FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Miller, J Hill, TP Censullo, A AF Miller, Jack Hill, Theodore P. Censullo, Albert TI Unresolved concerns about the "new SI" SO ACCREDITATION AND QUALITY ASSURANCE LA English DT Letter ID UNITS C1 [Miller, Jack] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hill, Theodore P.] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA. [Censullo, Albert] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. RP Miller, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM miller@lbl.gov NR 11 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-1775 J9 ACCREDIT QUAL ASSUR JI Accredit. Qual. Assur. PD DEC PY 2011 VL 16 IS 12 BP 657 EP 658 DI 10.1007/s00769-011-0842-6 PG 2 WC Chemistry, Analytical; Instruments & Instrumentation SC Chemistry; Instruments & Instrumentation GA 889NG UT WOS:000300079800012 ER PT J AU Pacheco-Rivera, RA Hernandez-Zamora, E Gonzalez-Yebra, B Beattie, K Maldonado-Rodriguez, R Santiago-Hernandez, JC de Zarate, MEMO Salcedo, M AF Pacheco-Rivera, R. A. Hernandez-Zamora, E. Gonzalez-Yebra, B. Beattie, K. Maldonado-Rodriguez, R. Santiago-Hernandez, J. C. Medrano-Ortiz de Zarate, M. E. Salcedo, M. TI Single oligoarray-based detection of specific M918T mutation in RET oncogene in multiple endocrine neoplasia type 2B SO CLINICAL AND EXPERIMENTAL MEDICINE LA English DT Article DE Oligoarray; Mutation; MEN 2B; RET ID MEDULLARY-THYROID CARCINOMA; DNA MICROARRAYS; CODON 634; PROTOONCOGENE; DISEASE; CANCER; HYBRIDIZATION; MANAGEMENT; FAMILIES AB The most important mutation associated with Multiple Endocrine Neoplasia type 2B (MEN 2B) is the change of thymine to cytosine in codon 918 of exon 16 in the RET oncogene (ATG -> ACG). The aim of this work was to develop a single oligoarray by using tandem hybridization to detect the T918C/RET mutation for MEN 2B patients. Two genetically non-related families were studied; each family had a member affected by MEN2B. Both patients presented the T918C/RET mutation in a heterozygous fashion. None of the relatives was positive for this mutation; thus, these cases arose de novo. The proper mutation was confirmed by with different tools, PCR-Fok I endonuclease, direct sequencing, and also using our oligoarray. In this case, it is suitable to use a DNA target smaller than 150 bases with single-or double-stranded DNA and short probes of 7-mer. It was also possible to detect the mutation by employing different sources of DNA, fresh or paraffin-embedded tissues. Therefore, the present oligoarray can identify the most common M918T mutation of RET oncogene from a variety of DNA sources with good specificity and be a good alternative in the molecular diagnosis for MEN 2B cases. C1 [Hernandez-Zamora, E.] Inst Nacl Rehabil, Serv Genet, Mexico City, DF, Mexico. [Pacheco-Rivera, R. A.] ENCB IPN, Lab Diagnost Mol, Mexico City, DF, Mexico. [Gonzalez-Yebra, B.] Univ Guanajuato, Dept Biol Mol, Guanajuato, Mexico. [Beattie, K.] Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN USA. [Maldonado-Rodriguez, R.; Santiago-Hernandez, J. C.] ENCB IPN, Lab Biotecnol & Bioinformat Mol, Mexico City, DF, Mexico. [Medrano-Ortiz de Zarate, M. E.] Hosp Oncol, CMN SXXI IMSS, Serv Endocrinol, Mexico City, DF, Mexico. [Pacheco-Rivera, R. A.; Salcedo, M.] IMSS, UIMEO CMN SXXI, Lab Oncol Genom, Mexico City, DF, Mexico. RP Hernandez-Zamora, E (reprint author), Inst Nacl Rehabil, Serv Genet, Mexico City, DF, Mexico. EM edgarhz1969@yahoo.com.mx NR 25 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER-VERLAG ITALIA SRL PI MILAN PA VIA DECEMBRIO, 28, MILAN, 20137, ITALY SN 1591-8890 EI 1591-9528 J9 CLIN EXP MED JI Clin. Exper. Med. PD DEC PY 2011 VL 11 IS 4 BP 227 EP 234 DI 10.1007/s10238-010-0128-z PG 8 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA 889RI UT WOS:000300090500004 PM 21253810 ER PT J AU Levander, AX Novikov, SV Liliental-Weber, Z dos Reis, R Denlinger, JD Wu, JQ Dubon, OD Foxon, CT Yu, KM Walukiewicz, W AF Levander, Alejandro X. Novikov, Sergei V. Liliental-Weber, Zuzanna dos Reis, Roberto Denlinger, Jonathan D. Wu, Junqiao Dubon, Oscar D. Foxon, C. T. Yu, Kin M. Walukiewicz, Wladek TI Growth and transport properties of p-type GaNBi alloys SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID MOLECULAR-BEAM EPITAXY; BAND-GAP; BISMUTH; PHOTOLUMINESCENCE; SEMICONDUCTORS; DEPENDENCE; GAAS1-XBIX; STATES; FILMS AB Thin films of GaNBi alloys with up to 12.5 at.% Bi were grown on sapphire using low-temperature molecular beam epitaxy. The low growth temperature and incorporation of Bi resulted in a morphology of nanocrystallites embedded in an amorphous matrix. The composition and optical absorption shift were found to depend strongly on the III:V ratio controlled by the Ga flux during growth. Increasing the incorporation of Bi resulted in an increase in conductivity of almost five orders of magnitude to 144 Omega-cm(-1). Holes were determined to be the majority charge carriers indicating that the conductivity most likely results from a GaNBi-related phase. Soft x-ray emission and x-ray absorption spectroscopies were used to probe the modification of the nitrogen partial density of states due to Bi. The valence band edge was found to shift abruptly to the midgap position of GaN, whereas the conduction band edge shifted more gradually. C1 [Levander, Alejandro X.; Liliental-Weber, Zuzanna; dos Reis, Roberto; Wu, Junqiao; Dubon, Oscar D.; Yu, Kin M.; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Levander, Alejandro X.; Wu, Junqiao; Dubon, Oscar D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Novikov, Sergei V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [dos Reis, Roberto] Univ Fed Rio Grande do Sul, Inst Fis, BR-15051 Porto Alegre, RS, Brazil. [Denlinger, Jonathan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Walukiewicz, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM W_Walukiewicz@lbl.gov RI Wu, Junqiao/G-7840-2011; dos Reis, Roberto/E-9486-2012; Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012; OI Wu, Junqiao/0000-0002-1498-0148; dos Reis, Roberto/0000-0002-6011-6078; Yu, Kin Man/0000-0003-1350-9642; Novikov, Sergei/0000-0002-3725-2565 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR-0349257]; Engineering and Physical Sciences Research Council [EP/I004203/1, EP/G046867/1, EP/G030634/1] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. O.D. Dubon acknowledges support from the National Science Foundation under Contract No. DMR-0349257 for electrical measurements. The use of the National Center for Electron Microscopy of the Lawrence Berkeley National Laboratory in Berkeley, CA, is highly appreciated. The synthesis work at the University of Nottingham was undertaken with support from the Engineering and Physical Sciences Research Council (Grant Nos. EP/I004203/1, EP/G046867/1, and EP/G030634/1). A.X. Levander acknowledges the National Science Foundation for financial support. NR 31 TC 7 Z9 8 U1 0 U2 17 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD DEC PY 2011 VL 26 IS 23 BP 2887 EP 2894 DI 10.1557/jmr.2011.376 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 886SY UT WOS:000299875400001 ER PT J AU Schulz, D Vaska, P AF Schulz, Daniela Vaska, Paul TI The emerging discipline of behavioral neuroimaging SO REVIEWS IN THE NEUROSCIENCES LA English DT Editorial Material C1 [Schulz, Daniela] SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA. [Vaska, Paul] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Vaska, Paul] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Schulz, D (reprint author), SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA. EM dschulz@bnl.gov; vaska@bnl.gov RI Schulz, Daniela/H-5625-2011 NR 8 TC 1 Z9 1 U1 0 U2 11 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0334-1763 J9 REV NEUROSCIENCE JI Rev. Neurosci. PD DEC PY 2011 VL 22 IS 6 BP 591 EP 592 DI 10.1515/RNS.2011.051 PG 2 WC Neurosciences SC Neurosciences & Neurology GA 889QH UT WOS:000300087800001 PM 22098445 ER PT J AU Parvaz, MA Alia-Klein, N Woicik, PA Volkow, ND Goldstein, RZ AF Parvaz, Muhammad A. Alia-Klein, Nelly Woicik, Patricia A. Volkow, Nora D. Goldstein, Rita Z. TI Neuroimaging for drug addiction and related behaviors SO REVIEWS IN THE NEUROSCIENCES LA English DT Article DE dopamine; electroencephalography (EEG); event-related potentials (ERPs); magnetic resonance imaging (MRI); positron emission tomography (PET); prefrontal cortex ID EVENT-RELATED POTENTIALS; POSITRON-EMISSION-TOMOGRAPHY; CEREBRAL-BLOOD-FLOW; OBSESSIVE-COMPULSIVE DISORDER; ANTERIOR CINGULATE CORTEX; BRAIN GLUCOSE-METABOLISM; NEUROPSYCHOLOGICAL TEST-PERFORMANCE; AUDITORY-EVOKED-POTENTIALS; PROGRESSIVE RATIO SCHEDULE; ALCOHOL-DEPENDENT PATIENTS AB In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors. C1 [Parvaz, Muhammad A.; Alia-Klein, Nelly; Woicik, Patricia A.; Goldstein, Rita Z.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. RP Goldstein, RZ (reprint author), Brookhaven Natl Lab, Dept Med, 30 Bell Ave,Bldg 490, Upton, NY 11973 USA. EM rgoldstein@bnl.gov OI Parvaz, Muhammad/0000-0002-2671-2327 FU National Institute on Drug Abuse [1R01DA023579]; General Clinical Research Center [5-MO1-RR-10710]; USA Department of Energy [DE-AC02-98CHI-886] FX This work was supported by grants from the National Institute on Drug Abuse [1R01DA023579 to R.Z.G.] and General Clinical Research Center [5-MO1-RR-10710].; This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CHI-886 with the USA Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this article, or allow others to do so, for the United States Government purposes. NR 243 TC 27 Z9 28 U1 8 U2 25 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0334-1763 J9 REV NEUROSCIENCE JI Rev. Neurosci. PD DEC PY 2011 VL 22 IS 6 BP 609 EP 624 DI 10.1515/RNS.2011.055 PG 16 WC Neurosciences SC Neurosciences & Neurology GA 889QH UT WOS:000300087800003 PM 22117165 ER PT J AU Schulz, D Vaska, P AF Schulz, Daniela Vaska, Paul TI Integrating PET with behavioral neuroscience using RatCAP tomography SO REVIEWS IN THE NEUROSCIENCES LA English DT Article DE awake behaving rat; conscious animal PET; constant infusion; dopamine D2 receptor; positron emission tomography; striatum ID POSITRON-EMISSION-TOMOGRAPHY; DOPAMINE RELEASE; MICE LACKING; IMMUNOCYTOCHEMICAL LOCALIZATION; PRESYNAPTIC REGULATION; NEURAL RESPONSES; BASAL GANGLIA; AMINO-ACIDS; NEURONS; STRIATUM AB Behavioral studies are an important part of neuroscience. They allow inferences about the functions of the brain and any internal states and processes it controls. Positron emission tomography (PET) is an in vivo imaging technique that provides insights into the mechanisms of neuronal communication. In this review, we focus on some of the contributions of PET to the field of behavioral neuroscience. Small animals typically require anesthesia to remain still during PET imaging, which places a burden on behavioral studies. Our approach integrates PET with behavioral observations using a miniature PET scanner that rats wear on the head, a mobility system to facilitate animal movement and ways to integrate the PET data with behavioral measures. We summarize our studies that assessed spontaneous, self-initiated behavioral activity and dopamine D2 receptor functions simultaneously. C1 [Schulz, Daniela] SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA. [Vaska, Paul] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Vaska, Paul] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Schulz, D (reprint author), SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA. EM dschulz@bnl.gov RI Schulz, Daniela/H-5625-2011 FU US Department of Energy [DE-AC02-98CH10886]; Department of Energy's Office of Biological and Environmental Research FX The research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the US Department of Energy and funded by the Department of Energy's Office of Biological and Environmental Research. We thank S. Southekal, S.S. Junnarkar, J.-F. Pratte, M.L. Purschke, S.P. Stoll, B. Ravindranath, S.H. Maramraju, S. Krishnamoorthy, F.A. Henn, P. O'Connor, C.L. Woody, and D.J. Schlyer for contributions to the development of RatCAP NR 77 TC 14 Z9 14 U1 1 U2 8 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0334-1763 J9 REV NEUROSCIENCE JI Rev. Neurosci. PD DEC PY 2011 VL 22 IS 6 BP 647 EP 655 DI 10.1515/RNS.2011.052 PG 9 WC Neurosciences SC Neurosciences & Neurology GA 889QH UT WOS:000300087800005 PM 22098449 ER PT J AU Weisenberger, AG Lee, S Smith, MF AF Weisenberger, Andrew G. Lee, Seungjoon Smith, Mark F. TI Motion-tracking technique in unrestrained small-animal single-photon emission computed tomography SO REVIEWS IN THE NEUROSCIENCES LA English DT Article DE awake animal; motion correction; motion tracking; neuroimaging; pinhole; small animal; SPECT ID ULTRA-HIGH-RESOLUTION; SPECT; SYSTEM AB Medical researchers have used structural and functional imaging techniques to study various neurological phenomena. Humans are typically conscious for both structural and functional neuroimaging studies. The use of functional neuro imaging techniques in mouse-based animal models is typically accomplished with restrained or anesthetized mice. A system was developed to perform functional imaging with single-photon emission computed tomography of awake mice to avoid the confounding influences of anesthesia or physical restraint. This review article provides an overview of the technique and how it is presently being used. The system is designed for brain imaging and uses infrared reflectors to track the head position as a function of time. The detected photons are acquired in list mode and are time-stamped. The position of the rotating gamma camera is also recorded as a function of time. These three sets of data are integrated together in an iterative image reconstruction program that performs motion compensation. The successful performance of the system is demonstrated in moving phantom and awake animal studies. The system and methodology has the potential of being a powerful tool in behavioral neuroimaging studies involving awake, unrestrained mice. C1 [Weisenberger, Andrew G.; Lee, Seungjoon] Thomas Jefferson Natl Accelerator Facil, Detector & Imaging Grp, Div Phys, Newport News, VA 23606 USA. [Smith, Mark F.] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA. RP Weisenberger, AG (reprint author), Thomas Jefferson Natl Accelerator Facil, Detector & Imaging Grp, Div Phys, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM drew@jlab.org RI Lee, Seung Joon/M-8163-2013 NR 28 TC 4 Z9 4 U1 0 U2 8 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0334-1763 J9 REV NEUROSCIENCE JI Rev. Neurosci. PD DEC PY 2011 VL 22 IS 6 BP 657 EP 663 DI 10.1515/RNS.2011.049 PG 7 WC Neurosciences SC Neurosciences & Neurology GA 889QH UT WOS:000300087800006 PM 22098447 ER PT J AU Du, CW Pan, YT AF Du, Congwu Pan, Yingtian TI Optical detection of brain function: simultaneous imaging of cerebral vascular response, tissue metabolism, and cellular activity in vivo SO REVIEWS IN THE NEUROSCIENCES LA English DT Article DE cerebral hemodynamics; intracellular calcium; optical imaging ID RAT SOMATOSENSORY CORTEX; NEAR-INFRARED SPECTROSCOPY; FREELY MOVING MICE; BLOOD-FLOW; NEURONAL-ACTIVITY; BARREL CORTEX; INTRINSIC SIGNALS; GENE-EXPRESSION; LASER SPECKLE; HEMODYNAMIC-RESPONSE AB It is known that a remaining challenge for functional brain imaging is to distinguish the coupling and decoupling effects among neuronal activity, cerebral metabolism, and vascular hemodynamics, which highlights the need for new tools to enable simultaneous measures of these three properties in vivo. Here, we review current neuroimaging techniques and their prospects and potential limitations for tackling this challenge. We then report a novel dual-wavelength laser speckle imaging (DW-LSI) tool developed in our labs that enables simultaneous imaging of cerebral blood flow (CBF), cerebral blood volume, and tissue hemoglobin oxygenation, which allows us to monitor neurovascular and tissue metabolic activities at high spatiotemporal resolutions over a relatively large field of view. Moreover, we report digital frequency ramping Doppler optical coherence tomography (DFR-OCT) that allows for quantitative 3D imaging of the CBF network in vivo. In parallel, we review calcium imaging techniques to track neuronal activity, including intracellular calcium approach using Rhod2 fluorescence technique that we develop to detect neuronal activity in vivo. We report a new multimodality imaging platform that combines DW-LSI, DFR-OCT, and calcium fluorescence imaging for simultaneous detection of cortical hemodynamics, cerebral metabolism, and neuronal activities of the animal brain in vivo, as well as its integration with microprobes for imaging neuronal function in deep brain regions in vivo. Promising results of in vivo animal brain functional studies suggest the potential of this multimodality approach for future awake animal and behavioral studies. C1 [Du, Congwu] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Pan, Yingtian] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. RP Du, CW (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM congwu@bnl.gov FU National Institutes of Health (NIH) [K25-DA021200, 2R01-DK059265, 1RC1-DA028534, R21DA032228]; Department of Energy [LDRD 10-023] FX The authors thank to Z. Luo, Z. Yuan, H. Ren, K. Burker and R. Pan for participating in some of the studies presented above. The work was supported in part by National Institutes of Health (NIH) grants K25-DA021200 (C.D.), 2R01-DK059265 (Y.P.), and 1RC1-DA028534 (C.D. and Y.P.), R21DA032228 (Y.P. and C.D.) and by a Department of Energy grant LDRD 10-023 (C.D.). NR 104 TC 5 Z9 6 U1 0 U2 19 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0334-1763 J9 REV NEUROSCIENCE JI Rev. Neurosci. PD DEC PY 2011 VL 22 IS 6 BP 695 EP 709 DI 10.1515/RNS.2011.053 PG 15 WC Neurosciences SC Neurosciences & Neurology GA 889QH UT WOS:000300087800009 PM 22098474 ER PT J AU Huang, Y Gellman, AJ AF Huang, Ye Gellman, Andrew J. TI Enantiospecific Adsorption of (R)-3-Methylcyclohexanone on Naturally Chiral Surfaces Vicinal to Cu(110) SO TOPICS IN CATALYSIS LA English DT Article DE Copper single crystal; Chiral surface; Enantioselective adsorption; Temperature programmed desorption; Chiral adsorbate ID METAL-SURFACES; PLATINUM SURFACES; CU SURFACES; CU(643); CU(531)(R-AND-S); HYDROCARBONS; DESORPTION; CATALYSIS; CHEMISTRY; CU(221) AB (R)-3-methylcyclohexanone (R-3MCHO) has been shown to adsorb enantiospecifically on naturally chiral Cu surfaces vicinal to the Cu(110) plane. Adsorption of R-3MCHO on seven Cu single crystal surfaces vicinal to (110) was studied using temperature programmed desorption. These surfaces include Cu(110), Cu(771), Cu(430), Cu(13,9,1)(R&S) and Cu(651)(R&S). The Cu(13,9,1)(R&S) and Cu(651)(R&S) surfaces are naturally chiral surfaces with terrace-step-kink structures. Enantioselective adsorption of R-3MCHO takes place on the chiral kink sites of these surfaces. Three R-3MCHO desorption features were resolved in the TPD spectra on Cu(13,9,1)(R&S) and Cu(651)(R&S) surfaces. Based upon comparisons between these and other Cu single crystal surfaces, they were assigned to desorption of R-3MCHO from flat terrace, close-packed step and kink sites. The desorption of R-3MCHO from the row and trough structure of the Cu(110) surface resembled desorption from a step structure rather than from a flat Cu(111) terrace. R-3MCHO desorbs enantiospecifically from the Cu(13,9,1)(R&S) and Cu(651)(R&S) surfaces. The peaks associated with R-3MCHO desorbing from the R-and S-chiral kink sites on Cu(13,9,1)(R&S) differed in temperature by 2.4 +/- 0.8 K. This corresponds to an enantiospecific difference in the desorption energies of 0.7 +/- 0.2 kJ/mol, with a preference for R-3MCHO adsorption at the R-kinks. In contrast, R-3MCHO has a desorption energy from the S-kinks on the Cu(651)(S) surface that is 0.7 +/- 0.2 kJ/mol higher than from the R-kinks on the Cu(651)(R) surface. C1 [Gellman, Andrew J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Huang, Ye; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Gellman, AJ (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM gellman@cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU US DOE [DE-FG02-03ER15472] FX The authors would like to acknowledge support from the US DOE through grant number DE-FG02-03ER15472. NR 37 TC 13 Z9 13 U1 2 U2 21 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD DEC PY 2011 VL 54 IS 19-20 BP 1403 EP 1413 DI 10.1007/s11244-011-9756-0 PG 11 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 890XM UT WOS:000300180000010 ER PT J AU Walker, MJ Berman, D Nordquist, C Krim, J AF Walker, M. J. Berman, D. Nordquist, C. Krim, J. TI Electrical Contact Resistance and Device Lifetime Measurements of Au-RuO2-Based RF MEMS Exposed to Hydrocarbons in Vacuum and Nitrogen Environments SO TRIBOLOGY LETTERS LA English DT Article DE MEMS devices; Contact mechanics; Adhesion; Stiction; Surface roughness ID QUARTZ-CRYSTAL MICROBALANCE; THIN INSULATING FILM; SURFACES; GOLD; LUBRICATION; REDUCTION; BEHAVIOR; AU(111); SILVER; LAYER AB Electrical Contact Resistance (ECR) measurements are reported for RF micro-electromechanical switches with Au-RuO2 contacts, situated within an ultrahigh vacuum system equipped with in situ oxygen plasma cleaning capabilities. Two studies are reported, each involving a comparison of the ECR in vacuum and nitrogen environments for measurements performed immediately after cleaning. The first study reports measurements of initial resistance (resistance measured upon first time closure) versus pressure as dodecane gas is admitted to the chamber. A significant increase is observed at pressures in vacuum as low as 10(-5) torr, (P/P-sat < 10(-4)) consistent with earlier reports involving repetitive cycling of macroscopic switches in partial pressures of hydrocarbons in nitrogen. Somewhat unexpectedly, however, the resistance only doubles, even for pressures sufficiently high as to result in full monolayer condensation. In a second study, switch lifetimes in vacuum (10(-8) - 10(-9) torr) and nitrogen gas environments are compared, for switches operated immediately afterward, or alternatively left open for a number of days before operation. Although it was expected that vacuum would reduce and/or prevent contamination of the electrical contact surfaces, no enhancement or extension of lifetime was observed: Continuous operation of a switch in a nitrogen environment immediately after plasma cleaning was in fact the only procedure observed to indefinitely prolong device lifetime. The results suggest that (1) Hydrocarbon reaction products, but not mobile physisorbed hydrocarbons themselves, are responsible for increasing ECR by orders of magnitude and (2) Repetitive cycling motion of a clean switch in nitrogen inhibits formation of physisorbed hydrocarbon contaminants on the contacts, while vacuum levels far superior to 10(-9) torr are required to prevent contamination. C1 [Berman, D.; Krim, J.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Walker, M. J.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Nordquist, C.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Krim, J (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM dyanchu@ncsu.edu; jkrim@ncsu.edu FU NSF [DMR0805204]; Extreme Friction MURI; AFOSR [FA9550-04-1-0381]; DARPA [HR0011-06-1-0051]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This study has been supported by NSF DMR0805204, the Extreme Friction MURI program, AFOSR # FA9550-04-1-0381, and the DARPA S&T Fundamentals Program, 'Center for RF MEMS Reliability and Design Fundamentals,' grant no HR0011-06-1-0051. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors acknowledge G. A. Patrizi, F. A. Austin, and Sandia MESAfab operations for switch fabrication. Useful discussions with D. Dougherty, K. Komvopoulos, M. Zikry, D. A. Czaplewski, W. D. Cowan, and C. W. Dyck are greatly appreciated. NR 51 TC 9 Z9 9 U1 2 U2 17 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 EI 1573-2711 J9 TRIBOL LETT JI Tribol. Lett. PD DEC PY 2011 VL 44 IS 3 BP 305 EP 314 DI 10.1007/s11249-011-9849-8 PG 10 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 890XP UT WOS:000300180300002 ER PT J AU Linganiso, LZ Pendyala, VRR Jacobs, G Davis, BH Cronauer, DC Kropf, AJ Marshall, CL AF Linganiso, Linda Z. Pendyala, Venkat Ramana Rao Jacobs, Gary Davis, Burtron H. Cronauer, Donald C. Kropf, A. Jeremy Marshall, Christopher L. TI Low-Temperature Water-Gas Shift: Doping Ceria Improves Reducibility and Mobility of O-Bound Species and Catalyst Activity SO CATALYSIS LETTERS LA English DT Article DE Water-gas shift; Cerium oxide; Platinum; Doping; TPR-XANES ID FUEL-CELL APPLICATIONS; REACTION-MECHANISMS; PT/CERIA CATALYSTS; METAL; REDUCTION; CO; METAL/CERIA; STABILITY; PROMOTER; OXIDE AB A series of platinumloaded catalysts supported on cation (Me)-doped cerium dioxide (Me = Ba, La, Y, Hf and Zn) was prepared by co-precipitation of the Me-nitrates and impregnation of a Pt precursor. Low temperature water-gas shift activity depends on the nature of dopant employed, varying in the order of Ba > Y > Hf > La > undoped ceria > Zn. TPR-XANES measurements with flowing hydrogen reveal that adding dopants to ceria facilitate ceria reduction and increases the extents of both surface shell and bulk reduction of ceria. Experimental results confirm past theoretical models that dopants enhance both O-mobility and reducibility of ceria. DRIFTS measurements of the transient decomposition of formates in steam suggest that formate half-life follows the trend Zn[undoped ceria[La[Hf[Y[Ba, indicating that the formate decomposition rate is enhanced by the addition of most of the dopants tested. Taken together, the results suggest that dopant addition improves the WGS rate by increasing the O-mobility of O-bound associated intermediates. Therefore, less Pt and Ce, which are expensive, is required to achieve comparable levels of activity. C1 [Linganiso, Linda Z.; Pendyala, Venkat Ramana Rao; Jacobs, Gary; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Cronauer, Donald C.; Kropf, A. Jeremy; Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Davis, BH (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM burtron.davis@uky.edu RI BM, MRCAT/G-7576-2011; Marshall, Christopher/D-1493-2015; Jacobs, Gary/M-5349-2015 OI Marshall, Christopher/0000-0002-1285-7648; Jacobs, Gary/0000-0003-0691-6717 FU Commonwealth of Kentucky; U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions FX The work carried out at the CAER was supported in part by funding from the Commonwealth of Kentucky. Argonne's research was supported in part by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL). The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 39 TC 3 Z9 3 U1 0 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD DEC PY 2011 VL 141 IS 12 BP 1723 EP 1731 DI 10.1007/s10562-011-0720-1 PG 9 WC Chemistry, Physical SC Chemistry GA 887IE UT WOS:000299919300001 ER PT J AU Jencks, HW AF Jencks, Harlan W. TI China, the United States and 21st-Centuty Sea Power: Defining a Maritime Security Partnership SO CHINA QUARTERLY LA English DT Book Review C1 [Jencks, Harlan W.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Jencks, HW (reprint author), Univ Calif Berkeley, Ctr Chinese Studies, Berkeley, CA 94720 USA. NR 1 TC 0 Z9 0 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0305-7410 J9 CHINA QUART JI China Q. PD DEC PY 2011 IS 208 BP 1034 EP 1036 DI 10.1017/S0305741011001226 PG 3 WC Area Studies SC Area Studies GA 885EX UT WOS:000299762400022 ER PT J AU Kudrolli, H Bhandari, H Breen, M Gelfandbein, V Miller, SR Pivovaroff, M Squillante, MR Vogel, J Nagarkar, VV AF Kudrolli, H. Bhandari, H. Breen, M. Gelfandbein, V. Miller, S. R. Pivovaroff, M. Squillante, M. R. Vogel, J. Nagarkar, V. V. TI Development of high spatial resolution detector for characterization of X-ray optics SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 9th International Conference on Position Sensitive Detectors CY SEP 12-16, 2011 CL Aberystwyth, WALES DE X-ray detectors; Detector design and construction technologies and materials; Scintillators and scintillating fibres and light guides; X-ray detectors and telescopes AB Technological innovations in grazing incidence X-ray optics have been crucial to the advancement of the field of X-ray astronomy. Improvements in X-ray focusing optics translate to higher sensitivity for X-ray telescopes operating in the energy range above 10 keV. Full characterization of the X-ray optics involves measurement of the point spread function, scattering, and reflectivity properties of substrate coatings. This requires a very high spatial resolution, high sensitivity, photon counting and energy discriminating large area detector. In this paper we describe the construction of a detector that is well suited to meet these requirements. A prototype version of this camera was used to calibrate the X-ray focusing optics for the Nuclear Spectroscopic Telescope Array (NuSTAR) mission. Analysis of the data obtained during the ground calibration of the NuSTAR telescopes demonstrated the advantages of such a high resolution 2D detector for hard X-rays (30 + keV); however it showed some limitations for medium energy X-rays (8-30 keV). We present here, alternative methods under investigation to improve performance of the detector for medium energy X-rays such as changing the morphology of the CsI:Tl scintillator, improving light transport from scintillator to EMCCD and using a novel bright scintillator, Ba2CsI5:Eu. C1 [Kudrolli, H.; Bhandari, H.; Breen, M.; Gelfandbein, V.; Miller, S. R.; Squillante, M. R.; Nagarkar, V. V.] Radiat Monitoring Devices Inc, Imaging Technol Grp, Watertown, MA 02172 USA. [Pivovaroff, M.; Vogel, J.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. RP Kudrolli, H (reprint author), Radiat Monitoring Devices Inc, Imaging Technol Grp, 44 Hunt St, Watertown, MA 02172 USA. EM HKudrolli@rmdinc.com RI Pivovaroff, Michael/M-7998-2014 OI Pivovaroff, Michael/0000-0001-6780-6816 NR 9 TC 2 Z9 2 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2011 VL 6 AR C12013 DI 10.1088/1748-0221/6/12/C12013 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 882BQ UT WOS:000299536600013 ER PT J AU Jiang, WL Jiao, L Wang, HY AF Jiang, Weilin Jiao, Liang Wang, Haiyan TI Transition from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article AB Response to irradiation of nanocrystalline 3CSiC is studied using 2 MeV Au2+ ions at elevated temperatures and is compared to the behavior of its monocrystalline counterpart under the identical irradiation conditions. The irradiated samples are characterized using in-situ ion channeling, ex-situ X-ray diffraction, and helium ion microscopy. Compared to monocrystalline 3CSiC, a faster amorphization process in the nanocrystalline material (average grain size = 3.3 nm) is observed at 500 K. However, the nanograin grows with increasing ion fluence at 550 K and the grain size tends to saturate at high fluences. The striking contrast demonstrates a sharp transition from irradiation-induced interface-driven amorphization at 500 K to crystallization at 550 K. The results could potentially have a positive impact on nuclear fuel cladding and structural components of next-generation nuclear energy systems. C1 [Jiang, Weilin] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Jiao, Liang; Wang, Haiyan] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA. RP Jiang, WL (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM weilin.jiang@pnnl.gov RI Wang, Haiyan/P-3550-2014; OI Wang, Haiyan/0000-0002-7397-1209; Jiang, Weilin/0000-0001-8302-8313 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences; U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; Office of Biological and Environmental Research; U.S. DOE and located at the Pacific Northwest National Laboratory (PNNL); National Science Foundation [0846504] FX This research was supported in part (sample irradiation and characterizations) by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under Contract DE-AC05-76RL01830. The experiments were performed within the Environmental Molecular Sciences Laboratory (EMSL), a DOE scientific user facility supported by the Office of Biological and Environmental Research, U.S. DOE and located at the Pacific Northwest National Laboratory (PNNL). Preparation of the nanocrystalline 3C-SiC samples used in this study was performed at the Texas A&M University and was supported by the National Science Foundation (Award No. 0846504). NR 13 TC 14 Z9 14 U1 1 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2011 VL 94 IS 12 BP 4127 EP 4130 DI 10.1111/j.1551-2916.2011.04887.x PG 4 WC Materials Science, Ceramics SC Materials Science GA 859BC UT WOS:000297848100007 ER PT J AU Kaneko, TK Bennett, JP Sridhar, S AF Kaneko, Tetsuya Kenneth Bennett, James P. Sridhar, Seetharaman TI Effect of Temperature Gradient on Industrial Gasifier Coal Slag Infiltration into Alumina Refractory SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID CORROSION; VISCOSITY; OXIDE AB Infiltration characteristics of industrial coal slag into alumina (Al2O3) refractory material with a temperature gradient induced along the slag's penetration direction are compared to those obtained under near-isothermal conditions. Experiments were conducted with a hot-face temperature of 1450 degrees C and a CO/CO2 ratio of 1.8, which corresponds to an oxygen partial pressure of similar to 10(-8) atm. The refractory under the near-isothermal temperature profile, with higher average temperatures, demonstrated a greater penetration depth than its counterpart that was under the steeper temperature gradient. Slag that did not infiltrate into the refractory due to the induced temperature gradient, pooled and solidified on the top of the sample. Within the pool, a conglomerated mass of troilite (FeS) formed separately from the surrounding slag. Microscopy of the cross-sectioned infiltrated refractories revealed that the slag preferentially corroded the matrix regions closer to the top surface. Furthermore, the formation of a thick layer of hercynite (FeAl2O4) at the top of refractory/slag interface significantly depleted the slag of its iron-oxide content with respect to its virgin composition. A qualitative description of the penetration process is provided in this article. C1 [Kaneko, Tetsuya Kenneth; Sridhar, Seetharaman] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Kaneko, Tetsuya Kenneth; Sridhar, Seetharaman] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Bennett, James P.] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. RP Kaneko, TK (reprint author), US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM tkaneko@andrew.cmu.edu NR 22 TC 8 Z9 9 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2011 VL 94 IS 12 BP 4507 EP 4515 DI 10.1111/j.1551-2916.2011.04782.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 859BC UT WOS:000297848100069 ER PT J AU Seethala, C Pandithurai, G Fast, JD Polade, SD Reddy, MS Peckham, SE AF Seethala, C. Pandithurai, G. Fast, Jerome D. Polade, Suraj D. Reddy, M. S. Peckham, Steven E. TI Evaluating WRF-Chem Multi-Scale Model in Simulating Aerosol Radiative Properties Over the Tropics - A Case Study Over India SO MAPAN-JOURNAL OF METROLOGY SOCIETY OF INDIA LA English DT Article ID SOLAR ULTRAVIOLET-RADIATION; SULFUR-DIOXIDE EMISSIONS; AIR-POLLUTION; HYDROLOGICAL CYCLE; OPTICAL DEPTHS; ART.; CLIMATE; VARIABILITY; CHEMISTRY; SURFACE AB We evaluated the performance of WRF-Chem multi-scale model over the tropics, to simulate the regional distribution and optical properties of aerosols, and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers. The simulated downward shortwave flux was overestimated when the effect of aerosols and clouds, on radiation, was neglected. The simulated downward shortwave radiation was 1 to 20 Wm(-2) closer to the observations when we included aerosol-cloud-radiation interaction in the simulation. The model usually underestimated particulate concentration for the few observations available. This is likely due to turbulent mixing, transport errors and the lack of dust emission/scheme and the secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as, higher aerosol optical depth over the northern parts of India, especially over the Indo-Gangetic basin and lower aerosol optical depth over southern parts of India. The regional distribution of aerosol optical depth agreed well with the AVHRR aerosol optical depth and the TOMS aerosol index pattern. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. The difference in surface shortwave radiation between two simulations that included and neglected aerosol-radiation (aerosol-radiation-cloud) interactions were as high as-25 (-30) Wm(-1). The spatial variations of these differences were also compared with the AVHRR observation. This study suggests that the model is able to qualitatively simulate the distribution of particulates and its impact on radiation over India; however, additional measurements of particulate mass and composition are needed to fully evaluate the model performance. C1 [Fast, Jerome D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Polade, Suraj D.] Univ Hamburg, Inst Meteorol, Hamburg, Germany. [Reddy, M. S.] Met Off Hadley Ctr, Exeter, Devon, England. [Peckham, Steven E.] Univ Colorado, Cooperat Inst Res & Environm Sci, Boulder, CO 80309 USA. [Seethala, C.; Pandithurai, G.] Indian Inst Trop Meteorol, Pune, Maharashtra, India. [Peckham, Steven E.] NOAA, Global Syst Div, Earth Syst Res Lab, Boulder, CO USA. RP Seethala, C (reprint author), Max Planck Inst Meteorol, Hamburg, Germany. EM seethala.chellappan@zmaw.de RI Polade, Suraj/D-4555-2013; OI Polade, Suraj/0000-0002-3892-1433; Pandithurai, G/0000-0001-7324-3773 NR 61 TC 4 Z9 4 U1 0 U2 11 PU METROLOGY SOC INDIA PI NEW DELHI PA NPL PREMISES, DR K S KRISHNAN MARG, NEW DELHI, 110 012, INDIA SN 0970-3950 EI 0974-9853 J9 MAPAN-J METROL SOC I JI MAPAN-J. Metrol. Soc. India PD DEC PY 2011 VL 26 IS 4 BP 269 EP 284 DI 10.1007/s12647-011-0025-2 PG 16 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 885GT UT WOS:000299767500001 ER PT J AU Ujwal, R Bowie, JU AF Ujwal, Rachna Bowie, James U. TI Crystallizing membrane proteins using lipidic bicelles SO METHODS LA English DT Article DE Membrane protein crystallization; Bicelle; Lipidic crystallization ID ALIGNED PHOSPHOLIPID-BILAYERS; 2.3 ANGSTROM RESOLUTION; CYTOCHROME-C-OXIDASE; F-V FRAGMENT; COUPLED RECEPTOR; PROTON PUMP; K+ CHANNEL; MIXTURES; COMPLEX; MICELLES AB Crystallization of membrane proteins remains a significant challenge. For proteins resistant to the traditional approach of directly crystallizing from detergents, lipidic phase crystallization can be a powerful tool. Bicelles are an excellent medium for crystallizing membrane proteins in a lipidic environment. They can be described as bilayer discs formed by the mixture of a long-chain phospholipid and an amphiphile in an aqueous medium. Membrane proteins can be readily reconstituted into bicelles, where they are maintained in a native-like bilayer environment. Importantly, membrane proteins have been shown to be fully functional in bicelles under physiological conditions. Protein-bicelle mixtures can be manipulated with almost the same ease as detergent-solubilized membrane proteins, making bicelles compatible with standard equipment including high-throughput crystallization robots. A number of membrane proteins have now been successfully crystallized using the bicelle method, including bacteriorhodopsin, beta 2 adrenergic receptor, voltage-dependent anion channel, xanthorhodopsin and rhomboid protease. Because of the success with a variety of membrane proteins and the ease of implementation, bicelles should be a part of every membrane protein crystallographer's arsenal. (C) 2011 Elsevier Inc. All rights reserved. C1 [Ujwal, Rachna; Bowie, James U.] Univ Calif Los Angeles, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu FU NIH [R01GM063919] FX We thank Dr. Salem Faham for providing technical expertise and guidance on the bicelle method. This work was supported by NIH Grant R01GM063919 to JUB. NR 52 TC 45 Z9 46 U1 1 U2 36 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 J9 METHODS JI Methods PD DEC PY 2011 VL 55 IS 4 BP 337 EP 341 DI 10.1016/j.ymeth.2011.09.020 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 885ER UT WOS:000299761800011 PM 21982781 ER PT J AU Hunter, MS Fromme, P AF Hunter, Mark S. Fromme, Petra TI Toward structure determination using membrane-protein nanocrystals and microcrystals SO METHODS LA English DT Review DE Membrane proteins; Structure determination; Femtosecond nanocrystallography; Protein nanocrystals; X-ray crystallography; XFEL ID CYTOCHROME-C-OXIDASE; PLANT PHOTOSYSTEM-I; FREE-ELECTRON LASER; X-RAY-DIFFRACTION; ANGSTROM RESOLUTION; CRYSTAL-STRUCTURE; RADIATION-DAMAGE; LIPIDIC MESOPHASES; PARACOCCUS-DENITRIFICANS; MACROMOLECULAR CRYSTALS AB Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein structures have been determined to date, often due to difficulties associated with the growth of sufficiently large and well-ordered crystals. This work has been focused on showing the first proof of concept for using membrane protein nanocrystals and microcrystals for high-resolution structure determination. Upon determining that crystals of the membrane protein Photosystem I, which is the largest and most complex membrane protein crystallized to date, exist with only 100 unit cells with sizes of less than 200 nm on an edge, work was done to develop a technique that could exploit the growth of the Photosystem I nanocrystals and microcrystals. Femtosecond X-ray protein nanocrystallography was developed for use at the first high-energy X-ray free electron laser, the LCLS at SLAC National Accelerator Laboratory, in which a liquid jet brought fully-hydrated Photosystem I nanocrystals into the interaction region of the pulsed X-ray source. Diffraction patterns were recorded from millions of individual PSI nanocrystals and data from thousands of different, randomly oriented crystallites were integrated using Monte Carlo integration of the peak intensities. The short pulses (similar to 70 fs) provided by the LCLS allowed the possibility to collect the diffraction data before the onset of radiation damage, exploiting the diffract-before-destroy principle. During the initial experiments at the AMO beamline using 6.9-angstrom wavelength, Bragg peaks were recorded to 8.5-angstrom resolution, and an electron-density map was determined that did not show any effects of X-ray-induced radiation damage [94]. Many additional techniques still need to be developed to explore the femtosecond nanocrystallography technique for experimental phasing and time-resolved X-ray crystallography experiments. The first proof-of-principle results for the femtosecond nanocrystallography technique indicate the incredible potential of the technique to offer a new route to the structure determination of membrane proteins. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hunter, Mark S.; Fromme, Petra] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Hunter, MS (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,Mail Stop L-211, Livermore, CA 94551 USA. EM hunter33@llnl.gov FU NSF [IDBR 0555845]; Center for Biophotonics Science and Technology (University of California at Davis); Lawrence Berkeley National Laboratory; US Department of Energy through the PULSE Institute at the SLAC National Accelerator Laboratory; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Joachim Herz Stiftung; Helmholtz Association; Max Planck Society; ASG at CFEL; DOE through the PULSE Institute at the SLAC National Accelerator Laboratory; US National Science Foundation [0417142, MCB-1021557]; US National Institutes of Health [1R01GM095583-01, 1U54GM094625-01]; Swedish Research Council; Swedish Foundation for International Cooperation in Research and Higher Education, Stiftelsen Olle Engkvist Byggmastare; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by NSF award IDBR 0555845, the Center for Biophotonics Science and Technology (University of California at Davis), the Lawrence Berkeley National Laboratory Seaborg Fellowship award, by the US Department of Energy through the PULSE Institute at the SLAC National Accelerator Laboratory, and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and the Joachim Herz Stiftung.; We acknowledge support from the Helmholtz Association; the Max Planck Society, for funding the development and operation of the CAMP instrument within the ASG at CFEL; DOE, through the PULSE Institute at the SLAC National Accelerator Laboratory, and by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344; the US National Science Foundation (awards 0417142 and MCB-1021557); the US National Institutes of Health (awards 1R01GM095583-01 (ROADMAP) and 1U54GM094625-01 (PSI:Biology)); the Joachim Herz Stiftung, the Swedish Research Council; the Swedish Foundation for International Cooperation in Research and Higher Education, Stiftelsen Olle Engkvist Byggmastare.; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 115 TC 37 Z9 37 U1 4 U2 36 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 EI 1095-9130 J9 METHODS JI Methods PD DEC PY 2011 VL 55 IS 4 BP 387 EP 404 DI 10.1016/j.ymeth.2011.12.006 PG 18 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 885ER UT WOS:000299761800017 PM 22197730 ER PT J AU Lu, L Anderson-Cook, CM Wilson, AG AF Lu, L. Anderson-Cook, C. M. Wilson, A. G. TI Choosing a consumption strategy for a population of units based on reliability SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY LA English DT Article DE probit regression; decision making; multiple competing objectives; stockpile management ID OPTIMIZATION AB Managers and decision makers are often faced with difficult decisions balancing multiple competing objectives when selecting between several strategies for how to use the units in their inventory or stockpile. This paper considers how to define different metrics which appropriately summarize the objectives of a good strategy, how to consider what impact unanticipated changes in the future might have, and how to combine several criteria into a decision when no global winner is likely. This process is discussed in the context of maximizing the reliability of a population of single-use non-repairable units, such as missiles or batteries, which are being consumed (used and removed from the population) as they age over time. C1 [Anderson-Cook, C. M.] Los Alamos Natl Lab, Stat Sci Grp MS F600, Los Alamos, NM 87545 USA. [Wilson, A. G.] Inst Def Anal, Sci & Technol Policy Inst, Washington, DC USA. RP Anderson-Cook, CM (reprint author), Los Alamos Natl Lab, Stat Sci Grp MS F600, POB 1663, Los Alamos, NM 87545 USA. EM c-and-cook@lanl.gov OI Wilson, Alyson/0000-0003-1461-6212 FU Los Alamos National Laboratory [W-7405-ENG-36] FX This work was performed under the auspices of the Los Alamos National Laboratory, operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. NR 13 TC 1 Z9 1 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1748-006X J9 P I MECH ENG O-J RIS JI Proc. Inst. Mech. Eng. Part O-J. Risk Reliab. PD DEC PY 2011 VL 225 IS O4 BP 407 EP 423 DI 10.1177/1748006X11392287 PG 17 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 881MA UT WOS:000299489200003 ER PT J AU Arridge, CS Andre, N McAndrews, HJ Bunce, EJ Burger, MH Hansen, KC Hsu, HW Johnson, RE Jones, GH Kempf, S Khurana, KK Krupp, N Kurth, WS Leisner, JS Paranicas, C Roussos, E Russell, CT Schippers, P Sittler, EC Smith, HT Thomsen, MF Dougherty, MK AF Arridge, C. S. Andre, N. McAndrews, H. J. Bunce, E. J. Burger, M. H. Hansen, K. C. Hsu, H-W Johnson, R. E. Jones, G. H. Kempf, S. Khurana, K. K. Krupp, N. Kurth, W. S. Leisner, J. S. Paranicas, C. Roussos, E. Russell, C. T. Schippers, P. Sittler, E. C. Smith, H. T. Thomsen, M. F. Dougherty, M. K. TI Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations SO SPACE SCIENCE REVIEWS LA English DT Review DE Cassini; Saturn; Magnetospheric regions; Plasma processes ID ION-CYCLOTRON WAVES; CAPS ELECTRON SPECTROMETER; LOW-FREQUENCY WAVES; SOLAR-WIND FLOW; MAGNETIC-FIELD; INNER MAGNETOSPHERE; E-RING; KILOMETRIC RADIATION; ORBIT INSERTION; ROTATION PERIOD AB Saturn's rich magnetospheric environment is unique in the solar system, with a large number of active magnetospheric processes and phenomena. Observations of this environment from the Cassini spacecraft has enabled the study of a magnetospheric system which strongly interacts with other components of the saturnian system: the planet, its rings, numerous satellites (icy moons and Titan) and various dust, neutral and plasma populations. Understanding these regions, their dynamics and equilibria, and how they interact with the rest of the system via the exchange of mass, momentum and energy is important in understanding the system as a whole. Such an understanding represents a challenge to theorists, modellers and observers. Studies of Saturn's magnetosphere based on Cassini data have revealed a system which is highly variable which has made understanding the physics of Saturn's magnetosphere all the more difficult. Cassini's combination of a comprehensive suite of magnetospheric fields and particles instruments with excellent orbital coverage of the saturnian system offers a unique opportunity for an in-depth study of the saturnian plasma and fields environment. In this paper knowledge of Saturn's equatorial magnetosphere will be presented and synthesised into a global picture. Data from the Cassini magnetometer, low-energy plasma spectrometers, energetic particle detectors, radio and plasma wave instrumentation, cosmic dust detectors, and the results of theory and modelling are combined to provide a multi-instrumental identification and characterisation of equatorial magnetospheric regions at Saturn. This work emphasises the physical processes at work in each region and at their boundaries. The result of this study is a map of Saturn's near equatorial magnetosphere, which represents a synthesis of our current understanding at the end of the Cassini Prime Mission of the global configuration of the equatorial magnetosphere. C1 [Arridge, C. S.; Jones, G. H.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Arridge, C. S.; Jones, G. H.] UCL Birkbeck, Ctr Planetary Sci, London WC1E 6BT, England. [Andre, N.] CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse 4, France. [Bunce, E. J.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Burger, M. H.; Sittler, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hansen, K. C.] Univ Michigan, Ctr Space Environm Modeling, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Hsu, H-W; Kempf, S.] Max Planck Inst Nucl Phys, D-69117 Heidelberg, Germany. [Johnson, R. E.] Univ Virginia, Engn Phys Program, Charlottesville, VA 22904 USA. [Johnson, R. E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Andre, N.] Univ Toulouse, Inst Rech Astrophys & Planetol, UPS OMP, F-31028 Toulouse, France. [McAndrews, H. J.; Thomsen, M. F.] LANL, ISR 1, Space & Atmospher Sci Grp, Los Alamos, NM 87545 USA. [Khurana, K. K.; Leisner, J. S.; Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Krupp, N.; Roussos, E.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Kurth, W. S.; Leisner, J. S.; Schippers, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Paranicas, C.; Smith, H. T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Arridge, CS (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM csa@mssl.ucl.ac.uk RI Jones, Geraint/C-1682-2008; Paranicas, Christopher/B-1470-2016; Smith, Howard/H-4662-2016; Arridge, Christopher/A-2894-2009; Hansen, Kenneth/F-3693-2011; Bunce, Emma/I-9067-2016; Russell, Christopher/E-7745-2012; OI Paranicas, Christopher/0000-0002-4391-8255; Smith, Howard/0000-0003-3537-3360; Arridge, Christopher/0000-0002-0431-6526; Hansen, Kenneth/0000-0002-8502-1980; Bunce, Emma/0000-0002-9456-0345; KEMPF, SASCHA/0000-0001-5236-3004; Russell, Christopher/0000-0003-1639-8298; Jones, Geraint/0000-0002-5859-1136; Kurth, William/0000-0002-5471-6202; Roussos, Elias/0000-0002-5699-0678 FU International Space Science Institute (ISSI); CNES; STFC FX The authors acknowledge funding and support from the International Space Science Institute (ISSI) in carrying out this multi-instrument study, which supported the team for two visits to ISSI, Berne, Switzerland. All the authors acknowledge the hospitality and kindness of the ISSI support team for making their visits pleasant and productive. CSA was supported in this work by the STFC rolling grant to MSSL/UCL and an STFC postdoctoral fellowship. NA acknowledges the support from CNES. The authors acknowledge the efforts of everyone working on the Cassini project and particularly the MAPS instrument teams for making the Cassini/Huygens mission such a success. CSA thanks Abi Rymer for useful discussions, Fran Bagenal and Don Gurnett for comments on the manuscript, and Don Mitchell for assistance with Cassini MIMI data. NR 259 TC 14 Z9 14 U1 3 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2011 VL 164 IS 1-4 BP 1 EP 83 DI 10.1007/s11214-011-9850-4 PG 83 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 885HH UT WOS:000299769100001 ER PT J AU Marsh, GE AF Marsh, Gerald E. TI CLIMATE STABILITY AND POLICY SO ENERGY & ENVIRONMENT LA English DT Article C1 [Marsh, Gerald E.] Argonne Natl Lab, Chicago, IL 60615 USA. EM gemarsh@uchicago.edu NR 14 TC 0 Z9 0 U1 1 U2 2 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 0958-305X J9 ENERG ENVIRON-UK JI Energy Environ. PD DEC PY 2011 VL 22 IS 8 BP 1085 EP 1090 DI 10.1260/0958-305X.22.8.1085 PG 6 WC Environmental Studies SC Environmental Sciences & Ecology GA 871PY UT WOS:000298751400007 ER PT J AU Slattery, MC Lantz, E Johnson, BL AF Slattery, Michael C. Lantz, Eric Johnson, Becky L. TI State and local economic impacts from wind energy projects: Texas case study SO ENERGY POLICY LA English DT Article DE Wind energy; Texas; Economic impacts ID RENEWABLE ENERGY; ELECTRICITY; ATTITUDES; CARBON; NOISE; FARMS AB This paper uses the Jobs and Economic Development Impacts (JEDI) model to estimate economic impacts from 1398 MW of wind power development in four counties in west Texas. Project-specific impacts are estimated at the local level (i.e., within a 100-mile radius around the wind farms) and at the state level. The primary economic policy question addressed is how investment in wind energy affects the state and local communities where the wind farms are built. During the four-year construction phase approximately 4100 FTE (full time equivalents) jobs were supported with turbine and supply chain impacts accounting for 58% of all jobs generated. Total lifetime economic activity to the state from the projects equated to more than $1.8 billion, or $1.3 million per MW of installed capacity. The total economic activity to the local communities was also substantial, equating to nearly $730 million over the assumed 20-year life cycle of the farms, or $0.52 million per MW of installed capacity. Given the current level of impacts observed, and the potential for increased impacts via greater utilization of instate manufacturing capacity and the development of trained wind industry specific laborers, Texas appears to be well positioned to see increasing impacts from continued wind development. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Slattery, Michael C.; Johnson, Becky L.] Texas Christian Univ, Inst Environm Studies, Ft Worth, TX 76129 USA. [Slattery, Michael C.; Johnson, Becky L.] Texas Christian Univ, Sch Geol Energy & Environm, Ft Worth, TX 76129 USA. [Lantz, Eric] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Slattery, MC (reprint author), Texas Christian Univ, Inst Environm Studies, POB 298830, Ft Worth, TX 76129 USA. EM m.slattery@tcu.edu FU NextEra Energy Resources; U.S. Department of Energy FX The work and contributions of TCU faculty and staff in this project were funded by NextEra Energy Resources. As specified under contract, TCU researchers had unrestricted access to company data, and complete independence in all aspects of the analysis, conclusions, and decision to publish the research. Participation in this research by the National Renewable Energy Laboratory was exclusively funded by the U.S. Department of Energy Wind and Water Power Program. NR 32 TC 22 Z9 24 U1 5 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD DEC PY 2011 VL 39 IS 12 BP 7930 EP 7940 DI 10.1016/j.enpol.2011.09.047 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 866EN UT WOS:000298363400045 ER PT J AU Le Norcy, E Kwak, SY Allaire, M Fratzl, P Yamakoshi, Y Simmer, JP Margolis, HC AF Le Norcy, Elvire Kwak, Seo-Young Allaire, Marc Fratzl, Peter Yamakoshi, Yasuo Simmer, James P. Margolis, Henry C. TI Effect of phosphorylation on the interaction of calcium with leucine-rich amelogenin peptide SO EUROPEAN JOURNAL OF ORAL SCIENCES LA English DT Article; Proceedings Paper CT 8th International Symposium on Development, Properties and Pathology of Tooth Enamel CY JUN 12-18, 2011 CL N Utica, IL DE amelogenin; conformation; leucine-rich amelogenin peptide; phosphorylation; small angle X-ray scattering ID X-RAY-SCATTERING; IN-VITRO; HYDROXYAPATITE CRYSTALS; SECRETORY-STAGE; ENAMEL MATRIX; AGGREGATION; PHOSPHATE; PROTEINS; BINDING; SYSTEM AB Amelogenin undergoes self-assembly and plays an essential role in guiding enamel mineral formation. The leucine-rich amelogenin peptide (LRAP) is an alternative splice product of the amelogenin gene and is composed of the N terminus (containing the only phosphate group) and the C terminus of full-length amelogenin. This study was conducted to investigate further the role of phosphorylation in LRAP self-assembly in the presence and absence of calcium using small angle X-ray scattering (SAXS). Consistent with our previous dynamic light-scattering findings for phosphorylated (+P) and non-phosphorylated (-P) LRAP, SAXS analyses revealed radii of gyration (R(g)) for LRAP(-P) (46.3-48.0 angstrom) that were larger than those for LRAP(+P) (25.0-27.4 angstrom) at pH 7.4. However, added calcium (up to 2.5 mM) induced significant increases in the R(g) of LRAP(+P) (up to 46.4 angstrom), while it had relatively little effect on LRAP(-P) particle size. Furthermore, SAXS analyses suggested compact folded structures for LRAP(-P) in the presence and absence of calcium, whereas the conformation of LRAP(+P) changed from an unfolded structure to a more compact structure upon the addition of calcium. We conclude that the single phosphate group in LRAP(+P) induces functionally important conformational changes, suggesting that phosphorylation may also influence amelogenin conformation and protein-mineral interactions during the early stages of amelogenesis. C1 [Le Norcy, Elvire; Kwak, Seo-Young; Margolis, Henry C.] Forsyth Inst, Dept Biomineralizat, Cambridge, MA 02142 USA. [Le Norcy, Elvire; Kwak, Seo-Young; Margolis, Henry C.] Harvard Univ, Dept Dev Biol, Sch Dent Med, Boston, MA 02115 USA. [Allaire, Marc] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Fratzl, Peter] Max Planck Inst Colloids & Interfaces, Dept Biomat, Potsdam, Germany. [Yamakoshi, Yasuo; Simmer, James P.] Univ Michigan, Sch Dent, Dept Biol & Mat Sci, Ann Arbor, MI 48109 USA. RP Margolis, HC (reprint author), Forsyth Inst, Dept Biomineralizat, 245 1st St, Cambridge, MA 02142 USA. EM hmargolis@forsyth.org RI Fratzl, Peter/H-9095-2012 OI Fratzl, Peter/0000-0003-4437-7830 FU NIDCR NIH HHS [R56 DE016376, DE-016376, R01 DE016376, R01 DE016376-05] NR 37 TC 5 Z9 5 U1 0 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-8836 J9 EUR J ORAL SCI JI Eur. J. Oral Sci. PD DEC PY 2011 VL 119 SU 1 SI SI BP 97 EP 102 DI 10.1111/j.1600-0722.2011.00900.x PG 6 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA 875YB UT WOS:000299070300018 PM 22243234 ER PT J AU Swab, JJ Yu, J Gamble, R Kilczewski, S AF Swab, Jeffrey J. Yu, Jian Gamble, Robert Kilczewski, Steve TI Analysis of the diametral compression method for determining the tensile strength of transparent magnesium aluminate spinel SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article DE Diametral compression; Tensile strength; Fracture analysis; Magnesium aluminate spinel ID IMAGE CORRELATION PHOTOGRAMMETRY; FIELD DYNAMIC DISPLACEMENT; CERAMICS AB Attempts were made to determine the inherent tensile strength of a coarse-grained, hot-pressed magnesium aluminate spinel (MgAl(2)O(4)) using the diametral compression test. Thick (9.6 mm) disk specimens were machined from a large (356 mm square) plate of spinel. Two pairs of tungsten carbide (WC) platens, one with flat surfaces and the other with a 20. half-arc and radius matched to the disk diameter, were used to transfer the applied load. Specimens tested using the platens with the matched radius had strength values almost 50% higher than those tested using flat platens. Images of the fracture process captured using a high-speed camera showed that irrespective of the type of platens used, fracture consistently initiated at the loading interface, resulting in an invalid test. These results show that the diametral compression test method is not appropriate for determining the tensile strength of this spinel and it raises concerns about the applicability of the method for any advanced ceramic. C1 [Swab, Jeffrey J.] USA, Res Lab, Aberdeen, MD USA. [Yu, Jian] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Gamble, Robert] Bowhead DSI, Alexandria, VA USA. [Kilczewski, Steve] Data Matrix Syst, Sterling, VA USA. RP Swab, JJ (reprint author), USA, Res Lab, Aberdeen, MD USA. EM jeffrey.j.swab.civ@mail.mil NR 21 TC 9 Z9 9 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 J9 INT J FRACTURE JI Int. J. Fract. PD DEC PY 2011 VL 172 IS 2 BP 187 EP 192 DI 10.1007/s10704-011-9655-1 PG 6 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 883GA UT WOS:000299621000005 ER PT J AU Thiel, PA AF Thiel, Patricia A. TI Guest Editorial: Quasicrystals SO ISRAEL JOURNAL OF CHEMISTRY LA English DT Editorial Material C1 [Thiel, Patricia A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Thiel, Patricia A.] Iowa State Univ, Dept Chem, Ames, IA USA. [Thiel, Patricia A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA USA. RP Thiel, PA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. NR 0 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0021-2148 J9 ISR J CHEM JI Isr. J. Chem. PD DEC PY 2011 VL 51 IS 11-12 SI SI BP 1141 EP 1142 DI 10.1002/ijch.201100127 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 872EE UT WOS:000298790700001 ER PT J AU Thiel, PA Unal, B Jenks, CJ Goldman, AI Canfield, PC Lograsso, TA Evans, JW Quiquandon, M Gratias, D Van Hove, MA AF Thiel, Patricia A. Uenal, Baris Jenks, Cynthia J. Goldman, Alan I. Canfield, Paul C. Lograsso, Thomas A. Evans, James W. Quiquandon, Marianne Gratias, Denis Van Hove, Michel A. TI A Distinctive Feature of the Surface Structure of Quasicrystals: Intrinsic and Extrinsic Heterogeneity SO ISRAEL JOURNAL OF CHEMISTRY LA English DT Review DE adsorption; quasicrystal; scanning probe microscopy; surface structure ID AL-PD-MN; SCANNING-TUNNELING-MICROSCOPY; ENERGY-ELECTRON DIFFRACTION; 5-FOLD PLANE SURFACE; X-RAY-DIFFRACTION; FIVEFOLD SURFACE; ALPDMN; ANISOTROPY; SYMMETRY; GROWTH AB This paper reviews a feature of atomically-clean quasicrystal surfaces that distinguishes them from surfaces of crystalline materials. That feature is a high degree of heterogeneity among different terraces, and among structurally-identical adsorption sites. The heterogeneity can be both structural and chemical in origin. A large variability is expected even for a surface which is perfectly bulk-terminated, and we call this intrinsic heterogeneity. Additional variability can derive from the surface preparation process, which can yield metastable structures. We call this extrinsic heterogeneity. Experimental evidence is given for both cases. This heterogeneity can be an important factor in understanding and predicting surface phenomena such as chemisorption. C1 [Thiel, Patricia A.; Uenal, Baris; Jenks, Cynthia J.; Goldman, Alan I.; Canfield, Paul C.; Lograsso, Thomas A.; Evans, James W.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Thiel, Patricia A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Goldman, Alan I.; Canfield, Paul C.; Evans, James W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Thiel, Patricia A.; Uenal, Baris] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. [Quiquandon, Marianne; Gratias, Denis] LEM CNRS ONERA, F-92322 Chatillon, France. [Van Hove, Michel A.] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China. RP Thiel, PA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM thiel@ameslab.gov RI Van Hove, Michel/A-9862-2008; Canfield, Paul/H-2698-2014 OI Van Hove, Michel/0000-0002-8898-6921; FU Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy (USDOE) [DE-AC02-07CH11358]; US Department of Energy; NSF [CHE-1111500] FX We are grateful to the many scientists who contributed to studies of the atomic and chemical structure of clean quasicrystal surfaces. The list of those who worked on these topics at Ames Laboratory and Iowa State University as students and postdocs includes Tanhong Cai, Thomas Duguet, Ian Fisher, Vincent Fournee, Chandana Ghosh, Martin Gierer, Yong Han, Mark Heinzig, Patrick Pinhero, Wolfgang Raberg, Kyle Schnitzenbaumer, Zhouxin Shen, and Chen-Ming Zhang. Other important contributors and collaborators include Sheng-Liang Chang, Drew Delaney, Da-Jiang Liu, Frank Ogletree, Jeong Park, Miquel Salmeron, and Amy Ross. The writing of this article was supported by the Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy (USDOE) under Contract No. DE-AC02-07CH11358 with the US Department of Energy. JWE was supported for modeling of film growth by NSF Grant CHE-1111500. NR 83 TC 3 Z9 3 U1 1 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0021-2148 EI 1869-5868 J9 ISR J CHEM JI Isr. J. Chem. PD DEC PY 2011 VL 51 IS 11-12 SI SI BP 1326 EP 1339 DI 10.1002/ijch.201100148 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 872EE UT WOS:000298790700021 ER PT J AU Zhou, L Liu, DY Karney, B Zhang, QF AF Zhou, Ling Liu, Deyou Karney, Bryan Zhang, Qinfen TI Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines SO JOURNAL OF HYDRAULIC ENGINEERING-ASCE LA English DT Article DE Hydraulic transients; Water pipelines; Pressurized flow; experimentation; Air entrainment; Oscillations ID FLOW; PIPE AB The pressure variations associated with a filling undulating pipeline containing an entrapped air pocket are investigated both experimentally and numerically. The influence of entrapped air on abnormal transient pressures is often ambiguous because the compressibility of the air pocket permits the liquid flow to accelerate but also partly cushions the system, with the balance of these tendencies being associated with the initial void fraction of the air pocket. Earlier experimental research involved systems with an initial void fraction greater than 5.8%; this paper focuses on initial void fractions ranging from 0 to 10% to more completely characterize the transient response. Experimental results show that the maximum pressure increases and then decreases as the initial void fraction decreases. A simplified model is developed by neglecting the liquid inertia and energy loss of a short water column near the air-water interface. Comparisons of the calculated and observed results show that the model is able to accurately predict peak pressures as a function of void fraction and filling conditions. Rigid water column models, however, perform poorly with small void fractions. DOI: 10.1061/(ASCE)HY.1943-7900.0000460. (C) 2011 American Society of Civil Engineers. C1 [Zhou, Ling; Liu, Deyou] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R China. [Karney, Bryan] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada. [Zhang, Qinfen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zhou, L (reprint author), Hohai Univ, Coll Water Conservancy & Hydropower Engn, 1 Xikang Rd, Nanjing 210098, Jiangsu, Peoples R China. EM zlhhu@163.com FU National Natural Science Foundation of China [50979029] FX The authors gratefully acknowledge the financial support on this research from the National Natural Science Foundation of China (Grant No. 50979029). NR 16 TC 22 Z9 22 U1 4 U2 22 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9429 J9 J HYDRAUL ENG-ASCE JI J. Hydraul. Eng.-ASCE PD DEC PY 2011 VL 137 IS 12 BP 1686 EP 1692 DI 10.1061/(ASCE)HY.1943-7900.0000460 PG 7 WC Engineering, Civil; Engineering, Mechanical; Water Resources SC Engineering; Water Resources GA 876VC UT WOS:000299134800015 ER PT J AU Rios, D Rutkowski, PX Shuh, DK Bray, TH Gibson, JK Van Stipdonk, MJ AF Rios, Daniel Rutkowski, Philip X. Shuh, David K. Bray, Travis H. Gibson, John K. Van Stipdonk, Michael J. TI Electron transfer dissociation of dipositive uranyl and plutonyl coordination complexes SO JOURNAL OF MASS SPECTROMETRY LA English DT Article DE ETD; CID; Uranyl; Plutonyl; Actinides; Electrospray; Plutonium; Uranium ID MASS-SPECTROMETRY; POSTTRANSLATIONAL MODIFICATIONS; HYDROXIDE; CHEMISTRY; IONS; ETD; PEPTIDES; CATIONS; ACETONE; NITRATE AB Reported here is a comparison of electron transfer dissociation (ETD) and collision-induced dissociation (CID) of solvent-coordinated dipositive uranyl and plutonyl ions generated by electrospray ionization. Fundamental differences between the ETD and CID processes are apparent, as are differences between the intrinsic chemistries of uranyl and plutonyl. Reduction of both charge and oxidation state, which is inherent in ETD activation of [AnVIO2(CH3COCH3)4]2+, [AnVIO2(CH3CN)4]2, [UVIO2(CH3COCH3)5]2+ and [UVIO2(CH3CN)5]2+ (An?=?U or Pu), is accompanied by ligand loss. Resulting low-coordinate uranyl(V) complexes add O2, whereas plutonyl(V) complexes do not. In contrast, CID of the same complexes generates predominantly doubly-charged products through loss of coordinating ligands. Singly-charged CID products of [UVIO2(CH3COCH3)4,5]2+, [UVIO2(CH3CN)4,5]2+ and [PuVIO2(CH3CN)4]2+ retain the hexavalent metal oxidation state with the addition of hydroxide or acetone enolate anion ligands. However, CID of [PuVIO2(CH3COCH3)4]2+ generates monopositive plutonyl(V) complexes, reflecting relatively more facile reduction of PuVI to PuV. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Rios, Daniel; Rutkowski, Philip X.; Shuh, David K.; Bray, Travis H.; Gibson, John K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. [Van Stipdonk, Michael J.] Wichita State Univ, Dept Chem, Wichita, KS 67260 USA. RP Gibson, JK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. EM jkgibson@lbl.gov; mike.vanstipdonk@wichita.edu FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation (NSF) [CAREER-0239800] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy at LBNL, under Contract No. DE-AC02-05CH11231. Work by MVS was supported in part by a grant from the U.S. National Science Foundation (NSF grant CAREER-0239800). Appreciation is due to Drs. Joaquim Mar alo, Paul O. Momoh, and Guoxin Tian for assistance and insights. NR 36 TC 29 Z9 29 U1 0 U2 24 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1076-5174 J9 J MASS SPECTROM JI J. Mass Spectrom. PD DEC PY 2011 VL 46 IS 12 BP 1247 EP 1254 DI 10.1002/jms.2011 PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 869MA UT WOS:000298601000007 PM 22223415 ER PT J AU Groenewold, GS Gaumet, JJ AF Groenewold, G. S. Gaumet, J. -J. TI Characterization of Ce3+-tributyl phosphate coordination complexes produced by fused droplet electrospray ionization with a target capillary SO JOURNAL OF MASS SPECTROMETRY LA English DT Article DE electrospray; desorption electrospray; solvent extraction; fused droplet ESI; capillary target; coordination complex; lanthanide ID CHARGED PROTEIN IONS; SPECTROMETRY DESI-MS; MASS-SPECTROMETRY; AMBIENT CONDITIONS; SPECIATION; LANTHANIDE; CHEMISTRY; URINE; LUMINESCENCE; MECHANISMS AB Coordination complexes containing Ce(III) and tri-n-butyl phosphate (TBP) in the 1+, 2+ and 3+ charge states were generated using both direct infusion electrospray ionization (ESI) and fused droplet (FD) ESI using a target capillary, in which the analyte solutions are impinged by the ESI droplets. The same coordination complexes were produced in each experiment, and their relative abundances were also very close, suggesting that similar processes are occurring in both experiments. The ion species formed in both experiments have the general formula [Ce(NO3)m=02(TBP)n=37](3-m)+. The appearance of abundant 1+ and 2+ ion pair complexes indicated that the ESI process was modifying the ion populations in the original solutions, which contain predominantly 3+ and 2+ species. The FD ESI experiments were less sensitive for coordination complexes compared to direct infusion ESI; however, mid-picomolar quantities of coordination complexes were measured using the target capillary, indicating that sensitivity would be sufficient for measuring species in many industrial separations processes. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Groenewold, G. S.] Idaho Natl Lab, Idaho Falls, ID USA. [Gaumet, J. -J.] Paul Verlaine Univ, Metz, France. RP Groenewold, GS (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. EM gary.groenewold@inl.gov FU U.S. Department of Energy, Assistant Secretary for Environmental Management; DOE Idaho Operations Office [DE-AC07-05ID14517] FX Work by G. S. Groenewold was supported by the U.S. Department of Energy, Assistant Secretary for Environmental Management, and the INL Laboratory Directed Research & Development Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 62 TC 2 Z9 2 U1 4 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1076-5174 J9 J MASS SPECTROM JI J. Mass Spectrom. PD DEC PY 2011 VL 46 IS 12 BP 1273 EP 1280 DI 10.1002/jms.2015 PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 869MA UT WOS:000298601000011 PM 22223419 ER PT J AU Maguire, K Sullivan, M Thomas, RC Nugent, P Howell, DA Gal-Yam, A Arcavi, I Ben-Ami, S Blake, S Botyanszki, J Buton, C Cooke, J Ellis, RS Hook, IM Kasliwal, MM Pan, YC Pereira, R Podsiadlowski, P Sternberg, A Suzuki, N Xu, D Yaron, O Bloom, JS Cenko, SB Kulkarni, SR Law, N Ofek, EO Poznanski, D Quimby, RM AF Maguire, K. Sullivan, M. Thomas, R. C. Nugent, P. Howell, D. A. Gal-Yam, A. Arcavi, I. Ben-Ami, S. Blake, S. Botyanszki, J. Buton, C. Cooke, J. Ellis, R. S. Hook, I. M. Kasliwal, M. M. Pan, Y. -C. Pereira, R. Podsiadlowski, P. Sternberg, A. Suzuki, N. Xu, D. Yaron, O. Bloom, J. S. Cenko, S. B. Kulkarni, S. R. Law, N. Ofek, E. O. Poznanski, D. Quimby, R. M. TI PTF10ops-a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; supernovae: individual: PTF10ops ID HUBBLE-SPACE-TELESCOPE; DIGITAL SKY SURVEY; DWARF GALAXIES; HOST GALAXIES; MAXIMUM LIGHT; LEGACY SURVEY; HIGH-REDSHIFT; FAINT TYPE; LUMINOSITY; SPECTROSCOPY AB PTF10ops is a Type Ia supernova (SN Ia), whose light curve and spectral properties place it outside the current SN Ia subtype classifications. Its spectra display the characteristic lines of subluminous SNe Ia, but it has a normal-width light curve with a long rise time, typical of normal-luminosity SNe Ia. The early-time optical spectra of PTF10ops were modelled using a spectral fitting code and found to have all the lines typically seen in subluminous SNe Ia, without the need to invoke more uncommon elements. The host galaxy environment of PTF10ops is also unusual with no galaxy detected at the position of the SN down to an absolute limiting magnitude of r=-12.0 mag, but a very massive galaxy is present at a separation of similar to 148 kpc and at the same redshift as suggested by the SN spectral features. The progenitor of PTF10ops is most likely a very old star, possibly in a low-metallicity environment, which affects its explosion mechanism and observational characteristics. PTF10ops does not easily fit into any of the current models of either subluminous or normal SN Ia progenitor channels. C1 [Maguire, K.; Sullivan, M.; Blake, S.; Pan, Y. -C.; Podsiadlowski, P.] Univ Oxford, Dept Phys Astrophys, DWB, Oxford OX1 3RH, England. [Thomas, R. C.; Nugent, P.; Botyanszki, J.; Suzuki, N.; Poznanski, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Thomas, R. C.; Nugent, P.; Bloom, J. S.; Cenko, S. B.; Poznanski, D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93196 USA. [Howell, D. A.] Las Cumbres Observ, Global Telescope Network, Goleta, CA 93117 USA. [Gal-Yam, A.; Arcavi, I.; Ben-Ami, S.; Sternberg, A.; Xu, D.; Yaron, O.] Weizmann Inst Sci, Fac Phys, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Botyanszki, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Buton, C.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Cooke, J.] Swinburne Univ Technol, Melbourne, Vic 3122, Australia. [Ellis, R. S.; Kasliwal, M. M.; Kulkarni, S. R.; Ofek, E. O.; Quimby, R. M.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Hook, I. M.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy. [Pereira, R.] Univ Lyon, F-69622 Lyon, France. [Pereira, R.] Univ Lyon 1, F-69622 Villeurbanne, France. [Pereira, R.] CNRS, IN2P3, Inst Phys Nucl Lyon, F-75700 Paris, France. [Law, N.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Maguire, K (reprint author), Univ Oxford, Dept Phys Astrophys, DWB, Keble Rd, Oxford OX1 3RH, England. EM kate.maguire@astro.ox.ac.uk OI Sullivan, Mark/0000-0001-9053-4820 FU Royal Society; Weizmann-UK; Israeli Science Foundation (ISF); Binational Science Foundation (BSF); EU via Marie Curie IRG; Science and Technology Facilities Council; NASA [NAS 5-26555]; Einstein fellowships; Gary & Cynthia Bengier; Richard & Rhoda Goldman Fund; NASA/Swift [NNX10AI21G, GO-7100028]; TABASGO Foundation; NSF [AST-0908886]; UK Science and Technology Facilities Council; W. M. Keck Foundation FX MS acknowledges support from the Royal Society. AG-Y and MS acknowledge support from the Weizmann-UK 'making connection' programme. The Weizmann Institute-PTF partnership is funded in part by the Israeli Science Foundation (ISF) via a grant to AG-Y. The joint WIS-Caltech activity is funded by a Binational Science Foundation (BSF) grant to AG-Y and SRK. AG-Y further acknowledges support from the EU/FP7 via a Marie Curie IRG fellowship and an ARCHES prize from the German BMBF. This work was supported by the Science and Technology Facilities Council. EOO is supported by NASA grants. EOO and DP are both supported by Einstein fellowships. SBC acknowledges generous financial assistance from Gary & Cynthia Bengier, the Richard & Rhoda Goldman Fund, NASA/Swift grants NNX10AI21G and GO-7100028, the TABASGO Foundation, and NSF grant AST-0908886. This publication has been made possible by the participation of more than 10 000 volunteers in the Galaxy Zoo Supernovae project, http://supernova.galaxyzoo.org/authors.; The WHT is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Observations were obtained with the Samuel Oschin Telescope at the Palomar Observatory as part of the Palomar Transient factory project, a scientific collaboration between the California Institute of Technology, Columbia Unversity, La Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. Some of the data were obtained with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. These observations were made possible by the generous financial support of the W. M. Keck Foundation.; SNIFS on the UH 2.2-m telescope is part of the Nearby Supernova Factory II project, a scientific collaboration among the Centre de Recherche Astronomique de Lyon, Institut de Physique Nucleaire de Lyon, Laboratoire de Physique Nucleaire et des Hautes Energies, Lawrence Berkeley National Laboratory, Yale University, University of Bonn, Max Planck Institute for Astrophysics, Tsinghua Center for Astrophysics, and the Centre de Physique des Particules de Marseille. Based on observations made with the NASA/ESA Hubble Space Telescope, data were obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555." NR 64 TC 20 Z9 20 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2011 VL 418 IS 2 BP 747 EP 758 DI 10.1111/j.1365-2966.2011.19526.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 860ZI UT WOS:000297987400003 ER PT J AU Masters, KL Maraston, C Nichol, RC Thomas, D Beifiori, A Bundy, K Edmondson, EM Higgs, TD Leauthaud, A Mandelbaum, R Pforr, J Ross, AJ Ross, NP Schneider, DP Skibba, R Tinker, J Tojeiro, R Wake, DA Brinkmann, J Weaver, BA AF Masters, Karen L. Maraston, Claudia Nichol, Robert C. Thomas, Daniel Beifiori, Alessandra Bundy, Kevin Edmondson, Edward M. Higgs, Tim D. Leauthaud, Alexie Mandelbaum, Rachel Pforr, Janine Ross, Ashley J. Ross, Nicholas P. Schneider, Donald P. Skibba, Ramin Tinker, Jeremy Tojeiro, Rita Wake, David A. Brinkmann, Jon Weaver, Benjamin A. TI The morphology of galaxies in the Baryon Oscillation Spectroscopic Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies: elliptical and lenticular, cD; galaxies: photometry; galaxies: spiral; cosmology: observations ID DIGITAL-SKY-SURVEY; LUMINOUS RED GALAXIES; MASSIVE ELLIPTIC GALAXIES; SIMILAR-TO 0.6; STAR-FORMATION; DATA RELEASE; SAURON PROJECT; SPIRAL GALAXIES; FIELD GALAXIES; DISK GALAXIES AB We study the morphology and size of the luminous and massive galaxies at 0.3 < z < 0.7 targeted in the Baryon Oscillation Spectroscopic Survey (BOSS) using publicly available Hubble Space Telescope (HST) imaging, and catalogues, from the COSMic Origins Survey (COSMOS). Our sample (240 objects) provides a unique opportunity to check the visual morphology of these galaxies which were targeted based solely on stellar population modelling. We find that the majority of BOSS galaxies (74 +/- 6 per cent) possess an early-type morphology (elliptical or lenticular), while the remainder have a late-type (spiral disc) morphology. This is as expected from the goals of the BOSS target selection which aimed to predominantly select slowly evolving galaxies, for use as cosmological probes, while still obtaining a fair fraction of actively star-forming galaxies for galaxy evolution studies. We show that a colour cut of (g-i) > 2.35 is able to select a sub-sample of BOSS galaxies with =90 per cent early-type morphology and thus more comparable to the earlier Luminous Red Galaxy (LRG) samples of Sloan Digital Sky Survey (SDSS)-I/II. The remaining 10 per cent of galaxies above this (g-i) cut have a late-type morphology and may be analogous to the passive spirals found at lower redshift. We find that 23 +/- 4 per cent of the early-type BOSS galaxies are unresolved multiple systems in the SDSS imaging. We estimate that at least 50 per cent of these multiples are likely real associations and not projection effects and may represent a significant dry merger fraction. We study the SDSS pipeline sizes of BOSS galaxies which we find to be systematically larger (by 40 per cent) than those measured from HST images, and provide a statistical correction for the difference. These details of the BOSS galaxies will help users of the BOSS data fine-tune their selection criteria, dependent on their science applications. For example, the main goal of BOSS is to measure the cosmic distance scale and expansion rate of the Universe to per cent level precision a point where systematic effects due to the details of target selection may become important. C1 [Masters, Karen L.; Maraston, Claudia; Nichol, Robert C.; Thomas, Daniel; Beifiori, Alessandra; Edmondson, Edward M.; Higgs, Tim D.; Pforr, Janine; Ross, Ashley J.; Tojeiro, Rita] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Bundy, Kevin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94705 USA. [Leauthaud, Alexie; Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Leauthaud, Alexie] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Mandelbaum, Rachel] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Skibba, Ramin] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Tinker, Jeremy; Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Wake, David A.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Brinkmann, Jon] Apache Point Observ, Sunspot, NM 88349 USA. RP Masters, KL (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. EM karen.masters@port.ac.uk RI Mandelbaum, Rachel/N-8955-2014; Pforr, Janine/J-3967-2015; OI Mandelbaum, Rachel/0000-0003-2271-1527; Pforr, Janine/0000-0002-3414-8391; Masters, Karen/0000-0003-0846-9578 FU Leverhulme Trust; STFC [ST/I001204/1]; Alfred P. Sloan Foundation; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; University of Florida; French Participation Group; German Participation Group; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; New Mexico State University; New York University; Ohio State University; Penn State University; University of Portsmouth; Princeton University; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G] FX KLM acknowledges funding from The Leverhulme Trust through a 2010 Early Career Fellowship. RT also thanks the Leverhulme trust for financial support. CM, RCN, DT, AB, EME and AJR acknowledge STFC rolling grant ST/I001204/1 'Survey Cosmology and Astrophysics' for support.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the US National Science Foundation and the US Department of Energy. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, the Ohio State University, the Penn State University, University of Portsmouth, Princeton University, University of Tokyo, the University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University.; Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. NR 90 TC 41 Z9 41 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2011 VL 418 IS 2 BP 1055 EP 1070 DI 10.1111/j.1365-2966.2011.19557.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 860ZI UT WOS:000297987400029 ER PT J AU Fumagalli, M Prochaska, JX Kasen, D Dekel, A Ceverino, D Primack, JR AF Fumagalli, Michele Prochaska, J. Xavier Kasen, Daniel Dekel, Avishai Ceverino, Daniel Primack, Joel R. TI Absorption-line systems in simulated galaxies fed by cold streams SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiative transfer; galaxies: evolution; galaxies: formation; galaxies: high-redshift; intergalactic medium; quasars: absorption lines ID LYMAN-LIMIT SYSTEMS; MESH REFINEMENT SIMULATIONS; STAR-FORMING GALAXIES; LY-ALPHA SYSTEMS; COSMOLOGICAL RADIATIVE-TRANSFER; COLUMN DENSITY DISTRIBUTION; OPTICALLY THICK ABSORBERS; TO-MOLECULAR TRANSITION; HIGH-REDSHIFT GALAXIES; INITIAL MASS FUNCTION AB Hydro-cosmological simulations reveal that massive galaxies at high redshift are fed by long narrow streams of merging galaxies and a smoother component of cold gas. We post-process seven high-resolution simulated galaxies with radiative transfer to study the absorption characteristics of the gas in galaxies and streams, in comparison with the statistics of observed absorption-line systems. We find that much of the stream gas is ionized by UV radiation from background and local stellar sources, but still optically thick (cm(-2)) so that the streams appear as Lyman-limit systems (LLSs). At z > 3, the fraction of neutral gas in streams becomes non-negligible, giving rise to damped Lyman a absorbers (DLAs) as well. The gas in the central and incoming galaxies remains mostly neutral, responsible for DLAs. Within one (two) virial radii, the covering factor of optically thick gas is <25 per cent (10 per cent) for LLSs and <5 per cent (1 per cent) for DLAs, slowly declining with time following the universal expansion. Nevertheless, galaxies and their cold streams in the studied mass range, M(vir) = 10(10)-10(12) M(circle dot), account for >30 per cent of the observed absorbers in the foreground of quasars, the rest possibly arising from smaller galaxies or the intergalactic medium. The mean metallicity in the streams is similar to 1 per cent solar, much lower than in the galaxies. The simulated galaxies reproduce the Lya-absorption equivalent widths observed around Lyman-break galaxies, but they severely underpredict the equivalent widths in metal lines, suggesting that the latter may arise from outflows. We conclude that the observed metal-poor LLSs are likely detections of the predicted cold streams. Revised analysis of the observed LLSs kinematics and simulations with more massive outflows in conjunction with the inflows may enable a clearer distinction between the signatures of the various gas modes. C1 [Fumagalli, Michele; Prochaska, J. Xavier] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Prochaska, J. Xavier] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Dekel, Avishai; Ceverino, Daniel] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Primack, Joel R.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. RP Fumagalli, M (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA. EM mfumagalli@ucolick.org RI Fumagalli, Michele/K-9510-2015 OI Fumagalli, Michele/0000-0001-6676-3842 FU UC-HIPACC; NSF [AST-0709235, AST-1010033]; HST [STScI HST-GO-11595.03-A]; ISF [6/08]; GIF [G-1052-104.7/2009]; DIP FX We thank the referee for comments and criticisms that helped us to improve this paper. We are indebted to J. Guedes for extensive help with the AMIGA halo finder and R. da Silva for helpful IDL tips. We acknowledge useful discussion with J. Hennawi, C.-A. Faucher-Giguere, S. Cantalupo, T. Goerdt, P. Madau, M. Rafelski, A. Sternberg and A. Wolfe. MF acknowledges travel support from UC-HIPACC and thanks the CASS at UC San Diego for their hospitality. JXP is supported by NSF grant AST-0709235 and HST grant STScI HST-GO-11595.03-A. AD and DC are supported by ISF grant 6/08, by GIF grant G-1052-104.7/2009, by a DIP grant. JRP and AD are supported by NSF grant AST-1010033. NR 104 TC 134 Z9 135 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2011 VL 418 IS 3 BP 1796 EP 1821 DI 10.1111/j.1365-2966.2011.19599.x PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 862JW UT WOS:000298088000027 ER PT J AU Proctor, RN de Oliveira, CM Dupke, R de Oliveira, RL Cypriano, ES Miller, ED Rykoff, E AF Proctor, Robert N. de Oliveira, Claudia Mendes Dupke, Renato de Oliveira, Raimundo Lopes Cypriano, Eduardo S. Miller, Eric D. Rykoff, Eli TI On the mass-to-light ratios of fossil groups. Are they simply dark clusters? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: general; galaxies: groups: general; X-rays: galaxies: clusters ID DIGITAL SKY SURVEY; X-RAY; GALAXY CLUSTERS; LUMINOSITY FUNCTION; VELOCITY DISPERSION; MATTER; RX-J1416.4+2315; CANDIDATES; UNIVERSE; DENSITY AB Defined as X-ray bright galaxy groups with large differences between the luminosities of their brightest and second brightest galaxies, fossil groups are believed to be some of the oldest galaxy systems in the Universe. They have therefore been the subject of much recent research. C1 [Proctor, Robert N.; de Oliveira, Claudia Mendes; Cypriano, Eduardo S.] Univ Sao Paulo, IAG, BR-05508900 Sao Paulo, Brazil. [Dupke, Renato] Univ Michigan, Ann Arbor, MI 48109 USA. [Dupke, Renato] Eureka Sci Inc, Oakland, CA 94602 USA. [Dupke, Renato] Observ Nacl, BR-20921400 Rio De Janeiro, Brazil. [de Oliveira, Raimundo Lopes] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil. [de Oliveira, Raimundo Lopes] Univ Fed Sergipe, Dept Fis, BR-49100000 Sao Cristovao, SE, Brazil. [Miller, Eric D.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Rykoff, Eli] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Proctor, RN (reprint author), Univ Sao Paulo, IAG, Rua Matao 1226, BR-05508900 Sao Paulo, Brazil. EM rproctor@astro.iag.usp.br RI Mendes de Oliveira, Claudia/F-2391-2012; Cypriano, Eduardo/C-7293-2012; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Lopes de Oliveira, Raimundo/G-6181-2012; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016 OI Mendes de Oliveira, Claudia/0000-0002-7736-4297; FU NASA [NNH10CD19C]; Chandra Award [GO9-0142A]; Brazilian agency FAPESP (Fundacao de Amparo a Pesquisa do Estado do Sao Paulo) [2009/06295-7, 2010/08341-3, 2008/57331-0, 2009/07154-8-0]; CNPq FX This work is based on observations made with the 6.5-m Magellan/Baade telescope, a collaboration between the Observatories of the Carnegie Institution of Washington, University of Arizona, Harvard University, University of Michigan and Massachusetts Institute of Technology, and at the Cerro Tololo Inter-American Observatory, a division of the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation. The COSMOS pipeline supplied by the Magellan consortium was used for data reductions. This research also made use of NASA's Astrophysics Data System, as well as the IRAF and STARLINK software. IRAF is distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the National Science Foundation. Also presented are observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). RD acknowledges support from NASA Grant NNH10CD19C and partial support from Chandra Award No. GO9-0142A. RLO acknowledges financial support from the Brazilian agency FAPESP (Fundacao de Amparo a Pesquisa do Estado do Sao Paulo) through a Young Investigator Program (numbers 2009/06295-7 and 2010/08341-3). RNP also acknowledges financial support from the Brazilian agency FAPESP (programme number 2008/57331-0). ESC also acknowledges support from FAPESP (programme number 2009/07154-8-0) and CNPq. NR 52 TC 29 Z9 29 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2011 VL 418 IS 3 BP 2054 EP 2073 DI 10.1111/j.1365-2966.2011.19625.x PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 862JW UT WOS:000298088000048 ER PT J AU Johnson, RW McIlroy, HM Johnson, RC Christensen, DP AF Johnson, Richard W. McIlroy, Hugh M. Johnson, Ryan C. Christensen, Daniel P. TI Undesirable flow behavior in a proposed validation data set SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 18th International Conference on Nuclear Engineering (ICONE) CY MAY 17-21, 2010 CL Xian, PEOPLES R CHINA SP Nucl Engn Div Amer Soc Mech Engn, Japan Soc Mech Engn, Chinese Nucl Soc AB The next generation nuclear plant (NGNP), whose development is supported by the U.S. Department of Energy, will be a very high temperature reactor (VHTR). The VHTR is a single-phase helium-cooled reactor that will provide helium at up to 1000 degrees C. The prospect of a coolant at these temperatures circulating in the reactor vessel demands that careful analysis be performed to ensure that excessively hot spots are not created and that sufficient mixing of the coolant is obtained. Computational fluid dynamics (CFD) coupled with heat transfer will be used to perform the desired analyses. However, primarily because of the imperfect nature of modeling turbulent flow, any CFD calculations used to perform nuclear reactor safety analysis must be validated against experimental data. Experimental data have been taken in a scaled section of the lower plenum of a prismatic VHTR at the matched index of refraction (MIR) facility at the Idaho National Laboratory. These data were taken with the intent that they be examined for use as validation data. A series of investigations have been conducted to assess the MIR data. Issues that have already been examined include the extent of the required computational domain, the outlet boundary condition, the inlet data and the effect of the turbulence model. One of the jets that flow into the model impacts on a wedge, which represents a portion of a hexagonal graphite block that lines the inner wall of the lower plenum. The nature of the flow below this particular jet is such that a randomly varying recirculation zone is created. This recirculation zone is seen to change in size, causing a relatively long-time scale of motion or disturbance of the flow in the model. It is concluded that such a feature is undesirable in a validation data set, firstly because of its apparent random nature and, secondly, because to obtain an appropriate long-time average would be impractical because of the compute time required. It is predicted computationally that by eliminating the first of the four inlet jets into the scaled model, the resulting recirculation zone is rendered stable. (C) 2011 Richard W. Johnson. Published by Elsevier B.V. All rights reserved. C1 [Johnson, Richard W.; McIlroy, Hugh M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Johnson, Ryan C.] Brigham Young Univ, Idaho Natl Lab Summer Intern, Provo, UT 84602 USA. [Christensen, Daniel P.] Utah State Univ, Idaho Natl Lab Summer Intern, Logan, UT 84322 USA. RP Johnson, RW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Rich.Johnson@inl.gov; Hugh.McIlroy@inl.gov NR 8 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC PY 2011 VL 241 IS 12 SI SI BP 4682 EP 4690 DI 10.1016/j.nucengdes.2011.02.033 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 871VD UT WOS:000298764900008 ER PT J AU Harvego, EA Schultz, RR Crane, RL AF Harvego, Edwin A. Schultz, Richard R. Crane, Ryan L. TI Development of a consensus standard for verification and validation of nuclear system thermal-fluids software SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 18th International Conference on Nuclear Engineering (ICONE) CY MAY 17-21, 2010 CL Xian, PEOPLES R CHINA SP Nucl Engn Div Amer Soc Mech Engn, Japan Soc Mech Engn, Chinese Nucl Soc AB With the resurgence of nuclear power and increased interest in advanced nuclear reactors as an option to supply abundant energy without the associated greenhouse gas emissions of the more conventional fossil fuel energy sources, there is a need to establish internationally recognized standards for the verification and validation (V&V) of software used to calculate the thermal-hydraulic behavior of advanced reactor designs for both normal operation and hypothetical accident conditions. To address this need, ASME (American Society of Mechanical Engineers) Standards and Certification has established the V&V 30 Committee, under the jurisdiction of the V&V Standards Committee, to develop a consensus standard for verification and validation of software used for design and analysis of advanced reactor systems. The initial focus of this committee will be on the V&V of system analysis and computational fluid dynamics (CFD) software for nuclear applications. To limit the scope of the effort, the committee will further limit its focus to software to be used in the licensing of High-Temperature Gas-Cooled Reactors. Although software verification will be an important and necessary part of the standard, much of the initial effort of the committee will be focused on the validation of existing software and new models that could be used in the licensing process. In this framework, the Standard should conform to Nuclear Regulatory Commission (NRC) and other regulatory practices, procedures and methods for licensing of nuclear power plants as embodied in the United States (U.S.) Code of Federal Regulations and other pertinent documents such as Regulatory Guide 1.203, "Transient and Accident Analysis Methods" and NUREG-0800, "NRC Standard Review Plan". In addition, the Standard should be consistent with applicable sections of ASME NQA-1-2008 "Quality Assurance Requirements for Nuclear Facility Applications (QA)". This paper describes the general requirements for the proposed V&V 30 Standard, which includes: (a) applicable NRC and other regulatory requirements for defining the operational and accident domain of a nuclear system that must be considered if the system is to be licensed, (b) the corresponding calculation domain of the software that should encompass the nuclear operational and accident domain to be used to study the system behavior for licensing purposes, (c) the definition of the scaled experimental data set required to provide the basis for validating the software, (d) the ensemble of experimental data sets required to populate the validation matrix for the software in question, and (e) the practices and procedures to be used when applying a validation standard. Although this initial effort will focus on software for licensing of High-Temperature Gas-Cooled Reactors, it is anticipated that the practices and procedures developed for this Standard can eventually be extended to other nuclear and non-nuclear applications. (C) 2011 Published by Elsevier B.V. C1 [Harvego, Edwin A.; Schultz, Richard R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Crane, Ryan L.] Amer Soc Mech Engineers, New York, NY 10016 USA. RP Harvego, EA (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Edwin.Harvego@inl.com; Richard.Schultz@inl.com; craner@asme.org NR 7 TC 0 Z9 0 U1 0 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC PY 2011 VL 241 IS 12 SI SI BP 4691 EP 4696 DI 10.1016/j.nucengdes.2011.03.056 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 871VD UT WOS:000298764900009 ER PT J AU Ortensi, J Boer, B Ougouag, AM AF Ortensi, Javier Boer, Brian Ougouag, Abderrafi M. TI THETRIS: A micro-scale temperature and gas release model for TRISO fuel SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 18th International Conference on Nuclear Engineering (ICONE) CY MAY 17-21, 2010 CL Xian, PEOPLES R CHINA SP Nucl Engn Div Amer Soc Mech Engn, Japan Soc Mech Engn, Chinese Nucl Soc ID REACTOR; PARTICLES AB The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with submillimeter-sized kernels formed into tristructural-isotropic (TRISO) particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Micro-scale models of TRISO particles are necessary in order to obtain accurate predictions during fast transients or when parameters internal to the TRISO are needed. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations, a meso-scale, or pebble- and compact-scale, solution provides a good approximation of the fuel temperature as the fission thermal energy transports out of the kernel and into the surrounding matrix with a much shorter time constant. Therefore, in most cases, the matrix can be assumed to be in quasi-static equilibrium with the kernels. These models, however, fail to provide accurate information on the state of the various components of the TRISO during the early stages of transients. Since the coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas-release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models of TRISO particles, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. Analysis of bounding benchmark transients yield good agreement with other codes in which the TRISO particles are modeled explicitly. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of an inter-layer gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can yield responses during fast transients that depart significantly from those in which no gap is present in the model. The new model was applied to an extreme (beyond design basis) scenario in order to observe the behavior of the fuel during a large prompt critical reactivity insertion. Although a large amount of fission energy was deposited rapidly into the fuel, the kernel temperature is shown to stay well below the melting point and the silicon carbide layer remained well below the temperature above which failure is expected to occur. The explicit treatment of the TRISO particle geometry leads to much lower estimations of power peaking during the transient and a greater degree of negative Doppler feedback. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ortensi, Javier; Boer, Brian; Ougouag, Abderrafi M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Ortensi, J (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Javier.Ortensi@inl.gov RI Ortensi, Javier/B-4712-2017; OI Ortensi, Javier/0000-0003-1685-3916; Ougouag, Abderrafi/0000-0003-4436-380X NR 30 TC 2 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC PY 2011 VL 241 IS 12 SI SI BP 5018 EP 5032 DI 10.1016/j.nucengdes.2011.08.072 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 871VD UT WOS:000298764900048 ER PT J AU Gonzalez-Juez, ED Schmidt, RC Kerstein, AR AF Gonzalez-Juez, Esteban D. Schmidt, Rodney C. Kerstein, Alan R. TI ODTLES simulations of wall-bounded flows SO PHYSICS OF FLUIDS LA English DT Article ID ONE-DIMENSIONAL-TURBULENCE; DIRECT NUMERICAL-SIMULATION; MODEL FORMULATION; REYNOLDS-NUMBER; CHANNEL FLOW; CONVECTION; CAVITY AB ODTLES is a novel multi-scale model for 3D turbulent flow based on the one-dimensional-turbulence model of Kerstein ["One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows," J. Fluid Mech. 392, 277 (1999)]. Its key distinction is that it is formulated to resolve small-scale phenomena and capture some 3D large-scale features of the flow with affordable simulations. The present work demonstrates this capability by considering four types of wall-bounded turbulent flows. This work shows that spatial profiles of various flow quantities predicted with ODTLES agree fairly well with those from direct numerical simulations. It also shows that ODTLES resolves the near-wall region, while capturing the following 3D flow features: the mechanism increasing tangential velocity fluctuations near a free-slip wall, the large-scale recirculation region in lid-driven cavity flow, and the secondary flow in square duct flow. (C) 2011 American Institute of Physics. [doi:10.1063/1.3664123] C1 [Gonzalez-Juez, Esteban D.; Kerstein, Alan R.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Schmidt, Rodney C.] Sandia Natl Labs, Computat Comp & Math Ctr, Albuquerque, NM 87185 USA. RP Gonzalez-Juez, ED (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM estebandgj@gmail.com; rcschmi@sandia.gov; arkerst@sandia.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; United States Department of Energy [DE-AC04-94-AL85000] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94-AL85000. Simulations were performed at Sandia National Laboratories on the Red Sky Cluster. NR 28 TC 11 Z9 11 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD DEC PY 2011 VL 23 IS 12 AR 125102 DI 10.1063/1.3664123 PG 13 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 870AV UT WOS:000298642400029 ER PT J AU Williams, AM Vlachos, PP AF Williams, Alicia M. Vlachos, Pavlos P. TI Dispersion of ferrofluid aggregates in steady flows SO PHYSICS OF FLUIDS LA English DT Article ID LOCOREGIONAL CANCER-TREATMENT; NORMAL FIELD INSTABILITY; MAGNETIC FLUID; CIRCULAR-CYLINDER; BIODISTRIBUTION; MITOXANTRONE; TRANSPORT; SELECTION; OBLIQUE; CARRIER AB Using focused shadowgraphs, we investigate steady flows of a magnetically non-susceptible fluid interacting with ferrofluid aggregates comprised of superparamagnetic nanoparticles. The ferrofluid aggregate is retained at a specific site within the flow channel using two different applied magnetic fields. The bulk flow induces shear stresses on the aggregate, which give rise to the development of interfacial disturbances, leading to Kelvin-Helmholtz (K-H) instabilities and shedding of ferrofluid structures. Herein, the effects of bulk Reynolds number, ranging from 100 to 1000, and maximum applied magnetic fields of 1.2 x 10(5) and 2.4 x 10(5) A/m are investigated in the context of their impact on dispersion or removal of material from the core aggregate. The aggregate interaction with steady bulk flow reveals three regimes of aggregate dynamics over the span of Reynolds numbers studied: stable, transitional, and shedding. The first regime is characterized by slight aggregate stretching for low Reynolds numbers, with full aggregate retention. As the Reynolds number increases, the aggregate is in-transition between stable and shedding states. This second regime is characterized by significant initial stretching that gives way to small amplitude Kelvin-Helmholtz waves. Higher Reynolds numbers result in ferrofluid shedding, with Strouhal numbers initially between 0.2 and 0.3, wherein large vortical structures are shed from the main aggregate accompanied by precipitous decay of the accumulated ferrofluid aggregate. These behaviors are apparent for both magnetic field strengths, although the transitional Reynolds numbers are different between the cases, as are the characteristic shedding frequencies relative to the same Reynolds number. In the final step of this study, relevant parameters were extracted from the time series dispersion data to comprehensively quantify aggregate mechanics. The aggregate half-life is found to decrease as a function of the Reynolds number following a power law curve and can be scaled for different magnetic fields using the magnetic induction at the inner wall of the vessel. In addition, the decay rate of the ferrofluid is shown to be proportional to the wall shear rate. Finally, a dimensionless parameter, which scales the inertia-driven flow pressures, relative to the applied magnetic pressures, reveals a power law decay relationship with respect to the incident bulk flow. (C) 2011 American Institute of Physics. [doi:10.1063/1.3670012] C1 [Williams, Alicia M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vlachos, Pavlos P.] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA. RP Williams, AM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Vlachos, Pavlos P/0000-0002-8040-9257 NR 30 TC 1 Z9 1 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD DEC PY 2011 VL 23 IS 12 AR 127102 DI 10.1063/1.3670012 PG 11 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 870AV UT WOS:000298642400045 ER PT J AU Lake, CH Toby, BH AF Lake, Charles H. Toby, Brian H. TI Rigid body refinements in GSAS/EXPGUI SO POWDER DIFFRACTION LA English DT Article DE rigid body refinement; GSAS; EXPGUI AB Rigid bodies provide a way to simplify the model used in a crystallographic refinement by removing parameters that describe degrees of freedom that are unlikely to change based on chemical experience. The GSAS software package provides a powerful implementation of rigid bodies that allows for refinement of classes of bond lengths, grouping of bodies to further reduce parameterization and where atomic motion can be described from group displacement parameters (TLS) representation. However, use of rigid bodies in GSAS is complex to learn and time-consuming to perform. This paper describes how the rigid body definition process has been simplified and extended through implementation in the EXPGUI interface to GSAS. (C) 2011 International Centre for Diffraction Data. [DOI: 10.1154/1.3661125] C1 [Lake, Charles H.] Indiana Univ Penn, Indiana, PA 15705 USA. [Toby, Brian H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lake, CH (reprint author), Indiana Univ Penn, Indiana, PA 15705 USA. EM lake@iup.edu; brian.toby@anl.gov RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 FU U.S. DOE [DE-AC02-06CH11357] FX Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 8 TC 5 Z9 5 U1 3 U2 21 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD DEC PY 2011 VL 26 SU 1 BP S13 EP S21 DI 10.1154/1.3661125 PG 9 WC Materials Science, Characterization & Testing SC Materials Science GA 876UE UT WOS:000299132400003 ER PT J AU Toby, BH AF Toby, Brian H. TI A Focus on Powder Diffraction Software SO POWDER DIFFRACTION LA English DT Editorial Material C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Toby, BH (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM Brian.Toby@anl.gov RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 NR 0 TC 0 Z9 0 U1 0 U2 4 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD DEC PY 2011 VL 26 SU 1 BP S1 EP S1 PG 1 WC Materials Science, Characterization & Testing SC Materials Science GA 876UE UT WOS:000299132400001 ER PT J AU Stevanovic, S Tripkovic, D Rogan, J Minic, D Gavrilovic, A Tripkovic, A Jovanovic, VM AF Stevanovic, S. Tripkovic, D. Rogan, J. Minic, D. Gavrilovic, A. Tripkovic, A. Jovanovic, V. M. TI Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation SO RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article DE enhanced activity; Pt3Sn electocatalyst; microwave irradiation; ethanol oxidation ID FUEL-CELL; CATALYSTS; ELECTROOXIDATION; NANOPARTICLES; ANODES AB High surface area carbon supported Pt and Pt3Sn catalysts were synthesized by microwave irradiation and investigated in the ethanol electro-oxidation reaction. The catalysts were obtained using a modified polyol method in an ethylene glycol solution and were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. The diffraction peaks of Pt3Sn/C catalyst in XRD patterns are shifted to lower 2 theta values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation between Pt and Sn. Particle size analysis from STM and XRD shows that Pt and Pt3Sn clusters are of a small diameter (similar to 2 nm) with a narrow size distribution. Pt3Sn/C catalyst is highly active in ethanol oxidation with the onset potential shifted for similar to 150 mV to more negative values and with similar to 2 times higher currents in comparison to Pt/C. C1 [Stevanovic, S.; Tripkovic, A.; Jovanovic, V. M.] Univ Belgrade, ICTM Dept Electrochem, Belgrade, Serbia. [Tripkovic, D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rogan, J.] Univ Belgrade, Fac Technol & Met, Belgrade 11000, Serbia. [Minic, D.] Univ Belgrade, Fac Phys Chem, Belgrade 11000, Serbia. [Gavrilovic, A.] CEST Ctr Electrochem Surface Technol, A-2700 Wiener Neustadt, Austria. RP Stevanovic, S (reprint author), Univ Belgrade, ICTM Dept Electrochem, Njegoseva 12, Belgrade, Serbia. EM vlad@tmf.bg.ac.rs FU Ministry of Science and Technological Development, Republic of Serbia [H-142056] FX This work was financially supported by the Ministry of Science and Technological Development, Republic of Serbia, contract no. H-142056. NR 20 TC 1 Z9 1 U1 3 U2 10 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0036-0244 J9 RUSS J PHYS CHEM A+ JI Russ. J. Phys. Chem. A PD DEC PY 2011 VL 85 IS 13 BP 2299 EP 2304 DI 10.1134/S0036024411130309 PG 6 WC Chemistry, Physical SC Chemistry GA 860BY UT WOS:000297922700011 ER PT J AU Coffman, VR Sethna, JP Ingraffea, AR Bozek, JE Bailey, NP Barker, EI AF Coffman, V. R. Sethna, J. P. Ingraffea, A. R. Bozek, J. E. Bailey, N. P. Barker, E. I. TI Challenges in Continuum Modelling of Intergranular Fracture SO STRAIN LA English DT Article DE finite element analysis; fracture; molecular dynamics; multiscale modelling; polycrystals ID EMBEDDED-ATOM POTENTIALS; TILT GRAIN-BOUNDARIES; QUASI-CONTINUUM; CRACK-GROWTH; MICROSTRUCTURES; SIMULATION; INTERFACE; ALUMINUM; SOLIDS; AL AB Intergranular fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model for the interfaces, requiring cohesive laws for grain boundaries as a function of their geometry. We discuss three challenges in understanding intergranular fracture in polycrystals. First, 3D grain boundary geometries comprise a five-dimensional space. Second, the energy and peak stress of grain boundaries have singularities for all commensurate grain boundaries, especially those with short repeat distances. Thirdly, fracture nucleation and growth depend not only upon the properties of grain boundaries, but also in crucial ways on edges, corners and triple junctions of even greater geometrical complexity. To address the first two challenges, we explore the physical underpinnings for creating functional forms to capture the hierarchical commensurability structure in the grain boundary properties. To address the last challenge, we demonstrate a method for atomistically extracting the fracture properties of geometrically complex local regions on the fly from within a finite element simulation. C1 [Coffman, V. R.] Natl Inst Stand & Technol, Informat Technol Lab, Gaithersburg, MD 20899 USA. [Sethna, J. P.] Cornell Univ, LASSP, Ithaca, NY 14853 USA. [Ingraffea, A. R.; Bozek, J. E.] Cornell Univ, Cornell Fracture Grp, Ithaca, NY 14853 USA. [Bailey, N. P.] Roskilde Univ Ctr, DNRF Ctr Glass & Time, Dept Math & Phys IMFUFA, DK-4000 Roskilde, Denmark. [Barker, E. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Coffman, VR (reprint author), Natl Inst Stand & Technol, Informat Technol Lab, 100 Bur Dr,Mail Stop 8910, Gaithersburg, MD 20899 USA. FU NSF [ITR/ASP ACI0085969, DMR-0218475] FX This work was supported by NSF Grants No. ITR/ASP ACI0085969 and No. DMR-0218475. We also thank Gerd Heber, Drew Dolgert, Mu Liu, Surachute Limkumnerd, Chris Myers and Paul Wawrzynek. NR 26 TC 4 Z9 4 U1 1 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0039-2103 J9 STRAIN JI Strain PD DEC PY 2011 VL 47 SU 2 BP 99 EP 104 DI 10.1111/j.1475-1305.2010.00741.x PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA 867VB UT WOS:000298481800010 ER PT J AU Ferer, M Smith, DH AF Ferer, M. Smith, D. H. TI Characterising the Correlations of Failure Events: A 2-D Block-and-Springs Model SO STRAIN LA English DT Article DE acoustic emission; discrete particle modelling; fracture ID ACOUSTIC-EMISSION; EVOLUTION; DAMAGE; SIMULATION AB To mimic observations from acoustic emission experiments for random systems, we used a block-and-springs model to investigate the effect that increasing strain has on the locations of microscopic failure events leading to macroscopic failure across the sample. Model results show that failure events, which are initially located randomly throughout the sample, begin to cluster as stress build-up near earlier failure events. At failure, the system-wide fracture network was found to have a fractal dimension, Df approximate to 1.29. To quantify the observed clustering, we applied a number of different measures of this space-time behaviour: (i) the stress-train curve; (ii) the total number of broken bonds and the average energy released by the broken bonds, (iii) the number distribution of cracks with s broken bonds, N(s), and the number distribution of cracks with s broken bonds or more, N(>= s), both of which follow power-laws agreeing with earlier predictions; and (iv) the number-number and energy-energy correlations at time t between a failure event at position (x', y') and a failure event at (x' + x, y' + y). Our results quantify the short-range clustering, exhibiting quantitatively and qualitatively different behaviour from the long-range clustering at failure; our results also show that the energy released outpaces the number of broken bonds. C1 [Ferer, M.; Smith, D. H.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Ferer, M.; Smith, D. H.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. RP Ferer, M (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. FU US Department of Energy, Office of Fossil Energy FX M. Ferer acknowledges the support of the US Department of Energy, Office of Fossil Energy. NR 30 TC 0 Z9 0 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0039-2103 J9 STRAIN JI Strain PD DEC PY 2011 VL 47 SU 2 BP 187 EP 195 DI 10.1111/j.1475-1305.2010.00758.x PG 9 WC Materials Science, Characterization & Testing SC Materials Science GA 867VB UT WOS:000298481800021 ER PT J AU Aatrokoski, J Ade, PAR Aghanim, N Aller, HD Aller, MF Angelakis, E Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Berdyugin, A Bernard, JP Bersanelli, M Bhatia, R Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Burrows, DN Cabella, P Capalbi, M Cappellini, B Cardoso, JF Catalano, A Cavazzuti, E Cayon, L Challinor, A Chamballu, A Chary, RR Chiang, LY Christensen, PR Clements, DL Colafrancesco, S Colombi, S Couchot, F Coulais, A Cutini, S Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Dickinson, C Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Forni, O Frailis, M Franceschi, E Fuhrmann, L Galeotta, S Ganga, K Gargano, F Gasparrini, D Gehrels, N Giard, M Giardino, G Giglietto, N Giommi, P Giordano, F Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Harrison, D Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Juvela, M Keihanen, E Keskitalo, R King, O Kisner, TS Kneissl, R Knox, L Krichbaum, TP Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Laureijs, RJ Lavonen, N Lawrence, CR Leach, S Leonardi, R Leon-Tavares, J Linden-Vornle, M Lindfors, E Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Max-Moerbeck, W Mazziotta, MN Mazzotta, P Melchiorri, A Mendes, L Mennella, A Michelson, PF Mingaliev, M Mitra, S Miville-Deschenes, MA Moneti, A Monte, C Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Nestoras, I Netterfield, CB Nieppola, E Nilsson, K Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Osborne, S Pajot, F Partridge, B Pasian, F Patanchon, G Pavlidou, V Pearson, TJ Perdereau, O Perotto, L Perri, M Perrotta, F Piacentini, F Piat, M Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Procopio, P Prunet, S Puget, JL Rachen, JP Raino, S Reach, WT Readhead, A Rebolo, R Reeves, R Reinecke, M Reinthal, R Renault, C Ricciardi, S Richards, J Riller, T Riquelme, D Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Saarinen, J Sandri, M Savolainen, P Scott, D Seiffert, MD Sievers, A Sillanpaa, A Smoot, GF Sotnikova, Y Starck, JL Stevenson, M Stivoli, F Stolyarov, V Sudiwala, R Sygnet, JF Takalo, L Tammi, J Tauber, JA Terenzi, L Thompson, DJ Toffolatti, L Tomasi, M Tornikoski, M Torre, JP Tosti, G Tramacere, A Tristram, M Tuovinen, J Turler, M Turunen, M Umana, G Ungerechts, H Valenziano, L Valtaoja, E Varis, J Verrecchia, F Vielva, P Villa, F Vittorio, N Wandelt, BD Wu, J Yvon, D Zacchei, A Zensus, JA Zhou, X Zonca, A AF Aatrokoski, J. Ade, P. A. R. Aghanim, N. Aller, H. D. Aller, M. F. Angelakis, E. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Berdyugin, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Burrows, D. N. Cabella, P. Capalbi, M. Cappellini, B. Cardoso, J. -F. Catalano, A. Cavazzuti, E. Cayon, L. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, L. -Y Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Couchot, F. Coulais, A. Cutini, S. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Dickinson, C. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Fuhrmann, L. Galeotta, S. Ganga, K. Gargano, F. Gasparrini, D. Gehrels, N. Giard, M. Giardino, G. Giglietto, N. Giommi, P. Giordano, F. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Harrison, D. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Juvela, M. Keihanen, E. Keskitalo, R. King, O. Kisner, T. S. Kneissl, R. Knox, L. Krichbaum, T. P. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lavonen, N. Lawrence, C. R. Leach, S. Leonardi, R. Leon-Tavares, J. Linden-Vornle, M. Lindfors, E. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Max-Moerbeck, W. Mazziotta, M. N. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Michelson, P. F. Mingaliev, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Monte, C. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Nestoras, I. Netterfield, C. B. Nieppola, E. Nilsson, K. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Osborne, S. Pajot, F. Partridge, B. Pasian, F. Patanchon, G. Pavlidou, V. Pearson, T. J. Perdereau, O. Perotto, L. Perri, M. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Procopio, P. Prunet, S. Puget, J. -L. Rachen, J. P. Raino, S. Reach, W. T. Readhead, A. Rebolo, R. Reeves, R. Reinecke, M. Reinthal, R. Renault, C. Ricciardi, S. Richards, J. Riller, T. Riquelme, D. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Saarinen, J. Sandri, M. Savolainen, P. Scott, D. Seiffert, M. D. Sievers, A. Sillanpaa, A. Smoot, G. F. Sotnikova, Y. Starck, J. -L. Stevenson, M. Stivoli, F. Stolyarov, V. Sudiwala, R. Sygnet, J. -F. Takalo, L. Tammi, J. Tauber, J. A. Terenzi, L. Thompson, D. J. Toffolatti, L. Tomasi, M. Tornikoski, M. Torre, J. -P. Tosti, G. Tramacere, A. Tristram, M. Tuovinen, J. Turler, M. Turunen, M. Umana, G. Ungerechts, H. Valenziano, L. Valtaoja, E. Varis, J. Verrecchia, F. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Wu, J. Yvon, D. Zacchei, A. Zensus, J. A. Zhou, X. Zonca, A. CA Planck Collaboration TI Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; BL Lacertae objects: general; quasars: general; radiation mechanisms: non-thermal ID BL-LACERTAE OBJECTS; LARGE-AREA TELESCOPE; ACTIVE GALACTIC NUCLEI; GAMMA-RAY EMISSION; PRE-LAUNCH STATUS; SHOCKED RELATIVISTIC JETS; BURST ALERT TELESCOPE; PARTICLE-ACCELERATION; BLAZAR SEQUENCE; INTERSTELLAR EXTINCTION AB Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shocks. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission. C1 [Aatrokoski, J.; Lahteenmaki, A.; Lavonen, N.; Leon-Tavares, J.; Nieppola, E.; Poutanen, T.; Savolainen, P.; Tammi, J.; Tornikoski, M.; Turunen, M.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Capalbi, M.; Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Natoli, P.; Perri, M.; Polenta, G.; Verrecchia, F.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Giommi, P.] Agenzia Spaziale Italiana, Rome, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Gehrels, N.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago 0355, Chile. [Bonavera, L.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Chary, R. -R.; Ganga, K.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Giglietto, N.; Giordano, F.; Monte, C.; Raino, S.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Giglietto, N.; Giordano, F.; Monte, C.; Raino, S.] Politecn Bari, I-70126 Bari, Italy. [Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] Planck Sci Off, ESAC, European Space Agcy, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Nieppola, E.; Nilsson, K.] Univ Turku, Finnish Ctr Astron ESO FINCA, Piikkio 21500, Finland. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Catania, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Procopio, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Lab Rech Informat, F-91405 Orsay, France. [Tramacere, A.; Turler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Lagache, G.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Riquelme, D.; Sievers, A.; Ungerechts, H.] Inst Radioastron Millimetrique IRAM, Granada 18012, Spain. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Gargano, F.; Giglietto, N.; Mazziotta, M. N.; Monte, C.; Raino, S.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; O'Dwyer, I. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Wu, J.; Zhou, X.] Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100012, Peoples R China. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, LERMA, CNRS, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA DSM, IRFU Serv Astrophys,Lab AIM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, CNRS IN2P3, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS IN2P3, Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Angelakis, E.; Fuhrmann, L.; Krichbaum, T. P.; Nestoras, I.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [King, O.; Max-Moerbeck, W.; Pavlidou, V.; Readhead, A.; Reeves, R.; Richards, J.; Stevenson, M.] CALTECH, Owens Valley Radio Observ, Pasadena, CA 91125 USA. [Baccigalupi, C.; Bonavera, L.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, SUPA, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mingaliev, M.; Sotnikova, Y.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian 369167, Russia. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Berdyugin, A.; Lindfors, E.; Reinthal, R.; Saarinen, J.; Sillanpaa, A.; Takalo, L.; Valtaoja, E.] Univ Turku, Tuorla Observ, Dept Phys & Astron, Piikkio 21500, Finland. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Michelson, P. F.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Michelson, P. F.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Lahteenmaki, A (reprint author), Aalto Univ, Metsahovi Radio Observ, Metsahovintie 114, Kylmala 02540, Finland. EM alien@kurp.hut.fi RI Mazziotta, Mario /O-8867-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Pavlidou, Vasiliki/C-2944-2011; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Gargano, Fabio/O-8934-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Vielva, Patricio/F-6745-2014; Reeves, Rodrigo/H-2812-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; de Gasperis, Giancarlo/C-8534-2012; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; giglietto, nicola/I-8951-2012; Gregorio, Anna/J-1632-2012; Tosti, Gino/E-9976-2013; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; OI Tramacere, Andrea/0000-0002-8186-3793; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Angelakis, Emmanouil/0000-0001-7327-5441; Reach, William/0000-0001-8362-4094; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Mazziotta, Mario /0000-0001-9325-4672; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; Barreiro, Rita Belen/0000-0002-6139-4272; Pavlidou, Vasiliki/0000-0002-0870-1368; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Gargano, Fabio/0000-0002-5055-6395; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Vielva, Patricio/0000-0003-0051-272X; Reeves, Rodrigo/0000-0001-5704-271X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; de Gasperis, Giancarlo/0000-0003-2899-2171; Thompson, David/0000-0001-5217-9135; giglietto, nicola/0000-0002-9021-2888; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Perri, Matteo/0000-0003-3613-4409; Galeotta, Samuele/0000-0002-3748-5115; giommi, paolo/0000-0002-2265-5003; Matarrese, Sabino/0000-0002-2573-1243; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Verrecchia, Francesco/0000-0003-3455-5082; Gregorio, Anna/0000-0003-4028-8785; de Bernardis, Paolo/0000-0001-6547-6446; Giordano, Francesco/0000-0002-8651-2394; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); Academy of Finland [212656, 210338, 121148, 127740, 122352]; NSF; University of Michigan; Chinese National Natural Science Foundation [10633020, 10778714, 11073032]; National Basic Research Program of China (973 Program) [2007CB815403]; Commonwealth of Australia; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found via http://www.rssd.esa.int/Planck. The Mets hovi and Tuorla observing projects are supported by the Academy of Finland (grant numbers 212656, 210338, 121148, 127740 and 122352). UMRAO is supported by a series of grants from the NSF and NASA, and by the University of Michigan. This publication is partly based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. This research is partly based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut fur Radioastronomie) at Effelsberg, the IRAM 30-m telescope, and the Medicina (Noto) telescope operated by INAF - Istituto di Radioastronomia. This paper makes use of observations obtained at the Very Large Array (VLA) which is an instrument of the National Radio Astronomy Observatory (NRAO). The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The observations at Xinglong station are supported by the Chinese National Natural Science Foundation grants 10633020, 10778714, and 11073032, and by the National Basic Research Program of China (973 Program) No. 2007CB815403. The OVRO 40-m monitoring program is supported in part by NASA. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. Part of this work is based on archival data, software or on-line services provided by the ASI Science Data Center ASDC. We thank the Fermi LAT team reviewers, S. Ciprini and M. Giroletti, for their effort and valuable comments. NR 122 TC 69 Z9 69 U1 0 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A15 DI 10.1051/0004-6361/201116466 PG 56 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100016 ER PT J AU Abergel, A Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Chiang, C Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Dobashi, K Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Guillet, V Hansen, FK Harrison, D Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Jones, A Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Leroy, C Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Mandolesi, N Mann, R Maris, M Marshall, DJ Martin, P Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paladini, R Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Umana, G Valenziano, L Verstraete, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Yvon, D Zacchei, A Zonca, A AF Abergel, A. Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L. -Y. Chiang, C. Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Dobashi, K. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Jones, A. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Leroy, C. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Mandolesi, N. Mann, R. Maris, M. Marshall, D. J. Martin, P. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paladini, R. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J. -L. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Umana, G. Valenziano, L. Verstraete, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XXV. Thermal dust in nearby molecular clouds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: structure; evolution; infrared: ISM; ISM: individual objects: Taurus-Auriga molecular cloud ID PRE-LAUNCH STATUS; OPTICAL-PROPERTIES; INTERSTELLAR DUST; SPECTRAL INDEX; TEMPERATURE-DEPENDENCE; INFRARED OBSERVATIONS; PHYSICAL-PROPERTIES; INITIAL HIGHLIGHTS; GALACTIC PLANE; COLD DUST AB Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 -> 1 and J = 1 -> 0 (CO)-C-12 and (CO)-C-13 emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index beta, and the dust optical depth at 250 mu m tau(250). The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16-17 K in the diffuse regions to 13-14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T - beta anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 mu m per hydrogen atom tau(250)/N-H. We report an increase of tau(250)/N-H by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles. C1 [Abergel, A.; Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Guillet, V.; Jones, A.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.; Verstraete, L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Poutanen, T.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR 7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Martin, P.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Ganga, K.; McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Challinor, A.; Shellard, P.] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Dobashi, K.] Tokyo Gakugei Univ, Dept Astron & Earth Sci, Tokyo 1848501, Japan. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Catania, Italy. [Bonaldi, A.; de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Lab Rech Informat, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, CNRS, IPAG, INSU,UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, Inst Astrophys Spatiale, UMR8617, Paris, France. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Eriksen, H. K.; Hansen, F. K.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] IRFU Serv Astrophys CEA DSM CNRS Univ Paris Dider, CEA Saclay, Lab AIM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Abergel, A (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, Batiment 121, F-91405 Orsay, France. EM alain.abergel@ias.u-psud.fr RI Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; OI Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Ricciardi, Sara/0000-0002-3807-4043; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924 NR 89 TC 102 Z9 102 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A25 DI 10.1051/0004-6361/201116483 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100026 ER PT J AU Abergel, A Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Chiang, C Christensen, PR Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Dame, TM Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Grenier, IA Gruppuso, A Hansen, FK Harrison, D Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, TR Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Leroy, C Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Mandolesi, N Mann, R Maris, M Marshall, DJ Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paladini, R Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reich, W Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Stompor, R Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Umana, G Valenziano, L Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Wilkinson, A Ysard, N Yvon, D Zacchei, A Zonca, A AF Abergel, A. Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J-P Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Cabella, P. Cardoso, J-F Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L-Y Chiang, C. Christensen, P. R. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Dame, T. M. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J-M Desert, F-X Dickinson, C. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Grenier, I. A. Gruppuso, A. Hansen, F. K. Harrison, D. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, T. R. Jaffe, A. H. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J-M Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Leroy, C. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Mandolesi, N. Mann, R. Maris, M. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Miville-Deschenes, M-A Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paladini, R. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J-L Rachen, J. P. Reach, W. T. Rebolo, R. Reich, W. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J-L Stivoli, F. Stolyarov, V. Stompor, R. Sudiwala, R. Sygnet, J-F Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J-P Tristram, M. Tuovinen, J. Umana, G. Valenziano, L. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Wilkinson, A. Ysard, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XXI. Properties of the interstellar medium in the Galactic plane SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; Galaxy: general; radio continuum: ISM; submillimeter: ISM; infrared: ISM; radiation mechanisms: general ID MICROWAVE-ANISOTROPY-PROBE; SPINNING DUST EMISSION; GAMMA-RAY EMISSION; MILKY-WAY; FOREGROUND EMISSION; INFRARED-EMISSION; WMAP OBSERVATIONS; MOLECULAR CLOUDS; EXCESS EMISSION; HII-REGIONS AB Planck has observed the entire sky from 30 GHz to 857 GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. This technique provides the necessary information to study dust properties (emissivity, temperature, etc.), as well as other emission mechanisms as a function of Galactic radius. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular ((CO)-C-12) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely "dark gas", as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as with higher frequency data from IRAS and DIRBE along with radio data at 1.4 GHz. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12 mu m). The resulting SEDs allow us to explore the contribution of various emission mechanisms to the Planck signal. Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We find the dust opacity in the solar neighbourhood, tau/N-H = 0.92 +/- 0.05x10(-25) cm(2) at 250 mu m, with no significant variation with Galactic radius, even though the dust temperature is seen to vary from over 25 K to under 14 K. Furthermore, we show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. Anomalous emission is not clearly detected in the ionised phase, as free-free emission is seen to dominate. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for (25 +/- 5)% (statistical) of the total emission at 30 GHz. C1 [Banday, A. J.; Bernard, J-P; Forni, O.; Giard, M.; Jaffe, T. R.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP IRAP, F-31028 Toulouse 4, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, ESRIN, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J-F; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M-A] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P; Forni, O.; Giard, M.; Jaffe, T. R.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Challinor, A.; Shellard, P.] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England. [Starck, J-L; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihaenen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Ysard, N.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Dame, T. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F-X] Univ Grenoble 1, IPAG, CNRS INSU, UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Ganga, K.; McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, Inst Neel, CNRS, F-38041 Grenoble, France. [Abergel, A.; Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Lagache, G.; Leroy, C.; Miville-Deschenes, M-A; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J-L; Torre, J-P] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J-F; Colombi, S.; Delouis, J-M; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F; Wandelt, B. D.] Univ Paris 06, Inst Astrophys Paris, CNRS UMR7095, Paris, France. [Chiang, L-Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J-M] Observ Paris, LERMA, CNRS, F-75014 Paris, France. [Arnaud, M.; Grenier, I. A.; Starck, J-L] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J-F] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J-F] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS IN2P3, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Rachen, J. P.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Reich, W.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Marshall, DJ (reprint author), Univ Toulouse, UPS OMP IRAP, F-31028 Toulouse 4, France. EM douglas.marshall@irap.omp.eu RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; OI WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Pasian, Fabio/0000-0002-4869-3227; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de Gasperis, Giancarlo/0000-0003-2899-2171; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794 NR 89 TC 76 Z9 76 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A21 DI 10.1051/0004-6361/201116455 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100022 ER PT J AU Abergel, A Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Blagrave, K Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Cabella, P Cantalupo, CM Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Chiang, C Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Harrison, D Helou, G Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Joncas, G Jones, A Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Leroy, C Linden-Vornle, M Lockman, FJ Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Marshall, DJ Martin, P Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Osborne, S Pajot, F Paladini, R Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Goncalves, DP Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Stompor, R Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Umana, G Valenziano, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Abergel, A. Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Blagrave, K. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Cabella, P. Cantalupo, C. M. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L. -Y Chiang, C. Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Joncas, G. Jones, A. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Leroy, C. Linden-Vornle, M. Lockman, F. J. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marshall, D. J. Martin, P. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Osborne, S. Pajot, F. Paladini, R. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Goncalves, D. Pinheiro Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Stompor, R. Sudiwala, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Umana, G. Valenziano, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE infrared: ISM; methods: data analysis; dust, extinction; submillimeter: ISM; Galaxy: halo; local insterstellar matter ID HIGH-VELOCITY CLOUD; ULTRAVIOLET-SPECTROSCOPIC-EXPLORER; HUBBLE-SPACE-TELESCOPE; MOLECULAR-HYDROGEN; MILKY-WAY; CIRRUS CLOUDS; COMPLEX-C; H-I; INFRARED-EMISSION; LOW-METALLICITY AB This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857 GHz, along with IRAS data at 3000 9100 mu m) and 5000 GHz 960 mu m), with Green Bank Telescope 21-cm observations of H I in 14 fields covering more than 800 deg(2) at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average H I column density lower than 2 x 10(20) cm(-2) is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the H I-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average H I column density greater than 2 x 10(20) cm(-2), show significant excess dust emission compared to the H I column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher H I column density fields the excess emission at 857 GHz is about 40% of that coming from the H I, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T similar to 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000 GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes. C1 [Abergel, A.; Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Jones, A.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Blagrave, K.; Bond, J. R.; Martin, P.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Ganga, K.; McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Challinor, A.; Shellard, P.] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Joncas, G.] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ, Canada. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.; Goncalves, D. Pinheiro] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago 19001, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] INAF, Osservatorio Astrofis Catania, Catania, Italy. [Bonaldi, A.; de Zotti, G.] INAF, Osservatorio Astron Padova, Padua, Italy. [Polenta, G.] INAF, Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] INAF, Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF, IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Lab Rech Informat, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, CNRS, INSU, IPAG, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, F-38041 Grenoble, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Eriksen, H. K.; Hansen, F. K.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; O'Dwyer, I. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Wilkinson, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, CNRS, CEA,DSM,Lab AIM,IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, IN2P3,Lab Phys Subat & Cosmol, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Borrill, J.; Cantalupo, C. M.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Lockman, F. J.] NRAO, Green Bank, WV 24944 USA. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS, OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Miville-Deschenes, MA (reprint author), Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM mamd@ias.u-psud.fr RI Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Nati, Federico/I-4469-2016; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; OI Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Ricciardi, Sara/0000-0002-3807-4043; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094 NR 101 TC 111 Z9 111 U1 0 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A24 DI 10.1051/0004-6361/201116485 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100025 ER PT J AU Ade, PAR Aghanim, N Ansari, R Arnaud, M Ashdown, M Aumont, J Banday, AJ Bartelmann, M Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bock, JJ Bond, JR Borrill, J Bouchet, FR Boulanger, F Bradshaw, T Bucher, M Cardoso, JF Castex, G Catalano, A Challinor, A Chamballu, A Chary, RR Chen, X Chiang, C Church, S Clements, DL Colley, JM Colombi, S Couchot, F Coulais, A Cressiot, C Crill, BP Crook, M de Bernardis, P Delabrouille, J Delouis, JM Desert, FX Dolag, K Dole, H Dore, O Douspis, M Dunkley, J Efstathiou, G Filliard, C Forni, O Fosalba, P Ganga, K Giard, M Girard, D Giraud-Heraud, Y Gispert, R Gorski, KM Gratton, S Griffin, M Guyot, G Haissinski, J Harrison, D Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Hildebrandt, SR Hills, R Hivon, E Hobson, M Holmes, WA Huffenberger, KM Jaffe, AH Jones, WC Kaplan, J Kneissl, R Knox, L Kunz, M Lagache, G Lamarre, JM Lange, AE Lasenby, A Lavabre, A Lawrence, CR Le Jeune, M Leroy, C Lesgourgues, J Macias-Perez, JF MacTavish, CJ Maffei, B Mandolesi, N Mann, R Marleau, F Marshall, DJ Masi, S Matsumura, T McAuley, I McGehee, P Melin, JB Mercier, C Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Mortlock, D Murphy, A Nati, F Netterfield, CB Norgaard-Nielsen, HU North, C Noviello, F Novikov, D Osborne, S Pajot, F Patanchon, G Peacocke, T Pearson, TJ Perdereau, O Perotto, L Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Ponthieu, N Prezeau, G Prunet, S Puget, JL Reach, WT Remazeilles, M Renault, C Riazuelo, A Ristorcelli, I Rocha, G Rosset, C Roudier, G Rowan-Robinson, M Rusholme, B Saha, R Santos, D Savini, G Schaefer, BM Shellard, P Spencer, L Starck, JL Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Sygnet, JF Tauber, JA Thum, C Torre, JP Touze, F Tristram, M Van Leeuwen, F Vibert, L Vibert, D Wade, LA Wandelt, BD White, SDM Wiesemeyer, H Woodcraft, A Yurchenko, V Yvon, D Zacchei, A AF Ade, P. A. R. Aghanim, N. Ansari, R. Arnaud, M. Ashdown, M. Aumont, J. Banday, A. J. Bartelmann, M. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bock, J. J. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bradshaw, T. Bucher, M. Cardoso, J. -F. Castex, G. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chen, X. Chiang, C. Church, S. Clements, D. L. Colley, J. -M. Colombi, S. Couchot, F. Coulais, A. Cressiot, C. Crill, B. P. Crook, M. de Bernardis, P. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dolag, K. Dole, H. Dore, O. Douspis, M. Dunkley, J. Efstathiou, G. Filliard, C. Forni, O. Fosalba, P. Ganga, K. Giard, M. Girard, D. Giraud-Heraud, Y. Gispert, R. Gorski, K. M. Gratton, S. Griffin, M. Guyot, G. Haissinski, J. Harrison, D. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hills, R. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Jaffe, A. H. Jones, W. C. Kaplan, J. Kneissl, R. Knox, L. Kunz, M. Lagache, G. Lamarre, J. -M. Lange, A. E. Lasenby, A. Lavabre, A. Lawrence, C. R. Le Jeune, M. Leroy, C. Lesgourgues, J. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Mandolesi, N. Mann, R. Marleau, F. Marshall, D. J. Masi, S. Matsumura, T. McAuley, I. McGehee, P. Melin, J. -B. Mercier, C. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Mortlock, D. Murphy, A. Nati, F. Netterfield, C. B. Norgaard-Nielsen, H. U. North, C. Noviello, F. Novikov, D. Osborne, S. Pajot, F. Patanchon, G. Peacocke, T. Pearson, T. J. Perdereau, O. Perotto, L. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Ponthieu, N. Prezeau, G. Prunet, S. Puget, J. -L. Reach, W. T. Remazeilles, M. Renault, C. Riazuelo, A. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rowan-Robinson, M. Rusholme, B. Saha, R. Santos, D. Savini, G. Schaefer, B. M. Shellard, P. Spencer, L. Starck, J. -L. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Sygnet, J. -F. Tauber, J. A. Thum, C. Torre, J. -P. Touze, F. Tristram, M. Van Leeuwen, F. Vibert, L. Vibert, D. Wade, L. A. Wandelt, B. D. White, S. D. M. Wiesemeyer, H. Woodcraft, A. Yurchenko, V. Yvon, D. Zacchei, A. CA Planck HFI Core Team TI Planck early results. VI. The High Frequency Instrument data processing SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; methods: data analysis; surveys ID PRE-LAUNCH STATUS; IN-FLIGHT PERFORMANCE; MAP-MAKING METHOD; POWER SPECTRA; COMPONENT SEPARATION; SKY MAPS; MICROWAVE; MISSION; CALIBRATION; NOISE AB We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857GHz with an angular resolution ranging from 9.9 to 4.4'. The white noise level is around 1.5 mu K degree or less in the 3 main CMB channels (100-217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project. C1 [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Lesgourgues, J.; Moneti, A.; Prunet, S.; Riazuelo, A.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Colley, J. -M.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Castex, G.; Catalano, A.; Colley, J. -M.; Cressiot, C.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Kaplan, J.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hills, R.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Melin, J. -B.; Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Marleau, F.; Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Dunkley, J.] Univ Oxford, Dept Phys, Oxford, England. [de Bernardis, P.; Masi, S.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Mandolesi, N.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.] INAF IASF Milano, Milan, Italy. [Guyot, G.] CNRS, Inst Sci Univers, INSU, F-75794 Paris 16, France. [Desert, F. -X.] Univ Grenoble 1, IPAG, CNRS INSU, UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R. -R.; Chen, X.; Ganga, K.; Lange, A. E.; McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Dole, H.; Douspis, M.; Gispert, R.; Kunz, M.; Lagache, G.; Leroy, C.; Mercier, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.; Vibert, L.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR8617, Orsay, France. [Fosalba, P.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain. [Wiesemeyer, H.] Inst Radioastron Millimetrique IRAM, Granada 18012, Spain. [Thum, C.] Inst Radioastron Millimetr IRAM, F-38406 Grenoble, France. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Sutton, D.; Van Leeuwen, F.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hildebrandt, S. R.] Inst Astrofis Canarias, Tenerife, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Prezeau, G.; Rocha, G.; Saha, R.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, CNRS, Lab AIM, IRFU Serv Astrophys,CEA DSM,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Vibert, D.] Astrophys Lab, F-13388 Marseille 13, France. [Girard, D.; Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS IN2P3, F-38026 Grenoble, France. [Ansari, R.; Couchot, F.; Filliard, C.; Haissinski, J.; Henrot-Versille, S.; Lavabre, A.; Perdereau, O.; Plaszczynski, S.; Touze, F.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS IN2P3, F-91405 Orsay, France. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Bartelmann, M.; Dolag, K.; Hernandez-Monteagudo, C.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [McAuley, I.; Murphy, A.; Peacocke, T.; Yurchenko, V.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Bradshaw, T.; Crook, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Mann, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Griffin, M.; North, C.; Spencer, L.; Sudiwala, R.; Woodcraft, A.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Church, S.; Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bartelmann, M.; Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Stratospher Observ Infrared Astron, Univ Space Res Assoc, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Bouchet, FR (reprint author), Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, 98Bis Blvd Arago, Paris, France. EM bouchet@iap.fr RI Bartelmann, Matthias/A-5336-2014; Bouchet, Francois/B-5202-2014; Battaner, Eduardo/P-7019-2014; Yvon, Dominique/D-2280-2015; Pearson, Timothy/N-2376-2015; Fosalba Vela, Pablo/I-5515-2016; Nati, Federico/I-4469-2016; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Remazeilles, Mathieu/N-1793-2015; OI Pearson, Timothy/0000-0001-5213-6231; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Masi, Silvia/0000-0001-5105-1439; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Remazeilles, Mathieu/0000-0001-9126-6266; WANDELT, Benjamin/0000-0002-5854-8269; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192 FU ESA member states FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions from NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark. NR 74 TC 100 Z9 100 U1 0 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A6 DI 10.1051/0004-6361/201116462 PG 47 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100007 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Chiang, C Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Dame, TM Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Dobashi, K Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Fosalba, P Frailis, M Franceschi, E Fukui, Y Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Grenier, IA Gruppuso, A Hansen, FK Harrison, D Helou, G Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Jones, WC Juvela, M Kawamura, A Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Leroy, C Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Martin, P Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Onishi, T Osborne, S Pajot, F Paladini, R Paradis, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Reach, WT Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Stompor, R Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Umana, G Valenziano, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L. -Y Chiang, C. Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Dame, T. M. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Dobashi, K. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Fukui, Y. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Grenier, I. A. Gruppuso, A. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Jones, W. C. Juvela, M. Kawamura, A. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Leroy, C. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Martin, P. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Onishi, T. Osborne, S. Pajot, F. Paladini, R. Paradis, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J. -L. Reach, W. T. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Stompor, R. Sudiwala, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Umana, G. Valenziano, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: clouds; evolution; solar neighborhood; Galaxy: general; submillimeter: ISM ID GALACTIC MOLECULAR CLOUDS; SENSITIVITY HI SURVEY; FINAL DATA RELEASE; MILKY-WAY; INTERSTELLAR-MEDIUM; MAGELLANIC-CLOUD; INFRARED CIRRUS; SPITZER SURVEY; OUTER GALAXY; GOULD BELT AB An all sky map of the apparent temperature and optical depth of thermal dust emission is constructed using the Planck-HFI (350 mu m to 2 mm) and IRAS (100 mu m) data. The optical depth maps are correlated with tracers of the atomic (H I) and molecular gas traced by CO. The correlation with the column density of observed gas is linear in the lowest column density regions at high Galactic latitudes. At high N-H, the correlation is consistent with that of the lowest N-H, for a given choice of the CO-to-H-2 conversion factor. In the intermediate N-H range, a departure from linearity is observed, with the dust optical depth in excess of the correlation. This excess emission is attributed to thermal emission by dust associated with a dark gas phase, undetected in the available H I and CO surveys. The 2D spatial distribution of the dark gas in the solar neighbourhood (vertical bar b(II)vertical bar > 10 degrees) is shown to extend around known molecular regions traced by CO. The average dust emissivity in the H I phase in the solar neighbourhood is found to be tau(D)/N-H(tot) = 5.2 x 10(-26) cm(2) at 857 GHz. It follows roughly a power law distribution with a spectral index beta = 1.8 all the way down to 3 mm, although the SED flattens slightly in the millimetre. Taking into account the spectral shape of the dust optical depth, the emissivity is consistent with previous values derived from FIRAS measurements at high latitudes within 10%. The threshold for the existence of the dark gas is found at N-H(tot) = (8.0 +/- 0.58) x 10(20) H cm(-2) (A(V) = 0.4 mag). Assuming the same high frequency emissivity for the dust in the atomic and the molecular phases leads to an average X-CO = (2.54 +/- 0.13) x 10(20) H-2 cm(-2)/(K km s(-1)). The mass of dark gas is found to be 28% of the atomic gas and 118% of the CO emitting gas in the solar neighbourhood. The Galactic latitude distribution shows that its mass fraction is relatively constant down to a few degrees from the Galactic plane. A possible explanation for the dark gas lies in a dark molecular phase, where H-2 survives photodissociation but CO does not. The observed transition for the onset of this phase in the solar neighbourhood (A(V) = 0.4 mag) appears consistent with recent theoretical predictions. It is also possible that up to half of the dark gas could be in atomic form, due to optical depth effects in the Hi measurements. C1 [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Paradis, D.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS, OMP, IRAP, F-31028 Toulouse 4, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Martin, P.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Paradis, D.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Ganga, K.; McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; O'Dwyer, I. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Donzelli, S.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Dobashi, K.] Tokyo Gakugei Univ, Dept Astron & Earth Sci, Tokyo 1848501, Japan. [Onishi, T.] Osaka Prefecture Univ, Dept Phys Sci, Grad Sch Sci, Naka Ku, Sakai, Osaka 5998531, Japan. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Fukui, Y.; Kawamura, A.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Dame, T. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Tomasi, M.] IASF Milano, INAF, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, CNRS, IPAG, INSU,UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, Paris, France. [Fosalba, P.] Fac Ciencies, Inst Ciencies Espai, CSIC, IEEC, Bellaterra 08193, Spain. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hildebrandt, S. R.; Hoyland, R. J.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.] Observ Paris, LERMA, CNRS, F-75014 Paris, France. [Arnaud, M.; Grenier, I. A.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, IRFU, Serv Astrophys,CEA,DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, IN2P3,Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, Lab Accelerateur Lineaire, IN2P3, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, SUPA, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Bernard, JP (reprint author), Univ Toulouse, UPS, OMP, IRAP, F-31028 Toulouse 4, France. EM Jean-Philippe.Bernard@cesr.fr RI Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; OI Scott, Douglas/0000-0002-6878-9840; Masi, Silvia/0000-0001-5105-1439; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Ricciardi, Sara/0000-0002-3807-4043; Pasian, Fabio/0000-0002-4869-3227; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; de Bernardis, Paolo/0000-0001-6547-6446; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Valenziano, Luca/0000-0002-1170-0104; Lopez-Caniego, Marcos/0000-0003-1016-9283; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Bouchet, Francois/0000-0002-8051-2924; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796 NR 87 TC 158 Z9 158 U1 0 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A19 DI 10.1051/0004-6361/201116479 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100020 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Cabella, P Cantalupo, CM Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chary, RR Chiang, LY Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Dobashi, K Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Falgarone, E Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Harrison, D Helou, G Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Joncas, G Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Leroy, C Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Mandolesi, N Mann, R Maris, M Marshall, DJ Martin, P Martinez-Gonzalez, E Marton, G Masi, S Matarrese, S Matthai, F Mazzotta, P McGehee, P Melchiorri, A Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paladini, R Pasian, F Patanchon, G Pearson, TJ Pelkonen, VM Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Seiffert, MD Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Toth, V Tristram, M Tuovinen, J Umana, G Valenziano, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Ysard, N Yvon, D Zacchei, A Zahorecz, S Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Cabella, P. Cantalupo, C. M. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, L. -Y Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Dobashi, K. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Joncas, G. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Leroy, C. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Mandolesi, N. Mann, R. Maris, M. Marshall, D. J. Martin, P. Martinez-Gonzalez, E. Marton, G. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. McGehee, P. Melchiorri, A. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paladini, R. Pasian, F. Patanchon, G. Pearson, T. J. Pelkonen, V. -M. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J. -L. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Seiffert, M. D. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Toth, V. Tristram, M. Tuovinen, J. Umana, G. Valenziano, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Ysard, N. Yvon, D. Zacchei, A. Zahorecz, S. Zonca, A. CA Planck Collaboration TI Planck early results. XXIII. The first all-sky survey of Galactic cold clumps SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; stars: formation; dust, extinction; submillimetre: ISM; ISM: general; catalogs ID INFRARED DARK CLOUDS; PRE-LAUNCH STATUS; LARGE-MAGELLANIC-CLOUD; YOUNG STELLAR OBJECTS; IN-FLIGHT PERFORMANCE; TELESCOPE BLAST 2005; C2D LEGACY CLOUDS; STAR-FORMATION; MILKY-WAY; MOLECULAR CLOUDS AB We present the statistical properties of the Cold Clump Catalogue of Planck Objects (C3PO), the first all-sky catalogue of cold objects, in terms of their spatial distribution, dust temperature, distance, mass, and morphology. We have combined Planck and IRAS data to extract 10 342 cold sources that stand out against a warmer environment. The sources are distributed over the whole sky, including in the Galactic plane, despite the confusion, and up to high latitudes (>30 degrees). We find a strong spatial correlation of these sources with ancillary data tracing Galactic molecular structures and infrared dark clouds where the latter have been catalogued. These cold clumps are not isolated but clustered in groups. Dust temperature and emissivity spectral index values are derived from their spectral energy distributions using both Planck and IRAS data. The temperatures range from 7K to 19K, with a distribution peaking around 13K. The data are inconsistent with a constant value of the associated spectral index beta over the whole temperature range: beta varies from 1.4 to 2.8, with a mean value around 2.1. Distances are obtained for approximately one third of the objects. Most of the detections lie within 2 kpc of the Sun, but more distant sources are also detected, out to 7 kpc. The mass estimates inferred from dust emission range from 0.4 M-circle dot to 2.4 x 10(5) M-circle dot. Their physical properties show that these cold sources trace a broad range of objects, from low-mass dense cores to giant molecular clouds, hence the "cold clump" terminology. This first statistical analysis of the C3PO reveals at least two colder populations of special interest with temperatures in the range 7 to 12K: cores that mostly lie close to the Sun; and massive cold clumps located in the inner Galaxy. We also describe the statistics of the early cold core (ECC) sample that is a subset of the C3PO, containing only the 915 most reliable detections. The ECC is delivered as a part of the Planck Early Release Compact Source Catalogue (ERCSC). C1 [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Martin, P.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Joncas, G.] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ, Canada. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Dobashi, K.] Tokyo Gakugei Univ, Dept Astron & Earth Sci, Tokyo 1848501, Japan. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Ysard, N.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Marton, G.; Toth, V.; Zahorecz, S.] Eotvos Lorand Univ, Dept Astron, H-1117 Budapest, Hungary. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] Planck Sci Off, European Space Agcy, ESAC, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] ESTEC, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Tomasi, M.] IASF Milano, INAF, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, CNRS, IPAG, INSU,UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R. -R.; Ganga, K.; McGehee, P.; Pearson, T. J.; Pelkonen, V. -M.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, Paris, France. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Hansen, F. K.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Henrot-Versille, S.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.] Observ Paris, LERMA, CNRS, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA,DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subat & Cosmol,IN2P3, F-38026 Grenoble, France. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, Lab Accelerateur Lineaire, IN2P3, F-91405 Orsay, France. [Borrill, J.; Cantalupo, C. M.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Montier, L (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM Ludovic.Montier@irap.omp.eu RI Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Nati, Federico/I-4469-2016; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Toth, L. Viktor/C-8667-2017; Mazzotta, Pasquale/B-1225-2016; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Pearson, Timothy/N-2376-2015; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; OI Ricciardi, Sara/0000-0002-3807-4043; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Toth, L. Viktor/0000-0002-5310-4212; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Masi, Silvia/0000-0001-5105-1439; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Pearson, Timothy/0000-0001-5213-6231; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794 FU NASA Office of Space Science FX A description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. This research makes use of the SIMBAD database, operated at CDS, Strasbourg, France. NR 146 TC 88 Z9 88 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A23 DI 10.1051/0004-6361/201116472 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100024 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Cabella, P Cappellini, B Cardoso, JF Casassus, S Catalano, A Cayon, L Challinor, A Chamballu, A Chary, RR Chen, X Chiang, LY Chiang, C Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Dickinson, C Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Harrison, D Helou, G Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, TR Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Marshall, DJ Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Osborne, S Pajot, F Paladini, R Partridge, B Pasian, F Patanchon, G Pearson, TJ Peel, M Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Procopio, P Prunet, S Puget, JL Reach, WT Rebolo, R Reich, W Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Stompor, R Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Umana, G Valenziano, L Varis, J Verstraete, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Watson, R Wilkinson, A Ysard, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J-P Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Cabella, P. Cappellini, B. Cardoso, J-F Casassus, S. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chary, R-R Chen, X. Chiang, L-Y Chiang, C. Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J-M Dickinson, C. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, T. R. Jaffe, A. H. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Laehteenmaeki, A. Lamarre, J-M Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M-A Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Osborne, S. Pajot, F. Paladini, R. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Peel, M. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Procopio, P. Prunet, S. Puget, J-L Reach, W. T. Rebolo, R. Reich, W. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J-L Stivoli, F. Stolyarov, V. Stompor, R. Sudiwala, R. Sygnet, J-F Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J-P Tristram, M. Tuovinen, J. Umana, G. Valenziano, L. Varis, J. Verstraete, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Watson, R. Wilkinson, A. Ysard, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XX. New light on anomalous microwave emission from spinning dust grains SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; Galaxy: general; radiation mechanisms: general; radio continuum: ISM; submillimeter: ISM ID PROBE WMAP OBSERVATIONS; PRE-LAUNCH STATUS; POLYCYCLIC AROMATIC-HYDROCARBON; INTERSTELLAR RADIATION-FIELD; PERSEUS MOLECULAR-COMPLEX; CENTIMETER-WAVE CONTINUUM; INTER-STELLAR CLOUDS; ANISOTROPY-PROBE; FOREGROUND EMISSION; COSMOSOMAS EXPERIMENT AB Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range similar to 10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and rho Ophiuchi molecular clouds. The spectra are well fitted by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20-40 GHz and are detected at high significances of 17.1 sigma for Perseus and 8.4 sigma for rho Ophiuchi. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density atomic gas appears to play a minor role. In rho Ophiuchi, the similar to 30 GHz peak is dominated by dense molecular gas, but there is an indication of an extended tail at frequencies 50-100 GHz, which can be accounted for by irradiated low density atomic gas. The dust parameters are consistent with those derived from other measurements. We have also searched the Planck map at 28.5 GHz for candidate AME regions, by subtracting a simple model of the synchrotron, free-free, and thermal dust. We present spectra for two of the candidates; S140 and S235 are bright H II regions that show evidence for AME, and are well fitted by spinning dust models. C1 [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Peel, M.; Watson, R.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Laehteenmaeki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, ESRIN, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J-F; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M-A] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P; Forni, O.; Giard, M.; Jaffe, T. R.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Challinor, A.; Shellard, P.] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England. [Starck, J-L; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihaenen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Ysard, N.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Laehteenmaeki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Procopio, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R-R; Chen, X.; Ganga, K.; McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Lagache, G.; Miville-Deschenes, M-A; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J-L; Torre, J-P; Verstraete, L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J-F; Colombi, S.; Delouis, J-M; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Chiang, L-Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; O'Dwyer, I. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J-M] Observ Paris, LERMA, CNRS, F-75014 Paris, France. [Arnaud, M.; Starck, J-L] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU Serv Astrophys,CEA DSM,CNRS, F-91191 Gif Sur Yvette, France. [Cardoso, J-F] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J-F] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS IN2P3, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Reich, W.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Casassus, S.] Univ Chile, Santiago, Chile. [Banday, A. J.; Bernard, J-P; Forni, O.; Giard, M.; Jaffe, T. R.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Dickinson, C (reprint author), Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM Clive.Dickinson@manchester.ac.uk RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Casassus, Simon/I-8609-2016; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; OI Ricciardi, Sara/0000-0002-3807-4043; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de Gasperis, Giancarlo/0000-0003-2899-2171; Watson, Robert/0000-0002-5873-0124; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Villa, Fabrizio/0000-0003-1798-861X; Peel, Mike/0000-0003-3412-2586; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794 FU NASA Office of Space Science; National Aeronautics and Space Administration (NASA); ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX We thank the referee, Doug Finkbeiner, for useful comments. We thank Justin Jonas for providing the 2326 MHz HartRAO map. We acknowledge the use of the MPIfR Survey Sampler website at http://www.mpifr-bonn.mpg.de/survey.html. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA); support for LAMBDA is provided by the NASA Office of Space Science. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research makes use of the SIMBAD database, operated at CDS, Strasbourg, France.; The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A detailed description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. NR 131 TC 103 Z9 103 U1 0 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A20 DI 10.1051/0004-6361/201116470 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100021 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Cabella, P Cantalupo, CM Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davies, RD de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Doi, Y Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Falgarone, E Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Harrison, D Helou, G Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Ikeda, N Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kitamura, Y Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Leroy, C Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Malinen, J Mandolesi, N Mann, R Maris, M Marshall, DJ Martin, P Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P McGehee, P Melchiorri, A Mendes, L Mennella, A Meny, C Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pagani, L Pajot, F Paladini, R Pasian, F Patanchon, G Pelkonen, VM Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Seiffert, MD Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Toth, V Tristram, M Tuovinen, J Umana, G Valenziano, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Ysard, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Cabella, P. Cantalupo, C. M. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L. -Y Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Doi, Y. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Ikeda, N. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kitamura, Y. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Leroy, C. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Malinen, J. Mandolesi, N. Mann, R. Maris, M. Marshall, D. J. Martin, P. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. McGehee, P. Melchiorri, A. Mendes, L. Mennella, A. Meny, C. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pagani, L. Pajot, F. Paladini, R. Pasian, F. Patanchon, G. Pelkonen, V. -M. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J. -L. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Seiffert, M. D. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Toth, V. Tristram, M. Tuovinen, J. Umana, G. Valenziano, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Ysard, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; dust, extinction; stars: formation; ISM: structure; submillimeter: ISM; stars: protostars ID INFRARED DARK CLOUDS; PRE-LAUNCH STATUS; HELICAL MAGNETIC-FIELDS; ROSETTE MOLECULAR CLOUD; COMETARY GLOBULE CG-12; YOUNG STELLAR OBJECTS; IN-FLIGHT PERFORMANCE; C2D LEGACY CLOUDS; STAR-FORMATION; DENSE CORES AB We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to sample different environments, from high latitude cirrus to nearby (150 pc) and remote (2 kpc) molecular complexes. We present Planck surface brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the substructures at scales below the Planck beam size. The cold clumps detected by Planck are found to be located on large-scale filamentary (or cometary) structures that extend up to 20 pc in the remote sources. The thickness of these filaments ranges between 0.3 and 3 pc, for column densities N-H2 similar to 0.1 to 1.6 x 10(22) cm(-2), and with linear mass density covering a broad range, between 15 and 400 M-circle dot pc(-1). The dust temperatures are low (between 10 and 15K) and the Planck cold clumps correspond to local minima of the line-of-sight averaged dust temperature in these fields. These low temperatures are confirmed when AKARI and Herschel data are added to the spectral energy distributions. Herschel data reveal a wealth of substructure within the Planck cold clumps. In all cases (except two sources harbouring young stellar objects), the substructures are found to be colder, with temperatures as low as 7 K. Molecular line observations provide gas column densities which are consistent with those inferred from the dust. The linewidths are all supra-thermal, providing large virial linear mass densities in the range 10 to 300 M-circle dot pc(-1), comparable within factors of a few, to the gas linear mass densities. The analysis of this small set of cold clumps already probes a broad variety of structures in the C3PO sample, probably associated with different evolutionary stages, from cold and starless clumps, to young protostellar objects still embedded in their cold surrounding cloud. Because of the all-sky coverage and its sensitivity, Planck is able to detect and locate the coldest spots in massive elongated structures that may be the long-searched for progenitors of stellar clusters. C1 [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Meny, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Martin, P.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Meny, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM, SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Doi, Y.] Univ Tokyo, Dept Earth Sci & Astron, Meguro Ku, Tokyo 1538902, Japan. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Malinen, J.; Poutanen, T.; Ysard, N.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Toth, V.] Eotvos Lorand Univ, Dept Astron, H-1117 Budapest, Hungary. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] Planck Sci Off, European Space Agcy, ESAC, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] ESTEC, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Tomasi, M.] IASF Milano, INAF, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, CNRS, IPAG, INSU,UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Ganga, K.; McGehee, P.; Pelkonen, V. -M.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, Paris, France. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Ikeda, N.; Kitamura, Y.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Donzelli, S.; Hansen, F. K.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Dickinson, C.; Maffei, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Pagani, L.] Observ Paris, LERMA, CNRS, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA,DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subat & Cosmol,IN2P3, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, Lab Accelerateur Lineaire, IN2P3, F-91405 Orsay, France. [Borrill, J.; Cantalupo, C. M.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Ristorcelli, I (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM isabelle.ristorcelli@irap.omp.eu RI Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Nati, Federico/I-4469-2016; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Toth, L. Viktor/C-8667-2017; Mazzotta, Pasquale/B-1225-2016; Yvon, Dominique/D-2280-2015; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Doi, Yasuo/A-3395-2013; Toth, L. Viktor/J-8561-2013; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Doi, Yasuo/G-2363-2011; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; OI Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Toth, L. Viktor/0000-0002-5310-4212; Mazzotta, Pasquale/0000-0002-5411-1748; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416; de Gasperis, Giancarlo/0000-0003-2899-2171; Doi, Yasuo/0000-0001-8746-6548; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); National Aeronautics and Space Administration (NASA); DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); National Science Foundation FX A description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU) This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research is based on observations with AKARI, a JAXA project with the participation of ESA. NR 132 TC 66 Z9 66 U1 0 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A22 DI 10.1051/0004-6361/201116481 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100023 ER PT J AU Ade, PAR Aghanim, N Angelakis, E Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Cabella, P Cappellini, B Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chary, RR Chen, X Chiang, LY Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Forni, O Frailis, M Franceschi, E Fuhrmann, L Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Harrison, D Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Huynh, M Jaffe, AH Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Krichbaum, TP Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Laureijs, RJ Lavonen, N Lawrence, CR Leach, S Leahy, JP Leonardi, R Leon-Tavares, J Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Marleau, F Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Mingaliev, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Nestoras, I Netterfield, CB Nieppola, E Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paladini, R Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Procopio, P Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Riquelme, D Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sajina, A Sandri, M Savolainen, P Scott, D Seiffert, MD Sievers, A Smoot, GF Sotnikova, Y Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sygnet, JF Tammi, J Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tornikoski, M Torre, JP Tristram, M Tuovinen, J Turler, M Turunen, M Umana, G Ungerechts, H Valenziano, L Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Wilkinson, A Yvon, D Zacchei, A Zensus, JA Zonca, A AF Ade, P. A. R. Aghanim, N. Angelakis, E. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Cabella, P. Cappellini, B. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chary, R. -R. Chen, X. Chiang, L. -Y Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Fuhrmann, L. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Harrison, D. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Huynh, M. Jaffe, A. H. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Krichbaum, T. P. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J-M. Lasenby, A. Laureijs, R. J. Lavonen, N. Lawrence, C. R. Leach, S. Leahy, J. P. Leonardi, R. Leon-Tavares, J. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marleau, F. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Mingaliev, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Nestoras, I. Netterfield, C. B. Nieppola, E. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paladini, R. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Procopio, P. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Riquelme, D. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sajina, A. Sandri, M. Savolainen, P. Scott, D. Seiffert, M. D. Sievers, A. Smoot, G. F. Sotnikova, Y. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sygnet, J. -F. Tammi, J. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tornikoski, M. Torre, J. -P. Tristram, M. Tuovinen, J. Turler, M. Turunen, M. Umana, G. Ungerechts, H. Valenziano, L. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Wilkinson, A. Yvon, D. Zacchei, A. Zensus, J. A. Zonca, A. CA Planck Collaboration TI Planck early results. XIV. ERCSC validation and extreme radio sources SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE surveys; radio continuum: galaxies; radiation mechanisms: general ID PRE-LAUNCH STATUS; COMPTON CATASTROPHE SCENARIO; LONG-TERM VARIABILITY; ALL-SKY SURVEY; EXTRAGALACTIC SOURCES; MULTIFREQUENCY OBSERVATIONS; BRIGHT SAMPLE; 3C 454.3; SPECTRUM; GHZ AB Planck's all-sky surveys at 30-857 GHz provide an unprecedented opportunity to follow the radio spectra of a large sample of extragalactic sources to frequencies 2-20 times higher than allowed by past, large-area, ground-based surveys. We combine the results of the Planck Early Release Compact Source Catalog (ERCSC) with quasi-simultaneous ground-based observations as well as archival data at frequencies below or overlapping Planck frequency bands, to validate the astrometry and photometry of the ERCSC radio sources and study the spectral features shown in this new frequency window opened by Planck. The ERCSC source positions and flux density scales are found to be consistent with the ground-based observations. We present and discuss the spectral energy distributions of a sample of "extreme" radio sources, to illustrate the richness of the ERCSC for the study of extragalactic radio sources. Variability is found to play a role in the unusual spectral features of some of these sources. C1 [Partridge, B.; Sajina, A.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Lahteenmaki, A.; Lavonen, N.; Leon-Tavares, J.; Nieppola, E.; Poutanen, T.; Savolainen, P.; Tammi, J.; Tornikoski, M.; Turunen, M.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR 7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago 0355, Chile. [Bonavera, L.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Marleau, F.; Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago 19001, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] Planck Sci Off, European Space Agcy, ESAC, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Nieppola, E.] Univ Turku, Finnish Ctr Astron ESO FINCA, Piikkio 21500, Finland. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Catania, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] INAF Osservatorio Astron Padova, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Procopio, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, Lab Rech Informat, INRIA, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, IPAG, CNRS INSU, UMR 5274, F-38041 Grenoble, France. [Turler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R. -R.; Chen, X.; Ganga, K.; Huynh, M.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Douspis, M.; Lagache, G.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Riquelme, D.; Sievers, A.; Ungerechts, H.] Inst Radioastron Millimetrique IRAM, Granada 18012, Spain. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Maffei, B.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J-M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA DSM, IRFU Serv Astrophys,Lab AIM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, Lab Accelerateur Lineaire, Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Angelakis, E.; Fuhrmann, L.; Krichbaum, T. P.; Nestoras, I.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Baccigalupi, C.; Bonavera, L.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mingaliev, M.; Sotnikova, Y.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian 369167, Russia. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, Warsaw, Poland. RP Partridge, B (reprint author), Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. EM bpartrid@haverford.edu RI Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013 OI Matarrese, Sabino/0000-0002-2573-1243; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Lopez-Caniego, Marcos/0000-0003-1016-9283; Pierpaoli, Elena/0000-0002-7957-8993; Angelakis, Emmanouil/0000-0001-7327-5441; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; de Gasperis, Giancarlo/0000-0003-2899-2171; FU Academy of Finland [212656, 210338, 121148]; National Aeronautics and Space Administration; ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX A description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. This paper makes use of observations obtained at the Very Large Array (VLA) which is an instrument of the National Radio Astronomy Observatory (NRAO). The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This research also makes use of observations with the 100 m telescope of the Max Planck Institut fur Radioastronomie (MPIfR), the 30 m telescope of Institut de Radioastronomie Millimetrique (IRAM), the Australia Telescope Compact Array (ATCA) and the 13.7 m telescope of the Metsahovi Radio Observatory. The Mets hovi observing project is supported by the Academy of Finland (grant numbers 212656, 210338 and 121148). We acknowledge the use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). NR 74 TC 50 Z9 50 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A14 DI 10.1051/0004-6361/201116475 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100015 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chary, RR Chiang, LY Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Harrison, D Helou, G Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Madden, S Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Melchiorri, A Mendes, L Mennella, A Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Partridge, B Pasian, F Patanchon, G Peel, M Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Turler, M Umana, G Valenziano, L Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, L. -Y Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Madden, S. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Partridge, B. Pasian, F. Patanchon, G. Peel, M. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J. -L. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Tuerler, M. Umana, G. Valenziano, L. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XVI. The Planck view of nearby galaxies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: photometry; submillimeter: galaxies; infrared: galaxies; galaxies: ISM ID SPECTRAL ENERGY-DISTRIBUTIONS; PRE-LAUNCH STATUS; ULTRALUMINOUS INFRARED GALAXIES; DEGREE EXTRAGALACTIC SURVEY; DEEP SUBMILLIMETER SURVEY; FSC REDSHIFT CATALOG; HERSCHEL-ATLAS; MU-M; NUMBER COUNTS; COLD DUST AB The all-sky coverage of the Planck Early Release Compact Source Catalogue (ERCSC) provides an unsurpassed survey of galaxies at submillimetre (submm) wavelengths, representing a major improvement in the numbers of galaxies detected, as well as the range of far-IR/ submm wavelengths over which they have been observed. We here present the first results on the properties of nearby galaxies using these data. We match the ERCSC catalogue to IRAS-detected galaxies in the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz), so that we can measure the spectral energy distributions (SEDs) of these objects from 60 to 850 mu m. This produces a list of 1717 galaxies with reliable associations between Planck and IRAS, from which we select a subset of 468 for SED studies, namely those with strong detections in the three highest frequency Planck bands and no evidence of cirrus contamination. The SEDs are fitted using parametric dust models to determine the range of dust temperatures and emissivities. We find evidence for colder dust than has previously been found in external galaxies, with T < 20K. Such cold temperatures are found using both the standard single temperature dust model with variable emissivity beta, or a two dust temperature model with beta fixed at 2. We also compare our results to studies of distant submm galaxies (SMGs) which have been claimed to contain cooler dust than their local counterparts. We find that including our sample of 468 galaxies significantly reduces the distinction between the two populations. Fits to SEDs of selected objects using more sophisticated templates derived from radiative transfer models confirm the presence of the colder dust found through parametric fitting. We thus conclude that cold (T < 20K) dust is a significant and largely unexplored component of many nearby galaxies. C1 [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, IPAG, CNRS INSU, UMR 5274, F-38041 Grenoble, France. [Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Chary, R. -R.; Ganga, K.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Lagache, G.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, Inst Astrophys Spatiale, CNRS UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, Inst Astrophys Paris, CNRS UMR 7095, Paris, France. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Hansen, F. K.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Peel, M.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Madden, S.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA Saclay, Lab AIM,IRFU Serv Astrophys,CEA DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] Telecom ParisTech, CNRS UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS IN2P3, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Clements, DL (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. EM d.clements@imperial.ac.uk RI Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; OI Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Umana, Grazia/0000-0002-6972-8388; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416; Villa, Fabrizio/0000-0003-1798-861X; Peel, Mike/0000-0003-3412-2586; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094 FU National Aeronautics and Space Administration (NASA); Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Use was also made of data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS). Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. 2MASS is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/index.php?project=PLANCK\&page=Planck_Collaborat ion. We thank the anonymous referee for many useful comments that have improved this paper. NR 94 TC 65 Z9 65 U1 0 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A16 DI 10.1051/0004-6361/201116454 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100017 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bot, C Bouchet, FR Boulanger, F Bucher, M Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Chiang, C Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Dobashi, K Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Forni, O Frailis, M Franceschi, E Fukui, Y Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Harrison, D Helou, G Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Jones, WC Juvela, M Kawamura, A Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Leroy, C Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Madden, S Maffei, B Mandolesi, N Mann, R Maris, M Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Onishi, T Osborne, S Pajot, F Paladini, R Paradis, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Seiffert, MD Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Umana, G Valenziano, L Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Wilkinson, A Ysard, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bot, C. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L. -Y Chiang, C. Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Dobashi, K. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Fukui, Y. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Harrison, D. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Jones, W. C. Juvela, M. Kawamura, A. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Leroy, C. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Madden, S. Maffei, B. Mandolesi, N. Mann, R. Maris, M. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Onishi, T. Osborne, S. Pajot, F. Paladini, R. Paradis, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J. -L. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Seiffert, M. D. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Umana, G. Valenziano, L. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Wilkinson, A. Ysard, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Magellanic Clouds; dust, extinction; ISM: structure; galaxies: ISM; infrared: galaxies; submillimeter: galaxies ID SPECTRAL ENERGY-DISTRIBUTION; PROBE WMAP OBSERVATIONS; HERSCHEL PHOTOMETRIC-OBSERVATIONS; GIANT MOLECULAR CLOUDS; FORMING DWARF GALAXIES; SPITZER SURVEY; INTERSTELLAR-MEDIUM; APERTURE SYNTHESIS; INFRARED-EMISSION; CENTIMETER EXCESS AB The integrated spectral energy distributions (SED) of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) appear significantly flatter than expected from dust models based on their far-infrared and radio emission. The still unexplained origin of this millimetre excess is investigated here using the Planck data. The integrated SED of the two galaxies before subtraction of the foreground (Milky Way) and background (CMB fluctuations) emission are in good agreement with previous determinations, confirming the presence of the millimetre excess. In the context of this preliminary analysis we do not propose a full multi-component fitting of the data, but instead subtract contributions unrelated to the galaxies and to dust emission. The background CMB contribution is subtracted using an internal linear combination (ILC) method performed locally around the galaxies. The foreground emission from the Milky Way is subtracted as a Galactic Hi template, and the dust emissivity is derived in a region surrounding the two galaxies and dominated by Milky Way emission. After subtraction, the remaining emission of both galaxies correlates closely with the atomic and molecular gas emission of the LMC and SMC. The millimetre excess in the LMC can be explained by CMB fluctuations, but a significant excess is still present in the SMC SED. The Planck and IRAS-IRIS data at 100 mu m are combined to produce thermal dust temperature and optical depth maps of the two galaxies. The LMC temperature map shows the presence of a warm inner arm already found with the Spitzer data, but which also shows the existence of a previously unidentified cold outer arm. Several cold regions are found along this arm, some of which are associated with known molecular clouds. The dust optical depth maps are used to constrain the thermal dust emissivity power-law index (beta). The average spectral index is found to be consistent with beta = 1.5 and beta = 1.2 below 500 mu m for the LMC and SMC respectively, significantly flatter than the values observed in the Milky Way. Also, there is evidence in the SMC of a further flattening of the SED in the sub-mm, unlike for the LMC where the SED remains consistent with beta = 1.5. The spatial distribution of the millimetre dust excess in the SMC follows the gas and thermal dust distribution. Different models are explored in order to fit the dust emission in the SMC. It is concluded that the millimetre excess is unlikely to be caused by very cold dust emission and that it could be due to a combination of spinning dust emission and thermal dust emission by more amorphous dust grains than those present in our Galaxy. C1 [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Paradis, D.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Paradis, D.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Dobashi, K.] Tokyo Gakugei Univ, Dept Astron & Earth Sci, Tokyo 1848501, Japan. [Onishi, T.] Osaka Prefecture Univ, Grad Sch Sci, Dept Phys Sci, Naka Ku, Sakai, Osaka 5998531, Japan. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihaenen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Ysard, N.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Fukui, Y.; Kawamura, A.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Bersanelli, M.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, IPAG, CNRS INSU, UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Ganga, K.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, Inst Astrophys Spatiale, CNRS UMR8617, Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, Inst Astrophys Paris, CNRS UMR7095, Paris, France. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Wilkinson, A.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Madden, S.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU Serv Astrophys,CEA DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS IN2P3, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS IN2P3, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Bot, C.] CNRS, Observ Astronom Strasbourg, UMR 7550, F-67000 Strasbourg, France. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Inst Astron, Royal Observ, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, Warsaw, Poland. RP Bernard, JP (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM jean-philippe.bernard@cesr.fr RI Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Nati, Federico/I-4469-2016; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; OI de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Ricciardi, Sara/0000-0002-3807-4043; Pasian, Fabio/0000-0002-4869-3227; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; Bot, Caroline/0000-0001-6118-2985; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099 NR 97 TC 90 Z9 90 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A17 DI 10.1051/0004-6361/201116473 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100018 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Blagrave, K Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Chiang, C Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Forni, O Fosalba, P Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Grain, J Gratton, S Gregorio, A Gruppuso, A Hansen, FK Harrison, D Helou, G Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Leroy, C Lilje, PB Linden-Vornle, M Lockman, FJ Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Martin, P Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Melchiorri, A Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Novikov, D Novikov, I O'Dwyer, IJ Oliver, S Osborne, S Pajot, F Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Goncalves, DP Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Umana, G Valenziano, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Blagrave, K. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L. -Y Chiang, C. Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Grain, J. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Leroy, C. Lilje, P. B. Linden-Vornle, M. Lockman, F. J. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Martin, P. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. O'Dwyer, I. J. Oliver, S. Osborne, S. Pajot, F. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Goncalves, D. Pinheiro Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Umana, G. Valenziano, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XVIII. The power spectrum of cosmic infrared background anisotropies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE diffuse radiation; submillimeter: diffuse background; submillimeter: galaxies; cosmology: observations ID STAR-FORMATION HISTORY; SOUTH-POLE TELESCOPE; PRE-LAUNCH STATUS; MULTIBAND IMAGING PHOTOMETER; HALO OCCUPATION DISTRIBUTION; SUBMILLIMETER NUMBER COUNTS; HIGH GALACTIC LATITUDE; FUTURE LARGE SURVEYS; DEEP FIELD SOUTH; 500 MU-M AB Using Planck maps of six regions of low Galactic dust emission with a total area of about 140 deg(2), we determine the angular power spectra of cosmic infrared background (CIB) anisotropies from multipole l = 200 to l = 2000 at 217, 353, 545 and 857 GHz. We use 21-cm observations of Hi as a tracer of thermal dust emission to reduce the already low level of Galactic dust emission and use the 143 GHz Planck maps in these fields to clean out cosmic microwave background anisotropies. Both of these cleaning processes are necessary to avoid significant contamination of the CIB signal. We measure correlated CIB structure across frequencies. As expected, the correlation decreases with increasing frequency separation, because the contribution of high-redshift galaxies to CIB anisotropies increases with wavelengths. We find no significant difference between the frequency spectrum of the CIB anisotropies and the CIB mean, with Delta I/I = 15% from 217 to 857 GHz. In terms of clustering properties, the Planck data alone rule out the linear scale-and redshift-independent bias model. Non-linear corrections are significant. Consequently, we develop an alternative model that couples a dusty galaxy, parametric evolution model with a simple halo-model approach. It provides an excellent fit to the measured anisotropy angular power spectra and suggests that a different halo occupation distribution is required at each frequency, which is consistent with our expectation that each frequency is dominated by contributions from different redshifts. In our best-fit model, half of the anisotropy power at l = 2000 comes from redshifts z < 0.8 at 857 GHz and z < 1.5 at 545 GHz, while about 90% come from redshifts z > 2 at 353 and 217 GHz, respectively. C1 [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Grain, J.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Smoot, G. F.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bonavera, L.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Blagrave, K.; Bond, J. R.; Martin, P.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse, France. [Ganga, K.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.; Goncalves, D. Pinheiro] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Oliver, S.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Tomasi, M.] IASF Milano, INAF, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, CNRS, IPAG, INSU,UMR 5274, F-38041 Grenoble, France. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, Paris, France. [Fosalba, P.] Fac Ciencies, Inst Ciencies Espai, CSIC, IEEC, Bellaterra 08193, Spain. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; O'Dwyer, I. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Davies, R. D.; Davis, R. J.; Maffei, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, LERMA, CNRS, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, IRFU, Serv Astrophys,CEA,DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, IN2P3,Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS, IN2P3, F-91405 Orsay, France. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Lockman, F. J.] NRAO, Green Bank, WV 24944 USA. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Bonavera, L.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, SUPA, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS, OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Lagache, G (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, Batiment 121, F-91405 Orsay, France. EM guilaine.lagache@ias.u-psud.fr RI Remazeilles, Mathieu/N-1793-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Oliver, Seb/A-2479-2013; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; OI Savini, Giorgio/0000-0003-4449-9416; Matarrese, Sabino/0000-0002-2573-1243; Ricciardi, Sara/0000-0002-3807-4043; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de Gasperis, Giancarlo/0000-0003-2899-2171; Oliver, Seb/0000-0001-7862-1032; Vielva, Patricio/0000-0003-0051-272X; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX This paper has made use of modelling tools that were made available by Matthieu Bethermin and Aurelie Penin. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck. NR 117 TC 126 Z9 127 U1 2 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A18 DI 10.1051/0004-6361/201116461 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100019 ER PT J AU Ade, PAR Aghanim, N Argueso, F Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Bernard, JP Bersanelli, M Bhatia, R Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Cabella, P Cappellini, B Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chary, RR Chen, X Chiang, LY Christensen, PR Clements, DL Colafrancesco, S Colombi, S Couchot, F Crill, BP Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Hansen, FK Harrison, D Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lahteenmaki, A Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leahy, JP Leonardi, R Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Magliocchetti, M Maino, D Mandolesi, N Mann, R Maris, M Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Osborne, S Pajot, F Paladini, R Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sajina, A Sandri, M Scott, D Seiffert, MD Serjeant, S Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Stompor, R Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Turler, M Umana, G Valenziano, L Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Argueeso, F. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Bernard, J-P. Bersanelli, M. Bhatia, R. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Cabella, P. Cappellini, B. Cardoso, J-F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chary, R-R. Chen, X. Chiang, L-Y. Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Couchot, F. Crill, B. P. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J-M. Desert, F-X. Dickinson, C. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leahy, J. P. Leonardi, R. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Magliocchetti, M. Maino, D. Mandolesi, N. Mann, R. Maris, M. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Miville-Deschenes, M-A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Osborne, S. Pajot, F. Paladini, R. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prunet, S. Puget, J-L. Rachen, J. P. Rebolo, R. Reinecke, M. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sajina, A. Sandri, M. Scott, D. Seiffert, M. D. Serjeant, S. Shellard, P. Smoot, G. F. Starck, J-L. Stivoli, F. Stolyarov, V. Stompor, R. Sudiwala, R. Sygnet, J-F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J-P. Tristram, M. Tuovinen, J. Tuerler, M. Umana, G. Valenziano, L. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XIII. Statistical properties of extragalactic radio sources in the Planck Early Release Compact Source Catalogue SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE surveys; radio continuum: general; galaxies: active ID PRE-LAUNCH STATUS; COEVAL OBSERVATIONS PROJECT; SOURCE COUNTS; GHZ; POLARIZATION; SAMPLE; ANISOTROPIES; PREDICTIONS; MISSION; FIELD AB The data reported in Planck's Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measurement extends to the rarest and brightest sources in the sky. At lower frequencies (30, 44, and 70 GHz) our counts are in very good agreement with estimates based on WMAP data, being somewhat deeper at 30 and 70 GHz, and somewhat shallower at 44 GHz. Planck's source counts at 143 and 217 GHz join smoothly with the fainter ones provided by the SPT and ACT surveys over small fractions of the sky. An analysis of source spectra, exploiting Planck's uniquely broad spectral coverage, finds clear evidence of a steepening of the mean spectral index above about 70 GHz. This implies that, at these frequencies, the contamination of the CMB power spectrum by radio sources below the detection limit is significantly lower than previously estimated. C1 [Baccigalupi, C.; Bonavera, L.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kymala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J-F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bonavera, L.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Bond, J. R.; Miville-Deschenes, M-A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse, France. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J-L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Argueeso, F.] Univ Oviedo, Dept Matemat, Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.; Sajina, A.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Magliocchetti, M.] IFSI INAF, I-00133 Rome, Italy. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] Osserv Astron Padova, INAF, Padua, Italy. [Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, Lab Rech Informat, INRIA, F-91405 Orsay, France. [Desert, F-X.] Univ Grenoble 1, CNRS, INSU, IPAG, F-38041 Grenoble, France. [Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R-R.; Chen, X.; Ganga, K.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Lagache, G.; Miville-Deschenes, M-A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J-L.; Torre, J-P.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J-F.; Colombi, S.; Delouis, J-M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, Paris, France. [Chiang, L-Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Platania, P.] EURATOM, ENEA, CNR, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; O'Dwyer, I. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Maffei, B.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Starck, J-L.] Univ Paris Diderot, CNRS, CEA Saclay, Lab AIM,IRFU Serv Astrophys,CEA DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J-F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J-F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol, F-38041 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Mann, R.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Banday, A. J.; Bernard, J-P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS, OMP, IRAP, F-31028 Toulouse, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, Warsaw, Poland. RP Gonzalez-Nuevo, J (reprint author), SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. EM gnuevo@sissa.it RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; OI Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Pierpaoli, Elena/0000-0002-7957-8993; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Magliocchetti, Manuela/0000-0001-9158-4838; Morgante, Gianluca/0000-0001-9234-7412; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Frailis, Marco/0000-0002-7400-2135; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115 FU European Space Agency (ESA); NASA (USA); CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.; The Planck Collaboration thanks the referee, Ronald Ekers, for his insightful comments, which helped improve the paper. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on NR 61 TC 77 Z9 77 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A13 DI 10.1051/0004-6361/201116471 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100014 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartelmann, M Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Brown, ML Bucher, M Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Chiang, C Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Diego, JM Dolag, K Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Harrison, D Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lanoux, J Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Liddle, A Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Marleau, F Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Schaefer, BM Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sunyaev, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Valenziano, L Vibert, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD White, SDM White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartelmann, M. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Bucher, M. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L. -Y Chiang, C. Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Diego, J. M. Dolag, K. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Harrison, D. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lanoux, J. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Liddle, A. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marleau, F. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Schaefer, B. M. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Valenziano, L. Vibert, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. White, S. D. M. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: interacluster medium; X-rays: galaxies: clusters; cosmology: observations ID X-RAY LUMINOSITY; SOUTH-POLE TELESCOPE; PRE-LAUNCH STATUS; ATACAMA COSMOLOGY TELESCOPE; STRUCTURE SURVEY REXCESS; XMM-NEWTON; REPRESENTATIVE SAMPLE; RX J1347-1145; TEMPERATURE PROFILES; PARAMETER-ESTIMATION AB We present precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z < 0.5) detected at high signal-to-noise in the first Planck all-sky data set. The sample spans approximately a decade in total mass, 2 x 10(14) M-circle dot < M-500 < 2 x 10(15) M-circle dot, where M-500 is the mass corresponding to a total density contrast of 500. Combining these high quality Planck measurements with deep XMM-Newton X-ray data, we investigate the relations between D-A(2) Y-500, the integrated Compton parameter due to the SZ effect, and the X-ray-derived gas mass M-g,M-500, temperature T-X, luminosity L-X,L-500, SZ signal analogue Y-X,Y-500 = M-g,M-500 x T-X, and total mass M-500. After correction for the effect of selection bias on the scaling relations, we find results that are in excellent agreement with both X-ray predictions and recently-published ground-based data derived from smaller samples. The present data yield an exceptionally robust, high-quality local reference, and illustrate Planck's unique capabilities for all-sky statistical studies of galaxy clusters. C1 [Arnaud, M.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, CEA, Lab AIM,IRFU,Serv Astrophys,DSM,CNRS, F-91191 Gif Sur Yvette, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Brown, M. L.; Chon, G.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Challinor, A.; Shellard, P.] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England. [Melin, J. -B.; Piffaretti, R.; Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Marleau, F.; Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Flores-Cacho, I.; Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, CNRS, IPAG, INSU,UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Ganga, K.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Douspis, M.; Fromenteau, S.; Lagache, G.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.; Vibert, L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Donzelli, S.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Flores-Cacho, I.; Genova-Santos, R. T.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Brown, M. L.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol,Inst Natl Polytech Gren, F-38026 St Martin Dheres, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS, IN2P3, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Bartelmann, M.; Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bartelmann, M.; Schaefer, B. M.] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Lanoux, J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Pratt, GW (reprint author), Univ Paris Diderot, CEA Saclay, CEA, Lab AIM,IRFU,Serv Astrophys,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. EM gabriel.pratt@cea.fr RI Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Churazov, Eugene/A-7783-2013; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bartelmann, Matthias/A-5336-2014; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012 OI Matarrese, Sabino/0000-0002-2573-1243; Ricciardi, Sara/0000-0002-3807-4043; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Pierpaoli, Elena/0000-0002-7957-8993; Starck, Jean-Luc/0000-0003-2177-7794; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; de Gasperis, Giancarlo/0000-0003-2899-2171; FU ESA; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); USA (NASA); Centre National d'Etudes Spatiales (CNES) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). The present work is partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). This research has made use of the following databases: SIMBAD, operated at CDS, Strasbourg, France; the NED database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; BAX, which is operated by the Laboratoire d'Astrophysique de Tarbes-Toulouse (LATT), under contract with the Centre National d'Etudes Spatiales (CNES). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.rssd.esa.int/Planck. NR 88 TC 110 Z9 110 U1 1 U2 10 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A11 DI 10.1051/0004-6361/201116458 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100012 ER PT J AU Ade, PAR Aghanim, N Ansari, R Arnaud, M Ashdown, M Aumont, J Banday, AJ Bartelmann, M Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bond, JR Borrill, J Bouchet, FR Boulanger, F Bradshaw, T Breelle, E Bucher, M Camus, P Cardoso, JF Catalano, A Challinor, A Chamballu, A Charra, J Charra, M Chary, RR Chiang, C Church, S Clements, DL Colombi, S Couchot, F Coulais, A Cressiot, C Crill, BP Crook, M de Bernardis, P Delabrouille, J Delouis, JM Desert, FX Dolag, K Dole, H Dore, O Douspis, M Efstathiou, G Eng, P Filliard, C Forni, O Fosalba, P Fourmond, JJ Ganga, K Giard, M Girard, D Giraud-Heraud, Y Gispert, R Gorski, KM Gratton, S Griffin, M Guyot, G Haissinski, J Harrison, D Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Hildebrandt, SR Hills, R Hivon, E Hobson, M Holmes, WA Huffenberger, KM Jaffe, AH Jones, WC Kaplan, J Kneissl, R Knox, L Lagache, G Lamarre, JM Lami, P Lange, AE Lasenby, A Lavabre, A Lawrence, CR Leriche, B Leroy, C Longval, Y Macias-Perez, JF Maciaszek, T MacTavish, CJ Maffei, B Mandolesi, N Mann, R Mansoux, B Masi, S Matsumura, T McGehee, P Melin, JB Mercier, C Miville-Deschenes, MA Moneti, A Montier, L Mortlock, D Murphy, A Nati, F Netterfield, CB Norgaard-Nielsen, HU North, C Noviello, F Novikov, D Osborne, S Paine, C Pajot, F Patanchon, G Peacocke, T Pearson, TJ Perdereau, O Perotto, L Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Pons, R Ponthieu, N Prezeau, G Prunet, S Puget, JL Reach, WT Renault, C Ristorcelli, I Rocha, G Rosset, C Roudier, G Rowan-Robinson, M Rusholme, B Santos, D Savini, G Schaefer, BM Shellard, P Spencer, L Starck, JL Stassi, P Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sygnet, JF Tauber, JA Thum, C Torre, JP Touze, F Tristram, M Van Leeuwen, F Vibert, L Vibert, D Wade, LA Wandelt, BD White, SDM Wiesemeyer, H Woodcraft, A Yurchenko, V Yvon, D Zacchei, A AF Ade, P. A. R. Aghanim, N. Ansari, R. Arnaud, M. Ashdown, M. Aumont, J. Banday, A. J. Bartelmann, M. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bradshaw, T. Breelle, E. Bucher, M. Camus, P. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Charra, J. Charra, M. Chary, R. -R. Chiang, C. Church, S. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Cressiot, C. Crill, B. P. Crook, M. de Bernardis, P. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dolag, K. Dole, H. Dore, O. Douspis, M. Efstathiou, G. Eng, P. Filliard, C. Forni, O. Fosalba, P. Fourmond, J. -J. Ganga, K. Giard, M. Girard, D. Giraud-Heraud, Y. Gispert, R. Gorski, K. M. Gratton, S. Griffin, M. Guyot, G. Haissinski, J. Harrison, D. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hills, R. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Jaffe, A. H. Jones, W. C. Kaplan, J. Kneissl, R. Knox, L. Lagache, G. Lamarre, J. -M. Lami, P. Lange, A. E. Lasenby, A. Lavabre, A. Lawrence, C. R. Leriche, B. Leroy, C. Longval, Y. Macias-Perez, J. F. Maciaszek, T. MacTavish, C. J. Maffei, B. Mandolesi, N. Mann, R. Mansoux, B. Masi, S. Matsumura, T. McGehee, P. Melin, J. -B. Mercier, C. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Mortlock, D. Murphy, A. Nati, F. Netterfield, C. B. Norgaard-Nielsen, H. U. North, C. Noviello, F. Novikov, D. Osborne, S. Paine, C. Pajot, F. Patanchon, G. Peacocke, T. Pearson, T. J. Perdereau, O. Perotto, L. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Pons, R. Ponthieu, N. Prezeau, G. Prunet, S. Puget, J. -L. Reach, W. T. Renault, C. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rowan-Robinson, M. Rusholme, B. Santos, D. Savini, G. Schaefer, B. M. Shellard, P. Spencer, L. Starck, J. -L. Stassi, P. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sygnet, J. -F. Tauber, J. A. Thum, C. Torre, J. -P. Touze, F. Tristram, M. Van Leeuwen, F. Vibert, L. Vibert, D. Wade, L. A. Wandelt, B. D. White, S. D. M. Wiesemeyer, H. Woodcraft, A. Yurchenko, V. Yvon, D. Zacchei, A. CA Planck HFI Core Team TI Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE instrumentation: detectors; methods: data analysis; instrumentation: photometers; cosmic background radiation; cosmology: observations ID PRE-LAUNCH STATUS; POWER SPECTRUM; BOOMERANG; HFI; BOLOMETERS; ANISOTROPY; MISSION; SYSTEM; CALIBRATION; CRYOCOOLER AB The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the cosmic microwave background and Galactic foregrounds in six similar to 30% bands centered at 100, 143, 217, 353, 545, and 857 GHz at an angular resolution of 10' (100 GHz), 7' (143 GHz), and 5' (217 GHz and higher). HFI has been operating flawlessly since launch on 14 May 2009, with the bolometers reaching 100 mK the first week of July. The settings of the readout electronics, including bolometer bias currents, that optimize HFI's noise performance on orbit are nearly the same as the ones chosen during ground testing. Observations of Mars, Jupiter, and Saturn have confirmed that the optical beams and the time responses of the detection chains are in good agreement with the predictions of physical optics modeling and pre-launch measurements. The Detectors suffer from a high flux of cosmic rays due to historically low levels of solar activity. As a result of the redundancy of Planck's observation strategy, the removal of a few percent of data contaminated by glitches does not significantly affect the instrumental sensitivity. The cosmic ray flux represents a significant and variable heat load on the sub-Kelvin stage. Temporal variation and the inhomogeneous distribution of the flux results in thermal fluctuations that are a probable source of low frequency noise. The removal of systematic effects in the time ordered data provides a signal with an average noise equivalent power that is 70% of the goal in the 0.6-2.5 Hz range. This is slightly higher than was achieved during the pre-launch characterization but better than predicted in the early phases of the project. The improvement over the goal is a result of the low level of instrumental background loading achieved by the optical and thermal design of the HFI. C1 [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Bartlett, J. G.; Benoit, A.; Breelle, E.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Cressiot, C.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Kaplan, J.; Patanchon, G.; Piat, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris 07, CNRS, UMR 7164, Paris, France. [Ashdown, M.; Hills, R.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Maciaszek, T.] CNES, F-31401 Toulouse 9, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Pons, R.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Matsumura, T.; Pearson, T. J.; Prezeau, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Melin, J. -B.; Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [de Bernardis, P.; Masi, S.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Tauber, J. A.] ESTEC, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Mandolesi, N.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.] INAF IASF Milano, Milan, Italy. [Guyot, G.] CNRS, Inst Sci Univers, INSU, F-75794 Paris 16, France. [Desert, F. -X.] Univ Grenoble 1, Grenoble CNRS INSU 1, UMR 5274, IPAG, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Ganga, K.; Lange, A. E.; McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.; Camus, P.] Univ Grenoble 1, CNRS, Inst Neel, F-38041 Grenoble, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Charra, J.; Charra, M.; Dole, H.; Douspis, M.; Eng, P.; Fourmond, J. -J.; Gispert, R.; Lagache, G.; Lami, P.; Leriche, B.; Leroy, C.; Longval, Y.; Mercier, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.; Vibert, L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Fosalba, P.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain. [Wiesemeyer, H.] Inst Radioastron Millimetrique IRAM, Granada 18012, Spain. [Thum, C.] Inst Radioastron Millimetr IRAM, F-38406 Grenoble, France. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Van Leeuwen, F.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hildebrandt, S. R.] Inst Astrofis Canarias, Tenerife, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Paine, C.; Prezeau, G.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, CNRS, DSM, Lab AIM,IRFU,Serv Astrophys,CEA, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris, France. [Vibert, D.] Lab Astrophys Marseille, F-13388 Marseille 13, France. [Girard, D.; Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.; Stassi, P.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France. [Ansari, R.; Couchot, F.; Filliard, C.; Haissinski, J.; Henrot-Versille, S.; Lavabre, A.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Touze, F.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Banday, A. J.; Bartelmann, M.; Dolag, K.; Hernandez-Monteagudo, C.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Murphy, A.; Peacocke, T.; Yurchenko, V.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Bradshaw, T.; Crook, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Mann, R.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Griffin, M.; North, C.; Spencer, L.; Sudiwala, R.; Woodcraft, A.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Church, S.; Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bartelmann, M.; Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Pons, R.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Lamarre, JM (reprint author), Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. EM jean-michel.lamarre@obspm.fr RI Bartelmann, Matthias/A-5336-2014; Bouchet, Francois/B-5202-2014; Battaner, Eduardo/P-7019-2014; Yvon, Dominique/D-2280-2015; Pearson, Timothy/N-2376-2015; Fosalba Vela, Pablo/I-5515-2016; Nati, Federico/I-4469-2016; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; OI de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; WANDELT, Benjamin/0000-0002-5854-8269; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Pearson, Timothy/0000-0001-5213-6231; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Masi, Silvia/0000-0001-5105-1439; Savini, Giorgio/0000-0003-4449-9416 FU CNES; CNRS; NASA; STFC; ASI; ESA; CNRS/INSU-IN2P3-INP (France); CNR; INAF (Italy); DoE (USA); UKSA (UK); CSIC; MICINN (Spain); Tekes; AoF (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); Swiss Funding Agency (Switzerland); Norwegian Funding Agency (Norway); FCT/MCTES (Portugal) FX The Planck HFI instrument (http://hfi.planck.fr/) was designed and built by an international consortium of laboratories, universities and institutes, with important contributions from the industry, under the leadership of the PI institute, IAS at Orsay, France. It was funded in particular by CNES, CNRS, NASA, STFC and ASI. The authors extend their gratitude to the numerous engineers and scientists, who have contributed to the design, development, construction or evaluation of the HFI instrument. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/index.php?project=PLANCK\&page=Planck_Collaborat ion. The Planck Collaboration acknowledges financial support from: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC and MICINN (Spain); Tekes and AoF (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); Swiss Funding Agency (Switzerland); Norwegian Funding Agency (Norway); and FCT/MCTES (Portugal). NR 68 TC 106 Z9 106 U1 0 U2 12 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A4 DI 10.1051/0004-6361/201116487 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100005 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Baker, M Balbi, A Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhandari, P Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borders, J Borrill, J Bouchet, FR Bowman, B Bradshaw, T Breelle, E Bucher, M Burigana, C Butler, RC Cabella, P Camus, P Cantalupo, CM Cappellini, B Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chambelland, JP Charra, J Charra, M Chiang, LY Chiang, C Christensen, PR Clements, DL Collaudin, B Colombi, S Couchot, F Coulais, A Crill, BP Crook, M Cuttaia, F Damasio, C Danese, L Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A Delabrouille, J Delouis, JM Desert, FX Dolag, K Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Filliard, C Finelli, F Foley, S Forni, O Fosalba, P Fourmond, JJ Frailis, M Franceschi, E Galeotta, S Ganga, K Gavila, E Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Guyot, G Harrison, D Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Hoyland, RJ Huffenberger, KM Israelsson, U Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lami, P Lasenby, A Laureijs, RJ Lavabre, A Lawrence, CR Leach, S Lee, R Leonardi, R Leroy, C Lilje, PB Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maciaszek, T MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Melot, F Mendes, L Mennella, A Miville-Deschenes, MA Moneti, A Montier, L Mora, J Morgante, G Morisset, N Mortlock, D Munshi, D Murphy, A Naselsky, P Nash, A Natoli, P Netterfield, CB Novikov, D Novikov, I O'Dwyer, IJ Osborne, S Pajot, F Pasian, F Patanchon, G Pearson, D Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Prezeau, G Prina, M Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Schaefer, BM Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stassi, P Stivoli, F Stolyarov, V Stompor, R Sudiwala, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Valenziano, L Vibert, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Watson, C White, SDM Wilkinson, A Wilson, P Yvon, D Zacchei, A Zhang, B Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Baker, M. Balbi, A. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhandari, P. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borders, J. Borrill, J. Bouchet, F. R. Bowman, B. Bradshaw, T. Breelle, E. Bucher, M. Burigana, C. Butler, R. C. Cabella, P. Camus, P. Cantalupo, C. M. Cappellini, B. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chambelland, J. P. Charra, J. Charra, M. Chiang, L. -Y. Chiang, C. Christensen, P. R. Clements, D. L. Collaudin, B. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Crook, M. Cuttaia, F. Damasio, C. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dolag, K. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Filliard, C. Finelli, F. Foley, S. Forni, O. Fosalba, P. Fourmond, J. -J. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Gavila, E. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Guyot, G. Harrison, D. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Israelsson, U. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lami, P. Lasenby, A. Laureijs, R. J. Lavabre, A. Lawrence, C. R. Leach, S. Lee, R. Leonardi, R. Leroy, C. Lilje, P. B. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maciaszek, T. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Melot, F. Mendes, L. Mennella, A. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Mora, J. Morgante, G. Morisset, N. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Nash, A. Natoli, P. Netterfield, C. B. Novikov, D. Novikov, I. O'Dwyer, I. J. Osborne, S. Pajot, F. Pasian, F. Patanchon, G. Pearson, D. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Prezeau, G. Prina, M. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Schaefer, B. M. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J. -L. Stassi, P. Stivoli, F. Stolyarov, V. Stompor, R. Sudiwala, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Valenziano, L. Vibert, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Watson, C. White, S. D. M. Wilkinson, A. Wilson, P. Yvon, D. Zacchei, A. Zhang, B. Zonca, A. CA Planck Collaboration TI Planck early results. II. The thermal performance of Planck SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; space vehicles: instruments; instrumentation: detectors ID PRE-LAUNCH STATUS; HIGH-FREQUENCY INSTRUMENT; MISSION; DESIGN; ARCHITECTURE; CALIBRATION; SYSTEM; TESTS; 1ST AB The performance of the Planck instruments in space is enabled by their low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20 K), a He-4 Joule-Thomson cooler (4.7 K), and a He-3-He-4 dilution cooler (1.4 K and 0.1 K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The HFI bolometer plate reached 93 mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, and operates at a mean temperature of 384 K. At the other end of the spacecraft, the telescope baffle operates at 42.3 K and the telescope primary mirror operates at 35.9 K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data. C1 [Bhandari, P.; Bock, J. J.; Borders, J.; Bowman, B.; Chambelland, J. P.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Israelsson, U.; Keskitalo, R.; Lawrence, C. R.; Lee, R.; Mora, J.; Nash, A.; O'Dwyer, I. J.; Pearson, D.; Prezeau, G.; Prina, M.; Rocha, G.; Seiffert, M. D.; Wade, L. A.; Wilson, P.; Zhang, B.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Frascati, Italy. [Breelle, E.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.; Stompor, R.] Univ Paris 07, CNRS, UMR 7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Maciaszek, T.] CNES, F-31401 Toulouse 9, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartmento Fis, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Baker, M.; Foley, S.; Watson, C.] European Space Agcy, ESOC, Darmstadt, Germany. [Damasio, C.; Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Bonaldi, A.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Guyot, G.] CNRS, INSU, Inst Sci Univers, F-75794 Paris 16, France. [Desert, F. -X.] Univ Grenoble 1, CNRS INSU, UMR 5274, IPAG, F-38041 Grenoble, France. [Morisset, N.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Ganga, K.; McGehee, P.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.; Camus, P.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Charra, J.; Charra, M.; Douspis, M.; Fourmond, J. -J.; Lagache, G.; Lami, P.; Leroy, C.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.; Vibert, L.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, Paris, France. [Fosalba, P.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Eriksen, H. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Davies, R. D.; Davis, R. J.; Maffei, B.; Wilkinson, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA Saclay, CEA DSM,Lab AIM,IRFU Serv Astrophys, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Melot, F.; Perotto, L.; Renault, C.; Santos, D.; Stassi, P.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,Lab Phys Subatom & Co, F-38026 Grenoble, France. [Couchot, F.; Filliard, C.; Henrot-Versille, S.; Lavabre, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Borrill, J.; Cantalupo, C. M.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Bradshaw, T.; Crook, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baccigalupi, C.; Danese, L.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Collaudin, B.; Gavila, E.] Thales Alenia Space France, Cannes La Bocca, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Lawrence, CR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM charles.r.lawrence@jpl.nasa.gov RI Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Collaudin, Bernard/H-7149-2015; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Butler, Reginald/N-4647-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; OI de Gasperis, Giancarlo/0000-0003-2899-2171; Collaudin, Bernard/0000-0003-0114-3014; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Starck, Jean-Luc/0000-0003-2177-7794; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Matarrese, Sabino/0000-0002-2573-1243; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021 FU CNES; CNRS/INSU-IN2P3; ASI; ESA; CNRS/INSU-IN2P3-INP (France); CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission operations are as follows. The European Space Agency operates the satellite via its Mission Operations Centre located at ESOC (Darmstadt, Germany) and coordinates scientific operations via the Planck Science Office located at ESAC (Madrid, Spain). Two Consortia, comprising around 50 scientific institutes within Europe, the USA, and Canada, and funded by agencies from the participating countries, developed the scientific instruments LFI and HFI, and continue to operate them via Instrument Operations Teams located in Trieste (Italy) and Orsay (France). The Consortia are also responsible for scientific processing of the acquired data. The Consortia are led by the Principal Investigators: J.-L. Puget in France for HFI (funded principally by CNES and CNRS/INSU-IN2P3) and N. Mandolesi in Italy for LFI (funded principally via ASI). NASA's US Planck Project, based at JPL and involving scientists at many US institutions, contributes significantly to the efforts of these two Consortia. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at (http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborat ion). The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). We acknowledge the use of thermal models from Thales for the payload, IAS for the HFI, JPL for the sorption cooler, and Laben for the LFI. Some of the results in this paper have been derived using the HEALPix package (Gorski et al. 2005). The HFI team wishes to thank warmly the Herschel-Planck project team under the leadership of Thomas Passvogel for their time, effort, and competence in solving the crises following failures of several parts of the cyrochain during Planck system tests. We acknowledge very useful discussions on the thermal behaviour of Planck during the system tests from the CSL team, who went far beyond their formal responsibilities. NR 54 TC 69 Z9 69 U1 1 U2 20 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A2 DI 10.1051/0004-6361/201116486 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100003 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartelmann, M Bartlett, JG Battaner, E Battye, R Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Brown, ML Bucher, M Burigana, C Cabella, P Cantalupo, CM Cardoso, JF Carvalho, P Catalano, A Cayon, L Challinor, A Chamballu, A Chary, RR Chiang, LY Chiang, C Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Eisenhardt, P Ensslin, TA Feroz, F Finelli, F Flores-Cacho, I Forni, O Fosalba, P Frailis, M Franceschi, E Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gonzalez-Riestra, R Gorski, KM Grainge, KJB Gratton, S Gregorio, A Gruppuso, A Harrison, D Heinamaki, P Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Hurier, G Hurley-Walker, N Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Le Jeune, M Leach, S Leonardi, R Li, C Liddle, A Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Marleau, F Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Mei, S Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Olamaie, M Osborne, S Pajot, F Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Saar, E Sandri, M Santos, D Saunders, RDE Savini, G Schaefer, BM Scott, D Seiffert, MD Shellard, P Smoot, GF Stanford, A Starck, JL Stivoli, F Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Sygnet, JF Taburet, N Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Valenziano, L Vibert, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Weller, J White, SDM White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartelmann, M. Bartlett, J. G. Battaner, E. Battye, R. Benabed, K. Benoit, A. Bernard, J-P Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Brown, M. L. Bucher, M. Burigana, C. Cabella, P. Cantalupo, C. M. Cardoso, J-F Carvalho, P. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chary, R-R Chiang, L-Y Chiang, C. Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J-M Desert, F-X Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Eisenhardt, P. Ensslin, T. A. Feroz, F. Finelli, F. Flores-Cacho, I. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gonzalez-Riestra, R. Gorski, K. M. Grainge, K. J. B. Gratton, S. Gregorio, A. Gruppuso, A. Harrison, D. Heinamaki, P. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Hurier, G. Hurley-Walker, N. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J-M Lasenby, A. Laureijs, R. J. Lawrence, C. R. Le Jeune, M. Leach, S. Leonardi, R. Li, C. Liddle, A. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marleau, F. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Mei, S. Meinhold, P. R. Melchiorri, A. Melin, J-B Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M-A Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Olamaie, M. Osborne, S. Pajot, F. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J-L Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Saar, E. Sandri, M. Santos, D. Saunders, R. D. E. Savini, G. Schaefer, B. M. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Stanford, A. Starck, J-L Stivoli, F. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Sygnet, J-F Taburet, N. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J-P Tristram, M. Tuovinen, J. Valenziano, L. Vibert, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Weller, J. White, S. D. M. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; catalogs ID SOUTH-POLE TELESCOPE; X-RAY-PROPERTIES; MICROWAVE BACKGROUND TEMPERATURE; CORONA BOREALIS SUPERCLUSTER; MASSIVE GALAXY CLUSTERS; COSMIC DISTANCE SCALE; COSMOLOGICAL PARAMETERS; HYDRODYNAMICAL SIMULATIONS; NEARBY CLUSTERS; HUBBLE CONSTANT AB We present the first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies. This early SZ (ESZ) sample is comprised of 189 candidates, which have a high signal-to-noise ratio ranging from 6 to 29. Its high reliability (purity above 95%) is further ensured by an extensive validation process based on Planck internal quality assessments and by external cross-identification and follow-up observations. Planck provides the first measured SZ signal for about 80% of the 169 previously-known ESZ clusters. Planck furthermore releases 30 new cluster candidates, amongst which 20 meet the ESZ signal-to-noise selection criterion. At the submission date, twelve of the 20 ESZ candidates were confirmed as new clusters, with eleven confirmed using XMM-Newton snapshot observations, most of them with disturbed morphologies and low luminosities. The ESZ clusters are mostly at moderate redshifts (86% with z below 0.3) and span more than a decade in mass, up to the rarest and most massive clusters with masses above 1 x 10(15) M-circle dot. C1 [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Fromenteau, S.; Lagache, G.; Miville-Deschenes, M-A; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J-L; Taburet, N.; Torre, J-P; Vibert, L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Poutanen, T.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bucher, M.; Delabrouille, J.; Giraud-Heraud, Y.; Gonzalez-Riestra, R.; Le Jeune, M.; Mei, S.; Patanchon, G.; Piat, M.; Rosset, C.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, F-75205 Paris 13, France. [Ashdown, M.; Brown, M. L.; Carvalho, P.; Chon, G.; Feroz, F.; Grainge, K. J. B.; Hobson, M.; Hurley-Walker, N.; Lasenby, A.; Olamaie, M.; Saunders, R. D. E.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M-A] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Melin, J-B; Piffaretti, R.; Starck, J-L; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Marleau, F.; Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.; Stanford, A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Flores-Cacho, I.; Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, Planck Sci Off, ESAC, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, Sect Meudon, F-92195 Meudon, France. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Tomasi, M.] IASF Milano, INAF, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F-X] Univ Grenoble 1, CNRS, IPAG, INSU,UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R-R; Ganga, K.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, F-38041 Grenoble, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J-F; Colombi, S.; Delouis, J-M; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F; Wandelt, B. D.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, Paris, France. [Fosalba, P.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain. [Chiang, L-Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Donzelli, S.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Flores-Cacho, I.; Genova-Santos, R. T.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Eisenhardt, P.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Battye, R.; Davis, R. J.; Dickinson, C.; Maffei, B.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Brown, M. L.; Challinor, A.; Grainge, K. J. B.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.; Saunders, R. D. E.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J-M] Observ Paris, LERMA, CNRS, F-75014 Paris, France. [Arnaud, M.; Piffaretti, R.; Pratt, G. W.; Starck, J-L] Univ Paris Diderot, CEA, CNRS, Lab AIM,IRFU,Serv Astrophys,DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J-F] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J-F] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, Inst Natl Polytech Grenoble,IN2P3, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Borrill, J.; Cantalupo, C. M.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Li, C.] Chinese Acad Sci, Shanghai Astron Observ, MPA Partner Grp, Key Lab Res Galaxies & Cosmol, Shanghai 200030, Peoples R China. [Banday, A. J.; Bartelmann, M.; Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Li, C.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, SUPA, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Novikov, I.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Saar, E.] Tartu Observ, EE-61602 Toravere, Tartumaa, Estonia. [Heinamaki, P.] Univ Turku, Tuorla Observ, Dept Phys & Astron, Piikkio 21500, Finland. [Bartelmann, M.; Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J-P; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Weller, J.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Douspis, M (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, Batiment 121, F-91405 Orsay, France. EM marian.douspis@ias.u-psud.fr RI Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Nati, Federico/I-4469-2016; Lilje, Per/A-2699-2012; Herranz, Diego/K-9143-2014; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Battaner, Eduardo/P-7019-2014; Churazov, Eugene/A-7783-2013; Hurley-Walker, Natasha/B-9520-2013; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bartelmann, Matthias/A-5336-2014; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; OI Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Weller, Jochen/0000-0002-8282-2010; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Pierpaoli, Elena/0000-0002-7957-8993; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Zonca, Andrea/0000-0001-6841-1058; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Nati, Federico/0000-0002-8307-5088; Herranz, Diego/0000-0003-4540-1417; de Gasperis, Giancarlo/0000-0003-2899-2171; Hurley-Walker, Natasha/0000-0002-5119-4808; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Hurier, Guillaume/0000-0002-1215-0706 FU National Aeronautics and Space Administration; Centre National d'Etudes Spatiales (CNES) FX The authors thank N. Schartel, ESA XMM-Newton project scientist, for granting the Director Discretionary Time used for confirmation of SZ Planck candidates. This research has made use of the following databases: SIMBAD, operated at CDS, Strasbourg, France; the NED database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; BAX, operated by the Laboratoire d'Astrophysique de Tarbes-Toulouse (LATT), under contract with the Centre National d'Etudes Spatiales (CNES), SZ repository operated by IAS Data and Operation Center (IDOC) under contract with CNES. The authors acknowledge the use of software provided by the US National Virtual Observatory. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck. NR 135 TC 236 Z9 237 U1 3 U2 37 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A8 DI 10.1051/0004-6361/201116459 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100009 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Baker, M Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Bennett, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bradshaw, T Bremer, M Bucher, M Burigana, C Butler, RC Cabella, P Cantalupo, CM Cappellini, B Cardoso, JF Carr, R Casale, M Catalano, A Cayon, L Challinor, A Chamballu, A Charra, J Chary, RR Chiang, LY Chiang, C Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Crone, G Crook, M Cuttaia, F Danese, L D'Arcangelo, O Davies, RD Davis, RJ de Bernardis, P de Bruin, J de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dick, J Dickinson, C Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Foley, S Forni, O Fosalba, P Frailis, M Franceschi, E Freschi, M Gaier, TC Galeotta, S Gallegos, J Gandolfo, B Ganga, K Giard, M Giardino, G Gienger, G Giraud-Heraud, Y Gonzalez, J Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Guyot, G Haissinski, J Hansen, FK Harrison, D Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Jagemann, T Jones, WC Juillet, JJ Juvela, M Kangaslahti, P Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Krassenburg, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lange, AE Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leahy, JP Leonardi, R Leroy, C Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lowe, S Lubin, PM Macias-Perez, JF Maciaszek, T MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P McDonald, A McGehee, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Mevi, C Miniscalco, R Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Morisset, N Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Ortiz, I Osborne, S Osuna, P Oxborrow, CA Pajot, F Paladini, R Partridge, B Pasian, F Passvogel, T Patanchon, G Pearson, D Pearson, TJ Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Reix, JM Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Salerno, E Sandri, M Santos, D Savini, G Schaefer, BM Scott, D Seiffert, MD Shellard, P Simonetto, A Smoot, GF Sozzi, C Starck, JL Sternberg, J Stivoli, F Stolyarov, V Stompor, R Stringhetti, L Sudiwala, R Sunyaev, R Sygnet, JF Tapiador, D Tauber, JA Tavagnacco, D Taylor, D Terenzi, L Texier, D Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Turler, M Tuttlebee, M Umana, G Valenziano, L Valiviita, J Varis, J Vibert, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Watson, C White, SDM White, M Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Baker, M. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Bennett, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bradshaw, T. Bremer, M. Bucher, M. Burigana, C. Butler, R. C. Cabella, P. Cantalupo, C. M. Cappellini, B. Cardoso, J. -F. Carr, R. Casale, M. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Charra, J. Chary, R. -R. Chiang, L. -Y. Chiang, C. Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Crone, G. Crook, M. Cuttaia, F. Danese, L. D'Arcangelo, O. Davies, R. D. Davis, R. J. de Bernardis, P. de Bruin, J. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dick, J. Dickinson, C. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Foley, S. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Freschi, M. Gaier, T. C. Galeotta, S. Gallegos, J. Gandolfo, B. Ganga, K. Giard, M. Giardino, G. Gienger, G. Giraud-Heraud, Y. Gonzalez, J. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Guyot, G. Haissinski, J. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Jagemann, T. Jones, W. C. Juillet, J. J. Juvela, M. Kangaslahti, P. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Krassenburg, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lange, A. E. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leahy, J. P. Leonardi, R. Leroy, C. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lowe, S. Lubin, P. M. Macias-Perez, J. F. Maciaszek, T. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. McDonald, A. McGehee, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mevi, C. Miniscalco, R. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Morisset, N. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Ortiz, I. Osborne, S. Osuna, P. Oxborrow, C. A. Pajot, F. Paladini, R. Partridge, B. Pasian, F. Passvogel, T. Patanchon, G. Pearson, D. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Reix, J. -M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Salerno, E. Sandri, M. Santos, D. Savini, G. Schaefer, B. M. Scott, D. Seiffert, M. D. Shellard, P. Simonetto, A. Smoot, G. F. Sozzi, C. Starck, J. -L. Sternberg, J. Stivoli, F. Stolyarov, V. Stompor, R. Stringhetti, L. Sudiwala, R. Sunyaev, R. Sygnet, J. -F. Tapiador, D. Tauber, J. A. Tavagnacco, D. Taylor, D. Terenzi, L. Texier, D. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Tuerler, M. Tuttlebee, M. Umana, G. Valenziano, L. Valiviita, J. Varis, J. Vibert, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Watson, C. White, S. D. M. White, M. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. I. The Planck mission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; surveys; space vehicles: instruments; instrumentation: detectors; catalogs ID PRE-LAUNCH STATUS AB The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. We give an overview of the history of Planck in its first year of operations, and describe some of the key performance aspects of the satellite. This paper is part of a package submitted in conjunction with Planck's Early Release Compact Source Catalogue, the first data product based on Planck to be released publicly. The package describes the scientific performance of the Planck payload, and presents results on a variety of astrophysical topics related to the sources included in the Catalogue, as well as selected topics on diffuse emission. C1 [Bennett, K.; Bremer, M.; Crone, G.; Giardino, G.; Krassenburg, M.; Laureijs, R. J.; Leonardi, R.; Passvogel, T.; Sternberg, J.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, ESRIN, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago 0355, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Maciaszek, T.] CNES, F-31401 Toulouse 9, France. [Salerno, E.] CNR, ISTI, Area Ric, I-56100 Pisa, Italy. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Challinor, A.; Shellard, P.] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England. [Melin, J. -B.; Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] DTU Space, Natl Space Inst, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Freschi, M.; Gallegos, J.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Baker, M.; de Bruin, J.; Foley, S.; Gandolfo, B.; Gienger, G.; McDonald, A.; Mevi, C.; Miniscalco, R.; Tuttlebee, M.; Watson, C.] European Space Agcy, ESOC, Darmstadt, Germany. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Tavagnacco, D.