina, Svetlana V. Ivanov, Sergei A. Tretiak, Sergei TI Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals SO NANOSCALE LA English DT Article ID CDSE QUANTUM DOTS; DENSITY-FUNCTIONAL THEORY; TRANSFER EXCITED-STATES; HOLE INTERACTIONS; AB-INITIO; DEPENDENCE; CLUSTERS; PBSE; NANOPARTICLES; RELAXATION AB We examine in detail the impact of passivating ligands (i.e., amines, phosphines, phosphine oxides and pyridines) on the electronic and optical spectra of Cd33Se33 quantum dots (QDs) using density functional theory (DFT) and time-dependent DFT (TDDFT) quantum-chemical methodologies. Most ligand orbitals are found deep inside in the valence and conduction bands of the QD, with pyridine being an exception by introducing new states close to the conduction band edge. Importantly, all ligands contribute states which are highly delocalized over both the QD surface and ligands, forming hybridized orbitals rather than ligand-localized trap states. In contrast, the states close to the band gap are delocalized over the QD atoms only and define the lower energy absorption spectra. The random detachment of one of ligands from the QD surface results in the appearance of a highly localized unoccupied state inside the energy gap of the QD. Such changes in the electronic structure are correlated with the respective QD-ligand binding energy and steric ligand-ligand interactions. Polar solvent significantly reduces both effects leading to delocalization and stabilization of the surface states. Thus, trap and surface states are substantially eliminated by the solvent. Polar solvent also blue-shifts (e. g., 0.3-0.4 eV in acetonitrile) the calculated absorption spectra. This shift increases with an increase of the dielectric constant of the solvent. We also found that the approximate single-particle Kohn-Sham (KS) approach is adequate for calculating the absorption spectra of the ligated QDs. Besides a systematic blue-shift, the KS spectra are in very good agreement with their respective counterparts calculated with the more accurate TDDFT method. C1 [Crotty, Angela M.; Ivanov, Sergei A.; Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, CNLS, Los Alamos, NM 87545 USA. [Crotty, Angela M.; Ivanov, Sergei A.; Tretiak, Sergei] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA. [Fischer, Sean A.] Univ Washington, Dept Chem, Seattle, WA 98102 USA. [Kilina, Svetlana V.] N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58108 USA. RP Tretiak, S (reprint author), Los Alamos Natl Lab, Div Theoret, CNLS, Los Alamos, NM 87545 USA. EM skilina@lanl.gov; serg@lanl.gov RI Ivanov, Sergei/B-5505-2011; Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 FU Center for Advanced Solar Photophysics, an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES); ND EPSCoR; NSF [EPS-0814442]; DOE [DE-FG36-08GO88160]; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS) at Los Alamos National Laboratory; U.S. Department of Energy [DE-AC52-06NA25396] FX SAF, AMC and ST acknowledge support from the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES). SK acknowledges financial support from ND EPSCoR and NSF grant no. EPS-0814442 and DOE start up grant no. DE-FG36-08GO88160. We also acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS) at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 72 TC 57 Z9 57 U1 4 U2 71 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PY 2012 VL 4 IS 3 BP 904 EP 914 DI 10.1039/c2nr11398h PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 878YE UT WOS:000299292600032 PM 22170563 ER PT J AU Nica, N Cameron, J Singh, B AF Nica, Ninel Cameron, John Singh, Balraj TI Nuclear Data Sheets for A=36 SO NUCLEAR DATA SHEETS LA English DT Article ID THERMAL-NEUTRON CAPTURE; N=28 SHELL CLOSURE; ISOSCALAR QUADRUPOLE STRENGTH; ATOMIC MASS EVALUATION; HIGH-SPIN STATES; S-D SHELL; LIQUID SCINTILLATION SPECTROMETRY; OSCILLATING ANGULAR-DISTRIBUTIONS; ELASTIC ELECTRON-SCATTERING; TENSOR-POLARIZED DEUTERONS AB Nuclear spectroscopic information for experimentally investigated nuclides of mass 36 (Mg,Al,Si,P,S, Cl,Ar,K,Ca) has been evaluated. The principal sources of the 'adopted levels' presented for nuclides close to the stability line are Endt's evaluations (1990En08,1978En02). The data sets for reactions and decays, including all available gamma ray data, are based mostly on the original literature. The Na-36 has been looked for but not yet experimentally detected. There are no data available for the excited states in Al-36, and for Mg-36 and Ca-36, only one excited state is known. C1 [Nica, Ninel] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Nica, Ninel] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Cameron, John; Singh, Balraj] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RP Nica, N (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. FU Office of Nuclear Physics, Office of Science of the DOE of the United States; NSERC of Canada FX Work supported by the Office of Nuclear Physics, Office of Science of the DOE of the United States. At McMaster, partial funding was received from the NSERC of Canada. NR 361 TC 17 Z9 17 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JAN PY 2012 VL 113 IS 1 BP 1 EP 155 DI 10.1016/j.nds.2012.01.001 PG 155 WC Physics, Nuclear SC Physics GA 887GQ UT WOS:000299915300001 ER PT J AU Reich, CW AF Reich, C. W. TI Nuclear Data Sheets for A=159 SO NUCLEAR DATA SHEETS LA English DT Article ID NEUTRON-DEFICIENT ISOTOPES; HIGH-SPIN STATES; RARE-EARTH REGION; ODD-A NUCLEI; SINGLE-PROTON STATES; CHANNELS BORN-APPROXIMATION; ELECTRIC-QUADRUPOLE MOMENT; MASS DYSPROSIUM NUCLEI; FIRST EXCITED-STATES; GAMMA-RAY SPECTRA AB The experimental results from the various reaction and radioactive decay studies leading to nuclides in the A=159 mass chain have been reviewed. Nuclides ranging from Pm (Z=61) through Os (Z=74) are included. These data are summarized and presented, together with adopted level schemes and properties. This work supersedes the previous evaluation of the data on these nuclides (2003He11). C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Reich, CW (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. FU US Department of Energy FX Research sponsored by the US Department of Energy. NR 322 TC 4 Z9 4 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JAN PY 2012 VL 113 IS 1 BP 157 EP 363 DI 10.1016/j.nds.2012.01.002 PG 207 WC Physics, Nuclear SC Physics GA 887GQ UT WOS:000299915300002 ER PT J AU Ishimaru, M Usov, IO Zhang, YW Weber, WJ AF Ishimaru, Manabu Usov, Igor O. Zhang, Yanwen Weber, William J. TI Superlattice-like stacking fault array in ion-irradiated GaN SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE defect structures; ion irradiation; TEM; superlattices; self-assembly; defect engineering ID CHEMICAL-VAPOR-DEPOSITION; THERMAL-STABILITY; PHASE-SEPARATION; BORON-DIFFUSION; SILICON AB Controlling defects in crystalline solids is of technological importance for realizing desirable material properties. Irradiation with energetic particles is useful for designing the spatial distribution and concentration of defects in materials. Here, we performed ion irradiation into hexagonal GaN with the wurtzite structure and demonstrated the spontaneous formation of superlattice-like stacking fault arrays. It was found that the modulation period can be controlled by varying the irradiation conditions and subsequent thermal treatments. C1 [Ishimaru, Manabu] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. [Usov, Igor O.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Ishimaru, M (reprint author), Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. EM ishimaru@sanken.osaka-u.ac.jp RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU Ministry of Education, Sports, Science, and Technology, Japan [22560696]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Department of Energy's Office of Biological and Environmental Research FX TEM observations were performed at the Comprehensive Analysis Center, ISIR, Osaka University. MI acknowledges Mr Takahiro Hattori for his contribution to a part of the TEM sample preparations. This study was partially supported by Grant-in-Aid for Scientific Research (C) (grant no. 22560696) from the Ministry of Education, Sports, Science, and Technology, Japan and the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 20 TC 1 Z9 1 U1 1 U2 15 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PY 2012 VL 92 IS 1 BP 49 EP 55 DI 10.1080/09500839.2011.630686 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 882DA UT WOS:000299540500006 ER PT J AU Rutkowski, PX Michelini, MC Gibson, JK AF Rutkowski, Philip X. Michelini, Maria C. Gibson, John K. TI Gas-phase lanthanide chloride clusters: relationships among ESI abundances and DFT structures and energetics SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ELECTROSPRAY MASS-SPECTROMETRY; AQUEOUS-SOLUTION; IONIC-RADII; COMPLEXES; SODIUM; CHEMISTRY; DISSOCIATION; DISTANCES; HYDROXO; CATIONS AB Anionic lanthanide chloride clusters, Ln(n)Cl(3n+1)(-), were produced by electrospray ionization (ESI) of LnCl(3) in isopropanol, where Ln = La-Lu (except Pm); the clusters were characterized using a quadrupole ion trap mass spectrometer. High-abundance "magic number" clusters were apparent at n = 4 for the early Ln (La-Sm), and at n = 5 for the late Ln (Dy-Lu). Density functional theory computations of LanCl3n+1- and LunCl3n+1- clusters (n = 1-6) indicate that the clusters with n = 4-6 are rings with a central chlorine atom. Computed structures show six-coordinate Ln in distorted octahedral sites in "magic number" La4Cl13- and Lu5Cl16-, which have particularly large dissociation energies. For lanthanum, larger anionic chloride clusters with multiple charges of down to 5 were observed; their fragmentation by collision-induced dissociation in the ion trap revealed La4Cl13- as a common product. Gas-phase hydrolysis to Ln(n)Cl(3n+1-y)(OH)(y)(-) (y = 1, 2) was prevalent for the late lanthanides, but only for small clusters, n = 2 or 3; larger clusters were evidently resistant to gas-phase hydrolysis. ESI of selected LnBr(3) and LnI(3) resulted in Ln(n)X(3n+1)(-) clusters (X = Br, I)-in contrast to Ln(n)Cl(3n+1)(-) clusters, the only observed (minor) high-abundance clusters were La4Br13- and Ce4Br13-. C1 [Michelini, Maria C.] Univ Calabria, Dipartimento Chim, I-87030 Arcavacata Di Rende, Italy. [Rutkowski, Philip X.; Gibson, John K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Michelini, MC (reprint author), Univ Calabria, Dipartimento Chim, Via P Bucci,Cubo 14 C, I-87030 Arcavacata Di Rende, Italy. EM mc.michelini@unical.it; jkgibson@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231]; Universita della Calabria FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy at LBNL, under Contract No. DE-AC02-05CH11231. Financial support from the Universita della Calabria is gratefully acknowledged. M.C.M. is grateful for the opportunity to be a Guest Scientist in the LBNL Chemical Sciences Division. NR 40 TC 4 Z9 4 U1 5 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 6 BP 1965 EP 1977 DI 10.1039/c2cp22707j PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 878XO UT WOS:000299290700015 PM 22227857 ER PT J AU Hu, JZ Sears, JA Mehta, HS Ford, JJ Kwak, JH Zhu, KK Wang, Y Liu, J Hoyt, DW Peden, CHF AF Hu, Jian Zhi Sears, Jesse A. Mehta, Hardeep S. Ford, Joseph J. Kwak, Ja Hun Zhu, Kake Wang, Yong Liu, Jun Hoyt, David W. Peden, Charles H. F. TI A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID MAS NMR-SPECTROSCOPY; HETEROGENEOUS CATALYSIS; GAS-CHROMATOGRAPHY; SOLID CATALYSTS; ZEOLITE; CONVERSION; H3PW12O40; HETEROPOLYACIDS; OPPORTUNITIES; PROPAN-2-OL AB A large-sample-volume constant-flow magic angle sample spinning (CF-MAS) NMR probe is reported for in situ studies of the reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions. In our approach, the reactants are introduced into the catalyst bed using a fixed tube at one end of the MAS rotor while a second fixed tube, linked to a vacuum pump, is attached at the other end of the rotor. The pressure difference between both ends of the catalyst bed inside the sample cell space forces the reactants flowing through the catalyst bed, which improves the diffusion of the reactants and products. This design allows the use of a large sample volume for enhanced sensitivity and thus permitting in situ C-13 CF-MAS studies at natural abundance. As an example of application, we show that reactants, products and reaction transition states associated with the 2-butanol dehydration reaction over a mesoporous silicalite supported heteropoly acid catalyst (HPA/meso-silicalite-1) can all be detected in a single C-13 CF-MAS NMR spectrum at natural abundance. Coke products can also be detected at natural C-13 abundance and under the stopped flow condition. Furthermore, H-1 CF-MAS NMR is used to identify the surface functional groups of HPA/meso-silicalite-1 under the condition of in situ drying. We also show that the reaction dynamics of 2-butanol dehydration using HPA/meso-silicalite-1 as a catalyst can be explored using H-1 CF-MAS NMR. C1 [Hu, Jian Zhi] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Hu, JZ (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. EM Jianzhi.Hu@pnnl.gov; Chuck.Peden@pnnl.gov RI Hu, Jian Zhi/F-7126-2012; Wang, Yong/C-2344-2013; Hoyt, David/H-6295-2013; Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 FU U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences; DOE's Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This research was supported by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. All experiments were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Prof. Enrique Iglesia is acknowledged for his valuable suggestions about improving the flow through the catalyst bed, and Ms. Mary Hu is acknowledged for her help with the preparation of the figures. NR 37 TC 5 Z9 5 U1 1 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 7 BP 2137 EP 2143 DI 10.1039/c1cp22692d PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 881RP UT WOS:000299505400003 PM 22025270 ER PT J AU Barrio, L Zhou, G Gonzalez, ID Estrella, M Hanson, J Rodriguez, JA Navarro, RM Fierro, JLG AF Barrio, L. Zhou, G. Gonzalez, I. D. Estrella, M. Hanson, J. Rodriguez, J. A. Navarro, R. M. Fierro, J. L. G. TI In situ characterization of Pt catalysts supported on ceria modified TiO2 for the WGS reaction: influence of ceria loading SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID WATER-GAS-SHIFT; FUEL-CELL APPLICATIONS; MIXED-METAL OXIDE; LOW-TEMPERATURE; NANOMETER LEVEL; PARTICLE-SIZE; PT/TIO2; DEACTIVATION; MECHANISM; PT/CEO2 AB This work analyzes the influence of cerium content (6-15 wt%) on a TiO2 support over the structure and water gas shift (WGS) activity of Pt catalysts. The structural properties of these Pt/Ce-TiO2 catalysts were characterized by XRD, TEM and XANES. Physicochemical characterization of the catalysts showed differences in the structure and dispersion of Ce entities on the support with Ce loading. For the samples with low ceria content (6 wt%), cerium is deposited on the support in the form of CeOx clusters in a highly dispersed state in close interaction with the Ti atoms. The formation of CeOx clusters at low Ce-loading on the support facilitates the dispersion of small particles of Pt and improves the reducibility of ceria component at low temperatures. The changes in platinum dispersion and support reducibility with Ce-loading on the TiO2 support lead to significant differences in the WGS activity. Pt supported on the sample with lower Ce content (6 wt%) shows better activity than those corresponding to catalysts with higher Ce content (15 wt%). Activity measurements coupled with catalysts characterization suggest that the improvement in the reducibility of the support with lower Ce content was associated with the presence of CeOx clusters of high reducibility that improve the chemical activity of the oxide-metal interfaces at which the WGS reaction takes place. C1 [Barrio, L.; Gonzalez, I. D.; Navarro, R. M.; Fierro, J. L. G.] CSIC, Inst Catalisis & Petroleoquim, Madrid 28049, Spain. [Zhou, G.; Estrella, M.; Hanson, J.; Rodriguez, J. A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Barrio, L (reprint author), CSIC, Inst Catalisis & Petroleoquim, Campus Cantoblanco, Madrid 28049, Spain. EM laura@icp.csic.es; r.navarro@icp.csic.es RI Barrio, Laura/A-9509-2008; Navarro Yerga, Rufino/F-3478-2016; jose, fierro/C-4774-2014; OI Barrio, Laura/0000-0003-3496-4329; Navarro Yerga, Rufino/0000-0002-8625-9544; jose, fierro/0000-0002-6880-3737; Barrio, Laura/0000-0002-6919-6414 FU US Department of Energy (DOE), Chemical Sciences Division [DE-AC02-98CH10086]; Divisions of Materials and Chemical Sciences of US-DOE; CAM [P2009/ENE-1743]; European Community [219674] FX N. Marinkovic and S. Khalid are gratefully acknowledged for their help carrying out the XANES experiments. The work at BNL was financed by the US Department of Energy (DOE), Chemical Sciences Division (DE-AC02-98CH10086). The National Synchrotron Light Source is supported by the Divisions of Materials and Chemical Sciences of US-DOE. The work at ICP-CSIC was financed by CAM (P2009/ENE-1743). L. B. acknowledges support by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme, project number 219674. NR 48 TC 17 Z9 17 U1 2 U2 69 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 7 BP 2192 EP 2202 DI 10.1039/c1cp22509j PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 881RP UT WOS:000299505400011 PM 22130010 ER PT J AU Kispersky, VF Kropf, AJ Ribeiro, FH Miller, JT AF Kispersky, Vincent F. Kropf, A. Jeremy Ribeiro, Fabio H. Miller, Jeffrey T. TI Low absorption vitreous carbon reactors for operando XAS: a case study on Cu/Zeolites for selective catalytic reduction of NOx by NH3 SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID X-RAY-ABSORPTION; EXCHANGED ZSM-5 ZEOLITES; CU-BASED CATALYSTS; IN-SITU; NITROGEN MONOXIDE; NITRIC-OXIDE; ELECTROSTATIC ADSORPTION; METHANOL SYNTHESIS; SUPPORTED COBALT; PARTICLE-SIZE AB We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NOx by NH3 on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH3, 5% O-2, 5% H2O, 5% CO2 and balance He at 200 degrees C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situ SCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO2 catalyst, reduced in H-2 at 300 degrees C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO2 catalyst to be in a partially reduced Cu metal-Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance. C1 [Kispersky, Vincent F.; Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Kropf, A. Jeremy; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ribeiro, FH (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM Fabio@Purdue.edu; millerjt@anl.gov RI ID, MRCAT/G-7586-2011; BM, MRCAT/G-7576-2011; OI Ribeiro, Fabio/0000-0001-7752-461X FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. We would also like to thank Sachem, Inc. for their gracious donation of the structure directing agent for SSZ-13 synthesis. NR 63 TC 54 Z9 54 U1 11 U2 103 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 7 BP 2229 EP 2238 DI 10.1039/c1cp22992c PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 881RP UT WOS:000299505400014 PM 22158950 ER PT J AU Windisch, CF Glezakou, VA Martin, PF McGrail, BP Schaef, HT AF Windisch, Charles F., Jr. Glezakou, Vassiliki-Alexandra Martin, Paul F. McGrail, B. Peter Schaef, Herbert T. TI Raman spectrum of supercritical (CO2)-O-18 and re-evaluation of the Fermi resonance SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; SPACE GAUSSIAN PSEUDOPOTENTIALS; INITIO MOLECULAR-DYNAMICS; CARBON-DIOXIDE; CO2; REGION; TEMPERATURE; CONSTANTS; PRESSURE; DIMER AB We report the first Raman spectra of fully O-18-labeled supercritical CO2 (scCO(2)) and various isotopic mixtures. The experimental results, coupled with ab initio molecular dynamics calculations, demonstrate that the frequencies assigned to the Fermi dyad of the CO2 molecule transpose upon isotopic labeling of both oxygen atoms. Although the transposition of the Fermi dyad of CO2 gas due to isotopic substitution has been discussed before, this is the first confirmation of the effect in the Raman spectrum of the supercritical fluid and provides necessary groundwork for future Raman spectroscopy studies of reactions in this important medium. More importantly, the work yields a quantitative assessment of the mixing of states upon labeling that provides the needed clarification concerning the pedigree of the assignments for the dyad of CO2 under supercritical conditions. C1 [Windisch, Charles F., Jr.] Pacific NW Natl Lab, Mat Sci FCSD, Richland, WA 99352 USA. [Glezakou, Vassiliki-Alexandra] Pacific NW Natl Lab, Chem Phys & Anal FCSD, Richland, WA 99352 USA. [Martin, Paul F.] Pacific NW Natl Lab, Geosci EED, Richland, WA 99352 USA. [McGrail, B. Peter] Pacific NW Natl Lab, Energy Proc & Mat EED, Richland, WA 99352 USA. [Schaef, Herbert T.] Pacific NW Natl Lab, Geochem FCSD, Richland, WA 99352 USA. RP Windisch, CF (reprint author), Pacific NW Natl Lab, Mat Sci FCSD, POB 999, Richland, WA 99352 USA. EM cf.windisch@pnl.gov; Vanda.Glezakou@pnnl.gov FU U.S. Department of Energy (DOE), Office of Fossil Energy and Office of Science; DOE [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research located at PNNL FX The authors have benefited greatly from the contributions of other staff at the Pacific Northwest National Laboratory (PNNL). In particular, we acknowledge technical discussions with Drs G. Exarhos, S. Raugei and R. Rousseau, and graphics work by Cortland Johnson. This work was supported by the U.S. Department of Energy (DOE), Office of Fossil Energy and Office of Science. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. A portion of the research was performed using EMSL, a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. NR 39 TC 14 Z9 14 U1 1 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 8 BP 2560 EP 2566 DI 10.1039/c1cp22349f PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 884XK UT WOS:000299742000003 PM 22083039 ER PT J AU Polyanskiy, AY Hartmann, M Kiselev, YT Paryev, EY Buscher, M Chiladze, D Dymov, SN Dzyuba, AA Gebel, R Hejny, V Kampfer, B Keshelashvili, I Koptev, VP Lorentz, B Maeda, Y Merzliakov, SI Mikirtytchiants, SM Nekipelov, ME Ohm, H Schade, H Serdyuk, VZ Sibirtsev, AA Sinitsyna, VY Stein, HJ Stroher, H Trusov, SV Valdau, YV Wilkin, C Wustner, P AF Polyanskiy, A. Yu. Hartmann, M. Kiselev, Yu. T. Paryev, E. Ya. Buescher, M. Chiladze, D. Dymov, S. N. Dzyuba, A. A. Gebel, R. Hejny, V. Kaempfer, B. Keshelashvili, I. Koptev, V. P. Lorentz, B. Maeda, Y. Merzliakov, S. I. Mikirtytchiants, S. M. Nekipelov, M. E. Ohm, H. Schade, H. Serdyuk, V. Z. Sibirtsev, A. A. Sinitsyna, V. Yu. Stein, H. J. Stroeher, H. Trusov, S. V. Valdau, Yu. V. Wilkin, C. Wuestner, P. TI Width of the I center dot meson in nuclear matter SO PHYSICS OF ATOMIC NUCLEI LA English DT Article ID INCLUSIVE PION-PRODUCTION; NEAR-THRESHOLD PRODUCTION; PHI-PHOTOPRODUCTION; COSY-JULICH; COLLISIONS; ANKE AB The ratios of the cross sections for I center dot-meson production induced by 2.83-GeV protons on Cu, Ag, and Au nuclei to the respective cross section for C nuclei were measured at the ANKE-COSY facility in the momentum range of 0.6-1.6 GeV/c and the angular range of 0A degrees-8A degrees. The product I center dot mesons were identified by their decay I center dot -> K (+) K (-). The procedure used to separate kaon pairs was described in detail, and all sources of the background and their contribution to the resulting error in the values found for the above cross-section ratios were analyzed. The A dependence of the cross section for I center dot-meson production was shown to obey the A (0.56 +/- 0.03) law. The total width of the I center dot meson at a normal nuclear density was extracted from a comparison of the measured cross-section ratios with the results of calculations based on two theoretical models. The resulting width value exceeds substantially both the vacuum width and the width expected in the absence of the nuclear-matter effect on the properties of the I center dot meson. C1 [Polyanskiy, A. Yu.; Kiselev, Yu. T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Polyanskiy, A. Yu.; Hartmann, M.; Buescher, M.; Chiladze, D.; Gebel, R.; Hejny, V.; Lorentz, B.; Merzliakov, S. I.; Mikirtytchiants, S. M.; Nekipelov, M. E.; Ohm, H.; Serdyuk, V. Z.; Sibirtsev, A. A.; Stein, H. J.; Stroeher, H.; Valdau, Yu. V.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Polyanskiy, A. Yu.; Hartmann, M.; Buescher, M.; Chiladze, D.; Gebel, R.; Hejny, V.; Lorentz, B.; Merzliakov, S. I.; Mikirtytchiants, S. M.; Nekipelov, M. E.; Ohm, H.; Serdyuk, V. Z.; Sibirtsev, A. A.; Stein, H. J.; Stroeher, H.; Valdau, Yu. V.] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany. [Paryev, E. Ya.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Chiladze, D.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dymov, S. N.] Univ Erlangen Nurnberg, Inst Phys 2, D-91058 Erlangen, Germany. [Dymov, S. N.] Joint Inst Nucl Res, Lab Nucl Problems, Dubna 141980, Moscow Oblast, Russia. [Dzyuba, A. A.; Koptev, V. P.; Mikirtytchiants, S. M.; Valdau, Yu. V.] Russian Acad Sci, Dept High Energy Phys, Petersburg Nucl Phys Inst, Gatchina 188350, Russia. [Kaempfer, B.; Schade, H.; Trusov, S. V.] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Keshelashvili, I.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Maeda, Y.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Sibirtsev, A. A.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Sibirtsev, A. A.] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Sibirtsev, A. A.] Thomas Jefferson Natl Accelerator Facil, Excited Baryon Anal Ctr EBAC, Newport News, VA 23606 USA. [Sinitsyna, V. Yu.] Russian Acad Sci, Lebedev Inst Phys, Moscow 117924, Russia. [Trusov, S. V.] Moscow MV Lomonosov State Univ, Skobeltsyn Nucl Phys Inst, Moscow 119991, Russia. [Wilkin, C.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Wuestner, P.] Forschungszentrum Julich, Zent Inst Elekt, D-52425 Julich, Germany. RP Polyanskiy, AY (reprint author), Inst Theoret & Expt Phys, Bolshaya Cheremushkinskaya Ul 25, Moscow 117218, Russia. EM yurikis@itep.ru RI Hejny, Volker/D-6657-2012; Buscher, Markus/G-6540-2013; Sinitsyna, Vera Yurievna/M-9568-2015; Kiselev, Yury/A-4572-2017 OI Hejny, Volker/0000-0003-0713-5859; Buscher, Markus/0000-0001-5265-7248; FU Russian Foundation for Basic Research; Deutsche Forschungsgemeinschaft; COSY-FFE FX This work was supported in part by Russian Foundation for Basic Research, Deutsche Forschungsgemeinschaft, and COSY-FFE. NR 23 TC 0 Z9 0 U1 1 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD JAN PY 2012 VL 75 IS 1 BP 63 EP 75 DI 10.1134/S1063778811120088 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 885IK UT WOS:000299772200010 ER PT J AU Teng, PK Anderson, NJ Goldschmidt, L Sawaya, MR Sambashivan, S Eisenberg, D AF Teng, Poh K. Anderson, Natalie J. Goldschmidt, Lukasz Sawaya, Michael R. Sambashivan, Shilpa Eisenberg, David TI Ribonuclease A suggests how proteins self-chaperone against amyloid fiber formation SO PROTEIN SCIENCE LA English DT Article DE RNase A; amyloid structure; domain-swapping; self-chaperone; cross-ss diffraction ID BETA-CONFORMATION; CRYSTAL-STRUCTURE; FIBRILS; RESOLUTION; SEGMENTS; OLIGOMERIZATION; RNASE; DIMER; BETA(2)-MICROGLOBULIN; SUBTILISIN AB Genomic analyses have identified segments with high fiber-forming propensity in many proteins not known to form amyloid. Proteins are often protected from entering the amyloid state by molecular chaperones that permit them to fold in isolation from identical molecules; but, how do proteins self-chaperone their folding in the absence of chaperones? Here, we explore this question with the stable protein ribonuclease A (RNase A). We previously identified fiber-forming segments of amyloid-related proteins and demonstrated that insertion of these segments into the C-terminal hinge loop of nonfiber-forming RNase A can convert RNase A into the amyloid state through three-dimensional domain-swapping, where the inserted fiber-forming segments interact to create a steric zipper spine. In this study, we convert RNase A into amyloid-like fibers by increasing the loop length and hence conformational freedom of an endogenous fiber-forming segment, SSTSAASS, in the N-terminal hinge loop. This is accomplished by sandwiching SSTSAASS between inserted Gly residues. With these inserts, SSTSAASS is now able to form the steric zipper spine, allowing RNase A to form amyloid-like fibers. We show that these fibers contain RNase A molecules retaining their enzymatic activity and therefore native-like structure. Thus, RNase A appears to prevent fiber formation by limiting the conformational freedom of this fiber-forming segment from entering a steric zipper. Our observations suggest that proteins have evolved to self-chaperone by using similar protective mechanisms. C1 [Eisenberg, David] Univ Calif Los Angeles, Dept Chem & Biochem, DOE Inst Genom & Prote, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Dept Biol Chem, DOE Inst Genom & Prote, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, DOE Inst Genom & Prote, Howard Hughes Med Inst, 201A Boyer Hall,611 Charles Young Dr E, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu OI Sawaya, Michael/0000-0003-0874-9043 FU DOE-BER [DE-FC03-02ER63421]; NIH National Institute for Aging [1R01 AG029430]; NSF [MCB-0445429] FX Grant sponsor: DOE-BER grant number: DE-FC03-02ER63421; NIH National Institute for Aging grant number: 1R01 AG029430; NSF grant number: MCB-0445429. NR 55 TC 16 Z9 16 U1 1 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JAN PY 2012 VL 21 IS 1 BP 26 EP + DI 10.1002/pro.754 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869IW UT WOS:000298592600001 PM 22095666 ER PT J AU Adhikari, AN Peng, J Wilde, M Xu, JB Freed, KF Sosnick, TR AF Adhikari, Aashish N. Peng, Jian Wilde, Michael Xu, Jinbo Freed, Karl F. Sosnick, Tobin R. TI Modeling large regions in proteins: Applications to loops, termini, and folding SO PROTEIN SCIENCE LA English DT Article DE long loops; insertions; loop modeling; local protein structure prediction; molecular replacement ID STRUCTURE PREDICTION; STRUCTURE REFINEMENT; SECONDARY STRUCTURES; TRANSITION-STATE; PSI-ANALYSIS; CLOSURE; ALGORITHM; ACCURACY; ENERGY; CONFORMATIONS AB Template-based methods for predicting protein structure provide models for a significant portion of the protein but often contain insertions or chain ends (InsEnds) of indeterminate conformation. The local structure prediction problem entails modeling the InsEnds onto the rest of the protein. A well-known limit involves predicting loops of =12 residues in crystal structures. However, InsEnds may contain as many as similar to 50 amino acids, and the template-based model of the protein itself may be imperfect. To address these challenges, we present a free modeling method for predicting the local structure of loops and large InsEnds in both crystal structures and template-based models. The approach uses single amino acid torsional angle pivot moves of the protein backbone with a C beta level representation. Nevertheless, our accuracy for loops is comparable to existing methods. We also apply a more stringent test, the blind structure prediction and refinement categories of the CASP9 tournament, where we improve the quality of several homology based models by modeling InsEnds as long as 45 amino acids, sizes generally inaccessible to existing loop prediction methods. Our approach ranks as one of the best in the CASP9 refinement category that involves improving template-based models so that they can function as molecular replacement models to solve the phase problem for crystallographic structure determination. C1 [Sosnick, Tobin R.] Univ Chicago, Dept Biochem & Mol Biol, Inst Biophys Dynam, Computat Inst, Chicago, IL 60637 USA. [Freed, Karl F.; Sosnick, Tobin R.] Argonne Natl Lab, Chicago, IL 60637 USA. [Peng, Jian; Xu, Jinbo] Toyota Technol Inst, Chicago, IL 60637 USA. [Adhikari, Aashish N.; Freed, Karl F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Adhikari, Aashish N.; Freed, Karl F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Sosnick, TR (reprint author), Univ Chicago, Dept Biochem & Mol Biol, Inst Biophys Dynam, Computat Inst, 920 E 58Th St, Chicago, IL 60637 USA. EM freed@uchicago.edu; trsosnic@uchicago.edu FU NIH [GM081642, GM55694]; University of Chicago-Argonne National Laboratory, U.S. Department of Energy [DE-AC02-06CH11357]; NSF [OCI-721939, OCI-0944332, OCI-1007115, DBI-0960390] FX Grant sponsor: NIH; Grant numbers: GM081642, GM55694; Grant sponsor: The University of Chicago-Argonne National Laboratory Seed Grant Program, U.S. Department of Energy; Grant number: DE-AC02-06CH11357; Grant sponsor: NSF; Grant numbers: OCI-721939, OCI-0944332, OCI-1007115; Grant Sponsor: NSF; Grant number: DBI-0960390 NR 43 TC 10 Z9 10 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JAN PY 2012 VL 21 IS 1 BP 107 EP 121 DI 10.1002/pro.767 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869IW UT WOS:000298592600010 PM 22095743 ER PT J AU Mills, A Wiser, R Porter, K AF Mills, Andrew Wiser, Ryan Porter, Kevin TI The cost of transmission for wind energy in the United States: A review of transmission planning studies SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Wind energy; Transmission cost; Meta-analysis ID ELECTRICITY; STORAGE AB Rapid development of wind capacity in the United States has been coupled with a concern that increasing wind capacity will require substantial transmission infrastructure. This report summarizes the implied transmission cost per kW of wind from a sample of 40 transmission studies. This sample of studies, completed from 2001 to 2008, covers a broad geographic area across the U.S. The primary goal in the review is to develop a better understanding of the transmission costs needed to access increasing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches, in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. The total range in transmission costs per kW of wind implicit in the study sample is vast - ranging from $0/kW to over $1500/kW. The median cost of transmission from all scenarios in the sample is $300/kW, roughly 15-20% of the cost of building a wind project. The median cost of transmission is near the upper end of the range implied by two higher-level assessments of transmission required to provide 20% wind electricity in the U.S. by 2030. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Mills, Andrew; Wiser, Ryan] Ernest Orlando Lawrence Berkeley Natl Lab, Orlando, FL USA. RP Mills, A (reprint author), 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM ADMills@lbl.gov RI Mills, Andrew/B-3469-2016 OI Mills, Andrew/0000-0002-9065-0458 FU Office of Energy Efficiency and Renewable Energy; Office of Electricity Delivery and Energy Reliability (Permitting, Siting and Analysis Division) of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy; National Renewable Energy Laboratory FX The work described in this article was funded by the Office of Energy Efficiency and Renewable Energy (Wind & Hydropower Technologies Program) and by the Office of Electricity Delivery and Energy Reliability (Permitting, Siting and Analysis Division) of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. We would particularly like to thank Steve Lindenberg, Larry Mansueti, and Patrick Gilman of the U.S. Department of Energy, and Brian Parsons of the National Renewable Energy Laboratory, for their support of this work. We thank numerous reviewers and colleagues for their help throughout this project. NR 37 TC 10 Z9 11 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD JAN PY 2012 VL 16 IS 1 BP 1 EP 19 DI 10.1016/j.rser.2011.07.131 PG 19 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 871UZ UT WOS:000298764500001 ER PT J AU Leu, LC Bian, JJ Gout, D Letourneau, S Ubic, R AF Leu, Lii-Cherng Bian, Jianjiang Gout, Delphine Letourneau, Steve Ubic, Rick TI Order-disorder transition in the (1-x)Li2TiO3-xMgO system (0 <= x <= 0.5) SO RSC ADVANCES LA English DT Article ID ROCK-SALT STRUCTURE; SHORT-RANGE ORDER; LI2TIO3 PEBBLES; LITHIUM BATTERIES; CATHODE MATERIALS; METAL CARBIDES; NACL STRUCTURE; REFINEMENT; ELECTRODES; NITRIDES AB The order-disorder phase transition of magnesium lithium titanate solid-solution (1-x)Li2TiO3-xMgO (0 <= x <= 0.5) ceramics prepared by conventional solid-state processing has been examined. The phase and structural analysis was carried out using electron diffraction, neutron diffraction and high-resolution transmission electron microscopy. Both electron and neutron diffraction results revealed the onset of an order-to-disorder transition at 0.3 < x < 0.4. Superlattice reflections found in certain regions of x = 0.2 samples and most areas of x = 0.3 samples were caused by a twin structure stabilized by Mg incorporation. Rietveld refinements of neutron diffraction data suggested a random distribution of Mg on the Li 4e sites and equal distribution of Mg on the two Ti 4e sites for x <= 0.3. As the Mg content continues to increase, the crystal symmetry transforms from monoclinic to cubic rocksalt. Consequently, the cation ordering on the 8f and 4d sites of the C2/c structure became corrupted and turned into short-range ordering on the 4a sites of a cubic structure with Fm (3) over barm symmetry, resulting in diffuse scattering in electron diffraction patterns. C1 [Leu, Lii-Cherng; Letourneau, Steve; Ubic, Rick] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Gout, Delphine] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Bian, Jianjiang] Shanghai Univ, Dept Inorgan Mat, Shanghai 200444, Peoples R China. [Gout, Delphine] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Gout, Delphine] Forschungszentrum Juelich, Juelich Ctr Neutron Sci SNS, D-52425 Julich, Germany. RP Leu, LC (reprint author), Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. EM danielleu@boisestate.edu FU US Agency for International Development; National Academy of Sciences [PGA-P280420]; National Science Foundation of China (NSFC) [50872081]; National Science Foundation [0521315] FX This work has been supported by the US Agency for International Development and the National Academy of Sciences under the Pakistan-US Science, and Technology Cooperative Program, Award No. PGA-P280420 and the National Science Foundation of China (NSFC), Award No. 50872081. Additional support from the National Science Foundation Major Research Instrumentation Program, Award No. 0521315, is also gratefully acknowledged. NR 36 TC 4 Z9 4 U1 2 U2 35 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2012 VL 2 IS 4 BP 1598 EP 1604 DI 10.1039/c1ra00677k PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 884HK UT WOS:000299695300052 ER PT J AU Zayas, JR AF Zayas, Jose R. TI Empowering Deployments Of Marine Renewables in the US SO SEA TECHNOLOGY LA English DT Article C1 US DOE, Wind & Water Power Program, Off Energy Efficiency & Renewable Energy, Washington, DC 20585 USA. RP Zayas, JR (reprint author), US DOE, Wind & Water Power Program, Off Energy Efficiency & Renewable Energy, Washington, DC 20585 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU COMPASS PUBLICATIONS, INC PI ARLINGTON PA 1501 WILSON BLVD., STE 1001, ARLINGTON, VA 22209-2403 USA SN 0093-3651 J9 SEA TECHNOL JI Sea Technol. PD JAN PY 2012 VL 53 IS 1 BP 24 EP 26 PG 3 WC Engineering, Ocean SC Engineering GA 886JN UT WOS:000299850800009 ER PT J AU Al-Amri, A Harris, D Fnais, M Rodgers, A Hemaida, M AF Al-Amri, Abdullah Harris, David Fnais, Mohammed Rodgers, Arthur Hemaida, Moustafa TI A Regional Seismic Array of Three-Component Stations in Central Saudi Arabia SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Article ID UPPER-MANTLE STRUCTURE; CRUSTAL STRUCTURE; P-WAVE; SHIELD; PLATFORM; BENEATH; ATTENUATION; PLATE C1 [Rodgers, Arthur] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Dept, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Hemaida, Moustafa] King Abdulaziz City Sci & Technol, Res Inst Petr & Gas, Riyadh, Saudi Arabia. [Harris, David] Deschutes Signal Proc LLC, Maupin, OR USA. [Al-Amri, Abdullah; Fnais, Mohammed] King Saud Univ, Dept Geol, Riyadh, Saudi Arabia. RP Rodgers, A (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Dept, Atmospher Earth & Energy Div, 7000 East Ave, Livermore, CA 94551 USA. EM rodgers7@llnl.gov RI Rodgers, Arthur/E-2443-2011 FU National Strategy Plan for Science, Technology and Innovation at KACST [08-ENV516-2]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL [LLNL-JRNL-482791] FX The authors would like to express their thanks and gratitude to the National Strategy Plan for Science, Technology and Innovation at KACST for funding this project (Grant no. 08-ENV516-2). We extend our sincerest thanks to Mr. Fahad Al-Omairah and Ahmad Rabea of King Saud University for supervising construction of the array stations. We thank Michael Pasyanos for comments on the manuscript. This work performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL contribution LLNL-JRNL-482791. NR 25 TC 0 Z9 0 U1 0 U2 2 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0895-0695 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD JAN-FEB PY 2012 VL 83 IS 1 BP 49 EP 58 DI 10.1785/gssrl.83.1.49 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 881MO UT WOS:000299491000006 ER PT J AU Ratnaweera, DR Shrestha, UM Osti, N Kuo, CM Clarson, S Littrell, K Perahia, D AF Ratnaweera, Dilru R. Shrestha, Umesh M. Osti, Naresh Kuo, Chung-Mien Clarson, Stephen Littrell, Ken Perahia, Dvora TI Self-assembly of a semi-fluorinated diblock copolymer in a selective solvent SO SOFT MATTER LA English DT Article ID SMALL-ANGLE NEUTRON; EXCLUDED-VOLUME INTERACTIONS; BLOCK-COPOLYMER; MICELLAR STRUCTURES; FORM-FACTORS; SCATTERING; TEMPERATURE; STABILITY; BEHAVIOR; LIQUID AB The self-assembly of a highly incompatible siloxane containing semi-fluorinated diblock copolymer, polytrifluoro propyl methylsiloxane-b-polystyrene (SiF-PS), in toluene, a selective solvent for polystyrene, was studied using Small Angle Neutron Scattering. Incompatibility is often enhanced by inserting fluorinated segments into one of the blocks and as a result not only the interchain interactions are changed but also the rigidity of the blocks. Herein the incorporation of siloxane into the backbone of a semi-fluorinated block maintains its flexibility and allows separation of the effects of direct interactions due to fluorine atoms from those of rigidity. Measurements were carried out in dilute solutions below 1 wt%, at volume fractions phi(SiF) ranging from 0.0 to 0.5. The high incompatibility of the SiF block drives aggregation at low volume fractions of the SiF block, where spherical core-Gaussian shell aggregates are detected at phi(SiF) = 0.16. In the symmetric SiF-PS complex fluid, elongated micelles were observed. The micelles exhibited unique temperature stability in comparison with the aggregates formed by diblock-copolymers in the lower segregation regime. As the temperature increases the micelles dissociate into free chains to form unimolecular micelles. C1 [Ratnaweera, Dilru R.; Shrestha, Umesh M.; Osti, Naresh; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Kuo, Chung-Mien; Clarson, Stephen] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Littrell, Ken] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Perahia, D (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM dperahi@clemson.edu RI Littrell, Kenneth/D-2106-2013; Osti, Naresh/B-3413-2016 OI Littrell, Kenneth/0000-0003-2308-8618; Osti, Naresh/0000-0002-0213-2299 FU NSF [DMR-0907390]; Department of Energy (D.O.E.) FX We gratefully acknowledge the support of NSF DMR-0907390. We acknowledge the CG2 beam line at HFIR Oak Ridge National Laboratory and the FP10 beam line at Los Alamos National Laboratory for providing the beam time to complete these experiments and Department of Energy (D.O.E.) for financial support. NR 38 TC 2 Z9 2 U1 1 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X J9 SOFT MATTER JI Soft Matter PY 2012 VL 8 IS 7 BP 2176 EP 2184 DI 10.1039/c2sm06117a PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 881IQ UT WOS:000299477300013 ER PT J AU Wagner, RJ Kaye, MW Abrams, MD Hanson, PJ Martin, M AF Wagner, Rebekah J. Kaye, Margot W. Abrams, Marc D. Hanson, Paul J. Martin, Madhavi TI TREE-RING GROWTH AND WOOD CHEMISTRY RESPONSE TO MANIPULATED PRECIPITATION VARIATION FOR TWO TEMPERATE QUERCUS SPECIES SO TREE-RING RESEARCH LA English DT Article DE dendroecology; global change; LIBS; nutrients; oak; Quercus ID CLIMATE-CHANGE; THROUGHFALL MANIPULATION; WATER-USE; DROUGHT; FOREST; SPECTROSCOPY; ECOSYSTEMS; CARBON; WET; OAK AB We examined the relationship among ambient and manipulated precipitation, wood chemistry, and their relationship with radial growth for two oak species in eastern Tennessee. The study took place on the Walker Branch Throughfall Displacement Experiment (TDE) site, located at the Oak Ridge National Laboratory in Oak Ridge, TN. Two dominant species, white oak (Quercus alba) and chestnut oak (Ouercus prinus), were selected for study from a 13-year experiment of whole-stand precipitation manipulation (wet, ambient and dry). The relationships between tree-ring width and climate were compared for both species to determine the impact of precipitation manipulations on ring width index. This study used experimental spectroscopy techniques to measure the sensitivity of treering responses to directional changes in precipitation over 13 years, and the results suggest that oaks at this study site are resilient to imposed changes, but sensitive to inter-annual variations in climate. Laser-induced breakdown spectroscopy (LIBS) allowed us to measure nutrient intensities (similar to element concentrations) at 0.5-1.0 mm spacing along the radial growth axis of trees growing in the wet, ambient, and dry treatment sites. A difference in stemwood nutrient levels was observed between the two oak species and among the three treatments. Significant variation in element intensity was observed across treatments for some elements (Ca, K, Mg, Na, N and P) suggesting the potential for long-term impacts on growth under a changing climate regimes for southeastern oaks. C1 [Wagner, Rebekah J.; Kaye, Margot W.; Abrams, Marc D.] Penn State Univ, Sch Forest Resources, University Pk, PA 16802 USA. [Hanson, Paul J.; Martin, Madhavi] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Wagner, RJ (reprint author), Penn State Univ, Sch Forest Resources, Forest Resources Bldg, University Pk, PA 16802 USA. EM rjw253@psu.edu RI Hanson, Paul J./D-8069-2011; Young, Kristina/M-3069-2014; OI Hanson, Paul J./0000-0001-7293-3561; Martin, Madhavi/0000-0002-6677-2180 FU Office of Science, Biological and Environmental Research (BER) US Department of Energy (DOE) FX For assistance with the fieldwork we thank Christine Shook and Sarah Johnson. Support was provided by the Office of Science, Biological and Environmental Research (BER) Program, US Department of Energy (DOE) as a part of the Program for Ecosystem Research. NR 37 TC 3 Z9 3 U1 3 U2 27 PU TREE-RING SOC PI TUCSON PA UNIV ARIZONA, TREE-RING LABORATORY, BLDG 58, TUCSON, AZ 85721 USA SN 1536-1098 J9 TREE-RING RES JI Tree-Ring Res. PY 2012 VL 68 IS 1 BP 17 EP 29 PG 13 WC Forestry SC Forestry GA 882RO UT WOS:000299581800002 ER PT J AU Person, M Butler, D Gable, CW Villamil, T Wavrek, D Schelling, D AF Person, Mark Butler, David Gable, Carl W. Villamil, Tomas Wavrek, David Schelling, Daniel TI Hydrodynamic stagnation zones: A new play concept for the Llanos Basin, Colombia SO AAPG BULLETIN LA English DT Article ID CANADA SEDIMENTARY BASIN; GROUNDWATER-FLOW; FLUID PRESSURES; PETROLEUM MIGRATION; EASTERN CORDILLERA; THERMAL HISTORY; CUSIANA FIELD; ILANOS BASIN; ORE-DEPOSITS; FOOTHILLS AB Hydraulic heads from a calibrated, three-dimensional, constant-density, ground-water-flow model were used to compute Hubbert oil potentials and infer secondary petroleum migration directions within the Llanos Basin, Colombia. The oil potentials for the C7 reservoir show evidence of the development of two hydrodynamic stagnation zones. Hydrodynamic effects on secondary oil migration are greatest in the eastern Llanos Basin, where structural slopes are lowest and local hydraulic-head gradients drive ground-water flow westward down structural dip. The Rubiales field, a large oil reservoir within the eastern Llanos Basin with no structural closure, is located at the edge of one of these stagnation zones. This oil field hosts heavy oils (12 degrees API) consistent with water washing and biodegradation. The best agreement between model results and field conditions occurred in an oil density of 12 degrees API, suggesting that the Rubiales field position is in dynamic equilibrium with modern hydraulic and oil density conditions. Cross sectional ground-water-flow models indicate that the most likely explanation of observed underpressures are caused by hydrodynamic effects associated with a topography-driven flow system. Late Miocene to present-day ground-water flow likely was an important factor in flushing marine connate porewaters from Tertiary reservoirs. Ground-water recharge along the western margin of the basin could help explain the observed low-temperature gradients (20 degrees C/km). However, upward flow rates were not high enough to account for elevated temperature gradients of 50 degrees C/km to the east. C1 [Person, Mark] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Butler, David] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87545 USA. [Gable, Carl W.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Wavrek, David] Petr Syst Int Inc, Salt Lake City, UT 84111 USA. [Schelling, Daniel] Struct Geol Int Inc, Salt Lake City, UT 84103 USA. RP Person, M (reprint author), New Mexico Inst Min & Technol, Dept Earth & Environm Sci, 801 Leroy Pl, Socorro, NM 87801 USA. EM markaustinperson@gmail.com; dbutler@nmt.edu; gable@lanl.gov; tvillamil@ccenergy.com.co; dwavrek@petroleumsystems.com; dschelling@comcast.net OI Gable, Carl/0000-0001-7063-0815 NR 50 TC 10 Z9 14 U1 2 U2 9 PU AMER ASSOC PETROLEUM GEOLOGIST PI TULSA PA 1444 S BOULDER AVE, PO BOX 979, TULSA, OK 74119-3604 USA SN 0149-1423 J9 AAPG BULL JI AAPG Bull. PD JAN PY 2012 VL 96 IS 1 BP 23 EP 41 DI 10.1306/08101111019 PG 19 WC Geosciences, Multidisciplinary SC Geology GA 879TN UT WOS:000299355200002 ER PT J AU Torres, R Chim, N Sankaran, B Pujol, C Bliska, JB Goulding, CW AF Torres, Rodrigo Chim, Nicholas Sankaran, Banumathi Pujol, Celine Bliska, James B. Goulding, Celia W. TI Structural insights into RipC, a putative citrate lyase ss subunit from a Yersinia pestis virulence operon SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE RipC; citrate lyase ss subunit; Yersinia pestis ID MALATE SYNTHASE; NITRIC-OXIDE; MYCOBACTERIUM-TUBERCULOSIS; KLEBSIELLA-PNEUMONIAE; PREDICTION AB Yersinia pestis remains a threat, with outbreaks of plague occurring in rural areas and its emergence as a weapon of bioterrorism; thus, an improved understanding of its various pathogenicity pathways is warranted. The rip (required for intracellular proliferation) virulence operon is required for Y. pestis survival in interferon-?-treated macrophages and has been implicated in lowering macrophage-produced nitric oxide levels. RipC, one of three gene products from the rip operon, is annotated as a citrate lyase beta subunit. Furthermore, the Y. pestis genome lacks genes that encode citrate lyase alpha and gamma subunits, suggesting a unique functional role of RipC in the Y. pestisrip-mediated survival pathway. Here, the 2.45 angstrom resolution crystal structure of RipC revealed a homotrimer in which each monomer consists of a (beta/alpha)(8) TIM-barrel fold. Furthermore, the trimeric state was confirmed in solution by size-exclusion chromatography. Through sequence and structure comparisons with homologous proteins, it is proposed that RipC is a putative CoA- or CoA-derivative binding protein. C1 [Torres, Rodrigo; Chim, Nicholas; Goulding, Celia W.] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Pujol, Celine; Bliska, James B.] SUNY Stony Brook, Dept Mol Genet & Microbiol, Stony Brook, NY 11794 USA. [Pujol, Celine; Bliska, James B.] SUNY Stony Brook, Ctr Infect Dis, Stony Brook, NY 11794 USA. [Goulding, Celia W.] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA. RP Goulding, CW (reprint author), Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. EM celia.goulding@uci.edu FU National Institutes of Health [AI-65359]; Northeast Biodefense Center [U54-AI057158-Lipkin, AI055621]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by grants from the National Institutes of Health (PSWRCE award AI-65359, PI: Alan Barbour, subaward to CWG and Northeast Biodefense Center U54-AI057158-Lipkin, and AI055621 awarded to JBB). The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 5 Z9 5 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JAN PY 2012 VL 68 BP 2 EP 7 DI 10.1107/S1744309111048056 PN 1 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 874JC UT WOS:000298951400002 PM 22232161 ER PT J AU Tomanicek, SJ Johs, A Sawhney, MS Shi, L Liang, L AF Tomanicek, S. J. Johs, A. Sawhney, M. S. Shi, L. Liang, L. TI Crystallization and preliminary X-ray crystallographic studies of the outer membrane cytochrome OmcA from Shewanella oneidensis MR-1 SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE dissimilatory metal-reducing bacteria; outer membrane decaheme c-type cytochrome; OmcA ID C-TYPE CYTOCHROMES; ELECTRON CONDUIT; REDUCTION; IRON; RESPIRATION; GEOBACTER; MANGANESE; OXIDE AB The outer membrane cytochrome OmcA functions as a terminal metal reductase in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The ten-heme centers shuttle electrons from the transmembrane donor complex to extracellular electron acceptors. Here, the crystallization and preliminary crystallographic analysis of OmcA are reported. Crystals of OmcA were grown by the sitting-drop vapor-diffusion method using PEG 20 000 as a precipitant. The OmcA crystals belonged to space group P21, with unit-cell parameters a = 93.0, b = 246.0, c = 136.6 angstrom, alpha = 90, beta = 97.8, gamma = 90 degrees. X-ray diffraction data were collected to a maximum resolution of 3.25 angstrom. C1 [Tomanicek, S. J.; Johs, A.; Sawhney, M. S.; Liang, L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Shi, L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tomanicek, SJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM tomaniceksj@ornl.gov RI Johs, Alexander/F-1229-2011; Liang, Liyuan/O-7213-2014 OI Johs, Alexander/0000-0003-0098-2254; Liang, Liyuan/0000-0003-1338-0324 FU Office of Biological and Environmental Research, US Department of Energy (DOE) through Oak Ridge National Laboratory (ORNL); DOE [DE-AC05-00OR22725]; Battelle Memorial Institute [DE-AC05-76RLO1380]; US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; National Institutes of Health, National Center for Research Resources [RR007707] FX This research was supported by the Office of Biological and Environmental Research, US Department of Energy (DOE) through the Mercury Science Focus Area Program at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC for DOE under contract No. DE-AC05-00OR22725. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract No. DE-AC05-76RLO1380. We wish to thank Dr Anna Gardberg for her early efforts in conducting crystal diffraction work and we also thank Dr B. Leif Hanson and Dr Timothy C. Mueser for helpful discussions. We are grateful to the staff at APS BioCARS for their assistance in data collection. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science under Contract No. DE-AC02-06CH11357. Use of BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources under grant No. RR007707. NR 20 TC 0 Z9 0 U1 0 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JAN PY 2012 VL 68 BP 53 EP 55 DI 10.1107/S1744309111046082 PN 1 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 874JC UT WOS:000298951400012 PM 22232171 ER PT J AU Zhang, YF Gao, XL AF Zhang, Yanfeng Gao, Xiaoli TI Expression, purification, crystallization and preliminary X-ray crystallographic analysis of l-lactate dehydrogenase and its H171C mutant from Bacillus subtilis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE l-lactate dehydrogenase; fructose 1; 6-bisphosphate; NADH; NAD plus binding ID TERNARY COMPLEX; RESOLUTION; STEAROTHERMOPHILUS; STATE AB l-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to l-lactate with the simultaneous oxidation of NADH to NAD+. In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD+ and the crystal diffracted to 2.38 angstrom resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 angstrom. BsLDH-H171C was also crystallized as the apoenzyme and in complex with NAD+, and data sets were collected to 2.20 and 2.49 angstrom resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 angstrom and a = b = 133.43, c = 99.09 angstrom, respectively. Tetramers were observed in the asymmetric units of all three crystals. C1 [Zhang, Yanfeng; Gao, Xiaoli] Michigan State Univ, Grad Program Genet, E Lansing, MI 48824 USA. RP Zhang, YF (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, Richland, WA 99352 USA. EM zhangy11@msu.edu FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Michigan Economic Development Corporation; Michigan Technology Tri-Corridor [085P1000817] FX This work was performed at the Department of Biochemistry and Molecular Biology, Michigan State University. We would like to thank Dr R. Michael Garavito for helpful guidance and advice on this work and Amy Scharmen for construction of the H171C mutant and technical assistance in purification and crystallization of the wild-type BsLDH protein. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. The LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817). We would like to thank Drs David Smith and Spencer Anderson for their assistance in X-ray data collection. NR 15 TC 0 Z9 0 U1 3 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JAN PY 2012 VL 68 BP 63 EP 65 DI 10.1107/S1744309111048111 PN 1 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 874JC UT WOS:000298951400015 PM 22232174 ER PT J AU Bruhn, S Barrenas, F Mobini, R Andersson, BA Chavali, S Egan, BS Hovig, E Sandve, GK Langston, MA Rogers, G Wang, H Benson, M AF Bruhn, S. Barrenas, F. Mobini, R. Andersson, B. A. Chavali, S. Egan, B. S. Hovig, E. Sandve, G. K. Langston, M. A. Rogers, G. Wang, H. Benson, M. TI Increased expression of IRF4 and ETS1 in CD4+ cells from patients with intermittent allergic rhinitis SO ALLERGY LA English DT Article DE Allergy; transcription factor ID INTERFERON REGULATORY FACTOR-4; ATTENUATES TH1 DIFFERENTIATION; T-CELLS; TRANSCRIPTION FACTORS; GENE-EXPRESSION; INTERLEUKIN-4; RESPONSES; RECEPTOR; ASTHMA; PHOSPHORYLATION AB Background: The transcription factor (TF) IRF4 is involved in the regulation of Th1, Th2, Th9, and Th17 cells, and animal studies have indicated an important role in allergy. However, IRF4 and its target genes have not been examined in human allergy. Methods: IRF4 and its target genes were examined in allergen-challenged CD4+ cells from patients with IAR, using combined gene expression microarrays and chromatin immunoprecipitation chips (ChIP-chips), computational target prediction, and RNAi knockdowns. Results: IRF4 increased in allergen-challenged CD4+ cells from patients with IAR, and functional studies supported its role in Th2 cell activation. IRF4 ChIP-chip showed that IRF4 regulated a large number of genes relevant to Th cell differentiation. However, neither Th1 nor Th2 cytokines were the direct targets of IRF4. To examine whether IRF4 induced Th2 cytokines via one or more downstream TFs, we combined gene expression microarrays, ChIP-chips, and computational target prediction and found a putative intermediary TF, namely ETS1 in allergen-challenged CD4+ cells from allergic patients. ETS1 increased significantly in allergen-challenged CD4+ cells from patients compared to controls. Gene expression microarrays before and after ETS1 RNAi knockdown showed that ETS1 induced Th2 cytokines as well as disease-related pathways. Conclusions: Increased expression of IRF4 in allergen-challenged CD4+ cells from patients with intermittent allergic rhinitis leads to activation of a complex transcriptional program, including Th2 cytokines. C1 [Bruhn, S.; Barrenas, F.; Mobini, R.; Wang, H.; Benson, M.] Linkoping Univ Hosp, Ctr Individualized Medicat, S-58185 Linkoping, Sweden. [Andersson, B. A.] Sahlgrens Univ Hosp, Dept Clin Immunol & Transfus Med, Gothenburg, Sweden. [Chavali, S.] MRC Lab Mol Biol, Struct Studies Div, Cambridge, England. [Egan, B. S.] Genepathway Inc, San Diego, CA USA. [Hovig, E.] Norwegian Radium Hosp, Inst Canc Res, Dept Tumor Biol, Oslo, Norway. [Hovig, E.] Oslo Univ Hosp, Rikshosp, Inst Med Informat, Oslo, Norway. [Hovig, E.; Sandve, G. K.] Univ Oslo, Dept Informat, N-0316 Oslo, Norway. [Langston, M. A.; Rogers, G.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN USA. [Langston, M. A.; Rogers, G.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Benson, M.] Queen Silvia Childrens Hosp, Unit Pediat Allergol, Gothenburg, Sweden. RP Benson, M (reprint author), Linkoping Univ Hosp, Ctr Individualized Medicat, S-58185 Linkoping, Sweden. EM mikael.benson@liu.se RI Hovig, Eivind/H-2474-2011 OI Hovig, Eivind/0000-0002-9103-1077 FU European Commission [223367]; MultiMod; Swedish Medical Research Council; US National Institutes of Health [P01-DA-015027-01, R01-MH-074460-01, U01-AA-013512, U01-AA-013641-04]; US Department of Energy under the EPSCoR Laboratory FX We thank Jorgen Nedergaard Larsen of ALK-Abello for providing allergen extract. This research has been supported by the European Commission under the Seventh Framework Programme, grant agreement number 223367, MultiMod, the Swedish Medical Research Council and by the US National Institutes of Health under grants P01-DA-015027-01, R01-MH-074460-01, U01-AA-013512, and U01-AA-013641-04, by the US Department of Energy under the EPSCoR Laboratory Partnership Program. NR 32 TC 9 Z9 11 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0105-4538 J9 ALLERGY JI Allergy PD JAN PY 2012 VL 67 IS 1 BP 33 EP 40 DI 10.1111/j.1398-9995.2011.02707.x PG 8 WC Allergy; Immunology SC Allergy; Immunology GA 860BN UT WOS:000297921100007 PM 21919915 ER PT J AU Zhu, D Schubert, MF Cho, J Schubert, EF Crawford, MH Koleske, DD Shim, H Sone, C AF Zhu, Di Schubert, Martin F. Cho, Jaehee Schubert, E. Fred Crawford, Mary H. Koleske, Daniel D. Shim, Hyunwook Sone, Cheolsoo TI Genetic Algorithm for Innovative Device Designs in High-Efficiency III-V Nitride Light-Emitting Diodes SO APPLIED PHYSICS EXPRESS LA English DT Article ID NEAR-ULTRAVIOLET; OPTIMIZATION AB Light-emitting diodes are becoming the next-generation light source because of their prominent benefits in energy efficiency, versatility, and benign environmental impact. However, because of the unique polarization effects in III-V nitrides and the high complexity of light-emitting diodes, further breakthroughs towards truly optimized devices are required. Here we introduce the concept of artificial evolution into the device optimization process. Reproduction and selection are accomplished by means of an advanced genetic algorithm and device simulator, respectively. We demonstrate that this approach can lead to new device structures that go beyond conventional approaches. The innovative designs originating from the genetic algorithm and the demonstration of the predicted results by implementing structures suggested by the algorithm establish a new avenue for complex semiconductor device design and optimization. (C) 2012 The Japan Society of Applied Physics C1 [Zhu, Di; Schubert, Martin F.; Cho, Jaehee; Schubert, E. Fred] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. [Crawford, Mary H.; Koleske, Daniel D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Shim, Hyunwook; Sone, Cheolsoo] Samsung LED, R&D Inst, Suwon 443744, Gyeonggi, South Korea. RP Cho, J (reprint author), Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. EM choj6@rpi.edu RI Cho, Jaehee/H-3506-2013 OI Cho, Jaehee/0000-0002-8794-3487 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Sandia National Laboratories; Samsung LED; National Science Foundation; US DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX The contributions including epitaxial growth of LED wafers by Sandia's Solid-State Lighting Science Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, are greatly appreciated. The RPI authors gratefully acknowledge the support from Sandia National Laboratories, Samsung LED, and National Science Foundation. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 12 TC 5 Z9 5 U1 0 U2 11 PU JAPAN SOC APPLIED PHYSICS PI TOKYO PA KUDAN-KITA BUILDING 5TH FLOOR, 1-12-3 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 1882-0778 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD JAN PY 2012 VL 5 IS 1 AR 012102 DI 10.1143/APEX.5.012102 PG 3 WC Physics, Applied SC Physics GA 879EL UT WOS:000299312400010 ER PT J AU Riss, PJ Hooker, JM Shea, C Xu, YW Carter, P Warner, D Ferrari, V Kim, SW Aigbirhio, FI Fowler, JS Roesch, F AF Riss, Patrick J. Hooker, Jacob M. Shea, Colleen Xu, Youwen Carter, Pauline Warner, Donald Ferrari, Valentina Kim, Sung-Won Aigbirhio, Franklin I. Fowler, Joanna S. Roesch, Frank TI Characterisation of [C-11]PR04.MZ in Papio anubis baboon: A selective high-affinity radioligand for quantitative imaging of the dopamine transporter SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE Dopamine transporter; PET imaging; Carbon-11; Non-human primates ID IN-VIVO; PHARMACOLOGICAL CHARACTERIZATION; MONOAMINE TRANSPORTERS; GRAPHICAL ANALYSIS; PET DATA; BRAIN; BINDING; COCAINE; LIGAND AB N-(4-fluorobut-2-yn-1-yl)-2 beta-carbomethoxy-3 beta-(4'-tolyl) nortropane (PR04.MZ, 1) is a PET radioligand for the non-invasive exploration of the function of the cerebral dopamine transporter (DAT). A reliable automated process for routine production of the carbon-11 labelled analogue [C-11]PR04.MZ ([C-11]-1) has been developed using GMP compliant equipment. An adult female Papio anubis baboon was studied using a test-retest protocol with [C-11]-1 in order to assess test-retest reliability, metabolism and CNS distribution profile of the tracer in non-human primates. Blood sampling was performed throughout the studies for determination of the free fraction in plasma (f(P)), plasma input functions and metabolic degradation of the radiotracer [C-11]-1. Time-activity curves were derived for the putamen, the caudate nucleus, the ventral striatum, the midbrain and the cerebellum. Distribution volumes (V-T) and non-displaceable binding potentials (BPND) for various brain regions and the blood were obtained from kinetic modelling. [C-11]-1 shows promising results as a selective marker of the presynaptic dopamine transporter. With the reliable visualisation of the extra-striatal dopaminergic neurons and no indication on labelled metabolites, the tracer provides excellent potential for translation into man. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Riss, Patrick J.; Roesch, Frank] Johannes Gutenberg Univ Mainz, Inst Nucl Chem, D-55128 Mainz, Germany. [Riss, Patrick J.; Ferrari, Valentina; Aigbirhio, Franklin I.] Univ Cambridge, Wolfson Brain Imaging Ctr, Dept Clin Neurosci, Cambridge CB2 0QQ, England. [Hooker, Jacob M.; Shea, Colleen; Xu, Youwen; Carter, Pauline; Warner, Donald; Kim, Sung-Won; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Riss, PJ (reprint author), Johannes Gutenberg Univ Mainz, Inst Nucl Chem, Fritz Strassmann Weg 2, D-55128 Mainz, Germany. EM pr340@wbic.cam.ac.uk OI Hooker, Jacob/0000-0002-9394-7708 FU DFG [Ro 985/21]; US DoE; Fonds der Chemischen Industrie FX This work was supported by the DFG [Ro 985/21], the US DoE and the Fonds der Chemischen Industrie. NR 35 TC 2 Z9 2 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD JAN 1 PY 2012 VL 22 IS 1 BP 679 EP 682 DI 10.1016/j.bmcl.2011.10.053 PG 4 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 869YQ UT WOS:000298636700133 PM 22082561 ER PT J AU Zhang, JZ Grabstanowicz, LR Gao, SM Hosmane, NS Huang, BB Dai, Y Liu, DJ Xu, T AF Zhang, Juzheng Grabstanowicz, Lauren R. Gao, Shanmin Hosmane, Narayan S. Huang, Baibiao Dai, Ying Liu, Di-Jia Xu, Tao TI Visible-light photocatalytic SiO2/TiO2-xCx/C nanoporous composites using TiCl4 as the precursor for TiO2 and polyhydroxyl tannin as the carbon source SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID TITANIUM-DIOXIDE; PHOTOACTIVITY; DEGRADATION; DRIVEN; SILICA; SHELL; NANOSTRUCTURES; CARBONIZATION; NANOPARTICLES; IRRADIATION AB We report an architecturally controlled synthesis of SiO2/TiO2-xCx/C nanoporous composites that exhibit high absorption capability and efficient visible-light photocatalytic activity. The nanoporous composites are composed of silica particles as the cores and TiCl4 as the precursor for the TiO2 shell. Tannin is used as the binding agent between the core and the precursor shell, the carbon source, and the porosity promoter. The structure, crystallinity, morphology, and other physical-chemical properties of the samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microcopy (HRTEM), X-ray photoelectron spectroscopy (XPS), N-2 adsorption-desorption isotherm measurements, UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL). The chemical contents of the SiO2/TiO2-xCx/C nanoporous composites were also analyzed by energy dispersive X-ray spectra (EDX). The formation mechanism of the nanoporous composites was extensively discussed. Methylene blue (MB) solutions were used as model wastewater to evaluate the adsorption and photocatalytic activity of the samples under natural sunlight and visible light. Fourier transform-infrared spectroscopy (FT-IR) and mass spectrometry (MS) were used to investigate the photodegradated species on the photocatalysts and in solution, respectively. The SiO2/TiO2-xCx/C nanoporous composite samples exhibit remarkably enhanced visible-light photoactivity than Degussa P25 and pure TiO2, and can be readily collected for reuse by gravitational sedimentation. C1 [Zhang, Juzheng; Gao, Shanmin] Ludong Univ, Sch Chem & Mat Sci, Yantai 264025, Shandong, Peoples R China. [Grabstanowicz, Lauren R.; Gao, Shanmin; Hosmane, Narayan S.; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Huang, Baibiao; Dai, Ying] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China. [Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhang, JZ (reprint author), Ludong Univ, Sch Chem & Mat Sci, Yantai 264025, Shandong, Peoples R China. EM gaosm@ustc.edu; txu@niu.edu RI Huang, baibiao/C-1857-2008 OI Huang, baibiao/0000-0002-0416-944X FU NIU; U.S. Department of Energy [DE-AC02-06CH11357]; National Basic Research Program of China (973 Program) [2007CB613302]; National Science Foundation [CHE-0906179] FX TX and Liu thank NIU Summer Research and Artistry Grant and the U.S. Department of Energy under contract No. DE-AC02-06CH11357 for financial support. SG is grateful to National Basic Research Program of China (973 Program, Grant 2007CB613302). NSH thanks the support from the National Science Foundation (CHE-0906179). NR 50 TC 9 Z9 9 U1 0 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2012 VL 2 IS 2 BP 390 EP 399 DI 10.1039/c1cy00403d PG 10 WC Chemistry, Physical SC Chemistry GA 878XR UT WOS:000299291000022 ER PT J AU Li, YM Zhu, F Quan, SW Nassiri, A Liu, KX AF Li Yong-Ming Zhu Feng Quan Sheng-Wen Nassiri, Ali Liu Ke-Xin TI The design of a five-cell high-current superconducting cavity SO CHINESE PHYSICS C LA English DT Article DE high current; superconducting cavity; higher order modes AB Energy recovery linacs are promising for achieving high average current with superior beam quality. The key component for accelerating such high-current beams is the superconducting radio-frequency cavity. The design of a 1.3 GHz five-cell high-current superconducting cavity has been carried out under cooperation between Peking University and the Argonne National Laboratory. The radio-frequency properties, damping of the higher order modes, multipacting and mechanical features of this cavity have been discussed and the final design is presented. C1 [Li Yong-Ming; Zhu Feng; Quan Sheng-Wen; Liu Ke-Xin] Peking Univ, Inst Heavy Ion Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Nassiri, Ali] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Li, YM (reprint author), Peking Univ, Inst Heavy Ion Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM zhufeng7726@pku.edu.cn FU National High Technology Research and Development Program 863 [2009AA03Z206] FX Supported by National High Technology Research and Development Program 863 (2009AA03Z206) NR 10 TC 1 Z9 2 U1 0 U2 1 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD JAN PY 2012 VL 36 IS 1 BP 74 EP 79 DI 10.1088/1674-1137/36/1/013 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 876YO UT WOS:000299143900013 ER PT J AU Clerouin, J Starrett, C Noiret, P Renaudin, P Blancard, C Faussurier, G AF Clerouin, J. Starrett, C. Noiret, P. Renaudin, P. Blancard, C. Faussurier, G. TI Pressure and Electrical Resistivity Measurements on Hot Expanded Metals: Comparisons with Quantum Molecular Dynamics Simulations and Average-Atom Approaches SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strongly Coupled Coulomb Systems (SCCS) CY JUL 24-29, 2011 CL Budapest, HUNGARY DE Warm dense matter; average atom; quantum molecular dynamics; electrical conductivities ID CONDUCTIVITY; PLASMAS AB We present experimental results on pressures and resistivities of expanded nickel and titanium at respective densities of 0.1 g/cm3 and 0.2 g/cm3, and in a range of temperature of 1-3 eV that corresponds to the warm dense matter (WDM) regime. These data are used to benchmark different theoretical approaches. A comparison is presented between fully 3-dimensional quantum molecular dynamics (QMD) methods, based on density functional theory, with average-atom (AA) methods, that are essentially one dimensional. AA methods are used to identify interband transitions and photoionization thresholds. In this regime the evaluation of the thermodynamic properties as well as electrical properties is difficult due to the concurrence of density and thermal effects which directly drive the metal-non-metal transition. QMD simulations are also helpful to give a precise estimation of the temperature of experiments which is not directly accessible [1] (c) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) C1 [Clerouin, J.; Noiret, P.; Renaudin, P.; Blancard, C.; Faussurier, G.] CEA, DAM, DIF, F-91297 Arpajon, France. [Starrett, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Clerouin, J (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM jean.clerouin@cea.fr RI Clerouin, jean/D-8528-2015 OI Clerouin, jean/0000-0003-2144-2759 NR 22 TC 7 Z9 7 U1 0 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD JAN PY 2012 VL 52 IS 1 BP 17 EP 22 DI 10.1002/ctpp.201100043 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 877RY UT WOS:000299201300003 ER PT J AU Mithen, JP Daligault, J Gregori, G AF Mithen, J. P. Daligault, J. Gregori, G. TI Molecular Dynamics Simulations for the Shear Viscosity of the One-Component Plasma SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strongly Coupled Coulomb Systems (SCCS) CY JUL 24-29, 2011 CL Budapest, HUNGARY DE Yukawa fluid; one-component plasma; viscosity; transverse current correlation function ID STATISTICAL-MECHANICS; SYSTEMS AB We discuss two methods for determining the shear viscosity of a fluid of particles with Yukawa interaction potential (a one-component plasma). Both methods are based on computing the equilibrium dynamics using large-scale molecular dynamics (MD) simulations. Our MD results illustrate that the hydrodynamic method for computing the shear viscosity is feasible and therefore complements the more widely used method based on the Green-Kubo relation. We expect that in the future our shear viscosity calculations will be used to assist with the interpretation and analysis of x-ray scattering experiments, which could in principle measure this fundamental dynamical quantity ((c) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) C1 [Mithen, J. P.; Gregori, G.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Daligault, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mithen, JP (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM james.mithen@physics.ox.ac.uk FU University of Oxford; EPSRC [EP/G007187/1]; U.S. Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396]; US Department of Energy through LANL/LDRD FX This work was supported by the John Fell Fund at the University of Oxford and by EPSRC grant no. EP/G007187/1. The work of J.D. was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. J.D. and J.P.M. gratefully acknowledge the support of the US Department of Energy through the LANL/LDRD Program for this work. NR 14 TC 6 Z9 6 U1 1 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD JAN PY 2012 VL 52 IS 1 BP 58 EP 61 DI 10.1002/ctpp.201100050 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 877RY UT WOS:000299201300012 ER PT J AU Vasudevan, KV Smith, NA Scott, BL Bennett, BL Muenchausen, RE Gordon, JC AF Vasudevan, Kalyan V. Smith, Nickolaus A. Scott, Brian L. Bennett, Bryan L. Muenchausen, Ross E. Gordon, John C. TI Ionic liquid mediated routes to polydentate oxygen-donor adducts of cerium(III) bromide SO DALTON TRANSACTIONS LA English DT Article ID LANTHANIDE CHLORIDE COMPLEXES; RARE-EARTH IODIDES; CRYSTAL-STRUCTURES; 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE; STRUCTURAL-CHARACTERIZATION; HALIDE-COMPLEXES; DIGLYME; SM; MONONUCLEAR; REACTIVITY AB The preparation of a series of CeBr3 molecular adducts supported by the polydentate oxygen donor ligands diglyme, dimethoxyethane and tetraglyme is reported. The new complexes are characterized structurally by X-ray diffraction and optically by photoluminescence studies. C1 [Vasudevan, Kalyan V.; Gordon, John C.] Los Alamos Natl Lab, Chem Div C IIAC, Los Alamos, NM USA. [Smith, Nickolaus A.; Bennett, Bryan L.; Muenchausen, Ross E.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM USA. [Scott, Brian L.] Los Alamos Natl Lab, Mat Chem Div MPA MC, Los Alamos, NM USA. RP Gordon, JC (reprint author), Los Alamos Natl Lab, Chem Div C IIAC, Los Alamos, NM USA. EM jgordon@lanl.gov RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU DOE Office of BES; G. T. Seaborg Institute at LANL FX We would like to gratefully acknowledge the DOE Office of BES program in Experimental and Condensed Matter Physics and the G. T. Seaborg Institute at LANL (Fellowship to KVV) for their funding and support of this research. We would also like to thank Dr Markus P. Hehlen for useful suggestions. NR 36 TC 4 Z9 4 U1 1 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PY 2012 VL 41 IS 7 BP 1924 EP 1927 DI 10.1039/c2dt12333a PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 881RO UT WOS:000299505100002 PM 22193947 ER PT J AU Boland, KS Conradson, SD Costello, AL Gaunt, AJ Kozimor, SA May, I Reilly, SD Schnaars, DD AF Boland, Kevin S. Conradson, Steven D. Costello, Alison L. Gaunt, Andrew J. Kozimor, Stosh A. May, Iain Reilly, Sean D. Schnaars, David D. TI Stabilising pentavalent actinides-visible-near infrared and X-ray absorption spectroscopic studies of the utility of the [(Np3W4O15)(H2O)(3)(MW9O33)(3)](18-)(M = Sb, Bi) structural type SO DALTON TRANSACTIONS LA English DT Article ID CATION-CATION INTERACTION; CHARGE-DISTRIBUTION; LOCAL-STRUCTURE; ACTINYL IONS; COMPLEXES; URANYL; COORDINATION; AMERICIUM; NEPTUNIUM; SPECTRA AB We report the interaction between B-type tri-lacunary heteropolyoxotungstate anions and actinyl(V) cations in aqueous solution, yielding a greater understanding of the stability of the O An O1+ linear dioxo actinide moiety. Previously we reported that B-alpha-[BiW9O33](9-) and B-alpha-[SbW9O33](9-) will react with NpO21+ to yield [(Np3W4O15)(H2O)(3)(MW9O33)(3)](18-) (M = Bi, or Sb). Single crystal structural characterisation of salts of these complexes revealed a core in which three Np-V atoms interact with a central W-VI atom through bridging oxo groups. These bridging oxygen atoms come from one of the two axial oxygens in O Np O1+ and represent a highly unusual interaction for a discrete molecular species. In this study visible/near infra-red spectroscopy indicates that [(Np3W4O15)(H2O)(3)-(BiW9O33)(3)](18-) could be readily stabilized in solution at near neutral pH for several months, with (NH4)(14)Na-4[(Np3W4O15)(H2O)(39)BiW9O33)(3)]center dot 62H(2)O crystallising from solution in high yield. At lower pH and [BiW9O33](9-): NpO21+ ratios additional Np-V species could be observed in solution. Stabilization of [(Np3W4O15)(H2O)(3)(SbW9O33)(3)](18-) in solution proved more challenging, with several distinctive Np-V near infra-red transitions observed in solution. Slow complexation kinetics and reduction to Np-IV was also observed. High [SbW9O33](9-): NpO21+ molar ratios and careful control of solution pH was required to prepare solutions in which [(Np3W4O15)(H2O)(3)(SbW9O33)(3)](18-) was the only neptunium containing species. In stark contrast to the NpO21+ chemistry, [BiW9O33](9-) readily oxidizes PuO21+ to PuO22+ yielding further evidence of the decreased stability of Pu-V vs. Np-V. Np L-II-edge XAFS measurement revealed very good agreement with single crystal diffraction data for the Np structural environment for [(Np3W4O15)(H2O)(3)(MW9O33)(3)](18-) (M = Bi, or Sb) in the solid state. There was also good agreement between coordination shells for [(Np3W4O15)(H2O)(3)(BiW9O33)(3)](18-) in the solid state and in solution, yielding further confirmation of the high stability of this particular cluster. C1 [Boland, Kevin S.; Conradson, Steven D.; Costello, Alison L.; Gaunt, Andrew J.; Kozimor, Stosh A.; May, Iain; Reilly, Sean D.; Schnaars, David D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Schnaars, David D.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. RP Costello, AL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM alisonc@lanl.gov; iainmay@lanl.gov OI Gaunt, Andrew/0000-0001-9679-6020 FU Department of Energy; G.T. Seaborg Institute for Transactinium Science FX We acknowledge the Department of Energy Basic Energy Sciences Heavy Element Chemistry Program and the G.T. Seaborg Institute for Transactinium Science for Funding NR 63 TC 11 Z9 11 U1 0 U2 16 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2012 VL 41 IS 7 BP 2003 EP 2010 DI 10.1039/c1dt11742d PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 881RO UT WOS:000299505100011 PM 22186832 ER PT J AU Daly, SR Klaehn, JR Boland, KS Kozimor, SA MacInnes, MM Peterman, DR Scott, BL AF Daly, Scott R. Klaehn, John R. Boland, Kevin S. Kozimor, Stosh A. MacInnes, Molly M. Peterman, Dean R. Scott, Brian L. TI NMR spectroscopy and structural characterization of dithiophosphinate ligands relevant to minor actinide extraction processes SO DALTON TRANSACTIONS LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; DENSITY-FUNCTIONAL THEORY; SECONDARY PHOSPHINES; NUCLEAR-ENERGY; SEPARATION; ACIDS; LANTHANIDES; CHEMISTRY; COVALENCY; ELEMENTS AB Synthetic routes to alkyl and aryl substituted dithiophosphinate salts that contain non-coordinating PPh4+ counter cations are reported. In general, these compounds can be prepared via a multi-step procedure that starts with reacting secondary phosphines, i.e. HPR2, with two equivalents of elemental S. The synthetic transformation proceeds by oxidation of the phosphine followed by insertion of S into the H-P bond. This approach was used to synthesize a series of dithiophosphinic acids that were fully characterized, namely HS2P(p-CF3C6H4)(2), HS2P(m-CF3C6H4)(2), HS2P(o-MeC6H4)(2) and HS2P(o-MeOC6H4)(2). Although the insertion step was found to be much slower than the oxidation reaction, the formation of (NH4)S2PR2 from HPSR2 occurred rapidly upon addition of NH4OH. Subsequent cation exchange reactions proceeded readily with PPh4Cl in water, under air and at ambient conditions to provide analytically pure samples of [PPh4][S2PR2] (R=p-CF3C6H4, m-CF3C6H4, o-CF3C6H4, o-MeC6H4, o-MeOC6H4, Ph, and Me, 1b-7b, respectively), which were characterized by elemental analysis, multinuclear NMR, and IR spectroscopy. In addition, S2PPh2- and dithiophosphinates with ortho-substituted aryl groups (3b-6b) were characterized by X-ray crystallography. As opposed to the acids, which have short P=S double bonds and long P-SH single bonds, the metric parameters for the S atoms in S2PR2- are equivalent. In addition, the presence of large non-coordinating PPh4+ cations guard against intermolecular P-S center dot center dot center dot X interactions and ensure that the P-S bond is isolated. These S2PR2- anions, which can be prepared in large quantities and isolated in crystalline form, are attractive for spectroscopic and theoretical studies because the P-S interaction can be probed independently in the absence of intermolecular interactions. C1 [Daly, Scott R.; Boland, Kevin S.; Kozimor, Stosh A.; MacInnes, Molly M.; Scott, Brian L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klaehn, John R.; Peterman, Dean R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Kozimor, SA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM stosh@lanl.gov RI Klaehn, John/C-6011-2017; Scott, Brian/D-8995-2017 OI Klaehn, John/0000-0002-7077-4509; Scott, Brian/0000-0003-0468-5396 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; US Department of Energy, Office of Nuclear Energy; US Department of Energy, Office of Science; Glenn T. Seaborg Institute; US Department of Energy [DEAC52-06NA25396] FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences (Heavy Element Chemistry Program), the US Department of Energy, Office of Nuclear Energy (Fuel Cycle R&D Program), the US Department of Energy, Office of Science (SULI Science Undergraduate Internship Program) (MacInnis) and the Glenn T. Seaborg Institute Postdoctoral Fellowship (Daly). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of US Department of Energy under Contract DEAC52-06NA25396. NR 46 TC 12 Z9 12 U1 2 U2 18 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2012 VL 41 IS 7 BP 2163 EP 2175 DI 10.1039/c1dt11637a PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 881RO UT WOS:000299505100028 PM 22175060 ER PT J AU Xiao, XY Brozik, SM Montano, GA Washburn, CM Wheeler, DR Burckel, DB Polsky, R AF Xiao, Xiaoyin Brozik, Susan M. Montano, Gabriel A. Washburn, Cody M. Wheeler, David R. Burckel, D. Bruce Polsky, Ronen TI Nonlimiting Hydrogen Electrosorption Properties of Asymmetric Palladium Nanoparticle-Modified Porous Carbon Electrodes SO ELECTROANALYSIS LA English DT Article; Proceedings Paper CT International Conference on Electrochemical Sensors (Matrafured) CY JUN 19-24, 2011 CL Dobogoko, HUNGARY ID STORAGE; HYDRIDE AB Hydrogen electrosorption is studied on 3D porous carbon electrodes fabricated by interferometric lithography. Mixed acetonitrile/water solutions provided a route to electrodeposit Pd nanoparticles homogeneously throughout the structures. These monoliths exhibit hydrogen electrosorption profiles typical for limited volume electrodes and consequently are promising candidates for micro-hydrogen based fuel cells. In contrast, aqueous solutions resulted in asymmetric Pd depositions due to the hydrophobic nature of the carbon electrode and its unique 3D porous structure. These electrodes exhibited unusual nonlimiting hydrogen electrosorption profiles. C1 [Xiao, Xiaoyin; Brozik, Susan M.; Washburn, Cody M.; Wheeler, David R.; Burckel, D. Bruce; Polsky, Ronen] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Montano, Gabriel A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Burckel, DB (reprint author), Sandia Natl Labs, Dept Biosensors & Nanomat, POB 5800, Albuquerque, NM 87185 USA. EM dbburck@sandia.gov; rpolsky@sandia.gov FU United Stated Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors acknowledge the Sandia National Laboratories' Laboratory Directed Research & Development (LDRD). NR 18 TC 1 Z9 1 U1 3 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1040-0397 EI 1521-4109 J9 ELECTROANAL JI Electroanalysis PD JAN PY 2012 VL 24 IS 1 SI SI BP 153 EP 157 DI 10.1002/elan.201100471 PG 5 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 872CX UT WOS:000298786300022 ER PT J AU Haque, AUL Kumar, A AF Haque, Aeraj U. L. Kumar, Aloke TI Hybrid optoelectric techniques for molecular diagnostics SO EXPERT REVIEW OF MOLECULAR DIAGNOSTICS LA English DT Editorial Material DE electrowetting; molecular diagnostics; optoelectric; optoelectrofluidics ID LIGHT; PARTICLES C1 [Kumar, Aloke] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Haque, Aeraj U. L.] Argonne Natl Lab, Div Energy Syst, Biodetect Technol Sect, Lemont, IL USA. RP Kumar, A (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM kumara1@ornl.gov RI Kumar, Aloke/A-9122-2011 NR 19 TC 1 Z9 1 U1 0 U2 3 PU EXPERT REVIEWS PI LONDON PA UNITEC HOUSE, 3RD FL, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON N3 1QB, ENGLAND SN 1473-7159 J9 EXPERT REV MOL DIAGN JI Expert Rev. Mol. Diagn. PD JAN PY 2012 VL 12 IS 1 BP 9 EP 11 DI 10.1586/ERM.11.87 PG 3 WC Pathology SC Pathology GA 877YE UT WOS:000299217800003 PM 22133113 ER PT J AU Cusack, DF Torn, MS McDowell, WH Silver, WL AF Cusack, Daniela F. Torn, Margaret S. McDowell, William H. Silver, Whendee L. TI The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils (vol 16, pg 2555, 2010) SO GLOBAL CHANGE BIOLOGY LA English DT Correction C1 [Cusack, Daniela F.; Silver, Whendee L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McDowell, William H.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA. RP Cusack, DF (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, 137 Mulford Hall 3114, Berkeley, CA 94720 USA. RI Silver, Whendee/H-1118-2012; McDowell, William/E-9767-2010; Torn, Margaret/D-2305-2015 OI McDowell, William/0000-0002-8739-9047; NR 1 TC 1 Z9 1 U1 7 U2 40 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD JAN PY 2012 VL 18 IS 1 BP 400 EP 400 DI 10.1111/j.1365-2486.2011.02581.x PG 1 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 869LG UT WOS:000298598900033 ER PT J AU Narayanan, M Ma, BH Tong, S Balachandran, U Koritala, R AF Narayanan, Manoj Ma, Beihai Tong, Sheng Balachandran, Uthamalingam Koritala, Rachel TI Electrical Properties of Pb0.92La0.08Zr0.52Ti0.48O3 Thin Films Grown on SrRuO3 Buffered Nickel and Silicon Substrates by Chemical Solution Deposition SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID DIELECTRIC-PROPERTIES; METAL FOILS; CAPACITORS; MICROSTRUCTURES; ELECTRODES AB Ferroelectric film-on-foil capacitors are suitable to replace discrete passive components in the quest to develop electronic devices that show superior performance and are smaller in size. The film-on-foil approach is the most practical method to fabricate such components. Films of Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) were deposited on SrRuO3 (SRO) buffer films over nickel and silicon substrates. High-quality polycrystalline SRO thin-film electrodes were first deposited by chemical solution deposition. A phase pure, dense, uniform microstructure with grain size <100 nm was obtained in films crystallized at 700 degrees C. The room-temperature resistivity of the SRO films crystallized at 700 degrees C was similar to 800-900 mu Omega-cm. The dielectric properties of sol-gel derived PLZT capacitors on SRO-buffered nickel were evaluated as a function of temperature, bias field, and frequency, and the results were compared to those of the same films on silicon substrates. The comparison demonstrated the integrity of the buffer layer and its compatibility with nickel substrates. Device-quality dielectric properties were measured on PLZT films deposited on SRO-buffered nickel foils and found to be superior to those for PLZT on SRO-buffered silicon and expensive platinized silicon. These results suggest that SRO films can act as an effective barrier layer on nickel substrates suitable for embedded capacitor applications. C1 [Narayanan, Manoj; Ma, Beihai; Tong, Sheng; Balachandran, Uthamalingam] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Koritala, Rachel] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Narayanan, M (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mnarayanan@anl.gov RI Narayanan, Manoj/A-4622-2011; Tong, Sheng/A-2129-2011; Ma, Beihai/I-1674-2013 OI Tong, Sheng/0000-0003-0355-7368; Ma, Beihai/0000-0003-3557-2773 FU U.S. Department of Energy [DEAC02-06CH11357]; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX Work funded by the U.S. Department of Energy, Vehicle Technologies Program, under Contract No. DEAC02-06CH11357. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 16 TC 1 Z9 1 U1 2 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD JAN-FEB PY 2012 VL 9 IS 1 BP 45 EP 51 DI 10.1111/j.1744-7402.2011.02693.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 875YM UT WOS:000299072100006 ER PT J AU Hemrick, JG Dinwiddie, RB Loveland, ER Prigmorey, A AF Hemrick, James G. Dinwiddie, Ralph B. Loveland, Erick R. Prigmorey, Andre TI Development of a Test Technique to Determine the Thermal Diffusivity of Large Refractory Ceramic Test Specimens SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article AB A method has been developed to utilize a high-intensity plasma arc lamp located at Oak Ridge National Laboratory for the measurement of thermal diffusivity of bulk refractory materials at elevated temperatures. The applicability of standardized test methods to determine the thermal diffusivity/conductivity of refractory materials at elevated temperatures is limited to small sample sizes (laser flash) or older test methods (hot wire, guarded hot plate), which have their own inherent problems. A new method, based on the principle of the laser flash method, but capable of evaluating test specimens on the order of 200 mm x 250 mm x 50 mm, has been developed. Tests have been performed to validate the method and preliminary results are presented in this paper. C1 [Hemrick, James G.; Dinwiddie, Ralph B.; Loveland, Erick R.; Prigmorey, Andre] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hemrick, JG (reprint author), Y-12 Natl Secur Complex, Oak Ridge, TN 37831 USA. EM hemrickjg@ornl.gov NR 5 TC 3 Z9 3 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD JAN-FEB PY 2012 VL 9 IS 1 BP 108 EP 114 DI 10.1111/j.1744-7402.2011.02636.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 875YM UT WOS:000299072100014 ER PT J AU Tsang, CF Barnichon, JD Birkholzer, J Li, XL Liu, HH Sillen, X AF Tsang, C. F. Barnichon, J. D. Birkholzer, J. Li, X. L. Liu, H. H. Sillen, X. TI Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Radioactive waste; Clay formations; Thermo-hydro-mechanical; Near-field processes ID EXCAVATION DAMAGED ZONE; TIME-DEPENDENT BEHAVIOR; OPALINUS CLAY; BOOM CLAY; DISTURBED ZONE; ROCK; DESATURATION; SWITZERLAND; DIFFUSION; DISPOSAL AB The present paper provides an overview of key coupled thermo-hydro-mechanical (THM) processes in clay formations that would result from the development of a high-level radioactive waste repository. Here, in this paper, clay formations include plastic clay such as the Boom Clay of Belgium, as well as more indurated clay such as the Callovo-Oxfordian and Upper Toarcian of France and Opalinus Clay of Switzerland. First, we briefly introduce and describe four major Underground Research Laboratories (URLs) that have been devoted to clay repository research over the last few decades. Much of the research results in this area have been gained through investigations in these URLs and their supporting laboratory and modeling research activities. Then, the basic elements in the development of a waste repository in clays are presented in terms of four distinct stages in repository development. For each of these four stages, key processes and outstanding issues are discussed. A summary of the important areas of research needs and some general remarks then conclude this paper. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Tsang, C. F.; Birkholzer, J.; Liu, H. H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tsang, C. F.] Uppsala Univ, Uppsala, Sweden. [Barnichon, J. D.] Inst Radioprotect & Surete Nucl, Fontenay Aux Roses, France. [Li, X. L.] Belgian Nucl Res Ctr, SCK CEN, Mol, Belgium. [Sillen, X.] Ondraf Niras, Brussels, Belgium. RP Tsang, CF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cftsang@lbl.gov RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 FU U.S. Department of Energy; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; EC FX The first author is most grateful to his many colleagues in the research areas of plastic clays and indurated clays for interesting and stimulating discussions. In particular, he would like to thank all the working group chairs and rapporteurs of both the 2003 European Commission (EC) Cluster Conference on EDZ held in Luxembourg, and the 2009 EC-sponsored THERESA and TIMODAZ Coupled THMC Processes Conference, also held in Luxembourg. Discussions with Y. Tsang and F. Bernier are also gratefully acknowledged. We are also thankful for the constructive review comments from T. Popp. This paper was prepared while the first author was a Visiting Professor at Imperial College London, whose hospitality is very much appreciated. Work was conducted for the Used Fuel Disposition Campaign under the auspices of the U.S. Department of Energy and Lawrence Berkeley National Laboratory, under Contract No. DE-AC02-05CH11231. NR 87 TC 27 Z9 31 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD JAN PY 2012 VL 49 BP 31 EP 44 DI 10.1016/j.ijrmms.2011.09.015 PG 14 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA 876MG UT WOS:000299111000004 ER PT J AU Bharadwaj, N Chandrasekar, V AF Bharadwaj, Nitin Chandrasekar, V. TI Wideband Waveform Design Principles for Solid-State Weather Radars SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID PULSE-COMPRESSION AB The use of solid-state transmitters is becoming increasingly viable for atmospheric radars and is a key part of the strategy to realize any dense network of low-powered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper frequency diversity in a wideband waveform design is proposed to mitigate the low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range-eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize sidelobe levels is presented. The impact of the range sidelobe level on the retrieval of Doppler moments is discussed. Realistic simulations are performed based on both the Colorado State University University of Chicago Illinois State Water Survey (CSU-CHILL) and the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data. C1 [Bharadwaj, Nitin] Pacific NW Natl Lab, Richland, WA 99354 USA. [Chandrasekar, V.] Colorado State Univ, Ft Collins, CO 80523 USA. RP Bharadwaj, N (reprint author), Pacific NW Natl Lab, 790 6th St,POB 999 MSIN K4-28, Richland, WA 99354 USA. EM nitin@pnl.gov FU Colorado State University; National Science Foundation (NSF) Engineering Research Center (ERC) [0313747]; National Aeronautics and Space Administration (NASA) Precipitation Measurement Mission (PMM) FX This work was supported by Colorado State University. The motivation for this work was inspired by the National Science Foundation (NSF) Engineering Research Center (ERC) Program (0313747) and the National Aeronautics and Space Administration (NASA) Precipitation Measurement Mission (PMM). NR 13 TC 13 Z9 13 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JAN PY 2012 VL 29 IS 1 BP 14 EP 31 DI 10.1175/JTECH-D-11-00030.1 PG 18 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 881PA UT WOS:000299497400002 ER PT J AU Dantas, JM Morgado, L Londer, YY Fernandes, AP Louro, RO Pokkuluri, PR Schiffer, M Salgueiro, CA AF Dantas, Joana M. Morgado, Leonor Londer, Yuri Y. Fernandes, Ana P. Louro, Ricardo O. Pokkuluri, P. Raj Schiffer, Marianne Salgueiro, Carlos A. TI Pivotal role of the strictly conserved aromatic residue F15 in the cytochrome c(7) family SO JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY LA English DT Article DE Geobacter; Multiheme cytochrome; Electron transfer; NMR; Site-directed mutagenesis ID HEME ELECTRONIC-STRUCTURE; AXIAL LIGAND ORIENTATION; C-TYPE CYTOCHROME; GEOBACTER-SULFURREDUCENS; DESULFOVIBRIO-VULGARIS; ESCHERICHIA-COLI; PARAMAGNETIC NMR; C(3); C-13; COOPERATIVITY AB Cytochromes c (7) are periplasmic triheme proteins that have been reported exclusively in delta-proteobacteria. The structures of five triheme cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these proteins-phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c (7) family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism, by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis of H-1-N-15 heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the alpha-helix placed between hemes I and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA, changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer. C1 [Dantas, Joana M.; Morgado, Leonor; Fernandes, Ana P.; Salgueiro, Carlos A.] Univ Nova Lisboa, Requimte CQFB, Dept Quim, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal. [Londer, Yuri Y.; Pokkuluri, P. Raj; Schiffer, Marianne] Argonne Natl Lab, Biosciences Div, Argonne, IL 60439 USA. [Louro, Ricardo O.] Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-2780157 Oeiras, Portugal. RP Salgueiro, CA (reprint author), Univ Nova Lisboa, Requimte CQFB, Dept Quim, Fac Ciencias & Tecnol, Campus Caparica, P-2829516 Caparica, Portugal. EM csalgueiro@dq.fct.unl.pt RI Salgueiro, Carlos/A-4522-2013; Morgado, Leonor/D-7387-2013; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013; Fernandes, Ana/B-2940-2014; Dantas, Joana/B-8275-2017; OI Salgueiro, Carlos/0000-0003-1136-809X; Morgado, Leonor/0000-0002-3760-5180; Fernandes, Ana/0000-0002-5201-7993; Dantas, Joana/0000-0002-4852-7608; Louro, Ricardo/0000-0002-2392-6450 FU Fundacao para a Ciencia e a Tecnologia (Portugal) [PTDC/QUI/70182/2006, MIT-Pt/BS-BB/1014/2008]; Fundacao para a Ciencia e a Tecnologia [SFRH/BD/37415/2007]; US Department of Energy's Office of Science, Biological, and Environmental Research GTL [DE-AC02-06CH11357] FX This work was supported by Fundacao para a Ciencia e a Tecnologia (Portugal) grants PTDC/QUI/70182/2006 (C.A.S.) and MIT-Pt/BS-BB/1014/2008 (R.O.L). L.M is the recipient of grant SFRH/BD/37415/2007 from Fundacao para a Ciencia e a Tecnologia. We acknowledge LabRMN at FCT-UNL and Rede Nacional de RMN for access to their facilities. Rede Nacional de RMN is supported by funds from FCT, Projecto de Re-equipamento Cientifico, Portugal. The work at Argonne National Laboratory was supported by the US Department of Energy's Office of Science, Biological, and Environmental Research GTL program under contract no. DE-AC02-06CH11357. This work is part of a collaboration with D.R. Lovley (University of Massachusetts, Amherst, USA) under the Genomics: GTL project. We also thank the anonymous referees for their valuable comments on the manuscript and their constructive suggestions. NR 31 TC 12 Z9 12 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-8257 J9 J BIOL INORG CHEM JI J. Biol. Inorg. Chem. PD JAN PY 2012 VL 17 IS 1 BP 11 EP 24 DI 10.1007/s00775-011-0821-8 PG 14 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA 869PS UT WOS:000298610900002 PM 21805398 ER PT J AU Moran, JJ Kreuzer, HW Carman, AJ Wahl, JH Duckworth, DC AF Moran, James J. Kreuzer, Helen W. Carman, April J. Wahl, Jon H. Duckworth, Douglas C. TI Multiple Stable Isotope Characterization as a Forensic Tool to Distinguish Acid Scavenger Samples SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; compound-specific isotope analysis; stable isotope; acid scavenger; nerve agent; sarin; triethylamine; N; N-diethylaniline; tributylamine ID MASS-SPECTROMETRY AB Acid scavengers are frequently used as stabilizer compounds in a variety of applications. When used to stabilize volatile compounds such as nerve agents, the lower volatility and higher stability of acid scavengers make them more persistent in a post-event forensic setting. Compound-specific isotope analysis of carbon, nitrogen, and hydrogen in three acid-scavenging compounds (N,N-diethylaniline, tributylamine, and triethylamine) were used as a tool for distinguishing between different samples. Combined analysis of multiple isotopes improved sample resolution, for instance differentiation between triethylamine samples improved from 80% based on carbon alone to 96% when combining with additional isotope data. The compound-specific methods developed here can be applied to instances where these compounds are not pure, such as when mixed with an agent or when found as a residue. Effective sample matching can be crucial for linking compounds at multiple event sites or linking a supply inventory to an event. C1 [Moran, James J.; Kreuzer, Helen W.; Carman, April J.; Wahl, Jon H.; Duckworth, Douglas C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Moran, JJ (reprint author), Pacific NW Natl Lab, 999 Battelle Blvd,MSIN P7-50,POB 999, Richland, WA 99352 USA. EM james.moran@pnnl.gov RI Duckworth, Douglas/B-7171-2015; OI Duckworth, Douglas/0000-0002-8161-5685; Moran, James/0000-0001-9081-9017 FU Department of Homeland Security Science and Technology Directorate [HSHQDC-09-00037] FX Funding provided through contract HSHQDC-09-00037 to Pacific Northwest National Laboratory by the Department of Homeland Security Science and Technology Directorate. NR 16 TC 4 Z9 4 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-1198 J9 J FORENSIC SCI JI J. Forensic Sci. PD JAN PY 2012 VL 57 IS 1 BP 60 EP 63 DI 10.1111/j.1556-4029.2011.01959.x PG 4 WC Medicine, Legal SC Legal Medicine GA 872FI UT WOS:000298793800010 PM 22085030 ER PT J AU Kreuzer, HW Horita, J Moran, JJ Tomkins, BA Janszen, DB Carman, A AF Kreuzer, Helen W. Horita, Juske Moran, James J. Tomkins, Bruce A. Janszen, Derek B. Carman, April TI Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; potassium cyanide; sodium cyanide; isotope ratio mass spectrometry; sample matching AB Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. Upon analysis, a few of the cyanide samples displayed nonhomogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of the 65 cyanide samples, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples. C1 [Kreuzer, Helen W.; Moran, James J.; Janszen, Derek B.; Carman, April] Pacific NW Natl Lab, Richland, WA 99352 USA. [Horita, Juske; Tomkins, Bruce A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kreuzer, HW (reprint author), Pacific NW Natl Lab, 999 Battelle Blvd,MSIN P7-50, Richland, WA 99352 USA. EM Helen.Kreuzer@pnl.gov; juske.horita@ttu.edu OI Tomkins, Bruce/0000-0001-8520-1415; Moran, James/0000-0001-9081-9017 FU Department of Homeland Security Science and Technology Directorate [AGRHSH QDC09X00346, HSHQ DC08X00569] FX We thank Craig A. Johnson of the U.S. Geological Survey for helpful discussions and Alan Volpe of Lawrence Livermore National Laboratory for providing us with 12 cyanide samples. We thank Terre Mercier of Pacific Northwest National Laboratory for assistance with the statistical analyses. Funding for this work was provided through contract AGRHSH QDC09X00346 to Pacific Northwest National Laboratory and contract HSHQ DC08X00569 to Oak Ridge National Laboratory by the Department of Homeland Security Science and Technology Directorate. NR 16 TC 11 Z9 11 U1 1 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-1198 J9 J FORENSIC SCI JI J. Forensic Sci. PD JAN PY 2012 VL 57 IS 1 BP 75 EP 79 DI 10.1111/j.1556-4029.2011.01946.x PG 5 WC Medicine, Legal SC Legal Medicine GA 872FI UT WOS:000298793800013 PM 22040310 ER PT J AU Kim, D Lim, J Mathew, V Koo, B Paik, Y Ahn, D Paek, SM Kim, J AF Kim, Donghan Lim, Jinsub Mathew, Vinod Koo, Bonil Paik, Younkee Ahn, Docheon Paek, Seung-Min Kim, Jaekook TI Low-cost LiFePO4 using Fe metal precursor SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; OLIVINE MATERIALS; NANOCRYSTALS; NANOPARTICLES; BATTERIES; RECONSTRUCTION; TEMPERATURE; CATHODES; LI-7 AB A nano-LiFePO4 possessing a plate-shaped morphology was synthesized by the solvothermal process using low-cost Fe metal powder as the starting precursor at a moderate temperature of around 230 degrees C under high pressure. Field-emission scanning electron microscopy (FE-SEM) images revealed the average thickness, length and width of the nanoplates to be 20, 100 and 100 nm respectively. The nanoplate-LiFePO4 delivered specific discharge capacities of 171 mA h g(-1) with impressive cycle performance until 150 cycles and high rate capabilities as capacities of 125 mA h g(-1) was achieved at elevated C-rates of 16 C. Field-emission transmission electron microscopy (FE-TEM) confirmed the growth of the nanoplates along the [010] and [101] crystallographic directions. Solid state 7 Li magic angle spinning nuclear magnetic resonance study suggests progressive Li-ion intercalation/deintercalation along a specific crystallographic direction and appears to support the domino-cascade model. Extended X-ray absorption fine structure spectroscopy (EXAFS) studies indicated a flexible LiFePO4 nanostructure due to the reconstruction of crystals' surface and thereby realize enhanced capacities. We believe that the strategy to adopt Fe-metal precursor in order to obtain such high performing nano-LiFePO4 is very promising for large-scale commercialization from a cost perspective. C1 [Kim, Donghan; Lim, Jinsub; Mathew, Vinod; Kim, Jaekook] Chonnam Natl Univ, Dept Mat Sci & Engn, Kwangju 500757, South Korea. [Koo, Bonil] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Paik, Younkee] Korea Basic Sci Inst, Daegu Ctr, Taegu 702701, South Korea. [Ahn, Docheon] Pohang Accelerator Lab, Pohang 790784, South Korea. [Paek, Seung-Min] Kyungpook Natl Univ, Dept Chem, Taegu 702701, South Korea. RP Kim, J (reprint author), Chonnam Natl Univ, Dept Mat Sci & Engn, Kwangju 500757, South Korea. EM jaekook@chonnam.ac.kr FU Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP); Korea government Ministry of Knowledge Economy [20114010203100]; Korea Science and Engineering Foundation; Ministry of Education, Science and Technology [R32-20074] FX This research was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (20114010203100) and the WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (grant number; R32-20074). NR 33 TC 18 Z9 18 U1 0 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 EI 1364-5501 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 6 BP 2624 EP 2631 DI 10.1039/c2jm14499a PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 877KI UT WOS:000299178500041 ER PT J AU Martinez, HP Grant, CD Reynolds, JG Trogler, WC AF Martinez, H. Paul Grant, Christian D. Reynolds, John G. Trogler, William C. TI Silica anchored fluorescent organosilicon polymers for explosives separation and detection SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID AGGREGATION-INDUCED EMISSION; RESTRICTED INTRAMOLECULAR ROTATION; THIN-LAYER CHROMATOGRAPHY; CONJUGATED POLYMERS; LIGHT-EMISSION; SELECTIVE DETECTION; THERMAL-STABILITY; HYDROGEN-PEROXIDE; CHEMICAL SENSORS; SILOLE AB The luminescent organosilicon copolymers poly(silafluorenyldiethynylspirobifluorene) and poly (tetrasilolediethynylspirobifluorene) have been covalently linked to a silica gel thin layer chromatography (TLC) support through the use of a trimethoxysilyl end group. Surface functionalization of silica with the fluorescent sensing polymer allows for more efficient quenching by the analyte, due to the small amount of fluorophore present, thus yielding enhanced detection sensitivity. The attachment of the sensing polymers onto a chromatographic support also allows for simultaneous separation of an explosive mixture, and component identification through the use of multiple sensing polymers. In a 1.0 mm(2) area solution spotted onto the fluorescent silica plate, detection limits obtained for the explosives TNT (2,4,6-trinitrotoluene), DNT (2,6-dinitrotoluene), PA (picric acid), Tetryl (N-methyl-N,2,4,6-tetranitroaniline), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), and Cl-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) ranged from 4 to 750 pg mm(-2). Since less than 350 pg of highly fluorescent polymer is required to coat each TLC plate, the relatively small amounts of explosive being detected still represent an excess of quencher over sensing fluorophore. C1 [Martinez, H. Paul; Trogler, William C.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92037 USA. [Grant, Christian D.; Reynolds, John G.] Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94550 USA. RP Trogler, WC (reprint author), Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92037 USA. EM martinez@ucsd.edu; grant29@llnl.gov; reynolds3@llnl.gov; wtrogler@ucsd.edu NR 70 TC 29 Z9 29 U1 2 U2 64 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 EI 1364-5501 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 7 BP 2908 EP 2914 DI 10.1039/c2jm15214b PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 881RI UT WOS:000299504200016 ER PT J AU Patel, MN Wang, XQ Slanac, DA Ferrer, DA Dai, S Johnston, KP Stevenson, KJ AF Patel, Mehul N. Wang, Xiqing Slanac, Daniel A. Ferrer, Domingo A. Dai, Sheng Johnston, Keith P. Stevenson, Keith J. TI High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID ELECTROCHEMICAL CAPACITORS; MANGANESE OXIDE; ELECTROLESS DEPOSITION; ENERGY-STORAGE; NANOSCALE MNO2; SUPERCAPACITORS; PERFORMANCE; NANOARCHITECTURES; CONVERSION; NANOTUBES AB Nanocomposites composed of MnO2 and graphitic disordered mesoporous carbon (MnO2/C) were synthesized for high total specific capacitance and redox pseudocapacitance (C-MnO2) at high scan rates up to 200 mV s(-1). High resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray spectroscopy (EDX) demonstrated that MnO2 nanodomains were highly dispersed throughout the mesoporous carbon structure. According to HRTEM and X-ray diffraction (XRD), the MnO2 domains are shown to be primarily amorphous and less than 5 nm in size. For these composites in aqueous 1 M Na2SO4 electrolyte, C-MnO2 reached 500 F/g(MnO2) at 2 mV s(-1) for 8.8 wt% MnO2. A capacitance fade of only 20% over a 100-fold change in scan rate was observed for a high loading of 35 wt% MnO2 with a C-MnO2 of 310 F/g(MnO2) at the highest scan rate of 200 mV s(-1). The high electronic conductivity of the graphitic 3D disordered mesoporous carbon support in conjunction with the thin MnO2 nanodomains facilitate rapid electron and ion transport offering the potential of improved high power density energy storage pseudocapacitors. C1 [Patel, Mehul N.; Slanac, Daniel A.; Johnston, Keith P.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Stevenson, Keith J.] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA. [Ferrer, Domingo A.; Johnston, Keith P.; Stevenson, Keith J.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Wang, Xiqing; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Johnston, KP (reprint author), Univ Texas Austin, Dept Chem Engn, 1 Univ Stn C0400, Austin, TX 78712 USA. EM kpj@che.utexas.edu; stevenson@cm.utexas.edu RI Wang, Xiqing/E-3062-2010; Dai, Sheng/K-8411-2015 OI Wang, Xiqing/0000-0002-1843-008X; Dai, Sheng/0000-0002-8046-3931 FU National Science Foundation [CHE-9876674]; Department of Energy Office of Basic Energy Sciences; Robert A. Welch Foundation [F-1529, F-1319]; Center for Nano and Molecular Science and Technology; Process Science and Technology Center at the University of Texas; Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [ERKCC61] FX This material is based upon work supported in part by the STC Program of the National Science Foundation under Agreement No. CHE-9876674, the Department of Energy Office of Basic Energy Sciences, the Robert A. Welch Foundation (Grant F-1529 and F-1319), the Center for Nano and Molecular Science and Technology, and the Process Science and Technology Center at the University of Texas. Prof. Johnston thanks Debra Rolison for useful comments concerning disordered versus ordered geometries. Sheng Dai was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number ERKCC61. NR 50 TC 46 Z9 48 U1 5 U2 71 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 7 BP 3160 EP 3169 DI 10.1039/c1jm14513d PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 881RI UT WOS:000299504200048 ER PT J AU Hammond, SR Meyer, J Widjonarko, NE Ndione, PF Sigdel, AK Garcia, A Miedaner, A Lloyd, MT Kahn, A Ginley, DS Berry, JJ Olson, DC AF Hammond, Scott R. Meyer, Jens Widjonarko, N. Edwin Ndione, Paul F. Sigdel, Ajaya K. Garcia, Andres Miedaner, Alexander Lloyd, Matthew T. Kahn, Antoine Ginley, David S. Berry, Joseph J. Olson, Dana C. TI Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID TRANSITION-METAL OXIDES; ANODE INTERFACIAL LAYER; SOLAR-CELLS; INJECTION LAYER; WORK FUNCTION; THIN-FILMS; EFFICIENT; INTERLAYERS; AIR AB We have utilized a commercially available metal-organic precursor to develop a new, low-temperature, solution-processed molybdenum oxide (MoOx) hole-collection layer (HCL) for organic photovoltaic (OPV) devices that is compatible with high-throughput roll-to-roll manufacturing. Thermogravimetric analysis indicates complete decomposition of the metal-organic precursor by 115 degrees C in air. Acetonitrile solutions spin-cast in a N-2 atmosphere and annealed in air yield continuous thin films of MoOx. Ultraviolet, inverse, and X-ray photoemission spectroscopies confirm the formation of MoOx and, along with Kelvin probe measurements, provide detailed information about the energetics of the MoOx thin films. Incorporation of these films into conventional architecture bulk heterojunction OPV devices with poly(3-hexylthiophene) and [6,6]-phenyl-C-61 butyric acid methyl ester afford comparable power conversion efficiencies to those obtained with the industry-standard material for hole injection and collection: poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The MoOx HCL devices exhibit slightly reduced open circuit voltages and short circuit current densities with respect to the PEDOT: PSS HCL devices, likely due in part to charge recombination at Mo5+ gap states in the MoOx HCL, and demonstrate enhanced fill factors due to reduced series resistance in the MoOx HCL. C1 [Hammond, Scott R.; Widjonarko, N. Edwin; Ndione, Paul F.; Sigdel, Ajaya K.; Garcia, Andres; Miedaner, Alexander; Lloyd, Matthew T.; Ginley, David S.; Berry, Joseph J.; Olson, Dana C.] Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO USA. [Meyer, Jens; Kahn, Antoine] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. RP Hammond, SR (reprint author), Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO USA. EM scott.hammond@nrel.gov RI Meyer, Jens/B-7834-2013; Ndione, Paul/O-6152-2015 OI Ndione, Paul/0000-0003-4444-2938 FU U.S. Department of Energy [DOE-AC36-08GO28308]; National Renewable Energy Laboratory DOE SETP effort through the National Center for Photovoltaics; U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001084]; Deutsche Forschungsgemeinschaft (DFG) FX The authors acknowledge Prof. Sean Shaheen and University of Denver for the use of their atomic force microscope. Materials development (TGA, XRD) as well as device fabrication and testing was supported by the U.S. Department of Energy under Contract No. DOE-AC36-08GO28308 with the National Renewable Energy Laboratory DOE SETP effort through the National Center for Photovoltaics and as part of the U.S. Department of Energy, Energy Efficiency and Renewable Energy's Seed Fund Program. Characterization studies of the oxide physical properties including optical, UPS, IPES and Kelvin probe studies were funded by the Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center funded the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001084. J.M. also thanks the Deutsche Forschungsgemeinschaft (DFG) for generous support within the postdoctoral fellowship program. NR 27 TC 92 Z9 92 U1 11 U2 94 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 7 BP 3249 EP 3254 DI 10.1039/c2jm14911g PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 881RI UT WOS:000299504200060 ER PT J AU Reid, OG Malik, JAN Latini, G Dayal, S Kopidakis, N Silva, C Stingelin, N Rumbles, G AF Reid, Obadiah G. Malik, Jennifer A. Nekuda Latini, Gianluca Dayal, Smita Kopidakis, Nikos Silva, Carlos Stingelin, Natalie Rumbles, Garry TI The influence of solid-state microstructure on the origin and yield of long-lived photogenerated charge in neat semiconducting polymers SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE charge transport; conjugated polymers; microwave conductivity; molecular weight dependence; P3HT; photophysics; semiconducting polymers; solid-state structure; structure-property relations ID PI-CONJUGATED POLYMERS; HETEROJUNCTION SOLAR-CELLS; FIELD-EFFECT MOBILITY; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); MOLECULAR-WEIGHT; CARRIER MOBILITY; POLARON PAIRS; THIN-FILMS; MORPHOLOGY; EXCITONS AB The influence of solid-state microstructure on the optoelectronic properties of conjugated polymers is widely recognized, but still poorly understood. Here, we show how the microstructure of conjugated polymers controls the yield and decay dynamics of long-lived photogenerated charge in neat films. Poly(3-hexylthiophene) was used as a model system. By varying the molecular weight, we drive a transition in the polymer microstructure from nonentangled, chain-extended, paraffinic-like to entangled, semicrystalline (MW = 5.5347 kg/mol). The molecular weight range at which this transition occurs (MW = 4050 kg/mol) can be deduced from the drastic change in elongation at break found in tensile tests. Linear absorption measurements of free-exciton bandwidth and time-resolved microwave conductivity (TRMC) measurements of transient photoconductance track the concomitant evolution in optoelectronic properties of the polymer as a function of MW. TRMC measurements show that the yield of free photogenerated charge increases with increasing molecular weight in the paraffinic regime and saturates at the transition into the entangled, semicrystalline regime. This transition in carrier yield correlates with a sharp transition in free-exciton bandwidth and decay dynamics at a similar molecular weight. We propose that the transition in microstructure controls the yield and decay dynamics of long-lived photogenerated charge. The evolution of a semicrystalline structure with well-defined interfaces between amorphous and crystalline domains of the polymer is required for spatial separation of the electron and hole. This structural characteristic not only largely controls the yield of free charges, but also serves as a recombination center, where mobile holes encounter a bath of dark electrons resident in the amorphous phase and recombine with quasi first-order kinetics. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 C1 [Reid, Obadiah G.; Dayal, Smita; Kopidakis, Nikos; Rumbles, Garry] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Malik, Jennifer A. Nekuda; Stingelin, Natalie] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London, England. [Malik, Jennifer A. Nekuda; Stingelin, Natalie] Univ London Imperial Coll Sci Technol & Med, Ctr Plast Elect, London, England. [Latini, Gianluca] UNILE Ist Italiano Tecnol, Ctr Biomol Nanotechnol, I-73010 Arnesano, LE, Italy. [Silva, Carlos] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Stingelin, Natalie] Swiss Fed Inst Technol, Dept Mat, Zurich, Switzerland. [Rumbles, Garry] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Rumbles, G (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM natalie.stingelin@imperial.ac.uk; garry.rumbles@nrel.gov RI Silva, Carlos/B-5153-2010; Rumbles, Garry/A-3045-2014; Kopidakis, Nikos/N-4777-2015; Stingelin, Natalie/D-6745-2016; OI Silva, Carlos/0000-0002-3969-5271; Stingelin, Natalie/0000-0002-1414-4545; Rumbles, Garry/0000-0003-0776-1462 FU European Community [212311]; UK Engineering and Physical Sciences Research Council (EPSRC) [EP/G060738/1]; NSERC; Canada Research Chair in Organic Semiconductor Materials; National Renewable Energy Laboratory FX The authors thank Martin Heeney (Centre for Plastic Electronics, Imperial College London), Christine Luscombe (University of Washington), and Merck Chemicals, UK for generous supplies of P3HT; Ester Buchaca-Domingo (Centre for Plastic Electronics, Imperial College London) and Felix Koch (Department of Materials, Swiss Federal Institute of Technology, ETH, Zurich) for their assistance in thermal analysis of all materials; Paul Westacott for his assistance with GPC, and Christian Muller for his contribution with respect of the mechanical data on the various P3HTs. In addition, we are deeply indebted to Paul Smith (Department of Materials, ETH Zurich, and Centre for Plastic Electronics) for many invaluable discussions on the solid-state structure development with molecular weight; and of course Geordies'. N. Stingelin and G. Latini acknowledge the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 212311 of the ONE-P project and the UK Engineering and Physical Sciences Research Council (EPSRC EP/G060738/1) for financial support. C. Silva acknowledges support from the NSERC and the Canada Research Chair in Organic Semiconductor Materials. This work was supported by the Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NR 60 TC 60 Z9 60 U1 3 U2 74 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD JAN 1 PY 2012 VL 50 IS 1 BP 27 EP 37 DI 10.1002/polb.22379 PG 11 WC Polymer Science SC Polymer Science GA 869GH UT WOS:000298585200005 ER PT J AU Wei, XY Strzalka, JW Li, L Russell, TP AF Wei, Xinyu Strzalka, Joseph W. Li, Le Russell, Thomas P. TI Tailoring block copolymer morphologies via alkyne/azide cycloaddition SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE additives; block copolymers; morphology ID ORDERED POLYMER MELTS; THIN-FILMS; DIBLOCK COPOLYMERS; PHASE-BEHAVIOR; COPOLYMER/HOMOPOLYMER BLENDS; POLY(ETHYLENE OXIDE); CRYSTALLIZATION; COMPLEXATION; HOMOPOLYMER; PATTERNS AB We investigated the morphological transitions induced by alkyne/azide Huisgen 1,3-dipolar cycloaddition reaction in a series of poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) diblock copolymers. Studies on the phase behavior of neat diblock copolymers revealed that the interactions between the PEO block and the terminal alkyne groups in the P(nBMA-r-PgMA) block significantly affected the miscibility between the two blocks and the crystallization of the PEO block. Phase-mixed diblock copolymers underwent disorder-to-order transitions by blending with Rhodamine B azide and annealing at elevated temperatures. Different morphologies were achieved, not only by controlling the composition of the block copolymer but also by blending the diblock copolymer with different amount of azides. Microphase separated PEO-b-P(nBMA-r-PgMA) diblock copolymer also exhibited reactivity toward azides, and order-to-order transitions were observed. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 C1 [Wei, Xinyu; Li, Le; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Strzalka, Joseph W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Russell, TP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. EM russell@mail.pse.umass.edu RI Li, Le/C-6130-2013; OI Strzalka, Joseph/0000-0003-4619-8932 FU Department of Energy Office of Basic Energy Science [DE-FG02-96ER45612, DE-FG02-04ER46126]; NSF; U.S. DOE [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC02-98CH10886] FX This work was supported by the Department of Energy Office of Basic Energy Science under Contract Nos. DE-FG02-96ER45612 and DE-FG02-04ER46126 and the NSF-supported Materials Research Science and Engineering Center at UMass. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886. NR 40 TC 4 Z9 4 U1 0 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD JAN 1 PY 2012 VL 50 IS 1 BP 55 EP 64 DI 10.1002/polb.22364 PG 10 WC Polymer Science SC Polymer Science GA 869GH UT WOS:000298585200008 ER PT J AU Wang, L Aryal, UK Dai, ZY Mason, AC Monroe, ME Tian, ZX Zhou, JY Su, D Weitz, KK Liu, T Camp, DG Smith, RD Baker, SE Qian, WJ AF Wang, Lu Aryal, Uma K. Dai, Ziyu Mason, Alisa C. Monroe, Matthew E. Tian, Zhi-Xin Zhou, Jian-Ying Su, Dian Weitz, Karl K. Liu, Tao Camp, David G., II Smith, Richard D. Baker, Scott E. Qian, Wei-Jun TI Mapping N-Linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE filamentous fungi; Aspergillus niger; N-linked glycosylation; N-glycosylated site; hydrazide chemistry; secretome ID FILAMENTOUS FUNGI; GENOME SEQUENCE; POSTTRANSLATIONAL MODIFICATIONS; SACCHAROMYCES-CEREVISIAE; PROTEIN IDENTIFICATIONS; GLYCOPEPTIDE CAPTURE; CONSENSUS SEQUENCE; HIGH-SENSITIVITY; CANCER PROTEOME; QUALITY-CONTROL AB Protein glycosylation (e.g., N-linked glycosylation) is known to play an essential role in both cellular functions and secretory pathways; however, our knowledge of in vivo N-glycosylated sites is very limited for the majority of fungal organisms including Aspergillus niger. Herein, we present the first extensive mapping of N-glycosylated sites in A. niger by applying an optimized solid phase glycopeptide enrichment 2 protocol using hydrazide-modified magnetic beads. The enrichment protocol was initially optimized using both mouse blood plasma and A. niger secretome samples, and it was demonstrated that the protein-level enrichment protocol offered superior performance over the peptide-level protocol. The optimized protocol was then applied A. niger. A total of 847 N-glycosylated sites from 330 N-glycoproteins (156 proteins from the secretome and 279 proteins from whole cells) were confidently identified by LC-MS/MS. The identified N-glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosome, and storage vacuoles, supporting the important role of N-glycosylation in the secretory pathways. In addition, these glycoproteins are involved in many biological processes including gene regulation, signal transduction, protein folding and assembly, protein modification, and carbohydrate metabolism. The extensive coverage of N-glycosylated sites and the observation of partial glycan occupancy on specific sites in a number of enzymes provide important initial information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.to profile N-glycosylated sites from both the secretome and whole cell lysates of C1 [Wang, Lu; Aryal, Uma K.; Mason, Alisa C.; Monroe, Matthew E.; Tian, Zhi-Xin; Zhou, Jian-Ying; Su, Dian; Weitz, Karl K.; Liu, Tao; Camp, David G., II; Smith, Richard D.; Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Wang, Lu; Aryal, Uma K.; Mason, Alisa C.; Monroe, Matthew E.; Tian, Zhi-Xin; Zhou, Jian-Ying; Su, Dian; Weitz, Karl K.; Liu, Tao; Camp, David G., II; Smith, Richard D.; Qian, Wei-Jun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Dai, Ziyu; Baker, Scott E.] Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99352 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM Weijun.Qian@pnnl.gov RI Zhou, Jian-Ying/D-1308-2012; Smith, Richard/J-3664-2012; Liu, Tao/A-9020-2013; tian, zhixin/A-3958-2015 OI Smith, Richard/0000-0002-2381-2349; Liu, Tao/0000-0001-9529-6550; tian, zhixin/0000-0002-2877-8282 FU DOE; National Institutes of Health [RR18522]; DOE Office of the Biomass; DOE [DE-AC05-76RLO 1830] FX Portions of this work were supported by DOE Early Career Research Award and National Institutes of Health grant RR18522. Upstream cell culture was conducted in Fungal Biotechnology Laboratory, which was supported by the DOE Office of the Biomass Program. Proteomics experiments were performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) Office of Biological and Environmental Research national scientific user facility on the Pacific Northwest National Laboratory (PNNL) campus. PNNL is multiprogram national laboratory operated by Battelle for the DOE under Contract No. DE-AC05-76RLO 1830. NR 65 TC 32 Z9 33 U1 9 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD JAN PY 2012 VL 11 IS 1 BP 143 EP 156 DI 10.1021/pr200916k PG 14 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 872RT UT WOS:000298827700015 PM 22136231 ER PT J AU Aryal, UK Krochko, JE Ross, ARS AF Aryal, Uma K. Krochko, Joan E. Ross, Andrew R. S. TI Identification of Phosphoproteins in Arabidopsis thaliana Leaves Using Polyethylene Glycol Fractionation, Immobilized Metal-ion Affinity Chromatography, Two-Dimensional Gel Electrophoresis and Mass Spectrometry SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE protein IMAC; phosphorylation; polyethylene glycol; two-dimensional gel electrophoresis; Rubisco; photosystem ID PROTEIN EXTRACTION; PLANT PROTEOME; POSTTRANSLATIONAL MODIFICATIONS; SIGNAL-TRANSDUCTION; PLASMA-MEMBRANE; PHOSPHORYLATION; REVEALS; KINASE; EXPRESSION; DEFENSE AB Reversible protein phosphorylation is a key regulatory mechanism in cells. Identification and characterization of phosphoproteins requires specialized enrichment methods, due to the relatively low abundance of these proteins, and is further complicated in plants by the high abundance of Rubisco in green tissues. We present a novel method for plant phosphoproteome analysis that depletes Rubisco using polyethylene glycol fractionation and utilizes immobilized metal-ion affinity chromatography to enrich phosphoproteins. Subsequent protein separation by one- and two-dimensional gel electrophoresis is further improved by extracting the PEG-fractionated protein samples with SDS/phenol and methanol/chloroform to remove interfering compounds. Using this approach, we identified 132 phosphorylated proteins in a partial Arabidopsis leaf extract. These proteins are involved in a range of biological processes, including CO(2) fixation, protein assembly and folding, stress response, redox regulation, and cellular metabolism. Both large and small subunits of Rubisco were phosphorylated at multiple sites, and depletion of Rubisco enhanced detection of less abundant phosphoproteins, including those associated with state transitions between photosystems I and II. The discovery of a phosphorylated form of AtGRP7, a self-regulating RNA-binding protein that affects floral transition, as well as several previously uncharacterized ribosomal proteins confirm the utility of this approach for phosphoproteome analysis and its potential to increase our understanding of growth and development in plants. C1 [Aryal, Uma K.; Krochko, Joan E.; Ross, Andrew R. S.] CNR, Inst Plant Biotechnol, Saskatoon, SK S7N 0W9, Canada. RP Aryal, UK (reprint author), Pacific NW Natl Lab, POB 999,902 Battelle Blvd, Richland, WA 99352 USA. EM uma.aryal@pnnl.gov FU NRC at NRC-PBI; Saskatchewan Provincial Government FX We thank Doug Olson and Steve Ambrose of the Mass Spectrometry and Protein Research Group at the National Research Council-Plant Biotechnology Institute (NRC-PBI) for technical support. U.K.A. gratefully acknowledges the generous support from NRC for a Visiting Fellowship at NRC-PBI. Funding for protein mass spectrometry equipment was provided by the Saskatchewan Provincial Government and NRC. This article is contribution number 50188 from the National Research Council of Canada. NR 69 TC 22 Z9 82 U1 2 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD JAN PY 2012 VL 11 IS 1 BP 425 EP 437 DI 10.1021/pr200917t PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 872RT UT WOS:000298827700037 PM 22092075 ER PT J AU Abraham, P Adams, R Giannone, RJ Kalluri, U Ranjan, P Erickson, B Shah, M Tuskan, GA Hettich, RL AF Abraham, Paul Adams, Rachel Giannone, Richard J. Kalluri, Udaya Ranjan, Priya Erickson, Brian Shah, Manesh Tuskan, Gerald A. Hettich, Robert L. TI Defining the Boundaries and Characterizing the Landscape of Functional Genome Expression in Vascular Tissues of Populus using Shotgun Proteomics SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE plant proteomics; single amino acid polymorphisms; populus; mass spectrometry; protein inference; shotgun proteomics; vascular tissue; xylem; phloem ID TANDEM MASS-SPECTROMETRY; CARBOHYDRATE-ACTIVE ENZYMES; PROTEIN IDENTIFICATION; QUANTITATIVE PROTEOMICS; GENE IDENTIFICATION; LIGNIN BIOSYNTHESIS; METABOLIC PATHWAYS; YEAST PROTEOME; HYBRID ASPEN; POPLAR AB Current state-of-the-art experimental and computational proteomic approaches were integrated to obtain a comprehensive protein profile of Populus vascular tissue. This featured: (1) a large sample set consisting of two genotypes grown under normal and tension stress conditions, (2) bioinformatics clustering to effectively handle gene duplication, and (3) an informatics approach to track and identify single amino acid polymorphisms (SAAPs). By applying a clustering algorithm to the Populus database, the number of protein entries decreased from 64689 proteins to a total of 43069 protein groups, thereby reducing 7505 identified proteins to a total of 4226 protein groups, in which 2016 were singletons. This reduction implies that similar to 50% of the measured proteins shared extensive sequence homology. Using conservative search criteria, we were able to identify 1354 peptides containing a SAAP and 201 peptides that become tryptic due to a K or R substitution. These newly identified peptides correspond to 502 proteins, including 97 previously unidentified proteins. In total, the integration of deep proteome measurements on an extensive sample set with protein clustering and peptide sequence variants provided an exceptional level of proteome characterization for Populus, allowing us to spatially resolve the vascular tissue proteome. C1 [Abraham, Paul; Adams, Rachel; Giannone, Richard J.; Erickson, Brian; Shah, Manesh; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Kalluri, Udaya; Ranjan, Priya; Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Abraham, Paul; Adams, Rachel] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37830 USA. RP Hettich, RL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RI Adams, Rachel/D-3644-2012; Abraham, Paul/K-5599-2015; Hettich, Robert/N-1458-2016; Tuskan, Gerald/A-6225-2011 OI KALLURI, UDAYA/0000-0002-5963-8370; Hettich, Robert/0000-0001-7708-786X; Tuskan, Gerald/0000-0003-0106-1289 FU BioEnergy Science Center, a U.S. Department of Energy; Office of Biological and Environmental Research in the DOE Office of Science FX This study was funded within the BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Facility supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the Department of Energy. NR 74 TC 14 Z9 16 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD JAN PY 2012 VL 11 IS 1 BP 449 EP 460 DI 10.1021/pr200851y PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 872RT UT WOS:000298827700039 PM 22003893 ER PT J AU Kumar, SKS Sedghizadeh, PP Gorur, A Schaudinn, C Shuler, CF Costerton, JW Silverman, S AF Kumar, Satish K. S. Sedghizadeh, Parish P. Gorur, Amita Schaudinn, Christoph Shuler, Charles F. Costerton, John W. Silverman, Stuart TI TERMINOLOGY SO JOURNAL OF THE AMERICAN DENTAL ASSOCIATION LA English DT Letter C1 [Sedghizadeh, Parish P.] Univ So Calif, Herman Ostrow Sch Dent, Ctr Biofilms, Div Periodontol Diagnost Sci & Dent Hyg, Los Angeles, CA USA. [Gorur, Amita] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schaudinn, Christoph] Robert Koch Inst, Berlin, Germany. [Shuler, Charles F.] Univ British Columbia, Fac Dent, Vancouver, BC V5Z 1M9, Canada. [Costerton, John W.] Allegheny Singer Res Inst, Dept Orthoped, Pittsburgh, PA 15212 USA. [Costerton, John W.] Allegheny Singer Res Inst, Ctr Genom Sci, Pittsburgh, PA 15212 USA. [Silverman, Stuart] Cedars Sinai Med Ctr, Los Angeles, CA 90048 USA. NR 2 TC 48 Z9 49 U1 0 U2 5 PU AMER DENTAL ASSOC PI CHICAGO PA 211 E CHICAGO AVE, CHICAGO, IL 60611 USA SN 0002-8177 J9 J AM DENT ASSOC JI J. Am. Dent. Assoc. PD JAN PY 2012 VL 143 IS 1 BP 12 EP 12 PG 1 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA 878ZO UT WOS:000299297200003 PM 22207659 ER PT J AU Liu, G Zheng, H Song, X Battaglia, VS AF Liu, G. Zheng, H. Song, X. Battaglia, V. S. TI Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID CARBON-BLACK; BOUND RUBBER; CRYSTALLIZATION; MICROSCOPY; POLYPROPYLENE; CONDUCTIVITY; OPTIMIZATION; MORPHOLOGY; BEHAVIOR; CATHODE AB This paper investigates lithium-ion electrode laminates as polymer composites to explain their performance variation due to changes in formulation. There are three essential components in a positive electrode laminate: active material (AM) particles, acetylene black (AB) particles, and the polymer binder. The high filler content and discrete particle sizes make the electrode laminate a very unique polymer composite. This work introduces a physical model in which AB and AM particles compete for polymer binder, which forms fixed layers of polymer on their surfaces. This competition leads to the observed variations in electrode morphology and performance for different electrode formulations. The electronic conductivities of the cathode laminates were measured and compared to an effective conductivity calculation based on the physical model to probe the interaction among the three components to reveal the critical factors controlling electrode conductivity and electrochemical performance. The data and effective conductivity calculation results agree very well with each other. This developed physical model provides a theoretical guideline for optimization of electrode composition for most polymer binder-based Li-ion battery electrodes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.024203jes] All rights reserved. C1 [Liu, G.; Zheng, H.; Song, X.; Battaglia, V. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM Gliu@lbl.gov FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, under the Batteries for Advanced Transportation Technologies (BATT) Program. W. Maria Wang performed advanced editing of the manuscript. NR 22 TC 61 Z9 62 U1 10 U2 89 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 3 BP A214 EP A221 DI 10.1149/2.024203jes PG 8 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 878YA UT WOS:000299292100004 ER PT J AU Rhodes, KJ Meisner, R Kirkham, M Dudney, N Daniel, C AF Rhodes, Kevin J. Meisner, Roberta Kirkham, Melanie Dudney, Nancy Daniel, Claus TI In Situ XRD of Thin Film Tin Electrodes for Lithium Ion Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID NEGATIVE ELECTRODES; OXIDE; COMPOSITES; FRACTURE; STRESS AB Thin film electrodes for lithium ion batteries (LIB) poses several attractive advantages over traditional composite electrodes including size and shape constraints, operating temperature range, and volumetric energy density. Tin is an attractive candidate for LIB anode applications due to its exceptional specific capacity, cascading voltage profile, safety, wide availability, and low cost. Tin thin film electrodes were sputtered onto the current collector of a recently developed in situ X-ray diffraction (XRD) and were monitored continuously by XRD while cycling. A phase transformation from white tin, to Li2Sn5, to beta-LiSn, to Li22Sn5 was observed during lithiation with the same phases detected in reverse order during delithiation. The Li2Sn5 phase is not seen in the high temperature phase diagram of the Li-Sn system. Preferred orientation and crystallite size information for these phases was extracted from the XRD data in order to develop a clearer picture of how lithium enters and exits thin film tin electrodes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.077203jes] All rights reserved. C1 [Rhodes, Kevin J.; Kirkham, Melanie; Dudney, Nancy; Daniel, Claus] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37931 USA. [Rhodes, Kevin J.; Meisner, Roberta; Daniel, Claus] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Rhodes, KJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37931 USA. EM krhode18@ford.com RI Kirkham, Melanie/B-6147-2011; Daniel, Claus/A-2060-2008 OI Kirkham, Melanie/0000-0001-8411-9751; Daniel, Claus/0000-0002-0571-6054 FU U.S. Department of Energy [DE-AC05-00OR22725]; Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; High Temperature Materials Laboratory User Program FX This research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725, was sponsored by the Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy and the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, with additional support through the High Temperature Materials Laboratory User Program. Also, thanks to Andrew Payzant for his assistance with XRD experiments. NR 24 TC 28 Z9 28 U1 4 U2 87 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 3 BP A294 EP A299 DI 10.1149/2.077203jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 878YA UT WOS:000299292100016 ER PT J AU Stone, GM Mullin, SA Teran, AA Hallinan, DT Minor, AM Hexemer, A Balsara, NP AF Stone, G. M. Mullin, S. A. Teran, A. A. Hallinan, D. T., Jr. Minor, A. M. Hexemer, A. Balsara, N. P. TI Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID BLOCK-COPOLYMER ELECTROLYTES; DIBLOCK COPOLYMER; DENDRITIC GROWTH; CELLS; DEFORMATION; INHIBITION; RHEOLOGY; KINETICS; LAMELLAE AB Herein we present a solid electrolyte that adheres to the lithium surface and resists dendrite growth, both of which are needed for the development of high specific energy rechargeable batteries with lithium metal anodes. Nanostructured lamellar block copolymer electrolytes exhibit solid-like properties in the bulk, due to the presence of a randomly oriented granular structure, and liquid-like surface properties due to the formation of perpendicularly oriented lamellae at the lithium-electrolyte interface. The amount of charge that can be passed before short circuit in a symmetric lithium-polymer-lithium cell with nanostructured polystyrene-block-poly( ethylene oxide) electrolytes is larger than that obtained with homopolymer poly(ethylene oxide) electrolytes by a factor ranging from 11 to 48. Grazing incident small angle X-ray scattering confirms that the microstructure of the block copolymer near the lithium-polymer interface has a perpendicular orientation. This orientation leads to a liquid-like behavior of the polymer at the interface due to the liquid crystalline symmetry of block copolymers. This combination of bulk and surface properties enhances the resistance to dendrites while maintaining electrode-electrolyte contact. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.030203jes] All rights reserved. C1 [Stone, G. M.; Mullin, S. A.; Teran, A. A.; Balsara, N. P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Stone, G. M.; Minor, A. M.; Balsara, N. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mullin, S. A.; Teran, A. A.; Hallinan, D. T., Jr.; Balsara, N. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Hexemer, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Stone, GM (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM nbalsara1@gmail.com FU U.S. Department of Energy [DE-AC02-05CH11231]; Office of Vehicle Transportation; Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge Dr. Mohit Singh, Dr. Hany Eitouni, and Professor John Newman for educational discussions. Funding for this work was provided by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the Batteries for Advanced Transportation Technologies Program (materials synthesis and electrochemical testing) supported by the Office of Vehicle Transportation and the Electron Microscopy of Soft Matter Program (electrolyte imaging) supported by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division. Portions of this work were carried out at the National Center for Electron Microscopy and at the Advanced Light Source at Lawrence Berkeley Laboratory, both of which are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 74 Z9 75 U1 13 U2 118 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 3 BP A222 EP A227 DI 10.1149/2.030203jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 878YA UT WOS:000299292100005 ER PT J AU Tang, M Newman, J AF Tang, Maureen Newman, John TI Transient Characterization of Solid-Electrolyte-Interphase Using Ferrocene SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID GLASSY-CARBON ELECTRODES; ROTATING-DISK ELECTRODE; SURFACE-FILM FORMATION; GRAPHITE-ELECTRODES; PYROLYTIC-GRAPHITE; MODEL; SPECTROSCOPY; SYSTEMS AB A method using ferrocene to characterize the solid-electrolyte-interphase in lithium-ion batteries is expanded from steady-state analysis to consider electrochemical impedance spectroscopy and transients in the open-circuit potential. Although surface films formed on glassy carbon differ quantitively among different electrodes, results from impedance are consistent with steady-state findings, that increasing formation time decreases film porosity. Evolution of open-circuit potential shows a qualitative trend consistent with other methods, but does not yield reasonable estimates of film thickness or porosity. Impedance results are less effective at extracting unique characterization parameters than steady-state methods but have major experimental advantages over rotating-disk electrode measurements. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.073203jes] All rights reserved. C1 [Tang, Maureen; Newman, John] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Tang, Maureen; Newman, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Tang, M (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM mtang@berkeley.edu RI Newman, John/B-8650-2008 OI Newman, John/0000-0002-9267-4525 NR 18 TC 13 Z9 13 U1 1 U2 35 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 3 BP A281 EP A289 DI 10.1149/2.073203jes PG 9 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 878YA UT WOS:000299292100014 ER PT J AU Zhang, GQ Hendrickson, M Plichta, EJ Au, M Zheng, JP AF Zhang, G. Q. Hendrickson, M. Plichta, E. J. Au, M. Zheng, J. P. TI Preparation, Characterization and Electrochemical Catalytic Properties of Hollandite Ag2Mn8O16 for Li-Air Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM BATTERIES; ELECTRODES; ELECTROLYTES AB Hollandite Ag2Mn8O16 was prepared by solid-state chemical method, and was used as an electrochemical catalyst for oxygen reduction in lithium-air batteries. Several techniques including X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to evaluate the characteristics of Ag2Mn8O16 catalyst and composite air electrodes made with Ag2Mn8O16/single-wall carbon nanotube (SWNT)/carbon nanofiber (CNF). The catalytic effect of Ag2Mn8O16 catalyst was studied using galvanostatic discharge method. Li-air cell with Ag2Mn8O16 catalyst exhibits a reduced discharge overvoltage and a large discharge capacity. This work shows that the hollandite Ag2Mn8O16 material is an effective electrochemical catalyst to enhance the electrochemical performance of lithium-air batteries. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.085203jes] All rights reserved. C1 [Zheng, J. P.] Florida State Univ, Ctr Adv Power Syst, Tallahassee, FL 32310 USA. [Zhang, G. Q.; Zheng, J. P.] Florida A&M Univ, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA. [Hendrickson, M.; Plichta, E. J.] USA, CERDEC, Ft Monmouth, NJ 07703 USA. [Au, M.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Zhang, GQ (reprint author), Yangtze Normal Univ, Coll Chem & Chem Engn, Chongqing 408100, Peoples R China. EM zheng@eng.fsu.edu RI zhang, guoqing/G-7798-2011 OI zhang, guoqing/0000-0001-5896-0483 FU US Army-CERDEC; Savannah River National Laboratory; Chinese Ministry of Education [211147] FX This work was supported by US Army-CERDEC, Savannah River National Laboratory and Key Project of Chinese Ministry of Education (Grant No. 211147). NR 27 TC 19 Z9 20 U1 2 U2 66 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 3 BP A310 EP A314 DI 10.1149/2.085203jes PG 5 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 878YA UT WOS:000299292100019 ER PT J AU Lopes, T Kim, DS Kim, YS Garzon, FH AF Lopes, Thiago Kim, Dae Sik Kim, Yu Seung Garzon, Fernando Henry TI Ionic Transport and Water Vapor Uptake of Ammonium Exchanged Perfluorosulfonic Acid Membranes SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID ELECTROLYTE FUEL-CELLS; IONOMER MEMBRANES; NAFION MEMBRANES; POLYMER; PROTON; PERFORMANCE; IMPURITY; CATIONS; H+; CONDUCTIVITY AB Nafion membranes series N117 doped with ammonium, at different cation fractions (H+/NH4+), were investigated for ionic transport and water vapor uptake, for several water activities and temperatures. Ammonium cations change both properties of the polymer in a similar manner. Membrane ionic conductivity and water vapor uptake (lambda) decrease as the ammonium concentration increases in the polymer. Ionic transport activation energies are calculated and the transport mechanism of ammonium ions in Nafion is discussed. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.040203jes] All rights reserved. C1 [Lopes, Thiago] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Paulo, Brazil. [Lopes, Thiago; Kim, Dae Sik; Kim, Yu Seung; Garzon, Fernando Henry] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Lopes, T (reprint author), Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Paulo, Brazil. EM tlopeschem@gmail.com; garzon@lanl.gov RI Lopes, Thiago/F-5797-2012; Lopes, Thiago/I-6350-2013 OI Lopes, Thiago/0000-0002-1049-4679 FU U.S. Department of Energy, Office of Energy; government agency CAPES [1151-08-8] FX The authors acknowledge the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cell and Infrastructure Program for support of this research. Thiago Lopes also thanks his government agency CAPES, process number 1151-08-8, for granting him a fellowship to stay a year at LANL. NR 31 TC 7 Z9 7 U1 1 U2 10 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 3 BP B265 EP B269 DI 10.1149/2.040203jes PG 5 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 878YA UT WOS:000299292100026 ER PT J AU Shea-Rohwer, LE Martin, JE AF Shea-Rohwer, Lauren E. Martin, James E. TI Patterning Surfaces for High Resolution Self Alignment SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID CAPILLARY FORCES; MILLIMETER; WAFERS AB The ever-decreasing scale of microsystems is pushing the current limits of wafer/die alignment, creating a need for a new approach. Lithographic patterning is extremely precise, so we have developed an alignment method that exploits this high precision. This method relies on the self alignment of patterned structures of Au. In this paper regular line patterns are formed on glass substrates. When these are brought into contact we find that the interactions between the complementary Au lines creates registration forces that lead to the submicron self-alignment along the axis normal to the lines. An analysis of the forces generated in terms of the interaction energies is given and a number of more sophisticated Au patterns are discussed. These patterns can cause alignment along two orthogonal directions, and can lead to alignment torques. One interesting possibility is modulated patterns, which lead to high registration forces, yet do not require high precision initial placement. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.091203jes] All rights reserved. C1 [Shea-Rohwer, Lauren E.; Martin, James E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shea-Rohwer, LE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM leshea@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia's Laboratory FX Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed-Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was funded by Sandia's Laboratory Directed Research and Development program. We would like to thank Catalina Ahlers, Terri Romanic, and Ben Thurston for their contributions. NR 11 TC 1 Z9 1 U1 4 U2 11 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 3 BP H317 EP H322 DI 10.1149/2.091203jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 878YA UT WOS:000299292100080 ER PT J AU Ramadesigan, V Northrop, PWC De, S Santhanagopalan, S Braatz, RD Subramanian, VR AF Ramadesigan, Venkatasailanathan Northrop, Paul W. C. De, Sumitava Santhanagopalan, Shriram Braatz, Richard D. Subramanian, Venkat R. TI Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Review ID STATE-OF-CHARGE; KINETIC MONTE-CARLO; HYBRID-ELECTRIC VEHICLES; APPROXIMATE SOLUTION METHODS; GENERAL ENERGY-BALANCE; CAPACITY FADE ANALYSIS; SOLID-PHASE DIFFUSION; NICKEL METAL HYDRIDE; PARAMETER-ESTIMATION; POROUS-ELECTRODE AB The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.018203jes] All rights reserved. C1 [Ramadesigan, Venkatasailanathan; Northrop, Paul W. C.; De, Sumitava; Subramanian, Venkat R.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Santhanagopalan, Shriram] Natl Renewable Energy Lab, Ctr Transportat Technol & Syst, Golden, CO 80401 USA. [Braatz, Richard D.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. RP Ramadesigan, V (reprint author), Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. EM vsubramanian@seas.wustl.edu RI DE, SUMITAVA/H-6608-2016 OI DE, SUMITAVA/0000-0002-2711-082X FU National Science Foundation [CBET-0828002, CBET-0828123, CBET-1008692]; International Center for Advanced Renewable Energy and Sustainability at Washington University in St. Louis (ICARES); Institute for Advanced Computing Applications and Technologies at University of Illinois, Urbana-Champaign; U.S. government; U.S. DOE Office of Vehicle Technologies FX The authors are thankful for the financial support by the National Science Foundation under contract numbers CBET-0828002, CBET-0828123, and CBET-1008692, the International Center for Advanced Renewable Energy and Sustainability at Washington University in St. Louis (ICARES), Institute for Advanced Computing Applications and Technologies at University of Illinois, Urbana-Champaign, and the U.S. government. One of the authors (SS) gratefully acknowledges David Howell, Brian Cunningham, and the U.S. DOE Office of Vehicle Technologies Energy Storage Program for funding and support. NR 178 TC 143 Z9 144 U1 22 U2 236 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2012 VL 159 IS 3 BP R31 EP R45 DI 10.1149/2.018203jes PG 15 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA 878YA UT WOS:000299292100101 ER PT J AU Bhatia, A Albazzaz, M Orias, AAE Inoue, N Miller, LM Acerbo, A George, A Sumner, DR AF Bhatia, Ankush Albazzaz, Michael Orias, Alejandro A. Espinoza Inoue, Nozomu Miller, Lisa M. Acerbo, Alvin George, Anne Sumner, Dale R. TI Overexpression of DMP1 accelerates mineralization and alters cortical bone biomechanical properties in vivo SO JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS LA English DT Article DE DMP1; Biomineralization; MicroCT; Mechanical testing; Transgenic; Cortical bone ID DENTIN MATRIX PROTEIN-1; MECHANICAL-PROPERTIES; ACIDIC PHOSPHOPROTEIN; EXPRESSION PATTERNS; SIBLING PROTEINS; C57B1/6 MICE; GENE; BIOMINERALIZATION; DIFFERENTIATION; MICROSTRUCTURE AB Dentin matrix protein-1 (DMP1) is a key regulator of biomineralization. Here, we examine changes in structural, geometric, and material properties of cortical bone in a transgenic mouse model overexpressing DMP1. Micro-computed tomography and three-point bending were performed on 90 femora of wild type and transgenic mice at 1, 2, 4, and 6 months. Fourier transform infrared imaging was performed at 2 months. We found that the transgenic femurs were longer (p < 0.01), more robust in cross-section (p < 0.05), stronger (p < 0.05), but had less post-yield strain and displacement (p < 0.01), and higher tissue mineral density (p < 0.01) than the wild type femurs at 1 and 2 months. At 2 months, the transgenic femurs also had a higher mineral-to-matrix ratio (p < 0.05) and lower carbonate substitution (p < 0.05) compared to wild type femurs. These findings indicate that increased mineralization caused by overexpressing DMP1 led to increased structural cortical bone properties associated with decreased ductility during the early post-natal period. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Bhatia, Ankush; Sumner, Dale R.] Rush Med Coll, Dept Anat & Cell Biol, Chicago, IL 60612 USA. [Albazzaz, Michael; George, Anne] Univ Illinois, Dept Oral Biol, Chicago, IL 60612 USA. [Orias, Alejandro A. Espinoza; Inoue, Nozomu; Sumner, Dale R.] Rush Univ, Med Ctr, Dept Orthoped Surg, Chicago, IL 60612 USA. [Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Miller, Lisa M.; Acerbo, Alvin] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. RP Sumner, DR (reprint author), Rush Med Coll, Dept Anat & Cell Biol, 600 S Paulina St,Rm 507, Chicago, IL 60612 USA. EM ankush_bhatia@rush.edu; anneg@uic.edu; alejandro_espinoza@rush.edu; nozomu_inoue@rush.edu; lmiller@bnl.gov; acerbo@bnl.gov; anneg@uic.edu; rick_sumner@rush.edu RI Acerbo, Alvin/D-8931-2011; OI Acerbo, Alvin/0000-0002-0909-6497; GEORGE, ANNE/0000-0002-9008-7642; Albareda Sambola, Maria/0000-0002-7666-6218 FU NIH [R01DE11657, T32AR052272]; Grainger Foundation FX Funding sources: the NIH Grants R01DE11657, T32AR052272, and the Grainger Foundation. Funding sources had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. NR 32 TC 8 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1751-6161 J9 J MECH BEHAV BIOMED JI J. Mech. Behav. Biomed. Mater. PD JAN PY 2012 VL 5 IS 1 BP 1 EP 8 DI 10.1016/j.jmbbm.2011.08.026 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 873QX UT WOS:000298899200001 PM 22100074 ER PT J AU Deymier-Black, AC Almer, JD Stock, SR Dunand, DC AF Deymier-Black, A. C. Almer, J. D. Stock, S. R. Dunand, D. C. TI Variability in the elastic properties of bovine dentin at multiple length scales SO JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS LA English DT Article DE Dentin; Young's modulus; X-ray diffraction; Mineral content; Load transfer ID X-RAY-DIFFRACTION; MINERALIZED COLLAGEN FIBRILS; MECHANICAL-PROPERTIES; HUMAN TEETH; YOUNGS MODULUS; BONE; DEFORMATION; HARDNESS; STRAINS; ENAMEL AB Various methods are used to investigate the variability in elastic properties across a population of deciduous bovine incisor root dentin samples spanning different animals, incisor types, and locations within teeth. First, measurements of elastic strains by high-energy synchrotron X-ray scattering during compressive loading of dentin specimens provided the effective modulus - the ratio of applied stress to elastic phase strain for the two main phases of dentin (hydroxyapatite crystals and mineralized collagen fibrils), shedding light on load transfer operating at the nanoscale between collagen and mineral phases. Second, Young's moduli were measured at the macroscale by ultrasonic time-of-flight measurements. Third, thermogravimetry quantified the volume fractions of hydroxyapatite, protein and water at the macroscale. Finally, micro-Computed Tomography determined spatial variations of the mineral at the sub-millimeter scale. Statistical comparison of the above properties reveals: (i) no significant differences for dentin samples taken from different animals or different incisor types but (ii) significant differences for samples taken from the cervical or apical root sections as well as from different locations between buccal and lingual edges. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Deymier-Black, A. C.; Dunand, D. C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Stock, S. R.] Northwestern Univ, Feinberg Sch Med, Dept Mol Pharmacol & Biol Chem, Chicago, IL 60611 USA. RP Deymier-Black, AC (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM Alixdeymier2010@u.northwestern.edu; Almer@aps.anl.gov; S-Stock@northwestern.edu; Dunand@northwestern.edu RI Dunand, David/B-7515-2009; OI Dunand, David/0000-0001-5476-7379 FU US Department of Energy, Office of Science [DE-AC02-06CH11357]; Department of Defense; National Science Foundation FX The authors thank Dr. Dean Haeffner (Advanced Photon Source) and Ms. Yu-Chen Chen and Ms. Anjali Singhal (Northwestern University) for useful conversations and assistance at the beamline. This research was performed at station 1-ID-C at the Advanced Photon Source which is supported by the US Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. ACDB acknowledges the support of the Department of Defense in the form of a National Defense Science and Engineering Graduate Fellowship, as well as the National Science Foundation in the form of a National Science Foundation Graduate Fellowship. NR 55 TC 13 Z9 13 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1751-6161 J9 J MECH BEHAV BIOMED JI J. Mech. Behav. Biomed. Mater. PD JAN PY 2012 VL 5 IS 1 BP 71 EP 81 DI 10.1016/j.jmbbm.2011.08.005 PG 11 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 873QX UT WOS:000298899200008 PM 22100081 ER PT J AU Mitchell, EW Levis, DM Prue, CE AF Mitchell, Elizabeth W. Levis, Denise M. Prue, Christine E. TI Preconception Health: Awareness, Planning, and Communication Among a Sample of US Men and Women SO MATERNAL AND CHILD HEALTH JOURNAL LA English DT Article DE Preconception; Pregnancy; Knowledge; Awareness; Communication ID NEWLY MARRIED-COUPLES; UNITED-STATES; COMMUNITY SAMPLE; CARE; PREGNANCY; RECOMMENDATIONS; PREVENTION; BEHAVIORS; SERVICES; OUTCOMES AB It is important to educate both men and women about preconception health (PCH), but limited research exists in this area. This paper examines men's and women's awareness of exposure to PCH information and of specific PCH behaviors, PCH planning, and PCH discussions with their partners. Data from Porter Novelli's 2007 Healthstyles survey were used. Women and men of reproductive age were included in the analysis (n = 2,736) to understand their awareness, planning, and conversations around PCH. Only 27.9% of women and men reported consistently using an effective birth control method. The majority of men (52%) and women (43%) were unaware of any exposure to PCH messages; few received information from their health care provider. Women were more aware than men of specific pre-pregnancy health behaviors. Women in the sample reported having more PCH conversations with their partners than did men. PCH education should focus on both women and men. Communication about PCH is lacking, both between couples and among men and women and their health care providers. PCH education might benefit from brand development so that consumers know what to ask for and providers know what to deliver. C1 [Mitchell, Elizabeth W.; Levis, Denise M.] Ctr Dis Control & Prevent, Prevent Res Branch, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Levis, Denise M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Prue, Christine E.] Ctr Dis Control & Prevent, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA USA. RP Mitchell, EW (reprint author), Ctr Dis Control & Prevent, Prevent Res Branch, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. EM bhm0@cdc.gov NR 37 TC 17 Z9 19 U1 2 U2 11 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1092-7875 J9 MATERN CHILD HLTH J JI Matern. Child Health J. PD JAN PY 2012 VL 16 IS 1 BP 31 EP 39 DI 10.1007/s10995-010-0663-y PG 9 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 875AL UT WOS:000299001100004 PM 20734124 ER PT J AU Giancardo, L Meriaudeau, F Karnowski, TP Li, YQ Garg, S Tobin, KW Chaum, E AF Giancardo, Luca Meriaudeau, Fabrice Karnowski, Thomas P. Li, Yaqin Garg, Seema Tobin, Kenneth W., Jr. Chaum, Edward TI Exudate-based diabetic macular edema detection in fundus images using publicly available datasets SO MEDICAL IMAGE ANALYSIS LA English DT Article DE Exudates segmentation; Feature selection; Lesion probability; Automatic diagnosis; Wavelets ID AUTOMATIC DETECTION; RETINAL IMAGES; MATHEMATICAL MORPHOLOGY; CONTRAST NORMALIZATION; NEURAL-NETWORK; RETINOPATHY; PHOTOGRAPHS; SEGMENTATION; DIAGNOSIS AB Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, we introduce a new methodology for diagnosis of DME using a novel set of features based on colour, wavelet decomposition and automatic lesion segmentation. These features are employed to train a classifier able to automatically diagnose DME through the presence of exudation. We present a new publicly available dataset with ground-truth data containing 169 patients from various ethnic groups and levels of DME. This and other two publicly available datasets are employed to evaluate our algorithm. We are able to achieve diagnosis performance comparable to retina experts on the MESS-IDOR (an independently labelled dataset with 1200 images) with cross-dataset testing (e.g., the classifier was trained on an independent dataset and tested on MESSIDOR). Our algorithm obtained an AUC between 0.88 and 0.94 depending on the dataset/features used. Additionally, it does not need ground truth at lesion level to reject false positives and is computationally efficient, as it generates a diagnosis on an average of 4.4 s (9.3 s, considering the optic nerve localisation) per image on an 2.6 GHz platform with an unoptimised Matlab implementation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Giancardo, Luca; Meriaudeau, Fabrice] Univ Burgundy, F-71200 Le Creusot, France. [Giancardo, Luca; Karnowski, Thomas P.] Oak Ridge Natl Lab, Imaging Signals & Machine Learning Grp, Oak Ridge, TN 37831 USA. [Li, Yaqin; Chaum, Edward] Univ Tennessee, Hamilton Eye Inst, Memphis, TN 38163 USA. [Garg, Seema] Univ N Carolina, Dept Ophthalmol, Chapel Hill, NC 27514 USA. [Tobin, Kenneth W., Jr.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. RP Giancardo, L (reprint author), Univ Burgundy, Le21,12 Rue Fonderie, F-71200 Le Creusot, France. EM giancardol@ornl.gov RI Li, Yaqin/B-3643-2015; OI Li, Yaqin/0000-0001-7308-0441; Giancardo, Luca/0000-0002-4862-2277 FU Oak Ridge National Laboratory; National Eye Institute [EY017065]; Research to Prevent Blindness (RPB), New York, NY; Fight for Sight, New York, NY; Plough Foundation, Memphis, TN; Regional Burgundy Council, France FX These studies were supported in part by grants from Oak Ridge National Laboratory, the National Eye Institute (EY017065), by an unrestricted UTHSC Departmental grant from Research to Prevent Blindness (RPB), New York, NY, Fight for Sight, New York, NY, by The Plough Foundation, Memphis, TN and by the Regional Burgundy Council, France. Dr. Chaum is an RPB Senior Scientist. NR 44 TC 64 Z9 69 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1361-8415 J9 MED IMAGE ANAL JI Med. Image Anal. PD JAN PY 2012 VL 16 IS 1 BP 216 EP 226 DI 10.1016/j.media.2011.07.004 PG 11 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Computer Science; Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 880KH UT WOS:000299405500018 PM 21865074 ER PT J AU Vincenot, L Nara, K Sthultz, C Labbe, J Dubois, MP Tedersoo, L Martin, F Selosse, MA AF Vincenot, Lucie Nara, Kazuhide Sthultz, Christopher Labbe, Jessy Dubois, Marie-Pierre Tedersoo, Leho Martin, Francis Selosse, Marc-Andre TI Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex SO MOLECULAR ECOLOGY LA English DT Article DE cryptic speciation; ectomycorrhizal fungi; gene flow; inbreeding; isolation by distance; microsatellite markers; phylogeography; population structure ID FUNGUS SERPULA-LACRYMANS; POPULATION-GENETICS; MICROSATELLITE MARKERS; PRIMARY SUCCESSION; AMANITA-MUSCARIA; SPECIES COMPLEX; RIBOSOMAL DNA; BIOGEOGRAPHIC RELATIONSHIPS; TRICHOLOMA-SCALPTURATUM; FOREST PLANTATION AB Biogeographical patterns and large-scale genetic structure have been little studied in ectomycorrhizal (EM) fungi, despite the ecological and economic importance of EM symbioses. We coupled population genetics and phylogenetic approaches to understand spatial structure in fungal populations on a continental scale. Using nine microsatellite markers, we characterized gene flow among 16 populations of the widespread EM basidiomycete Laccaria amethystina over Europe (i.e. over 2900 km). We also widened our scope to two additional populations from Japan (104 km away) and compared them with European populations through microsatellite markers and multilocus phylogenies, using three nuclear genes (NAR, G6PD and ribosomal DNA) and two mitochondrial ribosomal genes. European L. amethystina populations displayed limited differentiation (average FST = 0.041) and very weak isolation by distance (IBD). This panmictic European pattern may result from effective aerial dispersal of spores, high genetic diversity in populations and mutualistic interactions with multiple hosts that all facilitate migration. The multilocus phylogeny based on nuclear genes confirmed that Japanese and European specimens were closely related but clustered on a geographical basis. By using microsatellite markers, we found that Japanese populations were strongly differentiated from the European populations (FST = 0.416), more than expected by extrapolating the European pattern of IBD. Population structure analyses clearly separated the populations into two clusters, i.e. European and Japanese clusters. We discuss the possibility of IBD in a continuous population (considering some evidence for a ring species over the Northern Hemisphere) vs. an allopatric speciation over Eurasia, making L. amethystina a promising model of intercontinental species for future studies. C1 [Vincenot, Lucie; Sthultz, Christopher; Dubois, Marie-Pierre; Selosse, Marc-Andre] Ctr Ecol Fonct & Evolut, UMR5175, F-34293 Montpellier 5, France. [Nara, Kazuhide] Univ Tokyo, Dept Nat Environm Studies, Kashiwa, Chiba 2778563, Japan. [Labbe, Jessy; Martin, Francis] INRA Nancy, UMR1136, F-54280 Champenoux, France. [Labbe, Jessy] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Tedersoo, Leho] Univ Tartu, Inst Ecol & Earth Sci, EE-51005 Tartu, Estonia. [Tedersoo, Leho] Univ Tartu, Nat Hist Museum, EE-51005 Tartu, Estonia. RP Vincenot, L (reprint author), Fdn Edmund Mach IASMA, Via Edmund Mach 1, I-38100 San Michele All Adige, Italy. EM lucie.vincenot@cefe.cnrs.fr RI Tedersoo, Leho/H-3541-2012; Labbe, Jessy/G-9532-2011; Vincenot, Lucie/D-6138-2011; Nara, Kazuhide/H-6246-2016 OI Labbe, Jessy/0000-0003-0368-2054; Nara, Kazuhide/0000-0002-3705-231X FU European Commission Network of Excellence EVOLTREE; Agence Nationale de la Recherche; ESF [JD-92, 6606, FIBIR] FX We warmly thank Mohammad Bahram, Simon Egli, Andreas Gminder, Ibai Olariaga Ibarguren, Pavel Kolmakov, Damjan Krstajic, Thomas Lassoe, Mireille Lenne, Daniel Mousain, Jorma Palmen, Mykola Prydiuk, Stefan Raidl, Franck Richard, Maria Rudawska, Arne Ryberg, Stuart Skeates, Yutaka Tamai, Alexander Urban and Sietse Van der Linde for help in sampling, and Sebastien Leclerq for help in screening of microsatellites. We thank Joelle Ronfort, Finn Kjellberg, Patrice David, Francois Rousset, Noppol Kobmoo, Pierre-Olivier Cheptou and Mathieu Sauve for discussions on population genetics, as well as Marc de Dinechin and Pierre-Henri Fabre for help in phylogenetic analyses. We also acknowledge Gerhardt Kost, Thomas Kuyper, Greg Mueller and Pierre-Arthur Moreau for inspiring discussions on the model taxon and three anonymous referees for their comments on an earlier version of this manuscript, and David Marsh for English correction. This work was funded by the European Commission Network of Excellence EVOLTREE (to F. M. and M.-A. S.) and the Agence Nationale de la Recherche (SYSTRUF programme to M.-A. S). L. T. receives support from ESF grants JD-92, 6606 and FIBIR. Most molecular data used in this work were produced at the IFR119 'Montpellier Environnement Biodiversite. NR 73 TC 28 Z9 30 U1 4 U2 44 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 J9 MOL ECOL JI Mol. Ecol. PD JAN PY 2012 VL 21 IS 2 BP 281 EP 299 DI 10.1111/j.1365-294X.2011.05392.x PG 19 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 872XU UT WOS:000298845600006 PM 22168318 ER PT J AU Bess, JD AF Bess, John D. TI EVALUATION OF PLUTONIUM HEMISPHERE CRITICAL EXPERIMENTS PARTIALLY REFLECTED BY STEEL AND OIL SO NUCLEAR TECHNOLOGY LA English DT Article DE benchmark; plutonium; Rocky Flats AB A series of 15 critical experiments performed at the Rocky Flats Critical Mass Laboratory in the late 1960s was evaluated and then determined to represent acceptable benchmark experiments for the validation of calculational methods. This series of experiments was part of a larger set of experiments performed to evaluate operational safety margins at the Rocky Flats Plant. The experiments consisted of bare plutonium metal hemishells reflected by steel hemishells of increasing thickness and motor oil. The hemishell assembly was suspended within dual aluminum tanks. Criticality was achieved by pumping oil into the tanks such that effectively infinite reflection was achieved in all directions except directly above the assembly; then the critical oil height was recorded. The results of these experiments had been initially ignored because early computational methods had been inadequate to analyze partially reflected configurations. The dominant uncertainties include the uncertainty in the average plutonium density and the composition of materials in the gaps between the plutonium hemishells. Simple and detailed benchmark models were developed. Eigenvalue calculations using MCNP5 and ENDF/B-VII.0 were within 2 sigma of the benchmark values. This benchmark evaluation has been added to the International Handbook of Evaluated Criticality Safety Benchmark Experiments. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Bess, JD (reprint author), Idaho Natl Lab, POB 1625,MS 3855, Idaho Falls, ID 83415 USA. EM John.Bess@INL.gov OI Bess, John/0000-0002-4936-9103 FU U.S. Department of Energy [DE-AC07-05ID14517] FX The author would like to thank B. Dolphin and J. B. Briggs from the Idaho National Laboratory and E. Lipilina, V. Lyuyov, and V. Shmakov from the Russian Federal Nuclear Center Institute of Technical Physics for their review and support in developing a comprehensive benchmark evaluation. Further appreciation is expressed to all the international participants in the International Criticality Safety Benchmark Evaluation Project for all their well-spent time and effort. This paper was prepared at the Idaho National Laboratory for the U.S. Department of Energy under contract DE-AC07-05ID14517. NR 18 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JAN PY 2012 VL 177 IS 1 BP 29 EP 35 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 867HS UT WOS:000298446100003 ER PT J AU Rodriguez, JA Illas, F AF Rodriguez, Jose A. Illas, Francesc TI Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID AU NANOPARTICLES; ELECTRONIC-STRUCTURE; CHARGE POLARIZATION; GOLD NANOPARTICLES; SO2; AU/TIC(001); ADSORPTION; THIOPHENE; DISSOCIATION; CHEMISTRY AB This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O-2, C2H4, SO2, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO2 at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O-2 and perform the 2CO + O-2 -> 2CO(2) reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoSx catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical reactivity of noble metals. C1 [Rodriguez, Jose A.; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Rodriguez, Jose A.; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Univ Barcelona, Dept Quim Fis, C Marti & Franques 1, E-08028 Barcelona, Spain. EM francesc.illas@ub.edu; rodrigez@bnl.gov RI Illas, Francesc /C-8578-2011 OI Illas, Francesc /0000-0003-2104-6123 FU Spanish MICINN [FIS2008-02238]; Generalitat de Catalunya [2009SGR1041, XRQTC]; ICREA; JAR Generalitat de Catalunya [2010PIV0001]; US Department of Energy, Chemical Sciences Division [DE-AC02-98CH10886] FX Financial support has been provided by Spanish MICINN grants FIS2008-02238 and in part by Generalitat de Catalunya (grants 2009SGR1041 and XRQTC). FI acknowledges additional support through 2009 ICREA Academia award for excellence in research and JAR Generalitat de Catalunya for an invited professor fellowship (2010PIV0001) that made possible his stay at the Universitat de Barcelona. Computational time has been generously provided by the Barcelona Supercomputing Centre. The research carried out at BNL was supported by the US Department of Energy, Chemical Sciences Division (Contract No. DE-AC02-98CH10886). NR 58 TC 6 Z9 6 U1 8 U2 101 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 2 BP 427 EP 438 DI 10.1039/c1cp22738f PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 868UY UT WOS:000298552800003 ER PT J AU Just, GMP Negru, B Park, D Neumark, DM AF Just, Gabriel M. P. Negru, Bogdan Park, Dayoung Neumark, Daniel M. TI Photodissociation of isobutene at 193 nm SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-TRANSITION ENERGIES; SHOCK-TUBE; SPECTROSCOPY; PYROLYSIS; OXIDATION; STATES; DISSOCIATION; ABSORPTION; MECHANISM; ETHENE AB The collisionless photodissociation dynamics of isobutene (i-C(4)H(8)) at 193 nm via photofragment translational spectroscopy are reported. Two major photodissociation channels were identified: H + C(4)H(7) and CH(3) + CH(3)CCH(2). Translational energy distributions indicate that both channels result from statistical decay on the ground state surface. Although the CH(3) loss channel lies 13 kcal mol(-1) higher in energy, the CH(3):H branching ratio was found to be 1.7 (5), in reasonable agreement with RRKM calculations. C1 [Just, Gabriel M. P.; Negru, Bogdan; Park, Dayoung; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Just, Gabriel M. P.; Negru, Bogdan; Park, Dayoung; Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 1 Z9 1 U1 0 U2 6 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2012 VL 14 IS 2 BP 675 EP 680 DI 10.1039/c1cp22651g PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 868UY UT WOS:000298552800030 PM 22120105 ER PT J AU Samaniego, H Serandour, G Milne, BT AF Samaniego, Horacio Serandour, Guillaume Milne, Bruce T. TI Analyzing Taylor's Scaling Law: qualitative differences of social and territorial behavior on colonization/extinction dynamics SO POPULATION ECOLOGY LA English DT Article DE Invariant scaling; Mean-variance; Population dynamics; Population variability; Taylor's Power Law ID POWER-LAW; REPRODUCTIVE CORRELATION; REGRESSION QUANTILES; POPULATION PROCESSES; ANIMAL POPULATIONS; DENSITY-DEPENDENCE; HABITAT-USE; VARIANCE; PATTERNS; MODEL AB The power law relation between the mean population count and its variance (Taylor's Power Law, TPL) is among the few general patterns in population ecology. While the TPL has been described to be pervasive across taxa, the causes of variation of the exponent describing this relation is not well understood. We compare the TPL exponents for two species with different social systems and behavior: Pion jays (Gymnorhinus cyanocephalus) and Western scrub-jays (Aphelocoma californica). We analyze the underlying processes that generate the expected values of population size and its variance. Using a probabilistic model, we identify and estimate important processes involved in the generation of the TPL exponents. While both species show a scaling relationship between their mean and abundance, share a common negative relation between mean abundance and colonization-extinction rates, they differ greatly in the statistical distributions of colonization, extinction, the mean number of colonists, the probability of zero abundance and population sizes. We show how different aspects of the processes that generate abundance affect the TPL exponent, thereby providing empirical guidelines to interpret differences in the scaling relation between mean and variance of population size. C1 [Samaniego, Horacio] Univ Austral Chile, Fac Ciencias Forestales & Recursos Nat, Inst Silvicultura, Valdivia, Chile. [Serandour, Guillaume] Univ Austral Chile, Fac Ciencias Ingn, Valdivia, Chile. [Milne, Bruce T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Samaniego, H (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, MS B258, Los Alamos, NM 87545 USA. EM horacio.samaniego@gmail.com FU Alvin R. and Caroline G. Grove doctoral scholarship; Research and Development office, Universidad Austral de Chile [DID S-2009-20] FX We would like to thank the hundreds of volunteer that make the BBS database an invaluable tool to better understand the functioning of nature. James H. Brown, Scott L. Collins, Pablo A. Marquet and Bernardo Broitman provided valuable comments to this manuscript. Funding for this research was provided through the Alvin R. and Caroline G. Grove doctoral scholarship and project DID S-2009-20 of the Research and Development office, Universidad Austral de Chile to HS. NR 55 TC 1 Z9 1 U1 2 U2 18 PU SPRINGER JAPAN KK PI TOKYO PA CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN SN 1438-3896 EI 1438-390X J9 POPUL ECOL JI Popul. Ecol. PD JAN PY 2012 VL 54 IS 1 BP 213 EP 223 DI 10.1007/s10144-011-0287-0 PG 11 WC Ecology SC Environmental Sciences & Ecology GA 861WS UT WOS:000298051200022 ER PT J AU Agarwal, R Burley, SK Swaminathan, S AF Agarwal, Rakhi Burley, Stephen K. Swaminathan, Subramanyam TI Structural insight into mechanism and diverse substrate selection strategy of L-ribulokinase SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE crystal structure; ribulokinase; ribulose; araBAD; araB; arabinose; catabolism ID L-ARABINOSE ISOMERASE; COLI GLYCEROL KINASE; ESCHERICHIA-COLI; CRYSTAL-STRUCTURES; SUBUNIT STRUCTURE; PROTEIN; PHOSPHORYLATION; CONFORMATION; COMPLEX; REVEAL AB The araBAD operon encodes three different enzymes required for catabolism of L-arabinose, which is one of the most abundant monosaccharides in nature.L-ribulokinase, encoded by the araB gene, catalyzes conversion of L-ribulose to L-ribulose-5-phosphate, the second step in the catabolic pathway. Unlike other kinases, ribulokinase exhibits diversity in substrate selectivity and catalyzes phosphorylation of all four 2-ketopentose sugars with comparable kcat values. To understand ribulokinase recognition and phosphorylation of a diverse set of substrates, we have determined the X-ray structure of ribulokinase from Bacillus halodurans bound to L-ribulose and investigated its substrate and ATP co-factor binding properties. The polypeptide chain is folded into two domains, one small and the other large, with a deep cleft in between. By analogy with related sugar kinases, we identified 447GGLPQK452 as the ATP-binding motif within the smaller domain. L-ribulose binds in the cleft between the two domains via hydrogen bonds with the side chains of highly conserved Trp126, Lys208, Asp274, and Glu329 and the main chain nitrogen of Ala96. The interaction of L-ribulokinase with L-ribulose reveals versatile structural features that help explain recognition of various 2-ketopentose substrates and competitive inhibition by L-erythrulose. Comparison of our structure to that of the structures of other sugar kinases revealed conformational variations that suggest domaindomain closure movements are responsible for establishing the observed active site environment. Proteins 2012; (C) 2011 Wiley Periodicals, Inc. C1 [Agarwal, Rakhi; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Burley, Stephen K.] Eli Lilly & Co, Lilly Biotechnol Ctr, San Diego, CA 92121 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU National Institute of General Medical Sciences [GM074945]; DOE [DEAC02-98CH10886]; Brookhaven National Laboratory; Offices of Biological and Environmental Research; Basic Energy Sciences of the US Department of Energy; National Center for Research Resources of the National Institutes of Health FX Research was supported by a U54 award to the New York SGX Research Center for Structural Genomics (NYSGXRC) from the National Institute of General Medical Sciences to the NYSGXRC (GM074945; PI: Stephen K. Burley) under DOE Prime Contract No. DEAC02-98CH10886 with Brookhaven National Laboratory. The authors gratefully acknowledge data collection support from NSLS Beamlines X12 C and X25. Financial support to these beamlines comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and from the National Center for Research Resources of the National Institutes of Health. NR 30 TC 3 Z9 3 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 J9 PROTEINS JI Proteins PD JAN PY 2012 VL 80 IS 1 BP 261 EP 268 DI 10.1002/prot.23202 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 869LF UT WOS:000298598800021 PM 22072612 ER PT J AU Kinsinger, CR Apffel, J Baker, M Bian, XP Borchers, CH Bradshaw, R Brusniak, MY Chan, DW Deutsch, EW Domon, B Gorman, J Grimm, R Hancock, W Hermjakob, H Horn, D Hunter, C Kolar, P Kraus, HJ Langen, H Linding, R Moritz, RL Omenn, GS Orlando, R Pandey, A Ping, PP Rahbar, A Rivers, R Seymour, SL Simpson, RJ Slotta, D Smith, RD Stein, SE Tabb, DL Tagle, D Yates, JR Rodriguez, H AF Kinsinger, Christopher R. Apffel, James Baker, Mark Bian, Xiaopeng Borchers, Christoph H. Bradshaw, Ralph Brusniak, Mi-Youn Chan, Daniel W. Deutsch, Eric W. Domon, Bruno Gorman, Jeff Grimm, Rudolf Hancock, William Hermjakob, Henning Horn, David Hunter, Christie Kolar, Patrik Kraus, Hans-Joachim Langen, Hanno Linding, Rune Moritz, Robert L. Omenn, Gilbert S. Orlando, Ron Pandey, Akhilesh Ping, Peipei Rahbar, Amir Rivers, Robert Seymour, Sean L. Simpson, Richard J. Slotta, Douglas Smith, Richard D. Stein, Stephen E. Tabb, David L. Tagle, Danilo Yates, John R. Rodriguez, Henry TI Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam principles) SO PROTEOMICS LA English DT Article DE Amsterdam principles; Bioinformatics; Data quality; Metrics; Open access; Selected reaction monitoring; Standards ID PROTEIN IDENTIFICATION DATA; SHOTGUN PROTEOMICS; PEPTIDE IDENTIFICATION; CLINICAL PROTEOMICS; MINIMUM INFORMATION; STATISTICAL-MODEL; GUIDELINES; RESOURCE; SPECTRA; REPRODUCIBILITY AB Policies supporting the rapid and open sharing of proteomic data are being implemented by the leading journals in the field. The proteomics community is taking steps to ensure that data are made publicly accessible and are of high quality, a challenging task that requires the development and deployment of methods for measuring and documenting data quality metrics. On September 18, 2010, the U.S. National Cancer Institute (NCI) convened the International Workshop on Proteomic Data Quality Metrics in Sydney, Australia, to identify and address issues facing the development and use of such methods for open access proteomics data. The stakeholders at the workshop enumerated the key principles underlying a framework for data quality assessment in mass spectrometry data that will meet the needs of the research community, journals, funding agencies, and data repositories. Attendees discussed and agreed upon two primary needs for the wide use of quality metrics: (i) an evolving list of comprehensive quality metrics and (ii) standards accompanied by software analytics. Attendees stressed the importance of increased education and training programs to promote reliable protocols in proteomics. This workshop report explores the historic precedents, key discussions, and necessary next steps to enhance the quality of open access data. By agreement, this article is published simultaneously in Proteomics, Proteomics Clinical Applications, Journal of Proteome Research, and Molecular and Cellular Proteomics, as a public service to the research community. The peer review process was a coordinated effort conducted by a panel of referees selected by the journals. C1 [Kinsinger, Christopher R.; Rahbar, Amir; Rodriguez, Henry] NCI, Off Canc Clin Prote Res, NIH, Bethesda, MD 20892 USA. [Apffel, James] Agilent Res Labs, Santa Clara, CA USA. [Baker, Mark] Macquarie Univ, Dept Chem & Biomol Sci, Sydney, NSW 2109, Australia. [Bian, Xiaopeng] NCI, Ctr Bioinformat & Informat Technol, NIH, Bethesda, MD 20892 USA. [Borchers, Christoph H.] Univ Victoria, Genome BC Prote Ctr, Victoria, BC, Canada. [Bradshaw, Ralph] Univ Calif San Francisco, Mass Spectrometry Facil, San Francisco, CA 94143 USA. [Chan, Daniel W.] Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD 21205 USA. [Domon, Bruno] CRP Sante, Luxembourg Clin Prote Ctr, Luxembourg, Luxembourg. [Gorman, Jeff] Queensland Inst Med Res, Prot Discovery Ctr, Herston, Qld 4006, Australia. [Grimm, Rudolf] Agilent Technol, Santa Clara, CA USA. [Hancock, William] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA. [Hermjakob, Henning] European Bioinformat Inst, Prote Serv, Cambridge, England. [Horn, David] Thermo Fisher Sci, Prote Software Strateg Mkt, San Jose, CA USA. [Hunter, Christie; Rivers, Robert] AB SCIEX, Foster City, AB, Canada. [Kolar, Patrik] European Commiss, Directorate Gen Res, Brussels, Belgium. [Kraus, Hans-Joachim] Wiley VCH, Weinheim, Germany. [Langen, Hanno] Hoffmann La Roche Ag, Exploratory Biomarkers, CH-4002 Basel, Switzerland. [Linding, Rune] Tech Univ Denmark DTU, Cellular Signal Integrat Grp C SIG, Ctr Biol Sequence Anal CBS, Dept Syst Biol, Lyngby, Denmark. [Moritz, Robert L.] Inst Syst Biol, Cellular & Mol Logic Unit, Seattle, WA USA. [Omenn, Gilbert S.] Univ Michigan, Ctr Computat Med & Bioinformat, Ann Arbor, MI 48109 USA. [Orlando, Ron] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Pandey, Akhilesh] Johns Hopkins Univ, McKusick Nathans Inst Genet Med, Baltimore, MD USA. [Ping, Peipei] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Seymour, Sean L.] NCI, Small Business Dev Ctr, NIH, Bethesda, MD 20892 USA. [Simpson, Richard J.] La Trobe Univ, La Trobe Inst Mol Sci, Bundoora, Vic, Australia. [Slotta, Douglas] NIH, Ctr Biotechnol Informat, Bethesda, MD 20892 USA. [Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Stein, Stephen E.] NIST, Chem Reference Data Grp, Gaithersburg, MD 20899 USA. [Tabb, David L.] Vanderbilt Ingram Canc Ctr, Nashville, TN USA. [Tagle, Danilo] Natl Inst Neurol Disorders & Stroke, NIH, Bethesda, MD USA. [Yates, John R.] Scripps Res Inst, La Jolla, CA 92037 USA. RP Kinsinger, CR (reprint author), NCI, Off Canc Clin Prote Res, NIH, 31 Ctr Dr,MSC 2580, Bethesda, MD 20892 USA. EM kinsingc@mail.nih.gov RI Pandey, Akhilesh/B-4127-2009; Smith, Richard/J-3664-2012; Bradshaw, Ralph/K-1515-2013; OI Hermjakob, Henning/0000-0001-8479-0262; Baker, Mark/0000-0001-5858-4035; Pandey, Akhilesh/0000-0001-9943-6127; Smith, Richard/0000-0002-2381-2349; Ping, Peipei/0000-0003-3583-3881; Omenn, Gilbert S./0000-0002-8976-6074 NR 51 TC 18 Z9 18 U1 1 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 EI 1615-9861 J9 PROTEOMICS JI Proteomics PD JAN PY 2012 VL 12 IS 1 BP 11 EP 20 DI 10.1002/pmic.201100562 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 872WL UT WOS:000298841000004 PM 22069307 ER PT J AU Lemen, JR Title, AM Akin, DJ Boerner, PF Chou, C Drake, JF Duncan, DW Edwards, CG Friedlaender, FM Heyman, GF Hurlburt, NE Katz, NL Kushner, GD Levay, M Lindgren, RW Mathur, DP McFeaters, EL Mitchell, S Rehse, RA Schrijver, CJ Springer, LA Stern, RA Tarbell, TD Wuelser, JP Wolfson, CJ Yanari, C Bookbinder, JA Cheimets, PN Caldwell, D Deluca, EE Gates, R Golub, L Park, S Podgorski, WA Bush, RI Scherrer, PH Gummin, MA Smith, P Auker, G Jerram, P Pool, P Soufli, R Windt, DL Beardsley, S Clapp, M Lang, J Waltham, N AF Lemen, James R. Title, Alan M. Akin, David J. Boerner, Paul F. Chou, Catherine Drake, Jerry F. Duncan, Dexter W. Edwards, Christopher G. Friedlaender, Frank M. Heyman, Gary F. Hurlburt, Neal E. Katz, Noah L. Kushner, Gary D. Levay, Michael Lindgren, Russell W. Mathur, Dnyanesh P. McFeaters, Edward L. Mitchell, Sarah Rehse, Roger A. Schrijver, Carolus J. Springer, Larry A. Stern, Robert A. Tarbell, Theodore D. Wuelser, Jean-Pierre Wolfson, C. Jacob Yanari, Carl Bookbinder, Jay A. Cheimets, Peter N. Caldwell, David Deluca, Edward E. Gates, Richard Golub, Leon Park, Sang Podgorski, William A. Bush, Rock I. Scherrer, Philip H. Gummin, Mark A. Smith, Peter Auker, Gary Jerram, Paul Pool, Peter Soufli, Regina Windt, David L. Beardsley, Sarah Clapp, Matthew Lang, James Waltham, Nicholas TI The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) SO SOLAR PHYSICS LA English DT Article DE Solar corona; Solar instrumentation; Solar imaging; Extreme ultraviolet ID ADVANCED LIGHT-SOURCE; ATOMIC DATABASE; EMISSION-LINES; TELESCOPE; MISSION; CHIANTI AB The Atmospheric Imaging Assembly (AIA) provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R(circle dot) above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution. The AIA consists of four telescopes that employ normal-incidence, multilayer-coated optics to provide narrow-band imaging of seven extreme ultraviolet (EUV) band passes centered on specific lines: Fe XVIII (94 angstrom), Fe VIII, XXI (131 angstrom), Fe IX (171 angstrom), Fe XII, XXIV (193 angstrom), Fe XIV (211 angstrom), He II (304 angstrom), and Fe XVI (335 angstrom). One telescope observes C IV (near 1600 angstrom) and the nearby continuum (1700 angstrom) and has a filter that observes in the visible to enable coalignment with images from other telescopes. The temperature diagnostics of the EUV emissions cover the range from 6 x 10(4) K to 2 x 10(7) K. The AIA was launched as a part of NASA's Solar Dynamics Observatory (SDO) mission on 11 February 2010. AIA will advance our understanding of the mechanisms of solar variability and of how the Sun's energy is stored and released into the heliosphere and geospace. C1 [Lemen, James R.; Title, Alan M.; Akin, David J.; Boerner, Paul F.; Chou, Catherine; Drake, Jerry F.; Duncan, Dexter W.; Edwards, Christopher G.; Friedlaender, Frank M.; Heyman, Gary F.; Hurlburt, Neal E.; Katz, Noah L.; Kushner, Gary D.; Levay, Michael; Lindgren, Russell W.; Mathur, Dnyanesh P.; McFeaters, Edward L.; Mitchell, Sarah; Rehse, Roger A.; Schrijver, Carolus J.; Springer, Larry A.; Stern, Robert A.; Tarbell, Theodore D.; Wuelser, Jean-Pierre; Wolfson, C. Jacob; Yanari, Carl] Lockheed Martin Adv Technol, Solar & Astrophys Lab, Org ADBS, Palo Alto, CA 94304 USA. [Bush, Rock I.; Scherrer, Philip H.] Stanford Univ, WW Hansen Expt Phys Lab, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. [Gummin, Mark A.] Alias Aerosp Inc, St Helena, CA 94574 USA. [Bookbinder, Jay A.; Cheimets, Peter N.; Caldwell, David; Deluca, Edward E.; Gates, Richard; Golub, Leon; Park, Sang; Podgorski, William A.; Smith, Peter] Harvard Univ, Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Auker, Gary; Jerram, Paul; Pool, Peter] e2v Technol, Chelmsford CM1 2QU, Essex, England. [Soufli, Regina] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Windt, David L.] Reflect Xray Opt LLC, New York, NY 10027 USA. [Beardsley, Sarah; Clapp, Matthew; Lang, James; Waltham, Nicholas] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Lemen, JR (reprint author), Lockheed Martin Adv Technol, Solar & Astrophys Lab, Org ADBS, Bldg 252,3251 Hanover St, Palo Alto, CA 94304 USA. EM lemen@lmsal.com RI DeLuca, Edward/L-7534-2013; OI DeLuca, Edward/0000-0001-7416-2895; Golub, Leon/0000-0001-9638-3082 FU U.S. Department of Energy [DE-AC52-07NA27344]; NASA [NNG04EA00C]; Lockheed Martin Independent Research Program FX The effort required to build an instrument such as AIA requires a large, skillful, and dedicated team. We wish to acknowledge many individuals who contributed to the success of the AIA: Robert Batista, Roger Chevalier, Dustin Cram, Cliff Evans, Scott Gibb, Dwana Kacensky, Robert Honeycut, Bruce Imai, Alex Price, Lawrence Shing, Edgar Thomas, Shanti Varaich, Ross Yamamoto, Kent Zickhur (Lockheed Martin), Gerald Austin (Smithsonian Astrophysical Observatory), David McKenzie (Montana State Univ.), Eberhard Spiller, Jeff C. Robinson, Sherry L. Baker (Lawrence Livermore National Lab.), Travis Ayers, Heidi Lopez, Forbes Powell, (Luxel Corp.), and Tom Anderson, Elizabeth Citrin, Julie Lander, Chad Salo, and Mike Scott (NASA Goddard Space Flight Center). Lawrence Livermore National Laboratory's efforts are partially supported by the U.S. Department of Energy under contract DE-AC52-07NA27344. This work is supported by NASA under contract NNG04EA00C and the Lockheed Martin Independent Research Program. NR 22 TC 1134 Z9 1145 U1 6 U2 33 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD JAN PY 2012 VL 275 IS 1-2 BP 17 EP 40 DI 10.1007/s11207-011-9776-8 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 878YT UT WOS:000299294600003 ER PT J AU Boerner, P Edwards, C Lemen, J Rausch, A Schrijver, C Shine, R Shing, L Stern, R Tarbell, T Title, A Wolfson, CJ Soufli, R Spiller, E Gullikson, E McKenzie, D Windt, D Golub, L Podgorski, W Testa, P Weber, M AF Boerner, Paul Edwards, Christopher Lemen, James Rausch, Adam Schrijver, Carolus Shine, Richard Shing, Lawrence Stern, Robert Tarbell, Theodore Title, Alan Wolfson, C. Jacob Soufli, Regina Spiller, Eberhard Gullikson, Eric McKenzie, David Windt, David Golub, Leon Podgorski, William Testa, Paola Weber, Mark TI Initial Calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) SO SOLAR PHYSICS LA English DT Article DE Instrumentation; EUV; Soft X-ray; Chromosphere; Corona; Transition region ID X-RAY; EXTREME-ULTRAVIOLET; EMISSION-LINES; ATOMIC DATABASE; ANGSTROM; TRACE; WAVELENGTHS; SPECTRUM; CHIANTI AB The Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO) is an array of four normal-incidence reflecting telescopes that image the Sun in ten EUV and UV wavelength channels. We present the initial photometric calibration of AIA, based on preflight measurements of the response of the telescope components. The estimated accuracy is of order 25%, which is consistent with the results of comparisons with full-disk irradiance measurements and spectral models. We also describe the characterization of the instrument performance, including image resolution, alignment, camera-system gain, flat-fielding, and data compression. C1 [Boerner, Paul; Edwards, Christopher; Lemen, James; Rausch, Adam; Schrijver, Carolus; Shine, Richard; Shing, Lawrence; Stern, Robert; Tarbell, Theodore; Title, Alan; Wolfson, C. Jacob] Lockheed Martin Adv Technol Ctr, Solar & Astrophys Lab, Dept ADBS, Palo Alto, CA 94304 USA. [Soufli, Regina; Spiller, Eberhard] Lawrence Livermore Natl Lab, Livermore, CA USA. [Gullikson, Eric] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McKenzie, David] Montana State Univ, Bozeman, MT 59717 USA. [Windt, David] Reflect Xray Opt LLC, New York, NY USA. [Golub, Leon; Podgorski, William; Testa, Paola; Weber, Mark] Smithsonian Astrophys Observ, Cambridge, MA USA. RP Boerner, P (reprint author), Lockheed Martin Adv Technol Ctr, Solar & Astrophys Lab, Dept ADBS, Bldg 252,3251 Hanover St, Palo Alto, CA 94304 USA. EM boerner@lmsal.com OI Golub, Leon/0000-0001-9638-3082 FU NASA [NNG04EA00C] FX This work is supported by NASA under contract NNG04EA00C. NR 30 TC 165 Z9 167 U1 2 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD JAN PY 2012 VL 275 IS 1-2 BP 41 EP 66 DI 10.1007/s11207-011-9804-8 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 878YT UT WOS:000299294600004 ER PT J AU Deymier-Black, AC Yuan, F Singhal, A Almer, JD Brinson, LC Dunand, DC AF Deymier-Black, A. C. Yuan, F. Singhal, A. Almer, J. D. Brinson, L. C. Dunand, D. C. TI Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone SO ACTA BIOMATERIALIA LA English DT Article DE Bone; Synchrotron; Creep; Load-transfer; X-ray diffraction ID X-RAY-DIFFRACTION; HUMAN CORTICAL BONE; ELASTIC PROPERTIES; VISCOELASTIC PROPERTIES; SYNCHROTRON-RADIATION; MECHANICAL-PROPERTIES; TENDON COLLAGEN; TRABECULAR BONE; COMPRESSIVE PROPERTIES; NEUTRON-DIFFRACTION AB While the matrix/reinforcement load-transfer occurring at the micro- and nanoscale in nonbiological composites subjected to creep deformation is well understood, this topic has been little studied in biological composites such as bone. Here, for the first time in bone, the mechanisms of time-dependent load transfer occurring at the nanoscale between the collagen phase and the hydroxyapatite (HAP) platelets are studied. Bovine cortical bone samples are subjected to synchrotron X-ray diffraction to measure in situ the evolution of elastic strains in the crystalline HAP phase and the evolution of viscoelastic strains accumulating in the mineralized collagen fibrils under creep conditions at body temperature. For a constant compressive stress, both types of strains increase linearly with time. This suggests that bone, as it deforms macroscopically, is behaving as a traditional composite, shedding load from the more compliant, viscoelastic collagen matrix to the reinforcing elastic HAP platelets. This behavior is modeled by finite-element simulation carried out at the fibrillar level. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Deymier-Black, A. C.; Yuan, F.; Singhal, A.; Brinson, L. C.; Dunand, D. C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Brinson, L. C.] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. RP Deymier-Black, AC (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM Alixdeymier2010@u.northwestern.edu RI Brinson, L. Catherine/B-6678-2009; Dunand, David/B-7515-2009; Brinson, L Catherine/B-1315-2013; OI Brinson, L Catherine/0000-0003-2551-1563; Dunand, David/0000-0001-5476-7379 FU US Department of Energy (Office of Science) [DE-AC02-06CH11357]; US Department of Defense; National Science Foundation FX This research was performed at station 1-ID at the Advanced Photon Source which is supported by the US Department of Energy (Office of Science) under Contract No. DE-AC02-06CH11357. A.C.D.B. acknowledges the support of the US Department of Defense in the form of a National Defense Science and Engineering Graduate Fellowship and the National Science Foundation in the form of a Graduate Fellowship. NR 68 TC 12 Z9 12 U1 4 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD JAN PY 2012 VL 8 IS 1 BP 253 EP 261 DI 10.1016/j.actbio.2011.08.014 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 871UP UT WOS:000298763500028 PM 21878399 ER PT J AU Goel, A Kapoor, S Rajagopal, RR Pascual, MJ Kim, HW Ferreira, JMF AF Goel, Ashutosh Kapoor, Saurabh Rajagopal, Raghu Raman Pascual, Maria J. Kim, Hae-Won Ferreira, Jose M. F. TI Alkali-free bioactive glasses for bone tissue engineering: A preliminary investigation SO ACTA BIOMATERIALIA LA English DT Article DE Bioactive glass; Scaffolds; Glass-ceramic; Sintering; Alkaline phosphate activity ID SIMULATED BODY-FLUID; IN-VITRO; MECHANICAL-PROPERTIES; CERAMICS; 45S5; BEHAVIOR; PH; CRYSTALLIZATION; BIOCERAMICS; DISSOLUTION AB An alkali-free series of bioactive glasses has been designed and developed in the glass system CaO-MgO-SiO(2)-P(2)O(5)-CaF(2) along the diopside (CaMgSi(2)O(6))-fluorapatite (Ca(5)(PO(4))(3)F)-tricalcium phosphate (3CaO center dot P(2)O(5)) join. The silicate network in all the investigated glasses is predominantly coordinated in Q(2) (Si) units, while phosphorus tends to remain in an orthophosphate (Q(0)) environment. The in vitro bioactivity analysis of glasses has been made by immersion of glass powders in simulated body fluid (SBF) while chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Some of the investigated glasses exhibit hydroxyapatite formation on their surface within 1-12 h of their immersion in SBF solution. The sintering and crystallization kinetics of glasses has been investigated by differential thermal analysis and hot-stage microscopy, respectively while the crystalline phase evolution in resultant glass-ceramics has been studied in the temperature range of 800-900 degrees C using powder X-ray diffraction and scanning electron microscopy. The alkaline phosphatase activity and osteogenic differentiation for glasses have been studied in vitro on sintered glass powder compacts using rat bone marrow mesenchymal stem cells. The as-designed glasses are ideal candidates for their potential applications in bone tissue engineering in the form of bioactive glasses as well as glass/glass-ceramic scaffolds. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Goel, Ashutosh] Pacific NW Natl Lab, Richland, WA 99354 USA. [Kapoor, Saurabh; Rajagopal, Raghu Raman; Ferreira, Jose M. F.] Univ Aveiro, CICECO, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. [Pascual, Maria J.] CSIC, Inst Ceram & Vidrio, E-28049 Madrid, Spain. [Kim, Hae-Won] Dankook Univ, Dept Nanobiomed Sci, Cheonan 330714, South Korea. [Kim, Hae-Won] Dankook Univ, WCU Res Ctr, Cheonan 330714, South Korea. [Kim, Hae-Won] Dankook Univ, Inst Tissue Regenerat Engn ITREN, Cheonan 330714, South Korea. RP Goel, A (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM ashutosh.goel@pnnl.gov RI Goel, Ashutosh/J-9972-2012 FU FCT-Portugal; CICECO; University of Aveiro; National Research Foundation, Republic of Korea [2009-0093829]; WCU [R31-10069] FX The financial support from FCT-Portugal is highly acknowledged. Also, Saurabh Kapoor is thankful to CICECO and University of Aveiro for the research scholarship. Partial supports from the National Research Foundation, Republic of Korea (Research Centers Program, Grant# 2009-0093829 and WCU Program, Grant# R31-10069) are also acknowledged. NR 42 TC 32 Z9 32 U1 5 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD JAN PY 2012 VL 8 IS 1 BP 361 EP 372 DI 10.1016/j.actbio.2011.08.026 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 871UP UT WOS:000298763500039 PM 21925626 ER PT J AU Liu, X Rahaman, MN Fu, Q Tomsia, AP AF Liu, Xin Rahaman, Mohamed N. Fu, Qiang Tomsia, Antoni P. TI Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions SO ACTA BIOMATERIALIA LA English DT Article DE Bioactive glass; Scaffold; Unidirectional freezing; Camphene; Bone repair ID HYDROXYAPATITE SCAFFOLDS; PORE STRUCTURE; CERAMICS; SIZE; MICROSTRUCTURE AB Scaffolds of 13-93 bioactive glass (6Na(2)O, 12K(2)O, 5MgO, 20CaO, 4P(2)O(5), 53SiO(2): wt.%) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 degrees C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1-7 degrees C min(-1)) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 degrees C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 degrees C min-1 (porosity = 50 +/- 4%; average pore diameter = 100 mu m), had a compressive strength of 47 +/- 5 MPa and an elastic modulus of 11 +/- 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 +/- 11 MPa and 8 +/- 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Liu, Xin; Rahaman, Mohamed N.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Liu, Xin; Rahaman, Mohamed N.] Missouri Univ Sci & Technol, Ctr Bone & Tissue Repair & Regenerat, Rolla, MO 65409 USA. [Fu, Qiang; Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Rahaman, MN (reprint author), Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. EM rahaman@mst.edu RI Fu, Qiang/B-1972-2013 FU US Army Medical Research Acquisition Activity [W81XWH-08-1-0765]; National Institutes of Health, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIH/NIAMS) [1R15AR056119-01]; National Institutes of Health, National Institute of Dental and Craniofacial Research (NIH/NIDCR) [1R01DE015633] FX This work was supported by the US Army Medical Research Acquisition Activity, under Contract No. W81XWH-08-1-0765, and by the National Institutes of Health, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIH/NIAMS), Grant No. 1R15AR056119-01. Q.F. and A.P.T. are grateful for the support from the National Institutes of Health, National Institute of Dental and Craniofacial Research (NIH/NIDCR), Grant No. 1R01DE015633. The authors would like to thank Dr. D.E. Day and Mo-Sci Corp, Rolla, MO, for providing the bioactive glass used in this work, and C. Gilbert for assistance with setting up the controlled freezing rate apparatus. NR 31 TC 20 Z9 23 U1 4 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD JAN PY 2012 VL 8 IS 1 BP 415 EP 423 DI 10.1016/j.actbio.2011.07.034 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 871UP UT WOS:000298763500044 PM 21855661 ER PT J AU Kronawitter, CX Ma, ZX Liu, DF Mao, SS Antoun, BR AF Kronawitter, Coleman X. Ma, Zhixun Liu, Dongfang Mao, Samuel S. Antoun, Bonnie R. TI Engineering Impurity Distributions in Photoelectrodes for Solar Water Oxidation SO ADVANCED ENERGY MATERIALS LA English DT Article DE oxides; nanostructures; photoelectrochemistry; solar energy ID ZNO NANOWIRE ARRAYS; HYDROGEN-PRODUCTION; ENERGY CONVERSION; THIN-FILMS; CELLS; TIO2; SPECTROSCOPY; PHOTOANODES; GENERATION; ELECTRODES C1 [Kronawitter, Coleman X.; Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Kronawitter, Coleman X.; Ma, Zhixun; Liu, Dongfang; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Antoun, Bonnie R.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Kronawitter, CX (reprint author), Univ Calif Berkeley, Dept Mech Engn, Mail Code 1740,6141 Etcheverry Hall, Berkeley, CA 94720 USA. EM colemank@me.berkeley.edu; ssmao@lbl.gov FU Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX This research was supported by Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The research has been partially supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. NR 35 TC 10 Z9 10 U1 0 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JAN PY 2012 VL 2 IS 1 BP 52 EP 57 DI 10.1002/aenm.201100425 PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 874UB UT WOS:000298982500006 ER PT J AU Li, XL Cho, JH Li, N Zhang, YY Williams, D Dayeh, SA Picraux, ST AF Li, Xianglong Cho, Jeong-Hyun Li, Nan Zhang, Yingying Williams, Darrick Dayeh, Shadi A. Picraux, S. T. TI Carbon Nanotube-Enhanced Growth of Silicon Nanowires as an Anode for High-Performance Lithium-Ion Batteries SO ADVANCED ENERGY MATERIALS LA English DT Article ID CORE-SHELL NANOWIRES; LONG CYCLE LIFE; HIGH-CAPACITY; NANOSTRUCTURED SILICON; RECHARGEABLE BATTERIES; HIGH-DENSITY; ELECTRODES; STORAGE; SI; FILM C1 [Li, Xianglong; Cho, Jeong-Hyun; Li, Nan; Zhang, Yingying; Williams, Darrick; Dayeh, Shadi A.; Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Li, XL (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM xianglongli@gmail.com; picraux@lanl.gov RI Li, Nan /F-8459-2010; Dayeh, Shadi/H-5621-2012; Zhang, Yingying/A-7260-2009; Li, Xianglong/A-9010-2010 OI Li, Nan /0000-0002-8248-9027; Zhang, Yingying/0000-0002-8448-3059; Li, Xianglong/0000-0002-6200-1178 FU Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX XL and JHC were supported and STP was supported, in part, by the Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 47 TC 50 Z9 51 U1 3 U2 62 PU WILEY PERIODICALS, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN, MA 02148-529 USA SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JAN PY 2012 VL 2 IS 1 BP 87 EP 93 DI 10.1002/aenm.201100519 PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 874UB UT WOS:000298982500013 ER PT J AU Chen, ZX Zhou, M Cao, YL Ai, XP Yang, HX Liu, J AF Chen, Zhongxue Zhou, Min Cao, Yuliang Ai, Xinping Yang, Hanxi Liu, Jun TI In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage SO ADVANCED ENERGY MATERIALS LA English DT Article DE tin oxide; few-layer graphene; conversion reactions; core-shell nanostructures; lithium-ion batteries ID ELECTROCHEMICAL LITHIATION; ELECTRODE MATERIALS; AMORPHOUS OXIDE; ANODE MATERIAL; BATTERIES; CAPACITY; CARBON; TIN; COMPOSITE; NANOSTRUCTURES AB A simple ball-milling method is used to synthesize a tin oxide-silicon carbide/few-layer graphene core-shell structure in which nanometer-sized SnO2 particles are uniformly dispersed on a supporting SiC core and encapsulated with few-layer graphene coatings by in situ mechanical peeling. The SnO2-SiC/G nanocomposite material delivers a high reversible capacity of 810 mA h g-1 and 83% capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g-1. A high reversible capacity of 425 mA h g-1 also can be obtained at a rate of 2 A g-1. When discharged (Li extraction) to a higher potential at 3.0 V (vs. Li/Li+), the SnO2-SiC/G nanocomposite material delivers a reversible capacity of 1451 mA h g-1 (based on the SnO2 mass), which corresponds to 97% of the expected theoretical capacity (1494 mA h g-1, 8.4 equivalent of lithium per SnO2), and exhibits good cyclability. This result suggests that the core-shell nanostructure can achieve a completely reversible transformation from Li4.4Sn to SnO2 during discharging (i.e., Li extraction by dealloying and a reversible conversion reaction, generating 8.4 electrons). This suggests that simple mechanical milling can be a powerful approach to improve the stability of high-performance electrode materials involving structural conversion and transformation. C1 [Chen, Zhongxue; Zhou, Min; Cao, Yuliang; Ai, Xinping; Yang, Hanxi] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China. [Cao, Yuliang; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cao, YL (reprint author), Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China. EM ylcao@whu.edu.cn; Jun.Liu@pnl.gov RI Chen, Zhongxue/J-9070-2014 FU National Basic Research Program of China [2009CB220100]; National Science Foundation of China [21173160]; National High Technology Development Program of China (863) [2011AA11A254]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE by Battelle [DE-AC05-76RL01830] FX The authors are grateful for the financial support provided by the National Basic Research Program of China (2009CB220100) the National Science Foundation of China (No. 21173160), and the National High Technology Development Program of China (863, No. 2011AA11A254), and also the support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152. The authors also thank Dr. B. Schwenzer for her helpful suggestions. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. NR 53 TC 123 Z9 127 U1 24 U2 190 PU WILEY PERIODICALS, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN, MA 02148-529 USA SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JAN PY 2012 VL 2 IS 1 BP 95 EP 102 DI 10.1002/aenm.201100464 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 874UB UT WOS:000298982500014 ER PT J AU Shuttle, CG Treat, ND Douglas, JD Frechet, JMJ Chabinyc, ML AF Shuttle, Christopher G. Treat, Neil D. Douglas, Jessica D. Frechet, Jean M. J. Chabinyc, Michael L. TI Deep Energetic Trap States in Organic Photovoltaic Devices SO ADVANCED ENERGY MATERIALS LA English DT Article DE solar cells; disorder; trapping; charge transport; PCBM ID FIELD-EFFECT TRANSISTORS; SOLAR-CELLS; MOBILITY; SELENIUM; SOLIDS AB The nature of energetic disorder in organic semiconductors is poorly understood. In photovoltaics, energetic disorder leads to reductions in the open circuit voltage and contributes to other loss processes. In this work, three independent optoelectronic methods were used to determine the long-lived carrier populations in a high efficiency N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) based polymer: fullerene solar cell. In the TPD co-polymer, all methods indicate the presence of a long-lived carrier population of similar to 10(15) cm-3 on timescales = 100 mu s. Additionally, the behavior of these photovoltaic devices under optical bias is consistent with deep energetic lying trap states. Comparative measurements were also performed on high efficiency poly-3-hexylthiophene (P3HT): fullerene solar cells; however a similar long-lived carrier population was not observed. This observation is consistent with a higher acceptor concentration (doping) in P3HT than in the TPD-based copolymer. C1 [Shuttle, Christopher G.; Treat, Neil D.; Chabinyc, Michael L.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Douglas, Jessica D.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Douglas, Jessica D.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Frechet, Jean M. J.] King Abdullah Univ Sci & Technol, Thuwal 23955, Saudi Arabia. RP Shuttle, CG (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM cshuttle@engineering.ucsb.edu; mchabinyc@engineering.ucsb.edu OI Frechet, Jean /0000-0001-6419-0163 FU Center for Energy Efficient Materials, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001009]; "Plastics Electronics" program; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work at UCSB was supported as part of the Center for Energy Efficient Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001009 and at UCB by the "Plastics Electronics" program at Lawrence Berkeley National Laboratory funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Claudia Piliego and Claire H. Woo for advice about device fabrication with PBDTTPD. NR 35 TC 31 Z9 31 U1 2 U2 50 PU WILEY PERIODICALS, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN, MA 02148-529 USA SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JAN PY 2012 VL 2 IS 1 BP 111 EP 119 DI 10.1002/aenm.201100541 PG 9 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 874UB UT WOS:000298982500016 ER PT J AU Bohn, P Soper, S Matousek, P Gooding, J Graham, D Kitamori, T Williams, E Mizaikoff, B Wysocki, V Zhang, XR AF Bohn, Paul Soper, Steven Matousek, Pavel Gooding, Justin Graham, Duncan Kitamori, Takehiko Williams, Evan Mizaikoff, Boris Wysocki, Vicki Zhang, Xinrong TI Untitled SO ANALYST LA English DT Editorial Material C1 [Bohn, Paul] Univ Illinois, Chicago, IL 60680 USA. [Bohn, Paul] Univ Notre Dame, Notre Dame, IN 46556 USA. [Soper, Steven] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Soper, Steven] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Soper, Steven] Univ N Carolina, Joint Dept Biomed Engn, Chapel Hill, NC 27515 USA. [Matousek, Pavel] Rutherford Appleton Lab, Rutherford, NJ USA. [Matousek, Pavel] UCL, London WC1E 6BT, England. [Gooding, Justin] Univ New S Wales, Biosensor & Biointerfaces Res Grp, Sydney, NSW 2052, Australia. [Graham, Duncan] Univ Strathclyde, Glasgow, Lanark, Scotland. [Kitamori, Takehiko] Univ Tokyo, Dept Appl Chem, Grad Sch Engn, Tokyo 1138654, Japan. [Williams, Evan] Univ Calif Berkeley, Ctr Analyt Biotechnol, Chem Mass Spectrometry Ctr QB3, Berkeley, CA 94720 USA. [Williams, Evan] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. [Mizaikoff, Boris] Univ Texas Austin, Austin, TX 78712 USA. [Mizaikoff, Boris] Univ Ulm, Inst Analyt & Bioanalyt Chem, D-89069 Ulm, Germany. [Wysocki, Vicki] Virginia Commonwealth Univ, Richmond, VA 23284 USA. [Wysocki, Vicki] Univ Arizona, Dept Biochem & Mol, Tucson, AZ 85721 USA. [Zhang, Xinrong] Tsinghua Univ, Dept Chem, Beijing, Peoples R China. RP Bohn, P (reprint author), Univ Illinois, Chicago, IL 60680 USA. RI Matousek, Pavel/D-5750-2011; Graham, Duncan/C-8440-2011; Mizaikoff, Boris/G-9959-2013 OI Matousek, Pavel/0000-0003-0912-5339; Mizaikoff, Boris/0000-0002-5583-7962 NR 0 TC 0 Z9 0 U1 0 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2012 VL 137 IS 1 BP 21 EP 23 DI 10.1039/c1an90100a PG 3 WC Chemistry, Analytical SC Chemistry GA 869SE UT WOS:000298617500002 ER PT J AU Yang, X Zhang, AY Wheeler, DA Bond, TC Gu, C Li, Y AF Yang, Xuan Zhang, Alissa Y. Wheeler, Damon A. Bond, Tiziana C. Gu, Claire Li, Yat TI Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Glucose detection; Raman spectroscopy; Photonic crystal fiber; Fiber sensor ID AQUEOUS-SOLUTION; SCATTERING; CORE; STABILITY; SENSOR; SERUM; AIR AB This paper reports the first step toward the development of a glucose biosensor based on Raman spectroscopy and a photonic crystal fiber (PCF) probe. Historically, it has been very challenging to detect glucose directly by Raman spectroscopy due to its inherently small Raman scattering cross-section. In this work, we report the first quantitative glucose Raman detection in the physiological concentration range (0-25 mM) with a low laser power (2 mW), a short integration time (30 s), and an extremely small sampling volume (similar to 50 nL) using the highly sensitive liquid-filled PCF probe. As a proof of concept, we also demonstrate the molecular specificity of this technique in the presence of a competing sugar, such as fructose. High sensitivity, flexibility, reproducibility, low cost, small sampling volume, and in situ remote sensing capability make PCF a very powerful platform for potential glucose detection based on Raman spectroscopy. C1 [Yang, Xuan; Gu, Claire] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. [Zhang, Alissa Y.; Wheeler, Damon A.; Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Yang, Xuan; Bond, Tiziana C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Gu, C (reprint author), Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. EM claire@soe.ucsc.edu; yli@chemistry.ucsc.edu RI Yang, Xuan/G-5620-2012; Zong, Xu/B-7149-2013; OI Li, Yat/0000-0002-8058-2084 FU National Science Foundation (NSF) [ECCS-0823921]; NSF [CBET 1034222]; LLNL; U.S. Department of Energy by LLNL [DE-AC52-07NA27344, LLNL-JRNL-491217] FX We acknowledge support from the National Science Foundation (NSF), ECCS-0823921. Y.L. acknowledges the support of this work in part by NSF, CBET 1034222. X.Y. acknowledges financial support by the Lawrence Scholar Program at LLNL. This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344, LLNL-JRNL-491217. We thank Profs. Bakthan Singaram and Jin Z. Zhang for helpful discussion and for offering measurement facilities. We thank Roberto Bogomolni for the D-fructose sample. NR 40 TC 28 Z9 28 U1 2 U2 46 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JAN PY 2012 VL 402 IS 2 BP 687 EP 691 DI 10.1007/s00216-011-5575-1 PG 5 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 870BY UT WOS:000298645300010 PM 22120042 ER PT J AU Perera, PN Schmidt, M Chiang, VL Schuck, PJ Adams, PD AF Perera, Pradeep N. Schmidt, Martin Chiang, Vincent L. Schuck, P. James Adams, Paul D. TI Raman-spectroscopy-based noninvasive microanalysis of native lignin structure SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Lignin; Entropy minimization; Chemometrics; Cell wall; Monolignol; Raman ID MISCANTHUS-X-GIGANTEUS; PLANT-CELL WALLS; DOWN-REGULATION; POPLAR; LIGNIFICATION; ARABIDOPSIS; MICROSCOPY; CELLULOSE AB A new robust, noninvasive, Raman microspectroscopic method is introduced to analyze the structure of native lignin. Lignin spectra of poplar, Arabidopsis, and Miscanthus were recovered and structural differences were unambiguously detected. Compositional analysis of 4-coumarate-CoA ligase suppressed transgenic poplar showed that the syringyl-to-guaiacyl ratio decreased by 35% upon the mutation. A cell-specific compositional analysis of basal stems of Arabidopsis showed similar distributions of S and G monolignols in xylary fiber cells and interfascicular cells. C1 [Perera, Pradeep N.; Schmidt, Martin] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. [Chiang, Vincent L.] N Carolina State Univ, Forest Biotechnol Grp, Dept Forestry & Environm Resources, Coll Nat Resources, Raleigh, NC 27695 USA. [Schuck, P. James] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Perera, PN (reprint author), Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. EM pperera@lbl.gov RI Adams, Paul/A-1977-2013; perera, pradeep/I-3112-2016 OI Adams, Paul/0000-0001-9333-8219; FU Energy Biosciences Institute, University of California, Berkeley, CA, USA; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH1123]; National Research Initiative of the USDA CSREES [2006-35504-17233] FX We thank Andrew Carroll for providing Arabidopsis samples, Purbasha Sarkar for providing Miscanthus samples, and Lan Sun and Stefan Bauer for assistance with extracting lignin from Miscanthus. This work was supported by the Energy Biosciences Institute, University of California, Berkeley, CA, USA. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH1123. The work on transgenic Populus trichocarpa was supported by a grant from the National Research Initiative of the USDA CSREES # 2006-35504-17233 to V.L.C. NR 22 TC 11 Z9 11 U1 2 U2 40 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JAN PY 2012 VL 402 IS 2 BP 983 EP 987 DI 10.1007/s00216-011-5518-x PG 5 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 870BY UT WOS:000298645300040 PM 22071606 ER PT J AU Rosen, EL Buonsanti, R Llordes, A Sawvel, AM Milliron, DJ Helms, BA AF Rosen, Evelyn L. Buonsanti, Raffaella Llordes, Anna Sawvel, April M. Milliron, Delia J. Helms, Brett A. TI Exceptionally Mild Reactive Stripping of Native Ligands from Nanocrystal Surfaces by Using Meerwein's Salt SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE ligand stripping; nanoparticles; quantum dots; semiconductors; thin films ID PBSE SEMICONDUCTOR NANOCRYSTALS; FIELD-EFFECT TRANSISTORS; TERTIARY OXONIUM SALTS; QUANTUM DOTS; COLLOIDAL NANOCRYSTALS; ELECTRICAL-PROPERTIES; ELECTRONIC-STRUCTURE; OXIDE NANOCRYSTALS; CDSE NANOCRYSTALS; CHEMISTRY C1 [Rosen, Evelyn L.; Buonsanti, Raffaella; Llordes, Anna; Sawvel, April M.; Milliron, Delia J.; Helms, Brett A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Helms, BA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM BAHelms@lbl.gov RI Milliron, Delia/D-6002-2012; Llordes, Anna/H-2370-2015; OI Llordes, Anna/0000-0003-4169-9156; Helms, Brett/0000-0003-3925-4174 FU Laboratory Directed Research and Development Program; DOE; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge A. Dong and E. Chan for helpful discussions regarding the manuscript, A. Brand for development of the PbSe synthesis, S. Doris for assistance with ICP-AES, A. Hammack for assistance with XPS, Z. Liu (beamline 9.3.2) and A. Hexemer (beamline 7.3.3) of the Advanced Light Source for assistance with XPS and GISAXS, respectively, and K. Kjoller of Anasys Instruments for nano-IR analysis. This work was funded in part by the Laboratory Directed Research and Development Program (A. L.) and by the DOE Early Career Research program (D.J.M.) and work was completed at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 53 TC 100 Z9 101 U1 7 U2 128 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PY 2012 VL 51 IS 3 BP 684 EP 689 DI 10.1002/anie.201105996 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 875MI UT WOS:000299034200016 PM 22147424 ER PT J AU Bullington, AL Pax, PH Sridharan, AK Heebner, JE Messerly, MJ Dawson, JW AF Bullington, Amber L. Pax, Paul H. Sridharan, Arun K. Heebner, John E. Messerly, Michael J. Dawson, Jay W. TI Mode conversion in rectangular-core optical fibers SO APPLIED OPTICS LA English DT Article ID RIBBON FIBER; POWER; LASERS AB Mode conversion from the fundamental to a higher-order mode in a rectangular-core optical fiber is accomplished by applying pressure with the edge of a flat plate. Modal analysis of the near and far field images of the fiber's transmitted beam determines the purity of the converted mode. Mode conversion reaching 75% of the targeted higher-order mode is achieved using this technique. Conversion from a higher-order mode back to the fundamental mode is also demonstrated with comparable efficiency. Propagation of a higher-order mode in a rectangular-core fiber allows for better thermal management and bend-loss immunity than conventional circular-core fibers, extending the power-handling capabilities of optical fibers. (C) 2011 Optical Society of America C1 [Bullington, Amber L.; Pax, Paul H.; Sridharan, Arun K.; Heebner, John E.; Messerly, Michael J.; Dawson, Jay W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Bullington, AL (reprint author), Lawrence Livermore Natl Lab, L-592,POB 808, Livermore, CA 94551 USA. EM bullington1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The LLNL release number is LLNL-JRNL-493311. NR 17 TC 12 Z9 12 U1 1 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JAN 1 PY 2012 VL 51 IS 1 BP 84 EP 88 DI 10.1364/AO.51.000084 PG 5 WC Optics SC Optics GA 879ES UT WOS:000299313100012 PM 22270416 ER PT J AU Liu, CA Ice, GE Liu, W Assoufid, L Qian, J Shi, B Khachatryan, R Wieczorek, M Zschack, P Tischler, JZ AF Liu, Chian Ice, G. E. Liu, W. Assoufid, L. Qian, J. Shi, B. Khachatryan, R. Wieczorek, M. Zschack, P. Tischler, J. Z. TI Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing SO APPLIED SURFACE SCIENCE LA English DT Article DE Profile coating; X-ray optics; KB mirrors; Sputter deposition ID ACCURACY; OPTICS AB This paper describes fabrication methods used to demonstrate the advantages of nested or Montel optics for micro/nanofocusing of synchrotron X-ray beams. A standard Kirkpatrick-Baez (KB) mirror system uses two separated elliptical mirrors at glancing angles to the X-ray beam and sequentially arranged at 90 degrees to each other to focus X-rays successively in the vertical and horizontal directions. A nested KB mirror system has the two mirrors positioned perpendicular and side-by-side to each other. Compared to a standard KB mirror system, Montel optics can focus a larger divergence and the mirrors can have a shorter focal length. As a result, nested mirrors can be fabricated with improved demagnification factor and ultimately smaller focal spot, than with a standard KB arrangement. The nested system is also more compact with an increased working distance, and is more stable, with reduced complexity of mirror stages. However, although Montel optics is commercially available for laboratory X-ray sources, due to technical difficulties they have not been used to microfocus synchrotron radiation X-rays, where ultra-precise mirror surfaces are essential. The main challenge in adapting nested optics for synchrotron microfocusing is to fabricate mirrors with a precise elliptical surface profile at the very edge where the two mirrors meet and where Xrays scatter. For example, in our application to achieve a sub-micron focus with high efficiency, a surface figure root-mean-square (rms) error on the order of 1 nm is required in the useable area along the X-ray footprint with a similar to 0.1 mm-diameter cross section. In this paper we describe promising ways to fabricate precise nested KB mirrors using our profile coating technique and inexpensive flat Si substrates. (C) 2011 Elsevier B.V. All rights reserved. C1 [Liu, Chian; Liu, W.; Assoufid, L.; Qian, J.; Shi, B.; Khachatryan, R.; Wieczorek, M.; Zschack, P.] Argonne Natl Lab, X Ray Sci Div, Argonne, IL 60439 USA. [Ice, G. E.; Tischler, J. Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Liu, CA (reprint author), Argonne Natl Lab, X Ray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cliu@aps.anl.gov FU UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"); Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Center for Defect Physics an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCS99] FX We thank A. Khounsary for ordering the Si substrates, D. Shu for the mirror stage design, and J. Attig for technical assistance, all from Argonne National Laboratory. This work is supported by the UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. G.E.I and J.Z.T. are supported by the Center for Defect Physics an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number ERKCS99. NR 20 TC 7 Z9 7 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JAN 1 PY 2012 VL 258 IS 6 BP 2182 EP 2186 DI 10.1016/j.apsusc.2011.02.079 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 870LH UT WOS:000298670300059 ER PT J AU Morgado, L Paixao, VB Schiffer, M Pokkuluri, PR Bruix, M Salgueiro, CA AF Morgado, Leonor Paixao, Vitor B. Schiffer, Marianne Pokkuluri, P. Raj Bruix, Marta Salgueiro, Carlos A. TI Revealing the structural origin of the redox-Bohr effect: the first solution structure of a cytochrome from Geobacter sulfurreducens SO BIOCHEMICAL JOURNAL LA English DT Article DE Geobacter sulfurreducens; multihaem cytochrome; NMR; redox protein; structure-function relationship ID C-TYPE CYTOCHROME; ESCHERICHIA-COLI; DESULFUROMONAS-ACETOXIDANS; TETRAHEME CYTOCHROME; PROTEIN STRUCTURES; BACKBONE DYNAMICS; NMR; C(7); FAMILY; RELAXATION AB Gs (Geobacter sulfurreducens) can transfer electrons to the exterior of its cells, a property that makes it a preferential candidate for the development of biotechnological applications. Its genome encodes over 100 cytochromes and, despite their abundance and key functional roles, to date there is no structural information for these proteins in solution. The trihaem cytochrome PpcA might have a crucial role in the conversion of electronic energy into protonmotive force, a fundamental step for ATP synthesis in the presence of extracellular electron acceptors. In the present study, (15)N-labelled PpcA was produced and NMR spectroscopy was used to determine its solution structure in the fully reduced state, its backbone dynamics and the pH-dependent conformational changes. The structure obtained is well defined, with an average pairwise rmsd (root mean square deviation) of 0.25 angstrom (1 angstrom = 0.1 nm) for the backbone atoms and 0.99 angstrom for all heavy atoms, and constitutes the first solution structure of a Gs cytochrome. The redox-Bohr centre responsible for controlling the electron/proton transfer was identified, as well as the putative interacting regions between PpcA and its redox partners. The solution structure of PpcA will constitute the foundation for studies aimed at mapping out in detail these interacting regions. C1 [Bruix, Marta] CSIC, Inst Phys Chem Rocasolano, Dept Chem & Phys Biol, Madrid 28006, Spain. [Morgado, Leonor; Salgueiro, Carlos A.] Univ Nova Lisboa, Fac Sci & Technol, Dept Chem, Requimte CQFB, P-2829516 Caparica, Portugal. [Paixao, Vitor B.] Univ Nova Lisboa, Inst Technol Chem & Biol, P-2780156 Oeiras, Portugal. [Schiffer, Marianne; Pokkuluri, P. Raj] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Bruix, M (reprint author), CSIC, Inst Phys Chem Rocasolano, Dept Chem & Phys Biol, Serrano 119, Madrid 28006, Spain. EM mbruix@iqfr.csic.es; csalgueiro@dq.fct.unl.pt RI Salgueiro, Carlos/A-4522-2013; Morgado, Leonor/D-7387-2013; Caparica, cqfb_staff/H-2611-2013; Bruix, Marta/H-4161-2011; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Salgueiro, Carlos/0000-0003-1136-809X; Morgado, Leonor/0000-0002-3760-5180; Paixao, Vitor/0000-0003-3722-0747; Bruix, Marta/0000-0002-0096-3558; FU Fundacao para a Ciencia e Tecnologia (Portugal) [PTDC/QUI/70182/2006]; Ministerio de Ciencia e Innovacion (Spain) [CTQ2008-0080/BQU]; Fundacao para a Ciencia e Tecnologia [SFRH/BD/37415/2007, REDE/1517/RMN/2005]; U.S. Department of Energy's Office of Science, Biological and Environmental Research GTL [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Fundacao para a Ciencia e Tecnologia (Portugal) [grant number PTDC/QUI/70182/2006] and by the Ministerio de Ciencia e Innovacion (Spain) [grant number CTQ2008-0080/BQU]. L.M. was supported by Fundacao para a Ciencia e Tecnologia [grant number SFRH/BD/37415/2007. P.R.P and M.S. are supported in part by the U.S. Department of Energy's Office of Science, Biological and Environmental Research GTL programme [grant number DE-AC02-06CH11357] and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [grant number DE-AC02-06CH11357]. Rude Nacional de RMN is supported with funds from the Fundacao para a Ciencia e Tecnologia, Project de Re-Eguipamento Cientifico [grant number REDE/1517/RMN/2005]. NR 34 TC 24 Z9 25 U1 2 U2 20 PU PORTLAND PRESS LTD PI LONDON PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND SN 0264-6021 J9 BIOCHEM J JI Biochem. J. PD JAN 1 PY 2012 VL 441 BP 179 EP 187 DI 10.1042/BJ20111103 PN 1 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 874FN UT WOS:000298940900016 PM 21861844 ER PT J AU Raciti, SM Fahey, TJ Thomas, RQ Woodbury, PB Driscoll, CT Carranti, FJ Foster, DR Gwyther, PS Hall, BR Hamburg, SP Jenkins, JC Neill, C Peery, BW Quigley, EE Sherman, R Vadeboncoeur, MA Weinstein, DA Wilson, G AF Raciti, Steve M. Fahey, Timothy J. Thomas, R. Quinn Woodbury, Peter B. Driscoll, Charles T. Carranti, Frederick J. Foster, David R. Gwyther, Philip S. Hall, Brian R. Hamburg, Steven P. Jenkins, Jennifer C. Neill, Christopher Peery, Brandon W. Quigley, Erin E. Sherman, Ruth Vadeboncoeur, Matt A. Weinstein, David A. Wilson, Geoff TI Local-Scale Carbon Budgets and Mitigation Opportunities for the Northeastern United States SO BIOSCIENCE LA English DT Article DE carbon; energy; climate change; land use ID LIFE-CYCLE ASSESSMENT; RENEWABLE ENERGY; CLIMATE-CHANGE; LAND-COVER; SEQUESTRATION; EMISSIONS; FORESTS; STORAGE; SINK; USA AB Economic and political realities present challenges for implementing an aggressive climate change abatement program in the United States. A high-efficiency approach will be essential. In this synthesis, we compare carbon budgets and evaluate the carbon-mitigation potential for nine counties in the northeastern United States that represent a range of biophysical, demographic, and socioeconomic conditions. Most counties are net sources of carbon dioxide (CO(2)) to the atmosphere, with the exception of rural forested counties, in which sequestration in vegetation and soils exceed emissions. Protecting forests will ensure that the region's largest CO(2) sink does not become a source of emissions. For rural counties, afforestation, sustainable fuel wood harvest for bioenergy, and utility-scale wind power could provide the largest and most cost-effective mitigation opportunities among those evaluated. For urban and suburban counties, energy-efficiency measures and energy-saving technologies would be most cost effective. Through the implementation of locally tailored management and technology options, large reductions in CO(2) emissions could be achieved at relatively low costs. C1 [Raciti, Steve M.; Fahey, Timothy J.; Sherman, Ruth; Weinstein, David A.] Cornell Univ, Dept Nat Resources, Ithaca, NY 14853 USA. [Thomas, R. Quinn] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY USA. [Woodbury, Peter B.] Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY USA. [Driscoll, Charles T.] Syracuse Univ, Dept Civil & Environm Engn, Syracuse, NY 13244 USA. [Carranti, Frederick J.; Gwyther, Philip S.; Peery, Brandon W.] Syracuse Univ, Dept Mech & Aerosp Engn, Syracuse, NY 13244 USA. [Carranti, Frederick J.; Gwyther, Philip S.; Peery, Brandon W.] Syracuse Univ, US DOE, Ind Assessment Ctr, Syracuse, NY USA. [Foster, David R.; Hall, Brian R.] Harvard Forest, Petersham, MA USA. [Hamburg, Steven P.] Environm Def Fund, Washington, DC USA. [Jenkins, Jennifer C.; Quigley, Erin E.] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT USA. [Vadeboncoeur, Matt A.] Univ New Hampshire, Durham, NH 03824 USA. RP Raciti, SM (reprint author), Boston Univ Massachusetts, Dept Geog & Environm, Boston, MA USA. EM raciti@bu.edu RI Thomas, R. Quinn/B-1611-2013; Raciti, Steve/D-3837-2013; Driscoll, Charles/F-9832-2014; OI Thomas, R. Quinn/0000-0003-1282-7825; Raciti, Steve/0000-0002-6793-5068; Vadeboncoeur, Matthew/0000-0002-8269-0708; Woodbury, Peter/0000-0003-3954-7639; Driscoll, Charles/0000-0003-2692-2890 FU Jessie B. Cox Trust; Henry Luce Foundation; Merck Family Fund; Northeastern States Research Cooperative; Orchard Foundation; Sudbury Foundation; Robert and Patricia Switzer Foundation; Cornell University; National Science Foundation FX This work was convened through the Science Links program of the Hubbard Brook Research Foundation (HBRF) with funding from the Jessie B. Cox Trust, the Henry Luce Foundation, the Merck Family Fund, the Northeastern States Research Cooperative, the Orchard Foundation, the Sudbury Foundation, the Robert and Patricia Switzer Foundation, and in-kind support from Cornell University. We thank William Yandik, Switzer Leadership Fellow at HBRF, for his contributions toward the outreach portion of this work. We also thank Richard McHorney of the Ecosystems Center Marine Biological Laboratory, who helped with data acquisition for Essex and Middlesex Counties, and David Fox, who assisted with the analysis of CO2-emission data for Grafton and Coos Counties. Finally, we thank the National Science Foundation-funded Hubbard Brook, Harvard Forest, Plum Island, and Baltimore Ecosystem Study Long Term Ecological Research sites. NR 71 TC 8 Z9 8 U1 1 U2 29 PU AMER INST BIOLOGICAL SCI PI WASHINGTON PA 1444 EYE ST, NW, STE 200, WASHINGTON, DC 20005 USA SN 0006-3568 J9 BIOSCIENCE JI Bioscience PD JAN PY 2012 VL 62 IS 1 BP 23 EP 38 DI 10.1525/bio.2012.62.1.7 PG 16 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 879TW UT WOS:000299356100007 ER PT J AU Olvera, D Zimmermann, EA Ritchie, RO AF Olvera, Diana Zimmermann, Elizabeth A. Ritchie, Robert O. TI Mixed-mode toughness of human cortical bone containing a longitudinal crack in far-field compression SO BONE LA English DT Article DE Human cortical bone; Toughness; Mixed-mode loading ID FRACTURE-TOUGHNESS; CEMENT LINE; SPECIMEN; INTERFACES; RESISTANCE; OSTEONS; GROWTH AB Bone is generally loaded under multiaxial conditions in vivo: as it invariably contains microcracks, this leads to complex mixed-mode stress-states involving combinations of tension, compression and shear. In previous work on the mixed-mode loading of human cortical bone (using an asymmetric bend test geometry), we found that the bone toughness was lower when loaded in far-field shear than in tension (opposite to the trend in most brittle materials), although only for the transverse orientation. This is a consequence of the competition between preferred mechanical vs. microstructural crack-path directions, the former dictated by the direction of the maximum mechanical "driving force" (which changes with the mode-rnixity), and the latter by the "weakest" microstructural path (which in human bone is along the osteonal interfaces or cement lines). As most microcracks are oriented longitudinally, we investigate here the corresponding mixed-mode toughness of human cortical bone in the longitudinal (proximal-distal) orientation using a "double cleavage drilled compression" test geometry, which provides a physiologically-relevant loading condition for bone in that it characterizes the toughness of a longitudinal crack loaded in far-field compression. In contrast to the transverse toughness, results show that the longitudinal toughness, measured using the strain-energy release rate, is significantly higher in shear (mode II) than in tension (model). This is consistent, however, with the individual criteria of preferred mechanical vs. microstructural crack paths being commensurate in this orientation. Published by Elsevier Inc. C1 [Zimmermann, Elizabeth A.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Olvera, Diana; Zimmermann, Elizabeth A.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM RORitchie@lbl.gov RI Ritchie, Robert/A-8066-2008; Zimmermann, Elizabeth/A-4010-2015; OI Ritchie, Robert/0000-0002-0501-6998; Zimmermann, Elizabeth/0000-0001-9927-3372 FU National Institutes of Health (NIH/NIDCR) [5R01 DE015633] FX This work was supported by the National Institutes of Health (NIH/NIDCR) under grant no. 5R01 DE015633 to the Lawrence Berkeley National Laboratory (LBNL). The authors wish to thank Dr. Tony Tomsia and Brian Panganiban for their assistance with the study, and Professor Tony Keaveny and Mike Jekir, of the Mechanical Engineering Department at the University of California, Berkeley, for allowing us to the use their bone machining facilities. NR 25 TC 11 Z9 11 U1 0 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD JAN PY 2012 VL 50 IS 1 BP 331 EP 336 DI 10.1016/j.bone.2011.11.004 PG 6 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 875VV UT WOS:000299064200042 PM 22115793 ER PT J AU Buenzli, PR Jeon, J Pivonka, P Smith, DW Cummings, PT AF Buenzli, Pascal R. Jeon, Junhwan Pivonka, Peter Smith, David W. Cummings, Peter T. TI Investigation of bone resorption within a cortical basic multicellular unit using a lattice-based computational model SO BONE LA English DT Article DE Bone resorption; Basic Multicellular Units (BMU); Osteoclast-bone interaction; Osteoclast fusion; Computational model ID TUMOR-GROWTH; OSTEOCLASTIC RESORPTION; CELLULAR-AUTOMATON; HAVERSIAN SYSTEMS; IN-VITRO; CELLS; OSTEON; DYNAMICS; KINETICS; ADHESION AB In this paper we develop a lattice-based computational model focused on bone resorption by osteoclasts in a single cortical basic multicellular unit (BMU). Our model takes into account the interaction of osteoclasts with the bone matrix, the interaction of osteoclasts with each other, the generation of osteoclasts from a growing blood vessel, and the renewal of osteoclast nuclei by cell fusion. All these features are shown to strongly influence the geometrical properties of the developing resorption cavity including its size, shape and progression rate, and are also shown to influence the distribution, resorption pattern and trajectories of individual osteoclasts within the BMU. We demonstrate that for certain parameter combinations, resorption cavity shapes can be recovered from the computational model that closely resemble resorption cavity shapes observed from microCT imaging of human cortical bone. (C) 2011 Elsevier Inc. All rights reserved. C1 [Jeon, Junhwan; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Buenzli, Pascal R.; Pivonka, Peter; Smith, David W.] Univ Western Australia, Fac Engn Comp & Math, Nedlands, WA 6009, Australia. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Jeon, J (reprint author), Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM pascal.buenzli@uwa.edu.au; junhwan.jeon@vanderbilt.edu; peter.pivonka@uwa.edu.au; david.smith@uwa.edu.au; peter.cummings@vanderbilt.edu RI Cummings, Peter/B-8762-2013; OI Cummings, Peter/0000-0002-9766-2216; Buenzli, Pascal/0000-0003-3962-5393 FU Australian Research Council [DP0879466]; National Cancer Institute [U54CA113007]; National Science Foundation [EPS-0919436] FX The authors would like to thank Colin R. Dunstan for helpful discussions and comments in the preparation of the manuscript, the late Gregory R. Mundy for his insightful discussions, as well as one of the anonymous reviewers for his/her remarks on osteoclast biology. Support by the Australian Research Council in the framework of the project Bone regulation - cell interactions to disease (project number DP0879466, PP), by the National Cancer Institute (grant number U54CA113007, PTC), and by the National Science Foundation (grant number EPS-0919436, PTC) is gratefully acknowledged. NR 70 TC 4 Z9 4 U1 2 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD JAN PY 2012 VL 50 IS 1 BP 378 EP 389 DI 10.1016/j.bone.2011.10.021 PG 12 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 875VV UT WOS:000299064200049 PM 22100414 ER PT J AU Hecker, SS Carlin, R AF Hecker, Siegfried S. Carlin, Robert TI North Korea in 2011: Countdown to Kim il-Sung's centenary SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE enrichment; North Korea; nuclear weapons; plutonium; six-party talks; uranium AB As the diplomatic standoff in North Korea enters its fourth year, the crisis atmosphere on the Korean peninsula sparked by Pyongyang's military actions in 2010 has eased. Pyongyang has agreed to return to the diplomatic table, its hand strengthened by advancing its nuclear program in the interim. Washington and Seoul remain reluctant to engage, having been burned by Pyongyang's clandestine uranium enrichment program unveiled in 2010. The authors argue that re-engagement, with the immediate objective to stop a third nuclear test and prevent further missile tests, is imperative to contain the nuclear threat for now; preventing the nuclear program's expansion and preparing the way for the ultimate denuclearization of the peninsula-critical goals-must be left to a second step. C1 [Hecker, Siegfried S.; Carlin, Robert] Stanford Univ, Ctr Int Secur & Cooperat, Stanford, CA 94305 USA. [Hecker, Siegfried S.] Freeman Spogli Inst Int Studies, Stanford, CA USA. [Hecker, Siegfried S.] Dept Management Sci & Engn, Stanford, CA USA. [Hecker, Siegfried S.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Hecker, SS (reprint author), Stanford Univ, Ctr Int Secur & Cooperat, Stanford, CA 94305 USA. NR 22 TC 0 Z9 0 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 J9 B ATOM SCI JI Bull. Atom. Scient. PD JAN-FEB PY 2012 VL 68 IS 1 BP 50 EP 60 DI 10.1177/0096340211433011 PG 11 WC International Relations; Social Issues SC International Relations; Social Issues GA 873LI UT WOS:000298884400006 ER PT J AU Peng, ZM Kisielowski, C Bell, AT AF Peng, Zhenmeng Kisielowski, Christian Bell, Alexis T. TI Surfactant-free preparation of supported cubic platinum nanoparticles SO CHEMICAL COMMUNICATIONS LA English DT Article ID SHAPE-CONTROLLED SYNTHESIS; METAL NANOCRYSTALS; OXYGEN REDUCTION; HYDROGENATION; CATALYSTS; ELECTROCHEMISTRY; SELECTIVITY; NANOCUBES; SIZE; CO AB A novel method has been developed for preparing supported cubic platinum nanoparticles. Carbon monoxide and hydrogen are used to reduce platinum precursors present at a solid-gas interface and to control the shape of the growing Pt nanoparticles. By avoiding the use of any organic agents in the synthesis, cubic Pt particles free of hydrocarbons are formed, thereby avoiding possible contamination of the catalyst surface. The approach used is simple and readily scalable. C1 [Peng, Zhenmeng; Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Kisielowski, Christian; Bell, Alexis T.] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94708 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu RI Peng, Zhenmeng/B-4278-2010; OI Peng, Zhenmeng/0000-0003-1230-6800; Bell, Alexis/0000-0002-5738-4645 FU Chevron Energy Technology Company; National Center for Electron Microscopy; Lawrence Berkeley Lab; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by a grant from Chevron Energy Technology Company. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 29 TC 31 Z9 31 U1 4 U2 63 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PY 2012 VL 48 IS 13 BP 1854 EP 1856 DI 10.1039/c2cc16962b PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 876MV UT WOS:000299112500003 PM 22228084 ER PT J AU Picker, RC AF Picker, Randal C. TI The Yin and Yang of Copyright and Technology SO COMMUNICATIONS OF THE ACM LA English DT Editorial Material C1 [Picker, Randal C.] Univ Chicago, Sch Law, Chicago, IL 60637 USA. [Picker, Randal C.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Picker, Randal C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Picker, RC (reprint author), Univ Chicago, Sch Law, Chicago, IL 60637 USA. EM r-picker@uchicago.edu NR 0 TC 2 Z9 2 U1 1 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0001-0782 J9 COMMUN ACM JI Commun. ACM PD JAN PY 2012 VL 55 IS 1 BP 30 EP 32 DI 10.1145/2063176.2063190 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 875QC UT WOS:000299047300020 ER PT J AU Barhen, J Humble, T Mitra, P Imam, N Schleck, B Kotas, C Traweek, M AF Barhen, J. Humble, T. Mitra, P. Imam, N. Schleck, B. Kotas, C. Traweek, M. TI Concurrent FFT computing on multicore processors SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT Workshop on Frontiers of GPU, Multi-and Many-Core Systems/10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) CY MAY 17-20, 2010 CL Melbourne, AUSTRALIA DE multicore processors; FFT; HyperX; IBM cell; transverse vectorization AB The emergence of streaming multicore processors with multi-SIMD (single-instruction multiple-data) architectures and ultra-low power operation combined with real-time compute and I/O reconfigurability opens unprecedented opportunities for executing sophisticated signal processing algorithms faster and within a much lower energy budget. Here, we present an unconventional Fast Fourier Transform (FFT) implementation scheme for the IBM Cell, named transverse vectorization. It is shown to outperform (both in terms of timing and GFLOP throughput) the fastest FFT results reported to date for the Cell in the open literature. We also provide the first results for multi-FFT implementation and application on the novel, ultra-low power Coherent Logix HyperX processor. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Barhen, J.; Humble, T.; Mitra, P.; Imam, N.; Kotas, C.] Oak Ridge Natl Lab, Comp Sci & Math Div, CESAR, Oak Ridge, TN 37831 USA. [Mitra, P.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Schleck, B.] Coherent Logix Inc, Austin, TX 78746 USA. [Traweek, M.] Off Naval Res, Maritime Sensing Branch, Arlington, VA 22203 USA. RP Barhen, J (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, CESAR, Oak Ridge, TN 37831 USA. EM barhenj@ornl.gov NR 21 TC 0 Z9 0 U1 2 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD JAN PY 2012 VL 24 IS 1 SI SI BP 29 EP 44 DI 10.1002/cpe.1746 PG 16 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 869GA UT WOS:000298584200004 ER PT J AU Zhu, R Zhao, Q Xu, J Liu, BG Gao, JY Zhang, JM Zhu, WG Xu, HJ Sun, YH Fu, Q Chen, L Yu, DP AF Zhu, Rui Zhao, Qing Xu, Jun Liu, Banggui Gao, Jingyun Zhang, Jingmin Zhu, Wenguang Xu, Hongjun Sun, Yanghui Fu, Qiang Chen, Li Yu, Dapeng TI In situ growth and density-functional-theory study of polarity-dependent homo-epitaxial ZnO microwires SO CRYSTENGCOMM LA English DT Article ID MOLECULAR-BEAM EPITAXY; FILM GROWTH; SURFACES; HETEROSTRUCTURES; MECHANISM AB Polarity-dependent homo-epitaxy on (0001)-Zn and (000 (1) over bar)-O surfaces of cleaved ZnO microwires was investigated by in situ growth in ESEM and DFT simulations. ZnO monomers adsorption, adatoms desorption and chemisorption were simulated to understand the explicit mechanism. C1 [Zhu, Rui; Zhao, Qing; Xu, Jun; Gao, Jingyun; Zhang, Jingmin; Xu, Hongjun; Sun, Yanghui; Fu, Qiang; Chen, Li; Yu, Dapeng] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China. [Zhu, Rui; Zhao, Qing; Xu, Jun; Gao, Jingyun; Zhang, Jingmin; Xu, Hongjun; Sun, Yanghui; Fu, Qiang; Chen, Li; Yu, Dapeng] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China. [Liu, Banggui] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Liu, Banggui] Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Zhu, Wenguang] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhu, Wenguang] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhao, Q (reprint author), Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China. EM zhaoqing@pku.edu.cn; bgliu@mail.iphy.ac.cn; wzhu3@utk.edu; yudp@pku.edu.cn RI Da Peng, Yu/C-2206-2014; Zhu, Wenguang/F-4224-2011; OI Zhu, Wenguang/0000-0003-0819-595X; Liu, Bang-Gui/0000-0002-6030-6680 FU NSFC [50902004, 11023003]; MOST [2007CB936202, 2009CB623703]; EU IRSES [247641] FX This work is financially supported by NSFC 50902004 and 11023003, and no. 2007CB936202, 2009CB623703, MOST. We acknowledge the International Science & Technology Cooperation Program of China Sino Swiss Science and Technology Cooperation Program (2010DFA01810) and FP7 EU IRSES project (MICRO-CARE) no. 247641. RZ thanks Prof. Zhenyu Zhang of ORNL, UTK and USTC for helpful discussions and Dr Xiao Wang of NUS for drawing Fig. S1. NR 25 TC 1 Z9 1 U1 2 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1466-8033 J9 CRYSTENGCOMM JI Crystengcomm PY 2012 VL 14 IS 2 BP 355 EP 358 DI 10.1039/c1ce05892d PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 872VZ UT WOS:000298839400003 ER PT J AU Tian, GX Rao, LF AF Tian, Guoxin Rao, Linfeng TI Complexation of Np(V) with oxalate at 283-343 K: spectroscopic and microcalorimetric studies SO DALTON TRANSACTIONS LA English DT Article ID STRONG ELECTROLYTES; AQUEOUS-SOLUTIONS; DEGREES-C; 10-85-DEGREES-C; TEMPERATURES; SOLUBILITY; WATER AB Thermodynamic parameters including the equilibrium constants and enthalpy of complexation of Np(V) with oxalate at variable temperatures (T = 283-343 K, ionic strength = 1.05 mol kg(-1) NaClO4) were determined by spectrophotometric and microcalorimetric titrations. The results show that the complexation of Np(V) with oxalate is moderately strong and becomes weaker at higher temperatures. The complexation is exothermic and driven by both enthalpy (negative) and entropy (positive) in the temperature range from 283 K to 343 K. As the temperature is increased, both the enthalpy and entropy of complexation increase (Delta H becomes less negative and Delta S becomes more positive), having opposing effects on the complexation. Because the increase in the enthalpy (Delta H) exceeds that of the entropy term (T Delta S), the complexation of Np(V) with oxalate becomes weaker at higher temperatures. The effect of temperature on the complexation is discussed in terms of the energetics of ion solvation and hydrogen bonding involved in the complexation. C1 [Tian, Guoxin; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM gtian@lbl.gov; lrao@lbl.gov FU Office of Science, Office of Basic Energy Science of the U. S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Science of the U. S. Department of Energy, under Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 21 TC 2 Z9 2 U1 1 U2 11 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PY 2012 VL 41 IS 2 BP 448 EP 452 DI 10.1039/c1dt11507c PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 861DT UT WOS:000298000000020 PM 22031169 ER PT J AU Yang, B Wang, J Cool, TA Hansen, N Skeen, S Osborn, DL AF Yang, Bin Wang, Juan Cool, Terrill A. Hansen, Nils Skeen, Scott Osborn, David L. TI Absolute photoionization cross-sections of some combustion intermediates SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Photoionization cross-sections; Photodissociation; Photoionization mass spectrometry (PIMS); Combustion chemistry; Oxygenates; Nitrogenous compounds ID EXTREME-ULTRAVIOLET RANGE; 13-40 EV REGION; MASS-SPECTROMETRY; IONIZATION THRESHOLD; QUANTUM EFFICIENCY; ORGANIC-MOLECULES; FLAME CHEMISTRY; LIGHT-SOURCE; PHOTOABSORPTION; RADICALS AB Near-threshold absolute photoionization and dissociative photoionization cross-sections for photon energies from 9.7 to 11.75 eV are presented for 30 combustion intermediates including hydrocarbons, oxygenates and nitrogenous compounds (trans-2-butene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-butene, trans-2-hexene, 1-hexene, allene, 1,3-butadiene, 1,3-pentadiene, 1,4-pentadiene, 3-methyl-1,2-butadiene, 1,5-hexadiene, isobutane, methylcyclohexane, furan, 2,3-dihydrofuran, 2,5-dihydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, n-butanal, isobutanal, 2-butenal, 3-methyl-2-butenal, ketene, allyl alcohol, methyl vinyl ketone, dimethoxymethane, methylamine, ethylamine, piperidine). Because allene is one of the most important intermediates in hydrocarbon combustion and pyrolysis processes, very accurate cross-sections for allene are desired to enable the measurement of its mole fractions in flames and to determine relative concentration ratios of allene to its isomer propyne. The cross-sections for allene have thus been re-measured with high precision using an apparatus of improved signal/noise ratio. Furthermore, these allene cross-sections yield accurate previously unmeasured cross-sections for ketene, another key combustion intermediate. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yang, Bin; Wang, Juan; Cool, Terrill A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Hansen, Nils; Skeen, Scott; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Cool, TA (reprint author), Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. EM tac13@cornell.edu RI Hansen, Nils/G-3572-2012; Yang, Bin/A-7158-2008; OI Yang, Bin/0000-0001-7333-0017; Skeen, Scott/0000-0002-4444-0759 FU Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy [DE-FG02-01ER15180]; National Nuclear Security Administration [DE-AC04-94-AL85000]; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The authors are grateful to Paul Fugazzi and Sarah Ferrell for expert technical assistance. We thank Tina Kasper, Patrick Osswald, and Wenjun Li for experimental assistance. This work is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy, in part under grant DE-FG02-01ER15180. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 57 TC 58 Z9 60 U1 6 U2 99 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD JAN 1 PY 2012 VL 309 BP 118 EP 128 DI 10.1016/j.ijms.2011.09.006 PG 11 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 875VK UT WOS:000299063100016 ER PT J AU Combelles, L Lorente, S Anderson, R Bejan, A AF Combelles, L. Lorente, S. Anderson, R. Bejan, A. TI Tree-shaped fluid flow and heat storage in a conducting solid SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PUMP SYSTEM; EXCHANGERS; TEMPERATURE; OPERATION; DESIGN; ENERGY; SINKS AB This paper documents the time-dependent thermal interaction between a fluid stream configured as a plane tree of varying complexity embedded in a conducting solid with finite volume and insulated boundaries. The time scales of the convection-conduction phenomenon are identified. Two-dimensional and three-dimensional configurations are simulated numerically. The number of length scales of the tree architecture varies from one to four. The results show that the heat transfer density increases, and the time of approach to equilibrium decreases as the complexity of the tree designs increases. These results are then formulated in the classical notation of energy storage by sensible heating, which shows that the effective number of heat transfer units increases as the complexity of the tree design increases. The complexity of heat transfer designs in many applications is constrained by first cost and operating cost considerations. This work provides a fundamental basis for objective evaluation of cost and performance tradeoffs in thermal design of energy systems with complexity as an unconstrained parameter that can be actively varied over a broad range to determine the optimum system design. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671672] C1 [Combelles, L.; Bejan, A.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. [Combelles, L.; Lorente, S.] Univ Toulouse, UPS, LMDC, INSA, F-31077 Toulouse 04, France. [Anderson, R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bejan, A (reprint author), Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. EM abejan@duke.edu RI Bejan, Adrian/D-3909-2012 FU National Renewable Energy Laboratory [XXL-1-40325-01] FX This research was supported by the National Renewable Energy Laboratory (XXL-1-40325-01). NR 24 TC 13 Z9 13 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 1 PY 2012 VL 111 IS 1 AR 014902 DI 10.1063/1.3671672 PG 10 WC Physics, Applied SC Physics GA 876SE UT WOS:000299127200114 ER PT J AU Huang, L Han, WZ An, Q Goddard, WA Luo, SN AF Huang, L. Han, W. Z. An, Q. Goddard, W. A., III Luo, S. N. TI Shock-induced consolidation and spallation of Cu nanopowders SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; POWDERS; COPPER AB A useful synthesis technique, shock synthesis of bulk nanomaterials from nanopowders, is explored here with molecular dynamics simulations. We choose nanoporous Cu (similar to 11 nm in grain size and 6% porosity) as a representative system, and perform consolidation and spallation simulations. The spallation simulations characterize the consolidated nanopowders in terms of spall strength and damage mechanisms. The impactor is full density Cu, and the impact velocity (u(i)) ranges from 0.2 to 2 km s(-1). We present detailed analysis of consolidation and spallation processes, including atomic-level structure and wave propagation features. The critical values of u(i) are identified for the onset plasticity at the contact points (0.2 km s(-1)) and complete void collapse (0.5 km s(-1)). Void collapse involves dislocations, lattice rotation, shearing/friction, heating, and microkinetic energy. Plasticity initiated at the contact points and its propagation play a key role in void collapse at low u(i), while the pronounced, grain-wise deformation may contribute as well at high u(i). The grain structure gives rise to nonplanar shock response at nanometer scales. Bulk nanomaterials from ultrafine nanopowders (similar to 10 nm) can be synthesized with shock waves. For spallation, grain boundary (GB) or GB triple junction damage prevails, while we also observe intragranular voids as a result of GB plasticity. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3675174] C1 [Huang, L.; Han, W. Z.; Luo, S. N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Huang, L.] Harbin Inst Technol, Dept Phys, Harbin 150001, Heilongjiang, Peoples R China. [An, Q.; Goddard, W. A., III] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. RP Luo, SN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lihuang2002@hit.edu.cn; sluo@lanl.gov RI An, Qi/G-4517-2011; Luo, Sheng-Nian /D-2257-2010; Han, Weizhong/C-9963-2011; An, Qi/I-6985-2012 OI Luo, Sheng-Nian /0000-0002-7538-0541; FU Natural Science Foundation of China [10904023]; PSAAP at Caltech; U.S. Department of Energy (DOE) [DE-AC52-06NA25396] FX This work is supported by Natural Science Foundation of China under Grant No. 10904023 (L. H.), and the PSAAP project at Caltech (Q. A. and W. A. G.). Los Alamos National Laboratory (LANL) is operated by Los Alamos National Security, LLC for the U.S. Department of Energy (DOE) under contract No. DE-AC52-06NA25396. NR 27 TC 10 Z9 11 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 1 PY 2012 VL 111 IS 1 AR 013508 DI 10.1063/1.3675174 PG 6 WC Physics, Applied SC Physics GA 876SE UT WOS:000299127200023 ER PT J AU Jenkins, CA Paul, DI AF Jenkins, C. A. Paul, D. I. TI Analysis of ultranarrow ferromagnetic domain walls SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SHAPE-MEMORY ALLOYS; MAGNETIZATION; COERCIVITY; DYNAMICS AB New materials with high magnetic anisotropy will have domains separated by ultranarrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving fields are modeled. The results developed here will be important when considering the stability of ultrahigh-density storage media. (C) 2012 American Institute of Physics. [doi:10.1063/1.3672841] C1 [Jenkins, C. A.; Paul, D. I.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02142 USA. RP Jenkins, CA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM cajenkins@lbl.gov RI Jenkins, Catherine/A-7740-2012 FU Office of Basic Energy Sciences, Department of Energy [DE-AC02-05CH11231] FX Work at the ALS was supported by the Director, Office of Basic Energy Sciences, Department of Energy, under contract No. DE-AC02-05CH11231. NR 21 TC 2 Z9 2 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 1 PY 2012 VL 111 IS 1 AR 013915 DI 10.1063/1.3672841 PG 6 WC Physics, Applied SC Physics GA 876SE UT WOS:000299127200068 ER PT J AU Morozovska, AN Eliseev, EA Kalinin, SV AF Morozovska, A. N. Eliseev, E. A. Kalinin, S. V. TI Electrochemical strain microscopy with blocking electrodes: The role of electromigration and diffusion SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID INTERCALATION-INDUCED STRESS; ATOMIC-FORCE MICROSCOPY; ION BATTERY CATHODE; LITHIUM-ION; TRANSPORT-PROPERTIES; SPACE-CHARGE; POLARIZATION; DEPENDENCE; LICOO2; FILMS AB Electrochemical strains are a ubiquitous feature of solid state ionic devices ranging from ion batteries and fuel cells to electroresistive and memristive memories. Recently, we proposed a scanning probe microscopy (SPM) based approach, referred as electrochemical strain microscopy (ESM), for probing local ionic flows and electrochemical reactions in solids based on bias-strain coupling. In ESM, the sharp SPM tip concentrates the electric field in a small (10-50 nm) region of material, inducing interfacial electrochemical processes and ionic flows. The resultant electrochemical strains are determined from dynamic surface displacement and provide information on local electrochemical functionality. Here, we analyze image formation mechanism in ESM for a special case of mixed electronic-ionic conductor with blocking tip electrode, and determine frequency dependence of response, role of diffusion and electromigration effects, and resolution and detection limits. (C) 2012 American Institute of Physics. [doi:10.1063/1.3675508] C1 [Morozovska, A. N.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, E. A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, 41 Pr Nauki, UA-03028 Kiev, Ukraine. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; CNMS [N UR-08-869] FX Research supported (S.V.K.) by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. ANM and EEA research is done by their personal costs. A.N.M. and E.A.E. acknowledge user share-free agreement with CNMS N UR-08-869. NR 67 TC 9 Z9 9 U1 3 U2 55 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 1 PY 2012 VL 111 IS 1 AR 014114 DI 10.1063/1.3675508 PG 17 WC Physics, Applied SC Physics GA 876SE UT WOS:000299127200088 ER PT J AU Morozovska, AN Eliseev, EA Bravina, SL Ciucci, F Svechnikov, GS Chen, LQ Kalinin, SV AF Morozovska, A. N. Eliseev, E. A. Bravina, S. L. Ciucci, Francesco Svechnikov, G. S. Chen, Long-Qing Kalinin, S. V. TI Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; BATTERY NANOELECTRODE ARRAYS; INTERCALATION-INDUCED STRESS; SCANNING PROBE MICROSCOPIES; SURFACE-MORPHOLOGY CHANGE; TRANSPORT-PROPERTIES; SPACE-CHARGE; CHEMICAL EXPANSION; LATTICE-PARAMETERS; NANOSCALE AB Frequency dependent dynamic electromechanical response of the mixed ionic-electronic conductor film to a periodic electric bias is analyzed for different electronic and ionic boundary conditions. Dynamic effects of mobile ions concentration (stoichiometry contribution), charge state of acceptors (donors), electron concentration (electron-phonon coupling via the deformation potential), and flexoelectric effect contribution are discussed. A variety of possible nonlinear dynamic electromechanical responses of mixed electronic ionic conductors (MIEC) films including quasi-elliptic curves, asymmetric hysteresis-like loops with pronounced memory window, and butterfly-like curves are calculated. The electromechanical response of ionic semiconductor is predicted to be a powerful descriptor of local valence states, band structure and electron-phonon correlations that can be readily measured in the nanoscale volumes and in the presence of strong electronic conductivity. (C) 2012 American Institute of Physics. [doi:10.1063/1.3673868] C1 [Morozovska, A. N.; Eliseev, E. A.; Svechnikov, G. S.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, E. A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Bravina, S. L.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. [Ciucci, Francesco] Hong Kong Univ Sci & Technol, Dept Mech Engn, Dept Chem & Biomol Engn, Kowloon, Hong Kong, Peoples R China. [Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, 41 Pr Nauki, UA-03028 Kiev, Ukraine. EM morozo@i.com.ua; mefrank@ust.hk RI Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012; Ciucci, Francesco/H-4786-2012 OI Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781; Ciucci, Francesco/0000-0003-0614-5537 FU Ukraine State Agency on Science, Innovation and Information [UU30/004, GP/F32/099]; HKUST; National Science Foundation (Materials World Network) [DMR-0908718]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; CNMS [UR-08-869] FX A.N.M. and E.A.E. gratefully acknowledge multiple discussions with Professor N.V. Morozovskii, Professor A.K. Tagantsev, and useful remarks given by Dr. Liangjun Li. A.N.M., E.A.E., and G.S.S. acknowledge State Budget funding from the Ukraine State Agency on Science, Innovation and Information (Grants of State Fund of Fundamental Research No. UU30/004 and No. GP/F32/099). F.C. thanks HKUST for providing the start-up funds. L-Q.C. research is sponsored by the National Science Foundation (Materials World Network, DMR-0908718). E.A.E. and A.N.M. further acknowledge user agreement with CNMS No. UR-08-869. Research supported (S.V.K.) by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 114 TC 14 Z9 14 U1 2 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 1 PY 2012 VL 111 IS 1 AR 014107 DI 10.1063/1.3673868 PG 14 WC Physics, Applied SC Physics GA 876SE UT WOS:000299127200081 ER PT J AU Yang, F Gu, M Arenholz, E Browning, ND Takamura, Y AF Yang, F. Gu, M. Arenholz, E. Browning, N. D. Takamura, Y. TI The effect of interfacial charge transfer on ferromagnetism in perovskite oxide superlattices SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ULTRATHIN MANGANITE LAYERS; COLOSSAL MAGNETORESISTANCE; MAGNETOTRANSPORT; HETEROINTERFACE; FILMS AB The structural, magnetic, and electrical properties of superlattices composed of the ferromagnetic/metal La(0.7)Sr(0.3)MnO(3) and non-magnetic/metal La(0.5)Sr(0.5)TiO(3) grown on (001)-oriented SrTiO(3) substrates have been investigated. Using a combination of bulk magnetometry, soft x-ray magnetic spectroscopy, and scanning transmission electron microscopy, we demonstrate that robust ferromagnetic properties can be maintained in this superlattice system where charge transfer at the interfaces is minimized. Therefore, ferromagnetism can be controlled effectively through the chemical identity and the thickness of the individual superlattice layers. (C) 2012 American Institute of Physics. [doi:10.1063/1.3674325] C1 [Yang, F.; Gu, M.; Browning, N. D.; Takamura, Y.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Gu, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Browning, N. D.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. RP Takamura, Y (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM ytakamura@ucdavis.edu RI Gu, Meng/B-8258-2013; OI Browning, Nigel/0000-0003-0491-251X FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; National Science Foundation [DMR-0747896]; DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG0203ER46057] FX The authors thank Matt Bibee and Apurva Mehta (SSRL) for their assistance with acquiring the XRD data. The work performed at NCEM and ALS was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at SSRL, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. DOE by Stanford University. The growth and characterization work at U.C. Davis was funded by the National Science Foundation Award DMR-0747896 and the electron microscopy by the DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Contract No. DE-FG0203ER46057. NR 28 TC 10 Z9 10 U1 5 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 1 PY 2012 VL 111 IS 1 AR 013911 DI 10.1063/1.3674325 PG 5 WC Physics, Applied SC Physics GA 876SE UT WOS:000299127200064 ER PT J AU Hagos, S Leung, LR AF Hagos, Samson Leung, L. Ruby TI On the Relationship between Uncertainties in Tropical Divergence and the Hydrological Cycle in Global Models SO JOURNAL OF CLIMATE LA English DT Article ID COUPLED MODEL; CLIMATE; REANALYSIS; CLOUD; CIRCULATION; RETRIEVAL; SYSTEM AB A survey of tropical divergence from three GCMs, three global reanalyses, and four in situ soundings from field campaigns shows the existence of large uncertainties in the ubiquity of shallow divergent circulation as well as the depth and strength of the deep divergent circulation. More specifically, only two out of the three GCMs an :1 three global reanalyses show significant shallow divergent circulation, which is present in all in situ soundings, and of the three GCMs and three global reanalyses, only two global reanalyses have deep divergence profiles that lie within the range of uncertainty of the soundings. The relationships of uncertainties in the shallow and deep divergent circulation to uncertainties in present-day and projected strength of the hydrological cycle from the GCMs are assessed. In the tropics and subtropics, deep divergent circulation is the largest contributor to moisture convergence that balances the net precipitation (precipitation minus evaporation), and intermodel differences in the present-day simulations carry over onto the future projections. In comparison to the soundings and reanalyses, the GCMs are found to have deeper and stronger divergent circulation. While these two characteristics of GCM divergence affect the strength of the hydrological cycle, they tend to compensate for each other so that their combined effect is relatively modest. C1 [Hagos, Samson; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hagos, S (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM samson.hagos@pnl.gov RI hagos, samson /K-5556-2012 FU U.S. Department of Energy; U.S. Department of Energy [DE-AC06-76RLO1830] FX The authors thank Dr. Jin-Ho Yoon for his comments and suggestions. This work is supported by the U.S. Department of Energy under the Investigation of the Magnitudes and Probabilities of Abrupt Climate Transitions (IMPACTS) Project. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830. NR 24 TC 3 Z9 3 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JAN PY 2012 VL 25 IS 1 BP 381 EP 391 DI 10.1175/JCLI-D-11-00058.1 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 876TG UT WOS:000299130000024 ER PT J AU Preissner, C Royston, TJ Shu, DM AF Preissner, Curt Royston, Thomas J. Shu, Deming TI A High-Fidelity Harmonic Drive Model SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article ID KINEMATIC ERROR; GEAR TRANSMISSION; ROBOT; HYSTERESIS; BEHAVIOR; SYSTEMS AB In this paper, a new model of the harmonic drive transmission is presented. The purpose of this work is to better understand the transmission hysteresis behavior while constructing a new type of comprehensive harmonic drive model. The four dominant aspects of harmonic drive behavior-nonlinear viscous friction, nonlinear stiffness, hysteresis, and kinematic error-are all included in the model. The harmonic drive is taken to be a black box, and a dynamometer is used to observe the input/output relations of the transmission. This phenomenological approach does not require any specific knowledge of the internal kinematics. In a novel application, the Maxwell resistive-capacitor hysteresis model is applied to the harmonic drive. In this model, sets of linear stiffness elements in series with Coulomb friction elements are arranged in parallel to capture the hysteresis behavior of the transmission. The causal hysteresis model is combined with nonlinear viscous friction and spectral kinematic error models to accurately represent the harmonic drive behavior. Empirical measurements are presented to quantify all four aspects of the transmission behavior. These measurements motivate the formulation of the complete model. Simulation results are then compared to additional measurements of the harmonic drive performance. [DOI: 10.1115/1.4005041] C1 [Preissner, Curt; Shu, Deming] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Royston, Thomas J.] UIC Dept Mech & Ind Engn, Chicago, IL 60607 USA. RP Preissner, C (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM preissner@aps.anl.gov; troyston@uic.edu; shu@aps.anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. NR 42 TC 2 Z9 3 U1 2 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 EI 1528-9028 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD JAN PY 2012 VL 134 IS 1 AR 011002 DI 10.1115/1.4005041 PG 13 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 876QX UT WOS:000299123800002 ER PT J AU Song, CY Abell, JL He, YP Murph, SH Cui, YP Zhao, YP AF Song, Chunyuan Abell, Justin L. He, Yuping Murph, S. Hunyadi Cui, Yiping Zhao, Yiping TI Gold-modified silver nanorod arrays: growth dynamics and improved SERS properties SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID ENHANCED RAMAN-SCATTERING; GALVANIC REPLACEMENT REACTION; SHELL BIMETALLIC NANOPARTICLES; OBLIQUE ANGLE DEPOSITION; SINGLE-MOLECULE; AG; SPECTROSCOPY; NANOSTRUCTURES; FABRICATION; SUBSTRATE AB Only a few remaining technical hurdles currently prevent the implementation of SERS as a mainstream detection technology. Although oblique-angle deposited silver nanorod arrays provide superior analytical figures of merit for SERS sensing, stability issues of silver surfaces can impede their use for real-world sensing applications within certain environments. To circumvent this issue, silver nanorod arrays are modified with a straight-forward, inexpensive Au-coating via a galvanic replacement reaction. The morphological, structural, compositional, and optical properties of the Au-modified Ag nanorod arrays are studied by multiple ex situ morphological characterization techniques and in situ optical absorbance spectroscopy. Depending on the reaction time, the Au coating experiences five different stages of the morphological and compositional changes. The porosity of the Au layer and the content of Ag decrease with reaction time. The optical measurements show that the representative localized plasmon resonance peak of the nanorod red-shifts as the reaction proceeds. The surface enhanced Raman scattering (SERS) intensity, tested using 4-mercaptophenol, decreases exponentially with reaction time, due to the compositional evolution of the nanostructure from pure Ag to a Au-Ag alloy with increasing Au content. We show that the Au-modified Ag nanorod is very stable in NaCl solution compared to the as-deposited Ag nanorod, and the 20 or 30 minute Au-modified Ag nanorod substrate shows an improved SERS sensitivity for air contamination detection. Such an improved SERS substrate can be used in more hostile environments where a pure Ag nanorod substrate cannot be used, and is good for practical sensing applications. C1 [Song, Chunyuan; Cui, Yiping] Southeast Univ, Adv Photon Ctr, Nanjing 210096, Jiangsu, Peoples R China. [Song, Chunyuan; He, Yuping; Zhao, Yiping] Univ Georgia, Dept Phys & Astron, Nanoscale Sci & Engn Ctr, Athens, GA 30602 USA. [Abell, Justin L.] Univ Georgia, Dept Biol & Agr Engn, Nanoscale Sci & Engn Ctr, Athens, GA 30602 USA. [Murph, S. Hunyadi] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Cui, YP (reprint author), Southeast Univ, Adv Photon Ctr, Nanjing 210096, Jiangsu, Peoples R China. EM cyp@seu.edu.cn; zhaoy@physast.uga.edu RI He, Yuping/F-2831-2011; Zhao, Yiping/A-4968-2008; Song, Chunyuan/E-5489-2013 FU National Science Foundation [CMMI-0824728, ECCS-1029609]; USDA CSREES [2009-35603-05001]; China Scholarship Council; Scientific Research Foundation of Graduate School of Southeast University [YBJJ0924] FX C.-Y.S. and Y.-P.Z thank the support from National Science Foundation under contract number CMMI-0824728 and ECCS-1029609. J.L.A. is supported by USDA CSREES Grant #2009-35603-05001. C.-Y.S. and Y.-P.C. are grateful to the financial support by China Scholarship Council and the Scientific Research Foundation of Graduate School of Southeast University (no. YBJJ0924). NR 52 TC 27 Z9 27 U1 6 U2 110 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 EI 1364-5501 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 3 BP 1150 EP 1159 DI 10.1039/c1jm14133c PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 877WF UT WOS:000299212700052 ER PT J AU Reich, BJ Kalendra, E Storlie, CB Bondell, HD Fuentes, M AF Reich, Brian J. Kalendra, Eric Storlie, Curtis B. Bondell, Howard D. Fuentes, Montserrat TI Variable selection for high dimensional Bayesian density estimation: application to human exposure simulation SO JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS LA English DT Article DE Air pollution; Bayesian non-parametrics; High dimensional data; Kernel stick breaking prior; Stochastic computer models ID AIR-POLLUTION; NONPARAMETRIC REGRESSION; COMPUTER EXPERIMENTS; MORTALITY; MODELS; FRAMEWORK AB . Numerous studies have linked ambient air pollution and adverse health outcomes. Many studies of this nature relate outdoor pollution levels measured at a few monitoring stations with health outcomes. Recently, computational methods have been developed to model the distribution of personal exposures, rather than ambient concentration, and then relate the exposure distribution to the health outcome. Although these methods show great promise, they are limited by the computational demands of the exposure model. We propose a method to alleviate these computational burdens with the eventual goal of implementing a national study of the health effects of air pollution exposure. Our approach is to develop a statistical emulator for the exposure model, i.e. we use Bayesian density estimation to predict the conditional exposure distribution as a function of several variables, such as temperature, human activity and physical characteristics of the pollutant. This poses a challenging statistical problem because there are many predictors of the exposure distribution and density estimation is notoriously difficult in high dimensions. To overcome this challenge, we use stochastic search variable selection to identify a subset of the variables that have more than just additive effects on the mean of the exposure distribution. We apply our method to emulate an ozone exposure model in Philadelphia. C1 [Reich, Brian J.] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA. [Storlie, Curtis B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Reich, BJ (reprint author), N Carolina State Univ, Dept Stat, 2311 Stinson Dr,Box 8203, Raleigh, NC 27695 USA. EM reich@stat.ncsu.edu FU National Science Foundation [DMS-0354189, DMS-0705968, DMS-0706731, DMS-0353029]; Sandia National Laboratories [22858]; Environmental Protection Agency [R833863]; National Institutes of Health [5R01ES014843-02] FX The authors thank the National Science Foundation (Reich, DMS-0354189; Bondell, DMS-0705968; Fuentes, DMS-0706731 and DMS-0353029), Sandia National Laboratories (Storlie, Sandia University Research Program grant 22858), the Environmental Protection Agency (Fuentes, R833863) and National Institutes of Health (Fuentes, 5R01ES014843-02) for partial support of this work. The authors also thank John Langstaff of the US Environmental Protection Agency for his help with the APEX model and interpreting the results. NR 34 TC 3 Z9 3 U1 2 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-9254 J9 J R STAT SOC C-APPL JI J. R. Stat. Soc. Ser. C-Appl. Stat. PY 2012 VL 61 BP 47 EP 66 DI 10.1111/j.1467-9876.2011.00772.x PN 1 PG 20 WC Statistics & Probability SC Mathematics GA 877UH UT WOS:000299207700003 ER PT J AU Liu, DW Liu, YY Candelaria, SL Cao, GZ Liu, J Jeong, YH AF Liu, Dawei Liu, Yanyi Candelaria, Stephanie L. Cao, Guozhong Liu, Jun Jeong, Yoon-Ha TI Atomic layer deposition of Al2O3 on V2O5 xerogel film for enhanced lithium-ion intercalation stability SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; ANODE MATERIALS; BATTERIES; ELECTRODES; CAPACITY; TEMPERATURE; PERFORMANCE; THIN AB V2O5 xerogel films were fabricated by casting V2O5 sols onto fluorine-doped tin oxide glass substrates at room temperature. Five, ten and twenty atomic layers of Al2O3 were grown onto as-fabricated films respectively. The bare film and Al2O3-deposited films all exhibited hydrous V2O5 phase only. Electrochemical impedance spectroscopy study revealed increased surface charge-transfer resistance of V2O5 films as more Al2O3 atomic layers were deposited. Lithium-ion intercalation tests at 600 mAg(-1) showed that bare V2O5 xerogel film possessed high initial discharge capacity of 219 mAhg(-1) but suffered from severe capacity degradation, i.e., having only 136 mAhg(-1) after 50 cycles. After deposition of ten atomic layers of Al2O3, the initial discharge capacity was 195 mAhg(-1) but increased over cycles before stabilizing; after 50 cycles, the discharge capacity was as high as 225 mAhg(-1). The noticeably improved cyclic stability of Al2O3-deposited V2O5 xerogel film could be attributed to the improved surface chemistry and enhanced mechanical strength. During repeated lithium-ion intercalation/de-intercalation, atomic layers of Al2O3 which were coated onto V2O5 surface could prevent V2O5 electrode dissolution into electrolyte by reducing direct contact between active electrode and electrolyte while at the same time acting as binder to maintain good mechanical contact between nanoparticles inside the film. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3664115] C1 [Liu, Dawei; Liu, Yanyi; Candelaria, Stephanie L.; Cao, Guozhong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Jeong, Yoon-Ha] Pohang Univ Sci & Technol, Natl Ctr Nanomat Technol, Pohang, South Korea. RP Cao, GZ (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM gzcao@u.washington.edu RI Cao, Guozhong/E-4799-2011; Liu, Yanyi/A-1425-2012 FU National Science Foundation [CMMI-1030048, DMR-0605159]; University of Washington Center for Nanotechnology (CNT); NSF-IGERT [DGE-0654252] FX This work was supported in part by National Science Foundation (Grant Nos. CMMI-1030048 and DMR-0605159). D.W.L. would like to acknowledge the graduate fellowship (UIF) from University of Washington Center for Nanotechnology (CNT). S.L.C. would like to acknowledge the NSF-IGERT fellowship (Grant No. DGE-0654252). Atomic layer deposition part of this work was conducted at the University of Washington NanoTech User Facility, a member of the NSF National Nanotechnology Infrastructure Network (NNIN). NR 35 TC 7 Z9 7 U1 1 U2 45 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JAN PY 2012 VL 30 IS 1 AR 01A123 DI 10.1116/1.3664115 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 874XY UT WOS:000298992800023 ER PT J AU Priyadarshini, D Kondratyuk, P Miller, JB Gellman, AJ AF Priyadarshini, Deepika Kondratyuk, Petro Miller, James B. Gellman, Andrew J. TI Compact tool for deposition of composition spread alloy films SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID HIGH-THROUGHPUT CHARACTERIZATION; COMBINATORIAL APPROACH; INORGANIC MATERIALS; THIN-FILMS; SURFACE SEGREGATION; MATERIAL LIBRARIES; DRUG DISCOVERY; CHEMISTRY; MO(110); SCIENCE AB Composition spread alloy films (CSAFs) are combinatorial materials libraries that contain broad, continuous composition ranges of binary or higher-order alloys on a single, compact substrate. When characterized for composition and functional properties using spatially resolved methods, CSAF libraries enable rapid determination of composition-property relationships across broad continuous regions of alloy composition space. In this report, we describe the design and operation of a novel offset filament deposition tool for preparation of CSAFs. The spatial distribution of individual alloy component fluxes to the substrate surface, and thus the film composition across the substrate, is controlled by the location and temperature of chemically distinct evaporative line sources. The tool can be used for quantitative deposition of thin (<= 100 nm) CSAFs with up to four components. The authors demonstrate the performance of the tool by applying it to preparation of 100 nm thick Pd-Cu CSAFs, with lateral composition gradients that span the range Cu(0.05)Pd(0.95) to Cu(0.95)Pd(0.05), on a 12 mm diameter Mo(110) substrate. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3664078] C1 [Gellman, Andrew J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Gellman, AJ (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM gellman@cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU National Energy Technology Laboratory's ongoing research in Hydrogen Separation Membranes [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in Hydrogen Separation Membranes under the RES Grant No. DE-FE0004000. NR 31 TC 7 Z9 8 U1 0 U2 18 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JAN PY 2012 VL 30 IS 1 AR 011503 DI 10.1116/1.3664078 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 874XY UT WOS:000298992800075 ER PT J AU Yanguas-Gil, A Elam, JW AF Yanguas-Gil, Angel Elam, Jeffrey W. TI Simple model for atomic layer deposition precursor reaction and transport in a viscous-flow tubular reactor SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; ALD; CONFORMALITY; DESIGN AB Precursor reaction and transport are both critical in determining the thickness uniformity and conformality of atomic layer deposition (ALD) thin films. However, it is sometimes difficult to predict how changes in conditions, such as mass flow rate or precursor reactivity, will affect the outcome of an ALD experiment. To provide some insight and guidance, we have developed a simple 1D model to describe precursor transport and reaction in a tubular viscous flow ALD reactor. After making some simplifying assumptions, we show that the transport problem depends only on three independent parameters, the Peclet number, the Damkoeler number, and the excess number, which can be easily calculated for most ALD processes. Despite its simplicity, we obtain very good agreement with experimental results for the thickness profiles of ALD Al(2)O(3) films deposited using trimethyl aluminum and H(2)O. The authors have applied the model to study the impact of precursor properties and experimental conditions on the growth profiles and saturation curves obtained during ALD, including the presence of nonself-limited wall recombination. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3670396] C1 [Yanguas-Gil, Angel; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Elam, JW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov RI Yanguas-Gil, Angel/G-9630-2011 OI Yanguas-Gil, Angel/0000-0001-8207-3825 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program [FWP-4902 A]; Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; UChicago Argonne, LLC FX This work was supported in part by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program under Grant No. FWP-4902 A. J.W.E. was supported by the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Grant No. DE-SC0001059. Argonne is a U.S. Department of Energy Office of Science Laboratory, and is operated under Grant No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 26 TC 11 Z9 12 U1 3 U2 37 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JAN PY 2012 VL 30 IS 1 AR 01A159 DI 10.1116/1.3670396 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 874XY UT WOS:000298992800059 ER PT J AU Yu, SW Tobin, JG Olalde-Velasco, P Yang, WL Siekhaus, WJ AF Yu, Sung Woo Tobin, J. G. Olalde-Velasco, Paul Yang, Wan Li Siekhaus, Wigbert J. TI Energy calibrations in the x-ray absorption spectroscopy of uranium dioxide SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID ADVANCED LIGHT-SOURCE; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; INVERSE-PHOTOEMISSION; 5F ELECTRONS; OXIDES; UO2; BEAMLINE AB Proper and accurate placement of the components of the unoccupied density of states in uranium dioxide requires a careful calibration of the energy scales in the spectroscopic investigations. Here, the energy scale calibrations and corresponding spectroscopic measurements are described in detail, including photoelectron spectroscopy, inverse photoelectron spectroscopy and, most important, x-ray absorption spectroscopy. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3670402] C1 [Yu, Sung Woo; Tobin, J. G.; Siekhaus, Wigbert J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Olalde-Velasco, Paul; Yang, Wan Li] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Olalde-Velasco, Paul] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. RP Tobin, JG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tobin1@llnl.gov RI Yang, Wanli/D-7183-2011; Tobin, James/O-6953-2015 OI Yang, Wanli/0000-0003-0666-8063; FU DOE Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering; Lawrence Livermore National Laboratory [10-SI-016]; Office of Basic Energy Science in the Department of Energy; Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231]; ALS; LBNL; [DE-AC52-07NA27344] FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract No. DE-AC52-07NA27344. This work was supported by the DOE Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering. Some of this work was funded by Laboratory Directed Research and Development (LDRD) Program No. (10-SI-016) of Lawrence Livermore National Laboratory. The synchrotron radiation experiments were carried out at Beamline 8 at the Advanced Light Source at Lawrence Berkeley National Laboratory, Berkeley, CA. The ALS was constructed and is operated with support from the Office of Basic Energy Science in the Department of Energy. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank the staff of the ALS and LBNL for their support. The authors would also like to thank J. C. Crowhurst, S. Sharma, J. K. Dewhurst, Ian Hutcheon, Patrick Allen, Anthony Van Buuren, Trevor Wiley, and Joseph Zaug for their contributions. P.O.V. would like to acknowledge CONACyTMexico. NR 36 TC 7 Z9 7 U1 0 U2 12 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JAN PY 2012 VL 30 IS 1 AR 011402 DI 10.1116/1.3670402 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 874XY UT WOS:000298992800072 ER PT J AU Kumar, S Hahn, FM Baidoo, E Kahlon, TS Wood, DF McMahan, CM Cornish, K Keasling, JD Daniell, H Whalen, MC AF Kumar, Shashi Hahn, Frederick M. Baidoo, Edward Kahlon, Talwinder S. Wood, Delilah F. McMahan, Colleen M. Cornish, Katrina Keasling, Jay D. Daniell, Henry Whalen, Maureen C. TI Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts SO METABOLIC ENGINEERING LA English DT Article DE Plant metabolic engineering; Mevalonate pathway; Methylerythritol phosphate pathway; Chloroplast engineering; Tobacco; Isoprenoid biosynthesis ID COENZYME-A REDUCTASE; CAROTENOID BIOSYNTHESIS; PLASTID TRANSFORMATION; ARABIDOPSIS-THALIANA; PLANT ISOPRENOIDS; RUBBER PARTICLES; GENE; ACCUMULATION; INHIBITION; SYNTHASE AB Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-o-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants. Published by Elsevier Inc. C1 [Kumar, Shashi; Hahn, Frederick M.; Kahlon, Talwinder S.; Wood, Delilah F.; McMahan, Colleen M.; Whalen, Maureen C.] Western Reg Res Ctr, ARS, USDA, Albany, CA USA. [Kumar, Shashi; Cornish, Katrina] Yulex Corp, Maricopa, AZ USA. [Baidoo, Edward; Keasling, Jay D.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Emeryville, CA USA. [Baidoo, Edward; Keasling, Jay D.] Univ Cent Florida, Coll Med, Dept Mol Biol & Microbiol, Orlando, FL 32816 USA. RP Whalen, MC (reprint author), Western Reg Res Ctr, ARS, USDA, Albany, CA USA. EM maureen.whalen@ars.usda.gov RI Keasling, Jay/J-9162-2012; Cornish, Katrina/A-9773-2013; OI Keasling, Jay/0000-0003-4170-6088; Daniell, Henry/0000-0003-4485-1176; Kumar, Shashi/0000-0001-7192-1526 FU USDA ARS [5325-41000-043-00D]; Cooperative Research and Development Agreement [58-3K95-6-1172]; Yulex Corporation (Maricopa, Arizona) FX We thank Darlene Hoffmann (San Joaquin Valley Agricultural Sciences Center, ARS, USDA, Parlier, California, USA) for performing TEM and Tina Williams (Western Regional Research Center, ARS, USDA, Albany, California, USA) for assisting in sample preparation for TEM. We thank Lewis Feldman, Steven Ruzin, Kent McDonald, Marisa Otegui, and Russell Jones for discussions of UMB. The authors received financial support from USDA ARS project 5325-41000-043-00D and Cooperative Research and Development Agreement #58-3K95-6-1172 with Yulex Corporation (Maricopa, Arizona). NR 65 TC 49 Z9 50 U1 1 U2 39 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 J9 METAB ENG JI Metab. Eng. PD JAN PY 2012 VL 14 IS 1 BP 19 EP 28 DI 10.1016/j.ymben.2011.11.005 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 876MQ UT WOS:000299112000003 PM 22123257 ER PT J AU Kirkil, G Mirocha, J Bou-Zeid, E Chow, FK Kosovic, B AF Kirkil, Gokhan Mirocha, Jeff Bou-Zeid, Elie Chow, Fotini Katopodes Kosovic, Branko TI Implementation and Evaluation of Dynamic Subfilter-Scale Stress Models for Large-Eddy Simulation Using WRF SO MONTHLY WEATHER REVIEW LA English DT Article ID ATMOSPHERIC BOUNDARY-LAYER; SUBGRID-SCALE; SURFACE-LAYER; COMPRESSIBLE TURBULENCE; FLOW; TRANSPORT AB The performance of a range of simple to moderately complex subtilter-scale (SFS) stress models implemented in the Weather Research and Forecasting (WRF) model is evaluated in large-eddy simulations of neutral atmospheric boundary layer flow over both a flat terrain and a two-dimensional symmetrical transverse ridge. Two recently developed dynamic SFS stress models, the Lagrangian-averaged scale-dependent (LASD) dynamic model and the dynamic reconstruction model (DRM), are compared with the WRF model's existing constant-coefficient linear eddy-viscosity and (as of version 3.2) nonlinear SFS stress models to evaluate the benefits of more sophisticated and accurate, but also more computationally expensive approaches. Simulation results using the different SFS stress models are compared among each other, as well as against the Monin-Obukhov similarity theory. For the flat terrain case, vertical profiles of mean wind speed from the newly implemented dynamic models show the best agreement with the similarity solution, improving even upon the nonlinear model, which likewise yields a significant improvement compared to the Smagorinsky model. The more sophisticated SFS stress models more successfully predict the expected production and inertial range scaling of power spectra, especially near the surface, with the dynamic models achieving the best scaling overall. For the transverse ridge case, the nonlinear model predicts the greatest amount of reverse flow in the lee of the ridge, and also demonstrates the greatest ability to duplicate qualitative features of the highest-resolution simulations at coarser resolutions. The dynamic models' flow distributions in the lee of the ridge did not differ significantly from the constant-coefficient Smagorinsky model. C1 [Kirkil, Gokhan] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Bou-Zeid, Elie] Princeton Univ, Princeton, NJ 08544 USA. [Chow, Fotini Katopodes] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kosovic, Branko] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Kirkil, G (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, POB 808,L-103, Livermore, CA 94551 USA. EM kirkil1@llnl.gov RI Bou-Zeid, Elie/A-9796-2008; Kirkil, Gokhan/D-8481-2014 OI Bou-Zeid, Elie/0000-0002-6137-8109; FU U.S. Department of Energy [DE-AC52-07NA27344]; LLNL Laboratory Directed Research and Development (LDRD) Program [09-ERD-038]; NSF [CBET-1058027, ATM-0645784] FX We are grateful to the editor and anonymous reviewers for their constructive comments. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Staff effort at LLNL was supported by the LLNL Laboratory Directed Research and Development (LDRD) Program, Project 09-ERD-038. Computations at LLNL's Livermore Computing were also supported by LDRD. EBZ is supported by NSF under CBET-1058027 and FKC is supported by ATM-0645784. NR 44 TC 26 Z9 27 U1 0 U2 19 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD JAN PY 2012 VL 140 IS 1 BP 266 EP 284 DI 10.1175/MWR-D-11-00037.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 876TQ UT WOS:000299131000016 ER PT J AU Larson, VE Schanen, DP Wang, MH Ovchinnikov, M Ghan, S AF Larson, Vincent E. Schanen, Danit P. Wang, Minghuai Ovchinnikov, Mikhail Ghan, Steven TI PDF Parameterization of Boundary Layer Clouds in Models with Horizontal Grid Spacings from 2 to 16 km SO MONTHLY WEATHER REVIEW LA English DT Article ID LARGE-EDDY SIMULATION; PROBABILITY DENSITY-FUNCTIONS; SHALLOW CUMULUS CONVECTION; NOCTURNAL MARINE STRATOCUMULUS; MASS FLUX FRAMEWORK; LARGE-SCALE MODELS; PART I; RESOLVING MODEL; VARIABILITY; SUPERPARAMETERIZATION AB Many present-day numerical weather prediction (NWP) models are run at resolutions that permit deep convection. In these models, however, the boundary layer turbulence and boundary layer cloud features are still grossly underresolved. Underresolution is also present in climate models that use a multiscale modeling framework (MMF), in which a convection-permitting model is run in each grid column of a global general circulation model. To better represent boundary layer clouds and turbulence in convection-permitting models, a parameterization was developed that models the joint probability density function (PDF) of vertical velocity, heat, and moisture. Although PDF-based parameterizations are more complex and computationally expensive than many other parameterizations, in principle PDF parameterizations have several advantages. For instance, they ensure consistency of liquid (cloud) water and cloud fraction; they avoid using, separate parameterizations for different cloud types such as cumulus and stratocumulus; and they have an appropriate formulation in the "terra incognita" in which updrafts are marginally resolved. In this paper, an implementation of a PDF parameterization is tested to see whether it improves the simulations of a state-of-the-art convection-permitting model. The PDF parameterization used is the Cloud Layers Unified By Binormals (CLUBB) parameterization. The host cloud-resolving model used is the System for Atmospheric Modeling (SAM). SAM is run both with and without CLUBB implemented in it. Simulations of two shallow cumulus (Cu) cases and two shallow stratocumulus (Sc) cases are run in a 3D configuration at 2-, 4-, and 16-km horizontal grid spacings. Including CLUBB in the simulations improves some of the simulated fields-such as vertical velocity variance, horizontal wind fields, cloud water content, and drizzle water content-especially in the two Cu cases. Implementing CLUBB in SAM improves the simulations slightly at 2-km horizontal grid spacing, significantly at 4-km grid spacing, and greatly at 16-km grid spacing. Furthermore, the simulations that include CLUBB exhibit a reduced sensitivity to horizontal grid spacing. C1 [Larson, Vincent E.] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53211 USA. [Wang, Minghuai; Ovchinnikov, Mikhail; Ghan, Steven] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Larson, VE (reprint author), Univ Wisconsin Milwaukee, Dept Math Sci, POB 413, Milwaukee, WI 53211 USA. EM vlarson@uwm.edu RI Wang, Minghuai/E-5390-2011; Ghan, Steven/H-4301-2011 OI Wang, Minghuai/0000-0002-9179-228X; Ghan, Steven/0000-0001-8355-8699 FU NASA [NNX07AI56G]; DOE by Battelle Memorial Institute [DE-AC06-76RLO1830]; Battelle Memorial Institute [47164] FX The authors are grateful to Dr. Marat Khairoutdinov for the use of his numerical model, SAM. The research was supported by the NASA Interdisciplinary Science Program under Grant NNX07AI56G. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. V. Larson and D. Schanen were supported by Contract 47164 from Battelle Memorial Institute. NR 47 TC 26 Z9 26 U1 1 U2 20 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD JAN PY 2012 VL 140 IS 1 BP 285 EP 306 DI 10.1175/MWR-D-10-05059.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 876TQ UT WOS:000299131000017 ER PT J AU Zhang, G Harichandran, RS Ramuhalli, P AF Zhang, Gang Harichandran, Ronald S. Ramuhalli, Pradeep TI An automatic impact-based delamination detection system for concrete bridge decks SO NDT & E INTERNATIONAL LA English DT Article DE Delamination; Concrete bridge decks; Acoustic NDE; Noise cancellation; Feature extraction; Classification; Neural network AB Delamination of concrete bridge decks is a commonly observed distress in corrosive environments. In traditional acoustic inspection methods, delamination is assessed by the "hollowness" of the sound created by impacting the bridge deck with a hammer or bar or by dragging a chain. The signals from such sounding methods are often contaminated by ambient traffic noise and delamination detection is highly subjective. In the proposed method, a modified version of independent component analysis (ICA) is used to filter the traffic noise. To eliminate subjectivity, mel-frequency cepstral coefficients (MFCC) are used as features for delamination detection and the delamination is detected by a radial basis function (RBF) neural network. Results from both laboratory and field data suggest that the proposed method is noise robust and has satisfactory performance. The method can also detect the debonding of repair patches and concrete delamination below the repair patches. The algorithms were incorporated into an automatic impact-based delamination detection (AIDD) system for field application. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhang, Gang] Profess Serv Ind Inc, Mclean, VA 22101 USA. [Harichandran, Ronald S.] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA. [Ramuhalli, Pradeep] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, G (reprint author), Profess Serv Ind Inc, 6300 Georgetown Pike, Mclean, VA 22101 USA. EM civilzhang@gmail.com OI Ramuhalli, Pradeep/0000-0001-6372-1743 FU Michigan Department of Transportation (MDOT) FX This research was sponsored by the Michigan Department of Transportation (MDOT). The authors would like to thank the project manager, Steve Kahl, and all members of the research advisory panel for their input. But the opinions, findings, conclusions and recommendations presented herein are those of the authors alone and do not necessarily represent the views and opinions of MDOT. NR 25 TC 5 Z9 5 U1 1 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0963-8695 J9 NDT&E INT JI NDT E Int. PD JAN PY 2012 VL 45 IS 1 BP 120 EP 127 DI 10.1016/j.ndteint.2011.09.013 PG 8 WC Materials Science, Characterization & Testing SC Materials Science GA 862WX UT WOS:000298125900016 ER PT J AU Grilli, J Bassetti, B Maslov, S Lagomarsino, MC AF Grilli, J. Bassetti, B. Maslov, S. Lagomarsino, M. Cosentino TI Joint scaling laws in functional and evolutionary categories in prokaryotic genomes SO NUCLEIC ACIDS RESEARCH LA English DT Article ID PROTEIN UNIVERSE; FOLD OCCURRENCE; FAMILY SIZES; MODEL; DOMAINS; DUPLICATION; NETWORKS; BEHAVIOR AB We propose and study a class-expansion/innovation/loss model of genome evolution taking into account biological roles of genes and their constituent domains. In our model, numbers of genes in different functional categories are coupled to each other. For example, an increase in the number of metabolic enzymes in a genome is usually accompanied by addition of new transcription factors regulating these enzymes. Such coupling can be thought of as a proportional 'recipe' for genome composition of the type 'a spoonful of sugar for each egg yolk'. The model jointly reproduces two known empirical laws: the distribution of family sizes and the non-linear scaling of the number of genes in certain functional categories (e.g. transcription factors) with genome size. In addition, it allows us to derive a novel relation between the exponents characterizing these two scaling laws, establishing a direct quantitative connection between evolutionary and functional categories. It predicts that functional categories that grow faster-than-linearly with genome size to be characterized by flatter-than-average family size distributions. This relation is confirmed by our bioinformatics analysis of prokaryotic genomes. This proves that the joint quantitative trends of functional and evolutionary classes can be understood in terms of evolutionary growth with proportional recipes. C1 [Lagomarsino, M. Cosentino] UMR 7238 CNRS Microorganism Genom, Genophys Genom Phys Grp, Paris, France. [Lagomarsino, M. Cosentino] Univ Paris 06, Paris, France. [Grilli, J.; Bassetti, B.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bassetti, B.] INFN, Milan, Italy. [Bassetti, B.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Lagomarsino, MC (reprint author), UMR 7238 CNRS Microorganism Genom, Genophys Genom Phys Grp, Paris, France. EM marco.cosentino-lagomarsino@upmc.fr RI Cosentino Lagomarsino, Marco/B-7233-2012; Grilli, Jacopo/J-1920-2012; Maslov, Sergei/C-2397-2009; OI Cosentino Lagomarsino, Marco/0000-0003-0235-0445; Maslov, Sergei/0000-0002-3701-492X; Grilli, Jacopo/0000-0002-8235-5803 FU Human Frontior Science Program Organization [RGY0069/2009-C]; Division of Material Science, US Department of Energy [DE-AC02-98CH10886]; DOE; National Science Foundation [NSF PHY05-51164] FX Human Frontior Science Program Organization (Grant RGY0069/2009-C); Work at the Brookhaven National Laboratory was carried out under Contract (DE-AC02-98CH10886), Division of Material Science, US Department of Energy; DOE Systems Biology Knowledgebase project 'Tools and Models for Integrating Multiple Cellular Networks'; National Science Foundation (Grant NSF PHY05-51164). Funding for open access charge: Human Frontier Science Program Organization (Grant RGY0069/2009-C). NR 22 TC 8 Z9 8 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2012 VL 40 IS 2 BP 530 EP 540 DI 10.1093/nar/gkr711 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 876GP UT WOS:000299095900012 PM 21937509 ER PT J AU Blake, JA Dolan, M Drabkin, H Hill, DP Ni, L Sitnikov, D Burgess, S Buza, T Gresham, C McCarthy, F Pillai, L Wang, H Carbon, S Lewis, SE Mungall, CJ Gaudet, P Chisholm, RL Fey, P Kibbe, WA Basu, S Siegele, DA McIntosh, BK Renfro, DP Zweifel, AE Hu, JC Brown, NH Tweedie, S Alam-Faruque, Y Apweiler, R Auchinchloss, A Axelsen, K Argoud-Puy, G Bely, B Blatter, MC Bougueleret, L Boutet, E Branconi-Quintaje, S Breuza, L Bridge, A Browne, P Chan, WM Coudert, E Cusin, I Dimmer, E Duek-Roggli, P Eberhardt, R Estreicher, A Famiglietti, L Ferro-Rojas, S Feuermann, M Gardner, M Gos, A Gruaz-Gumowski, N Hinz, U Hulo, C Huntley, R James, J Jimenez, S Jungo, F Keller, G Laiho, K Legge, D Lemercier, P Lieberherr, D Magrane, M Martin, MJ Masson, P Moinat, M O'Donovan, C Pedruzzi, I Pichler, K Poggioli, D Millan, PP Poux, S Rivoire, C Roechert, B Sawford, T Schneider, M Sehra, H Stanley, E Stutz, A Sundaram, S Tognolli, M Xenarios, I Foulger, R Lomax, J Roncaglia, P Camon, E Khodiyar, VK Lovering, RC Talmud, PJ Chibucos, M Giglio, MG Dolinski, K Heinicke, S Livstone, MS Stephan, R Harris, MA Oliver, SG Rutherford, K Wood, V Bahler, J Lock, A Kersey, PJ McDowall, MD Staines, DM Dwinell, M Shimoyama, M Laulederkind, S Hayman, T Wang, SJ Petri, V Lowry, T D'Eustachio, P Matthews, L Amundsen, CD Balakrishnan, R Binkley, G Cherry, JM Christie, KR Costanzo, MC Dwight, SS Engel, SR Fisk, DG Hirschman, JE Hitz, BC Hong, EL Karra, K Krieger, CJ Miyasato, SR Nash, RS Park, J Skrzypek, MS Weng, S Wong, ED Berardini, TZ Li, D Huala, E Slonim, D Wick, H Thomas, P Chan, J Kishore, R Sternberg, P Van Auken, K Howe, D Westerfield, M AF Blake, J. A. Dolan, M. Drabkin, H. Hill, D. P. Ni, L. Sitnikov, D. Burgess, S. Buza, T. Gresham, C. McCarthy, F. Pillai, L. Wang, H. Carbon, S. Lewis, S. E. Mungall, C. J. Gaudet, P. Chisholm, R. L. Fey, P. Kibbe, W. A. Basu, S. Siegele, D. A. McIntosh, B. K. Renfro, D. P. Zweifel, A. E. Hu, J. C. Brown, N. H. Tweedie, S. Alam-Faruque, Y. Apweiler, R. Auchinchloss, A. Axelsen, K. Argoud-Puy, G. Bely, B. Blatter, M. -C. Bougueleret, L. Boutet, E. Branconi-Quintaje, S. Breuza, L. Bridge, A. Browne, P. Chan, W. M. Coudert, E. Cusin, I. Dimmer, E. Duek-Roggli, P. Eberhardt, R. Estreicher, A. Famiglietti, L. Ferro-Rojas, S. Feuermann, M. Gardner, M. Gos, A. Gruaz-Gumowski, N. Hinz, U. Hulo, C. Huntley, R. James, J. Jimenez, S. Jungo, F. Keller, G. Laiho, K. Legge, D. Lemercier, P. Lieberherr, D. Magrane, M. Martin, M. J. Masson, P. Moinat, M. O'Donovan, C. Pedruzzi, I. Pichler, K. Poggioli, D. Millan, P. Porras Poux, S. Rivoire, C. Roechert, B. Sawford, T. Schneider, M. Sehra, H. Stanley, E. Stutz, A. Sundaram, S. Tognolli, M. Xenarios, I. Foulger, R. Lomax, J. Roncaglia, P. Camon, E. Khodiyar, V. K. Lovering, R. C. Talmud, P. J. Chibucos, M. Giglio, M. Gwinn Dolinski, K. Heinicke, S. Livstone, M. S. Stephan, R. Harris, M. A. Oliver, S. G. Rutherford, K. Wood, V. Bahler, J. Lock, A. Kersey, P. J. McDowall, M. D. Staines, D. M. Dwinell, M. Shimoyama, M. Laulederkind, S. Hayman, T. Wang, S. -J. Petri, V. Lowry, T. D'Eustachio, P. Matthews, L. Amundsen, C. D. Balakrishnan, R. Binkley, G. Cherry, J. M. Christie, K. R. Costanzo, M. C. Dwight, S. S. Engel, S. R. Fisk, D. G. Hirschman, J. E. Hitz, B. C. Hong, E. L. Karra, K. Krieger, C. J. Miyasato, S. R. Nash, R. S. Park, J. Skrzypek, M. S. Weng, S. Wong, E. D. Berardini, T. Z. Li, D. Huala, E. Slonim, D. Wick, H. Thomas, P. Chan, J. Kishore, R. Sternberg, P. Van Auken, K. Howe, D. Westerfield, M. CA Gene Ontology Consortium TI The Gene Ontology: enhancements for 2011 SO NUCLEIC ACIDS RESEARCH LA English DT Article AB The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources. C1 [Blake, J. A.; Dolan, M.; Drabkin, H.; Hill, D. P.; Ni, L.; Sitnikov, D.] Jackson Lab, MGI, Bar Harbor, ME 04609 USA. [Burgess, S.; Buza, T.; Gresham, C.; McCarthy, F.; Pillai, L.; Wang, H.] Mississippi State Univ, AgBase, Mississippi State, MS USA. [Carbon, S.; Lewis, S. E.; Mungall, C. J.] LBNL, BBOP, Berkeley, CA USA. [Gaudet, P.] SIB, CALIPHO Grp, Geneva, Switzerland. [Chisholm, R. L.; Fey, P.; Kibbe, W. A.; Basu, S.] Northwestern Univ, DictyBase, Chicago, IL 60611 USA. [Siegele, D. A.; McIntosh, B. K.; Renfro, D. P.; Zweifel, A. E.; Hu, J. C.] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA. [Siegele, D. A.; McIntosh, B. K.; Renfro, D. P.; Zweifel, A. E.; Hu, J. C.] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA. [Brown, N. H.; Tweedie, S.] Univ Cambridge, FlyBase, Gurdon Inst, Cambridge, England. [Brown, N. H.; Tweedie, S.] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Alam-Faruque, Y.; Apweiler, R.; Auchinchloss, A.; Axelsen, K.; Argoud-Puy, G.; Bely, B.; Blatter, M. -C.; Bougueleret, L.; Boutet, E.; Branconi-Quintaje, S.; Breuza, L.; Bridge, A.; Browne, P.; Chan, W. M.; Coudert, E.; Cusin, I.; Dimmer, E.; Duek-Roggli, P.; Eberhardt, R.; Estreicher, A.; Famiglietti, L.; Ferro-Rojas, S.; Feuermann, M.; Gardner, M.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Huntley, R.; James, J.; Jimenez, S.; Jungo, F.; Keller, G.; Laiho, K.; Legge, D.; Lemercier, P.; Lieberherr, D.; Magrane, M.; Martin, M. J.; Masson, P.; Moinat, M.; O'Donovan, C.; Pedruzzi, I.; Pichler, K.; Poggioli, D.; Millan, P. Porras; Poux, S.; Rivoire, C.; Roechert, B.; Sawford, T.; Schneider, M.; Sehra, H.; Stanley, E.; Stutz, A.; Sundaram, S.; Tognolli, M.; Xenarios, I.] EBI, UniProtKB, Hinxton, England. [Foulger, R.; Lomax, J.; Roncaglia, P.] GO EBI, Hinxton, England. [Camon, E.; Khodiyar, V. K.; Lovering, R. C.; Talmud, P. J.] UCL, Inst Cardiovasc Sci, London, England. [Chibucos, M.; Giglio, M. Gwinn] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Dolinski, K.; Heinicke, S.; Livstone, M. S.] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA. [Stephan, R.] MTBBASE, Berlin, Germany. [Harris, M. A.; Oliver, S. G.; Rutherford, K.; Wood, V.] Univ Cambridge, PomBase, Cambridge, England. [Bahler, J.; Lock, A.] UCL, PomBase, London, England. [Kersey, P. J.; McDowall, M. D.; Staines, D. M.] EBI, PomBase, Hinxton, England. [Dwinell, M.; Shimoyama, M.; Laulederkind, S.; Hayman, T.; Wang, S. -J.; Petri, V.; Lowry, T.] Med Coll Wisconsin, RGD, Milwaukee, WI 53226 USA. [D'Eustachio, P.; Matthews, L.] NYU, Sch Med, Dept Biochem, New York, NY 10016 USA. [Amundsen, C. D.; Balakrishnan, R.; Binkley, G.; Cherry, J. M.; Christie, K. R.; Costanzo, M. C.; Dwight, S. S.; Engel, S. R.; Fisk, D. G.; Hirschman, J. E.; Hitz, B. C.; Hong, E. L.; Karra, K.; Krieger, C. J.; Miyasato, S. R.; Nash, R. S.; Park, J.; Skrzypek, M. S.; Weng, S.; Wong, E. D.] Stanford Univ, Dept Genet, SGD, Stanford, CA 94305 USA. [Berardini, T. Z.; Li, D.; Huala, E.] Carnegie Inst Sci, Dept Plant Biol, TAIR, Stanford, CA USA. [Slonim, D.; Wick, H.] Tufts Univ, Medford, MA 02155 USA. [Thomas, P.] USC, Los Angeles, CA USA. [Chan, J.; Kishore, R.; Sternberg, P.; Van Auken, K.] CALTECH, WormBase, Pasadena, CA 91125 USA. [Howe, D.; Westerfield, M.] Univ Oregon, ZFIN, Eugene, OR 97403 USA. RP Hill, DP (reprint author), Jackson Lab, MGI, 600 Main St, Bar Harbor, ME 04609 USA. EM david.hill@jax.org RI Bahler, Jurg/B-4572-2009; Pedruzzi, Ivo/O-7423-2015; Huntley, Rachael/R-1036-2016; Kibbe, Warren/B-2106-2010; OI Lomax, Jane/0000-0001-8865-4321; Engel, Stacia/0000-0001-5472-917X; Bahler, Jurg/0000-0003-4036-1532; Pedruzzi, Ivo/0000-0001-8561-7170; Huntley, Rachael/0000-0001-6718-3559; Howe, Douglas/0000-0001-5831-7439; Khodiyar, Varsha/0000-0002-2743-6918; Apweiler, Rolf/0000-0001-7078-200X; Pichler, Klemens/0000-0001-6099-8931; Bely, Benoit/0000-0002-0029-9693; Foulger, Rebecca/0000-0001-8682-8754; Christie, Karen/0000-0001-5501-853X; Kibbe, Warren/0000-0001-5622-7659; Matthews, Lisa/0000-0001-5707-3065; Eberhardt, Ruth/0000-0001-6152-1369; Wood, Valerie/0000-0001-6330-7526; Rutherford, Kim/0000-0001-6277-726X; Cherry, J. Michael/0000-0001-9163-5180; Talmud, Philippa/0000-0002-5560-1933; McDowall, Mark/0000-0002-6666-602X; Staines, Daniel/0000-0002-7564-9125; Sternberg, Paul/0000-0002-7699-0173; Lewis, Suzanna/0000-0002-8343-612X; Tweedie, Susan/0000-0003-1818-8243; D'Eustachio, Peter/0000-0002-5494-626X; Magrane, Michele/0000-0003-3544-996X; Siegele, Deborah/0000-0001-8935-0696; Kersey, Paul/0000-0002-7054-800X; Breuza, Lionel/0000-0002-8075-8625; Xenarios, Ioannis/0000-0002-3413-6841; Blake, Judith/0000-0001-8522-334X; Martin, Maria-Jesus/0000-0001-5454-2815; Poux, Sylvain/0000-0001-7299-6685; Bridge, Alan/0000-0003-2148-9135; O'Donovan, Claire/0000-0001-8051-7429; Chibucos, Marcus/0000-0001-9586-0780 FU National Human Genome Research Institute (NHGRI) [5P41HG002273-09]; European Union [QLRI-CT-2001-00981, QLRI-CT-2001-00015] FX National Human Genome Research Institute (NHGRI) (P41 grant 5P41HG002273-09 to Gene Ontology Consortium) and European Union RTD Programme 'Quality of Life and Management of Living Resources' (QLRI-CT-2001-00981 and QLRI-CT-2001-00015 to GO and UniProtKB-GOA groups at EMBL-EBI). Funding for open access charge: National Human Genome Research Institute (NHGRI) (P41 grant 5P41HG002273-09). NR 10 TC 86 Z9 87 U1 4 U2 21 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2012 VL 40 IS D1 BP D559 EP D564 DI 10.1093/nar/gkr1028 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869MD UT WOS:000298601300084 ER PT J AU Contrino, S Smith, RN Butano, D Carr, A Hu, FY Lyne, R Rutherford, K Kalderimis, A Sullivan, J Carbon, S Kephart, ET Lloyd, P Stinson, EO Washington, NL Perry, MD Ruzanov, P Zha, Z Lewis, SE Stein, LD Micklem, G AF Contrino, Sergio Smith, Richard N. Butano, Daniela Carr, Adrian Hu, Fengyuan Lyne, Rachel Rutherford, Kim Kalderimis, Alex Sullivan, Julie Carbon, Seth Kephart, Ellen T. Lloyd, Paul Stinson, E. O. Washington, Nicole L. Perry, Marc D. Ruzanov, Peter Zha, Zheng Lewis, Suzanna E. Stein, Lincoln D. Micklem, Gos TI modMine: flexible access to modENCODE data SO NUCLEIC ACIDS RESEARCH LA English DT Article ID GENE ONTOLOGY ANNOTATIONS; GENOME; PROJECT; INFORMATION; RESOURCE; BROWSER; UPDATE AB In an effort to comprehensively characterize the functional elements within the genomes of the important model organisms Drosophila melanogaster and Caenorhabditis elegans, the NHGRI model organism Encyclopaedia of DNA Elements (modENCODE) consortium has generated an enormous library of genomic data along with detailed, structured information on all aspects of the experiments. The modMine database (http://intermine.modencode.org) described here has been built by the modENCODE Data Coordination Center to allow the broader research community to (i) search for and download data sets of interest among the thousands generated by modENCODE; (ii) access the data in an integrated form together with non-modENCODE data sets; and (iii) facilitate fine-grained analysis of the above data. The sophisticated search features are possible because of the collection of extensive experimental metadata by the consortium. Interfaces are provided to allow both biologists and bioinformaticians to exploit these rich modENCODE data sets now available via modMine. C1 [Contrino, Sergio; Smith, Richard N.; Butano, Daniela; Carr, Adrian; Hu, Fengyuan; Lyne, Rachel; Rutherford, Kim; Kalderimis, Alex; Sullivan, Julie; Micklem, Gos] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Carbon, Seth; Kephart, Ellen T.; Lloyd, Paul; Stinson, E. O.; Washington, Nicole L.; Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Perry, Marc D.; Ruzanov, Peter; Zha, Zheng; Stein, Lincoln D.] MaRS Ctr, Ontario Inst Canc Res, Toronto, ON M5G 0A3, Canada. RP Micklem, G (reprint author), Univ Cambridge, Dept Genet, Downing St, Cambridge CB2 3EH, England. EM suzi@berkeleybop.org; lincoln.stein@oicr.on.ca; g.micklem@gen.cam.ac.uk OI Lloyd, Paul/0000-0003-3508-5553; Washington, Nicole/0000-0001-8936-9143; Sullivan, Julie/0000-0003-3209-0218; Micklem, Gos/0000-0002-6883-6168; Rutherford, Kim/0000-0001-6277-726X; Lewis, Suzanna/0000-0002-8343-612X FU National Human Genome Research Institute of the National Institutes of Health [HG004269-05]; Wellcome Trust [090297] FX Funding for open access charge: National Human Genome Research Institute of the National Institutes of Health (grant number HG004269-05) and Wellcome Trust (grant number 090297). NR 31 TC 48 Z9 48 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2012 VL 40 IS D1 BP D1082 EP D1088 DI 10.1093/nar/gkr921 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869MD UT WOS:000298601300162 PM 22080565 ER PT J AU Goodstein, DM Shu, SQ Howson, R Neupane, R Hayes, RD Fazo, J Mitros, T Dirks, W Hellsten, U Putnam, N Rokhsar, DS AF Goodstein, David M. Shu, Shengqiang Howson, Russell Neupane, Rochak Hayes, Richard D. Fazo, Joni Mitros, Therese Dirks, William Hellsten, Uffe Putnam, Nicholas Rokhsar, Daniel S. TI Phytozome: a comparative platform for green plant genomics SO NUCLEIC ACIDS RESEARCH LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENT; ORGANISMAL COMPLEXITY; INFORMATION RESOURCE; EUKARYOTIC GENOMES; PROTEIN FAMILIES; GENE; DATABASE; EVOLUTION; IDENTIFICATION; ANNOTATION AB The number of sequenced plant genomes and associated genomic resources is growing rapidly with the advent of both an increased focus on plant genomics from funding agencies, and the application of inexpensive next generation sequencing. To interact with this increasing body of data, we have developed Phytozome (http://www.phytozome.net), a comparative hub for plant genome and gene family data and analysis. Phytozome provides a view of the evolutionary history of every plant gene at the level of sequence, gene structure, gene family and genome organization, while at the same time providing access to the sequences and functional annotations of a growing number (currently 25) of complete plant genomes, including all the land plants and selected algae sequenced at the Joint Genome Institute, as well as selected species sequenced elsewhere. Through a comprehensive plant genome database and web portal, these data and analyses are available to the broader plant science research community, providing powerful comparative genomics tools that help to link model systems with other plants of economic and ecological importance. C1 [Goodstein, David M.; Shu, Shengqiang; Hayes, Richard D.; Fazo, Joni; Hellsten, Uffe; Putnam, Nicholas; Rokhsar, Daniel S.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Howson, Russell; Neupane, Rochak; Mitros, Therese; Dirks, William; Rokhsar, Daniel S.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. RP Goodstein, DM (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM dmgoodstein@lbl.gov RI Molina, Polo/B-4307-2012; Putnam, Nicholas/B-9968-2008 OI Putnam, Nicholas/0000-0002-1315-782X FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Gordon and Betty Moore Foundation FX This work was performed at the U.S. Department of Energy Joint Genome Institute, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Additional funding was provided by the Gordon and Betty Moore Foundation. Funding for open access charge: Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 55 TC 807 Z9 827 U1 12 U2 121 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2012 VL 40 IS D1 BP D1178 EP D1186 DI 10.1093/nar/gkr944 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869MD UT WOS:000298601300176 PM 22110026 ER PT J AU Grigoriev, IV Nordberg, H Shabalov, I Aerts, A Cantor, M Goodstein, D Kuo, A Minovitsky, S Nikitin, R Ohm, RA Otillar, R Poliakov, A Ratnere, I Riley, R Smirnova, T Rokhsar, D Dubchak, I AF Grigoriev, Igor V. Nordberg, Henrik Shabalov, Igor Aerts, Andrea Cantor, Mike Goodstein, David Kuo, Alan Minovitsky, Simon Nikitin, Roman Ohm, Robin A. Otillar, Robert Poliakov, Alex Ratnere, Igor Riley, Robert Smirnova, Tatyana Rokhsar, Daniel Dubchak, Inna TI The Genome Portal of the Department of Energy Joint Genome Institute SO NUCLEIC ACIDS RESEARCH LA English DT Article ID SYSTEM; LIFE; TOOL AB The Department of Energy (DOE) Joint Genome Institute (JGI) is a national user facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing genomics for bioenergy and environmental applications. Beyond generating tens of trillions of DNA bases annually, the Institute develops and maintains data management systems and specialized analytical capabilities to manage and interpret complex genomic data sets, and to enable an expanding community of users around the world to analyze these data in different contexts over the web. The JGI Genome Portal (http://genome.jgi.doe.gov) provides a unified access point to all JGI genomic databases and analytical tools. A user can find all DOE JGI sequencing projects and their status, search for and download assemblies and annotations of sequenced genomes, and interactively explore those genomes and compare them with other sequenced microbes, fungi, plants or metagenomes using specialized systems tailored to each particular class of organisms. We describe here the general organization of the Genome Portal and the most recent addition, MycoCosm (http://jgi.doe.gov/fungi), a new integrated fungal genomics resource. C1 [Grigoriev, Igor V.; Nordberg, Henrik; Shabalov, Igor; Aerts, Andrea; Cantor, Mike; Goodstein, David; Kuo, Alan; Minovitsky, Simon; Nikitin, Roman; Ohm, Robin A.; Otillar, Robert; Poliakov, Alex; Ratnere, Igor; Riley, Robert; Smirnova, Tatyana; Rokhsar, Daniel; Dubchak, Inna] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94720 USA. [Rokhsar, Daniel] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Dubchak, Inna] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Grigoriev, IV (reprint author), Joint Genome Inst, Dept Energy, 2800 Mitchell Dr, Walnut Creek, CA 94720 USA. EM ivgrigoriev@lbl.gov; ildubchak@lbl.gov RI Ohm, Robin/I-6689-2016 FU Office of Science, Office of Biological and Environmental Research, Life Sciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; DOE JGI FX Director, Office of Science, Office of Biological and Environmental Research, Life Sciences Division, U.S. Department of Energy (Contract No. DE-AC02-05CH11231). Funding for open access charge: DOE JGI. NR 23 TC 200 Z9 205 U1 3 U2 32 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2012 VL 40 IS D1 BP D26 EP D32 DI 10.1093/nar/gkr947 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869MD UT WOS:000298601300004 PM 22110030 ER PT J AU Kuiken, C Thurmond, J Dimitrijevic, M Yoon, H AF Kuiken, Carla Thurmond, Jim Dimitrijevic, Mira Yoon, Hyejin TI The LANL hemorrhagic fever virus database, a new platform for analyzing biothreat viruses SO NUCLEIC ACIDS RESEARCH LA English DT Article AB Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55 000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide. The HFV sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database [Kuiken, C., B. Korber, and R.W. Shafer, HIV sequence databases. AIDS Rev, 2003. 5: p. 52-61]. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database [Sayers et al. (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 39, D38-D51.] is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. The HFV website can be accessed via http://hfv.lanl.gov. C1 [Kuiken, Carla; Thurmond, Jim; Dimitrijevic, Mira; Yoon, Hyejin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kuiken, C (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kuiken@lanl.gov FU Transformational Medical Technologies Initiative (TMTI) under Defense Threat Reduction Agency (DTRA) [HDTRA B084498I]; DTRA FX Transformational Medical Technologies Initiative (TMTI) under Defense Threat Reduction Agency (DTRA) [contract #HDTRA B084498I]. Funding for open access charge: DTRA. NR 9 TC 4 Z9 4 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2012 VL 40 IS D1 BP D587 EP D592 DI 10.1093/nar/gkr898 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869MD UT WOS:000298601300088 PM 22064861 ER PT J AU Markowitz, VM Chen, IMA Palaniappan, K Chu, K Szeto, E Grechkin, Y Ratner, A Jacob, B Huang, JH Williams, P Huntemann, M Anderson, I Mavromatis, K Ivanova, NN Kyrpides, NC AF Markowitz, Victor M. Chen, I-Min A. Palaniappan, Krishna Chu, Ken Szeto, Ernest Grechkin, Yuri Ratner, Anna Jacob, Biju Huang, Jinghua Williams, Peter Huntemann, Marcel Anderson, Iain Mavromatis, Konstantinos Ivanova, Natalia N. Kyrpides, Nikos C. TI IMG: the integrated microbial genomes database and comparative analysis system SO NUCLEIC ACIDS RESEARCH LA English DT Article ID PROKARYOTIC GENOMES; RNA GENES; TOOLS; ANNOTATION; PREDICTION; RESOURCE; SEQUENCE AB The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp). C1 [Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. [Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.] Joint Genome Inst, Dept Energy, Microbial Genom & Metagen Program, Walnut Creek, CA USA. RP Markowitz, VM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM VMMarkowitz@lbl.gov; nckyrpides@lbl.gov RI Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU Office of Science, Office of Biological and Environmental Research, Life Sciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; US National Institutes of Health Data Analysis and Coordination Center (IMG-HMP system) [U01-HG004866]; University of California FX Director, Office of Science, Office of Biological and Environmental Research, Life Sciences Division, U.S. Department of Energy (Contract No. DE-AC02-05CH11231); Office of Science of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231, resources of the National Energy Research Scientific Computing Center) and US National Institutes of Health Data Analysis and Coordination Center (Contract No. U01-HG004866, IMG-HMP system). Funding for open access charge: University of California. NR 35 TC 384 Z9 393 U1 7 U2 49 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2012 VL 40 IS D1 BP D115 EP D122 DI 10.1093/nar/gkr1044 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869MD UT WOS:000298601300018 PM 22194640 ER PT J AU Markowitz, VM Chen, IMA Chu, K Szeto, E Palaniappan, K Grechkin, Y Ratner, A Jacob, B Pati, A Huntemann, M Liolios, K Pagani, I Anderson, I Mavromatis, K Ivanova, NN Kyrpides, NC AF Markowitz, Victor M. Chen, I-Min A. Chu, Ken Szeto, Ernest Palaniappan, Krishna Grechkin, Yuri Ratner, Anna Jacob, Biju Pati, Amrita Huntemann, Marcel Liolios, Konstantinos Pagani, Ioanna Anderson, Iain Mavromatis, Konstantinos Ivanova, Natalia N. Kyrpides, Nikos C. TI IMG/M: the integrated metagenome data management and comparative analysis system SO NUCLEIC ACIDS RESEARCH LA English DT Article ID MICROBIAL GENOMES; RNA GENES; SEQUENCES; IDENTIFICATION; RECOGNITION; PROJECTS; TOOLS AB The integrated microbial genomes and metagenomes (IMG/M) system provides support for comparative analysis of microbial community aggregate genomes (metagenomes) in a comprehensive integrated context. IMG/M integrates metagenome data sets with isolate microbial genomes from the IMG system. IMG/M's data content and analytical capabilities have been extended through regular updates since its first release in 2007. IMG/M is available at http://img.jgi.doe.gov/m. A companion IMG/M systems provide support for annotation and expert review of unpublished metagenomic data sets (IMG/M ER: http://img.jgi.doe.gov/mer). C1 [Markowitz, Victor M.; Chen, I-Min A.; Chu, Ken; Szeto, Ernest; Palaniappan, Krishna; Grechkin, Yuri; Ratner, Anna; Jacob, Biju] Lawrence Berkeley Natl Lab, Computat Res Div, Biol Data Management & Technol Ctr, Berkeley, CA 94702 USA. [Pati, Amrita; Huntemann, Marcel; Liolios, Konstantinos; Pagani, Ioanna; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.] Joint Genome Inst, Dept Energy, Microbial Genom & Metagen Program, Walnut Creek, CA 94598 USA. RP Markowitz, VM (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Biol Data Management & Technol Ctr, 1 Cyclotron Rd, Berkeley, CA 94702 USA. EM vmmarkowitz@lbl.gov; nckyrpides@lbl.gov RI Pagani, Ioanna/E-7390-2012; Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU Office of Science, Office of Biological and Environmental Research, Life Sciences Division, US Department of Energy [DE-AC02-05CH11231]; National Energy Research Scientific Computing Center, Office of Science of the US Department of Energy [DE-AC02-05CH11231]; US National Institutes of Health Data Analysis and Coordination Center [U01-HG004866]; University of California FX Director, Office of Science, Office of Biological and Environmental Research, Life Sciences Division, US Department of Energy (Contract No. DE-AC02-05CH11231); National Energy Research Scientific Computing Center, Office of Science of the US Department of Energy (Contract No. DE-AC02-05CH11231); US National Institutes of Health Data Analysis and Coordination Center (Contract U01-HG004866). Funding for open access charge: University of California. NR 27 TC 100 Z9 107 U1 4 U2 33 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2012 VL 40 IS D1 BP D123 EP D129 DI 10.1093/nar/gkr975 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869MD UT WOS:000298601300019 PM 22086953 ER PT J AU Pagani, I Liolios, K Jansson, J Chen, IMA Smirnova, T Nosrat, B Markowitz, VM Kyrpides, NC AF Pagani, Ioanna Liolios, Konstantinos Jansson, Jakob Chen, I-Min A. Smirnova, Tatyana Nosrat, Bahador Markowitz, Victor M. Kyrpides, Nikos C. TI The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata SO NUCLEIC ACIDS RESEARCH LA English DT Article ID WORLD-WIDE; MONITOR; SYSTEM AB The Genomes OnLine Database (GOLD, http://www.genomesonline.org/) is a comprehensive resource for centralized monitoring of genome andmetagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2011, GOLD, now on version 4.0, contains information for 11 472 sequencing projects, of which 2907 have been completed and their sequence data has been deposited in a public repository. Out of these complete projects, 1918 are finished and 989 are permanent drafts. Moreover, GOLD contains information for 340 metagenome studies associated with 1927 metagenome samples. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about any (x) Sequence specification and beyond. C1 [Pagani, Ioanna; Liolios, Konstantinos; Jansson, Jakob; Nosrat, Bahador; Kyrpides, Nikos C.] Joint Genome Inst, Dept Energy, Microbial Genom & Metagen Program, Walnut Creek, CA USA. [Chen, I-Min A.; Markowitz, Victor M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. [Smirnova, Tatyana] Joint Genome Inst, Dept Energy, Genome Portals Grp, Walnut Creek, CA USA. RP Liolios, K (reprint author), Joint Genome Inst, Dept Energy, Microbial Genom & Metagen Program, 2800 Mitchell Dr, Walnut Creek, CA USA. EM kliolios@lbl.gov; nckyrpides@lbl.gov RI waheed, saba/B-1081-2012; Pagani, Ioanna/E-7390-2012; Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU JGI; Office of Science, Office of Biological and Environmental Research, Life Sciences Division, US Department of Energy [DE-AC02-05CH11231]; National Energy Research Scientific Computing Center, Office of Science of the US Department of Energy [DE-AC02-05CH11231]; US National Institutes of Health Data Analysis and Coordination Center [U01-HG004866]; University of California FX We thank the members of the microbial genomics and metagenomics programs at the JGI for support, useful discussions and exchange of ideas. We would also like to thank Michelle Gwinn Giglio and Heather Huot from University of Maryland for valuable feedback and interactions for the Human microbiome related projects, as well as Lynn Schriml for feedback and help for the EnvO ontology.; Director, Office of Science, Office of Biological and Environmental Research, Life Sciences Division, US Department of Energy (DE-AC02-05CH11231); National Energy Research Scientific Computing Center, Office of Science of the US Department of Energy (DE-AC02-05CH11231); Genome and metagenomes projects and metadata associated with human host associated environment, US National Institutes of Health Data Analysis and Coordination Center (U01-HG004866). Funding for open access charge: University of California. NR 21 TC 271 Z9 272 U1 2 U2 45 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2012 VL 40 IS D1 BP D571 EP D579 DI 10.1093/nar/gkr1100 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 869MD UT WOS:000298601300086 PM 22135293 ER PT J AU Han, H Kim, KM Park, JW Hong, SH Kwon, O Na, YS AF Han, Hyunsun Kim, Ki Min Park, Jin-Woo Hong, Sang Hee Kwon, Ohjin Na, Yong-Su TI Simulation of edge-divertor plasma transport for high-performance operation in KSTAR SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID TOKAMAK; PHYSICS; REGIME AB The edge-divertor plasma transport responding to type-I edge localized modes (ELMs) in a hybrid scenario and a conventional H-mode operation of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak is simulated using a newly developed two-dimensional fluid code named 'EPST', which can be used in time-dependent analyses of the edge-private flux-scrape-off layer region. It is verified through a benchmark test with the B2.5 code for a double-null configuration of the KSTAR tokamak. In this simulation, the KSTAR operation modes are distinguished by their beta(N) values and the threshold pedestal heights for ELM triggering. Type-I ELMs are simulated under the ELM triggering condition by an ad hoc method of time-periodic changes in the transport coefficients in the near-separatrix region. As a result of numerical simulation, the overall distributions of plasma properties responding to the ELM bursts appear to be the same in the edge-divertor region regardless of their beta(N). However, the increased ballooning limit in the higher beta(N) case makes the ELM frequency become lower, while it makes the maximum heat flux on the divertor plate higher compared with the lower beta(N) case. C1 [Han, Hyunsun] Natl Fus Res Inst, Taejon 305806, South Korea. [Kim, Ki Min] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Han, Hyunsun; Park, Jin-Woo; Hong, Sang Hee; Na, Yong-Su] Seoul Natl Univ, Dept Nucl Engn, Seoul 151742, South Korea. [Kwon, Ohjin] Daegu Univ, Dept Phys, Gyeongbuk 712714, South Korea. RP Han, H (reprint author), Natl Fus Res Inst, Taejon 305806, South Korea. EM ysna@snu.ac.kr NR 22 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JAN PY 2012 VL 54 IS 1 AR 015013 DI 10.1088/0741-3335/54/1/015013 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 879DB UT WOS:000299308800022 ER PT J AU Hudson, SR Dewar, RL Hole, MJ McGann, M AF Hudson, S. R. Dewar, R. L. Hole, M. J. McGann, M. TI Non-axisymmetric, multi-region relaxed magnetohydrodynamic equilibrium solutions SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT Symposium on Celebrating Professor Robert Dewars Accomplishments in Plasma Physics CY OCT 31, 2009 CL Atlanta, GA ID 3-DIMENSIONAL TOROIDAL EQUILIBRIA; PLASMA; STELLARATOR; STABILITY; RELAXATION AB We describe a magnetohydrodynamic constrained energy functional for equilibrium calculations that combines the topological constraints of ideal MHD with elements of Taylor relaxation. Extremizing states allow for partially chaotic magnetic fields and non-trivial pressure profiles supported by a discrete set of ideal interfaces with irrational rotational transforms. Numerical solutions are computed using the Stepped Pressure Equilibrium Code, and benchmarks and convergence calculations are presented. C1 [Hudson, S. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Dewar, R. L.; Hole, M. J.; McGann, M.] Australian Natl Univ, Plasma Res Lab, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. RP Hudson, SR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM shudson@pppl.gov; robert.dewar@anu.edu.au; matthew.hole@anu.edu.au; mathew.mcgann@anu.edu.au RI Hudson, Stuart/H-7186-2013; Dewar, Robert/B-1300-2008 OI Hudson, Stuart/0000-0003-1530-2733; Dewar, Robert/0000-0002-9518-7087 NR 29 TC 11 Z9 11 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JAN PY 2012 VL 54 IS 1 AR 014005 DI 10.1088/0741-3335/54/1/014005 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 879DB UT WOS:000299308800008 ER PT J AU Krommes, JA AF Krommes, John A. TI Bob Dewar and turbulence theory: lessons in creativity and courage SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT Symposium on Celebrating Professor Robert Dewars Accomplishments in Plasma Physics CY OCT 31, 2009 CL Atlanta, GA ID DRIFT-WAVE TURBULENCE; LOW-PRESSURE PLASMA; PERTURBATION-THEORY; 2-DIMENSIONAL CONVECTION; QUASILINEAR THEORY; APPROXIMATION; DYNAMICS; SYSTEMS; MODELS AB Some of the contributions that Bob Dewar made to plasma turbulence theory are recounted and put into historical perspective. Some remarks are made on the transition to turbulence and bifurcation analysis of models for the low-high confinement transition in tokamaks. However, the focus of the paper is on renormalized oscillation-center theory, to which Dewar made pioneering, creative and courageous contributions. The relationship of that approach to the formalism of Martin, Siggia, and Rose is discussed briefly. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Krommes, JA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 46 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JAN PY 2012 VL 54 IS 1 AR 014001 DI 10.1088/0741-3335/54/1/014001 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 879DB UT WOS:000299308800004 ER PT J AU Richardson, AS Finn, JM AF Richardson, A. S. Finn, J. M. TI Symplectic integrators with adaptive time steps SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT Symposium on Celebrating Professor Robert Dewars Accomplishments in Plasma Physics CY OCT 31, 2009 CL Atlanta, GA ID EXPLICIT WAVE-PROPAGATION; MECHANICS CALCULATIONS; NUMERICAL INSTABILITY; POISSON INTEGRATORS; SYSTEMS; LEAPFROG AB In recent decades, there have been many attempts to construct symplectic integrators with variable time steps, with rather disappointing results. In this paper, we identify the causes for this lack of performance, and find that they fall into two categories. In the first, the time step is considered a function of time alone, Delta = Delta(t). In this case, backward error analysis shows that while the algorithms remain symplectic, parametric instabilities may arise because of resonance between oscillations of Delta(t) and the orbital motion. In the second category the time step is a function of phase space variables Delta = Delta(q, p). In this case, the system of equations to be solved is analyzed by introducing a new time variable tau with dt = Delta(q, p) d tau. The transformed equations are no longer in Hamiltonian form, and thus do not benefit from integration methods which would be symplectic for Hamiltonian systems. We analyze two methods for integrating the transformed equations which do, however, preserve the structure of the original equations. The first is an extended phase space method, which has been successfully used in previous studies of adaptive time step symplectic integrators. The second, novel, method is based on a non-canonical mixed-variable generating function. Numerical trials for both of these methods show good results, without parametric instabilities or spurious growth or damping. It is then shown how to adapt the time step to an error estimate found by backward error analysis, in order to optimize the time-stepping scheme. Numerical results are obtained using this formulation and compared with other time-stepping schemes for the extended phase space symplectic method. C1 [Richardson, A. S.] USN, Pulsed Power Phys Branch, Div Plasma Phys, Res Lab, Washington, DC USA. [Finn, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Richardson, AS (reprint author), USN, Pulsed Power Phys Branch, Div Plasma Phys, Res Lab, Washington, DC USA. EM steve.richardson@nrl.navy.mil; finn@lanl.gov RI Richardson, A./A-3576-2013; OI Richardson, Andrew/0000-0002-3056-6334 NR 33 TC 2 Z9 2 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JAN PY 2012 VL 54 IS 1 AR 014004 DI 10.1088/0741-3335/54/1/014004 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 879DB UT WOS:000299308800007 ER PT J AU Zuo, GZ Hu, JS Zhen, S Li, JG Mansfield, DK Cao, B Wu, JH Zakharov, LE AF Zuo, G. Z. Hu, J. S. Zhen, S. Li, J. G. Mansfield, D. K. Cao, B. Wu, J. H. Zakharov, L. E. CA EAST Team TI Comparison of various wall conditionings on the reduction of H content and particle recycling in EAST SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID PLASMA PERFORMANCE; FUSION DEVICES; TOKAMAK; BORONIZATION; HT-7; SILICONIZATION; IMPROVEMENT; DISCHARGES; EDGE; TFTR AB Reductions in H content and particle recycling are important for the improvement of ion cyclotron range of frequency (ICRF) minority heating efficiency and the enhancement of plasma performance of the EAST superconducting tokamak. During recent years several techniques of surface conditioning such as baking, glow discharge cleaning/ICRF discharge cleaning, surface coatings, such as boronization, siliconization and lithium coating, have all been attempted in order to reduce the H/(H+D) ratio and particle recycling in EAST. Even though boronization and siliconization were both reasonably effective methods to improve plasma performance, lithium coatings were observed to reduce the H content and particle recycling to levels low enough to allow the attainment of enhanced plasma parameters and operating modes on EAST. For example, by accomplishing lithium coating using either vacuum evaporation or the real-time injection of fine lithium powder, the H/(H+D) ratio could be routinely decreased to about 5%, which significantly improved ICRF minority heating efficiency during the autumn campaign of 2010. Due to the reduced H/(H+D) ratio and lower particle recycling, and a reduced H-mode power threshold, improved plasma confinement and the first EAST H-mode plasma were obtained. Furthermore, with increasing accumulation of deposited lithium, several new milestones of EAST performance, such as a 6.4 s-long H-mode, a 100 s-long plasma duration and a 1MA plasma current, were achieved in the 2010 autumn campaign. C1 [Zuo, G. Z.; Hu, J. S.; Zhen, S.; Li, J. G.; Cao, B.; Wu, J. H.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Mansfield, D. K.; Zakharov, L. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zuo, GZ (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM hujs@ipp.ac.cn NR 40 TC 30 Z9 31 U1 7 U2 44 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JAN PY 2012 VL 54 IS 1 AR 015014 DI 10.1088/0741-3335/54/1/015014 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 879DB UT WOS:000299308800023 ER PT J AU Green, MA Emery, K Hishikawa, Y Warta, W Dunlop, ED AF Green, Martin A. Emery, Keith Hishikawa, Yoshihiro Warta, Wilhelm Dunlop, Ewan D. TI Solar cell efficiency tables (version 39) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency ID MULTICRYSTALLINE; CONCENTRATOR AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2011 are reviewed. Copyright (c) 2011 John Wiley & Sons, Ltd. C1 [Green, Martin A.] Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia. [Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta RCPV, Tsukuba, Ibaraki 3058568, Japan. [Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Dept Solar Cells Mat & Technol, D-79110 Freiburg, Germany. [Dunlop, Ewan D.] European Commiss, Joint Res Ctr, Renewable Energy Unit, Inst Energy & Transport, IT-21027 Ispra, VA, Italy. RP Green, MA (reprint author), Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au NR 44 TC 835 Z9 851 U1 20 U2 381 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JAN PY 2012 VL 20 IS 1 BP 12 EP 20 DI 10.1002/pip.2163 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 869KJ UT WOS:000298596500003 ER PT J AU Jensen, W Anderson-Cook, C Costello, JA Doganaksoy, N Hoerl, RW Janis, S O'Neill, J Rodebaugh, B Snee, RD AF Jensen, Willis Anderson-Cook, Christine Costello, Julia A. Doganaksoy, Necip Hoerl, Roger W. Janis, Stu O'Neill, Julia Rodebaugh, Bill Snee, Ronald D. TI Statistics to Facilitate Innovation: A Panel Discussion SO QUALITY ENGINEERING LA English DT Article DE design of experiments; Six Sigma; statistical engineering; statistical thinking AB Innovation is defined as the process of moving an initial invention or creative idea through research and development to the eventual market introduction. It is an important consideration for organizations to stay competitive and to continue to evolve in today's fast-paced environment. Statistics can play a large role in encouraging and facilitating innovation, through idea evaluation, collection of customer feedback, assessment of prototypes, and evaluation of the quality of products and processes. We define innovation and consider questions connecting innovation and statistics. The answers by a panel of industry leaders include discussion of the relationships between innovation, statistical thinking, and statistical engineering. C1 [Jensen, Willis] WL Gore & Assoc Inc, Flagstaff, AZ 86003 USA. [Anderson-Cook, Christine] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA. [Costello, Julia A.; Janis, Stu] 3M, Lean Sigma Operat Dept 6, St Paul, MN USA. [Doganaksoy, Necip] GE Global Res, Schenectady, NY USA. [Hoerl, Roger W.] GE Global Res, Appl Stat Lab, Niskayuna, NY USA. [O'Neill, Julia] Merck & Co Inc, West Point, PA USA. [Rodebaugh, Bill] Honeywell, Philadelphia, PA USA. [Snee, Ronald D.] Snee Associates LLC, Newark, DE USA. RP Jensen, W (reprint author), WL Gore & Assoc Inc, 3750 W Kiltie Lane, Flagstaff, AZ 86003 USA. EM wjensen@wlgore.com FU ASQ; ASA FX Roger W. Hoerl is manager of GE Global Research's applied statistics lab. He has a doctorate in applied statistics from the University of Delaware in Newark. He is an ASQ Fellow, a recipient of the ASQ Shewhart Medal and Brumbaugh Award, and an academician in the International Academy for Quality. He is also an ASA Fellow and recipient of the ASA Founders Award and ASA Deming Lecturer Award. NR 13 TC 3 Z9 3 U1 0 U2 12 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0898-2112 EI 1532-4222 J9 QUAL ENG JI Qual. Eng. PY 2012 VL 24 IS 1 BP 2 EP 19 DI 10.1080/08982112.2012.621865 PG 18 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA 879NK UT WOS:000299336500002 ER PT J AU Weber, WJ Zhang, YW Xiao, HY Wang, LM AF Weber, William J. Zhang, Yanwen Xiao, Haiyan Wang, Lumin TI Dynamic recovery in silicate-apatite structures under irradiation and implications for long-term immobilization of actinides SO RSC ADVANCES LA English DT Article ID BEAM-INDUCED AMORPHIZATION; TRANSMISSION ELECTRON-MICROSCOPY; ION-INDUCED CRYSTALLIZATION; DECAY-INDUCED AMORPHIZATION; NUCLEAR-WASTE FORMS; LEVEL NUCLEAR; MICROSTRUCTURAL EVOLUTION; IMPLANTATION TEMPERATURE; DAMAGE ACCUMULATION; FISSION-PRODUCTS AB The irradiation responses of Ca2La8(SiO4)(6)O-2 and Sr2Nd8(SiO4)(6)O-2 with the apatite structure are investigated to predict their long-term behaviour as host phases for immobilization of actinide elements from the nuclear fuel cycle. Different ions and energies are used to study the effects of dose, temperature, atomic displacement rate and ionization rate on irradiation-induced amorphization and recrystallization. The dose for amorphization increases with temperature in two stages, below and above 150 K. In the high temperature stage relevant to actinide immobilization, the increase of amorphization dose with temperature exhibits a strong dependence on the ratio of ionization rate to displacement rate for the different ions. Data analysis using a dynamic model for amorphization reveals that ionization-induced processes, with activation energy of 0.15 +/- 0.02 eV, dominate dynamic recovery for ions from Ne through Xe. For heavier Au ions or for alpha-recoil nuclei emitted in alpha decay of actinides, ionization becomes less dominant and dynamic recovery is controlled primarily by thermally-driven processes. In post-irradiation annealing studies of amorphous samples, epitaxial thermal recrystallization is observed at 1123 K, and irradiation-enhanced nucleation of nanocrystallites is observed under irradiation with heavier ions. The recrystallization temperature under irradiation decreases with increasing ion mass to a value of similar to 823 K, which also defines the thermally-driven critical temperature for amorphization under irradiation with heavy ions. Some partial recovery due to alpha particle irradiation at 300 K is observed that suggests a self-healing mechanism in apatite phases containing actinides. Based on the results and dynamic model, the temperature and time dependences of amorphization in silicate-apatite host phases for actinide immobilization are predicted. C1 [Weber, William J.; Zhang, Yanwen; Xiao, Haiyan] Univ Tennessee, Knoxville, TN 37996 USA. [Weber, William J.; Zhang, Yanwen] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wang, Lumin] Univ Michigan, Ann Arbor, MI 48109 USA. RP Weber, WJ (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM wjweber@utk.edu RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 FU U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX Research supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division and performed in part at the HVEM/IVEM-Tandem Facility, a DOE-BES user facility at Argonne National Laboratory. A portion of research was also performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory. NR 77 TC 18 Z9 18 U1 2 U2 27 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2012 VL 2 IS 2 BP 595 EP 604 DI 10.1039/c1ra00870f PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 876DH UT WOS:000299087000035 ER PT J AU Tanenbaum, DM Hermenau, M Voroshazi, E Lloyd, MT Galagan, Y Zimmermann, B Hosel, M Dam, HF Jorgensen, M Gevorgyan, SA Kudret, S Maes, W Lutsen, L Vanderzande, D Wurfel, U Andriessen, R Rosch, R Hoppe, H Teran-Escobar, G Lira-Cantu, M Rivaton, A Uzunoglu, GY Germack, D Andreasen, B Madsen, MV Norrman, K Krebs, FC AF Tanenbaum, David M. Hermenau, Martin Voroshazi, Eszter Lloyd, Matthew T. Galagan, Yulia Zimmermann, Birger Hosel, Markus Dam, Henrik F. Jorgensen, Mikkel Gevorgyan, Suren A. Kudret, Suleyman Maes, Wouter Lutsen, Laurence Vanderzande, Dirk Wuerfel, Uli Andriessen, Ronn Roesch, Roland Hoppe, Harald Teran-Escobar, Gerardo Lira-Cantu, Monica Rivaton, Agnes Uzunoglu, Gulsah Y. Germack, David Andreasen, Birgitta Madsen, Morten V. Norrman, Kion Krebs, Frederik C. TI The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices SO RSC ADVANCES LA English DT Article ID SOLAR-CELLS AB Seven distinct sets (n >= 12) of state of the art organic photovoltaic devices were prepared by leading research laboratories in a collaboration planned at the Third International Summit on Organic Photovoltaic Stability (ISOS-3). All devices were shipped to RISO DTU and characterized simultaneously up to 1830 h in accordance with established ISOS-3 protocols under three distinct illumination conditions: accelerated full sun simulation; low level indoor fluorescent lighting; and dark storage with daily measurement under full sun simulation. Three nominally identical devices were used in each experiment both to provide an assessment of the homogeneity of the samples and to distribute samples for a variety of post soaking analytical measurements at six distinct laboratories enabling comparison at various stages in the degradation of the devices. Over 100 devices with more than 300 cells were used in the study. We present here design and fabrication details for the seven device sets, benefits and challenges associated with the unprecedented size of the collaboration, characterization protocols, and results both on individual device stability and uniformity of device sets, in the three illumination conditions. C1 [Tanenbaum, David M.; Hosel, Markus; Dam, Henrik F.; Jorgensen, Mikkel; Gevorgyan, Suren A.; Andreasen, Birgitta; Madsen, Morten V.; Norrman, Kion; Krebs, Frederik C.] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, Solar Energy Programme, DK-4000 Roskilde, Denmark. [Tanenbaum, David M.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Hermenau, Martin] Tech Univ Dresden, Inst Angew Photophys, Arbeitsgrp Organ Solarzellen OSOL, D-01062 Dresden, Germany. [Voroshazi, Eszter] IMEC, B-3000 Louvain, Belgium. [Voroshazi, Eszter] Katholieke Univ Leuven, ESAT, B-3000 Louvain, Belgium. [Lloyd, Matthew T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Galagan, Yulia] Holst Ctr, NL-5656 AE Eindhoven, Netherlands. [Zimmermann, Birger] Fraunhofer Inst Solar Energy Syst ISE, D-79110 Freiburg, Germany. [Kudret, Suleyman; Maes, Wouter; Vanderzande, Dirk] Hasselt Univ, B-3590 Diepenbeek, Belgium. [Lutsen, Laurence] IMEC, IMOMEC Associated Lab, B-3590 Diepenbeek, Belgium. [Wuerfel, Uli] Fraunhofer Inst Solar Energy Syst ISE, D-79110 Freiburg, Germany. [Andriessen, Ronn] Holst Ctr, NL-5656 AE Eindhoven, Netherlands. [Roesch, Roland; Hoppe, Harald] Ilmenau Univ Technol, Inst Phys, D-98693 Ilmenau, Germany. [Teran-Escobar, Gerardo; Lira-Cantu, Monica] ETSE, Lab Nanostruct Mat Photovolta Energy, CIN2, CSIC, E-08193 Barcelona, Spain. [Rivaton, Agnes] Univ Clermont Ferrand, Clermont Univ, LPMM, F-63000 Clermont Ferrand, France. [Rivaton, Agnes] CNRS, LPMM, UMR6505, F-63177 Aubiere, France. [Uzunoglu, Gulsah Y.] TUBITAK Natl Metrol Inst UME, Photon & Elect Sensors Lab, TR-41470 Gebze, Kocaeli, Turkey. [Germack, David] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Tanenbaum, DM (reprint author), Tech Univ Denmark, Riso Natl Lab Sustainable Energy, Solar Energy Programme, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. EM dtanenbaum@pomona.edu; martin.hermenau@iapp.de; eszter.voroshazi@imec.be; Matthew.Lloyd@nrel.gov; yulia.galagan@tno.nl; Birger.Zimmermann@ise.fraunhofer.de; mhqs@risoe.dtu.dk; hfda@risoe.dtu.dk; mijq@risoe.dtu.dk; surg@risoe.dtu.dk; laurence.lutsen@imec.be; dirk.vanderzande@uhasselt.be; uli.wuerfel@ise.fraunhofer.de; ronn.andriessen@tno.nl; roland.roesch@tu-ilmenau.de; harald.hoppe@tu-ilmenau.de; monica.lira@cin2.es; agnes.rivaton@univ-bpclermont.fr; gulsah.uzunoglu@ume.tubitak.gov.tr; dsgermack@gmail.com; baan@risoe.dtu.dk; mves@risoe.dtu.dk; kino@risoe.dtu.dk; frkr@risoe.dtu.dk RI Hoppe, Harald/P-5293-2014; Vanderzande, Dirk JM/C-4757-2015; Norrman, Kion/E-8403-2015; Andreasen, Birgitta/J-8101-2015; Maes, Wouter/A-7575-2009; OI Norrman, Kion/0000-0001-9355-7569; Wurfel, Uli/0000-0003-4151-8538; Andreasen, Birgitta/0000-0002-3778-4035; Maes, Wouter/0000-0001-7883-3393; Hosel, Markus/0000-0001-7731-1964; Lira-Cantu, Monica/0000-0002-3393-7436; Jorgensen, Mikkel/0000-0002-7729-1497; Krebs, Frederik C/0000-0003-1148-4314; Gevorgyan, Suren/0000-0001-9906-5485 FU Danish Strategic Research Council [2104-07-0022]; EUDP [64009-0050]; Danish National Research Foundation; European Commission [248678, 261936, 288565]; PVERA-NET FX This work has been supported by the Danish Strategic Research Council (2104-07-0022), EUDP (j.no. 64009-0050) and the Danish National Research Foundation. Partial financial support was also received from the European Commission as part of the Framework 7 ICT 2009 collaborative project HIFLEX (grant no. 248678), partial financial support from the EUIndian framework of the "Largecells'' project that received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013. grant no. 261936), partial financial support was also received from the European Commission as part of the Framework 7 ICT 2009 collaborative project ROTROT (grant no. 288565) and from PVERA-NET (project acronym POLYSTAR). NR 12 TC 75 Z9 75 U1 1 U2 39 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2012 VL 2 IS 3 BP 882 EP 893 DI 10.1039/c1ra00686j PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 877JY UT WOS:000299177000022 ER PT J AU Song, P Zhang, XY Sun, MX Cui, XL Lin, YH AF Song, Peng Zhang, Xiaoyan Sun, Mingxuan Cui, Xiaoli Lin, Yuehe TI Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide SO RSC ADVANCES LA English DT Article ID METHANOL OXIDATION; THERMAL REDUCTION; CARBON NANOTUBES; VAPOR-DEPOSITION; SOLAR-CELLS; SHEETS; FILMS; FABRICATION; HYDRAZINE; COMPOSITE AB Preparing high-quality graphene through reduction of graphene oxide (GO) by oxalic acid is demonstrated in this paper. Transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction and Raman spectrometry were taken to confirm the reduction of GO and the formation of graphene under these mild conditions. Thermogravimetric analysis and conductivity measurements further testify the excellent thermal stability and conductivity of the obtained graphene. A possible mechanism for the reduction process was also proposed. Furthermore, a Pt-graphene composite was fabricated on a glassy carbon electrode and excellent electrocatalytic activity towards methanol oxidation was observed. With advantages of low toxicity, simple purification process and high quality of the product, oxalic acid provides a feasible route to prepare graphene from GO under mild conditions, thus facilitating the use of graphene-based materials for large-scale applications. C1 [Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. [Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Song, P (reprint author), Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. EM xiaolicui@fudan.edu.cn; yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Sun, Mingxuan/G-1330-2015; 张, 晓艳/A-8125-2016 OI Lin, Yuehe/0000-0003-3791-7587; Sun, Mingxuan/0000-0001-8681-8951; FU National Basic Research Program of China [2011CB933300, 2012CB934300]; Shanghai Science Technology Commission [1052 nm01800]; Fudan's Undergraduate Research Opportunities Program [10073]; LDRD at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830] FX This work is supported by the National Basic Research Program of China (No. 2011CB933300, 2012CB934300), the Shanghai Science Technology Commission (No. 1052 nm01800) and Fudan's Undergraduate Research Opportunities Program (No. 10073). Dr. Y. Lin would like to acknowledge the support from a LDRD program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. The authors would like to thank the editorial office (Royal Society of Chemistry) for the recommendation on our manuscript. We also appreciate the referee's very valuable comments, which have greatly improved the quality of the manuscript. NR 48 TC 84 Z9 87 U1 10 U2 113 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2012 VL 2 IS 3 BP 1168 EP 1173 DI 10.1039/c1ra00934f PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 877JY UT WOS:000299177000060 ER PT J AU Martin, JG Phillips, CL Schmidt, A Irvine, J Law, BE AF Martin, Jonathan G. Phillips, Claire L. Schmidt, Andres Irvine, James Law, Beverly E. TI High-frequency analysis of the complex linkage between soil CO2 fluxes, photosynthesis and environmental variables SO TREE PHYSIOLOGY LA English DT Article DE belowground carbon allocation; gross ecosystem productivity; photosynthesis; soil CO2 efflux; soil respiration ID CANOPY GAS-EXCHANGE; CARBON-DIOXIDE FLUX; RHIZOSPHERE RESPIRATION; PONDEROSA PINE; TEMPERATURE SENSITIVITY; TEMPORAL RESOLUTION; ROOT RESPIRATION; FOREST; EFFLUX; CLIMATE AB High-frequency soil CO2 flux data are valuable for providing new insights into the processes of soil CO2 production. A record of hourly soil CO2 fluxes from a semi-arid ponderosa pine stand was spatially and temporally deconstructed in attempts to determine if variation could be explained by logical drivers using (i) CO2 production depths, (ii) relationships and lags between fluxes and soil temperatures, or (iii) the role of canopy assimilation in soil CO2 flux variation. Relationships between temperature and soil fluxes were difficult to establish at the hourly scale because diel cycles of soil fluxes varied seasonally, with the peak of flux rates occurring later in the day as soil water content decreased. Using a simple heat transport/gas diffusion model to estimate the time and depth of CO2 flux production, we determined that the variation in diel soil CO2 flux patterns could not be explained by changes in diffusion rates or production from deeper soil profiles. We tested for the effect of gross ecosystem productivity (GEP) by minimizing soil flux covariance with temperature and moisture using only data from discrete bins of environmental conditions (+/- 1 degrees C soil temperature at multiple depths, precipitation-free periods and stable soil moisture). Gross ecosystem productivity was identified as a possible driver of variability at the hourly scale during the growing season, with multiple lags between similar to 5, 15 and 23 days. Additionally, the chamber-specific lags between GEP and soil CO2 fluxes appeared to relate to combined path length for carbon flow (top of tree to chamber center). In this sparse and heterogeneous forested system, the potential link between CO2 assimilation and soil CO2 flux may be quite variable both temporally and spatially. For model applications, it is important to note that soil CO2 fluxes are influenced by many biophysical factors, which may confound or obscure relationships with logical environmental drivers and act at multiple temporal and spatial scales; therefore, caution is needed when attributing soil CO2 fluxes to covariates like temperature, moisture and GEP. C1 [Martin, Jonathan G.; Schmidt, Andres; Law, Beverly E.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Phillips, Claire L.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Irvine, James] Yellowstone Ecol Res Ctr, Bozeman, MT 59718 USA. RP Martin, JG (reprint author), Oregon State Univ, Dept Forest Ecosyst & Soc, 321 Richardson Hall, Corvallis, OR 97331 USA. EM jonathan.martin@oregonstate.edu RI Law, Beverly/G-3882-2010; OI Law, Beverly/0000-0002-1605-1203; Schmidt, Andres/0000-0001-7110-6652 FU Office of Science (BER), U.S. Department of Energy (DOE) [DE-FG02-06ER64318] FX This work was supported by the Office of Science (BER), U.S. Department of Energy (DOE) (grant DE-FG02-06ER64318), for the AmeriFlux project 'On the effects of disturbance and climate on carbon storage and the exchanges of carbon dioxide, water vapor and energy exchange of evergreen coniferous forests in the Pacific Northwest: integration of eddy flux, plant and soil measurements at a cluster of supersites.' NR 73 TC 15 Z9 16 U1 4 U2 49 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0829-318X J9 TREE PHYSIOL JI Tree Physiol. PD JAN PY 2012 VL 32 IS 1 BP 49 EP 64 DI 10.1093/treephys/tpr134 PG 16 WC Forestry SC Forestry GA 879QI UT WOS:000299346500006 PM 22228815 ER PT J AU Gillenwater, PS Urgun-Demirtas, M Negri, MC Snyder, SW AF Gillenwater, P. S. Urgun-Demirtas, M. Negri, M. C. Snyder, S. W. TI Comparative evaluation of As, Se and V removal technologies for the treatment of oil refinery wastewater SO WATER SCIENCE AND TECHNOLOGY LA English DT Article DE arsenic; heavy metal removal; refinery wastewater; selenium; vanadium ID MEMBRANE; IONS AB In this study, a broad range of readily deployable metal removal technologies were tested on a US refinery's wastewater to determine vanadium, arsenic and selenium removal performance. The bench-scale treatability studies were designed and performed so that test conditions could be as uniform as possible given the different mechanisms of action and engineering applications of each technology. The experimental data show that both ferric precipitation and reactive filtration were able to remove As, Se and V more efficiently from the wastewater than other tested technologies. Additionally, granular ferric hydroxide (GFH) adsorption was also effective in both V and As removal. Although the thiol-SAMMS adsorbent was developed for mercury removal, it also demonstrated appreciable selenium removal. None of the tested membrane filtration technologies showed any significant metals removal. This was attributed to the dissolved form of the metals as well as the wastewater's fouling characteristics. C1 [Gillenwater, P. S.; Urgun-Demirtas, M.; Negri, M. C.; Snyder, S. W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Negri, MC (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM negri@anl.gov OI Snyder, Seth/0000-0001-6232-1668 FU Purdue University by BP Products North America Inc [85V09]; University of Chicago Argonne LLC.; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was sponsored via Purdue University by BP Products North America Inc. through Agreement No. 85V09 with the University of Chicago Argonne LLC. The submitted manuscript has been created by University of Chicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a U. S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U. S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 16 TC 1 Z9 1 U1 3 U2 25 PU IWA PUBLISHING PI LONDON PA ALLIANCE HOUSE, 12 CAXTON ST, LONDON SW1H0QS, ENGLAND SN 0273-1223 J9 WATER SCI TECHNOL JI Water Sci. Technol. PY 2012 VL 65 IS 1 BP 112 EP 118 DI 10.2166/wst.2011.842 PG 7 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 877FQ UT WOS:000299163100014 PM 22173414 ER PT J AU Danon, A Bhattacharyya, K Vijayan, BK Lu, JL Sauter, DJ Gray, KA Stair, PC Weitz, E AF Danon, Alon Bhattacharyya, Kaustava Vijayan, Baiju K. Lu, Junling Sauter, Dana J. Gray, Kimberly A. Stair, Peter C. Weitz, Eric TI Effect of Reactor Materials on the Properties of Titanium Oxide Nanotubes SO ACS CATALYSIS LA English DT Article DE titanium oxide; titantia; nanotubes; photocatalysis; chromium ID TIO2 NANOTUBES; HYDROGEN; NANORODS; DIOXIDE AB Subtleties in the synthesis of materials can have a profound effect on the catalytic and photocatalytic properties of materials. Black TiO(2) nanotubes, demonstrating remarkable solar absorption, were synthesized using a stainless steel reactor. Using UV-vis diffuse reflectance spectroscopy, XPS, EDS, ICP, and TEM, the change in electronic absorption of the TiO(2) nanotubes is explained by the discrete introduction of Cr concentrated particles from the stainless steel reactor. The black TiO(2) nanotubes displayed significant solar-driven photocatalytic activity with the photo-oxidation of acetaldehyde under visible light (lambda > 450 nm). C1 [Danon, Alon; Bhattacharyya, Kaustava; Vijayan, Baiju K.; Sauter, Dana J.; Gray, Kimberly A.; Stair, Peter C.; Weitz, Eric] Northwestern Univ, Inst Catalysis Energy Proc, Evanston, IL 60208 USA. [Danon, Alon; Bhattacharyya, Kaustava; Sauter, Dana J.; Stair, Peter C.; Weitz, Eric] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Vijayan, Baiju K.; Gray, Kimberly A.] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA. [Lu, Junling] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Danon, A (reprint author), Northwestern Univ, Inst Catalysis Energy Proc, Evanston, IL 60208 USA. RI Lu, Junling/F-3791-2010; Gray, Kimberly/B-6989-2009 OI Lu, Junling/0000-0002-7371-8414; NR 21 TC 30 Z9 32 U1 2 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JAN PY 2012 VL 2 IS 1 BP 45 EP 49 DI 10.1021/cs200392m PG 5 WC Chemistry, Physical SC Chemistry GA 873UF UT WOS:000298907800006 ER PT J AU Munshi, P Chung, SL Blakeley, MP Weiss, KL Myles, DAA Meilleur, F AF Munshi, Parthapratim Chung, Shang-Lin Blakeley, Matthew P. Weiss, Kevin L. Myles, Dean A. A. Meilleur, Flora TI Rapid visualization of hydrogen positions in protein neutron crystallographic structures SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID D-XYLOSE ISOMERASE; RESOLUTION X-RAY; PYROCOCCUS-FURIOSUS; MACROMOLECULAR CRYSTALLOGRAPHY; CRYSTAL DIFFRACTOMETER; ANGSTROM RESOLUTION; LAUE DIFFRACTION; ALDOSE REDUCTASE; CONCANAVALIN-A; RUBREDOXIN AB Neutron crystallography is a powerful technique for experimental visualization of the positions of light atoms, including hydrogen and its isotope deuterium. In recent years, structural biologists have shown increasing interest in the technique as it uniquely complements X-ray crystallographic data by revealing the positions of D atoms in macromolecules. With this regained interest, access to macromolecular neutron crystallography beamlines is becoming a limiting step. In this report, it is shown that a rapid data-collection strategy can be a valuable alternative to longer data-collection times in appropriate cases. Comparison of perdeuterated rubredoxin structures refined against neutron data sets collected over hours and up to 5 d shows that rapid neutron data collection in just 14 h is sufficient to provide the positions of 269 D atoms without ambiguity. C1 [Munshi, Parthapratim; Chung, Shang-Lin; Weiss, Kevin L.; Myles, Dean A. A.; Meilleur, Flora] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Munshi, Parthapratim] Middle Tennessee State Univ, Dept Chem, Murfreesboro, TN 37132 USA. [Blakeley, Matthew P.] Inst Laue Langevin, F-38042 Grenoble, France. [Meilleur, Flora] N Carolina State Univ, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA. RP Meilleur, F (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, POB 2008, Oak Ridge, TN 37831 USA. EM meilleurf@ornl.gov RI Weiss, Kevin/I-4669-2013; myles, dean/D-5860-2016; Blakeley, Matthew/G-7984-2015 OI Weiss, Kevin/0000-0002-6486-8007; myles, dean/0000-0002-7693-4964; Blakeley, Matthew/0000-0002-6412-4358 FU National Science Foundation [0922719]; US Department of Energy [DO-AC05-00OR22725, DE-AC05-00OR22725]; Division of Scientific User Facilities, DOE Basic Energy Sciences FX PM and the IMAGINE project are supported by an award from the National Science Foundation (Award 0922719) to FM. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the US Department of Energy under contract No. DO-AC05-00OR22725. The work at ORNL was supported by the Division of Scientific User Facilities, DOE Basic Energy Sciences. This manuscript has been authored by UT-Battelle LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. NR 48 TC 16 Z9 16 U1 0 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD JAN PY 2012 VL 68 BP 35 EP 41 DI 10.1107/S0907444911048402 PN 1 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 866UX UT WOS:000298412300004 PM 22194331 ER PT J AU Sawaya, MR Pentelute, BL Kent, SBH Yeates, TO AF Sawaya, Michael R. Pentelute, Brad L. Kent, Stephen B. H. Yeates, Todd O. TI Single-wavelength phasing strategy for quasi-racemic protein crystal diffraction data SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID X-RAY-STRUCTURE; CRYSTALLOGRAPHY; ENANTIOMERS; RESOLUTION AB Racemic protein crystallography offers two key features: an increased probability of crystallization and the potential advantage of phasing centric diffraction data. In this study, a phasing strategy is developed for the scenario in which a crystal is grown from a mixture in which anomalous scattering atoms have been incorporated into only one enantiomeric form of the protein molecule in an otherwise racemic mixture. The structure of a protein crystallized in such a quasi-racemic form has been determined in previous work [Pentelute et al. (2008), J. Am. Chem. Soc. 130, 9695-9701] using the multi-wavelength anomalous dispersion (MAD) method. Here, it is shown that although the phases from such a crystal are not strictly centric, their approximate centricity provides a powerful way to break the phase ambiguity that ordinarily arises when using the single-wavelength anomalous dispersion (SAD) method. It is shown that good phases and electron-density maps can be obtained from a quasi-racemic protein crystal based on single-wavelength data. A prerequisite problem of how to establish the origin of the anomalous scattering substructure relative to the center of pseudo-inversion is also addressed. C1 [Sawaya, Michael R.; Yeates, Todd O.] Univ Calif Los Angeles, Inst Genom & Prote, DOE, Los Angeles, CA 90095 USA. [Pentelute, Brad L.; Kent, Stephen B. H.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Sawaya, Michael R.] Howard Hughes Med Inst, Chevy Chase, MD USA. [Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Inst Genom & Prote, DOE, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839; Sawaya, Michael/0000-0003-0874-9043 FU DOE Office of Science FX We thank Dr Valya Tereshko for providing the snow flea antifreeze protein diffraction data and Professor Tony Kossiakoff for critical reading of the manuscript. This work was supported by the BER program of the DOE Office of Science. NR 25 TC 6 Z9 6 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD JAN PY 2012 VL 68 BP 62 EP 68 DI 10.1107/S0907444911049985 PN 1 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 866UX UT WOS:000298412300007 PM 22194334 ER PT J AU Rodriguez, MA Sava, DF Nenoff, TM AF Rodriguez, Mark A. Sava, Dorina F. Nenoff, Tina M. TI catena-Poly[zinc-tris(mu-dimethylcarbamato-kappa O-2:O ')-zinc-mu-(2-phenylbenzimidazolido-kappa N-2:N '] SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article AB The crystal structure of the title compound, [Zn-2(C13H9N2)(C3H6NO2)(3)](n), displays a long chiral chain. This is composed of zinc-dimer clusters capped by dimethylcarbamate ligands, which lie on crystallographic twofold rotation axes and are polymerically linked in one dimension by 2-phenylbenzimidadole (2-PBImi) organic ligands. The two Zn2+ ions defining the dimetal cluster are crystallographically independent, but display very similar coordination modes and tetrahedral geometry. As such, each Zn2+ ion is coordinated on one side by the N-donor imidazole linker, while the other three available coordination sites are fully occupied by the O atoms from the capping dimethylcarbamates. The chirality of the chain extends along the c axis, generating a rather long 52.470 (11) angstrom cell axis. Interestingly, the chiral material crystallizes from completely achiral precursors. A twofold axis and 3(1) screw axis serve to generate the long asymmetric unit. C1 [Rodriguez, Mark A.; Sava, Dorina F.; Nenoff, Tina M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rodriguez, MA (reprint author), Sandia Natl Labs, POB 5800,MS 1411, Albuquerque, NM 87185 USA. EM marodri@sandia.gov RI Sava Gallis, Dorina/D-2827-2015 FU US DOE-NE/FCRD-SWG; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94 A L85000] FX The authors thank Charles Campana of Bruker AXS, Inc. for his assistance with this structure, and Timothy J. Boyle (Sandia) for his help with the chemical scheme. This work was supported by the US DOE-NE/FCRD-SWG. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94 A L85000. NR 7 TC 0 Z9 0 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD JAN PY 2012 VL 68 BP M59 EP + DI 10.1107/S1600536811053177 PN 1 PG 15 WC Crystallography SC Crystallography GA 874NU UT WOS:000298966100050 PM 22259357 ER PT J AU Brzezinski, K Lazny, R Sienkiewicz, M Wojtulewski, S Dauter, Z AF Brzezinski, Krzysztof Lazny, Ryszard Sienkiewicz, Michal Wojtulewski, Slawomir Dauter, Zbigniew TI (2R)-8-Benzyl-2-[(S)-hydroxy(phenyl)methyl]-8-azabicyclo[3.2.1]octan-3-o ne SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID ALDOL AB The crystal of the title compound, C21H23NO2, was chosen from a conglomerate formed by a racemic mixture. An intramolecular hydrogen bond is formed between hydroxy group and heterocyclic N atom of the azabicyclo[ 3.2.1] octan-3-one system. The crystal structure is stabilized by C-H center dot center dot center dot O interactions between aliphatic C-H groups and the carbonyl O atom. For the title chiral crystal, the highly redundant and accurate diffraction data set collected with low energy copper radiation gave a Flack parameter of 0.12 (18) for anomalous scattering effects originating from O atoms. C1 [Brzezinski, Krzysztof; Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab,Biosci Div, Argonne, IL 60439 USA. [Lazny, Ryszard; Sienkiewicz, Michal; Wojtulewski, Slawomir] Univ Bialystok, Inst Chem, PL-15399 Bialystok, Poland. RP Brzezinski, K (reprint author), NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab,Biosci Div, Bldg 202, Argonne, IL 60439 USA. EM kbrzezinski@anl.gov FU University of Bialystok [BST-125]; Polish Ministry of Science and Higher Education [N N204 546939]; NIH, National Cancer Institute, Center for Cancer Research; National Cancer Institute, National Institutes of Health [HHSN2612008000001E] FX This work was supported in part by the University of Bialystok (BST-125), the Polish Ministry of Science and Higher Education (grant No. N N204 546939), the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, and with Federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN2612008000001E. NR 10 TC 6 Z9 6 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD JAN PY 2012 VL 68 DI 10.1107/S1600536811053190 PN 1 PG 11 WC Crystallography SC Crystallography GA 874NX UT WOS:000298966400060 PM 22259435 ER PT J AU Knezevic, M Capolungo, L Tome, CN Lebensohn, RA Alexander, DJ Mihaila, B McCabe, RJ AF Knezevic, Marko Capolungo, Laurent Tome, Carlos N. Lebensohn, Ricardo A. Alexander, David J. Mihaila, Bogdan McCabe, Rodney J. TI Anisotropic stress-strain response and microstructure evolution of textured alpha-uranium SO ACTA MATERIALIA LA English DT Article DE Uranium; Constitutive modeling; Texture; Twinning; EBSD ID DEFORMATION; SLIP; POLYCRYSTALS; TEMPERATURE; DIFFRACTION; SIMULATION; ALLOYS; MODEL; AZ31 AB The deformation behavior of wrought alpha-uranium is studied using electron backscattered diffraction and crystal plasticity modeling. We report stress-strain response and texture evolution for 12 different cases corresponding to tension and compression tests performed on three different initial textures: straight-rolled, clock-rolled and swaged alpha-uranium. It is seen that the response of alpha-uranium is highly anisotropic owing to its low-symmetry orthorhombic crystal structure and limited number of slip/twin systems. For modeling this complex system, we adapt a multiscale dislocation-based hardening law developed earlier for hexagonal metals and implement it within a viscoplastic self-consistent homogenization scheme. This hardening law performs well in capturing the anisotropic strain hardening and the texture evolution in all studied samples. Comparisons of simulations and experiments allow us to infer basic information concerning the various slip and twin mechanisms, their interactions, and their role on strain hardening and texture evolution in alpha-uranium. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Knezevic, Marko; Tome, Carlos N.; Lebensohn, Ricardo A.; Alexander, David J.; Mihaila, Bogdan; McCabe, Rodney J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Capolungo, Laurent] Georgia Inst Technol, George Woodruff Sch Mech Engn, UMI Georgia Tech CNRS 2958, F-57070 Metz, France. RP Knezevic, M (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM knezevic@lanl.gov RI Lebensohn, Ricardo/A-2494-2008; Knezevic, Marko/E-7457-2012; Tome, Carlos/D-5058-2013; Mihaila, Bogdan/D-8795-2013; OI Lebensohn, Ricardo/0000-0002-3152-9105; Mihaila, Bogdan/0000-0002-1489-8814; McCabe, Rodney /0000-0002-6684-7410 FU US Department of Energy [DE-AC52-06NA25396] FX This work was performed under Contract Number DE-AC52-06NA25396 with the US Department of Energy. The EBSD work was performed in the electron microscopy laboratory (EML) at Los Alamos. The authors wish acknowledge Duncan Hammon for rolling, heat treating and swaging the material, Tim Beard for machining the mechanical test specimens, Mike Lopez and Carl Cady performing some of the mechanical tests, and Ann Kelly for metallographic assistance. NR 32 TC 43 Z9 43 U1 2 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JAN PY 2012 VL 60 IS 2 BP 702 EP 715 DI 10.1016/j.actamat.2011.10.041 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 869UA UT WOS:000298622500025 ER PT J AU Wang, RY Tangirala, R Raoux, S Jordan-Sweet, JL Milliron, DJ AF Wang, Robert Y. Tangirala, Ravisubhash Raoux, Simone Jordan-Sweet, Jean L. Milliron, Delia J. TI Ionic and Electronic Transport in Ag2S Nanocrystal-GeS2 Matrix Composites with Size-Controlled Ag2S Nanocrystals SO ADVANCED MATERIALS LA English DT Article DE composite materials; structure-property relationships; charge transport; data storage; thin films ID THIN-FILMS; CHALCOGENIDE GLASSES; STRUCTURAL TRANSFORMATION; ACTIVATION-ENERGY; MIXED CONDUCTORS; CONDUCTIVITY; TRANSITION; NANOCOMPOSITES; SUPERLATTICES; TEMPERATURE AB Ag(2)S nanocrystals (NCs) are embedded into a GeS(2) matrix while controlling the size, shape, and interparticle spacing of the Ag(2)S NCs. We demonstrate that the ionic and electronic properties of these inorganic nanocomposites can be systematically controlled by varying the diameter of the Ag(2)S NCs. We also observe an ionic conductivity enhancement relative to pure Ag(2)S and (GeS(2)) 0.5(Ag(2)S) 0.5 glass. C1 [Wang, Robert Y.; Tangirala, Ravisubhash; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Wang, Robert Y.] Arizona State Univ, Tempe, AZ 85281 USA. [Raoux, Simone; Jordan-Sweet, Jean L.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Milliron, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM dmilliron@lbl.gov RI Milliron, Delia/D-6002-2012; Wang, Robert/A-5801-2013; Raoux, Simone/G-3920-2016 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Work at the Molecular Foundry was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, including support from the Laboratory Directed Research and Development Program (Dr. Tangirala), and a DOE Early Career Research Program grant (Dr. Milliron). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 31 TC 25 Z9 25 U1 6 U2 49 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JAN PY 2012 VL 24 IS 1 BP 99 EP + DI 10.1002/adma.201102623 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 869MN UT WOS:000298602300012 PM 22144334 ER PT J AU Whitby, JA Ostlund, F Horvath, P Gabureac, M Riesterer, JL Utke, I Hohl, M Sedlacek, L Jiruse, J Friedli, V Bechelany, M Michler, J AF Whitby, James A. Oestlund, Fredrik Horvath, Peter Gabureac, Mihai Riesterer, Jessica L. Utke, Ivo Hohl, Markus Sedlacek, Libor Jiruse, Jaroslav Friedli, Vinzenz Bechelany, Mikhael Michler, Johann TI High Spatial Resolution Time-of-Flight Secondary Ion Mass Spectrometry for the Masses: A Novel Orthogonal ToF FIB-SIMS Instrument with In Situ AFM SO ADVANCES IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID ATOMIC-FORCE MICROSCOPY; DEPTH RESOLUTION; MICROPROBE; OXYGEN; RECONSTRUCTION; BOMBARDMENT; CHEMISTRY; EMISSION; SILICON; LASER AB We describe the design and performance of an orthogonal time-of-flight (TOF) secondary ion mass spectrometer that can be retrofitted to existing focused ion beam (FIB) instruments. In particular, a simple interface has been developed for FIB/SEM instruments from the manufacturer Tescan. Orthogonal extraction to the mass analyser obviates the need to pulse the primary ion beam and does not require the use of monoisotopic gallium to preserve mass resolution. The high-duty cycle and reasonable collection efficiency of the new instrument combined with the high spatial resolution of a gallium liquid metal ion source allow chemical observation of features smaller than 50 nm. We have also demonstrated the integration of a scanning probe microscope (SPM) operated as an atomic force microscope (AFM) within the FIB/SEM-SIMS chamber. This provides roughness information, and will also allow true three dimensional chemical images to be reconstructed from SIMS measurements. C1 [Whitby, James A.; Oestlund, Fredrik; Horvath, Peter; Gabureac, Mihai; Riesterer, Jessica L.; Utke, Ivo; Friedli, Vinzenz; Bechelany, Mikhael; Michler, Johann] EMPA, Lab Mech Mat & Nanostruct, Swiss Fed Labs Mat Sci & Technol, CH-3602 Thun, Switzerland. [Oestlund, Fredrik; Hohl, Markus] TOFWERK AG, CH-3600 Thun, Switzerland. [Riesterer, Jessica L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Sedlacek, Libor; Jiruse, Jaroslav] Tescan, Brno 62300, Czech Republic. [Friedli, Vinzenz] Specs Zurich GmbH, CH-8005 Zurich, Switzerland. [Bechelany, Mikhael] Univ Montpellier 2, Inst Europeen Membranes, UR CNRS 5635, F-34095 Montpellier, France. RP Whitby, JA (reprint author), EMPA, Lab Mech Mat & Nanostruct, Swiss Fed Labs Mat Sci & Technol, Feuerwerkerstr 39, CH-3602 Thun, Switzerland. EM james.whitby@empa.ch RI Utke, Ivo/C-6521-2011; Whitby, James/J-4559-2012; Michler, Johann/B-4672-2010; bechelany, mikhael/G-7556-2011 OI Whitby, James/0000-0002-5716-6875; Michler, Johann/0000-0001-8860-4068; bechelany, mikhael/0000-0002-2913-2846 FU European Union [CP-TP 214042-2]; Swiss Commission for Technology and Innovation; SPECS Zurich [9208.1 PFNM-NM] FX The authors gratefully acknowledge the financial support of the European Union for part of this work (FP7 Project FIBLYS, Grant Agreement no. CP-TP 214042-2) and funding from the Swiss Commission for Technology and Innovation with SPECS Zurich supporting the SEM/SPM development, (CTI-Project no. 9208.1 PFNM-NM). The authors would also like to thank Gerhard Burki of EMPA for technical assistance with the FIB/SEM and Dr V Iakovlev and Dr. A. Sirbu of EPFL for providing the VCSEL sample. For "Advances in Materials Science and Engineering" Dr. A. G. Balogh and an anonymous reviewer helped to improve the quality of this paper. NR 45 TC 27 Z9 27 U1 1 U2 51 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-6822 J9 ADV MATER SCI ENG JI Adv. Mater. Sci. Eng. PY 2012 AR 180437 DI 10.1155/2012/180437 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA 866ZA UT WOS:000298423500001 ER PT J AU Law, CK AF Law, Chung K. TI Fuel Options for Next-Generation Chemical Propulsion SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 49th AIAA American Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition CY JAN 03-07, 2011 CL Orlando, FL SP AIAA ID ENERGETIC LIQUID MATERIALS; LAMINAR FLAME SPEEDS; N-HEPTANE; SPHERICAL FLAMES; COMBUSTION; PROPELLANTS; IGNITION; KINETICS; MECHANISM; OXIDATION AB The state of research on developing fuel options for next-generation chemical propulsion is reviewed for aviation fuels and energetic fuels. For aviation fuels, the development is based on considerations of cost, energy security, and climate change, with Fischer-Tropsch synthetic fuels and biofuels hold potential as alternative aviation fuels. The need for basic research to develop predictive capability for the oxidative chemistry of evolving fuels in evolving engine designs is emphasized, illustrated by the intricate reaction pathways and the enormity of the reaction mechanisms involved. Recent research activities toward achieving the goal of fuel design are discussed through the development of detailed mechanisms, reduced mechanisms, and surrogate fuels. For the development of high-energy-density propellants, advances in several classes of materials are discussed, including metallized and hypergolic propellants and propellants with strained and functionalized molecules, as well as nanoparticle addition. The impact of the recent progress in chemical synthesis, materials science, and nano science on these advances is noted. C1 Princeton Univ, US Dept Energy, Combust Energy Frontier Res Ctr, Princeton, NJ 08544 USA. RP Law, CK (reprint author), Princeton Univ, US Dept Energy, Combust Energy Frontier Res Ctr, Princeton, NJ 08544 USA. RI Law, Chung /E-1206-2013 NR 66 TC 26 Z9 28 U1 3 U2 34 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JAN PY 2012 VL 50 IS 1 BP 19 EP 36 DI 10.2514/1.J051328 PG 18 WC Engineering, Aerospace SC Engineering GA 872TD UT WOS:000298831600002 ER PT J AU Angell, CT Kaplan, AC Seelig, JD Norman, EB Pedretti, M AF Angell, C. T. Kaplan, A. C. Seelig, J. D. Norman, E. B. Pedretti, M. TI Concepts in nuclear science illustrated by experiments with radon SO AMERICAN JOURNAL OF PHYSICS LA English DT Article DE Geiger counters; radioactive decay periods; radon; semiconductor counters; student experiments AB Basic concepts in nuclear science can be difficult for students to grasp. To address this problem, we have developed a set of experiments using radon gas to enable students to explore the concepts of decay modes, half-lives, decay chains, and secular equilibrium. The measurements can be performed at several levels of sophistication. Measurements using Geiger-Mueller counters, high-purity germanium detectors, and surface barrier silicon detectors are described. (C) 2012 American Association of Physics Teachers. [DOI: 10.1119/1.3643249] C1 [Angell, C. T.; Kaplan, A. C.; Seelig, J. D.; Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Pedretti, M.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Angell, CT (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Shirakara Shirane 2-4, Tokai, Ibaraki 3191195, Japan. EM angell.christopher@jaea.go.jp OI Angell, Christopher/0000-0003-0333-6557 FU U.S. Department of Energy; U.S. Department of Homeland Security FX This work was supported in part by grants from the U.S. Department of Energy and the U.S. Department of Homeland Security. NR 6 TC 3 Z9 3 U1 0 U2 4 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD JAN PY 2012 VL 80 IS 1 BP 61 EP 65 DI 10.1119/1.3643249 PG 5 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 868QV UT WOS:000298539800010 ER PT J AU Ozawa, K Nagahara, H Morioka, M Matsumoto, N Hutcheon, ID Noguchi, T Kagi, H AF Ozawa, Kazuhito Nagahara, Hiroko Morioka, Masana Matsumoto, Naoko Hutcheon, Ian D. Noguchi, Takaaki Kagi, Hiroyuki TI Kinetics of evaporation of forsterite in vacuum SO AMERICAN MINERALOGIST LA English DT Article DE Forsterite; evaporation; kinetics; rough-smooth transition; anisotropy ID MONTE-CARLO-SIMULATION; ISOTOPIC FRACTIONATION; SOLAR NEBULA; ROUGHENING TRANSITION; CRYSTAL DISSOLUTION; DEFECT STRUCTURES; DIFFUSION; OLIVINE; SURFACES; MG AB Congruent evaporation of a crystalline material in vacuum is an extreme reaction in that backward reactions and transport processes in the reactant can be neglected. The evaporation is strongly governed by surface processes and intrinsic nature of the substance. A thorough knowledge of the atomistic evaporation mechanism is fundamental for better understanding reaction kinetics between gas and condensed materials in general. We have conducted a series of evaporation experiments of forsterite in vacuum for crystallographically oriented surfaces at 1500 to 1810 degrees C. The (100), (010), and (001) surfaces developed their own morphology characterized by evaporation pits and grooves originated from dislocation outcrops. Nominal overall evaporation rate (average retreat rate of a surface) shows significant anisotropy with the maximum difference by a factor of five below 1740 degrees C. The overall evaporation rates for individual surfaces are fitted with respective Arrhenius relationships, giving the highest activation energy for (100), intermediate for (001), and the lowest for (010). The anisotropy decreases to within 50% at similar to 1800 degrees C, which is caused by enhancement of evaporation from (010) owing to preferential evaporation around dislocation outcrops. "Intrinsic evaporation rates" estimated by subtracting contributions of initial roughness and the preferential evaporation around dislocations from the nominal overall evaporation rates show substantial anisotropy even at similar to 1800 degrees C. The "intrinsic evaporation rate" for (010) is adequately fitted by an Arrhenius relationship over the examined temperature range giving a single activation energy of 655 kJ/mol. The prevalence of steps with submicrometer to nanometer-scale height shows that forsterite evaporates mostly by layer-by-layer mechanism. The only exception is the (001) surface above similar to 1650 degrees C, on which such steps are absent except for surface-parallel minor facets which are rapidly diminishing with time. The (001) surface is inferred to evaporate by direct detachment mechanism at high temperatures. The change of evaporation mechanisms for (001) at around 1650 degrees C corresponds to a rough-smooth transition kinetically induced by an atomistic evaporation process. C1 [Ozawa, Kazuhito; Nagahara, Hiroko; Matsumoto, Naoko] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan. [Hutcheon, Ian D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Noguchi, Takaaki] Ibaraki Univ, Coll Sci, Mito, Ibaraki 3108512, Japan. [Kagi, Hiroyuki] Univ Tokyo, Geochem Res Ctr, Tokyo 1130033, Japan. RP Ozawa, K (reprint author), Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan. EM ozawa@eps.s.u-tokyo.ac.jp RI OZAWA, Kazuhito/G-4884-2014 OI OZAWA, Kazuhito/0000-0002-8363-6607 FU Ministry of Education [7454139, 12440152, 16104007, 17039002]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA2734]; NASA [NNH04AB47I] FX We are grateful to S. Tachibana for daily insightful discussions, M. Kitamura for his guidance in crystal growth theory, and E. Nakamura and K. Kobayashi for the use of DekTak depth profiler. Thanks to reviews by M. Kitamura, R. Dhomen, and an anonymous reviewer the manuscript is greatly improved. This study was supported by the Grants-in-Aid for Scientific Research of Ministry of Education (7454139, 12440152, 16104007, and 17039002). A part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734, and supported by NASA Grant NNH04AB47I (I.D. Hutcheon, P.I.) and the Glenn Seaborg Institute. NR 49 TC 3 Z9 3 U1 4 U2 18 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JAN PY 2012 VL 97 IS 1 BP 80 EP 99 DI 10.2138/am.2012.3750 PG 20 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 873OT UT WOS:000298893400008 ER PT J AU Lilova, KI Xu, F Rosso, KM Pearce, CI Kamali, S Navrotsky, A AF Lilova, Kristina I. Xu, Fen Rosso, Kevin M. Pearce, Carolyn I. Kamali, Saeed Navrotsky, Alexandra TI Oxide melt solution calorimetry of Fe-bearing oxides and application to the magnetite-maghemite (Fe3O4-Fe8/3O4) system SO AMERICAN MINERALOGIST LA English DT Article DE Iron-bearing oxides; magnetite-maghemite spinel solid solution; enthalpies of mixing; vacancy distribution; high-temperature oxide melt solution calorimetry ID RESOLUTION ELECTRON-MICROSCOPY; CONSISTENT THERMODYNAMIC DATA; HIGH-TEMPERATURE CALORIMETRY; 2P ABSORPTION-SPECTRA; IRON-OXYGEN SYSTEM; VACANCY DISTRIBUTION; SOLID-SOLUTIONS; CIRCULAR-DICHROISM; HIGH-PRESSURE; PROPRIETES THERMODYNAMIQUES AB A consistent methodology for obtaining the enthalpy of formation of Fe2+-containing binary and multicomponent oxides using high-temperature oxide melt solution calorimetry has been developed. The enthalpies of wustite (FeO) and magnetite (Fe3O4) oxidation to hematite (Fe2O3) were measured using oxidative drop solution calorimetry in which the final product is dissolved ferric oxide. Two methods were applied: drop solution calorimetry at 1073 K in lead borate solvent and at 973 K in sodium molybdate, each under both oxygen flowing over and bubbling through the solvent, giving consistent results in agreement with literature values. The enthalpies of formation of all three iron oxides from the elements were obtained using a thermodynamic cycle involving the directly measured oxidative dissolution enthalpy of iron metal in sodium molybdate at 973 K and gave excellent consistency with literature data. The methodology was then applied to the magnetite-maghemite system. The enthalpy of mixing of the Fe3O4-Fe8/3O4 spinel solid solution is exothermic and, represented by a subregular (Margules) formalism, Delta H-mix = x(1-x)[-63.36 +/- 8.60(1-x) + 17.65 +/- 6.40x] kJ/mol, where x is the mole fraction of magnetite. The entropies of mixing of the solid solution were calculated for different assumptions about the distribution of cations, charges, and vacancies in these defect spinels. The different models lead to only small differences in the entropy of mixing. Calculated free energies of mixing show no evidence for a solvus in the magnetite-maghemite system. C1 [Lilova, Kristina I.; Xu, Fen; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. [Lilova, Kristina I.; Xu, Fen; Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Rosso, Kevin M.; Pearce, Carolyn I.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kamali, Saeed] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Lilova, KI (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. EM anavrotsky@ucdavis.edu FU DOE [DE-FG02-97ER14749, DEAC02-98CH10886]; U.S. Department of Energy (DOE); DOE Office of Science, Office of Basic Energy [DE-AC02-05CH11231] FX Financial support from DOE grants DE-FG02-97ER14749 and DEAC02-98CH10886 are gratefully acknowledged. K.M.R. and C.I.P. gratefully acknowledge support from the Pacific Northwest National Laboratory Science Focus Area (SFA) Subsurface Biogeochemical Research (SBR) Program of the U.S. Department of Energy (DOE). The authors thank ElkeArenholz and Juan Liu for assistance with the XA and XMCD measurements, performed at the Advance Light Source supported by the DOE Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-05CH11231. NR 124 TC 14 Z9 14 U1 4 U2 28 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JAN PY 2012 VL 97 IS 1 BP 164 EP 175 DI 10.2138/am.2012.3883 PG 12 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 873OT UT WOS:000298893400016 ER PT J AU Quarles, CD Carado, AJ Barinaga, CJ Koppenaal, DW Marcus, RK AF Quarles, C. Derrick, Jr. Carado, Anthony J. Barinaga, Charles J. Koppenaal, David W. Marcus, R. Kenneth TI Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Liquid sampling-atmospheric pressure glow discharge; Ionization source; Microplasma; Mass spectrometry ID CAPILLARY-ZONE-ELECTROPHORESIS; ATOMIC-EMISSION-SPECTROMETRY; OPTICAL-EMISSION; OPERATING PARAMETERS; AQUEOUS SAMPLES; ANALYTE SIGNALS; ION EXTRACTION; PLASMA; CATHODE; ELECTROLYTE AB A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (< 20 mA) and solution flow rates (< 50 mu L min(-1)), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications, other than removing the electrospray ionization source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90A degrees angle and separated by a distance of similar to 5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra, including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements indicate that sodium concentrations of up to 50 mu g mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 mu g mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 mu L injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of < 50 mu L min(-1), and gas flow rates < 10 mL min(-1)) are very attractive. While further optimization in the source design is suggested here, it is believed that the LS-APGD ion source may present a practical alternative to inductively coupled plasma sources typically employed in elemental mass spectrometry. C1 [Quarles, C. Derrick, Jr.; Marcus, R. Kenneth] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Carado, Anthony J.; Koppenaal, David W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Barinaga, Charles J.] Pacific NW Natl Lab, Chem Biol & Phys Sci Div, Richland, WA 99352 USA. RP Marcus, RK (reprint author), Clemson Univ, Dept Chem, Biosyst Res Complex, Clemson, SC 29634 USA. EM marcusr@clemson.edu FU Batelle Memorial Institute [DE-AC06-76RLO-1830]; U.S. Department of Energy's Office of Biological and Environmental Research (BER) FX This work was performed at Pacific Northwest National Laboratory, operated for the US DOE by Batelle Memorial Institute under Contract DE-AC06-76RLO-1830. The Exactive Orbitrap MS capability was provided by the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research (BER) program. NR 45 TC 23 Z9 23 U1 1 U2 25 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JAN PY 2012 VL 402 IS 1 BP 261 EP 268 DI 10.1007/s00216-011-5359-7 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 871PE UT WOS:000298749300029 PM 21910014 ER PT J AU Moore, DS McGrane, SD Greenfield, MT Scharff, RJ Chalmers, RE AF Moore, D. S. McGrane, S. D. Greenfield, M. T. Scharff, R. J. Chalmers, R. E. TI Use of the Gerchberg-Saxton algorithm in optimal coherent anti-Stokes Raman spectroscopy SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Coherent control; Gerchberg-Saxton algorithm; Coherent Raman; Nonlinear spectroscopy; Explosives detection ID QUANTUM CONTROL; LASER-PULSES; PHASE; EXPLOSIVES AB We are utilizing recent advances in ultrafast laser technology and recent discoveries in optimal shaping of laser pulses to significantly enhance the stand-off detection of explosives via control of molecular processes at the quantum level. Optimal dynamic detection of explosives is a method whereby the selectivity and sensitivity of any of a number of nonlinear spectroscopic methods are enhanced using optimal shaping of ultrafast laser pulses. We have recently investigated the Gerchberg-Saxton algorithm as a method to very quickly estimate the optimal spectral phase for a given analyte from its spontaneous Raman spectrum and the ultrafast laser pulse spectrum. Results for obtaining selective coherent anti-Stokes Raman spectra (CARS) for an analyte in a mixture, while suppressing the CARS signals from the other mixture components, are compared for the Gerchberg-Saxton method versus previously obtained results from closed-loop machine-learning optimization using evolutionary strategies. C1 [Moore, D. S.; McGrane, S. D.; Greenfield, M. T.; Scharff, R. J.; Chalmers, R. E.] Los Alamos Natl Lab, Shock & Detonat Grp, Los Alamos, NM 87545 USA. RP Moore, DS (reprint author), Los Alamos Natl Lab, Shock & Detonat Grp, POB 1663, Los Alamos, NM 87545 USA. EM moored@lanl.gov OI Mcgrane, Shawn/0000-0002-2978-3980; Scharff, Robert/0000-0002-1708-8964 FU US Department of Homeland Security; US Department of Energy [DE-AC52-06NA25396] FX The authors gratefully acknowledge the support of the US Department of Homeland Security. Los Alamos National Laboratory is an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 25 TC 3 Z9 3 U1 0 U2 16 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JAN PY 2012 VL 402 IS 1 BP 423 EP 428 DI 10.1007/s00216-011-5348-x PG 6 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 871PE UT WOS:000298749300046 PM 21887605 ER PT J AU Goh, EB Baidoo, EEK Keasling, JD Beller, HR AF Goh, Ee-Been Baidoo, Edward E. K. Keasling, Jay D. Beller, Harry R. TI Engineering of Bacterial Methyl Ketone Synthesis for Biofuels SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ESCHERICHIA-COLI; BETA-OXIDATION; BIOSYNTHESIS; GENES; METHYLKETONES; ENZYME; THIOESTERASE; EXPRESSION; CHEMICALS; TRICHOMES AB We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C-11 to C-15 (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of beta-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the beta-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in beta-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications. C1 [Goh, Ee-Been; Baidoo, Edward E. K.; Keasling, Jay D.; Beller, Harry R.] Joint BioEnergy Inst, Emeryville, CA USA. [Beller, Harry R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Goh, Ee-Been; Baidoo, Edward E. K.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Beller, HR (reprint author), Joint BioEnergy Inst, Emeryville, CA USA. EM HRBeller@lbl.gov RI Keasling, Jay/J-9162-2012; Beller, Harry/H-6973-2014 OI Keasling, Jay/0000-0003-4170-6088; FU LS9; Amyris; Lygos; Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX J.D.K. has a financial interest in LS9, Amyris, and Lygos.; This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 34 TC 51 Z9 52 U1 2 U2 41 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JAN PY 2012 VL 78 IS 1 BP 70 EP 80 DI 10.1128/AEM.06785-11 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 866QR UT WOS:000298396700010 PM 22038610 ER PT J AU Juminaga, D Baidoo, EEK Redding-Johanson, AM Batth, TS Burd, H Mukhopadhyay, A Petzold, CJ Keasling, JD AF Juminaga, Darmawi Baidoo, Edward E. K. Redding-Johanson, Alyssa M. Batth, Tanveer S. Burd, Helcio Mukhopadhyay, Aindrila Petzold, Christopher J. Keasling, Jay D. TI Modular Engineering of L-Tyrosine Production in Escherichia coli SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SITE-DIRECTED MUTAGENESIS; MICROBIAL-PRODUCTION; SHIKIMIC ACID; D-GLUCOSE; BIOCATALYTIC SYNTHESIS; CARBON-SOURCES; AMINO-ACIDS; PATHWAY; STRAINS; ENZYMES AB Efficient biosynthesis of L-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for L-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to L-tyrosine on two plasmids. Rational engineering to improve L-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to L-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter L-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways. C1 [Juminaga, Darmawi; Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Juminaga, Darmawi; Keasling, Jay D.] Univ Calif Berkeley, Berkeley Ctr Synthet Biol, Berkeley, CA 94720 USA. [Juminaga, Darmawi; Baidoo, Edward E. K.; Redding-Johanson, Alyssa M.; Batth, Tanveer S.; Burd, Helcio; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA USA. [Mukhopadhyay, Aindrila; Petzold, Christopher J.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Synthetic Biology Engineering Research Center; National Science Foundation [0540879]; Joint BioEnergy Institute; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Nanyang Technological University, Singapore FX This work was supported in part by the Synthetic Biology Engineering Research Center, which is funded by National Science Foundation award no. 0540879, and by the Joint BioEnergy Institute, which is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231.; We thank James M. Carothers (QB3, CA) for his comments on the manuscript and Lisa Zhang (Agilent Technologies, Santa Clara, CA) for carrying out the purification of dehydroshikimate and dehydroquinate. D.J. thanks Nanyang Technological University, Singapore, for funding his 2-year stay in J.D.K.'s laboratory and Heng-Phon Too at the National University of Singapore, Singapore, for a brief rotation in his laboratory prior to engagement in this study. NR 48 TC 96 Z9 102 U1 8 U2 62 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JAN PY 2012 VL 78 IS 1 BP 89 EP 98 DI 10.1128/AEM.06017-11 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 866QR UT WOS:000298396700012 PM 22020510 ER PT J AU Chaudhry, JH Bond, SD Olson, LN AF Chaudhry, Jehanzeb Hameed Bond, Stephen D. Olson, Luke N. TI A weighted adaptive least-squares finite element method for the Poisson-Boltzmann equation SO APPLIED MATHEMATICS AND COMPUTATION LA English DT Article DE Poisson-Boltzmann; Finite element; Least-squares ID PARTIAL-DIFFERENTIAL-EQUATIONS; DISCONTINUOUS COEFFICIENTS; ELLIPTIC PROBLEMS; ELECTROSTATICS; APPROXIMATION; FOSLS AB The finite element methodology has become a standard framework for approximating the solution to the Poisson-Boltzmann equation in many biological applications. In this article, we examine the numerical efficacy of least-squares finite element methods for the linearized form of the equations. In particular, we highlight the utility of a first-order form, noting optimality, control of the flux variables, and flexibility in the formulation, including the choice of elements. We explore the impact of weighting and the choice of elements on conditioning and adaptive refinement. In a series of numerical experiments, we compare the finite element methods when applied to the problem of computing the solvation free energy for realistic molecules of varying size. (C) 2011 Elsevier Inc. All rights reserved. C1 [Chaudhry, Jehanzeb Hameed; Olson, Luke N.] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Bond, Stephen D.] Sandia Natl Labs, Appl Math & Applicat Grp, Albuquerque, NM 87185 USA. RP Olson, LN (reprint author), Univ Illinois, Dept Comp Sci, 1304 W Springfield Ave, Urbana, IL 61801 USA. EM jhameed2@illinois.edu; sdbond@sandia.gov; lukeo@illinois.edu FU University of Illinois, Urbana-Champaign; National Science Foundation [CCF 08-30578, DMS 07-46676]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Supported in part by a fellowship from the Computational Science and Engineering program at the University of Illinois, Urbana-Champaign.; Supported in part by the National Science Foundation (CCF 08-30578). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.; Supported in part by the National Science Foundation (DMS 07-46676). NR 34 TC 1 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0096-3003 J9 APPL MATH COMPUT JI Appl. Math. Comput. PD JAN PY 2012 VL 218 IS 9 BP 4892 EP 4902 DI 10.1016/j.amc.2011.10.054 PG 11 WC Mathematics, Applied SC Mathematics GA 865EH UT WOS:000298293200020 ER PT J AU Cooperman, A Dieckmann, J Brodrick, J AF Cooperman, Alissa Dieckmann, John Brodrick, James TI Water/Electricity Trade-Offs in Evaporative Cooling, Part 2 Power Plant Water Use SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Cooperman, Alissa; Dieckmann, John] TIAX LLC, Mech Syst Grp, Lexington, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Cooperman, A (reprint author), TIAX LLC, Mech Syst Grp, Lexington, MA USA. NR 4 TC 2 Z9 2 U1 1 U2 3 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD JAN PY 2012 VL 54 IS 1 BP 65 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 873FT UT WOS:000298867200021 ER PT J AU Lake, SE Wright, EL Petty, S Assef, RJ Jarrett, TH Stanford, SA Stern, D Tsai, CW AF Lake, S. E. Wright, E. L. Petty, S. Assef, R. J. Jarrett, T. H. Stanford, S. A. Stern, D. Tsai, C. -W. TI OPTICAL SPECTROSCOPIC SURVEY OF HIGH-LATITUDE WISE-SELECTED SOURCES SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; galaxies: general; Galaxy: stellar content; surveys ID SPECTRAL ENERGY-DISTRIBUTIONS; ACTIVE GALACTIC NUCLEI; EVOLUTION SURVEY; DATA RELEASE; 1ST DATA; RESOLUTION; GALAXY AB We report on the results of an optical spectroscopic survey at high Galactic latitude (vertical bar b vertical bar >= 30 degrees) of a sample of WISE-selected targets, grouped by WISE W1 (lambda(eff) = 3.4 mu m) flux, which we use to characterize the sources WISE detected. We observed 762 targets in 10 disjoint fields centered on ultraluminous infrared galaxy candidates using DEIMOS on Keck II. We find 0.30 +/- 0.02 galaxies arcmin(-2) with a median redshift of z = 0.33 +/- 0.01 for the sample with W1 >= 120 mu Jy. The foreground stellar densities in our survey range from 0.23 +/- 0.07 arcmin(-2) to 1.1 +/- 0.1 arcmin (2) for the same sample. We obtained spectra that produced science grade redshifts for >= 90% of our targets for sources with W1 flux >= 120 mu Jy that also had an i-band flux greater than or similar to 18 mu Jy. We used this for targeting very preliminary data reductions available to the team in 2010 August. Our results therefore present a conservative estimate of what is possible to achieve using WISE's Preliminary Data Release for the study of field galaxies. C1 [Lake, S. E.; Wright, E. L.; Petty, S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Assef, R. J.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jarrett, T. H.; Tsai, C. -W.] CALTECH, Infrared Proc & Anal Ctr IPAC, Pasadena, CA 91125 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. RP Lake, SE (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM lake@physics.ucla.edu FU National Aeronautics and Space Administration; National Science Foundation [AST-0071048]; Alfred P. Sloan Foundation; U.S. Department of Energy FX This publication makes use of data products from WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. The WISE Web site is http://wise.ssl.berkeley.edu/.; The analysis pipeline used to reduce the DEIMOS data was developed at UC Berkeley with support from the NSF grant AST-0071048.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy. The SDSS-III Web site is http://www.sdss3.org/. NR 23 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JAN PY 2012 VL 143 IS 1 AR 7 DI 10.1088/0004-6256/143/1/7 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 865OY UT WOS:000298321400007 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Braun, J Brown, AM Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Daughhetee, J Davis, JC De Clercq, C Demirors, L Denger, T Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Ehrlich, R Eisch, J Ellsworth, RW Engdegrd, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Heinen, D Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kenny, P Kiryluk, J Kislat, F Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, S Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kurahashi, N Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Larson, MJ Lauer, R Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schmidt, T Schonwald, A Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stossl, A Stoyanov, S Strahler, EA Straszheim, T Stur, M Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Vehring, M Voge, M Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Braun, J. Brown, A. M. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Demiroers, L. Denger, T. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegrd, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Heinen, D. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, S. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kurahashi, N. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schmidt, T. Schoenwald, A. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoessl, A. Stoyanov, S. Strahler, E. A. Straszheim, T. Stuer, M. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI TIME-DEPENDENT SEARCHES FOR POINT SOURCES OF NEUTRINOS WITH THE 40-STRING AND 22-STRING CONFIGURATIONS OF ICECUBE SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; cosmic rays; neutrinos ID GAMMA-RAY BURSTS; TEV BLAZAR 1ES-1959+650; HIGH-ENERGY NEUTRINOS; LARGE-AREA TELESCOPE; MULTIWAVELENGTH OBSERVATIONS; COSMIC-RAYS; AGILE DETECTION; MUON NEUTRINOS; SGR 0501+4516; MARKARIAN 421 AB This paper presents four searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction, and time with sensitivity to neutrino flares lasting between 20 mu s and a year duration from astrophysical sources. Searches that integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei, soft gamma-ray repeaters, and gamma-ray bursts, are promising candidate neutrino emitters. Two searches are "untriggered" in the sense that they look for any possible flare in the entire sky and from a predefined catalog of sources from which photon flares have been recorded. The other two searches are triggered by multi-wavelength information on flares from blazars and from a soft gamma-ray repeater. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. The untriggered searches use data taken by 40 strings of IceCube between 2008 April 5 and 2009 May 20. The triggered searches also use data taken by the 22-string configuration of IceCube operating between 2007 May 31 and 2008 April 5. The results from all four searches are compatible with a fluctuation of the background. C1 [Aguilar, J. A.; Braun, J.; Chirkin, D.; Diaz-Velez, J. C.; Eisch, J.; Fedynitch, A.; Halzen, F.; Hill, G. C.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Landsman, H.; O'Murchadha, A.; van Santen, J.; Weaver, Ch.; Wendt, C.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Adams, J.; Brown, A. M.; Gross, A.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Auffenberg, J.; Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Kopper, S.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Gesamthsch Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Han, K.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Tosi, D.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.] Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Heinen, D.; Huelss, J. -P.; Krings, T.; Laihem, K.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bose, D.; De Clercq, C.; Depaepe, O.; Hubert, D.; Labare, M.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Boeser, S.; Denger, T.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Stuer, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegrd, O.; Hallgren, A.; Miller, J.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Larson, M. J.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Univ Berlin, Inst Phys, D-12489 Berlin, Germany. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toale, P. A.; Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Montaruli, T.] Univ Bari, I-70126 Bari, Italy. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Hallgren, Allan/A-8963-2013; Botner, Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Maruyama, Reina/A-1064-2013; Taavola, Henric/B-4497-2011; OI Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Ter-Antonyan, Samvel/0000-0002-5788-1369; Maruyama, Reina/0000-0003-2794-512X; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW), University of Wisconsin-Madison; Open Science Grid (OSG); U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute; Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation, Ministry of Education of Brazil FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Gross acknowledges support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. NR 75 TC 21 Z9 22 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2012 VL 744 IS 1 AR 1 DI 10.1088/0004-637X/744/1/1 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TY UT WOS:000298408300001 ER PT J AU Brownstein, JR Bolton, AS Schlegel, DJ Eisenstein, DJ Kochanek, CS Connolly, N Maraston, C Pandey, P Seitz, S Wake, DA Wood-Vasey, WM Brinkmann, J Schneider, DP Weaver, BA AF Brownstein, Joel R. Bolton, Adam S. Schlegel, David J. Eisenstein, Daniel J. Kochanek, Christopher S. Connolly, Natalia Maraston, Claudia Pandey, Parul Seitz, Stella Wake, David A. Wood-Vasey, W. Michael Brinkmann, Jon Schneider, Donald P. Weaver, Benjamin A. TI THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT similar to 0.5 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: distances and redshifts; galaxies: evolution; galaxies: high-redshift; gravitational lensing: strong; large-scale structure of universe; surveys ID DIGITAL SKY SURVEY; LUMINOUS RED GALAXIES; ACS SURVEY; GRAVITATIONAL LENS; SDSS-III; EVOLUTION; MASS; DISCOVERY; SPECTRA; DARK AB We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 less than or similar to z less than or similar to 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulgedominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution. C1 [Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Eisenstein, Daniel J.] Harvard Coll Observ, Cambridge, MA 02138 USA. [Kochanek, Christopher S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, Christopher S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Connolly, Natalia] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Maraston, Claudia] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Pandey, Parul] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA. [Seitz, Stella] Univ Observ Munich, D-81679 Munich, Germany. [Wake, David A.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Wood-Vasey, W. Michael] Univ Pittsburgh, Pittsburgh Ctr Particle Phys Astrophys & Cosmol P, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Brinkmann, Jon] Apache Point Observ, Sunspot, NM 88349 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. RP Brownstein, JR (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. FU NASA/ESA Hubble Space Telescope; Space Telescope Science Institute; NASA [NAS 5-26555]; NASA from the Space Telescope Science Institute; NSF [AST-1004756] FX Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12209. Based on spectroscopic data from the Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey III.; Support for program 12209 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work has made extensive use of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III (SDSS-III). Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U. S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. J.R.B. and A. S. B. acknowledge the hospitality of the Max-Planck-Institut fur Astronomie, where a portion of this work was completed. C. S. K. is supported by NSF grant AST-1004756. NR 49 TC 49 Z9 49 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2012 VL 744 IS 1 AR 41 DI 10.1088/0004-637X/744/1/41 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TY UT WOS:000298408300041 ER PT J AU Chamulak, DA Meakin, CA Seitenzahl, IR Truran, JW AF Chamulak, David A. Meakin, Casey A. Seitenzahl, Ivo R. Truran, James W. TI ASYMMETRY AND THE NUCLEOSYNTHETIC SIGNATURE OF NEARLY EDGE-LIT DETONATION IN WHITE DWARF CORES SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; supernovae: general; white dwarfs ID GRAVITATIONALLY CONFINED DETONATION; EVALUATING SYSTEMATIC DEPENDENCIES; SUB-CHANDRASEKHAR SUPERNOVAE; THERMONUCLEAR REACTION-RATES; OFF-CENTER IGNITION; IA SUPERNOVAE; DELAYED DETONATION; MASS MODELS; RATE TABLES; EXPLOSION AB Most of the leading explosion scenarios for Type Ia supernovae involve the nuclear incineration of a white dwarf star through a detonation wave. Several scenarios have been proposed as to how this detonation may actually occur, but the exact mechanism and environment in which it takes place remain unknown. We explore the effects of an off-center initiated detonation on the spatial distribution of the nucleosynthetic yield products in a toy model-a pre-expanded near Chandrasekhar-mass white dwarf. We find that a single-point near edge-lit detonation results in asymmetries in the density and thermal profiles, notably the expansion timescale, throughout the supernova ejecta. We demonstrate that this asymmetry of the thermodynamic trajectories should be common to off-center detonations where a small amount of the star is burned prior to detonation. The sensitivity of the yields on the expansion timescale results in an asymmetric distribution of the elements synthesized as reaction products. We tabulate the shift in the center of mass of the various elements produced in our model supernova and find an odd-even pattern for elements past silicon. Our calculations show that off-center single-point detonations in carbon-oxygen white dwarfs are marked by significant composition asymmetries in their remnants which bear potentially observable signatures in both velocity and coordinate space, including an elemental nickel mass fraction that varies by a factor of 2-3 from one side of the remnant to the other. C1 [Chamulak, David A.; Truran, James W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Chamulak, David A.; Truran, James W.] Univ Chicago, Joint Inst Nucl Astrophys, Chicago, IL 60637 USA. [Meakin, Casey A.] Univ Arizona, Steward Observ, Tucson, AZ USA. [Meakin, Casey A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Seitenzahl, Ivo R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Seitenzahl, Ivo R.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Truran, James W.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Truran, James W.] Univ Chicago, Ctr Astrophys Thermonucl Flashes, Chicago, IL 60637 USA. RP Chamulak, DA (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dchamulak@anl.gov OI Seitenzahl, Ivo/0000-0002-5044-2988 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; NSF [AST-0507456]; Joint Institute for Nuclear Astrophysics at MSU [PHY 0822648]; DOE [08ER41570]; Deutsche Forschungsgemeinschaft [RO 3676/1-1] FX The authors acknowledge that this work was supported by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357. This work was also supported by the NSF, grant AST-0507456, by the Joint Institute for Nuclear Astrophysics at MSU under NSF-PFC grant PHY 0822648, by the DOE through grant 08ER41570, and by the Deutsche Forschungsgemeinschaft via the Emmy Noether Program (RO 3676/1-1). The software used in this work was in part developed by the DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. Simulations presented in this work were run at the High Performance Computing Center at Michigan State University. NR 35 TC 9 Z9 9 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2012 VL 744 IS 1 AR 27 DI 10.1088/0004-637X/744/1/27 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TY UT WOS:000298408300027 ER PT J AU Foley, RJ Challis, PJ Filippenko, AV Ganeshalingam, M Landsman, W Li, W Marion, GH Silverman, JM Beaton, RL Bennert, VN Cenko, SB Childress, M Guhathakurta, P Jiang, L Kalirai, JS Kirshner, RP Stockton, A Tollerud, EJ Vinko, J Wheeler, JC Woo, JH AF Foley, Ryan J. Challis, P. J. Filippenko, A. V. Ganeshalingam, M. Landsman, W. Li, W. Marion, G. H. Silverman, J. M. Beaton, R. L. Bennert, V. N. Cenko, S. B. Childress, M. Guhathakurta, P. Jiang, L. Kalirai, J. S. Kirshner, R. P. Stockton, A. Tollerud, E. J. Vinko, J. Wheeler, J. C. Woo, J. -H. TI VERY EARLY ULTRAVIOLET AND OPTICAL OBSERVATIONS OF THE TYPE Ia SUPERNOVA 2009ig SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (SN 2009g) ID HUBBLE-SPACE-TELESCOPE; HOBBY-EBERLY TELESCOPE; LIGHT CURVES; LEGACY SURVEY; DARK ENERGY; RISE TIMES; IMPROVED DISTANCES; STANDARD STARS; K-CORRECTIONS; SWIFT UVOT AB Supernova (SN) 2009ig was discovered 17 hr after explosion by the Lick Observatory Supernova Search, promptly classified as a normal Type Ia SN (SN Ia), peaked at V = 13.5 mag, and was equatorial, making it one of the foremost SNe for intensive study in the last decade. Here, we present ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness. Our data include excellent UV and optical light curves, 25 premaximum optical spectra, and 8 UV spectra, including the earliest UV spectrum ever obtained of an SN Ia. SN 2009ig is a relatively normal SN Ia, but does display high-velocity ejecta-the ejecta velocity measured in our earliest spectra (v approximate to -23,000 km s(-1) for Si ii.6355) is the highest yet measured in an SN Ia. The spectral evolution is very dramatic at times earlier than 12 days before maximum brightness, but slows after that time. The early-time data provide a precise measurement of 17.13 +/- 0.07 days for the SN rise time. The optical color curves and early-time spectra are significantly different from template light curves and spectra used for light-curve fitting and K-corrections, indicating that the template light curves and spectra do not properly represent all SNe Ia at very early times. In the age of wide-angle sky surveys, SNe like SN 2009ig that are nearby, bright, well positioned, and promptly discovered will still be rare. As shown with SN 2009ig, detailed studies of single events can provide significantly more information for testing systematic uncertainties related to SN Ia distance estimates and constraining progenitor and explosion models than large samples of more distant SNe. C1 [Foley, Ryan J.; Challis, P. J.; Marion, G. H.; Kirshner, R. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Filippenko, A. V.; Ganeshalingam, M.; Li, W.; Silverman, J. M.; Cenko, S. B.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Landsman, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Beaton, R. L.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Bennert, V. N.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Childress, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Childress, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Guhathakurta, P.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Jiang, L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Kalirai, J. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Stockton, A.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Tollerud, E. J.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Vinko, J.] Univ Szeged, Dept Opt & Quantum Elect, H-6720 Szeged, Hungary. [Vinko, J.; Wheeler, J. C.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Woo, J. -H.] Seoul Natl Univ, Astron Program, Dept Phys & Astron, Seoul 151742, South Korea. RP Foley, RJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM rfoley@cfa.harvard.edu RI Woo, Jong-Hak/A-2790-2014; OI Tollerud, Erik/0000-0002-9599-310X; Beaton, Rachael/0000-0002-1691-8217 FU NSF [AST-0907903, AST-0908886, AST-0707769]; NASA [NNX09AG54G, NNX10AF52G]; Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund; TABASGO Foundation; Hungarian OTKA [K76816]; Texas Advanced Research Project grant [ARP-0094]; W. M. Keck Foundation; Sun Microsystems, Inc.; Hewlett-Packard Company; AutoScope Corporation; Lick Observatory; University of California; Sylvia & Jim Katzman Foundation; [GI-5080130] FX R.J.F. is supported by a Clay Fellowship. We thank the anonymous referee for informed comments and suggestions. We thank D. Kasen for useful discussions. We are grateful to the staffs at the Lick, Keck, HET, and MMT Observatories for their dedicated services. J. Bullock, J. Caldwell, M. Kandrashoff, A. Morton, P. Nugent, S. Odewahn, D. Poznanski, S. Rostopchin, H.-Y. Shih, F. Vilas, and G. Williams helped obtain some of the data presented here; we also thank J. Lee and D. Tytler for attempting to obtain data. Swift spectroscopic observations were performed under program GI-5080130; we are very grateful to N. Gehrels and the Swift team for executing the program quickly. Supernova research at Harvard is supported by NSF grant AST-0907903. A.V.F.'s supernova group at U. C. Berkeley is supported by NASA/Swift grants NNX09AG54G and NNX10AF52G, NSF grant AST-0908886, Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, and the TABASGO Foundation. J. V. received support from Hungarian OTKA Grant K76816, NSF Grant AST-0707769, and Texas Advanced Research Project grant ARP-0094.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. We acknowledge the use of public data from the Swift data archive. KAIT was constructed and supported by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 87 TC 66 Z9 67 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2012 VL 744 IS 1 AR 38 DI 10.1088/0004-637X/744/1/38 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TY UT WOS:000298408300038 ER PT J AU Hajian, A Viero, MP Addison, G Aguirre, P Appel, JW Battaglia, N Bock, JJ Bond, JR Das, S Devlin, MJ Dicker, SR Dunkley, J Dunner, R Essinger-Hileman, T Hughes, JP Fowler, JW Halpern, M Hasselfield, M Hilton, M Hincks, AD Hlozek, R Irwin, KD Klein, J Kosowsky, A Lin, YT Marriage, TA Marsden, D Marsden, G Menanteau, F Moncelsi, L Moodley, K Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Patanchon, G Scott, D Sehgal, N Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Wollack, E AF Hajian, Amir Viero, Marco P. Addison, Graeme Aguirre, Paula Appel, John William Battaglia, Nick Bock, James J. Bond, J. Richard Das, Sudeep Devlin, Mark J. Dicker, Simon R. Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Hughes, John P. Fowler, Joseph W. Halpern, Mark Hasselfield, Matthew Hilton, Matt Hincks, Adam D. Hlozek, Renee Irwin, Kent D. Klein, Jeff Kosowsky, Arthur Lin, Yen-Ting Marriage, Tobias A. Marsden, Danica Marsden, Gaelen Menanteau, Felipe Moncelsi, Lorenzo Moodley, Kavilan Netterfield, Calvin B. Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Patanchon, Guillaume Scott, Douglas Sehgal, Neelima Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Wollack, Ed TI CORRELATIONS IN THE (SUB) MILLIMETER BACKGROUND FROM ACT x BLAST SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: evolution; infrared: galaxies; large-scale structure of universe; submillimeter: galaxies ID ATACAMA COSMOLOGY TELESCOPE; SOUTH-POLE TELESCOPE; APERTURE SUBMILLIMETER TELESCOPE; ANGULAR POWER SPECTRA; STAR-FORMING GALAXIES; DEEP FIELD-SOUTH; NUMBER COUNTS; STATISTICAL PROPERTIES; SOURCE CATALOGS; ARRAY CAMERA AB We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub) millimeter background at 250, 350, and 500 mu m (1200, 860, and 600 GHz) from observations made with the Balloonborne Large Aperture Submillimeter Telescope (BLAST); and at 1380 and 2030 mu m (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope (ACT). The overlapping observations cover 8.6 deg(2) in an area relatively free of Galactic dust near the south ecliptic pole. The ACT bands are sensitive to radiation from the cosmic microwave background, to the Sunyaev-Zel'dovich effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline and also detect correlations between the ACT and BLAST maps at over 25 sigma significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at 4 sigma, and using a model for the DSFG evolution and number counts, we successfully fit all of our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models. C1 [Hajian, Amir; Battaglia, Nick; Bond, J. Richard; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Hajian, Amir; Das, Sudeep; Dunkley, Joanna; Marriage, Tobias A.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hajian, Amir; Appel, John William; Das, Sudeep; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hincks, Adam D.; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Staggs, Suzanne T.; Switzer, Eric R.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Viero, Marco P.; Bock, James J.] CALTECH, Pasadena, CA 91125 USA. [Viero, Marco P.; Netterfield, Calvin B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Addison, Graeme; Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Aguirre, Paula] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Das, Sudeep] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Marsden, Danica; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Fowler, Joseph W.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Halpern, Mark; Marsden, Danica; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hasselfield, Matthew; Patanchon, Guillaume] Univ Paris Diderot, Lab APC, F-75205 Paris, France. [Hilton, Matt; Moodley, Kavilan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Moncelsi, Lorenzo] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Switzer, Eric R.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hajian, A (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G, NNX08AH30G]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC); Canadian Institute for Advanced Research; U.S. National Science Foundation [AST- 0408698, PHY-0355328, AST- 0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation; Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; RCUK Fellowship; NSF [AST-0546035, AST-0606975]; NSF Physics Frontier Center [PHY-0114422]; Berkeley Center for Cosmological Physics FX BLAST was made possible through the support of NASA through grant Nos. NAG5-12785, NAG5-13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). C.B.N. acknowledges support from the Canadian Institute for Advanced Research.; ACT was supported by the U.S. National Science Foundation through awards AST- 0408698 for the ACT project, and PHY-0355328, AST- 0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund-Research Excellence; and the University of Toronto. J.D. acknowledges support from an RCUK Fellowship. S. D., A. H., and T. M. were supported through NASA grant NNX08AH30G. A. K. was partially supported through NSF AST-0546035 and AST-0606975 for work on ACT. E. S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. S. D. acknowledges support from the Berkeley Center for Cosmological Physics. We thank CONICYT for overseeing the Chajnantor Science Preserve, enabling instruments like ACT to operate in Chile; and we thank AstroNorte for operating our scientific base station. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. NR 72 TC 18 Z9 18 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2012 VL 744 IS 1 AR 40 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TY UT WOS:000298408300040 ER PT J AU Li, PS Mckee, CF Klein, RI AF Li, Pak Shing McKee, Christopher F. Klein, Richard I. TI SUB-ALFVENIC NON-IDEAL MAGNETOHYDRODYNAMIC TURBULENCE SIMULATIONS WITH AMBIPOLAR DIFFUSION. III. IMPLICATIONS FOR OBSERVATIONS AND TURBULENT ENHANCEMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: kinematics and dynamics; ISM: magnetic fields; magnetic fields; magnetohydrodynamics (MHD); stars: formation ID AXISYMMETRICAL CLOUD CORES; FAR-INFRARED POLARIMETRY; REGULATED STAR-FORMATION; MOLECULAR ION SPECTRA; INTER-STELLAR CLOUDS; MAGNETIC-FIELD; INTERSTELLAR CLOUDS; MHD TURBULENCE; POWER SPECTRUM; VELOCITY MODIFICATION AB Ambipolar diffusion (AD) is believed to be a crucial process for redistributing magnetic flux in the dense molecular gas that occurs in regions of star formation. We carry out numerical simulations of this process in regions of low ionization using the heavy-ion approximation. The simulations are for regions of strong field (plasma beta = 0.1) and mildly supersonic turbulence (M = 3, corresponding to an Alfven Mach number of 0.67). The velocity power spectrum of the neutral gas changes from an Iroshnikov-Kraichnan spectrum in the case of ideal MHD to a Burgers spectrum in the case of a shock-dominated hydrodynamic system. The magnetic power spectrum shows a similar behavior. We use a one-dimensional radiative transfer code to post-process our simulation results; the simulated emission from the CS J = 2-1 and (HCO+)-C-13 J = 1-0 lines shows that the effects of AD are observable in principle. Linewidths of ions are observed to be less than those of neutrals, and we confirm previous suggestions that this is due to AD. We show that AD is unlikely to affect the Chandrasekhar-Fermi method for inferring field strengths unless the AD is stronger than generally observed. Finally, we present a study of the enhancement of AD by turbulence, finding that AD is accelerated by factor 2-4.5 for non-self-gravitating systems with the level of turbulence we consider. C1 [Li, Pak Shing; McKee, Christopher F.; Klein, Richard I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [McKee, Christopher F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Li, PS (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM psli@astron.berkeley.edu; cmckee@astro.berkeley.edu; klein@astron.berkeley.edu FU NASA through NASA ATP [NNX09AK31G]; US Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA 27344]; NSF [AST-0908553]; National Center of Supercomputing Application [TG-MCA00N020] FX We thank S.-P. Lai, F. Heitsch, and E. Zweibel for discussions of the CF method. We also thank Volker Ossenkopf on the suggestions of using the 1D radiation transfer code SimLine and the referee, R. Banerjee, for his helpful questions and suggestions on improving the manuscript. Support for this research was provided by NASA through NASA ATP grants NNX09AK31G (R. I. K., C. F. M., and P. S. L.), the US Department of Energy at the Lawrence Livermore National Laboratory under contract DE-AC52-07NA 27344 (R. I. K.), and the NSF through grant AST-0908553 (C. F. M. and R. I. K.). This research was also supported by grants of high performance computing resources from the National Center of Supercomputing Application through grant TG-MCA00N020. NR 91 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2012 VL 744 IS 1 AR 73 DI 10.1088/0004-637X/744/1/73 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TY UT WOS:000298408300073 ER PT J AU Passy, JC De Marco, O Fryer, CL Herwig, F Diehl, S Oishi, JS Mac Low, MM Bryan, GL Rockefeller, G AF Passy, Jean-Claude De Marco, Orsola Fryer, Chris L. Herwig, Falk Diehl, Steven Oishi, Jeffrey S. Mac Low, Mordecai-Mark Bryan, Greg L. Rockefeller, Gabriel TI SIMULATING THE COMMON ENVELOPE PHASE OF A RED GIANT USING SMOOTHED-PARTICLE HYDRODYNAMICS AND UNIFORM-GRID CODES SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; binaries: general; hydrodynamics; methods: numerical; stars: evolution ID DOUBLE-CORE EVOLUTION; HELIUM WHITE-DWARFS; COSMOLOGICAL HYDRODYNAMICS; POPULATION SYNTHESIS; ORBITAL ELEMENTS; BINARY-SYSTEMS; STARS; STELLAR; CONVECTION; COLLISIONS AB We use three-dimensional hydrodynamical simulations to study the rapid infall phase of the common envelope (CE) interaction of a red giant branch star of mass equal to 0.88 M-circle dot and a companion star of mass ranging from 0.9 down to 0.1 M-circle dot. We first compare the results obtained using two different numerical techniques with different resolutions, and find very good agreement overall. We then compare the outcomes of those simulations with observed systems thought to have gone through a CE. The simulations fail to reproduce those systems in the sense that most of the envelope of the donor remains bound at the end of the simulations and the final orbital separations between the donor's remnant and the companion, ranging from 26.8 down to 5.9 R-circle dot, are larger than the ones observed. We suggest that this discrepancy vouches for recombination playing an essential role in the ejection of the envelope and/or significant shrinkage of the orbit happening in the subsequent phase. C1 [Passy, Jean-Claude; Mac Low, Mordecai-Mark] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Passy, Jean-Claude; Herwig, Falk] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [De Marco, Orsola] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. [Fryer, Chris L.; Diehl, Steven; Rockefeller, Gabriel] Los Alamos Natl Lab, Computat Comp Sci Div, Los Alamos, NM USA. [Oishi, Jeffrey S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Palo Alto, CA 94304 USA. [Bryan, Greg L.] Columbia Univ, Dept Astron, New York, NY 10027 USA. RP Passy, JC (reprint author), Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. RI Rockefeller, Gabriel/G-2920-2010; OI Rockefeller, Gabriel/0000-0002-9029-5097; Bryan, Greg/0000-0003-2630-9228; Mac Low, Mordecai-Mark/0000-0003-0064-4060 FU NSF [0607111]; NSERC FX J.-C.P., O.D.M., and M.-M. M. L. acknowledge funding from NSF grant 0607111. F. H. acknowledges funding from an NSERC Discovery grant. J.-C.P. thanks Colin McNally for useful comments and discussions. J.-C.P. is grateful to both the Enzo and yt (Turk et al. 2011) communities for their precious help, especially Matthew Turk's dedication. The authors acknowledge computer time provided by Westgrid and Compute Canada as well as the Los Alamos National Laboratory. The authors thank an anonymous referee for his useful comments that helped to improve this manuscript. NR 57 TC 75 Z9 76 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2012 VL 744 IS 1 AR 52 DI 10.1088/0004-637X/744/1/52 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TY UT WOS:000298408300052 ER PT J AU Swift, DC Eggert, JH Hicks, DG Hamel, S Caspersen, K Schwegler, E Collins, GW Nettelmann, N Ackland, GJ AF Swift, D. C. Eggert, J. H. Hicks, D. G. Hamel, S. Caspersen, K. Schwegler, E. Collins, G. W. Nettelmann, N. Ackland, G. J. TI MASS-RADIUS RELATIONSHIPS FOR EXOPLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE equation of state; planets and satellites: composition; planets and satellites: interiors ID HIGH-PRESSURE EQUATIONS; SOLID EXOPLANETS; MANTLE MINERALS; SUPER-EARTHS; PLANET; HYDROGEN; STATE; CORE; IRON; LIQUID AB For planets other than Earth, particularly exoplanets, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key, relevant materials whose equation of state (EOS) is reasonably well established, and for differentiated Fe/rock. We find that variations in the EOS, such as may arise when extrapolating from low-pressure data, can have significant effects on predicted mass-radius relations and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. Kepler-10b is apparently "Earth-like," likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H2O and CH4, suggesting an "icy" composition with a relatively large core or a relatively large proportion of H2O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5(-1.0)(+1.2) TPa. The central pressure in CoRoT-7b is probably close to 0.8 TPa, though may be up to 2 TPa. These pressures are accessible by planar shock and ramp-loading experiments at large laser facilities. The center of HAT-P-2b is probably around 210 TPa, in the range of planned National Ignition Facility experiments, and that of CoRoT-3b around 1900 TPa. C1 [Swift, D. C.; Eggert, J. H.; Hicks, D. G.; Hamel, S.; Caspersen, K.; Schwegler, E.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nettelmann, N.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Ackland, G. J.] Univ Edinburgh, Sch Phys, Ctr Sci Extreme Condit, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Swift, DC (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RI Hicks, Damien/B-5042-2015; Ackland, Graeme/H-2215-2015; Schwegler, Eric/A-2436-2016 OI Hicks, Damien/0000-0001-8322-9983; Ackland, Graeme/0000-0002-1205-7675; Schwegler, Eric/0000-0003-3635-7418 FU U.S. Department of Energy [DE-AC52-07NA27344] FX The authors acknowledge the invaluable contributions of G. I. Kerley, J.D. Johnson at Los Alamos National Laboratory, W. M. Howard at Lawrence Livermore National Laboratory, and K. Rice at the Royal Observatory, Edinburgh. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344. NR 96 TC 45 Z9 45 U1 0 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2012 VL 744 IS 1 AR 59 DI 10.1088/0004-637X/744/1/59 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TY UT WOS:000298408300059 ER PT J AU Vuitton, V Yelle, RV Lavvas, P Klippenstein, SJ AF Vuitton, V. Yelle, R. V. Lavvas, P. Klippenstein, S. J. TI RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; methods: numerical; planets and satellites: individual (Titan) ID TRANSITION-STATE THEORY; UPPER-ATMOSPHERE; RADIATIVE ASSOCIATION; PREDICTIVE THEORY; MASTER EQUATION; KINETICS; PHOTOCHEMISTRY; CHEMISTRY; ENERGY; MODEL AB Photochemical models of Titan's atmosphere predict that three-body association reactions are the main production route for several major hydrocarbons. The kinetic rate constants of these reactions strongly depend on density and are therefore only important in Titan's lower atmosphere. However, radiative association reactions do not depend on pressure. The possible existence of large rates at low density suggests that association reactions could significantly affect the chemistry of Titan's upper atmosphere and better constraints for them are required. The kinetic parameters of these reactions are extremely difficult to constrain by experimental measurements as the low pressure of Titan's upper atmosphere cannot be reproduced in the laboratory. However, in the recent years, theoretical calculations of kinetics parameters have become more and more reliable. We therefore calculated several radical-radical and radical-molecule association reaction rates using transition state theory. The calculations indicate that association reactions are fast even at low pressure for adducts having as few as four C atoms. These drastic changes have however only moderate consequences for Titan's composition. Locally, mole fractions can vary by as much as one order of magnitude but the column-integrated production and condensation rates of hydrocarbons change only by a factor of a few. We discuss the impact of these results for the organic chemistry. It would be very interesting to check the impact of these new rate constants on other environments, such as giant and extrasolar planets as well as the interstellar medium. C1 [Vuitton, V.] UJF Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. [Yelle, R. V.; Lavvas, P.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Klippenstein, S. J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Vuitton, V (reprint author), UJF Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. EM veronique.vuitton@obs.ujf-grenoble.fr; yelle@lpl.arizona.edu; lavvas@lpl.arizona.edu; sjk@anl.gov OI Klippenstein, Stephen/0000-0001-6297-9187 FU European Commission [231013]; NASA [NNX09AB58G, NNH09AK24I]; NASA's Astrobiology Initiative through JPL [1372177]; US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC02-06CH11357] FX This work was performed in the framework of the Marie Curie International Research Staff Exchange Scheme PIRSES-GA-2009-247509. V.V. is grateful to the European Commission for the Marie Curie International Reintegration Grant No. 231013. R.V.Y. and P.L. have been supported through NASA Grant NNX09AB58G and NASA's Astrobiology Initiative through JPL Subcontract 1372177 to the University of Arizona. S.J.K. gratefully acknowledges support through NASA Planetary Atmospheres Program grant number NNH09AK24I and for computational support through the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357. NR 50 TC 23 Z9 23 U1 3 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2012 VL 744 IS 1 AR 11 DI 10.1088/0004-637X/744/1/11 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TY UT WOS:000298408300011 ER PT J AU Boyd, RN Famiano, MA Meyer, BS Motizuki, Y Kajino, T Roederer, IU AF Boyd, R. N. Famiano, M. A. Meyer, B. S. Motizuki, Y. Kajino, T. Roederer, I. U. TI THE r-PROCESS IN METAL-POOR STARS AND BLACK HOLE FORMATION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE black hole physics; nuclear reactions, nucleosynthesis, abundances; stars: Population II ID NEUTRINO-DRIVEN WINDS; S-PROCESS NUCLEOSYNTHESIS; SPECTROSCOPIC ANALYSIS; CAPTURE ELEMENTS; NUCLEAR-PHYSICS; LOW-METALLICITY; EARLY GALAXY; SIMULATIONS; SUPERNOVAE; EVOLUTION AB Nucleosynthesis of heavy nuclei in metal-poor stars is generally thought to occur via the r-process because the r-process is a primary process that would have operated early in the Galaxy's history. This idea is strongly supported by the fact that the abundance pattern in many metal-poor stars matches well the inferred solar r-process abundance pattern in the mass range between the second and third r-process abundance peaks. Nevertheless, a significant number of metal-poor stars do not share this standard r-process template. In this Letter, we suggest that the nuclides observed in many of these stars are produced by the r-process, but that it is prevented from running to completion in more massive stars by collapse to black holes before the r-process is completed, creating a "truncated r-process," or "tr-process." We find that the observed fraction of tr-process stars is qualitatively what one would expect from the initial mass function and that an apparent sharp truncation observed at around mass 160 could result from a combination of collapses to black holes and the difficulty of observing the higher mass rare-earth elements. We test the tr-process hypothesis with r-process calculations that are terminated before all r-process trajectories have been ejected. We find qualitative agreement between observation and theory when black hole collapse and observational realities are taken into account. C1 [Boyd, R. N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Famiano, M. A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Famiano, M. A.] Western Michigan Univ, JINA, Kalamazoo, MI 49008 USA. [Meyer, B. S.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Motizuki, Y.] RIKEN Nishina Ctr, Wako, Saitama 3510198, Japan. [Kajino, T.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Roederer, I. U.] Carnegie Observ, Pasadena, CA 91101 USA. RP Boyd, RN (reprint author), Lawrence Livermore Natl Lab, L-050, Livermore, CA 94550 USA. EM boyd11@llnl.gov FU Lawrence Livermore National Security, LLC (LLNL) [DE-AC52-07NA27344]; National Science Foundation [PHY-0855013]; NASA [NNX10AH78G]; JSPS [20244035]; MEXT [20105004]; Heiwa Nakajima Foundation; Institution of Washington FX R.N.B.'s work has been supported under the auspices of the Lawrence Livermore National Security, LLC (LLNL) under contract no. DE-AC52-07NA27344; M.F.'s by National Science Foundation grant PHY-0855013; B.S.M.'s by NASA grant NNX10AH78G; T.K.'s by Grants-in-Aid for Scientific Research of JSPS (20244035), Scientific Research on Innovative Area of MEXT (20105004), and Heiwa Nakajima Foundation; Y.M.'s by the NEXT Program of JSPS and CSTP (GR098); and I.U.R.'s by the Carnegie Institution of Washington through the Carnegie Observatories Fellowship. This is document LLNL-JRNL-491647. NR 40 TC 16 Z9 17 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 1 PY 2012 VL 744 IS 1 AR L14 DI 10.1088/2041-8205/744/1/L14 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 866TC UT WOS:000298405000014 ER PT J AU Mignone, A Zanni, C Tzeferacos, P van Straalen, B Colella, P Bodo, G AF Mignone, A. Zanni, C. Tzeferacos, P. van Straalen, B. Colella, P. Bodo, G. TI THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE hydrodynamics; magnetohydrodynamics (MHD); methods: numerical ID GENERAL-RELATIVISTIC MAGNETOHYDRODYNAMICS; PIECEWISE PARABOLIC METHOD; UNSPLIT GODUNOV METHOD; MAGNETIC RECONNECTION; CONSTRAINED TRANSPORT; HIGH-ORDER; MHD SIMULATIONS; IDEAL MAGNETOHYDRODYNAMICS; NONUNIFORM CONVERGENCE; THERMAL CONDUCTION AB We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory, or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities. C1 [Mignone, A.; Tzeferacos, P.] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy. [Zanni, C.; Bodo, G.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, Italy. [van Straalen, B.; Colella, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mignone, A (reprint author), Univ Turin, Dipartimento Fis Gen, Via Pietro Giuria 1, I-10125 Turin, Italy. RI Bodo, Gianluigi/F-9223-2012; OI Bodo, Gianluigi/0000-0002-9265-4081; Zanni, Claudio/0000-0003-0204-8190 FU PRIN-INAF; CINECA under ISCRA initiative [N. HP10CJ1J54, N. HP10BHHHEJ] FX This work has been supported by the PRIN-INAF 2009 grant. We acknowledge the CINECA Awards N. HP10CJ1J54 and N. HP10BHHHEJ, 2010 under ISCRA initiative for the availability of high performance computing resources and support. Intensive parallel computations were performed on the 4.7 GHz IBM Power 6 p575 cluster running AIX 6 or the 0.85 GHz IBM BlueGene/P cluster running CNL. A.M. wishes to thank S. Orlando for helpful discussions on the inclusion of thermal conduction and for kindly making available the MHD shock cloud initial configuration. NR 81 TC 73 Z9 73 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JAN PY 2012 VL 198 IS 1 AR 7 DI 10.1088/0067-0049/198/1/7 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 870HX UT WOS:000298661100007 ER PT J AU Putman, AL Offenberg, JH Fisseha, R Kundu, S Rahn, TA Mazzoleni, LR AF Putman, Annie L. Offenberg, John H. Fisseha, Rebeka Kundu, Shuvashish Rahn, Thom A. Mazzoleni, Lynn R. TI Ultrahigh-resolution FT-ICR mass spectrometry characterization of alpha-pinene ozonolysis SOA SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Secondary organic aerosol; Water-soluble organic compounds; HR-MS ID SECONDARY ORGANIC AEROSOL; CYCLOHEXENE OZONOLYSIS; ELEMENTAL COMPOSITION; ATMOSPHERIC AEROSOLS; MOLECULAR FORMULAS; FULVIC-ACIDS; BETA-PINENE; CHEMISTRY; OLIGOMERS; ISOPRENE AB Secondary organic aerosol (SOA) of alpha-pinene ozonolysis with and without hydroxyl radical scavenging hexane was characterized by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Molecular formulas for more than 900 negative ions were identified over the mass range of 100-850 u. Hydroxyl radicals formed during the ozonolysis of alpha-pinene might be expected to alter the composition of SOA, however a majority of the molecular formulas were identified in all three experiments and with a few exceptions they had similar relative abundances. Thus, the detailed composition of SOA was only slightly influenced by the presence or absence of hydroxyl radical scavenging hexane. The negative-ion mass spectra of the SOA contained four groups of peaks with increasing mass spectral complexity corresponding to increasing molecular weight. The mean values of 0:C decreased from 0.55 to 0.42 with increasing molecular weight, but the mean value of H:C, approximately 1.5, did not change with increasing molecular weight. The molecular formulas with the highest relative abundances in Groups I and II contained 5-7 and 7-10 oxygen atoms and 3-4 and 5-7 double bond equivalents, respectively. The molecular formulas with the highest relative abundances in Groups III and IV contained 10-13 and 13-16 oxygen atoms and 7-9 and 9-11 double bond equivalents, respectively. Observations of the oxygen content and the double bond equivalents of the SOA products suggest a complex mixture of accretion reaction mechanisms, without an easily confirmable dominating pathway. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Putman, Annie L.; Kundu, Shuvashish; Mazzoleni, Lynn R.] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA. [Offenberg, John H.] US EPA, Natl Exposure Res Lab, Human Exposure Atmospher Sci Div, Res Triangle Pk, NC 27711 USA. [Fisseha, Rebeka; Rahn, Thom A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mazzoleni, Lynn R.] Michigan Technol Univ, Atmospher Sci Program, Houghton, MI 49931 USA. RP Mazzoleni, LR (reprint author), Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA. EM lrmazzol@mtu.edu RI Mazzoleni, Lynn/H-6545-2011; Rahn, Thom/C-5211-2012; Offenberg, John/C-3787-2009; OI Mazzoleni, Lynn/0000-0002-0226-7337; Offenberg, John/0000-0002-0213-4024; Rahn, Thomas/0000-0001-8634-1348 FU Michigan Tech Research for Excellence Fund; Los Alamos National Laboratory; NSF [OCE-0619608]; Gordon and Betty Moore Foundation; WHOI; Department of Chemistry at Michigan Tech FX Financial support for this research was provided by a research seed grant from the Michigan Tech Research for Excellence Fund and the Los Alamos National Laboratory-Laboratory Directed Research and Development program. We thank Drs. Melissa Soule & Elizabeth Kujawinski of the Woods Hole Oceanographic Institution (WHOI) Mass Spectrometry Facility for instrument time and data acquisition assistance. The facility is supported by NSF OCE-0619608 and the Gordon and Betty Moore Foundation. A. L Putman thanks the WHOI Mass Spectrometry Facility for a travel fellowship. S. Kundu thanks David J. Pruett and Valeria L Pruett for fellowship support via the Department of Chemistry at Michigan Tech. We thank the anonymous reviewers who provided helpful suggestions to improve the manuscript. The U.S. Environmental Protection Agency through its Office of Research and Development collaborated in the research described here. The manuscript has been subjected to external peer review and has been cleared for publication. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use. NR 51 TC 22 Z9 22 U1 0 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD JAN PY 2012 VL 46 BP 164 EP 172 DI 10.1016/j.atmosenv.2011.10.003 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 871UM UT WOS:000298763200019 ER PT J AU Shearer, SM Harley, RA Jin, L Brown, NJ AF Shearer, Sharon M. Harley, Robert A. Jin, Ling Brown, Nancy J. TI Comparison of SAPRC99 and SAPRC07 mechanisms in photochemical modeling for central California SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air quality modeling; Ozone; CMAQ; Photochemistry; Chemical mechanism; Temperature effects ID SENSITIVITY-ANALYSIS; AIR-POLLUTION; OZONE; DIOXIDE AB A condensed version of the SAPRC07 photochemical reaction mechanism is compared to an earlier version, SAPRC99, in a 3-dimensional air quality model applied to central California. The updated mechanism results in lower predicted ozone concentrations in all locations. A sensitivity analysis shows the 19% increase (at 1 atm and 300 K) in the OH + NO(2) -> HNO(3) reaction rate coefficient contributes to decreases in predicted ozone concentrations in our study domain. This revision to SAPRC07 results in the largest ozone change of all the rate coefficient changes we examined. Also, lumping species to achieve a more computationally efficient mechanism, with respect to SAPRC99, has the effect of lowering ozone concentrations in the region studied. Although ozone concentrations in SAPRC07 simulations are decreased with respect to SAPRC99, the NO(x) and VOC emission sensitivities of the new mechanism are on the same order or greater than those in SAPRC99. The new mechanism is less sensitive to climate change related perturbations including increased temperature, water vapor concentration, and biogenic VOC emissions. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Harley, Robert A.; Jin, Ling; Brown, Nancy J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Atmospher Sci, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Harley, RA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Atmospher Sci, Environm Energy Technol Div, 760 Davis Hall, Berkeley, CA 94720 USA. EM sshearer@gmail.com; harley@ce.berkeley.edu; ljin@lbl.gov; njbrown@lbl.gov RI Harley, Robert/C-9177-2016 OI Harley, Robert/0000-0002-0559-1917 FU Central California Air Quality Study Agency; Fossil Energy, Office of National Gas and Petroleum Technology under the US Department of Energy [DE-ACO2-05CH 11231] FX We thank Bill Carter of UC-Riverside for helpful discussion regarding implementation of the SAPRC07 mechanism, Alison Steiner of University of Michigan for assistance with climate change perturbations, and Golam Sarwar of US EPA. This research was supported by the Central California Air Quality Study Agency and by the Assistant Secretary of Fossil Energy, Office of National Gas and Petroleum Technology under the US Department of Energy Contract No. DE-ACO2-05CH 11231. The statements and conclusions reported herein are those of the authors and do not necessarily reflect the views of the project sponsors. NR 32 TC 2 Z9 2 U1 4 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD JAN PY 2012 VL 46 BP 205 EP 216 DI 10.1016/j.atmosenv.2011.09.079 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 871UM UT WOS:000298763200024 ER PT J AU Kirilovsky, D Kerfeld, CA AF Kirilovsky, Diana Kerfeld, Cheryl A. TI The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Review DE Cyanobacteria; Non-photochemical quenching; Orange carotenoid protein; Photoprotection; Photosystem II; Synechocystis ID CHLOROPHYLL-BINDING PROTEIN; SYNECHOCYSTIS SP PCC-6803; BLUE-LIGHT; ENERGY-DISSIPATION; HIGHER-PLANTS; PCC 6803; PHYCOBILISOME FLUORESCENCE; STATE TRANSITIONS; MECHANISM; ISIA AB Photoprotective mechanisms have evolved in photosynthetic organisms to cope with fluctuating light conditions. Under high irradiance, the production of dangerous oxygen species is stimulated and causes photo-oxidative stress. One of these photoprotective mechanisms, non photochemical quenching (qE), decreases the excess absorbed energy arriving at the reaction centers by increasing thermal dissipation at the level of the antenna. In this review we describe results leading to the discovery of this process in cyanobacteria (qE(cya)), which is mechanistically distinct from its counterpart in plants, and recent progress in the elucidation of this mechanism. The cyanobacterial photoactive soluble orange carotenoid protein is essential for the triggering of this photoprotective mechanism. Light induces structural changes in the carotenoid and the protein leading to the formation of a red active form. The activated red form interacts with the phycobilisome, the cyanobacterial light-harvesting antenna, and induces a decrease of the phycobilisome fluorescence emission and of the energy arriving to the reaction centers. The orange carotenoid protein is the first photoactive protein to be identified that contains a carotenoid as the chromophore. Moreover, its photocycle is completely different from those of other photoactive proteins. A second protein, called the Fluorescence Recovery Protein encoded by the slr1964 gene in Synechocystis PCC 6803, plays a key role in dislodging the red orange carotenoid protein from the phycobilisome and in the conversion of the free red orange carotenoid protein to the orange, inactive, form. This protein is essential to recover the full antenna capacity under low light conditions after exposure to high irradiance. This article is part of a Special Issue entitled: Photosystem (C) 2011 Elsevier B.V. All rights reserved. C1 [Kirilovsky, Diana] CENS, Lab Leon Brillouin, CNRS, F-91191 Gif Sur Yvette, France. [Kerfeld, Cheryl A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Kirilovsky, D (reprint author), CEA Saclay, iBiTec S, Bat 532, F-91191 Gif Sur Yvette, France. EM diana.kirilovsky@cea.fr FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Commissariat a l'Energie Atomique; Agence Nationale de la Recherche; EU network INTRO2; EU network HARVEST FX The authors thank Patrick Shih for the 16S analysis of cyanobacterial strains and Seth Axen for assistance in preparation of the figures. Many thanks to DK's students Adjele Wilson, Clemence Boulay and Claire Punginelli who largely contributed to the results described in this work. CAK's work at the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The research of DK and her group was supported by the "Commissariat a l'Energie Atomique," the "Centre National de la Recherche Scientifique" and the "Agence Nationale de la Recherche" (projet CAROPROTECT). The work was also partially supported by EU networks INTRO2 and HARVEST. NR 64 TC 71 Z9 72 U1 4 U2 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 EI 0006-3002 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD JAN PY 2012 VL 1817 IS 1 SI SI BP 158 EP 166 DI 10.1016/j.bbabio.2011.04.013 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 872PY UT WOS:000298823000012 PM 21565162 ER PT J AU Lewicki, JL Hilley, GE Dobeck, L Marino, BDV AF Lewicki, Jennifer L. Hilley, George E. Dobeck, Laura Marino, Bruno D. V. TI Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA SO BULLETIN OF VOLCANOLOGY LA English DT Article DE Eddy covariance; Carbon dioxide flux; Volcano monitoring; Accumulation chamber; Least-squares inversion ID TURBULENT FLUX MEASUREMENTS; CARBON-DIOXIDE; MAGMATIC CO2; AIR-FLOWS; CALIFORNIA; SOIL; ETNA AB Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO2 fluxes and quantify CO2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO2 flux were made during September-October 2010 and ranged from 85 to 1,766 g m(-2) day(-1). Comparative maps of soil CO2 flux were simulated and CO2 emission rates estimated from three accumulation chamber (AC) CO2 flux surveys. Least-squares inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions recovered 58-77% of the CO2 emission rates estimated based on simulated AC soil CO2 fluxes. Spatial distributions of modeled surface CO2 fluxes based on EC and AC observations showed moderate to good correspondence (R (2) = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO2 emissions over relatively large areas. C1 [Lewicki, Jennifer L.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hilley, George E.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Dobeck, Laura] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Marino, Bruno D. V.] Planetary Emiss Management Inc, Cambridge, MA 02142 USA. RP Lewicki, JL (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jllewicki@lbl.gov FU Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the US Dept. of Energy [DE-AC02-05CH11231] FX We are grateful to G. Williams-Jones and A. Harris for constructive reviews of this manuscript and thank HP Schmid for the Flux Source Area Model source code. This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the US Dept. of Energy under Contract No. DE-AC02-05CH11231. NR 29 TC 11 Z9 11 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0258-8900 J9 B VOLCANOL JI Bull. Volcanol. PD JAN PY 2012 VL 74 IS 1 BP 135 EP 141 DI 10.1007/s00445-011-0503-y PG 7 WC Geosciences, Multidisciplinary SC Geology GA 874YD UT WOS:000298993400010 ER PT J AU Li, JX Malakhova, M Mottamal, M Reddy, K Kurinov, I Carper, A Langfald, A Oi, N Kim, MO Zhu, F Sosa, CP Zhou, KY Bode, AM Dong, ZG AF Li, Jixia Malakhova, Margarita Mottamal, Madhusoodanan Reddy, Kanamata Kurinov, Igor Carper, Andria Langfald, Alyssa Oi, Naomi Kim, Myoung Ok Zhu, Feng Sosa, Carlos P. Zhou, Keyuan Bode, Ann M. Dong, Zigang TI Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases SO CANCER RESEARCH LA English DT Article ID ACTIVATED PROTEIN-KINASES; CELL-CYCLE ARREST; SIGNALING PATHWAYS; CRYSTAL-STRUCTURE; MAP KINASES; MANGIFERIN; IDENTIFICATION; PROGRESSION; METABOLITES; NEUTROPHILS AB Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK) 1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P + cells at the level of G(2)-Mphase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-kappa B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer. Cancer Res; 72(1); 260-70. (C) 2011 AACR. C1 [Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Bode, Ann M.; Dong, Zigang] Univ Minnesota, Hormel Inst, Austin, MN 55912 USA. [Sosa, Carlos P.] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Sosa, Carlos P.] IBM Corp, Minneapolis, MN USA. [Li, Jixia; Zhou, Keyuan] Guangdong Med Coll, Dept Biochem, Dongguan, Guangdong, Peoples R China. [Kurinov, Igor] Cornell Univ, NE CAT, APS, Argonne, IL USA. RP Dong, ZG (reprint author), Univ Minnesota, Hormel Inst, 801 16th Ave NE, Austin, MN 55912 USA. EM zgdong@hi.umn.edu RI ZHU, Feng/G-3567-2010; OI Kanamata Reddy, Srinivasa Reddy/0000-0003-3733-7531 FU National Center for Research Resources at the NIH [RR-15301]; U.S. Department of Energy, Office of Basic Energy Sciences [W-31-109-ENG-38]; The Hormel Foundation; NIH [R37 CA081064, CA027502, CA120388, ES016548] FX This study was supported by award RR-15301 from the National Center for Research Resources at the NIH. Use of the APS is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. W-31-109-ENG-38; The Hormel Foundation, and NIH grants R37 CA081064, CA027502, CA120388, and ES016548. NR 44 TC 27 Z9 27 U1 0 U2 10 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD JAN 1 PY 2012 VL 72 IS 1 BP 260 EP 270 DI 10.1158/0008-5472.CAN-11-2596 PG 11 WC Oncology SC Oncology GA 871RO UT WOS:000298755600026 PM 22084399 ER PT J AU Guo, WM Zhang, GJ Lin, HT AF Guo, Wei-Ming Zhang, Guo-Jun Lin, Hua-Tay TI High-temperature flexural creep of ZrB2-SiC ceramics in argon atmosphere SO CERAMICS INTERNATIONAL LA English DT Article DE Creep; ZrB2-SiC; Four-point flexure; Microstructure; Cavitations ID DIBORIDE-SILICON CARBIDE; ZIRCONIUM; DEFORMATION; ALUMINA; OXIDATION; COMPOSITE; BEHAVIOR; NITRIDE; AIR AB Four-point flexure creep deformation of ZrB2-30 vol% SiC ceramics in argon atmosphere under a static load of 19 MPa for 0-100 h at 1500 and 1600 degrees C was investigated. The strain rate at 1600 degrees C was 3.7 times higher than that at 1500 degrees C. Microstructural evolution during creep consisted of nucleation and growth of triple-point cavitations which were always associated with SiC particles. Due to the low stress, only isolated cavitations were nucleated, and no microcracks were formed. For up to 100 h at 1500 and 1600 degrees C, the grains maintained their size and shape. The cavitations in both size and number showed no obvious difference from 26 to 100 h at 1500 degrees C, whereas that showed a significant increase from 26 to 100 h at 1600 degrees C. Present study suggested that ZrB2-30 vol% SiC exhibited relatively good microstructural stability and creep resistance at 1500 degrees C in argon atmosphere. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved. C1 [Guo, Wei-Ming; Zhang, Guo-Jun] Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. [Lin, Hua-Tay] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhang, GJ (reprint author), Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. EM gjzhang@mail.sic.ac.cn FU National Natural Science Foundation of China [50632070]; Chinese Academy of Sciences; Science and Technology Commission of Shanghai [09ZR1435500] FX This work was financially supported by the National Natural Science Foundation of China (No. 50632070), the Chinese Academy of Sciences under the Program for Recruiting Outstanding Overseas Chinese (Hundred Talents Program), and the Science and Technology Commission of Shanghai (No. 09ZR1435500). NR 17 TC 7 Z9 7 U1 3 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 J9 CERAM INT JI Ceram. Int. PD JAN PY 2012 VL 38 IS 1 BP 831 EP 835 DI 10.1016/j.ceramint.2011.06.046 PG 5 WC Materials Science, Ceramics SC Materials Science GA 871VX UT WOS:000298766900112 ER PT J AU Fang, XK Kogerler, P Speldrich, M Schilder, H Luban, M AF Fang, Xikui Koegerler, Paul Speldrich, Manfred Schilder, Helmut Luban, Marshall TI A polyoxometalate-based single-molecule magnet with an S=21/2 ground state SO CHEMICAL COMMUNICATIONS LA English DT Article ID MANGANESE CARBOXYLATE; BISTABILITY; COMPLEXES; CLUSTER; ION AB Ligand modification transforms a polyoxometalate-anchored cubane-type [Mn(3)(III)Mn(IV)O(4)] core into a centrosymmetric [Mn(6)(III)Mn(IV)O(8)] di-cubane cluster, and restores the slow magnetization relaxation characteristics typical for [Mn(4)O(4)] cubane-based single-molecule magnets. C1 [Fang, Xikui; Luban, Marshall] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Fang, Xikui; Luban, Marshall] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koegerler, Paul; Speldrich, Manfred; Schilder, Helmut] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany. RP Fang, XK (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM xfang@ameslab.gov; paul.koegerler@ac.rwth-aachen.de RI Speldrich, Manfred/P-3615-2016; Kogerler, Paul/H-5866-2013 OI Speldrich, Manfred/0000-0002-8626-6410; Kogerler, Paul/0000-0001-7831-3953 FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX We are grateful to Dr Gordon Miller for allowing us access to X-ray facilities. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 30 TC 56 Z9 56 U1 1 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PY 2012 VL 48 IS 9 BP 1218 EP 1220 DI 10.1039/c1cc15520b PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 874GO UT WOS:000298943600003 PM 22094959 ER PT J AU Jiang, XM Bao, LH Cheng, YS Dunphy, DR Li, XD Brinker, CJ AF Jiang, Xingmao Bao, Lihong Cheng, Yung-Sung Dunphy, Darren R. Li, Xiaodong Brinker, C. Jeffrey TI Aerosol-assisted synthesis of monodisperse single-crystalline alpha-cristobalite nanospheres SO CHEMICAL COMMUNICATIONS LA English DT Article ID HYDROTHERMAL SYNTHESIS; AMORPHOUS SILICA; PARTICLES; KINETICS; POWDERS; GROWTH; GLASS; SIZE AB Monodisperse single-crystalline alpha-cristobalite nanospheres have been synthesized by hydrocarbon-pyrolysis-induced carbon deposition on amorphous silica aerosol nanoparticles, devitrification of the coated silica at high temperature, and subsequent carbon removal by oxidation. The nanosphere size can be well controlled by tuning the size of the colloidal silica precursor. Uniform, high-purity nanocrystalline alpha-cristobalite is important for catalysis, nanocomposites, advanced polishing, and understanding silica nanotoxicology. C1 [Jiang, Xingmao; Dunphy, Darren R.; Brinker, C. Jeffrey] Lovelace Resp Res Inst, Aerosol & Resp Dosimetry Program, Albuquerque, NM 87108 USA. [Jiang, Xingmao] Changzhou Univ, Key Lab Fine Petrochem Engn, Changzhou 213164, Peoples R China. [Jiang, Xingmao; Cheng, Yung-Sung] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Jiang, Xingmao; Cheng, Yung-Sung] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Bao, Lihong; Li, Xiaodong] Univ S Columbia, Dept Mech Engn, Columbia, SC 29208 USA. [Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87106 USA. RP Brinker, CJ (reprint author), Lovelace Resp Res Inst, Aerosol & Resp Dosimetry Program, Albuquerque, NM 87108 USA. EM cjbrink@sandia.gov RI jiang, xingmao /H-3554-2013; Geracitano, Laura/E-6926-2013; Bao, Lihong/C-3011-2009 FU National Science Foundation [EF-0830117, CMMI-0968843]; National Institutes of Health [U19 ES019528]; UCLA Center for Nanobiology and Predictive Toxicology; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering at Sandia National Laboratories; DOE BES [DE-FG02-02-ER15368]; Army Research Office [W911NF-07-1-0320]; Jiangsu Higher Education Institutions; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the National Science Foundation (EF-0830117 and CMMI-0968843), the National Institutes of Health (U19 ES019528, UCLA Center for Nanobiology and Predictive Toxicology), the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering at Sandia National Laboratories and DOE BES grant DE-FG02-02-ER15368, the Army Research Office under Agreement/Grant W911NF-07-1-0320, and the Priority Academic Program Development of Jiangsu Higher Education Institutions. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 8 Z9 8 U1 1 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PY 2012 VL 48 IS 9 BP 1293 EP 1295 DI 10.1039/c1cc15713b PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 874GO UT WOS:000298943600028 PM 22180855 ER PT J AU Sanz, S McIntosh, RD Beavers, CM Teat, SJ Evangelisti, M Brechin, EK Dalgarno, SJ AF Sanz, Sergio McIntosh, Ruaraidh D. Beavers, Christine M. Teat, Simon J. Evangelisti, Marco Brechin, Euan K. Dalgarno, Scott J. TI Calix[4]arene-supported rare earth octahedra SO CHEMICAL COMMUNICATIONS LA English DT Article ID SINGLE-MOLECULE MAGNETS; COMPLEXES; CLUSTERS; IRON(III); CRYSTAL; 3D AB A series of calix[4]arene-supported Ln(6)(III) clusters have been synthesised under facile bench top conditions. The magnetic and structural properties of these clusters are reported, the latter suggesting that the Ln(III)-calix[4]arene moiety may be used for the construction of other assemblies in a manner akin to that for the Mn-III-calix[4]arene analogue. C1 [Sanz, Sergio; Brechin, Euan K.] Univ Edinburgh, EaStCHEM Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland. [McIntosh, Ruaraidh D.; Dalgarno, Scott J.] Heriot Watt Univ, Sch Engn & Phys Sci Chem, Edinburgh EH14 4AS, Midlothian, Scotland. [Beavers, Christine M.; Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Evangelisti, Marco] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. RP Brechin, EK (reprint author), Univ Edinburgh, EaStCHEM Sch Chem, W Mains Rd, Edinburgh EH9 3JJ, Midlothian, Scotland. EM evange@unizar.es; ebrechin@staffmail.ed.ac.uk; S.J.Dalgarno@hw.ac.uk RI McIntosh, Ruaraidh/F-9750-2011; Dalgarno, Scott/A-7358-2010; Beavers, Christine/C-3539-2009; Brechin, Euan/M-5130-2014; Evangelisti, Marco/B-5878-2011; Sanz, Sergio/L-5819-2016 OI McIntosh, Ruaraidh/0000-0002-7563-5655; Dalgarno, Scott/0000-0001-7831-012X; Beavers, Christine/0000-0001-8653-5513; Brechin, Euan/0000-0002-9365-370X; Evangelisti, Marco/0000-0002-8028-9064; NR 25 TC 34 Z9 34 U1 1 U2 35 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PY 2012 VL 48 IS 10 BP 1449 EP 1451 DI 10.1039/c1cc14603c PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 874WW UT WOS:000298989800018 PM 21904753 ER PT J AU Sullivan, KT Piekiel, NW Wu, C Chowdhury, S Kelly, ST Hufnagel, TC Fezzaa, K Zachariah, MR AF Sullivan, K. T. Piekiel, N. W. Wu, C. Chowdhury, S. Kelly, S. T. Hufnagel, T. C. Fezzaa, K. Zachariah, M. R. TI Reactive sintering: An important component in the combustion of nanocomposite thermites SO COMBUSTION AND FLAME LA English DT Article DE High heating; Thermites; Aluminum; Phase contrast imaging; Microscopy; Nanoparticles ID POLYMORPHIC PHASE-TRANSFORMATIONS; MELT-DISPERSION MECHANISM; MONTE-CARLO-SIMULATION; ALUMINUM NANOPARTICLES; MASS-SPECTROMETRY; ENERGY-RELEASE; IGNITION; OXIDATION; PARTICLE; TIME AB One of the open questions in understanding the reactivity of nanometric metal/metal oxide particulate composites is the relative role of gas-solid vs. condensed state reactions. This work is an investigation of several nano-Al based thermites subjected to very rapid heating rates. The ignition temperature of thermites, as measured by the onset of optical emission, was measured using a rapidly heated Pt wire. Generally, ignition was seen to occur above the melting temperature of aluminum. The exception was Al/Bi(2)O(3) which ignited slightly below this point. Samples were also rapidly heated in situ within electron microscopes to provide direct imaging before and after heating. The sintering of aggregated and/or agglomerated particles into characteristically larger structures was experimentally observed in all cases, and the fuel and oxidizer were found to be in surface contact suggesting that a condensed-phase reactive sintering mechanism had occurred. High resolution image sequences of thermites ignited on the Pt wire were collected using a real time phase contrast imaging technique at the Advanced Photon Source of Argonne National Lab. The results suggest that reactive sintering occurs on a fast timescale, and relatively early in the reaction, leading to rapid melting and coalescence of aggregated particles. This dramatically changes the initial size and morphology of the constituents before the remainder of the material burns. The results question the idea that a decrease in particle size will necessarily lead to an enhancement in reactivity, since large amounts of sintering occurs early in the reaction, and alters the morphology. It is suggested that improvements in reactivity can be achieved by designing architectures to improve the interfacial contact upon sintering, as well as by selecting oxidizers based on their ability to liberate and transport oxygen in the condensed phase, while producing volatile species to assist in convective energy transport. (C) 2011 Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Sullivan, K. T.; Piekiel, N. W.; Wu, C.; Chowdhury, S.; Zachariah, M. R.] Univ Maryland, College Pk, MD 20742 USA. [Kelly, S. T.; Hufnagel, T. C.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Fezzaa, K.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Zachariah, MR (reprint author), Univ Maryland, College Pk, MD 20742 USA. EM mrz@umd.edu RI Hufnagel, Todd/A-3309-2010 OI Hufnagel, Todd/0000-0002-6373-9377 FU Army Research Office; Defense Threat Reduction Agency; University of Maryland's Nanocenter; NISPLAB; Office of Naval Research [N000014-07-1-0740]; US Department o Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank the Army Research Office and the Defense Threat Reduction Agency for their financial support. We acknowledge the support of the University of Maryland's Nanocenter and its NISPLAB. The NISP laboratory is operated jointly by the Maryland Nanocenter and the NSF MRSEC as a shared experimental facility. We also thank Rich Fiore and Protochips, Inc. for their technical help and for supplying the heating holder and grids. We thank Dr. Wen-An Chiou for his help with the operation of the microscopes at UMD. S.T.K. and T.C.H. gratefully acknowledge support from the Office of Naval Research (Grant No. N000014-07-1-0740) for the X-ray phase contrast imaging experiments. Use of the Advanced Photon Source (APS) was supported by the US Department o Energy, Office of Science, Office of Basic Energy Sciences, Under Contract No. DE-AC02-06CH11357. NR 51 TC 50 Z9 50 U1 1 U2 52 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JAN PY 2012 VL 159 IS 1 BP 2 EP 15 DI 10.1016/j.combustflame.2011.07.015 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 862EA UT WOS:000298071400002 ER PT J AU Luo, ZY Yoo, CS Richardson, ES Chen, JH Law, CK Lu, TF AF Luo, Zhaoyu Yoo, Chun Sang Richardson, Edward S. Chen, Jacqueline H. Law, Chung K. Lu, Tianfeng TI Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow SO COMBUSTION AND FLAME LA English DT Article DE Chemical explosive mode analysis; Turbulent lifted flame; Autoignition; Direct numerical simulation; Mechanism reduction ID DIRECT NUMERICAL-SIMULATION; COMPUTATIONAL SINGULAR PERTURBATION; CHARACTERISTIC BOUNDARY-CONDITIONS; DIFFUSION FLAMES; STABILIZATION MECHANISM; REDUCED MECHANISMS; CO-FLOW; IGNITION; AIR; KINETICS AB The recently developed method of chemical explosive mode (CEM) analysis (CEMA) was extended and employed to identify the detailed structure and stabilization mechanism of a turbulent lifted ethylene jet flame in heated coflowing air, obtained by a 3-D direct numerical simulation (DNS). It is shown that CEM is a critical feature in ignition as well as extinction phenomena, and as such the presence of a CEM can be utilized in general as a marker of explosive, or pre-ignition, mixtures. CEMA was first demonstrated in 0-D reactors including auto-ignition and perfectly stirred reactors, which are typical homogeneous ignition and extinction applications, respectively, and in 1-D premixed laminar flames of ethylene-air. It is then employed to analyze a 2-D spanwise slice extracted from the 3-D DNS data. The flame structure was clearly visualized with CEMA, while it is more difficult to discern from conventional computational diagnostic methods using individual species concentrations or temperature. Auto-ignition is identified as the dominant stabilization mechanism for the present turbulent lifted ethylene jet flame, and the contribution of dominant chemical species and reactions to the local CEM in different flame zones is quantified. A 22-species reduced mechanism with high accuracy for ethylene-air was developed from the detailed University of Southern California (USC) mechanism for the present simulation and analysis. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Luo, Zhaoyu; Lu, Tianfeng] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. [Yoo, Chun Sang] Ulsan Natl Inst Sci & Technol, Sch Mech & Adv Mat Engn, Ulsan 689798, South Korea. [Richardson, Edward S.; Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Law, Chung K.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. RP Lu, TF (reprint author), Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. EM tlu@engr.uconn.edu RI Yoo, Chun Sang/E-5900-2010; Law, Chung /E-1206-2013; Lu, Tianfeng/D-7455-2014; Luo, Zhaoyu/P-2175-2014 OI Yoo, Chun Sang/0000-0003-1094-4016; Lu, Tianfeng/0000-0001-7536-1976; FU National Science Foundation [0904771]; UNIST; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy; US Department of Energy SciDAC; US Department of Energy [DE-AC04-94AL85000]; Office of Science of the US DOE [DE-AC05-00OR22725]; AFOSR FX The work at University of Connecticut was supported by the National Science Foundation under Grant No. 0904771. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The work at Ulsan National Institute of Science and Technology (UNIST) was supported by the 2009 Research Fund of UNIST. The work at Sandia National Laboratories (SNL) was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy, and the US Department of Energy SciDAC Program. SNL is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000. The simulation used resources of the National Center for Computational Sciences (NCCS) at ORNL, which is supported by the Office of Science of the US DOE under contract DE-AC05-00OR22725. The work at Princeton University was supported by AFOSR under the technical monitoring of Dr. Julian M. Tishkoff. NR 37 TC 49 Z9 51 U1 2 U2 31 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JAN PY 2012 VL 159 IS 1 BP 265 EP 274 DI 10.1016/j.combustflame.2011.05.023 PG 10 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 862EA UT WOS:000298071400024 ER PT J AU Day, M Tachibana, S Bell, J Lijewski, M Beckner, V Cheng, RK AF Day, Marc Tachibana, Shigeru Bell, John Lijewski, Michael Beckner, Vince Cheng, Robert K. TI A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames I. Methane flames SO COMBUSTION AND FLAME LA English DT Article DE Premixed turbulent combustion; Direct numerical simulation; Flamelet analysis; Lean premixed methane-air; Low swirl burner ID INTENSE ISOTROPIC TURBULENCE; LARGE-EDDY SIMULATION; NUMERICAL-SIMULATION; COMBUSTION; EQUATIONS AB This paper is the first in a series that presents a combined computational and experimental study to investigate and characterize the structure of premixed turbulent low swirl laboratory flames. The simulations discussed here are based on an adaptive solution of the low Mach number equations for turbulent reacting flow, and incorporate detailed models for transport and thermo-chemistry. Experimental diagnostics of the laboratory flame include PIV and OH-PLIF imaging, and are used to quantify the flow field, mean flame location, and local flame wrinkling characteristics. We present a framework for relating the simulation results to the flame measurements, and then use the simulation data to further probe the time-dependent, 3D structure of the flames as they interact with the turbulent flow. The present study is limited to lean methane-air flames over a range of flow conditions, and demonstrates that in the regime studied, local flame profiles are structurally very similar to the flat, unstrained steady ("laminar") flame. The analysis here will serve as a framework for discussing a broader set of premixed flames in this same configuration. Papers II and III will discuss corresponding analysis for pure hydrogen-air and hydrogen-methane mixed fuels, respectively. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Day, Marc; Bell, John; Lijewski, Michael; Beckner, Vince] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Tachibana, Shigeru] Japan Aerosp Explorat Agcy, Tokyo, Japan. RP Day, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. EM MSDay@lbl.gov OI Tachibana, Shigeru/0000-0002-0745-502X FU DOE SciDAC; US Department of Energy [DE-AC02-05CH11231]; Japan Aerospace Exploration Agency; NERSC under an INCITE FX This work was supported under the DOE SciDAC Program and the Advanced Turbines Program by US Department of Energy under Contract No. DE-AC02-05CH11231. S.T.'s visit to LBNL was supported by the Japan Aerospace Exploration Agency. The simulations and analysis were performed on the Franklin and Hopper machines at NERSC under an INCITE award. The authors gratefully acknowledge Gary Hubbard in the LBNL Combustion Laboratory for assistance in data analysis, and Mathieu Legrand Department of Thermal and Fluids Engineering, Universidad Carlos III, Madrid, Spain, for detailed imaging of the LSB nozzle flows that helped illuminate deficiencies in the mean flow specifications for the simulation boundary conditions. NR 24 TC 33 Z9 36 U1 0 U2 39 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JAN PY 2012 VL 159 IS 1 BP 275 EP 290 DI 10.1016/j.combustflame.2011.06.016 PG 16 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 862EA UT WOS:000298071400025 ER PT J AU Phuoc, TX Chen, RH AF Phuoc, Tran X. Chen, Ruey-Hung TI Modeling the effect of particle size on the activation energy and ignition temperature of metallic nanoparticles SO COMBUSTION AND FLAME LA English DT Article DE Nanoparticle; Ignition; Ignition temperature ID ALUMINUM; COMBUSTION; HYDROGEN; SHAPES; WATER; DUST; AIR AB The present work reports a simple theoretical model to calculate the effect of the particle size on the activation energy and the ignition temperature of metallic nanoparticles. The activation energy was deduced from the particle cohesive energy and the ignition temperature was calculated using the condition that the heat generated by the combustion reactions is sufficient to counterbalance the particle heat loss to the surrounding. Heat loss was assumed to be in the transient regime and the combustion heat generation was calculated using the simplest Arrhenius-type model. Using aluminum as an example, the results showed that for particles of sizes larger than 50 nm, increasing the particle size had a little effect on the number of the surface atoms, the activation energy and the ignition temperature. As the particle size decreases the number of the surface atoms increases and the corresponding activation energy. E-d/E-infinity and the ignition temperature decrease. As the particle size decreased to about 5 nm and smaller, the activation energy could reduce to 20% or 50% of the bulk value and an ignition temperature as low as 800 K was obtained from the calculation depending on the ratio of the coordination number. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Phuoc, Tran X.] Dept Energy, Natl Energy Technol Lab, Pittsburgh, PA 15261 USA. [Chen, Ruey-Hung] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. RP Phuoc, TX (reprint author), Dept Energy, Natl Energy Technol Lab, POB 10940,MS 84-340, Pittsburgh, PA 15261 USA. EM tran@netl.doe.gov; chenrh@mail.ucf.edu NR 18 TC 15 Z9 15 U1 1 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD JAN PY 2012 VL 159 IS 1 BP 416 EP 419 DI 10.1016/j.combustflame.2011.07.003 PG 4 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 862EA UT WOS:000298071400036 ER PT J AU Dodd, AB Lautenberger, C Fernandez-Pello, C AF Dodd, Amanda B. Lautenberger, Christopher Fernandez-Pello, Carlos TI Computational modeling of smolder combustion and spontaneous transition to flaming SO COMBUSTION AND FLAME LA English DT Article DE Smoldering; Transition to flaming; Two-dimensional; Computational; Pyrolysis ID POLYURETHANE FOAM; UPHOLSTERED FURNITURE; CELLULOSIC INSULATION; PROPAGATION; WAVES; MICROGRAVITY; DEGRADATION; PRODUCTS; KINETICS AB A numerical transport model was developed to study the spontaneous transition from smoldering to flaming combustion in polyurethane foam. The numerical transport model is two-dimensional with an eight-step reduced reaction mechanism. The reaction mechanism includes seven heterogeneous and a global homogeneous gas phase reaction and is capable of simulating both forward and opposed smoldering combustion. The current study examines the transition to flaming in normal gravity for flow assisted forward smoldering combustion as a function of an externally applied heat flux and the velocity and oxygen concentration of a forced gas flow. Reaction rates, species profiles, gas phase temperatures, and condensed phase temperatures are examined. Three reactions were found to play a major role in leading to the prediction of transition to flaming. Favorable agreement of temperature response, time to spontaneously transition from smolder to flaming, and location of the transition event between simulation results and experimental data is demonstrated. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Dodd, Amanda B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lautenberger, Christopher; Fernandez-Pello, Carlos] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Dodd, AB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ajbarra@sandia.gov FU Sandia National Laboratories; National Science Foundation [0730556]; National Aeronautics and Space Administration [NCC05AA49A] FX The research at UCB was supported by the Sandia National Laboratories Doctoral Studies Program, the National Science Foundation under Award 0730556 and the National Aeronautics and Space Administration, under Grant NCC05AA49A. The authors would also like to acknowledge Olivier Putzeys for his valuable experimental data. NR 51 TC 8 Z9 8 U1 0 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JAN PY 2012 VL 159 IS 1 BP 448 EP 461 DI 10.1016/j.combustflame.2011.06.004 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 862EA UT WOS:000298071400040 ER PT J AU Lee, D Lee, JS Kim, HY Chun, CK James, SC Yoon, SS AF Lee, Dongjo Lee, Jae Seong Kim, Ho Young Chun, Chul Kyun James, Scott C. Yoon, Sam S. TI EXPERIMENTAL STUDY ON THE COMBUSTION AND NOx EMISSION CHARACTERISTICS OF DME/LPG BLENDED FUEL USING COUNTERFLOW BURNER SO COMBUSTION SCIENCE AND TECHNOLOGY LA English DT Article DE Counterflow burner; Distribution of OH radicals; DME/LPG blended fuel; Nonpremixed flame; NOx emission ID DIMETHYL ETHER DME; ALTERNATIVE FUEL; ENGINE; ADDITIVES; IGNITION; METHANE; ETHANE; FLAMES AB Dimethyl ether (DME) continues to be considered as an alternative fuel to conventional hydrocarbon fuels. Specifically, DME has been considered as a substitute fuel for liquefied petroleum gas (LPG) because the physical and chemical characteristics of DME are similar to those of LPG. However, the combustion performance for DME has not yet been established. In this study, the combustion and NOx-emission characteristics of LPG, DME, and an LPG/DME-blended fuel were experimentally investigated in a counterflow nonpremixed flame. The flame structure, flame temperature, NOx concentration, and distribution of OH radicals are reported. In this experimental study, the types of LPG used were butane 100%, butane 80% + propane 20%, and butane 75% + propane 25% by mass with DME mole fraction varied from 0 to 100 mole%. The experimental results indicated that the combustion and NOx emission characteristics of LPG fuels varied with the DME mole fraction. As the DME mole fraction increased, the flame thickness increased, but the flame length decreased. Also, the flame became wider, and its origin moved closer to the oxidizer nozzle with increasing DME mole fraction. In addition, as the DME mole fraction increased, the maximum flame temperature increased due to fast pyrolysis of DME as a result of the high oxygen content (similar to 35% by mass) in DME. Moreover, NOx concentration decreased with increasing DME mole fraction in all LPGs. C1 [Lee, Jae Seong; Kim, Ho Young; Yoon, Sam S.] Korea Univ, Sch Mech Engn, Seoul 136701, South Korea. [Lee, Dongjo] POSCO, Tech Res Labs, Pohang, South Korea. [Chun, Chul Kyun] Mokpo Natl Univ, Dept Mech Engn, Mokpo, South Korea. [James, Scott C.] Sandia Natl Labs, Livermore, CA USA. RP Kim, HY (reprint author), Korea Univ, Sch Mech Engn, Anamdong 5 Ga, Seoul 136701, South Korea. EM kimhy@korea.ac.kr OI James, Scott/0000-0001-7955-0491 FU Korea Institute of Energy Technology Evaluation and Planning; Korea University FX This research was supported by the Energy & Resource Recycling Project of Korea Institute of Energy Technology Evaluation and Planning. This work was partly supported by a Korea University Grant (2011). NR 19 TC 2 Z9 2 U1 2 U2 17 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0010-2202 J9 COMBUST SCI TECHNOL JI Combust. Sci. Technol. PY 2012 VL 184 IS 1 BP 97 EP 113 DI 10.1080/00102202.2011.622319 PG 17 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Energy & Fuels; Engineering GA 866KH UT WOS:000298379000007 ER PT J AU Velez-Garcia, GM Wapperom, P Baird, DG Aning, AO Kunc, V AF Velez-Garcia, Gregorio M. Wapperom, Peter Baird, Donald G. Aning, Alex O. Kunc, Vlastimil TI Unambiguous orientation in short fiber composites over small sampling area in a center-gated disk SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Fibres; Directional orientation; Optical microscopy; Injection molding ID REINFORCED THERMOPLASTICS; IMAGE-ANALYSIS; SUSPENSIONS; FLOW; POLYPROPYLENE; MICROSCOPY; KINETICS; MOLDINGS; FEATURES; POLYMER AB A modified version of the method of ellipses was successfully developed, validated, and implemented to characterize short fiber orientation. Unambiguous orientation and a small sampling area were obtained by distinguishing between in-plane angles of phi and phi + pi for every fiber and characterizing non-elliptical footprints, respectively. Measurements in two thin center-gated disks showed the existence of an asymmetric profile of orientation at the gate, which differs from the 3D random orientation commonly assumed in simulations. This profile washed out gradually at the entry region until disappearing at about 40% of flow length. A detailed set of orientation data for comparing fiber orientation to calculated values was obtained. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Velez-Garcia, Gregorio M.] Virginia Tech, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. [Wapperom, Peter] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA. [Baird, Donald G.] Virginia Tech, Dept Chem Engn, Blacksburg, VA 24061 USA. [Aning, Alex O.] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. [Kunc, Vlastimil] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Velez-Garcia, GM (reprint author), Univ Puerto Rico, Dept Gen Engn, Stefani Bldg,Off 601,Call Box 9000, Mayaguez, PR 00681 USA. EM gvelez@vt.edu RI Kunc, Vlastimil/E-8270-2017 OI Kunc, Vlastimil/0000-0003-4405-7917 FU NSF/DOE [DMI-052918]; US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies; NSF-IGERT [DGE-0548783]; University of Puerto Rico-Mayaguez FX The financial support of NSF/DOE: DMI-052918 is gratefully acknowledged. Research sponsored by the US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Lightweight Materials Program. The authors also wish to thank Sabic Americas Inc. for supplying the Valox 420 used in this work. They also gratefully thank Dr. Audrey Zink-Sharp for providing helpful discussions about the image acquisition procedure. Gregorio M. Velez-Garcia also acknowledges support from NSF-IGERT: DGE-0548783 and University of Puerto Rico-Mayaguez. NR 39 TC 14 Z9 15 U1 1 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD JAN PY 2012 VL 43 IS 1 BP 104 EP 113 DI 10.1016/j.compositesa.2011.09.024 PG 10 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 868KW UT WOS:000298523200011 ER PT J AU Leeman, JR Rawn, CJ Ulrich, S Madden, ME Phelps, TJ AF Leeman, J. R. Rawn, C. J. Ulrich, S. Madden, M. Elwood Phelps, T. J. TI Interpreting temperature-strain data from mesoscale clathrate experiments SO COMPUTERS & GEOSCIENCES LA English DT Article DE Fiber Bragg gratings; Gas hydrate; Seafloor stability; Temperature-strain data; Distributed sensing ID METHANE HYDRATE FORMATION; GAS HYDRATE; DISSOCIATION; CARBON; CO2; SEQUESTRATION; TECHNOLOGY; MECHANISMS; ISSUES; SAND AB Gas hydrates may play an important role in global climate change, carbon sequestration, energy production and seafloor stability. However, formation and dissociation pathways in geologically complex systems are poorly defined. We present a new approach to processing large amounts of data from a LUNA distributed sensing system (DSS) in the seafloor process simulator (SPS) at Oak Ridge National Laboratory to monitor and visualize gas hydrate formation and dissociation in heterogeneous sediments. The DSS measures relative temperature/strain change with a high spatial resolution allowing the heat of reaction during gas hydrate formation/dissociation to be used to locate clathrate processes in space and time within the vessel. Optical fibers are placed in the sediment following an Archimedean spiral design and the position of each sensor is determined iteratively over the arc length using Newton's method. The DSS data are then gridded with a natural neighbor interpolation algorithm to allow contouring. The locations of sensors on the fiber were verified with hot and cold stimuli in known locations. Software was developed to produce temperature/strain linear and polar plots, which aid in locating significant hydrate formation/dissociation events. Results from an experiment using a vertically split column of sand and silt clearly showed initial hydrate formation in the sand, followed by slow encroachment into the silt. Similar systems and data processing techniques could be used for monitoring of hydrates in natural environments or in any situation where a hybrid temperature/strain index is useful. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Leeman, J. R.; Ulrich, S.; Madden, M. Elwood; Phelps, T. J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Leeman, J. R.; Madden, M. Elwood] Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA. [Rawn, C. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Phelps, TJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM phelpstj@ornl.gov RI Mavoa, Suzanne/B-5372-2010; Elwood Madden, Megan/C-3381-2009 FU U.S. Dept. of Energy; Office of Fossil Energy [111]; Higher Education Research Experiences (HERE); U.S. Dept. of Energy [DE-AC05-000R22725] FX This work was supported by the U.S. Dept. of Energy, Methane Hydrates Program through the Office of Fossil Energy field work proposal FEAB 111. We gratefully acknowledge technical support by Jonathan Alford. J. R. Leeman was supported through the Higher Education Research Experiences (HERE) program managed by the Oak Ridge Institute for Science Education (ORISE)/Oak Ridge Associated Universities (ORAU) and through the University of Oklahoma School of Geology and Geophysics. Oak Ridge National Laboratory is managed by University of Tennessee, Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC05-000R22725. The authors thank Bryan Chakoumakos and Ji-Won Moon for their helpful comments during ORNL internal review, two anonymous reviewers whose suggestions improved the manuscript as well, and the Computers and Geosciences Editor-in-Chief, Eric Grunsky. NR 32 TC 0 Z9 0 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD JAN PY 2012 VL 38 IS 1 BP 62 EP 67 DI 10.1016/j.cageo.2011.05.004 PG 6 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 868LF UT WOS:000298524100007 ER PT J AU Robert, CAM Veyrat, N Glauser, G Marti, G Doyen, GR Villard, N Gaillard, MDP Kollner, TG Giron, D Body, M Babst, BA Ferrieri, RA Turlings, TCJ Erb, M AF Robert, Christelle A. M. Veyrat, Nathalie Glauser, Gaetan Marti, Guillaume Doyen, Gwladys R. Villard, Neil Gaillard, Mickael D. P. Koellner, Tobias G. Giron, David Body, Melanie Babst, Benjamin A. Ferrieri, Richard A. Turlings, Ted C. J. Erb, Matthias TI A specialist root herbivore exploits defensive metabolites to locate nutritious tissues SO ECOLOGY LETTERS LA English DT Article DE Diabrotica virgifera; DIMBOA; optimal defence; optimal foraging; plant-insect interactions; root herbivore; Zea mays ID WESTERN CORN-ROOTWORM; HYDROXAMIC ACIDS; PLANT DEFENSE; MAIZE; CHRYSOMELIDAE; COLEOPTERA; RESISTANCE; INHIBITOR; INSECT; LARVAE AB The most valuable organs of plants are often particularly rich in essential elements, but also very well defended. This creates a dilemma for herbivores that need to maximise energy intake while minimising intoxication. We investigated how the specialist root herbivore Diabrotica virgifera solves this conundrum when feeding on wild and cultivated maize plants. We found that crown roots of maize seedlings were vital for plant development and, in accordance, were rich in nutritious primary metabolites and contained higher amounts of the insecticidal 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the phenolic compound chlorogenic acid. The generalist herbivores Diabrotica balteata and Spodoptera littoralis were deterred from feeding on crown roots, whereas the specialist D. virgifera preferred and grew best on these tissues. Using a 1,4-benzoxazin-3-one-deficient maize mutant, we found that D. virgifera is resistant to DIMBOA and other 1,4-benzoxazin-3-ones and that it even hijacks these compounds to optimally forage for nutritious roots. C1 [Robert, Christelle A. M.; Veyrat, Nathalie; Glauser, Gaetan; Doyen, Gwladys R.; Villard, Neil; Gaillard, Mickael D. P.; Turlings, Ted C. J.; Erb, Matthias] Univ Neuchatel, Lab Fundamental & Appl Res Chem Ecol FARCE, CH-2000 Neuchatel, Switzerland. [Glauser, Gaetan] Univ Neuchatel, Chem Analyt Serv Swiss Plant Sci Web, CH-2000 Neuchatel, Switzerland. [Marti, Guillaume] Univ Geneva, CH-1211 Geneva, Switzerland. [Koellner, Tobias G.] Max Planck Inst Chem Ecol, Dept Biochem, D-07745 Jena, Germany. [Giron, David; Body, Melanie] UMR CNRS 6035 UFR Sci & Tech, Phys Ecol & Multitroph Interact Grp, Inst Rech Biol Insecte, F-37200 Tours, France. [Babst, Benjamin A.; Ferrieri, Richard A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Erb, M (reprint author), Max Planck Inst Chem Ecol, Shoot Root Commun Grp, Hans Knoll Str 8, D-07745 Jena, Germany. EM merb@ice.mpg.de RI BODY, Melanie/A-5784-2011; Turlings, Ted/E-8671-2012; Giron, David/B-9108-2013; Kollner, Tobias/H-3375-2014; Marti, Guillaume/B-4395-2016; OI BODY, Melanie/0000-0002-4414-2313; Turlings, Ted/0000-0002-8315-785X; Giron, David/0000-0001-8356-0983; Kollner, Tobias/0000-0002-7037-904X; Marti, Guillaume/0000-0002-6321-9005; Babst, Benjamin/0000-0001-5657-0633; Erb, Matthias/0000-0002-4446-9834 FU Swiss National Science Foundation [FN 31000AO-107974]; U.S. Department of Energy through Office of Biological and Environmental Science [DE-ACO2-98CH10886]; National Centre of Competence in Research (NCCR) FX We thank Roland Reist from Syngenta (Stein, CH) for providing S. littoralis eggs. Wade French and Chad Nielson (USDA-ARS-NACRL Brookings, USA) kindly supplied D. virgifera eggs. Bruce Hibbard provided helpful comments on an earlier version of this manuscript. Michael J. Schueller provided technical assistance for the 11CO2 labelling experiments. Guillaume Gouzerh helped with the protein measurements. Isabelle Riezman and Jean-Luc Wolfender provided technical support for the root exudate quantifications. Research activities by C. A. M. R., G. R. D., N.Ve., N.Vi., M. D. P. G., T. C. J. T. and M. E. were supported by the Swiss National Science Foundation (FN 31000AO-107974). Research was supported in part by the U.S. Department of Energy through its Office of Biological and Environmental Science under contract DE-ACO2-98CH10886. This project was partially funded by the National Centre of Competence in Research (NCCR) 'Plant Survival', a research programme of the Swiss National Science Foundation. NR 50 TC 57 Z9 57 U1 7 U2 74 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1461-023X J9 ECOL LETT JI Ecol. Lett. PD JAN PY 2012 VL 15 IS 1 BP 55 EP 64 DI 10.1111/j.1461-0248.2011.01708.x PG 10 WC Ecology SC Environmental Sciences & Ecology GA 856KC UT WOS:000297637800008 PM 22070646 ER PT J AU Elvington, MC Colon-Mercado, HR AF Elvington, Mark C. Colon-Mercado, Hector R. TI Pt and Pt/Ni "Needle" Eletrocatalysts on Carbon Nanotubes with High Activity for the ORR SO ELECTROCHEMICAL AND SOLID STATE LETTERS LA English DT Article ID OXYGEN-REDUCTION REACTION; PEM FUEL-CELLS; CATALYST SUPPORT; DISK ELECTRODE; PT-ALLOY; PLATINUM; ELECTROCATALYSTS; NANOPARTICLES; DURABILITY; STABILITY AB Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt "needle" formations that are 3.5 nm in diameter and similar to 100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi "needles" with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm(2)) and PtNi/nCNT (0.664 mA/cm(2)) showing the highest activity. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.022202esl] All rights reserved. C1 [Elvington, Mark C.; Colon-Mercado, Hector R.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Elvington, MC (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM Hector.Colon-Mercado@srnl.doe.gov FU U.S. Department of Energy [DE-AC09-08SR22470]; [SRNL FY11 LDRD] FX The authors would like to acknowledge the University of South Carolina Electron and Clemson Microscopy Centers for instrument use, scientific and technical assistance. This work was funded under SRNL FY11 LDRD Program. Savannah River National Laboratory is operated by Savannah River Nuclear Solutions. This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. NR 28 TC 3 Z9 3 U1 7 U2 34 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 1099-0062 J9 ELECTROCHEM SOLID ST JI Electrochem. Solid State Lett. PY 2012 VL 15 IS 2 BP K19 EP K22 DI 10.1149/2.022202esl PG 4 WC Electrochemistry; Materials Science, Multidisciplinary SC Electrochemistry; Materials Science GA 864PP UT WOS:000298252500023 ER PT J AU Vine, E Thomas, S AF Vine, Ed Thomas, Stefan TI SPECIAL ISSUE - VINE Preface SO ENERGY EFFICIENCY LA English DT Editorial Material DE Dian Grueneich; Claude Turmes C1 [Vine, Ed] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Thomas, Stefan] Wuppertal Inst Climate Environm & Energy, Wuppertal, Germany. RP Vine, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM elvine@lbl.gov; stefan.thomas@wupperinst.org NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD JAN PY 2012 VL 5 IS 1 SI SI BP 1 EP 2 DI 10.1007/s12053-011-9127-5 PG 2 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 866PX UT WOS:000298394400001 ER PT J AU Vine, E Thomas, S AF Vine, Ed Thomas, Stefan TI SPECIAL ISSUE - VINE Introduction SO ENERGY EFFICIENCY LA English DT Editorial Material DE Vine; Thomas C1 [Vine, Ed] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Thomas, Stefan] Wuppertal Inst Climate Environm & Energy, Wuppertal, Germany. RP Vine, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM elvine@lbl.gov; stefan.thomas@wupperinst.org NR 0 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD JAN PY 2012 VL 5 IS 1 SI SI BP 3 EP 4 DI 10.1007/s12053-011-9129-3 PG 2 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 866PX UT WOS:000298394400002 ER PT J AU Vine, E Hall, N Keating, KM Kushler, M Prahl, R AF Vine, Edward Hall, Nick Keating, Kenneth M. Kushler, Martin Prahl, Ralph TI Emerging issues in the evaluation of energy-efficiency programs: the US experience SO ENERGY EFFICIENCY LA English DT Article DE Evaluation, measurement, and verification; United States; Technical (methods and protocols); Policy; Infrastructure; IEPEC; Net savings; Market transformation; Carbon emissions; Carbon savings; Evaluation practice; Non-energy impacts; Training AB The evaluation, measurement, and verification (EM&V) of energy-efficiency programs has a rich and extensive history in the United States, dating back to the late 1970s. During this time, many different kinds of EM&V issues have been addressed: technical (primarily focusing on EM&V methods and protocols), policy (primarily focusing on how EM&V results will be used by energy-efficiency program managers and policymakers), and infrastructure (primarily focusing on the development of EM&V professionals and an EM&V workforce). We address the issues that are currently important and/or are expected to become more critical in the coming years. We expect many of these issues will also be relevant for a non-US audience, particularly as more attention is paid to the reliability of energy savings and carbon emissions reductions from energy-efficiency programs. C1 [Vine, Edward] Univ Calif Berkeley, Univ Calif Energy Inst, Calif Inst Energy & Environm, Berkeley, CA 94720 USA. [Vine, Edward] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hall, Nick; Keating, Kenneth M.] TecMarket Works, Oregon, WI USA. [Kushler, Martin] Amer Council Energy Efficient Econ, Washington, DC USA. [Prahl, Ralph] Prahl & Associates, Fremont, CA USA. RP Vine, E (reprint author), Univ Calif Berkeley, Univ Calif Energy Inst, Calif Inst Energy & Environm, Berkeley, CA 94720 USA. EM Edward.Vine@uc-ciee.org NR 14 TC 9 Z9 9 U1 1 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD JAN PY 2012 VL 5 IS 1 SI SI BP 5 EP 17 DI 10.1007/s12053-010-9101-7 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 866PX UT WOS:000298394400003 ER PT J AU Zhou, N Mcneil, M Levine, M AF Zhou, Nan Mcneil, Michael Levine, Mark TI Assessment of building energy-saving policies and programs in China during the 11th Five-Year Plan SO ENERGY EFFICIENCY LA English DT Article DE China; Building; Energy efficiency policy; Evaluation; 11(th) Five Year Plan; Energy saving; Building codes; Exist building retrofit; Heat supply system reform; Enforcement ID CONSUMPTION AB China's 11th Five-Year Plan (FYP) sets an ambitious target to reduce the energy intensity per unit of gross domestic product by 20% from 2005 to 2010 (NDRC 2006). In the building sector, the primary energy-saving target allocated during the 11 FYP period is 100 Mtce. Savings are expected to be achieved through the strengthening of enforcement of building energy efficiency codes, existing building retrofits and heat supply system reform, followed by energy management of government office buildings and large-scale public buildings, adoption of renewable energy sources. To date, China has reported that it achieved the half of the 20% intensity reduction target by the end of 2008; however, little has been made clear on the status and the impact of the building programs. There has also been lack of description on methodology for calculating the savings and baseline definition, and no total savings that have been officially reported to date. This paper intends to provide both quantitative and qualitative assessment of the key policies and programs in building sector that China has instituted in its quest to fulfill the national goal. Overall, this paper concludes that the largest improvement for building energy efficiency were achieved in new buildings; the program to improve the energy management in government and large scale public buildings are in line with the target; however, the progress in the area of existing building retrofits, particularly heating supply system reform lags behind the stated goal by a large amount. C1 [Zhou, Nan; Mcneil, Michael; Levine, Mark] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zhou, N (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM NZhou@lbl.gov NR 15 TC 8 Z9 8 U1 1 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD JAN PY 2012 VL 5 IS 1 SI SI BP 51 EP 64 DI 10.1007/s12053-011-9111-0 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 866PX UT WOS:000298394400006 ER PT J AU Aroonruengsawat, A Auffhammer, M Sanstad, AH AF Aroonruengsawat, Anin Auffhammer, Maximilian Sanstad, Alan H. TI The Impact of State Level Building Codes on Residential Electricity Consumption SO ENERGY JOURNAL LA English DT Article DE Residential Electricity Consumption; Building Codes; Regulation ID SHRINKAGE ESTIMATORS; ENERGY EFFICIENCY; DYNAMIC DEMAND; UNITED-STATES; PANEL-DATA; GASOLINE AB This paper studies the impacts of state level residential building codes on per capita residential electricity consumption. We construct a timeline of when individual states first implemented residential building codes. Using panel data for 48 US states from 1970-2006, we exploit the temporal and spatial variation of building code implementation and issuance of building permits to identify the effect of the regulation on residential electricity consumption. Controlling for the effect of prices, income, and weather, we show that states that adopted building codes followed by a significant amount of new construction have experienced detectable decreases in per capita residential electricity consumption-ranging from 0.3-5% in the year 2006. Estimates are larger in states where codes are more stringent and more strictly enforced. doi: 10.5547/ISSN0195-6574-EJ-Vol33-No1-2 C1 [Auffhammer, Maximilian] Univ Calif Berkeley, Dept Agr & Resource Econ, Berkeley, CA 94720 USA. [Aroonruengsawat, Anin] Thammasat Univ, Fac Econ, Bangkok 10200, Thailand. [Sanstad, Alan H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94703 USA. RP Auffhammer, M (reprint author), Univ Calif Berkeley, Dept Agr & Resource Econ, 207 Giannini Hall, Berkeley, CA 94720 USA. EM auffhammer@berkeley.edu; ahsanstad@lbl.gov FU California Energy Commission FX We would like to thank the Public Interest Energy Research (PIER) Program at the California Energy Commission for generous funding of this work. We thank seminar participants at the University of California Energy Institute CSEM for valuable comments. All findings and remaining errors in this study are those of the authors. NR 44 TC 13 Z9 13 U1 4 U2 16 PU INT ASSOC ENERGY ECONOMICS PI CLEVELAND PA 28790 CHAGRIN BLVD, STE 210, CLEVELAND, OH 44122 USA SN 0195-6574 J9 ENERG J JI Energy J. PY 2012 VL 33 IS 1 BP 31 EP 52 DI 10.5547/ISSN0195-6574-EJ-Vol33-No1-2 PG 22 WC Economics; Energy & Fuels; Environmental Studies SC Business & Economics; Energy & Fuels; Environmental Sciences & Ecology GA 873GE UT WOS:000298868300002 ER PT J AU Hultman, NE Malone, EL Runci, P Carlock, G Anderson, KL AF Hultman, Nathan E. Malone, Elizabeth L. Runci, Paul Carlock, Gregory Anderson, Kate L. TI Factors in low-carbon energy transformations: Comparing nuclear and bioenergy in Brazil, Sweden, and the United States SO ENERGY POLICY LA English DT Article DE Energy transitions; Low-carbon technology; Climate policy ID TECHNOLOGICAL-CHANGE; INNOVATION SYSTEMS; SOCIOTECHNICAL TRANSITION; MULTILEVEL PERSPECTIVE; REGIME SHIFTS; POLICY; DIFFUSION; POWER; US; SUSTAINABILITY AB Policies to address climate change by reducing greenhouse gas emissions might be made more effective if we can better understand the pathways by which transformative technologies become significant components of energy systems. Indeed, the central question of mitigation revolves around the scope of policy to influence or accelerate the diffusion of low-carbon technology. While market forces clearly influence technology deployment, understanding the longer-term and large-scale changes in the energy system requires a broader understanding of the relative influence of institutional, behavioral, and social factors. This paper presents the results of an interview-based, comparative case approach to investigating systematically the relative importance of these non-economic factors influencing technological change across technology and country contexts. We identified two low-carbon energy sectors (bioenergy and nuclear power) that underwent significant changes over the past 50 years in the energy portfolio of three countries: Brazil, Sweden, and the United States. We identified nine categories of factors that might contribute to these large technological transformations, and then evaluated, via interviews with sector participants in each country, which factors were viewed as being determinative or highly influential in the trajectory of that technology in their country context. We also draw out policy implications and directions for future research. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hultman, Nathan E.; Carlock, Gregory] Univ Maryland, Sch Publ Policy, College Pk, MD 20742 USA. [Hultman, Nathan E.; Malone, Elizabeth L.; Runci, Paul; Anderson, Kate L.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Hultman, NE (reprint author), Univ Maryland, Sch Publ Policy, 2101 Van Munching Hall, College Pk, MD 20742 USA. EM hultman@umd.edu FU U.S. National Science Foundation, Innovation and Organizational Sciences [0823263] FX The authors gratefully acknowledge the many participants in this study and the anonymous reviewers of this manuscript. We are also grateful to Jennifer Kane for research assistance. This work was supported by the U.S. National Science Foundation, Innovation and Organizational Sciences-0823263. NR 87 TC 10 Z9 10 U1 4 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JAN PY 2012 VL 40 BP 131 EP 146 DI 10.1016/j.enpol.2011.08.064 PG 16 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 872QN UT WOS:000298824500015 ER PT J AU Yang, M Dixon, RK AF Yang, Ming Dixon, Robert K. TI Investing in efficient industrial boiler systems in China and Vietnam SO ENERGY POLICY LA English DT Article DE Energy system optimization; GHG mitigation; Global environment investment AB Energy efficiency in industrial boiler steam systems can be very low due to old technologies, improper design and non-optimal operation of the steam systems. Solutions include efficiency assessments and investments in steam system optimizations, education and training for operators of the systems. This paper presents case studies on assessing and investing in boiler steam systems in China and Vietnam. Methodologies and approaches for data collection and analyses were designed specifically for each of the two countries. This paper concludes: (1) investing in energy efficiency in industrial boiler steam system in China and Vietnam are cost effective; (2) government should not sent national energy efficiency standards lower than that of energy companies or energy equipment manufactures. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yang, Ming] 3E&T Int, Beijing 100052, Peoples R China. [Dixon, Robert K.] US DOE, Off Energy Efficiency & Renewable Energy, Washington, DC 20585 USA. RP Yang, M (reprint author), 3E&T Int, Suite 1506,10 Bldg,Luo Ma Shi St, Beijing 100052, Peoples R China. EM ming.yang7@gmail.com NR 14 TC 5 Z9 5 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JAN PY 2012 VL 40 BP 432 EP 437 DI 10.1016/j.enpol.2011.10.030 PG 6 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 872QN UT WOS:000298824500042 ER PT J AU Crawford, BA Hickman, CR Luhring, TM AF Crawford, Brian A. Hickman, Caleb R. Luhring, Thomas M. TI Testing the Threat-Sensitive Hypothesis with Predator Familiarity and Dietary Specificity SO ETHOLOGY LA English DT Article ID CHEMICAL CUES; AQUATIC VERTEBRATES; LARVAL ANURANS; TOAD TADPOLES; MIXED MODELS; PREY; RECOGNITION; AVOIDANCE; RESPONSES; RISK AB In a system with multiple predators, the threat-sensitive predator avoidance hypothesis predicts that prey respond differently to predators relative to the risks each poses (e.g., degree of dietary specialization). Aquatic animals often rely heavily on detecting predators via chemical cues (kairomones) and respond with a suite of behaviors including detection and avoidance. However, little is known about how animals respond to kairomones of specialist versus generalist predators. In laboratory experiments, we compared behavioral responses of a poorly studied aquatic salamander, the greater siren (Siren lacertina), to cues from specialist and generalist predator snakes to evaluate threat-sensitive responses. Sirens exhibited a novel behavior (gill-flushing) most often in the presence of specialist predator cues. Avoidance behavior (reversing direction following cue detection) was higher in response to specialist predator and novel animal control cues and lowest in response to generalist predator cues. An intermediate response to the animal control, an unfamiliar amphibian predator, indicated that sirens respond cautiously to a novel cue. The gradient of observed responses to different snake cues indicates that sirens may be evaluating predation potential of animals based on their foraging specificity and familiarity. C1 [Crawford, Brian A.; Hickman, Caleb R.; Luhring, Thomas M.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Crawford, Brian A.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Hickman, Caleb R.] Univ Wisconsin, Dept Zool, Madison, WI 53706 USA. [Luhring, Thomas M.] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. RP Crawford, BA (reprint author), Savannah River Ecol Lab, Aiken, SC 29802 USA. EM bcrawfor@uga.edu RI Luhring, Thomas/A-9489-2012 OI Luhring, Thomas/0000-0001-7982-5862 FU National Science Foundation [DBI-0453493]; American Museum of Natural History; Savannah River Ecology Laboratory; University of Georgia [DE-FC09-96SR18-546]; U.S. Department of Energy [DE-FC09-96SR18-546] FX The authors thank J.W. Gibbons, J. Greene, S. Poppy, R. D. Semlitsch, and A. Tucker for their support and assistance in this opportunity. Furthermore, we thank C. Schalk for assistance in field collections and trial preparations. Sirens were collected under South Carolina Department of Natural Resources Scientific Collection permit G-08-07, and procedures used in the study were approved by the University of Georgia (AUP approval # 2006-10069). This work was supported by the National Science Foundation (grant number DBI-0453493) given to REU students. Some data used in this study were collected as part of an ongoing research project funded by the National Science Foundation (DBI-0453493), the American Museum of Natural History's Theodore Roosevelt Memorial Fund (awarded to TML), and the Savannah River Ecology Laboratory under Financial Assistance Award DE-FC09-96SR18-546 between the University of Georgia and the U.S. Department of Energy. We also thank D. W. Zeh and two anonymous reviewers for their helpful comments that improved this manuscript. NR 50 TC 8 Z9 8 U1 0 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0179-1613 J9 ETHOLOGY JI Ethology PD JAN PY 2012 VL 118 IS 1 BP 41 EP 48 DI 10.1111/j.1439-0310.2011.01983.x PG 8 WC Psychology, Biological; Behavioral Sciences; Zoology SC Psychology; Behavioral Sciences; Zoology GA 857PJ UT WOS:000297730700006 ER PT J AU Justus, AL AF Justus, Alan L. TI COUNT RATE LIMITATIONS FOR PULSE-COUNTING INSTRUMENTATION IN PULSED ACCELERATOR FIELDS SO HEALTH PHYSICS LA English DT Article DE accelerators; instrumentation; radiation protection; safety standards; Rem meter ID NEUTRON DETECTOR; REM METER AB This paper discusses various concepts involved in the counting losses of pulse-counting health physics instrumentation when used within the pulsed radiation environments of typical accelerator fields in order to preestablish appropriate limitations in use. Discussed are the "narrow" pulse and the "wide" pulse cases, the special effect of neutron moderating assemblies, and the effect of pulse fine microstructure on the counting losses of the pulse-counting instrumentation. In the narrow-pulse case, the accelerator pulse width is less than or equal to the instrument's dead time; whereas in the wide-pulse case, the accelerator pulse width is significantly longer than the instrument's dead time. Examples are provided that highlight the various concepts and limitations. Health Phys. 102(1):8-24; 2012 C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Justus, AL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ajustus@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396] FX The author extends a heartfelt thanks to Dick Olsher, Tom McLean, L. Scott Walker, and Mike Duran for their thoughtful review; to Dick Olsher for also providing the MCNPX input files for the Andersson-Braun, NRD-1, and WENDI-2 rem meter detector assemblies; to Tom McLean for his excellent FORTRAN skills; and to each for the excellent discussion. Also, thanks is extended to Rod McCrady, of LANSCE, for providing the beam timing and microstructure details pertaining to the LANL WNR and Lujan proton beams. This work has been authored by an employee of Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this work for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce this work, or allow others to do so for United States Government purposes. NR 18 TC 2 Z9 2 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JAN PY 2012 VL 102 IS 1 BP 8 EP 24 DI 10.1097/HP.0b013e3182232428 PG 17 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 861UR UT WOS:000298045400003 PM 22134075 ER PT J AU Degteva, MO Shagina, NB Vorobiova, MI Anspaugh, LR Napier, BA AF Degteva, M. O. Shagina, N. B. Vorobiova, M. I. Anspaugh, L. R. Napier, B. A. TI REEVALUATION OF WATERBORNE RELEASES OF RADIOACTIVE MATERIALS FROM THE MAYAK PRODUCTION ASSOCIATION INTO THE TECHA RIVER IN 1949-1951 SO HEALTH PHYSICS LA English DT Article DE Sr-90; contamination; environmental; dosimetry; waste disposal ID DOSE RECONSTRUCTION SYSTEM; POPULATION; DOSIMETRY; COHORT AB The Mayak Production Association was the first site for the production of weapons-grade plutonium in Russia. Early operations led to the waterborne release of radioactive materials into the small Techa River. Residents living downstream used river water for drinking and other purposes. The releases and subsequent flooding resulted in deposition of sediments along the shoreline and on floodplain soil. Primary routes of exposure were external dose from the deposited sediments and ingestion of Sr-90 and other radionuclides. Study of the Techa River Cohort has revealed an increased incidence of leukemia and solid cancers. Epidemiologic studies are supported by extensive dose-reconstruction activities that have led to various versions of a Techa River Dosimetry System (TRDS). The correctness of the TRDS has been challenged by the allegation that releases of short-lived radionuclides were much larger than those used in the TRDS. Although the dosimetry system depends more upon measurements of Sr-90 in humans and additional measurements of radionuclides and of exposure rates in the environment, a major activity has been undertaken to define more precisely the time-dependent rates of release and their radionuclide composition. The major releases occurred during 1950-1951 in the form of routine releases and major accidental releases. The reevaluated amount of total release is 114 PBq, about half of which was from accidents that occurred in late 1951. The time-dependent composition of the radionuclides released has also been reevaluated. The improved understanding presented in this paper is possible because of access to many documents not previously available. Health Phys. 102(1):25-38; 2012 C1 [Degteva, M. O.; Shagina, N. B.; Vorobiova, M. I.] Urals Res Ctr Radiat Med, Chelyabinsk 454076, Russia. [Anspaugh, L. R.] Univ Utah, Salt Lake City, UT USA. [Napier, B. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Degteva, MO (reprint author), Urals Res Ctr Radiat Med, Vorovskogo 68A, Chelyabinsk 454076, Russia. EM marina@urcrm.ru FU International Science and Technology Center [2841]; U.S. Department of Energy's Office of International Health Studies; U.S. Environmental Protection Agency's Office of Radiation and Indoor Air FX This work was funded primarily by the International Science and Technology Center Project #2841. Additional work was funded by the U.S. Department of Energy's Office of International Health Studies and the U.S. Environmental Protection Agency's Office of Radiation and Indoor Air. The authors thank the editors of the Journal of Radiation Safety Problems (Mayak Production Association Scientific Journal) for their participation in the ISTC project and for publishing some very important documents from Mayak PA archives (Alexandrov et al. 1951; Ilyin 1956) in the open literature. In particular, we are indebted to the now deceased Dr. Pavel Stukalov. NR 35 TC 27 Z9 30 U1 1 U2 7 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JAN PY 2012 VL 102 IS 1 BP 25 EP 38 DI 10.1097/HP.0b013e318228159a PG 14 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 861UR UT WOS:000298045400004 PM 22134076 ER PT J AU Sagintayev, Z Sultan, M Khan, SD Khan, SA Mahmood, K Yan, E Milewski, A Marsala, P AF Sagintayev, Z. Sultan, M. Khan, S. D. Khan, S. A. Mahmood, K. Yan, E. Milewski, A. Marsala, P. TI A remote sensing contribution to hydrologic modelling in arid and inaccessible watersheds, Pishin Lora basin, Pakistan SO HYDROLOGICAL PROCESSES LA English DT Article DE Pishin Lora basin; Balochistan; Pakistan; continuous rainfall-runoff model; soil water assessment tool; remote sensing ID RECHARGE; REGIONS; TRMM AB The lack of adequate field measurements often hampers the construction and calibration of rainfall-runoff models over many of the world's watersheds. We adopted methodologies that rely heavily on readily available remote sensing datasets as viable alternatives for assessing, managing, and modelling of such remote and inadequately gauged regions. The Soil and Water Assessment Tool was selected for continuous (1998-2005) rainfall-runoff modelling of one such area, the northeast part of the Pishin Lora basin (NEPL). Input to the model included satellite-based Tropical Rainfall Measuring Mission precipitation data, and modelled runoff was calibrated against satellite-based observations, the latter included: (i) monthly estimates of the water volumes impounded by the Khushdil Khan (latitude 30 degrees 40'N, longitude 67 degrees 40'E), and the Kara Lora (latitude 30 degrees 34'N, longitude 66 degrees 52'E) reservoirs, and (ii) inferred wet versus dry conditions in streams across the NEPL. Calibrations were also conducted against observed flow reported from the Burj Aziz Khan station at the NEPL outlet (latitude 30 degrees 20'N; longitude 66 degrees 35'E). Model simulations indicate that (i) average annual precipitation (1998-2005), runoff and recharge in the NEPL are 1300 x 10(6) m(3), 148 x 10(6) m(3), and 361 x 10(6) m(3), respectively; (ii) within the NEPL watershed, precipitation and runoff are high for the northeast (precipitation: 194 mm/year; runoff: 38 x 10(6) m(3)/year) and northwest (134 mm/year; 26 x 10(6) m(3)/year) basins compared to the southern basin (124 mm/year; 8 x 10(6) m(3)/year); and (3) construction of delay action dams in the northeast and northwest basins could increase recharge from 361 x 10(6) m(3)/year up to 432 x 10(6) m(3)/year and achieve sustainable extraction. The adopted methodologies are not a substitute for traditional approaches, but they could provide first-order estimates for rainfall, runoff, and recharge in the arid and semi-arid parts of the world that are inaccessible and/or lack adequate coverage with field data. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Sagintayev, Z.; Sultan, M.; Milewski, A.; Marsala, P.] Western Michigan Univ, Dept Geosci, Kalamazoo, MI 49008 USA. [Khan, S. D.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX USA. [Khan, S. A.; Mahmood, K.] Univ Balochistan, Natl Ctr Excellence Mineral, Quetta, Pakistan. [Yan, E.] Argonne Natl Lab, Div Environm Sci, Chicago, IL USA. RP Sultan, M (reprint author), Western Michigan Univ, Dept Geosci, Kalamazoo, MI 49008 USA. EM mohamed.sultan@wmich.edu RI Milewski, Adam/C-7824-2011; Sagin, Jay/F-8565-2011; Sagin, Jay/F-7522-2013 OI Sagin, Jay/0000-0002-0386-888X FU US Agency for International Development; Higher Education Commission of Pakistan FX Funding was provided by the US Agency for International Development, in cooperation with the Higher Education Commission of Pakistan. NR 49 TC 6 Z9 6 U1 3 U2 18 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0885-6087 J9 HYDROL PROCESS JI Hydrol. Process. PD JAN 1 PY 2012 VL 26 IS 1 BP 85 EP 99 DI 10.1002/hyp.8114 PG 15 WC Water Resources SC Water Resources GA 869KR UT WOS:000298597300007 ER PT J AU Wei, JS Yu, HF Grout, RW Chen, JH Ma, KL AF Wei, Jishang Yu, Hongfeng Grout, Ray W. Chen, Jacqueline H. Ma, Kwan-Liu TI Visual Analysis of Particle Behaviors to Understand Combustion Simulations SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Article C1 [Wei, Jishang; Ma, Kwan-Liu] Univ Calif Davis, Grad Grp Comp Sci, Davis, CA 95616 USA. [Yu, Hongfeng; Chen, Jacqueline H.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Wei, JS (reprint author), Univ Calif Davis, Grad Grp Comp Sci, Davis, CA 95616 USA. EM jswei@ucdavis.edu; hyu@sandia.gov; ray.grout@nrel.gov; jhchen@sandia.gov; ma@cs.ucdavis.edu FU US Department of Energy (DOE) [DE-FC02-06ER25777]; US National Science Foundation [OCI-0749227, CCF-0811422, OCI-0749217, OCI-0950008, OCI-0850566]; DOE [DE-AC04-94-AL85000] FX This research has been sponsored partly by the US Department of Energy (DOE) through the SciDAC (Scientific Discovery through Advanced Computing) program through agreement DE-FC02-06ER25777 and by the US National Science Foundation through grants OCI-0749227, CCF-0811422, OCI-0749217, OCI-0950008, and OCI-0850566. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the DOE under contract DE-AC04-94-AL85000. We thank Hemanth Kolla for his valuable verification of our clustering results. NR 23 TC 3 Z9 3 U1 2 U2 12 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD JAN-FEB PY 2012 VL 32 IS 1 BP 22 EP 33 PG 12 WC Computer Science, Software Engineering SC Computer Science GA 871UH UT WOS:000298762700006 PM 24808290 ER PT J AU Mitri, FG Kinnick, RR AF Mitri, Farid G. Kinnick, Randall R. TI Vibroacoustography Imaging of Kidney Stones In Vitro SO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING LA English DT Article DE Kidney stones (KSs); ultrasound; vibroacoustography (VA); X-ray fluoroscopy ID SHOCK-WAVE LITHOTRIPSY; VIBRO-ACOUSTOGRAPHY; MEDICAL-MANAGEMENT; ELASTIC PROPERTIES; BREAST-TISSUE; ULTRASOUND; NEPHROLITHIASIS; VIVO; UROLITHIASIS; FEASIBILITY AB Vibroacoustography (VA) is an ultrasound-based modality sensitive to stiffness and free from speckle and possesses some advantages over conventional ultrasound imaging in terms of image quality. The primary objective here is to show its feasibility in detecting/imaging kidney stones (KSs) in vitro. In VA, two intersecting ultrasound beams driven at two different frequencies f(1) and f(2), respectively, are focused within a freshly excised porcine kidney attached to a solid frame with elastic rubber bands, while the amplitude of the acoustic emission pressure field produced at the difference frequency Delta f = vertical bar f(1) - f(2)vertical bar is detected by a low-frequency hydrophone. The received low-frequency signal is bandpass filtered and amplified, then digitized by a 14-bits/sample digitizer. The data are then recorded on a computer and processed numerically to construct the images. 2-D magnitude VA images are obtained at different depths within the kidney before and after stone implantation, showing kidney features and stones shapes. Experiments conducted in a water tank on a chalk sphere as well as a series of excised kidneys in which stones are artificially embedded show that all the implanted stones are detected at all chosen depths, when compared with an X-ray fluoroscopy taken to be the reference image. The resulting VA images, obtained from a nonionizing type of radiation (i.e., ultrasound waves) as compared to fluoroscopy, are speckle free unlike conventional ultrasound images. The results presented in this preliminary feasibility study show that VA allows imaging KSs in vitro, and provide the impetus to further develop and investigate VA imaging in a clinical setting for in vivo applications. C1 [Mitri, Farid G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kinnick, Randall R.] Mayo Clin, Coll Med, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mitri@lanl.gov; rrk@mayo.edu FU Los Alamos National Laboratory, Los Alamos, NM [LDRD-X9N9, 20100595PRD1] FX This work was supported by a Director's Fellowship (LDRD-X9N9 Project 20100595PRD1) from the Los Alamos National Laboratory, Los Alamos, NM. Disclosure: this unclassified publication, with the following reference no. 11-11462, has been approved for unlimited public release under DUSA - ENSCI. Asterisk indicates corresponding author. NR 46 TC 3 Z9 3 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9294 J9 IEEE T BIO-MED ENG JI IEEE Trans. Biomed. Eng. PD JAN PY 2012 VL 59 IS 1 BP 248 EP 254 DI 10.1109/TBME.2011.2171341 PG 7 WC Engineering, Biomedical SC Engineering GA 865RD UT WOS:000298327100037 PM 21997246 ER PT J AU Shin, YM Baig, A Barnett, LR Tsai, WC Luhmann, NC AF Shin, Young-Min Baig, Anisullah Barnett, Larry R. Tsai, Wen-Ching Luhmann, Neville C., Jr. TI System Design Analysis of a 0.22-THz Sheet-Beam Traveling-Wave Tube Amplifier SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Collector; coupler; sheet beam; terahertz (THz); traveling-wave tube (TWT); window ID TERAHERTZ TECHNOLOGY AB The primary constituents of a 0.22-terahertz (THz) sheet-beam traveling-wave tube (TWT) amplifier, composed of a staggered double grating array waveguide, have been designed for broadband THz operation (similar to 30%) using the fundamental passband (TE-mode). Currently, we are looking into the possibility of a pulsed low-duty test of this device as a proof of principle (POP) and have been making efforts to construct the system. The optimally designed input coupler has <= 1 dB insertion loss at 0.22 THz with similar to 75 GHz (34%) 1-dB matching bandwidths. A thin mica RF window provides a coupling bandwidth spanning multiple octaves. The collector is designed to have a jog for collecting the spent beam along the RF path coupled to the output RF window. Computer simulations show that the collector hybridized with a WR-4 window has similar to 60 GHz matching bandwidth with similar to -0.5 dB insertion loss at 0.22 THz. The hybrid periodic permanent-magnet design combined with the quadrupole magnet (PPM-QM), intended for low-duty pulse operation in a proof-of-concept experiment, allows the elliptical sheet beam from an existing gun (25 : 1 aspect ratio) to unoptimized gun to have 73% beam transmission. The POP pulsed test is designed to be matched to our existing system, which will thereby tolerate beam transmission. However, a proper gun for the sheet-beam tunnel of the designed circuit will provide much better transmission. In our prior works, we successfully proved at W-band that the magnet design provided > 99% beam transmission of a 10:1 aspect ratio sheet beam. Most of the TWT circuit components have been designed, and currently, a full simulation modeling effort is being conducted. C1 [Shin, Young-Min] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Shin, Young-Min] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Baig, Anisullah; Barnett, Larry R.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Tsai, Wen-Ching; Luhmann, Neville C., Jr.] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA. RP Shin, YM (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM yshin@niu.edu; abaig@ucdavis.edu; mntntech@gmail.com; wctsai@ucdavis.edu; ncluhmann@ucdavis.edu FU Defense Advanced Research Projects Agency [G8U543366] FX Manuscript received August 3, 2011; revised October 12, 2011; accepted October 14, 2011. Date of current version December 23, 2011. This work was supported by the High Frequency Integrated Vacuum Electronics (HiFIVE) Program of the Defense Advanced Research Projects Agency under Grant G8U543366. The review of this paper was arranged by Editor R. Carter. NR 16 TC 40 Z9 47 U1 1 U2 25 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 EI 1557-9646 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD JAN PY 2012 VL 59 IS 1 BP 234 EP 240 DI 10.1109/TED.2011.2173575 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 871RT UT WOS:000298756100034 ER PT J AU Chadwick, MB AF Chadwick, Mark B. TI ENDF nuclear data in the physical, biological, and medical sciences SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE ENDF; ENDF/B-VII; nuclear cross sections; neutron cross sections; kerma; transport AB Purpose: This paper gives an overview of recent advances in the ENDF (Evaluated Nuclear Data File) database of neutron, proton, and photonuclear cross sections. ENDF nuclear data aim to provide accurate and comprehensive representations of all reaction processes that need to be simulated in radiation transport applications. The paper reviews some of the most importance capabilities embodied in the ENDF/B-VII. 0 database released a few years ago, and describes new capabilities being developed for the forthcoming ENDF/B-VII. 1 release planned for later in 2011. Conclusion: Illustrative examples are given for nuclear reactions of particular importance to Monte Carlo N-Particle (MCNP) simulations of biological and medical applications. The examples show the utility of these evaluated ENDF data for simulating energy deposition and transport, for therapy and for radiation protection applications. C1 Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87544 USA. RP Chadwick, MB (reprint author), Los Alamos Natl Lab, X Computat Phys Div, Mail Stop B218, Los Alamos, NM 87544 USA. EM mbchadwick@lanl.gov NR 19 TC 9 Z9 9 U1 0 U2 2 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0955-3002 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD JAN PY 2012 VL 88 IS 1-2 BP 10 EP 14 DI 10.3109/09553002.2011.595879 PG 5 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 870JS UT WOS:000298666000003 PM 21770698 ER PT J AU Robertson, SW Pelton, AR Ritchie, RO AF Robertson, S. W. Pelton, A. R. Ritchie, R. O. TI Mechanical fatigue and fracture of Nitinol SO INTERNATIONAL MATERIALS REVIEWS LA English DT Review DE Nitinol; Fatigue; Fracture; Toughness; Total life; Damage tolerant; Review ID SHAPE-MEMORY ALLOYS; STRESS-INDUCED TRANSFORMATION; TENSION-COMPRESSION ASYMMETRY; X-RAY MICRODIFFRACTION; CRACK-GROWTH; MARTENSITIC-TRANSFORMATION; POLYCRYSTALLINE NITI; ENDOVASCULAR STENTS; LIFE PREDICTION; THERMODYNAMIC ANALYSIS AB Nitinol, a near equiatomic intermetallic of nickel and titanium, is the most widely known and used shape memory alloy. Owing to its capacity to undergo a thermal or stress induced martensitic phase transformation, Nitinol displays recoverable strains that are more than an order of magnitude greater than in traditional alloys, specifically as high as 10%. Since its discovery in the 1960s, Nitinol has been used for its shape memory properties for couplings and actuators, although its contemporary use has been in for medical devices. For these applications, the stress induced transformation ('superelasticity') has been used extensively for self-expanding implantable devices such as endovascular stents and vena cava filters, and for tools such as endodontic files. Most of these applications involve cyclically varying biomechanical stresses or strains that drive the need to fully understand the fatigue and fracture resistance of this alloy. Here we review the existing knowledge base on the fatigue of Nitinol, both in terms of their stress or strain life (total life) and damage tolerant (crack propagation) behaviour, together with their fracture toughness properties. We further discuss the application of such data to the fatigue design and life prediction methodologies for Nitinol implant devices used in the medical industry. C1 [Robertson, S. W.; Pelton, A. R.] Nitinol Devices & Components NDC, Fremont, CA 94539 USA. [Ritchie, R. O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Robertson, SW (reprint author), Nitinol Devices & Components NDC, 47533 Westinghouse Dr, Fremont, CA 94539 USA. EM scott.robertson@nitinol.com RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU Nitinol Devices and Components (NDC), Fremont, CA; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy [DE-AC02-05CH11231] FX Support for SWR and ARP was provided by Nitinol Devices and Components (NDC), Fremont, CA. The involvement of ROR was funded by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 89 TC 86 Z9 88 U1 7 U2 100 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0950-6608 EI 1743-2804 J9 INT MATER REV JI Int. Mater. Rev. PD JAN PY 2012 VL 57 IS 1 BP 1 EP 36 DI 10.1179/1743280411Y.0000000009 PG 36 WC Materials Science, Multidisciplinary SC Materials Science GA 870JJ UT WOS:000298665100001 ER PT J AU Weisbach, D AF Weisbach, David TI Negligence, Strict Liability, and Responsibility for Climate Change SO IOWA LAW REVIEW LA English DT Article ID BRAZILIAN PROPOSAL; CORRECTIVE JUSTICE; CO2 EMISSIONS; LAND-USE; CARBON; COMPENSATION; LITIGATION; LEGAL; LAW C1 [Weisbach, David] Univ Chicago, Sch Law, Chicago, IL 60637 USA. [Weisbach, David] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Weisbach, David] Argonne Natl Lab, Argonne, IL 60439 USA. RP Weisbach, D (reprint author), Univ Chicago, Sch Law, Chicago, IL 60637 USA. NR 69 TC 9 Z9 9 U1 0 U2 4 PU UNIV IOWA, COLL LAW PI IOWA CITY PA 290 BOYD LAW BLDG, IOWA CITY, IA 52242 USA SN 0021-0552 J9 IOWA LAW REV JI Iowa Law Rev. PD JAN PY 2012 VL 97 IS 2 BP 521 EP 565 PG 45 WC Law SC Government & Law GA 869CX UT WOS:000298574400004 ER PT J AU Yang, F Zeng, XW Ning, K Liu, KL Lo, CC Wang, W Chen, J Wang, DM Huang, RR Chang, XZ Chain, PS Xie, G Ling, JQ JianXu AF Yang, Fang Zeng, Xiaowei Ning, Kang Liu, Kuan-Liang Lo, Chien-Chi Wang, Wei Chen, Jie Wang, Dongmei Huang, Ranran Chang, Xingzhi Chain, Patrick S. Xie, Gary Ling, Junqi JianXu TI Saliva microbiomes distinguish caries-active from healthy human populations SO ISME JOURNAL LA English DT Article DE caries; metagenomics; oral-microbiome; Prevotella; saliva ID CHILDHOOD CARIES; ORAL MICROFLORA; DENTAL-CARIES; HUMAN-BODY; COMMUNITY; DIVERSITY; CHILDREN; BACTERIA; DISEASES; SYSTEM AB The etiology of dental caries remains elusive because of our limited understanding of the complex oral microbiomes. The current methodologies have been limited by insufficient depth and breadth of microbial sampling, paucity of data for diseased hosts particularly at the population level, inconsistency of sampled sites and the inability to distinguish the underlying microbial factors. By cross-validating 16S rRNA gene amplicon-based and whole-genome-based deep-sequencing technologies, we report the most in-depth, comprehensive and collaborated view to date of the adult saliva microbiomes in pilot populations of 19 caries-active and 26 healthy human hosts. We found that: first, saliva microbiomes in human population were featured by a vast phylogenetic diversity yet a minimal organismal core; second, caries microbiomes were significantly more variable in community structure whereas the healthy ones were relatively conserved; third, abundance changes of certain taxa such as overabundance of Prevotella Genus distinguished caries microbiota from healthy ones, and furthermore, caries-active and normal individuals carried different arrays of Prevotella species; and finally, no 'caries-specific' operational taxonomic units (OTUs) were detected, yet 147 OTUs were 'caries associated', that is, differentially distributed yet present in both healthy and caries-active populations. These findings underscored the necessity of species-and strain-level resolution for caries prognosis, and were consistent with the ecological hypothesis where the shifts in community structure, instead of the presence or absence of particular groups of microbes, underlie the cariogenesis. The ISME Journal (2012) 6, 1-10; doi:10.1038/ismej.2011.71; published online 30 June 2011 C1 [Yang, Fang; Ling, Junqi] Sun Yat Sen Univ, Dept Operat Dent & Endodont, Guanghua Sch, Guangzhou 510155, Guangdong, Peoples R China. [Yang, Fang; Ling, Junqi] Sun Yat Sen Univ, Hosp Stomatol, Guangzhou 510155, Guangdong, Peoples R China. [Yang, Fang; Ling, Junqi] Sun Yat Sen Univ, Inst Stomatol Res, Guangzhou 510155, Guangdong, Peoples R China. [Zeng, Xiaowei; Ning, Kang; Wang, Wei; Chen, Jie; Wang, Dongmei; Huang, Ranran; Chang, Xingzhi; JianXu] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao, Shandong, Peoples R China. [Liu, Kuan-Liang; Lo, Chien-Chi; Chain, Patrick S.; Xie, Gary] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Ling, JQ (reprint author), Sun Yat Sen Univ, Dept Operat Dent & Endodont, Guanghua Sch, Guangzhou 510155, Guangdong, Peoples R China. EM lingjq@mail.sysu.edu.cn; xujian@qibebt.ac.cn RI Xu, Jian/G-8430-2012; chain, patrick/B-9777-2013; OI Xu, Jian/0000-0002-0548-8477; Chain, Patrick/0000-0003-3949-3634; xie, gary/0000-0002-9176-924X FU Ministry of Science and Technology of China [2009AA02Z310]; Chinese Academy of Sciences [INFO-115-D01-Z006]; Natural Science Foundation of Guangdong [9151008901000165]; NIH [Y1-DE-6006-02]; LANL [20080662DR]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We thank Jizhong Zhou and Zhili He for barcoded primer sequences and technical advice on 16S rRNA amplification. This work was supported in part by Grants 2009AA02Z310 from Ministry of Science and Technology of China and INFO-115-D01-Z006 from Chinese Academy of Sciences (to JX) and 9151008901000165 from Natural Science Foundation of Guangdong (to JL). All LANL participants were partially supported by grants from NIH (Y1-DE-6006-02), LANL 20080662DR and Office of Science of the US Department of Energy Contract No. DE-AC02-05CH11231. NR 49 TC 75 Z9 86 U1 7 U2 71 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD JAN PY 2012 VL 6 IS 1 BP 1 EP 10 DI 10.1038/ismej.2011.71 PG 10 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 875RP UT WOS:000299052500001 PM 21716312 ER PT J AU Werner, JJ Koren, O Hugenholtz, P DeSantis, TZ Walters, WA Caporaso, JG Angenent, LT Knight, R Ley, RE AF Werner, Jeffrey J. Koren, Omry Hugenholtz, Philip DeSantis, Todd Z. Walters, William A. Caporaso, J. Gregory Angenent, Largus T. Knight, Rob Ley, Ruth E. TI Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys SO ISME JOURNAL LA English DT Article DE Greengenes; microbiome; naive Bayesian classifier; pyrosequencing; taxonomy ID SEARCH TOOL; ALIGNMENTS; SEQUENCES; TAXONOMY; DATABASE; PRIMERS; SCALE; ARB AB Taxonomic classification of the thousands-millions of 16S rRNA gene sequences generated in microbiome studies is often achieved using a naive Bayesian classifier (for example, the Ribosomal Database Project II (RDP) classifier), due to favorable trade-offs among automation, speed and accuracy. The resulting classification depends on the reference sequences and taxonomic hierarchy used to train the model; although the influence of primer sets and classification algorithms have been explored in detail, the influence of training set has not been characterized. We compared classification results obtained using three different publicly available databases as training sets, applied to five different bacterial 16S rRNA gene pyrosequencing data sets generated (from human body, mouse gut, python gut, soil and anaerobic digester samples). We observed numerous advantages to using the largest, most diverse training set available, that we constructed from the Greengenes (GG) bacterial/archaeal 16S rRNA gene sequence database and the latest GG taxonomy. Phylogenetic clusters of previously unclassified experimental sequences were identified with notable improvements (for example, 50% reduction in reads unclassified at the phylum level in mouse gut, soil and anaerobic digester samples), especially for phylotypes belonging to specific phyla (Tenericutes, Chloroflexi, Synergistetes and Candidate phyla TM6, TM7). Trimming the reference sequences to the primer region resulted in systematic improvements in classification depth, and greatest gains at higher confidence thresholds. Phylotypes unclassified at the genus level represented a greater proportion of the total community variation than classified operational taxonomic units in mouse gut and anaerobic digester samples, underscoring the need for greater diversity in existing reference databases. The ISME Journal (2012) 6, 94-103; doi:10.1038/ismej.2011.82; published online 30 June 2011 C1 [Koren, Omry; Ley, Ruth E.] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA. [Werner, Jeffrey J.; Angenent, Largus T.] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA. [Hugenholtz, Philip] Univ Queensland, Australian Ctr Ecogenom, Sch Chem & Mol Biosci, Brisbane, Qld, Australia. [DeSantis, Todd Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. [Walters, William A.; Caporaso, J. Gregory; Knight, Rob] Univ Colorado, Dept Biochem & Chem, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. RP Ley, RE (reprint author), Cornell Univ, Dept Microbiol, 465 Biotech, Ithaca, NY 14853 USA. EM rel222@cornell.edu RI Hugenholtz, Philip/G-9608-2011; Ley, Ruth/M-8542-2014; Knight, Rob/D-1299-2010; OI Ley, Ruth/0000-0002-9087-1672; Koren, Omry/0000-0002-7738-1337 FU NIH Roadmap Initiative [UH2/UH3CA140233]; National Cancer Institute, NIH [U01-HG004866]; Hartwell Foundation; Arnold and Mabel Beckman Foundation; David and Lucile Packard Foundation; Cornell University Agricultural Experiment Station from the USDA National Institutes of Food and Agriculture (NIFA) [NYC-123444]; USDA NIFA [2007-35504-05381] FX This study was supported by Grant UH2/UH3CA140233 from the Human Microbiome Project of the NIH Roadmap Initiative, the National Cancer Institute, NIH common fund contract U01-HG004866 (a Data Analysis and Coordination Center for the Human Microbiome Project), The Hartwell Foundation, the Arnold and Mabel Beckman Foundation, the David and Lucile Packard Foundation, Cornell University Agricultural Experiment Station federal formula funds NYC-123444 received from the USDA National Institutes of Food and Agriculture (NIFA), and USDA NIFA Grant 2007-35504-05381. NR 30 TC 125 Z9 127 U1 4 U2 69 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD JAN PY 2012 VL 6 IS 1 BP 94 EP 103 DI 10.1038/ismej.2011.82 PG 10 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 875RP UT WOS:000299052500009 PM 21716311 ER PT J AU Haft, DH Payne, SH Selengut, JD AF Haft, Daniel H. Payne, Samuel H. Selengut, Jeremy D. TI Archaeosortases and Exosortases Are Widely Distributed Systems Linking Membrane Transit with Posttranslational Modification SO JOURNAL OF BACTERIOLOGY LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENT; CELL-SURFACE GLYCOPROTEIN; S-LAYER; BIOLOGICAL PROCESS; SIGNAL PEPTIDES; PSI-BLAST; PROTEIN; SORTASE; WALL; ATTACHMENT AB Multiple new prokaryotic C-terminal protein-sorting signals were found that reprise the tripartite architecture shared by LPXTG and PEP-CTERM: motif, TM helix, basic cluster. Defining hidden Markov models were constructed for all. PGF-CTERM occurs in 29 archaeal species, some of which have more than 50 proteins that share the domain. PGF-CTERM proteins include the major cell surface protein in Halobacterium, a glycoprotein with a partially characterized diphytanylglyceryl phosphate linkage near its C terminus. Comparative genomics identifies a distant exosortase homolog, designated archaeosortase A (ArtA), as the likely protein-processing enzyme for PGF-CTERM. Proteomics suggests that the PGF-CTERM region is removed. Additional systems include VPXXXP-CTERM/archeaosortase B in two of the same archaea and PEF-CTERM/archaeosortase C in four others. Bacterial exosortases often fall into subfamilies that partner with very different cohorts of extracellular polymeric substance biosynthesis proteins; several species have multiple systems. Variant systems include the VPDSG-CTERM/exosortase C system unique to certain members of the phylum Verrucomicrobia, VPLPA-CTERM/exosortase D in several alpha-and deltaproteobacterial species, and a dedicated (single-target) VPEID-CTERM/exosortase E system in alphaproteobacteria. Exosortase-related families XrtF in the class Flavobacteria and XrtG in Gram-positive bacteria mark distinctive conserved gene neighborhoods. A picture emerges of an ancient and now well-differentiated superfamily of deeply membrane-embedded protein-processing enzymes. Their target proteins are destined to transit cellular membranes during their biosynthesis, during which most undergo additional posttranslational modifications such as glycosylation. C1 [Haft, Daniel H.; Selengut, Jeremy D.] J Craig Venter Inst, Rockville, MD USA. [Payne, Samuel H.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Haft, DH (reprint author), J Craig Venter Inst, Rockville, MD USA. EM haft@jcvi.org OI Payne, Samuel/0000-0002-8351-1994 FU NIH [R01 HGO0488]; NSF [EF-0949047]; DOE [DE-AC05-76RLO 1830] FX This work was supported by NIH grant R01 HGO0488. S.H.P. was funded by an NSF grant (EF-0949047). Data from the Pacific Northwest National Laboratory were obtained in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy/Biological and Environmental Research national scientific user facility. The Pacific Northwest National Laboratory is operated for the DOE by Battelle under contract DE-AC05-76RLO 1830. NR 38 TC 24 Z9 28 U1 1 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD JAN PY 2012 VL 194 IS 1 BP 36 EP 48 DI 10.1128/JB.06026-11 PG 13 WC Microbiology SC Microbiology GA 866AA UT WOS:000298350800006 PM 22037399 ER PT J AU Gillespie, JJ Joardar, V Williams, KP Driscoll, T Hostetler, JB Nordberg, E Shukla, M Walenz, B Hill, CA Nene, VM Azad, AF Sobral, BW Caler, E AF Gillespie, Joseph J. Joardar, Vinita Williams, Kelly P. Driscoll, Timothy Hostetler, Jessica B. Nordberg, Eric Shukla, Maulik Walenz, Brian Hill, Catherine A. Nene, Vishvanath M. Azad, Abdu F. Sobral, Bruno W. Caler, Elisabet TI A Rickettsia Genome Overrun by Mobile Genetic Elements Provides Insight into the Acquisition of Genes Characteristic of an Obligate Intracellular Lifestyle SO JOURNAL OF BACTERIOLOGY LA English DT Article ID ACTIN-BASED MOTILITY; IV SECRETION SYSTEM; HUMAN GRANULOCYTIC EHRLICHIOSIS; IXODES-RICINUS TICKS; MULTIPLE SEQUENCE ALIGNMENT; BETA-LACTAMASE INDUCTION; BURGDORFERI SENSU-LATO; HOST-CELL INTERACTION; BORRELIA-BURGDORFERI; ESCHERICHIA-COLI AB We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise similar to 35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity. C1 [Gillespie, Joseph J.; Williams, Kelly P.; Driscoll, Timothy; Nordberg, Eric; Shukla, Maulik; Sobral, Bruno W.] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. [Gillespie, Joseph J.; Azad, Abdu F.] Univ Maryland, Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA. [Joardar, Vinita; Walenz, Brian; Caler, Elisabet] J Craig Venter Inst, Rockville, MD USA. [Williams, Kelly P.] Sandia Natl Labs, Livermore, CA USA. [Hostetler, Jessica B.] NIAID, Lab Malaria & Vector Res LMVR, NIH, Hinxton, Cambs, England. [Hostetler, Jessica B.] Wellcome Trust Sanger Inst, Hinxton, Cambs, England. [Hill, Catherine A.] Purdue Univ, Dept Entomol Vector Biol & Publ Hlth Extens, W Lafayette, IN 47907 USA. [Nene, Vishvanath M.] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Nene, Vishvanath M.] Int Livestock Res Inst, Nairobi, Kenya. RP Gillespie, JJ (reprint author), Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. EM jgille@vbi.vt.edu OI Driscoll, Timothy/0000-0002-5119-0372; Gillespie, Joseph/0000-0002-5447-7264 FU National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Department of Health and Human Services [N01-AI-33071, HHSN266200400038C, HHSN272200900040C, R01AI017828, R01AI59118] FX This project has been funded in whole or in part with federal funds from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), and Department of Health and Human Services under the following contract numbers: N01-AI-33071, HHSN266200400038C, and HHSN272200900040C (awarded to B.W.S.) and R01AI017828 and R01AI59118 (awarded to A.F.A.). NR 129 TC 43 Z9 43 U1 1 U2 16 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JAN PY 2012 VL 194 IS 2 BP 376 EP 394 DI 10.1128/JB.06244-11 PG 19 WC Microbiology SC Microbiology GA 870NY UT WOS:000298677400021 PM 22056929 ER PT J AU Schutzer, SE Fraser-Liggett, CM Qiu, WG Kraiczy, P Mongodin, EF Dunn, JJ Luft, BJ Casjens, SR AF Schutzer, Steven E. Fraser-Liggett, Claire M. Qiu, Wei-Gang Kraiczy, Peter Mongodin, Emmanuel F. Dunn, John J. Luft, Benjamin J. Casjens, Sherwood R. TI Whole-Genome Sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii SO JOURNAL OF BACTERIOLOGY LA English DT Editorial Material ID LYME-DISEASE SPIROCHETE; BURGDORFERI; ISOLATE; PATIENT AB It has been known for decades that human Lyme disease is caused by the three spirochete species Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii. Recently, Borrelia valaisiana, Borrelia spielmanii, and Borrelia bissettii have been associated with Lyme disease. We report the complete genome sequences of B. valaisiana VS116, B. spielmanii A14S, and B. bissettii DN127. C1 [Schutzer, Steven E.] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA. [Fraser-Liggett, Claire M.; Mongodin, Emmanuel F.] Univ Maryland, Sch Med, Dept Microbiol, Inst Genome Sci, Baltimore, MD 21201 USA. [Qiu, Wei-Gang] CUNY Hunter Coll, Dept Biol Sci, New York, NY 10021 USA. [Kraiczy, Peter] Univ Hosp Frankfurt, Inst Med Microbiol & Infect Control, Frankfurt, Germany. [Dunn, John J.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Luft, Benjamin J.] SUNY Stony Brook, Hlth Sci Ctr, Dept Med, Stony Brook, NY USA. [Casjens, Sherwood R.] Univ Utah, Sch Med, Dept Pathol, Div Microbiol & Immunol, Salt Lake City, UT USA. RP Schutzer, SE (reprint author), Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA. EM schutzer@umdnj.edu OI Luft, Benjamin/0000-0001-9008-7004; Fraser, Claire/0000-0003-1462-2428 FU NCRR NIH HHS [G12 RR003037, RR03037]; NIAID NIH HHS [N01AI30071, AI37256, AI49003, N01-AI30071, R01 AI049003]; NIGMS NIH HHS [GM083722, SC3 GM083722] NR 21 TC 23 Z9 23 U1 0 U2 7 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JAN PY 2012 VL 194 IS 2 BP 545 EP 546 DI 10.1128/JB.06263-11 PG 2 WC Microbiology SC Microbiology GA 870NY UT WOS:000298677400043 PM 22207749 ER PT J AU Awasthi, S Matthews, DL Li, RA Chiamvimonvat, N Lieu, DK Chan, JW AF Awasthi, Samir Matthews, Dennis L. Li, Ronald A. Chiamvimonvat, Nipavan Lieu, Deborah K. Chan, James W. TI Label-free identification and characterization of human pluripotent stem cell-derived cardiomyocytes using second harmonic generation (SHG) microscopy SO JOURNAL OF BIOPHOTONICS LA English DT Article DE cardiomyocytes; pluripotent stem cells; second harmonic generation; cell separation; myosin ID HEART-CELLS; DIFFERENTIATION; SPECTROSCOPY; ENRICHMENT; THERAPY; CULTURE; TISSUES; MYOSIN AB Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) are a potentially unlimited source of cardiomyocytes (CMs) for cardiac transplantation therapies. The establishment of pure PSC-CM populations is important for this application, but is hampered by a lack of CM-specific surface markers suitable for their identification and sorting. Contemporary purification techniques are either non-specific or require genetic modification. We report a second harmonic generation (SHG) signal detectable in PSC-CMs that is attributable to sarcomeric myosin, dependent on PSC-CM maturity, and retained while PSC-CMs are in suspension. Our study demonstrates the feasibility of developing a SHG-activated flow cytometer for the non-invasive purification of PSC-CMs. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) C1 [Chiamvimonvat, Nipavan; Lieu, Deborah K.] Univ Calif Davis, Dept Internal Med, Davis, CA 95616 USA. [Awasthi, Samir; Matthews, Dennis L.; Chan, James W.] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Matthews, Dennis L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Li, Ronald A.] Mt Sinai Sch Med, Cardiovasc Res Ctr, New York, NY 10029 USA. [Awasthi, Samir] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Chan, James W.] Univ Calif Davis, Dept Pathol & Lab Med, Sacramento, CA 95817 USA. [Li, Ronald A.] Univ Hong Kong, Stem Cell & Regenerat Med Consortium, Dept Physiol & Med, LKS Fac Med, Hong Kong, Hong Kong, Peoples R China. RP Lieu, DK (reprint author), Univ Calif Davis, Dept Internal Med, 451 E Hlth Sci Dr, Davis, CA 95616 USA. EM dklieu@ucdavis.edu; jwjchan@ucdavis.edu RI Chan, James/J-3829-2014; OI Awasthi, Samir/0000-0001-8392-0205 FU National Science Foundation; Center for Biophotonics; NSF Science and Technology Center; University of California, Davis [PHY 0120999]; UC Davis California Institute for Regenerative Medicine (CIRM) FX This work has been supported by funding from the National Science Foundation. The Center for Biophotonics, an NSF Science and Technology Center, is managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. S. Awasthi acknowledges support from the UC Davis California Institute for Regenerative Medicine (CIRM) Stem Cell Training Program. NR 33 TC 12 Z9 12 U1 0 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-063X EI 1864-0648 J9 J BIOPHOTONICS JI J. Biophotonics PD JAN PY 2012 VL 5 IS 1 BP 57 EP 66 DI 10.1002/jbio.201100077 PG 10 WC Biochemical Research Methods; Biophysics; Optics SC Biochemistry & Molecular Biology; Biophysics; Optics GA 859CC UT WOS:000297850900009 PM 22083829 ER PT J AU Markmann, A Graziani, F Batista, VS AF Markmann, Andreas Graziani, Frank Batista, Victor S. TI Kepler Predictor-Corrector Algorithm: Scattering Dynamics with One-Over-R Singular Potentials SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS; SCHRODINGER-EQUATION; COMPUTER-SIMULATION; PERTURBATION THEORY; SPLIT INTEGRATION; SYMPLECTIC METHOD; SPECTRAL METHOD; ELECTRON; STATES; FORM AB An accurate and efficient algorithm for dynamics simulations of particles with attractive 1/r singular potentials is introduced. The method is applied to semiclassical dynamics simulations of electron proton scattering processes in the Wigner-transform time-dependent picture, showing excellent agreement with full quantum dynamics calculations. Rather than avoiding the singularity problem by using a pseudopotential, the algorithm predicts the outcome of close-encounter two-body collisions for the true 1/r potential by solving the Kepler problem analytically and corrects the trajectory for multiscattering with other particles in the system by using standard numerical techniques (e.g., velocity Verlet, or Gear Predictor corrector algorithms). The resulting integration is time-reversal symmetric and can be applied to the general multibody dynamics problem featuring close encounters as occur in electron ion scattering events, in particle antiparticle dynamics, as well as in classical simulations of charged interstellar gas dynamics and gravitational celestial mechanics. C1 [Markmann, Andreas; Batista, Victor S.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Graziani, Frank] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. [Graziani, Frank] Lawrence Livermore Natl Lab, B Div, Livermore, CA USA. RP Markmann, A (reprint author), Yale Univ, Dept Chem, POB 208107, New Haven, CT 06520 USA. EM andreas.markmann@yale.edu; victor.batista@yale.edu FU Lawrence Livermore National Laboratory [B590847]; NSF [CHE-0911520, ECCS-0404191] FX V.S.B. acknowledges supercomputer time from NERSC and support from Lawrence Livermore National Laboratory, grant B590847. The NSF grants CHE-0911520 and ECCS-0404191 supported the development of methods for quantum dynamics simulations. We thank Michael Surh, David Richardson, and Jim Glosli at Lawrence Livermore National Laboratory and Paul Grabowski and Michael Murillo at Los Alamos National Laboratory for valuable comments. NR 44 TC 2 Z9 2 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JAN PY 2012 VL 8 IS 1 BP 24 EP 35 DI 10.1021/ct200452h PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 873UM UT WOS:000298908500004 PM 26592868 ER PT J AU Fletcher, GD Fedorov, DG Pruitt, SR Windus, TL Gordon, MS AF Fletcher, Graham D. Fedorov, Dmitri G. Pruitt, Spencer R. Windus, Theresa L. Gordon, Mark S. TI Large-Scale MP2 Calculations on the Blue Gene Architecture Using the Fragment Molecular Orbital Method SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID QUANTUM-MECHANICAL CALCULATIONS; DISTRIBUTED DATA INTERFACE; HARTREE-FOCK CALCULATIONS; COMPUTATIONAL METHOD; WATER CLUSTERS; BASIS SETS; ACCURATE; SYSTEMS; SIMULATIONS; BINDING AB Benchmark timings are presented for the fragment molecular orbital method on a Blue Gene/P computer. Algorithmic modifications that lead to enhanced performance on the Blue Gene/P architecture include strategies for the storage of fragment density matrices by process subgroups in the global address space. The computation of the atomic forces for a system with more than 3000 atoms and 44 000 basis functions, using second order perturbation theory and an augmented and polarized double-zeta basis set, takes similar to 7 min on 131 072 cores. C1 [Pruitt, Spencer R.; Windus, Theresa L.; Gordon, Mark S.] Iowa State Univ, Ames, IA 50011 USA. [Fletcher, Graham D.] Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Fedorov, Dmitri G.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan. [Pruitt, Spencer R.; Windus, Theresa L.; Gordon, Mark S.] Ames Lab, Ames, IA 50011 USA. RP Gordon, MS (reprint author), Iowa State Univ, Ames, IA 50011 USA. EM mark@si.msg.chem.iastate.edu FU Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; Department of Energy INCITE; Department of Energy PCTC; Air Force Office of Scientific Research; NSF; MEXT, Japan FX This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357, made possible by a Department of Energy INCITE grant. The research was supported by a Department of Energy PCTC grant, and by the Air Force Office of Scientific Research, both to M.S.G. Funding for T.L.W. has been provided by an NSF grant for petascale applications. D.G.F. thanks Drs. H. Shitara, H. Umeda, and Y. Itono for fruitful discussions about FMO parallelization and the Next Generation SuperComputing Project, Nanoscience Program (MEXT, Japan) for partial financial support. The authors are most grateful to Professor Alistair Rendell for his insightful comments. NR 45 TC 24 Z9 24 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JAN PY 2012 VL 8 IS 1 BP 75 EP 79 DI 10.1021/ct200548v PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 873UM UT WOS:000298908500008 PM 26592869 ER PT J AU Visser, A Kroes, J van Vliet, MTH Blenkinsop, S Fowler, HJ Broers, HP AF Visser, Ate Kroes, Joop van Vliet, Michelle T. H. Blenkinsop, Stephen Fowler, Hayley J. Broers, Hans Peter TI Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article; Proceedings Paper CT Conference on Groundwater Quality Management in a Rapidly Changing World (GQ) CY JUN 13-18, 2010 CL Eawag, Zurich, SWITZERLAND HO Eawag DE Climate change; Surface water quality; Heavy metal contamination; Downscaling ID SURFACE-WATER CONTAMINATION; REGIONAL CLIMATE; SOIL-MOISTURE; MODEL DATA; GROUNDWATER RECHARGE; NITROGEN DEPOSITION; MULTIMODEL ENSEMBLE; HYDROLOGICAL MODEL; RIVER FLOWS; FRESH-WATER AB The Keersop catchment (43 km(2)) in the south of The Netherlands has been contaminated by the emissions of four zinc ore smelters. The objective of this study was to assess the effects of future projected climate change on the hydrology and the leaching of heavy metals (i.e. Cd and Zn) in the catchment. The numerical, quasi-2D, unsaturated zone Soil Water Atmosphere Plant model was used with 100-year simulated daily time series of precipitation and potential evapotranspiration. The time series are representative of stationary climates for the periods 1961-1990 ("baseline") and 2071-2100 ("future"). The time series of future climate were obtained by downscaling the results of eight regional climate model (RCM) experiments, driven by the SRES A2 emissions scenario, using change factors for a series of climate statistics and applying them to stochastic weather generator models. The time series are characterized by increased precipitation in winter, less precipitation in summer, and higher air temperatures (between 2 degrees C and 5 degrees C) throughout the year. Future climate scenarios project higher evapotranspiration rates, more irrigation, less drainage, lower discharge rates and lower groundwater levels, due to increased evapotranspiration and a slowing down of the groundwater system. As a result, lower concentrations of Cd and Zn in surface water are projected. The reduced leaching of heavy metals, due to drying of the catchment, showed a positive impact on a limited aspect of surface water quality. (C) 2011 Elsevier B.V. All rights reserved. C1 [Visser, Ate] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Visser, Ate; Broers, Hans Peter] Deltares, NL-3508 AL Utrecht, Netherlands. [Kroes, Joop; van Vliet, Michelle T. H.] Univ Wageningen & Res Ctr, NL-6700 AA Wageningen, Netherlands. [Blenkinsop, Stephen; Fowler, Hayley J.] Newcastle Univ, Water Resource Syst Res Lab, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Broers, Hans Peter] TNO Geol Survey Netherlands, NL-3584 TA Utrecht, Netherlands. [Broers, Hans Peter] Vrije Univ Amsterdam, Dept Hydrol & Geoenvironm Sci, NL-1081 HV Amsterdam, Netherlands. RP Visser, A (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM visser3@llnl.gov RI Fowler, Hayley /A-9591-2013; Broers, Hans Peter/G-3364-2013; Visser, Ate/G-8826-2012; OI Fowler, Hayley /0000-0001-8848-3606; Broers, Hans Peter/0000-0001-7156-7694; van Vliet, Michelle T.H./0000-0002-2597-8422 NR 103 TC 16 Z9 16 U1 2 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD JAN 1 PY 2012 VL 127 IS 1-4 SI SI BP 47 EP 64 DI 10.1016/j.jconhyd.2011.04.007 PG 18 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 875UV UT WOS:000299061600005 PM 21684031 ER PT J AU Li, DS Sun, X Khaleel, MA AF Li, Dongsheng Sun, Xin Khaleel, Mohammed A. TI Materials Design of All-Cellulose Composite Using Microstructure Based Finite Element Analysis SO JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE cellulose nanowhisker composite; microstructure-based finite element analysis; materials design; magnetic alignment; synthesized micrograph ID SHORT-FIBER COMPOSITES; THERMOELASTIC PROPERTIES; MECHANICAL-PROPERTIES; ASPECT RATIO; NANOCOMPOSITES; DEFORMATION; NANOCRYSTALS; SIMULATION; WHISKERS AB A microstructure-based finite element analysis model was developed to predict the effective elastic property of cellulose nanowhisker reinforced all-cellulose composite. Analysis was based on the microstructure synthesized with assumption on volume fraction, size, and orientation distribution of cellulose nanowhiskers. Simulation results demonstrated some interesting discovery: With the increase of aspect ratio, the effective elastic modulus increases in isotropic microstructure. The elastic property anisotropy increases with the aspect ratio and anisotropy of nanowhisker orientation. Simulation results from microstructure-based finite element analysis agree well with experimental results, comparing with other homogenization methods: upper bound, lower bound, and self-consistent models. Capturing the anisotropic elastic property, the microstructure-based finite element analysis demonstrated the capability in guiding materials design to improve effective properties. [DOI: 10.1115/1.4005417] C1 [Li, Dongsheng; Sun, Xin; Khaleel, Mohammed A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Li, DS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM dongsheng.li@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 FU Institute of Paper Science and Technology (IPST) at Georgia Institute of Technology [1806E42]; PNNL LDRD Chemical Imaging Initiative; U.S. Department of Energy [DE-AC05-76RL01830] FX Experimental part of this research was supported by Institute of Paper Science and Technology (IPST) at Georgia Institute of Technology under Contract No. 1806E42. Microstructure reconstruction part is partially funded by PNNL LDRD Chemical Imaging Initiative project. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. The authors also appreciate helpful discussion with Dr. KyooSil Choi and Dr. Zhijie Xu. NR 33 TC 2 Z9 2 U1 2 U2 17 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-4289 J9 J ENG MATER-T ASME JI J. Eng. Mater. Technol.-Trans. ASME PD JAN PY 2012 VL 134 IS 1 AR 010911 DI 10.1115/1.4005417 PG 9 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 868RE UT WOS:000298541000012 ER PT J AU Tehrani, M Al-Haik, M Garmestani, H Li, DS AF Tehrani, Mehran Al-Haik, Marwan Garmestani, Hamid Li, Dongsheng TI Effect of Moderate Magnetic Annealing on the Microstructure, Quasi-Static, and Viscoelastic Mechanical Behavior of a Structural Epoxy SO JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID POLYMERIC MATERIALS; CREEP COMPLIANCE; INSTRUMENTED INDENTATION; ELECTRIC-FIELDS; NANOINDENTATION; ORIENTATION; COMPOSITES; THERMOSETS; ALIGNMENT; HARDNESS AB In this study, the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle X-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness, and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation, and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent to the macroscale creep compliance was calculated using the aforementioned nanocreep data. Using the continuous contact compliance (CCC) analysis, the phase lag angle, tan (delta), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems through which the effect of low magnetic fields on the viscoelastic properties of the epoxy was invoked. The comparison of the creep strain rate sensitivity parameter, A/d(0), from short term(80 s), creep tests and the creep compliance J(t) from the long term (2700 s) creep tests with the tan (delta) suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The results of this investigation reveal that for the epoxy system cured under low magnetic fields both the quasi-static and viscoelastic mechanical properties have been improved. [DOI: 10.1115/1.4005406] C1 [Tehrani, Mehran; Al-Haik, Marwan] Virginia Tech, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA. [Garmestani, Hamid] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Li, Dongsheng] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Al-Haik, M (reprint author), Virginia Tech, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA. EM alhaik@vt.edu RI Al-Haik, Marwan/L-7732-2014 OI Al-Haik, Marwan/0000-0001-7465-0274 FU National Science Foundation (NSF) [CMMI-0800249, CMMI: CAREER - 0846589] FX This work has been supported by the National Science Foundation (NSF) Award Nos. CMMI-0800249 and CMMI: CAREER - 0846589 for Dr. Al-Haik. The authors gratefully acknowledge this support. NR 52 TC 1 Z9 1 U1 1 U2 20 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-4289 J9 J ENG MATER-T ASME JI J. Eng. Mater. Technol.-Trans. ASME PD JAN PY 2012 VL 134 IS 1 AR 010907 DI 10.1115/1.4005406 PG 10 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 868RE UT WOS:000298541000008 ER PT J AU Gillenwater, PS Urgun-Demirtas, M Negri, MC Alvarado, J AF Gillenwater, Patricia S. Urgun-Demirtas, Meltem Negri, M. Cristina Alvarado, Jorge TI Improving data quality on low level mercury wastewater analysis SO JOURNAL OF ENVIRONMENTAL MONITORING LA English DT Article AB In order to compare treatability test results evaluating low-level mercury (Hg) removal from oil refinery wastewater, improvements in Hg analytical methods were conducted at two US EPA certified analytical labs. The revisions in the analytical protocols improved Hg recoveries and hence enabled more reliable data interpretation and comparison for the specific wastewater tested. Nevertheless, significant differences between results from the two laboratories were identified in a split-sample experiment. C1 [Gillenwater, Patricia S.; Urgun-Demirtas, Meltem; Negri, M. Cristina] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Alvarado, Jorge] Div Environm Sci, Argonne, IL 60439 USA. RP Negri, MC (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM negri@anl.gov FU Purdue University by BP North America Inc. [85V09]; University of Chicago Argonne, LLC. FX This work was sponsored via Purdue University by BP North America Inc. through Agreement no. 85V09 with the University of Chicago Argonne, LLC. NR 6 TC 1 Z9 1 U1 0 U2 2 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1464-0325 J9 J ENVIRON MONITOR JI J. Environ. Monit. PD JAN PY 2012 VL 14 IS 1 BP 27 EP 29 DI 10.1039/c1em10710k PG 3 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 873BM UT WOS:000298855800002 PM 22076073 ER PT J AU Kolemen, E Kasdin, NJ AF Kolemen, Egemen Kasdin, N. Jeremy TI Optimization of an Occulter-Based Extrasolar-Planet-Imaging Mission SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID TELESCOPE; STARS AB A novel approach to extrasolar-planet imaging uses a pair of satellites: a telescope and an occulter, where the latter is placed in the line of sight between the telescope and the star system to be imaged in order to enhance the telescope's imaging capability. The optimal configuration of this satellite formation around sun-Earth L2 halo orbits is studied. Trajectory optimization of the occulter motion between imaging sessions of different stars is performed using a range of different criteria and methods. Thus, the global optimization problem is transformed into a time-dependent traveling salesman problem. The time-dependent traveling salesman problem is augmented with various constraints that arrive from the mission, and this problem is solved by employing simulated annealing and branching algorithms. For a concrete understanding of the feasibility of the mission, the performance of an example spacecraft, the Small Missions for Advanced Research in Technology (SMART-1), is analyzed. C1 [Kolemen, Egemen] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kasdin, N. Jeremy] Princeton Univ, Mech & Aerosp Dept, Princeton, NJ 08544 USA. RP Kolemen, E (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ekolemen@pppl.gov NR 31 TC 0 Z9 0 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD JAN-FEB PY 2012 VL 35 IS 1 BP 172 EP 185 DI 10.2514/1.53479 PG 14 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 876ZO UT WOS:000299146500015 ER PT J AU Elkasrawy, M Immel, D Wen, XJ Liu, XY Liang, LF Hamrick, MW AF Elkasrawy, Moataz Immel, David Wen, Xuejun Liu, Xiaoyan Liang, Li-Fang Hamrick, Mark W. TI Immunolocalization of Myostatin (GDF-8) Following Musculoskeletal Injury and the Effects of Exogenous Myostatin on Muscle and Bone Healing SO JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY LA English DT Article DE muscle regeneration; endochondral ossification; fracture healing; fibrosis ID ACTIVIN RECEPTORS; BETA SUPERFAMILY; EXPRESSION; MICE; MASS; REGENERATION; GROWTH; DIFFERENTIATION; INHIBITION; FIBROSIS AB The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a "pool" of intense myostatin staining was observed among injured skeletal muscle fibers 12-24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 mu g/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury. (J Histochem Cytochem 60:22-30, 2012) C1 [Hamrick, Mark W.] Georgia Hlth Sci Univ, Dept Cellular Biol & Anat, Augusta, GA 30912 USA. [Elkasrawy, Moataz] Univ Colorado, Sch Dent Med, Denver, CO 80202 USA. [Immel, David] Savannah River Natl Lab, Aiken, SC USA. [Wen, Xuejun; Liu, Xiaoyan] Clemson Univ, Charleston, SC USA. [Wen, Xuejun; Liu, Xiaoyan] Med Univ S Carolina, Bioengn Program, Charleston, SC 29425 USA. [Liang, Li-Fang] MetaMorphix Inc, Calverton, MD USA. RP Hamrick, MW (reprint author), Georgia Hlth Sci Univ, Dept Cellular Biol & Anat, Cb1116 Laney Walker Blvd, Augusta, GA 30912 USA. EM mhamrick@georgiahealth.edu RI Hamrick, Mark/K-1131-2016 FU National Institutes of Health [AR049717]; Office of Naval Research [N000140810197]; Department of the Army [USAMRMC PR093619] FX The authors disclosed receipt of the following financial support for the research and/or authorship of this article: The National Institutes of Health (AR049717), Office of Naval Research (N000140810197), and Department of the Army (USAMRMC PR093619). NR 39 TC 12 Z9 12 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0022-1554 J9 J HISTOCHEM CYTOCHEM JI J. Histochem. Cytochem. PD JAN PY 2012 VL 60 IS 1 BP 22 EP 30 DI 10.1369/0022155411425389 PG 9 WC Cell Biology SC Cell Biology GA 869NC UT WOS:000298603800002 PM 22205678 ER PT J AU Lopes, N Hawkins, SA Jegier, P Menn, FM Sayler, GS Ripp, S AF Lopes, Nicholas Hawkins, Shawn A. Jegier, Patricia Menn, Fu-Min Sayler, Gary S. Ripp, Steven TI Detection of dichloromethane with a bioluminescent (lux) bacterial bioreporter SO JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY LA English DT Article DE Bioluminescence; Bioreporter; Dichloromethane; Lux; Methylene chloride ID ORGANIC-SOLVENTS; EXPOSURE; GAS; INHALATION; BIODEGRADATION; INTOXICATION; HUMANS; GENES; DM4 AB The focus of this research effort was to develop an autonomous, inducible, lux-based bioluminescent bioreporter for the real-time detection of dichloromethane. Dichloromethane (DCM), also known as methylene chloride, is a volatile organic compound and one of the most commonly used halogenated solvents in the U.S., with applications ranging from grease and paint stripping to aerosol propellants and pharmaceutical tablet coatings. Predictably, it is released into the environment where it contaminates air and water resources. Due to its classification as a probable human carcinogen, hepatic toxin, and central nervous system effector, DCM must be carefully monitored and controlled. Methods for DCM detection usually rely on analytical techniques such as solid-phase microextraction (SPME) and capillary gas chromatography or photoacoustic environmental monitors, all of which require trained personnel and/or expensive equipment. To complement conventional monitoring practices, we have created a bioreporter for the self-directed detection of DCM by taking advantage of the evolutionary adaptation of bacteria to recognize and metabolize chemical agents. This bioreporter, Methylobacterium extorquens DCM (lux) , was engineered to contain a bioluminescent luxCDABE gene cassette derived from Photorhabdus luminescens fused downstream to the dcm dehalogenase operon, which causes the organism to generate visible light when exposed to DCM. We have demonstrated detection limits down to 1.0 ppm under vapor phase exposures and 0.1 ppm under liquid phase exposures with response times of 2.3 and 1.3 h, respectively, and with specificity towards DCM under relevant industrial environmental monitoring conditions. C1 [Lopes, Nicholas; Hawkins, Shawn A.; Jegier, Patricia; Menn, Fu-Min; Sayler, Gary S.; Ripp, Steven] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Hawkins, Shawn A.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Menn, Fu-Min; Sayler, Gary S.] Oak Ridge Natl Lab, Joint Inst Biol Sci, Oak Ridge, TN 37831 USA. RP Ripp, S (reprint author), Univ Tennessee, Ctr Environm Biotechnol, 676 Dabney Hall, Knoxville, TN 37996 USA. EM saripp@utk.edu RI Ripp, Steven/B-2305-2008 OI Ripp, Steven/0000-0002-6836-1764 FU NASA [NNJ04HF02A]; National Science Foundation Division of Biological Infrastructure (DBI) [DBI-0963854] FX Research support was provided by the NASA Advanced Environmental Monitoring and Control Program under cooperative agreement number NNJ04HF02A and the National Science Foundation Division of Biological Infrastructure (DBI) under award number DBI-0963854. NR 34 TC 5 Z9 5 U1 1 U2 16 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1367-5435 J9 J IND MICROBIOL BIOT JI J. Ind. Microbiol. Biotechnol. PD JAN PY 2012 VL 39 IS 1 BP 45 EP 53 DI 10.1007/s10295-011-0997-5 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 871RR UT WOS:000298755900006 PM 21688172 ER PT J AU Hao, XG Gourdon, O Liddle, BJ Bartlett, BM AF Hao, Xiaoguang Gourdon, Olivier Liddle, Brendan J. Bartlett, Bart M. TI Improved electrode kinetics in lithium manganospinel nanoparticles synthesized by hydrothermal methods: identifying and eliminating oxygen vacancies SO JOURNAL OF MATERIALS CHEMISTRY LA English DT Article ID MANGANESE-OXIDE SPINEL; LI-ION BATTERIES; MN-O SPINEL; STRUCTURAL PHASE-TRANSITION; LIMN2O4 CATHODE MATERIAL; ELECTROCHEMICAL PROPERTIES; CAPACITY RETENTION; MELT-IMPREGNATION; ONE-STEP; 3.3 V AB Lithium-rich manganospinel (Li(1+x)Mn(2-x)O(4-delta), lithium manganese oxide) has been synthesized by hydrothermal methods employing potassium permanganate, lithium hydroxide, and acetone as synthons. The solid product crystallizes as 30-50 nm particles with some larger 100-300 nm particles also occurring. Materials prepared by this low-temperature route contain oxygen vacancies which can be demonstrated by combining thermogravimetric analysis, differential scanning calorimetry, and cyclic voltammetry. Oxygen vacancies can be minimized beyond the limits of detection for these experiments by annealing the compound in air at 500 degrees C for 4 h. At room temperature, Rietveld refinement of the powder neutron diffraction pattern shows an orthorhombic Fddd(alpha 00) superlattice of the Fd (3) over barm space group for hydrothermally synthesized lithium manganospinel. After annealing, oxygen vacancies are eliminated and the superlattice features disappear. Furthermore, the hydrothermal synthesis of lithium manganospinel performed under a pure oxygen atmosphere followed by annealing at 500 degrees C for 4 h in air gives superior electrochemical properties. This compound shows a reversible capacity of 115 mAh/g when cycled at a rate C/3 and retains 93.6% of this capacity after 100 cycles. This same capacity is observed at the faster rate of 3C. At 5C, the capacity drops to 99 mAh/g, but capacity retention remains greater than 95% after 100 cycles. Finally, when cycled at 5C at an elevated temperature of 55 degrees C, the O(2) annealed sample shows an initial capacity of 99 mAh/g with 89% capacity retention after 100 cycles. The high rate capability of this material is ascribed to fast lithium-ion diffusion, estimated to be 10(-7) to 10(-9) cm(2) s(-1) by electrochemical impedance spectroscopy. C1 [Hao, Xiaoguang; Liddle, Brendan J.; Bartlett, Bart M.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Gourdon, Olivier] Oak Ridge Natl Lab, SNS, Julich Ctr Neutron Sci JCNS Outstn, Oak Ridge, TN USA. RP Bartlett, BM (reprint author), Univ Michigan, Dept Chem, 930 N Univ Ave, Ann Arbor, MI 48109 USA. EM gourdonoa@ornl.gov; bartmb@umich.edu RI Bartlett, Bart/F-1233-2013 OI Bartlett, Bart/0000-0001-8298-5963 FU University of Michigan; NSF [DMR-0320710]; [IPTS-3920] FX This work was supported by generous start-up funding from the University of Michigan. We thank Professor Stephen Maldonado for experimental assistance with EIS measurements, Dr Antek Wong Foy with assistance with surface area measurements, and Mr. Sean M. Collins for experimental assistance with SEM imaging. SEM instrumentation at the University of Michigan Electron Microbeam Analysis Laboratory was funded by NSF grant # DMR-0320710. Neutron beam time at BL-11A at ORNL was sponsored by proposal IPTS-3920. NR 74 TC 17 Z9 17 U1 5 U2 63 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0959-9428 J9 J MATER CHEM JI J. Mater. Chem. PY 2012 VL 22 IS 4 BP 1578 EP 1591 DI 10.1039/c1jm15583k PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 873JG UT WOS:000298878100048 ER PT J AU Liang, HY Raitano, JM He, GH Akey, AJ Herman, IP Zhang, LH Chan, SW AF Liang, Hongying Raitano, Joan M. He, Guanghui Akey, Austin J. Herman, Irving P. Zhang, Lihua Chan, Siu-Wai TI Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID WATER-GAS-SHIFT; SOLID-SOLUTIONS; GRAIN-GROWTH; STORAGE CAPACITY; LOW-TEMPERATURE; CEO2 CERAMICS; X-RAY; RAMAN; SIZE; OXIDATION AB Nanoparticles of palladium-doped cerium oxide (Pd-CeO2) have been prepared by aqueous co-precipitation resulting in a single phase cubic structure after calcination according to X-ray diffraction (XRD). Inhomogeneous strain, calculated using the Williamson-Hall method, was found to increase with palladium content, and the lattice contracts slightly, relative to nano-cerium oxide, as palladium content is increased. Moreover, high resolution transmission electron microscopy reveals some instances of defective microstructure. These factors combined imply that palladium is in solid solution with CeO2 in these nanoparticles, but palladium (II) oxide (PdO) peaks in the Raman spectra indicate that solid solution formation is partial and that highly dispersed PdO is present as well as the solid solution. Nevertheless, the addition of palladium to the CeO2 lattice inhibits the growth of the 6% Pd-CeO2 particles compared to pure CeO2 between 600 and 850 A degrees C. Activation energies for grain growth of 54 +/- A 7 and 79 +/- A 8 kJ/mol were determined for 6% Pd-CeO2 and pure CeO2, respectively, along with pre-exponential Arrhenius factors of 10 for the doped sample and 600 for pure cerium oxide. C1 [Liang, Hongying; Raitano, Joan M.; He, Guanghui; Akey, Austin J.; Herman, Irving P.; Chan, Siu-Wai] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Chan, SW (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sc174@columbia.edu RI He, Guanghui/B-9830-2014; Zhang, Lihua/F-4502-2014 FU Department of Energy [DOE DE-FG02-05ER15730]; Materials Research Science and Engineering Center (MRSEC) of the National Science Foundation [DMR-0213574]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; BASF FX The authors gratefully acknowledge the support of BASF, the Department of Energy under Award Number DOE DE-FG02-05ER15730, and the Materials Research Science and Engineering Center (MRSEC) Program of the National Science Foundation (# DMR-0213574). Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 50 TC 13 Z9 13 U1 2 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD JAN PY 2012 VL 47 IS 1 BP 299 EP 307 DI 10.1007/s10853-011-5798-8 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 865QS UT WOS:000298326000030 ER PT J AU Ha, J Chae, S Chou, KW Tyliszczak, T Monteiro, PJM AF Ha, J. Chae, S. Chou, K. W. Tyliszczak, T. Monteiro, P. J. M. TI Effect of polymers on the nanostructure and on the carbonation of calcium silicate hydrates: a scanning transmission X-ray microscopy study SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID C-S-H; INNER-SHELL SPECTROSCOPY; ADVANCED LIGHT-SOURCE; NEAR-EDGE STRUCTURE; ATR-FTIR; PORTLAND-CEMENT; OD CHARACTER; IN-SITU; MONTMORILLONITE; SI-29 AB This study investigated the effects of organic polymers (polyethylene glycol and hexadecyltrimethylammonium) on structures of calcium silicate hydrates (C-S-H) which is the major product of Portland cement hydration. Increased surface areas and expansion of layers were observed for all organic polymer modified C-S-H. The results from attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopic measurements also suggest lowered water contents in the layered structures for the C-S-H samples that are modified by organic polymers. Scanning transmission X-ray microscopy (STXM) results further supports this observation. We also observed difference in the extent of C-S-H carbonation due to the presence of organic polymers. No calcite formed in the presence of HDTMA whereas formation of calcite was observed with C-S-H sample modified with PEG. We suggest that the difference in the carbonation reaction is possibly due to the ease of penetration and diffusion of the CO(2). This observation suggests that CO(2) reaction strongly depends on the presence of organic polymers and the types of organic polymers incorporated within the C-S-H structure. This is the first comprehensive study using STXM to quantitatively characterize the level of heterogeneity in cementitious materials at high spatial and spectral resolutions. The results from BET, XRD, ATR-FTIR, and STXM measurements are consistent and suggest that C-S-H layer structures are significantly modified due to the presence of organic polymers, and that the chemical composition and structural differences among the organic polymers determine the extent of the changes in the C-S-H nanostructures as well as the extent of carbonation reaction. C1 [Ha, J.; Chae, S.; Monteiro, P. J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Chou, K. W.; Tyliszczak, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Ha, J (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM juyoung@berkeley.edu FU King Abdullah University of Science and Technology (KAUST) [KUS-11-004021]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This publication was based on study supported in part by Award No. KUS-11-004021, made by King Abdullah University of Science and Technology (KAUST). We also wish to acknowledge Professor Wenk at University of California Berkeley who helped us prepare STXM samples and Timothy Teague at University of California Berkeley with his help on sample preparation. We also thank McMaster University in Canada for sharing the sample synthesis and methods as well as A. P. Hitchcock at McMaster University for helpful insights and comments on our experiments. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 NR 48 TC 17 Z9 17 U1 1 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD JAN PY 2012 VL 47 IS 2 BP 976 EP 989 DI 10.1007/s10853-011-5877-x PG 14 WC Materials Science, Multidisciplinary SC Materials Science GA 865RB UT WOS:000298326900045 ER PT J AU Garcia-Mateo, C Caballero, FG Miller, MK Jimenez, JA AF Garcia-Mateo, C. Caballero, F. G. Miller, M. K. Jimenez, J. A. TI On measurement of carbon content in retained austenite in a nanostructured bainitic steel SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID LOW-TEMPERATURE BAINITE; X-RAY-DIFFRACTION; ATOM-PROBE; LATTICE-PARAMETERS; SILICON STEEL; TRIP STEELS; IRON-CARBON; TRANSFORMATION; FERRITE; FE AB In this study, the carbon content of retained austenite in a nanostructured bainitic steel was measured by atom probe tomography and compared with data derived from the austenite lattice parameter determined by X-ray diffraction. The results provide new evidence about the heterogeneous distribution of carbon in austenite, a fundamental issue controlling ductility in this type of microstructure. C1 [Garcia-Mateo, C.; Caballero, F. G.; Jimenez, J. A.] CENIM CSIC, Ctr Nacl Invest Met, Madrid 28040, Spain. [Miller, M. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Garcia-Mateo, C (reprint author), CENIM CSIC, Ctr Nacl Invest Met, Avda Gregorio Del Amo 8, Madrid 28040, Spain. EM cgm@cenim.csic.es RI CABALLERO, FRANCISCA/A-4292-2008; Garcia-Mateo, Carlos/A-7752-2008; Jimenez, Jose/H-2644-2015; OI Garcia-Mateo, Carlos/0000-0002-4773-5077; Jimenez, Jose/0000-0003-4272-6873; Caballero, Francisca/0000-0002-5548-7659 FU Spanish Ministry of Science and Innovation [MAT2010-15330]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The authors gratefully acknowledge the support of the Spanish Ministry of Science and Innovation for funding this research under MAT2010-15330. Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 45 TC 28 Z9 30 U1 3 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD JAN PY 2012 VL 47 IS 2 BP 1004 EP 1010 DI 10.1007/s10853-011-5880-2 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 865RB UT WOS:000298326900048 ER PT J AU Assary, RS Broadbelt, LJ Curtiss, LA AF Assary, Rajeev Surendran Broadbelt, Linda J. Curtiss, Larry A. TI Bronsted-Evans-Polanyi relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory SO JOURNAL OF MOLECULAR MODELING LA English DT Article DE Enzyme catalysis; BEP relationship; Density functional theory ID GENOME-SCALE MODEL; METABOLIC NETWORK; THERMODYNAMIC ANALYSIS; ENERGIES; RECONSTRUCTION; PATHWAYS; MOLECULES; EXCHANGE AB The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Bronsted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations. C1 [Assary, Rajeev Surendran; Broadbelt, Linda J.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Assary, Rajeev Surendran; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Assary, Rajeev Surendran; Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Assary, RS (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. EM Rajeev@anl.gov; broadbelt@northwestern.edu RI Broadbelt, Linda/B-7640-2009; Surendran Assary, Rajeev/E-6833-2012 OI Surendran Assary, Rajeev/0000-0002-9571-3307 FU National Science Foundation [CBET-0835800]; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center; US Department of Energy, Office of Science, and Office of Basic Energy Sciences; ANL Center for Nanoscale Materials FX The authors are grateful for the financial support of the National Science Foundation (CBET-0835800). This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences. We gratefully acknowledge grants of computer time from the ANL Center for Nanoscale Materials. NR 33 TC 3 Z9 3 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1610-2940 J9 J MOL MODEL JI J. Mol. Model. PD JAN PY 2012 VL 18 IS 1 BP 145 EP 150 DI 10.1007/s00894-011-1062-z PG 6 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Biochemistry & Molecular Biology; Biophysics; Chemistry; Computer Science GA 871RX UT WOS:000298756500013 PM 21523538 ER PT J AU Szema, AM Schmidt, MP Lanzirotti, A Harrington, AD Lyubsky, S Reeder, RJ Schoonen, MAA AF Szema, Anthony M. Schmidt, Millicent P. Lanzirotti, Antonio Harrington, Andrea D. Lyubsky, Sergey Reeder, Richard J. Schoonen, Martin A. A. TI Titanium and Iron in Lung of a Soldier With Nonspecific Interstitial Pneumonitis and Bronchiolitis After Returning From Iraq SO JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE LA English DT Letter C1 [Szema, Anthony M.] SUNY Stony Brook, Med Ctr, Stony Brook, NY 11794 USA. [Szema, Anthony M.] Stony Brook Allergy & Asthma, Stony Brook, NY USA. [Szema, Anthony M.; Lyubsky, Sergey] Vet Affairs Med Ctr, Northport, NY USA. [Lanzirotti, Antonio] Univ Chicago, Chicago, IL 60637 USA. [Lanzirotti, Antonio] Brookhaven Natl Lab, Upton, NY 11973 USA. [Schmidt, Millicent P.] SUNY Stony Brook, Dept Geosci, Minerals Met Metalloids & Tox 3MT Grad Training P, Stony Brook, NY 11794 USA. [Schoonen, Martin A. A.] SUNY Stony Brook, Sustainabil Studies Program, Stony Brook, NY 11794 USA. RP Szema, AM (reprint author), SUNY Stony Brook, Med Ctr, Stony Brook, NY 11794 USA. RI Schoonen, martin/E-7703-2011 OI Schoonen, martin/0000-0002-7133-1160 NR 5 TC 6 Z9 6 U1 0 U2 5 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1076-2752 J9 J OCCUP ENVIRON MED JI J. Occup. Environ. Med. PD JAN PY 2012 VL 54 IS 1 BP 1 EP 2 DI 10.1097/JOM.0b013e31824327ca PG 2 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 875HW UT WOS:000299022000001 PM 22227868 ER PT J AU Ban, SF Horowitz, CJ Michaels, R AF Ban, Shufang Horowitz, C. J. Michaels, R. TI Parity violating electron scattering measurements of neutron densities SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID EQUATION-OF-STATE; PROTON-SCATTERING; DENSE MATTER; NUCLEI; PB-208; PARAMETRIZATION AB Parity violating electron scattering allows model-independent measurements of neutron densities that are free from most strong interaction uncertainties. In this paper, we present statistical error estimates for a variety of experiments. The neutron radius R-n can be measured in several nuclei, as long as the nuclear excited states are not too low in energy. We present error estimates for R-n measurements in Ca-40, Ca-48, Sn-112, Sn-120, Sn-124 and Pb-208. In general, we find that the smaller the nucleus, the easier the measurement. This is because smaller nuclei can be measured at higher momentum transfers where the parity violating asymmetry A(pv) is larger. Also in general, the more neutron rich the isotope, the easier the measurement, because neutron-rich isotopes have larger weak charges and larger A(pv). Measuring Rn in Ca-48 appears very promising because it has a higher figure of merit than Pb-208. In addition, R-n(Ca-48) may be more easily related to two-nucleon and three-nucleon interactions, including very interesting three-neutron forces, than R-n(Pb-208). After measuring R-n, one can constrain the surface thickness of the neutron density a(n) with a second measurement at somewhat higher momentum transfers. We present statistical error estimates for measuring a(n) in Ca-48, Sn-120 and Pb-208. Again, we find that a(n) is easier to measure in smaller nuclei. C1 [Ban, Shufang; Horowitz, C. J.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Ban, Shufang; Horowitz, C. J.] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47405 USA. [Michaels, R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. RP Horowitz, CJ (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. EM horowit@indiana.edu FU DOE [DE-FG02-87ER40365] FX This work was supported in part by the DOE grant DE-FG02-87ER40365. NR 32 TC 25 Z9 25 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JAN PY 2012 VL 39 IS 1 AR 015104 DI 10.1088/0954-3899/39/1/015104 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 866TU UT WOS:000298407800017 ER PT J AU Lesinski, T Hebeler, K Duguet, T Schwenk, A AF Lesinski, T. Hebeler, K. Duguet, T. Schwenk, A. TI Chiral three-nucleon forces and pairing in nuclei SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID EQUATION; STATE; GAPS AB We present the first study of pairing in nuclei including three-nucleon forces. We perform systematic calculations of the odd-even mass staggering generated using a microscopic pairing interaction at first order in chiral low-momentum interactions. Significant repulsive contributions from the leading chiral three-nucleon forces are found. Two- and three-nucleon interactions combined account for approximately 70% of the experimental pairing gaps, which leaves room for self-energy and induced interaction effects that are expected to be overall attractive in nuclei. C1 [Lesinski, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Lesinski, T.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Lesinski, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lesinski, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hebeler, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hebeler, K.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Duguet, T.] CEA, Ctr Saclay, IRFU Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Duguet, T.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Duguet, T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Schwenk, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Schwenk, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. RP Lesinski, T (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM tlesinsk@uw.edu; hebeler.4@osu.edu; thomas.duguet@cea.fr; schwenk@physik.tu-darmstadt.de FU DOE [DE-FG02-07ER41529, DE-FG02-00ER41132]; UNEDF SciDAC Collaboration under DOE [DE-FC02-07ER41457]; NSF [PHY-0835543, PHY-1002478]; NSERC; Helmholtz Association [HA216/EMMI]; DFG [SFB 634]; NRC Canada FX This work was supported in part by the DOE under grants DE-FG02-07ER41529 and DE-FG02-00ER41132, the UNEDF SciDAC Collaboration under DOE grant DE-FC02-07ER41457, the NSF under grants PHY-0835543 and PHY-1002478, by NSERC, the Helmholtz Alliance Program of the Helmholtz Association, Contract HA216/EMMI 'Extremes of Density and Temperature: Cosmic Matter in the Laboratory', and the DFG through grant SFB 634. TRIUMF receives funding via a contribution through the NRC Canada. NR 38 TC 16 Z9 16 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JAN PY 2012 VL 39 IS 1 AR 015108 DI 10.1088/0954-3899/39/1/015108 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 866TU UT WOS:000298407800021 ER PT J AU Salgado, CA Alvarez-Muniz, J Arleo, F Armesto, N Botje, M Cacciari, M Campbell, J Carli, C Cole, B D'Enterria, D Gelis, F Guzey, V Hencken, K Jacobs, P Jowett, JM Klein, SR Maltoni, F Morsch, A Piotrzkowski, K Qiu, JW Satogata, T Sikler, F Strikman, M Takai, H Vogt, R Wessels, JP White, SN Wiedemann, UA Wyslouch, B Zhalov, M AF Salgado, C. A. Alvarez-Muniz, J. Arleo, F. Armesto, N. Botje, M. Cacciari, M. Campbell, J. Carli, C. Cole, B. D'Enterria, D. Gelis, F. Guzey, V. Hencken, K. Jacobs, P. Jowett, J. M. Klein, S. R. Maltoni, F. Morsch, A. Piotrzkowski, K. Qiu, J. W. Satogata, T. Sikler, F. Strikman, M. Takai, H. Vogt, R. Wessels, J. P. White, S. N. Wiedemann, U. A. Wyslouch, B. Zhalov, M. TI Proton-nucleus collisions at the LHC: scientific opportunities and requirements SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID LARGE TRANSVERSE-MOMENTUM; COLOR GLASS CONDENSATE; JET CROSS-SECTIONS; PB-PB COLLISIONS; TO-LEADING ORDER; FRAGMENTATION FUNCTIONS; PARTON DISTRIBUTIONS; HADRONIC COLLISIONS; QCD; PHYSICS AB Proton-nucleus (p+A) collisions have long been recognized as a crucial component of the physics program with nuclear beams at high energies, in particular for their reference role to interpret and understand nucleus-nucleus data as well as for their potential to elucidate the partonic structure of matter at low parton fractional momenta (small-x). Here, we summarize the main motivations that make a proton-nucleus run a decisive ingredient for a successful heavy-ion program at the Large Hadron Collider (LHC) and we present unique scientific opportunities arising from these collisions. We also review the status of ongoing discussions about operation plans for the p+A mode at the LHC. C1 [Salgado, C. A.; Alvarez-Muniz, J.; Armesto, N.] U Santiago de Compostela, Dept Fis Particulas, Galicia, Spain. [Salgado, C. A.; Alvarez-Muniz, J.; Armesto, N.] U Santiago de Compostela, IGFAE, Galicia, Spain. [Arleo, F.] Univ Savoie, LAPTH, Annecy Le Vieux, France. [Arleo, F.] CNRS, Annecy Le Vieux, France. [Botje, M.] NIKHEF, Amsterdam, Netherlands. [Cacciari, M.] Univ Paris 06, LPTHE, Paris 6, France. [Campbell, J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL USA. [Carli, C.; Jowett, J. M.] CERN, Beams Dept, Geneva, Switzerland. [Cole, B.] Columbia Univ, Nevis Labs, New York, NY USA. [D'Enterria, D.; Morsch, A.; Wessels, J. P.] CERN, Expt Div, Dept Phys, Geneva, Switzerland. [D'Enterria, D.] Univ Barcelona, ICREA, ICC UB, E-08028 Barcelona, Catalonia, Spain. [Gelis, F.] CEA DSM Saclay, IPTh, F-91191 Gif Sur Yvette, France. [Guzey, V.] Jefferson Lab, Newport News, VA USA. [Hencken, K.] Univ Basel, Inst Phys, CH-4003 Basel, Switzerland. [Jacobs, P.; Klein, S. R.; Vogt, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Maltoni, F.; Piotrzkowski, K.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Qiu, J. W.; Satogata, T.; Takai, H.; White, S. N.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Sikler, F.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Strikman, M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Wessels, J. P.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Wiedemann, U. A.] CERN, Div Theory, Dept Phys, CH-1211 Geneva, Switzerland. [Wyslouch, B.] LLR Ecole Polytech, F-91128 Palaiseau, France. [Zhalov, M.] St Petersburg Nucl Phys Inst, Gatchina, Russia. RP Salgado, CA (reprint author), U Santiago de Compostela, Dept Fis Particulas, Galicia, Spain. EM carlos.salgado@usc.es RI Alvarez-Muniz, Jaime/H-1857-2015; Armesto, Nestor/C-4341-2017; Takai, Helio/C-3301-2012; Salgado, Carlos A./G-2168-2015 OI Alvarez-Muniz, Jaime/0000-0002-2367-0803; Armesto, Nestor/0000-0003-0940-0783; Guzey, Vadim/0000-0002-2393-8507; Jowett, John M./0000-0002-9492-3775; Takai, Helio/0000-0001-9253-8307; Salgado, Carlos A./0000-0003-4586-2758 FU Ministerio de Ciencia e Innovacion of Spain [FPA2008-01177, FPA2009-06867-E]; Xunta de Galicia (Conselleria de Educacion) [PGIDIT10PXIB 206017PR]; Consolider-Ingenio 2010 CPAN [CSD2007-00042]; Feder; EU [FP7-ERG-2008-235071]; US DOE [DE-AC05-06OR23177]; US Department of Energy [DE-AC-76-00098, DE-AC02-98CH10886, DE-FG02-93ER40771]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation (NSF) [PHY-0555660] FX The work of CAS and NA was supported by Ministerio de Ciencia e Innovacion of Spain (grants FPA2008-01177 and FPA2009-06867-E), Xunta de Galicia (Conselleria de Educacion and grant PGIDIT10PXIB 206017PR), and by project Consolider-Ingenio 2010 CPAN (CSD2007-00042) and Feder. CAS is a Ramon y Cajal researcher. JA-M thanks Xunta de Galicia (INCITE09 206 336 PR and Conselleria de Educacion); Ministerio de Ciencia e Innovacion (FPA 2007-65114 and Consolider CPAN) and Feder Funds. DE acknowledges support by the 7th EU Framework Programme (contract FP7-ERG-2008-235071). Authored by Jefferson Science Associates (VG), LLC under US DOE contract no DE-AC05-06OR23177. The US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for US Government purposes. The work of PJ and SK was funded in part by the US Department of Energy under contract number DE-AC-76-00098. The work of JWQ was funded in part by the US Department of Energy under contract number DE-AC02-98CH10886. The work of MS has been supported by the US Department of Energy grant number DE-FG02-93ER40771. The work of RV was performed under the auspices of the US Department of Energy by Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was also supported in part by the National Science Foundation grant NSF PHY-0555660. NR 120 TC 78 Z9 79 U1 2 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JAN PY 2012 VL 39 IS 1 AR 015010 DI 10.1088/0954-3899/39/1/015010 PG 28 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 866TU UT WOS:000298407800011 ER PT J AU Wienke, BR Budge, KG Chang, JH Dahl, JA Hungerford, AL AF Wienke, B. R. Budge, K. G. Chang, J. H. Dahl, J. A. Hungerford, A. L. TI Jacobian transformed and detailed balance approximations for photon induced scattering SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Induced scattering; Photon detailed balance; Numerical approximations; Effective cross sections ID FLUX-LIMITED DIFFUSION; COMPTON-SCATTERING; HIGH-TEMPERATURES; OPACITY AB Photon emission and scattering are enhanced by the number of photons in the final state, and the photon transport equation reflects this in scattering-emission kernels and source terms. This is often a complication in both theoretical and numerical analyzes, requiring approximations and assumptions about background and material temperatures, incident and exiting photon energies, local thermodynamic equilibrium, plus other related aspects of photon scattering and emission. We review earlier schemes parameterizing photon scattering-emission processes, and suggest two alternative schemes. One links the product of photon and electron distributions in the final state to the product in the initial state by Jacobian transformation of kinematical variables (energy and angle), and the other links integrands of scattering kernels in a detailed balance requirement for overall (integrated) induced effects. Compton and inverse Compton differential scattering cross sections are detailed in appropriate limits, numerical integrations are performed over the induced scattering kernel, and for tabulation induced scattering terms are incorporated into effective cross sections for comparisons and numerical estimates. Relativistic electron distributions are assumed for calculations. Both Wien and Planckian distributions are contrasted for impact on induced scattering as LIE limit points. We find that both transformed and balanced approximations suggest larger induced scattering effects at high photon energies and low electron temperatures, and smaller effects in the opposite limits, compared to previous analyzes, with 10-20% increases in effective cross sections. We also note that both approximations can be simply implemented within existing transport modules or opacity processors as an additional term in the effective scattering cross section. Applications and comparisons include effective cross sections, kernel approximations, and impacts on radiative transport solutions in 10 geometry. The additional computing time for processing opacities (cross sections) within these approximations is negligible as induced terms are merely added (multipliers) to cross sections at the end of the processing cycle. Published by Elsevier Ltd. C1 [Wienke, B. R.; Budge, K. G.; Chang, J. H.; Dahl, J. A.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Hungerford, A. L.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Wienke, BR (reprint author), Los Alamos Natl Lab, Comp & Computat Sci Div, POB 1663, Los Alamos, NM 87545 USA. EM brw@lanl.gov NR 20 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JAN PY 2012 VL 113 IS 2 BP 150 EP 157 DI 10.1016/j.jqsrt.2011.09.018 PG 8 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 873HH UT WOS:000298871200004 ER PT J AU Hoffman, DC AF Hoffman, Darleane C. TI Development, relevance, and applications of "atom-at-a-time" techniques SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 13th International Conference on Modern Trends in Activation Analysis CY MAR 13-18, 2011 CL College Station, TX DE Atom-at-a-time techniques; Transactinides; Graduate research ID ELECTRONIC-STRUCTURE; ELEMENT 106; CHEMISTRY; TRANSACTINIDES; LAWRENCIUM AB A brief history of the development and some of the first uses of "atom-at-a-time" techniques to investigate the chemical and nuclear properties of the actinide and transactinide elements are presented. The currently known transactinides (all elements with Z > 103) were discovered using physical (nuclear) techniques rather than chemical separation techniques because of their short half-lives and low production rates and the difficulty in accurately predicting chemical properties of the heaviest elements because of relativistic effects. Some of the constraints on systems suitable for such studies and whether these tracer-scale results can be extended to the macro-scale are discussed. The relevance and importance of the methods and their potential for application to some current problems such as nuclear forensics and proliferation and environmental concerns are considered. The value of graduate research utilizing such techniques in helping to attract and educate the next generation of nuclear scientists is highlighted. C1 [Hoffman, Darleane C.] Univ Calif Berkeley, Dept Chem, Grad Sch, Berkeley, CA 94720 USA. [Hoffman, Darleane C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hoffman, DC (reprint author), Univ Calif Berkeley, Dept Chem, Grad Sch, Berkeley, CA 94720 USA. EM dmhoffman@att.net NR 34 TC 2 Z9 2 U1 1 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JAN PY 2012 VL 291 IS 1 BP 5 EP 11 DI 10.1007/s10967-011-1361-y PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 861HU UT WOS:000298010800003 ER PT J AU Egnatuk, CM Lowrey, J Biegalski, SR Bowyer, T Haas, D Orrell, J Woods, V Keillor, M AF Egnatuk, Christine M. Lowrey, Justin Biegalski, Steven R. Bowyer, Theodore Haas, Derek Orrell, John Woods, Vincent Keillor, Martin TI Production of Ar-37 in The University of Texas TRIGA reactor facility SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 13th International Conference on Modern Trends in Activation Analysis CY MAR 13-18, 2011 CL College Station, TX DE Ar-37; CTBT; On-Site Inspections; Radioargon AB The detection of Ar-37 is important for On-Site Inspections (OSI) for the Comprehensive Nuclear-Test-Ban Treaty monitoring. In an underground nuclear explosion this radionuclide is produced by Ca-40(n,alpha)Ar-37 reaction in surrounding soil and rock. With a half-life of 35 days, Ar-37 provides a signal useful for confirming the location of an underground nuclear event. An ultra-low-background proportional counter developed by Pacific Northwest National Laboratory is used to detect Ar-37, which decays via electron capture. The irradiation of Ar gas at natural enrichment in the 3L facility within the Mark II TRIGA reactor facility at The University of Texas at Austin provides a source of Ar-37 for the calibration of the detector. The Ar-41 activity is measured by the gamma activity using an HPGe detector after the sample is removed from the core. Using the Ar-41/Ar-37 production ratio and the Ar-41 activity, the amount of Ar-37 created is calculated. The Ar-41 decays quickly (half-life of 109.34 min) leaving a radioactive sample of high purity Ar-37 and only trace levels of Ar-39. C1 [Egnatuk, Christine M.; Lowrey, Justin; Biegalski, Steven R.] Univ Texas Austin, Dept Mech Engn, Nucl & Radiat Engn Program, Austin, TX 78712 USA. [Bowyer, Theodore; Haas, Derek; Orrell, John; Woods, Vincent; Keillor, Martin] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Egnatuk, CM (reprint author), Univ Texas Austin, Dept Mech Engn, Nucl & Radiat Engn Program, Austin, TX 78712 USA. EM cegnatuk@gmail.com RI Orrell, John/E-9313-2015; OI Orrell, John/0000-0001-7968-4051; Keillor, Martin/0000-0001-7828-5868 FU National Nuclear Security Administration's Office of Nonproliferation and International Security FX This research was performed under appointment to the U.S. Department of Energy Nuclear Nonproliferation International Safeguards Graduate Fellowship Program sponsored by the National Nuclear Security Administration's Office of Nonproliferation and International Security. NR 7 TC 5 Z9 5 U1 0 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JAN PY 2012 VL 291 IS 1 BP 257 EP 260 DI 10.1007/s10967-011-1254-0 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 861HU UT WOS:000298010800045 ER PT J AU Rennert, T Totsche, KU Heister, K Kersten, M Thieme, J AF Rennert, Thilo Totsche, Kai U. Heister, Katja Kersten, Michael Thieme, Juergen TI Advanced spectroscopic, microscopic, and tomographic characterization techniques to study biogeochemical interfaces in soil SO JOURNAL OF SOILS AND SEDIMENTS LA English DT Article DE AFM; Interfaces; mu CT; NanoSIMS; Soils; X-ray microscopy ID ATOMIC-FORCE MICROSCOPY; X-RAY MICROSCOPY; ION MASS-SPECTROMETRY; ENHANCED RAMAN-SPECTROSCOPY; POSITRON-EMISSION-TOMOGRAPHY; EDGE XANES SPECTROSCOPY; ADVANCED LIGHT-SOURCE; ORGANIC-MATTER; IN-SITU; COMPUTED-TOMOGRAPHY AB Biogeochemical interfaces, the 3D association of minerals, soil organic matter, and biota, are hotspots of soil processes because they exhibit strong biological, physical, and chemical gradients. Biogeochemical interfaces have thicknesses from nanometers to micrometers and separate bulk immobile phases from mobile liquid or gaseous phases. The aim of this contribution is to review advanced microscopic and spectroscopic characterization techniques that allow for spatially resolved analysis of composition and properties of biogeochemical interfaces or their visualization. From the variety of techniques to study biogeochemical interfaces in soil, we focus on X-ray spectromicroscopy, nano-scale secondary ion mass spectrometry, atomic force microscopy, micro-X-ray tomography, and positron emission tomography. Beside an introduction into the respective method, we review published applications and give practical examples. The development of terrestrial soils involves the formation of biogeochemical interfaces as the result of the complex 3D interplay of primary and secondary minerals, soil organic matter together with soil biota. X-ray microscopy allows for the visualization of structures down to range of 10-30 nm and for the determination of binding states of elements. Nano-scale secondary ion mass spectrometry is capable of simultaneously analyzing up to seven secondary ion species to give the elemental and isotopic composition down to 50-150 nm. Atomic force microscopy enables to study the topography and mechanical properties (softness, elasticity, plasticity, deformability) of soil particle surfaces down to the nm scale. X-ray micro-tomography has been shown to visualize the interior of materials at the sub-micrometer scale successfully. Introducing and adapting the discussed methods in soil science has increased the understanding of formation, properties, and functioning of biogeochemical interfaces in soil. A further challenging task is to utilize further promising techniques, e.g., advanced Raman techniques or atomic probe tomography with the highest spatial resolution for 3D compositional information of any microscopy technique. C1 [Rennert, Thilo; Totsche, Kai U.] Univ Jena, LS Hydrogeol, Inst Geowissensch, D-07749 Jena, Germany. [Heister, Katja] Tech Univ Munich, Lehrstuhl Bodenkunde, D-85350 Freising Weihenstephan, Germany. [Kersten, Michael] Johannes Gutenberg Univ Mainz, Inst Geowissensch, D-55099 Mainz, Germany. [Thieme, Juergen] Brookhaven Natl Lab, NSLS Project 2, Upton, NY 11973 USA. RP Rennert, T (reprint author), Univ Jena, LS Hydrogeol, Inst Geowissensch, Burgweg 11, D-07749 Jena, Germany. EM thilo.rennert@uni-jena.de RI Thieme, Juergen/D-6814-2013; Kersten, Michael/A-1437-2010; Heister, Katja/M-1497-2014; Totsche, Kai/E-2086-2013; OI Kersten, Michael/0000-0002-6385-7031; Totsche, Kai/0000-0002-2692-213X; Rennert, Thilo/0000-0003-1435-2157 FU Deutsche Forschungsgemeinschaft [SPP1315] FX The authors thank the Deutsche Forschungsgemeinschaft for establishing and continuing the priority program SPP1315 "Biogeochemical Interfaces in Soil". NR 157 TC 11 Z9 11 U1 6 U2 94 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1439-0108 J9 J SOIL SEDIMENT JI J. Soils Sediments PD JAN PY 2012 VL 12 IS 1 BP 3 EP 23 DI 10.1007/s11368-011-0417-5 PG 21 WC Environmental Sciences; Soil Science SC Environmental Sciences & Ecology; Agriculture GA 876BZ UT WOS:000299083300002 ER PT J AU Sedlmair, J Gleber, SC Peth, C Mann, K Niemeyer, J Thieme, J AF Sedlmair, Julia Gleber, Sophie-Charlotte Peth, Christian Mann, Klaus Niemeyer, Juergen Thieme, Juergen TI Characterization of refractory organic substances by NEXAFS using a compact X-ray source SO JOURNAL OF SOILS AND SEDIMENTS LA English DT Article DE Compact X-ray spectrometer; Humic substances; NEXAFS ID ABSORPTION FINE-STRUCTURE; INNER-SHELL SPECTROSCOPY; K-EDGE; XANES SPECTROSCOPY; CARBON SPECIATION; HUMIC SUBSTANCES; ACIDS; SPECTROMICROSCOPY; SOIL; MICROSCOPY AB We present the characterization of environmental samples using near-edge X-ray absorption fine structure (NEXAFS) spectra recorded with an in-house device. We want to point out the feasibility of such an easily accessed complementary technique, if not sometimes alternative to NEXAFS studies performed with synchrotron radiation, as the number of compact setups is increasing. The experiments were carried out using a laser-driven plasma source. We studied heterogeneous samples like refractory organic substances to demonstrate the potential of NEXAFS spectra, achieved by such an instrument, concerning specimens of high chemical complexity. From the respective resonance peaks in the spectra, the presence of certain functional groups, such as aromatic or carbonyl groups, is verified, and the elemental composition is estimated. The results of the reference samples are consistent with the literature. For the environmental samples, external influences of the extraction solvent or fertilizers can be determined from the spectra. This could provide the possibility to perform test experiments with samples, which are later studied in more detail with synchrotron light and might as well give an impulse on the broader spread of the application of NEXAFS spectroscopy. C1 [Sedlmair, Julia] Univ Gottingen, Inst X Ray Phys, D-37077 Gottingen, Germany. [Gleber, Sophie-Charlotte] Argonne Natl Lab, APS, Argonne, IL 60439 USA. [Peth, Christian] Univ Dusseldorf, Inst Laser & Plasmaphys, D-40225 Dusseldorf, Germany. [Mann, Klaus] Laser Laboratorium Gottingen eV, D-37077 Gottingen, Germany. [Niemeyer, Juergen] Univ Gottingen, Inst Appl Biotechnol, D-37074 Gottingen, Germany. [Thieme, Juergen] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sedlmair, J (reprint author), Univ Gottingen, Inst X Ray Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. EM jsedlma@gwdg.de RI Thieme, Juergen/D-6814-2013 FU DFG within the Collaborative Research Center [SFB 755] FX This work has been supported by the DFG within the Collaborative Research Center SFB 755 "Nanoscale Photonic Imaging" within project B5 (X-Ray Spectromicrosopy of Biomolecular Matter in the Environment). NR 61 TC 4 Z9 4 U1 2 U2 24 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1439-0108 J9 J SOIL SEDIMENT JI J. Soils Sediments PD JAN PY 2012 VL 12 IS 1 BP 24 EP 34 DI 10.1007/s11368-011-0385-9 PG 11 WC Environmental Sciences; Soil Science SC Environmental Sciences & Ecology; Agriculture GA 876BZ UT WOS:000299083300003 ER PT J AU Fujita, K Schmidt, AR Kim, EA Lawler, MJ Lee, DH Davis, JC Eisaki, H Uchida, S AF Fujita, Kazuhiro Schmidt, Andrew R. Kim, Eun-Ah Lawler, Michael J. Lee, Dung Hai Davis, J. C. Eisaki, Hiroshi Uchida, Shin-ichi TI Spectroscopic Imaging Scanning Tunneling Microscopy Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate High-T-c Superconductors SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE cuprate superconductivity; spectroscopic imaging STM; pseudogap states; broken spatial symmetry; electronic structure AB One of the key motivations for the development of atomically resolved spectroscopic imaging scanning tunneling microscopy (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale vertical bar E vertical bar Delta(0) and only upon a momentum space (k-space) arc which terminates near the lines connecting k = +/-(pi/a(0), 0) to k = +/-(0, pi/a(0)). Below optimal doping, this "nodal" arc shrinks continuously with decreasing hole density. In both the dSC and PG phases, the only broken symmetries detected in the vertical bar E vertical bar <= Delta(0) states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale vertical bar E vertical bar similar to Delta(1) which is associated conventionally with the "antinodal" states near k = +/-(pi/a(0), 0) and k = +/-(0, pi/a(0)). We find that these states break the expected 90 degrees-rotational (C-4) symmetry of electronic structure within CuO2 unit cells, at least down to 180 degrees-rotational (C-2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at vertical bar E vertical bar <= Delta(1) with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The characteristic wavevector Q of the latter is determined, empirically, by the k-space points where Bogoliubov quasiparticle interference terminates, and therefore evolves continuously with doping. The properties of these two classes of vertical bar E vertical bar <= Delta(1) states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales vertical bar E vertical bar similar to Delta(1) and vertical bar E vertical bar <= Delta(0), and to understand how this impacts the electronic phase diagram and the mechanism of high-T-c superconductivity, represents one of a key chall(enges for cuprate studies.) C1 [Fujita, Kazuhiro; Schmidt, Andrew R.; Kim, Eun-Ah; Lawler, Michael J.; Davis, J. C.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. [Fujita, Kazuhiro; Schmidt, Andrew R.; Davis, J. C.] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. [Fujita, Kazuhiro; Uchida, Shin-ichi] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Schmidt, Andrew R.; Lee, Dung Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lawler, Michael J.] Binghamton Univ, Dept Phys & Astron, Binghamton, NY 13902 USA. [Davis, J. C.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Davis, J. C.] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14850 USA. [Eisaki, Hiroshi] Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Fujita, K (reprint author), Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. RI Lawler, Michael/K-6770-2012 OI Lawler, Michael/0000-0002-2319-2274 FU Center for Emergent Superconductivity, an Energy Frontier Research Center; U.S. Department of Energy, Office of Basic Energy Sciences [DE-2009-BNL-PM015] FX We acknowledge and thank all our collaborators: J. W. Alldredge, I. Firmo, M. H. Hamidian, T. Hanaguri, P. J. Hirschfeld, J. E. Hoffman, E. W. Hudson, Chung Koo Kim, Y. Kohsaka, K. M. Lang, C. Lupien, Jhinhwan Lee, Jinho Lee, V. Madhavan, K. McElroy, S. Mukhopadhyay, J. Orenstein, S. H. Pan, R. Simmonds, J. Slezak, J. Sethna, H. Takagi, C. Taylor, P. Wahl, and M. Wang. Preparation of this manuscript was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-2009-BNL-PM015. NR 118 TC 35 Z9 35 U1 0 U2 35 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD JAN PY 2012 VL 81 IS 1 AR 011005 DI 10.1143/JPSJ.81.011005 PG 17 WC Physics, Multidisciplinary SC Physics GA 868VA UT WOS:000298553000005 ER PT J AU Fujita, M Hiraka, H Matsuda, M Matsuura, M Tranquada, JM Wakimoto, S Xu, GY Yamada, K AF Fujita, Masaki Hiraka, Haruhiro Matsuda, Masaaki Matsuura, Masato Tranquada, John M. Wakimoto, Shuichi Xu, Guangyong Yamada, Kazuyoshi TI Progress in Neutron Scattering Studies of Spin Excitations in High-T-c Cuprates SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE superconductivity; neutron scattering; cuprates ID HIGH-TEMPERATURE SUPERCONDUCTOR; COPPER-OXIDE SUPERCONDUCTORS; STRIPE ORDERED PHASE; TRANSITION-TEMPERATURE; MAGNETIC EXCITATIONS; ANTIFERROMAGNETIC ORDER; FLUCTUATING STRIPES; SPECTRAL WEIGHT; PSEUDOGAP PHASE; IMPURITY ATOMS AB Neutron scattering experiments continue to improve our knowledge of spin fluctuations in layered cuprates, excitations that are symptomatic of the electronic correlations underlying high-temperature superconductivity. Time-of-flight spectrometers, together with new and varied single crystal samples, have provided a more complete characterization of the magnetic energy spectrum and its variation with carrier concentration. While the spin excitations appear anomalous in comparison with simple model systems, there is clear consistency among a variety of cuprate families. Focusing initially on hole-doped systems, we review the nature of the magnetic spectrum, and variations in magnetic spectral weight with doping. We consider connections with the phenomena of charge and spin stripe order, and the potential generality of such correlations as suggested by studies of magnetic-field and impurity induced order. We contrast the behavior of the hole-doped systems with the trends found in the electron-doped superconductors. Returning to hole-doped cuprates, studies of translation-symmetry-preserving magnetic order are discussed, along with efforts to explore new systems. We conclude with a discussion of future challenges. C1 [Fujita, Masaki; Hiraka, Haruhiro; Matsuura, Masato; Yamada, Kazuyoshi] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Matsuda, Masaaki] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Tranquada, John M.; Xu, Guangyong] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wakimoto, Shuichi] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Yamada, Kazuyoshi] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. RP Fujita, M (reprint author), Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. RI Tranquada, John/A-9832-2009; Yamada, Kazuyoshi/C-2728-2009; Xu, Guangyong/A-8707-2010; Matsuura, Masato/C-2827-2013; Fujita, Masaki/D-8430-2013; Matsuda, Masaaki/A-6902-2016 OI Tranquada, John/0000-0003-4984-8857; Xu, Guangyong/0000-0003-1441-8275; Matsuura, Masato/0000-0003-4470-0271; Matsuda, Masaaki/0000-0003-2209-9526 FU Brookhaven by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, U.S. Department of Energy (DOE) [DE-AC02-98CH10886]; [23340093]; [22740230]; [2234089] FX We would like to thank K. Hirota, H. Kimura, M. Kofu, S. Iikubo, M. Enoki, C. Frost, S.-H. Lee, Y. Endoh, and R. J. Birgeneau for the fruitful discussions. The work at JRR-3 and SPring-8 was partially performed under the Common-Use Facility Program of JAEA and joint-research program of ISSP, the University of Tokyo. MF is supported by Grant-in-Aid for Encouragement of Scientific Research B (23340093). MM and HH was supported by Grants-in-Aid for Encouragement of Young Scientists B (22740230) and for Scientific Research B (2234089), respectively. JMT and GYX are supported at Brookhaven by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, U.S. Department of Energy (DOE), under Contract No. DE-AC02-98CH10886. NR 211 TC 84 Z9 84 U1 0 U2 54 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD JAN PY 2012 VL 81 IS 1 AR 011007 DI 10.1143/JPSJ.81.011007 PG 19 WC Physics, Multidisciplinary SC Physics GA 868VA UT WOS:000298553000007 ER PT J AU Thompson, JD Fisk, Z AF Thompson, Joe D. Fisk, Zachary TI Progress in Heavy-Fermion Superconductivity: Ce115 and Related Materials SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE CeCoIn5; CeRhIn5; CeIrIn5; CePt2In7; Ce2PdIn8; unconventional superconductivity; quantum criticality ID QUANTUM PHASE-TRANSITIONS; UNCONVENTIONAL SUPERCONDUCTIVITY; KONDO-LATTICE; PRESSURE; CEIRIN5; CERHIN5; SCATTERING; MAGNETISM; CECOIN5; RH AB Ce115 and related Ce compounds are particularly suited to detailed studies of the interplay of antiferromagnetic order, unconventional superconductivity and quantum criticality due to their availability as high quality single crystals and their tunability by chemistry, pressure and magnetic field. Neutron-scattering, NMR and angle-resolved thermodynamic measurements have deepened the understanding of this interplay. Very low temperature experiments in pure and lightly doped CeCoIn5 have elaborated the FFLO-like magnetic state near the field-induced quantum-critical point. New, related superconducting materials have broadened the phase space for discovering underlying principles of heavy-fermion superconductivity and its relationship to nearby states. C1 [Thompson, Joe D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fisk, Zachary] Univ Calif Irvine, Irvine, CA 92697 USA. RP Thompson, JD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012 FU U.S. Department of Energy; DOE Office of Basic Energy Science, Division of Materials Sciences and Engineering; National Science Foundation [NSF-DMR-0801253] FX We thank the many collaborators at Los Alamos and elsewhere who have contributed invaluably to exposing the richness of Ce115s and related materials and who have shared their insights with us. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy. Support from the DOE Office of Basic Energy Science, Division of Materials Sciences and Engineering (JDT) and from the National Science Foundation under grant NSF-DMR-0801253 (ZF) is gratefully acknowledged. NR 116 TC 65 Z9 65 U1 8 U2 61 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD JAN PY 2012 VL 81 IS 1 AR 011002 DI 10.1143/JPSJ.81.011002 PG 11 WC Physics, Multidisciplinary SC Physics GA 868VA UT WOS:000298553000002 ER PT J AU Neville, J Gallagher, B Eliassi-Rad, T Wang, T AF Neville, Jennifer Gallagher, Brian Eliassi-Rad, Tina Wang, Tao TI Correcting evaluation bias of relational classifiers with network cross validation SO KNOWLEDGE AND INFORMATION SYSTEMS LA English DT Article DE Relational learning; Collective classification; Statistical tests; Methodology ID CLASSIFICATION AB Recently, a number of modeling techniques have been developed for data mining and machine learning in relational and network domains where the instances are not independent and identically distributed (i.i.d.). These methods specifically exploit the statistical dependencies among instances in order to improve classification accuracy. However, there has been little focus on how these same dependencies affect our ability to draw accurate conclusions about the performance of the models. More specifically, the complex link structure and attribute dependencies in relational data violate the assumptions of many conventional statistical tests and make it difficult to use these tests to assess the models in an unbiased manner. In this work, we examine the task of within-network classification and the question of whether two algorithms will learn models that will result in significantly different levels of performance. We show that the commonly used form of evaluation (paired t-test on overlapping network samples) can result in an unacceptable level of Type I error. Furthermore, we show that Type I error increases as (1) the correlation among instances increases and (2) the size of the evaluation set increases (i.e., the proportion of labeled nodes in the network decreases). We propose a method for network cross-validation that combined with paired t-tests produces more acceptable levels of Type I error while still providing reasonable levels of statistical power (i.e., 1-Type II error). C1 [Neville, Jennifer; Wang, Tao] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA. [Neville, Jennifer; Wang, Tao] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Gallagher, Brian] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. [Eliassi-Rad, Tina] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ USA. RP Neville, J (reprint author), Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA. EM neville@cs.purdue.edu; bgallagher@llnl.gov; eliassi@cs.rutgers.edu; taowang@cs.purdue.edu FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-455699)]; DARPA; NSF [NBCH1080005, SES-0823313] FX We thank Rongjing Xiang for her assistance in experimental implementation. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (LLNL-JRNL-455699). This work was also supported by DARPA and NSF under contract numbers NBCH1080005 and SES-0823313. NR 39 TC 0 Z9 1 U1 0 U2 1 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0219-1377 J9 KNOWL INF SYST JI Knowl. Inf. Syst. PD JAN PY 2012 VL 30 IS 1 BP 31 EP 55 DI 10.1007/s10115-010-0373-1 PG 25 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems SC Computer Science GA 874YL UT WOS:000298994400002 ER PT J AU Wu, MJ Xiao, F Johnson-Paben, RM Retterer, ST Yin, XL Neeves, KB AF Wu, Mengjie Xiao, Feng Johnson-Paben, Rebecca M. Retterer, Scott T. Yin, Xiaolong Neeves, Keith B. TI Single-and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation SO LAB ON A CHIP LA English DT Article ID LATTICE BOLTZMANN METHOD; GAS-WATER INTERFACE; PORE-SCALE; FRACTAL DIMENSION; IMAGE-ANALYSIS; TRANSPORT; MICROMODEL; VISUALIZATION; SIMULATION; SYSTEMS AB The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, many real porous media such as geological formations and biological tissues contain a degree of randomness and complexity at certain length scales that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by a highly connected network of channels with an overall porosity of 0.11-0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the wettability of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. The presence of cavities increased the microscopic sweeping efficiency in water-oil displacement. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The novelty of this approach is a unique geometry generation algorithm coupled with microfabrication techniques to produce pore scale models of stochastic homogeneous and heterogeneous porous media. The ability to perform and visualize multiphase flow experiments within these geometries will be useful in measuring the mechanism(s) of displacement within micro- and nanoscale pores. C1 [Wu, Mengjie; Johnson-Paben, Rebecca M.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Xiao, Feng; Yin, Xiaolong] Colorado Sch Mines, Dept Petr Engn, Golden, CO 80401 USA. [Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Knoxville, TN USA. [Neeves, Keith B.] Univ Colorado, Dept Pediat, Denver, CO 80202 USA. RP Neeves, KB (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, 1600 Illinois St, Golden, CO 80401 USA. EM kneeves@mines.edu RI Retterer, Scott/A-5256-2011 OI Retterer, Scott/0000-0001-8534-1979 FU American Chemical Society; Research Partnerships to Secure Energy in America; Office of Basic Energy Sciences, U. S. Department of Energy; National Science Foundation; National Renewable Energy Laboratory FX Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (K.B.N.) and the Research Partnerships to Secure Energy in America (K.B.N and X.Y.) for partial support of this research. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U. S. Department of Energy. The computational resource was provided by the Golden Energy Computing Organization at the Colorado School of Mines, established with financial assistances from the National Science Foundation and the National Renewable Energy Laboratory. NR 48 TC 25 Z9 27 U1 5 U2 61 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1473-0197 J9 LAB CHIP JI Lab Chip PY 2012 VL 12 IS 2 BP 253 EP 261 DI 10.1039/c1lc20838a PG 9 WC Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology SC Biochemistry & Molecular Biology; Chemistry; Science & Technology - Other Topics GA 874NB UT WOS:000298964100002 PM 22094719 ER PT J AU Noh, JH Noh, J Kreit, E Heikenfeld, J Rack, PD AF Noh, Joo Hyon Noh, Jiyong Kreit, Eric Heikenfeld, Jason Rack, Philip D. TI Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors SO LAB ON A CHIP LA English DT Article ID ELECTROWETTING-BASED ACTUATION; DIGITAL MICROFLUIDICS; LIQUID DROPLETS; SYSTEMS; FABRICATION; CIRCUITS; MIXERS AB Agile micro-and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m x n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm(2) V(-1) s(-1), low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 x 5 electrode array connected to a 2 x 5 IGZO thin film transistor array with the semiconductor channel width of 50 mm and mobility of 6.3 cm(2) V(-1) s(-1). Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform. C1 [Noh, Joo Hyon; Noh, Jiyong; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Kreit, Eric; Heikenfeld, Jason] Univ Cincinnati, Sch Elect & Comp Syst, Cincinnati, OH 45221 USA. [Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM prack@utk.edu OI Rack, Philip/0000-0002-9964-3254 NR 28 TC 18 Z9 18 U1 2 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1473-0197 J9 LAB CHIP JI Lab Chip PY 2012 VL 12 IS 2 BP 353 EP 360 DI 10.1039/c1lc20851a PG 8 WC Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology SC Biochemistry & Molecular Biology; Chemistry; Science & Technology - Other Topics GA 874NB UT WOS:000298964100016 PM 22134753 ER PT J AU Carlisle, K Miles, R AF Carlisle, K. Miles, R. TI Laser Inertial Fusion-based Energy (LIFE): Developing Manufacturing Technology for Low Cost and High Volume Fusion Fuel is Critical to Our Future Energy Needs SO LASERS IN ENGINEERING LA English DT Article AB This paper outlines the requirements, current state-of-the-art and research plan for several aspects of the fuel capsule fabrication. A fuel manufacturing research and development programme is being planned with a goal of demonstrating the unit processes needed for a prototype laser inertial fusion energy (LIFE) power plant. These research and development efforts will be conducted in collaboration with industrial partners. C1 [Carlisle, K.; Miles, R.] Lawrence Livermore Natl Lab, Ctr Precis Engn, Livermore, CA 94550 USA. RP Carlisle, K (reprint author), Lawrence Livermore Natl Lab, Ctr Precis Engn, POB 808,Mail Stop L-491,7000 E Ave, Livermore, CA 94550 USA. EM carlislekeith3@gmail.com FU US Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 0 TC 0 Z9 0 U1 0 U2 8 PU OLD CITY PUBLISHING INC PI PHILADELPHIA PA 628 NORTH 2ND ST, PHILADELPHIA, PA 19123 USA SN 0898-1507 J9 LASER ENG JI Laser Eng. PY 2012 VL 22 IS 5-6 SI SI BP 265 EP 280 PG 16 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 873RD UT WOS:000298899800002 ER PT J AU Mills, PH Hitchens, TK Foley, LM Link, T Ye, Q Weiss, CR Thompson, JD Gilson, WD Arepally, A Melick, JA Kochanek, PM Ho, C Bulte, JWM Ahrens, ET AF Mills, Parker H. Hitchens, T. Kevin Foley, Lesley M. Link, Thomas Ye, Qing Weiss, Clifford R. Thompson, Joe D. Gilson, Wesley D. Arepally, Aravind Melick, John A. Kochanek, Patrick M. Ho, Chien Bulte, Jeff W. M. Ahrens, Eric T. TI Automated detection and characterization of SPIO-labeled cells and capsules using magnetic field perturbations SO MAGNETIC RESONANCE IN MEDICINE LA English DT Article DE SPIO; magnetic moment; MRI; cell tracking; magnetocapsules; susceptibility ID IRON-OXIDE PARTICLES; POSITIVE-CONTRAST VISUALIZATION; IN-VIVO MRI; STEM-CELLS; MOUSE-BRAIN; RESONANCE; SUSCEPTIBILITY; PHASE; TRACKING; AGENTS AB Understanding how individual cells behave inside living systems will help enable new diagnostic tools and cellular therapies. Superparamagnetic iron oxide particles can be used to label cells and theranostic capsules for noninvasive tracking using MRI. Contrast changes from superparamagnetic iron oxide are often subtle relative to intrinsic sources of contrast, presenting a detection challenge. Here, we describe a versatile postprocessing method, called Phase map cross-correlation Detection and Quantification (PDQ), that automatically identifies localized deposits of superparamagnetic iron oxide, estimating their volume magnetic susceptibility and magnetic moment. To demonstrate applicability, PDQ was used to detect and characterize superparamagnetic iron oxide-labeled magnetocapsules implanted in porcine liver and suspended in agarose gel. PDQ was also applied to mouse brains infiltrated by MPIO-labeled macrophages following traumatic brain injury; longitudinal, in vivo studies tracked individual MPIO clusters over 3 days, and tracked clusters were corroborated in ex vivo brain scans. Additionally, we applied PDQ to rat hearts infiltrated by MPIO-labeled macrophages in a transplant model of organ rejection. PDQ magnetic measurements were signal-to-noise ratio invariant for images with signal-to-noise ratio > 11. PDQ can be used with conventional gradient-echo pulse sequences, requiring no extra scan time. The method is useful for visualizing biodistribution of cells and theranostic magnetocapsules and for measuring their relative iron content. Magn Reson Med, 2011. (C) 2011 Wiley-Liss, Inc. C1 [Mills, Parker H.; Hitchens, T. Kevin; Foley, Lesley M.; Ye, Qing; Ho, Chien; Ahrens, Eric T.] Carnegie Mellon Univ, Dept Biol Sci, Pittsburgh, PA 15213 USA. [Mills, Parker H.; Hitchens, T. Kevin; Foley, Lesley M.; Ye, Qing; Ho, Chien; Ahrens, Eric T.] Carnegie Mellon Univ, Pittsburgh NMR Ctr Biomed Res, Pittsburgh, PA 15213 USA. [Link, Thomas; Weiss, Clifford R.; Arepally, Aravind; Bulte, Jeff W. M.] Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD USA. [Link, Thomas; Bulte, Jeff W. M.] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA. [Link, Thomas; Bulte, Jeff W. M.] Johns Hopkins Univ, Sch Med, Inst Cell Engn, Cellular Imaging Sect, Baltimore, MD USA. [Link, Thomas; Bulte, Jeff W. M.] Johns Hopkins Univ, Sch Med, Inst Cell Engn, Vasc Biol Program, Baltimore, MD USA. [Thompson, Joe D.] Los Alamos Natl Lab, Div Mat Sci & Technol, Grp 10, Los Alamos, NM 87545 USA. [Gilson, Wesley D.] Siemens Corp Res, Baltimore, MD USA. [Melick, John A.; Kochanek, Patrick M.] Univ Pittsburgh, Safar Ctr Resuscitat Res, Pittsburgh, PA USA. [Bulte, Jeff W. M.] Johns Hopkins Univ, Sch Med, Dept Chem & Biomol Engn, Baltimore, MD USA. RP Ahrens, ET (reprint author), Carnegie Mellon Univ, Dept Biol Sci, 4400 5th Ave, Pittsburgh, PA 15213 USA. EM eta@andrew.cmu.edu RI Bulte, Jeff/A-3240-2008; Kochanek, Patrick/D-2371-2015; Ho, Chien/O-6112-2016; Mills, Parker/I-4563-2012 OI Bulte, Jeff/0000-0003-1202-1610; Kochanek, Patrick/0000-0002-2627-913X; Ho, Chien/0000-0002-4094-9232; Mills, Parker/0000-0002-0715-3531 FU National Institutes of Health [R01-EB005740, R01-CA134633, R01-EB003453, R01-HL081349, R01-EB007825, P41-EB001977] FX Grant sponsor: National Institutes of Health; Grant numbers: R01-EB005740, R01-CA134633, R01-EB003453, R01-HL081349, R01-EB007825, P41-EB001977. NR 40 TC 14 Z9 14 U1 2 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0740-3194 J9 MAGN RESON MED JI Magn. Reson. Med. PD JAN PY 2012 VL 67 IS 1 BP 278 EP 289 DI 10.1002/mrm.22998 PG 12 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 867VL UT WOS:000298482800032 PM 21656554 ER PT J AU Krishna, RM Hayes, TC Krementz, D Weeks, G Torres, AM Brinkman, K Mandal, KC AF Krishna, Ramesh M. Hayes, Timothy C. Krementz, Daniel Weeks, George Torres, Adrian Mendez Brinkman, Kyle Mandal, Krishna C. TI Characterization of transparent conducting oxide thin films deposited on ceramic substrates SO MATERIALS LETTERS LA English DT Article DE Transparent conducting oxides; Ceramic substrates; Atomic force microscopy; Electrical properties ID RESISTIVITY AB In this work, we investigate the optical and electrical properties of various transparent conductive oxide (TCO) thin films deposited on insulating ceramics for emerging optoelectronic applications. Thin films investigated include indium tin oxide (ITO), ruthenium oxide (RuO(2)), and iridium oxide (IrO(2)) on Al(2)O(3) ceramic substrates. The conducting films have been deposited by various techniques including RF magnetron sputtering and low-cost spray pyrolysis. The morphological characteristics of the films were carried out using high magnification optical microscopy and atomic force microscopy (AFM). Optical and electrical characterization was carried out by optical absorbance/transmittance, van der Pauw, current-voltage (I-V), and Hall effect measurements. The results are presented in this paper. (C) 2011 Elsevier B.V. All rights reserved. C1 [Krishna, Ramesh M.; Hayes, Timothy C.; Mandal, Krishna C.] Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. [Krementz, Daniel; Weeks, George; Torres, Adrian Mendez; Brinkman, Kyle] Savannah River Natl Lab, Mat Sci & Technol Div, Aiken, SC 29808 USA. RP Mandal, KC (reprint author), Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. EM mandalk@cec.sc.edu OI Brinkman, Kyle/0000-0002-2219-1253 FU Savannah River National Laboratory (SCUREF) [WEST181] FX The authors would like to acknowledge the partial financial support of Savannah River National Laboratory (SCUREF Award # WEST181) for this investigation. The authors would also like to acknowledge Prof. Harry J. Ploehn, Dr. Hongsheng Gao, and Dr. Peter G. Muzykov for their assistance in providing AFM images and helpful discussions. NR 8 TC 5 Z9 5 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD JAN PY 2012 VL 66 IS 1 BP 233 EP 235 DI 10.1016/j.matlet.2011.08.066 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 856RE UT WOS:000297660300070 ER EF