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Guyot, G.] CNRS, INSU, Inst Sci Univers, F-75794 Paris 16, France. [Desert, F. -X.] Univ Grenoble 1, CNRS, UMR 5274, IPAG,INSU, F-38041 Grenoble, France. [Morisset, N.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R. -R.; Ganga, K.; Lange, A. E.; McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Charra, J.; Dole, H.; Douspis, M.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.; Vibert, L.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Fosalba, P.] CSIC IEEC, Fac Ciencies, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Valiviita, J.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [D'Arcangelo, O.; Platania, P.; Simonetto, A.; Sozzi, C.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gaier, T. C.; Gorski, K. M.; Holmes, W. A.; Kangaslahti, P.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; O'Dwyer, I. J.; Pearson, D.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Lowe, S.; Maffei, B.; Wilkinson, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, CNRS, CEA DSM,Lab AIM,IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subat & Cosmol,IN2P3, F-38026 St Martin Dheres, France. [Haissinski, J.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Banday, A. J.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Borrill, J.; Cantalupo, C. M.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Couchot, F.; Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Savini, G.] UCL, Opt Sci Lab, London, England. [Bradshaw, T.; Crook, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Dick, J.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Juillet, J. J.; Reix, J. -M.] Thales Alenia Space France, Cannes La Bocca, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Tauber, JA (reprint author), European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. EM jtauber@rssd.esa.int RI Butler, Reginald/N-4647-2015; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Valiviita, Jussi/A-9058-2016; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Lilje, Per/A-2699-2012; Salerno, Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012; Sozzi, Carlo/F-4158-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013 OI Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Salerno, Emanuele/0000-0002-3433-3634; de Gasperis, Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071; FU CNES; CNRS/INSU-IN2P3; ASI; Danish Natural Research Council; ESA; CNRS/INSU-IN2P3-INP (France); CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission operations are as follows. The European Space Agency operates the satellite via its Mission Operations Centre located at ESOC (Darmstadt, Germany) and coordinates scientific operations via the Planck Science Office located at ESAC (Madrid, Spain). Two Consortia, comprising around 100 scientific institutes within Europe, the USA, and Canada, and funded by agencies from the participating countries, developed the scientific instruments LFI and HFI, and continue to operate them via Instrument Operations Teams located in Trieste (Italy) and Orsay (France). The Consortia are also responsible for scientific processing of the acquired data. The Consortia are led by the Principal Investigators: J.-L. Puget in France for HFI (funded principally by CNES and CNRS/INSU-IN2P3) and N. Mandolesi in Italy for LFI (funded principally via ASI). NASA's US Planck Project, based at JPL and involving scientists at many US institutions, contributes significantly to the efforts of these two Consortia. A third Consortium, led by H. U. Norgaard-Nielsen and supported by the Danish Natural Research Council, contributed to the reflector programme. The author list for this paper has been selected by the Planck Science Team from the Planck Collaboration, and is composed of individuals from all of the above entities who have made multi-year contributions to the development of the mission. It does not pretend to be inclusive of all contributions. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at (http://www.rssd.esa.int/index.php?project=PLANCK\&page=Planck_Collabora tion). The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). NR 34 TC 282 Z9 282 U1 2 U2 55 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A1 DI 10.1051/0004-6361/201116464 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100002 ER PT J AU Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartelmann, M Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Brown, ML Bucher, M Burigana, C Cabella, P Cantalupo, CM Cardoso, JF Carvalho, P Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Diego, JM Dolag, K Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gonzalez-Riestra, R Gorski, KM Gratton, S Gregorio, A Gruppuso, A Harrison, D Heinamaki, P Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Hurier, G Jaffe, AH Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Le Jeune, M Leach, S Leonardi, R Liddle, A Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Marleau, F Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Pratt, GW Prezeau, G Prunet, S Puget, JL Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Saar, E Sandri, M Santos, D Schaefer, BM Scott, D Seiffert, MD Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sunyaev, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Valenziano, L Vibert, L Vielva, P Villa, F Vittorio, N Wandelt, BD White, SDM Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartelmann, M. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J-P Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Brown, M. L. Bucher, M. Burigana, C. Cabella, P. Cantalupo, C. M. Cardoso, J-F Carvalho, P. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L-Y Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J-M Desert, F-X Diego, J. M. Dolag, K. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gonzalez-Riestra, R. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Harrison, D. Heinamaki, P. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J-M Lasenby, A. Laureijs, R. J. Lawrence, C. R. Le Jeune, M. Leach, S. Leonardi, R. Liddle, A. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marleau, F. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Melchiorri, A. Melin, J-B Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M-A Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J-L Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Saar, E. Sandri, M. Santos, D. Schaefer, B. M. Scott, D. Seiffert, M. D. Smoot, G. F. Starck, J-L Stivoli, F. Stolyarov, V. Sunyaev, R. Sygnet, J-F Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J-P Tristram, M. Tuovinen, J. Valenziano, L. Vibert, L. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. IX. XMM-Newton follow-up for validation of Planck cluster candidates SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; cosmic background radiation; X-rays: galaxies: clusters ID PRE-LAUNCH STATUS; X-RAY-PROPERTIES; STRUCTURE SURVEY REXCESS; MASSIVE GALAXY CLUSTERS; PHOTON IMAGING CAMERA; REPRESENTATIVE SAMPLE; SCALING RELATIONS; BACKGROUND MAPS; CATALOG; PROFILES AB We present the XMM-Newton follow-up for confirmation of Planck cluster candidates. Twenty-five candidates have been observed to date using snapshot (similar to 10 ks) exposures, ten as part of a pilot programme to sample a low range of signal-to-noise ratios (4 < S/N < 6), and a further 15 in a programme to observe a sample of S/N > 5 candidates. The sensitivity and spatial resolution of XMM-Newton allows unambiguous discrimination between clusters and false candidates. The 4 false candidates have S/N <= 4.1. A total of 21 candidates are confirmed as extended X-ray sources. Seventeen are single clusters, the majority of which are found to have highly irregular and disturbed morphologies (about similar to 70%). The remaining four sources are multiple systems, including the unexpected discovery of a supercluster at z = 0.45. For 20 sources we are able to derive a redshift estimate from the X-ray Fe K line (albeit of variable quality). The new clusters span the redshift range 0.09 less than or similar to z less than or similar to 0.54, with a median redshift of z similar to 0.37. A first determination is made of their X-ray properties including the characteristic size, which is used to improve the estimate of the SZ Compton parameter, Y-500. The follow-up validation programme has helped to optimise the Planck candidate selection process. It has also provided a preview of the X-ray properties of these newly-discovered clusters, allowing comparison with their SZ properties, and to the X-ray and SZ properties of known clusters observed in the Planck survey. Our results suggest that Planck may have started to reveal a non-negligible population of massive dynamically perturbed objects that is under-represented in X-ray surveys. However, despite their particular properties, these new clusters appear to follow the Y-500-Y-X relation established for X-ray selected objects, where Y-X is the product of the gas mass and temperature. C1 [Banday, A. J.; Bernard, J-P; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Poutanen, T.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J-F; Catalano, A.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Brown, M. L.; Carvalho, P.; Chon, G.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M-A] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dahle, H.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Melin, J-B; Piffaretti, R.; Starck, J-L; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Hildebrandt, S. R.; Marleau, F.; Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Flores-Cacho, I.; Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Tomasi, M.] IASF Milano, INAF, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F-X] Univ Grenoble 1, CNRS, IPAG, INSU,UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Ganga, K.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, F-38041 Grenoble, France. [Aghanim, N.; Aumont, J.; Douspis, M.; Fromenteau, S.; Lagache, G.; Miville-Deschenes, M-A; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J-L; Torre, J-P; Vibert, L.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J-F; Colombi, S.; Delouis, J-M; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F; Wandelt, B. D.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, Paris, France. [Chiang, L-Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Donzelli, S.; Flores-Cacho, I.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Brown, M. L.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J-M] Observ Paris, LERMA, CNRS, F-75014 Paris, France. [Arnaud, M.; Piffaretti, R.; Pratt, G. W.; Starck, J-L] CEA Saclay, Lab AIM, CEA, CNRS,IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Cardoso, J-F] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J-F] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, Inst Natl Polytech Grenoble,IN2P3, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS, IN2P3, F-91405 Orsay, France. [Borrill, J.; Cantalupo, C. M.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Bartelmann, M.; Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, SUPA, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Saar, E.] Tartu Observ, EE-61602 Toravere, Tartumaa, Estonia. [Heinamaki, P.] Univ Turku, Tuorla Observ, Dept Phys & Astron, Piikkio 21500, Finland. [Bartelmann, M.; Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, Warsaw, Poland. RP Pointecouteau, E (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM etienne.pointecouteau@irap.omp.eu RI Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Gregorio, Anna/J-1632-2012; Churazov, Eugene/A-7783-2013; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bartelmann, Matthias/A-5336-2014; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; de Gasperis, Giancarlo/C-8534-2012; OI Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; de Gasperis, Giancarlo/0000-0003-2899-2171; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Pierpaoli, Elena/0000-0002-7957-8993; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243 FU ESA; NASA (USA); CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX The Planck Collaboration thanks Norbert Schartel for his support to the validation process and granting discretionary time for the observation of Planck cluster candidates. The present work is based: on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA); and on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofisica de Canarias (IAC) in the Spanish Observatorio del Teide. This research has made use of the following databases: SIMBAD, operated at CDS, Strasbourg, France; the NED database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; BAX, which is operated by the Laboratoire d'Astrophysique de Tarbes-Toulouse (LATT), under contract with the Centre National d'Etudes Spatiales (CNES); and the SZ repository operated by IAS Data and Operation Center (IDOC) under contract with CNES. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck_Collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). NR 85 TC 93 Z9 93 U1 0 U2 10 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A9 DI 10.1051/0004-6361/201116460 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100010 ER PT J AU Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bohringer, H Bonaldi, A Bond, JR Borgani, S Borrill, J Bouchet, FR Brown, ML Burigana, C Cabella, P Cantalupo, CM Cappellini, B Carvalho, P Catalano, A Cayon, L Chiang, LY Chiang, C Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombi, S Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L D'Arcangelo, O Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Delouis, JM Democles, J Desert, FX Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Fosalba, P Frailis, M Franceschi, E Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Gonzalez-Nuevo, J Gonzalez-Riestra, R Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Heinamaki, P Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Hurier, G Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leach, S Leonardi, R Leroy, C Liddle, A Lilje, PB Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Marleau, F Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Naselsky, P Natoli, P Nevalainen, J Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Osborne, S Paladini, R Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Piacentini, F Pierpaoli, E Piffaretti, R Platania, P Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rubino-Martin, JA Saar, E Sandri, M Savini, G Schaefer, BM Scott, D Smoot, GF Starck, JL Sutton, D Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Turler, M Valenziano, L Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Weller, J White, SDM White, M Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Boehringer, H. Bonaldi, A. Bond, J. R. Borgani, S. Borrill, J. Bouchet, F. R. Brown, M. L. Burigana, C. Cabella, P. Cantalupo, C. M. Cappellini, B. Carvalho, P. Catalano, A. Cayon, L. Chiang, L. -Y. Chiang, C. Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombi, S. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. D'Arcangelo, O. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Delouis, J. -M. Democles, J. Desert, F. -X. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gonzalez-Nuevo, J. Gonzalez-Riestra, R. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Heinamaki, P. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Hurier, G. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leach, S. Leonardi, R. Leroy, C. Liddle, A. Lilje, P. B. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Marleau, F. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Naselsky, P. Natoli, P. Nevalainen, J. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Osborne, S. Paladini, R. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Pierpaoli, E. Piffaretti, R. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rubino-Martin, J. A. Saar, E. Sandri, M. Savini, G. Schaefer, B. M. Scott, D. Smoot, G. F. Starck, J. -L. Sutton, D. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tuerler, M. Valenziano, L. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Weller, J. White, S. D. M. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XXVI. Detection with Planck and confirmation by XMM-Newton of PLCK G266.6-27.3, an exceptionally X-ray luminous and massive galaxy cluster at z similar to 1 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters; cosmic background radiation ID STRUCTURE SURVEY REXCESS; PHOTON IMAGING CAMERA; SOUTH-POLE TELESCOPE; REPRESENTATIVE SAMPLE; SCALING RELATIONS; SKY SURVEY; DISCOVERY; PROFILES; CATALOG AB We present first results on PLCK G266.6-27.3, a galaxy cluster candidate detected at a signal-to-noise ratio of 5 in the Planck All Sky survey. An XMM-Newton validation observation has allowed us to confirm that the candidate is a bona fide galaxy cluster. With these X-ray data we measure an accurate redshift, z = 0.94 +/- 0.02, and estimate the cluster mass to be M-500 = (7.8 +/- 0.8) x 10(14) M-circle dot. PLCK G266.6-27.3 is an exceptional system: its luminosity of L-X[0.5-2.0 keV] = (1.4 +/- 0.05) x 10(45) erg s(-1) equals that of the two most luminous known clusters in the z > 0.5 universe, and it is one of the most massive clusters at z similar to 1. Moreover, unlike the majority of high-redshift clusters, PLCK G266.6-27.3 appears to be highly relaxed. This observation confirms Planck's capability of detecting high-redshift, high-mass clusters, and opens the way to the systematic study of population evolution in the exponential tail of the mass function. C1 [Arnaud, M.; Democles, J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA,DSM, F-91191 Gif Sur Yvette, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Catalano, A.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Le Jeune, M.; Patanchon, G.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Brown, M. L.; Carvalho, P.; Chon, G.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Ganga, K.; Paladini, R.; Pearson, T. J.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Melin, J. -B.; Piffaretti, R.; Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Marleau, F.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Nevalainen, J.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Borgani, S.; Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Flores-Cacho, I.; Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Nevalainen, J.] Univ Turku, Finnish Ctr Astron ESO FINCA, Piikkio 21500, Finland. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Borgani, S.; Frailis, M.; Galeotta, S.; Mennella, A.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Desert, F. -X.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. [Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Fromenteau, S.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Noviello, F.; Ponthieu, N.; Puget, J. -L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Fosalba, P.] Fac Ciencies, CSIC, IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Munshi, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Donzelli, S.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Flores-Cacho, I.; Genova-Santos, R. T.; Hildebrandt, S. R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [D'Arcangelo, O.; Platania, P.] EURATOM, ENEA, CNR, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Crill, B. P.; Dore, O.; Gorski, K. M.; Keskitalo, R.; Lawrence, C. R.; O'Dwyer, I. J.; Prezeau, G.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Bonaldi, A.; Davis, R. J.; Dickinson, C.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Brown, M. L.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Hildebrandt, S. R.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France. [Luzzi, G.; Perdereau, O.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Borrill, J.; Cantalupo, C. M.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Churazov, E.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Rachen, J. P.; Reinecke, M.; Riller, T.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Churazov, E.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Saar, E.] Tartu Observ, EE-61602 Toravere, Tartumaa, Estonia. [Heinamaki, P.] Univ Turku, Tuorla Observ, Dept Phys & Astron, Piikkio 21500, Finland. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, IRAP, UPS OMP, F-31028 Toulouse 4, France. [Weller, J.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Arnaud, M (reprint author), Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU,Serv Astrophys,CEA,DSM, Bat 709, F-91191 Gif Sur Yvette, France. EM monique.arnaud@cea.fr RI Mazzotta, Pasquale/B-1225-2016; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov, Dmitry/P-1807-2015; Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Churazov, Eugene/A-7783-2013; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; OI Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Pierpaoli, Elena/0000-0002-7957-8993; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Matarrese, Sabino/0000-0002-2573-1243; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Barreiro, Rita Belen/0000-0002-6139-4272; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Borgani, Stefano/0000-0001-6151-6439; Galeotta, Samuele/0000-0002-3748-5115 FU ESA Member States; USA (NASA); ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX The Planck Collaboration thanks Norbert Schartel for his support of the validation process and for granting discretionary time for the observation of Planck cluster candidates. The present work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). This research has made use of the following databases: SIMBAD, operated at the CDS, Strasbourg, France; the NED database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; BAX, which is operated by the Laboratoire d'Astrophysique de Tarbes-Toulouse (LATT), under contract with the Centre National d'Etudes Spatiales (CNES); and the SZ repository operated by IAS Data and Operation Center (IDOC) under contract with CNES. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck_Collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). NR 60 TC 64 Z9 64 U1 0 U2 21 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A26 DI 10.1051/0004-6361/201117430 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100027 ER PT J AU Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartelmann, M Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Brown, ML Bucher, M Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chiang, LY Chiang, C Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Diego, JM Dolag, K Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Harrison, D Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Marleau, F Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Osborne, S Pajot, F Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Pratt, GW Prezeau, G Prunet, S Puget, JL Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Schaefer, BM Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sunyaev, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Valenziano, L Vibert, L Vielva, P Villa, F Vittorio, N Wandelt, BD White, SDM White, M Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartelmann, M. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J-P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Brown, M. L. Bucher, M. Burigana, C. Cabella, P. Cardoso, J-F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chiang, L-Y Chiang, C. Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J-M. Desert, F-X. Diego, J. M. Dolag, K. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Harrison, D. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J-M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marleau, F. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J-B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M-A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Osborne, S. Pajot, F. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J-L. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Schaefer, B. M. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J-L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sygnet, J-F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J-P. Tristram, M. Tuovinen, J. Valenziano, L. Vibert, L. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. White, S. D. M. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: intracluster medium; cosmic background radiation; large-scale structure of Universe; cosmology: observations; galaxies: clusters: general ID SOUTH-POLE TELESCOPE; DIGITAL SKY SURVEY; PRE-LAUNCH STATUS; GALAXY CLUSTERS; RICHNESS RELATION; L-X; CATALOG; COSMOLOGY; MAXBCG; SAMPLE AB We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y-500 - N-200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-richness relations (N-200 - M-500). We bin our individual measurements and detect the SZ signal down to the lowest richness systems (N-200 = 10) with high significance, achieving a detection of the SZ signal in systems with mass as low as M-500 approximate to 5 x 10(13) M-circle dot. The observed Y-500 - N-200 relation is well modeled by a power law over the full richness range. It has a lower normalisation at given N-200 than predicted based on X-ray models and published mass-richness relations. An X-ray subsample, however, does conform to the predicted scaling, and model predictions do reproduce the relation between our measured bin-average SZ signal and measured bin-average X-ray luminosities. At fixed richness, we find an intrinsic dispersion in the Y-500 - N-200 relation of 60% rising to of order 100% at low richness. Thanks to its all-sky coverage, Planck provides observations for more than 13 000 MaxBCG clusters and an unprecedented SZ/optical data set, extending the list of known cluster scaling laws to include SZ-optical properties. The data set offers essential clues for models of galaxy formation. Moreover, the lower normalisation of the SZ-mass relation implied by the observed SZ-richness scaling has important consequences for cluster physics and cosmological studies with SZ clusters. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J-F.; Catalano, A.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, F-75205 Paris 13, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Ashdown, M.; Brown, M. L.; Chon, G.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M-A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dahle, H.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Melin, J-B.; Piffaretti, R.; Starck, J-L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Marleau, F.; Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Flores-Cacho, I.; Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, Planck Sci Off, ESAC, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, Sect Meudon, F-92195 Meudon, France. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, Lab Rech Informat, INRIA, F-91405 Orsay, France. [Desert, F-X.] Univ Grenoble 1, IPAG, CNRS, INSU, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Ganga, K.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, F-38041 Grenoble, France. [Aghanim, N.; Aumont, J.; Douspis, M.; Fromenteau, S.; Lagache, G.; Miville-Deschenes, M-A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J-L.; Torre, J-P.; Vibert, L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J-F.; Colombi, S.; Delouis, J-M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Chiang, L-Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Donzelli, S.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Flores-Cacho, I.; Genova-Santos, R. T.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; O'Dwyer, I. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Davis, R. J.; Maffei, B.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Brown, M. L.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J-M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Piffaretti, R.; Pratt, G. W.; Starck, J-L.] Univ Paris Diderot, CNRS, CEA Saclay, Lab AIM,IRFU Serv Astrophys,CEA DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J-F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J-F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, Lab Phys Subatom & Cosmol, CNRS,IN2P3, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Bartelmann, M.; Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bartelmann, M.; Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J-P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS, OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Bartlett, JG (reprint author), Univ Paris 07, CNRS, UMR7164, Batiment Condorcet,10 Rue A Domon & Leonie Duquet, F-75205 Paris 13, France. EM bartlett@apc.univ-paris7.fr RI Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Churazov, Eugene/A-7783-2013; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bartelmann, Matthias/A-5336-2014; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; OI Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Ricciardi, Sara/0000-0002-3807-4043; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Lopez-Caniego, Marcos/0000-0003-1016-9283; Barreiro, Rita Belen/0000-0002-6139-4272; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017 FU CNES; CNRS; ASI; NASA; Danish Natural Research Council; CPAC at Cambridge (UK); USPDC at IPAC (USA) FX The authors from the consortia funded principally by CNES, CNRS, ASI, NASA, and Danish Natural Research Council acknowledge the use of the pipeline running infrastructures Magique3 at Institut d'Astrophysique de Paris (France), CPAC at Cambridge (UK), and USPDC at IPAC (USA). We acknowledge the use of the HEALPix package (Gorski et al. 2005). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck. NR 69 TC 86 Z9 86 U1 1 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A12 DI 10.1051/0004-6361/201116489 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100013 ER PT J AU Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartelmann, M Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bock, JJ Bonaldi, A Bond, JR Borrill, J Bouchet, FR Brown, ML Bucher, M Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Challinor, A Chamballu, A Chary, RR Chiang, LY Chiang, C Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Diego, JM Dolag, K Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Harrison, D Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hoyland, RJ Huffenberger, KM Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leonardi, R Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Maino, D Mandolesi, N Mann, R Maris, M Marleau, F Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Pratt, GW Prezeau, G Prunet, S Puget, JL Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Schaefer, BM Scott, D Seiffert, MD Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sunyaev, R Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tuovinen, J Valenziano, L Vibert, L Vielva, P Villa, F Vittorio, N Wandelt, BD White, SDM White, M Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartelmann, M. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bock, J. J. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Brown, M. L. Bucher, M. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, L. -Y Chiang, C. Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Diego, J. M. Dolag, K. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Harrison, D. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leonardi, R. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marleau, F. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Schaefer, B. M. Scott, D. Seiffert, M. D. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sunyaev, R. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tuovinen, J. Valenziano, L. Vibert, L. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. White, S. D. M. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: intracluster medium; X-rays: galaxies: clusters; cosmology: observations ID PRE-LAUNCH STATUS; SOUTH-POLE TELESCOPE; SKY SURVEY; PRESSURE PROFILE; WARPS SURVEY; ROSAT SURVEY; MILKY-WAY; WMAP DATA; CATALOG; SAMPLE AB All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises similar to 1600 X-ray clusters with redshifts up to similar to 1 and spans a wide range in X-ray luminosity. The SZ signal is extracted for each object individually, and the statistical significance of the measurement is maximised by averaging the SZ signal in bins of X-ray luminosity, total mass, or redshift. The SZ signal is detected at very high significance over more than two decades in X-ray luminosity (10(43) erg s(-1) less than or similar to L500E(z)(-7/3) less than or similar to 2 x 10(45) erg s(-1)). The relation between intrinsic SZ signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from X-ray data. Planck measurements and X-ray based predictions are found to be in excellent agreement over the whole explored luminosity range. No significant deviation from standard evolution of the scaling relations is detected. For the first time the intrinsic scatter in the scaling relation between SZ signal and X-ray luminosity is measured and found to be consistent with the one in the luminosity - mass relation from X-ray studies. There is no evidence of any deficit in SZ signal strength in Planck data relative to expectations from the X-ray properties of clusters, underlining the robustness and consistency of our overall view of intra-cluster medium properties. C1 [Arnaud, M.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, F-91191 Gif Sur Yvette, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Brown, M. L.; Chon, G.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dahle, H.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Melin, J. -B.; Piffaretti, R.; Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Marleau, F.; Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Balbi, A.; Leonardi, R.; Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Flores-Cacho, I.; Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Bonaldi, A.; de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Lab Rech Informat, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, IPAG, CNRS, INSU,UMR 5274, F-38041 Grenoble, France. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R. -R.; Ganga, K.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Douspis, M.; Fromenteau, S.; Lagache, G.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Vibert, L.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, Paris, France. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Donzelli, S.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Flores-Cacho, I.; Genova-Santos, R. T.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; Prezeau, G.; Rocha, G.; Seiffert, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Brown, M. L.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol,Inst Natl Polytech Gren, F-38026 Grenoble, France. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Bartelmann, M.; Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Matthai, F.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bartelmann, M.; Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Piffaretti, R (reprint author), Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. EM rocco.piffaretti@cea.fr RI Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Churazov, Eugene/A-7783-2013; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bartelmann, Matthias/A-5336-2014; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; OI Pierpaoli, Elena/0000-0002-7957-8993; Matarrese, Sabino/0000-0002-2573-1243; Ricciardi, Sara/0000-0002-3807-4043; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Masi, Silvia/0000-0001-5105-1439; Melchiorri, Alessandro/0000-0001-5326-6003; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794 FU Centre National d'Etudes Spatiales (CNES); ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX This research has made use of the X-Rays Clusters Database (BAX) which is operated by the Laboratoire d'Astrophysique de Tarbes-Toulouse (LATT), under contract with the Centre National d'Etudes Spatiales (CNES). We acknowledge the use of the HEALPix package (Gorski et al. 2005). The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck. NR 88 TC 103 Z9 103 U1 1 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A10 DI 10.1051/0004-6361/201116457 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100011 ER PT J AU Mennella, A Bersanelli, M Butler, RC Curto, A Cuttaia, F Davis, RJ Dick, J Frailis, M Galeotta, S Gregorio, A Kurki-Suonio, H Lawrence, CR Leach, S Leahy, JP Lowe, S Maino, D Mandolesi, N Maris, M Martinez-Gonzalez, E Meinhold, PR Morgante, G Pearson, D Perrotta, F Polenta, G Poutanen, T Sandri, M Seiffert, MD Suur-Uski, AS Tavagnacco, D Terenzi, L Tomasi, M Valiviita, J Villa, F Watson, R Wilkinson, A Zacchei, A Zonca, A Aja, B Artal, E Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaglia, P Bennett, K Bonaldi, A Bonavera, L Borrill, J Bouchet, FR Burigana, C Cabella, P Cappellini, B Chen, X Colombo, L Cruz, M Danese, L D'Arcangelo, O Davies, RD de Gasperis, G de Rosa, A de Zotti, G Dickinson, C Diego, JM Donzelli, S Efstathiou, G Ensslin, TA Eriksen, HK Falvella, MC Finelli, F Foley, S Franceschet, C Franceschi, E Gaier, TC Genova-Santos, RT George, D Gomez, F Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Hansen, FK Herranz, D Herreros, JM Hoyland, RJ Hughes, N Jewell, J Jukkala, P Juvela, M Kangaslahti, P Keihanen, E Keskitalo, R Kilpia, VH Kisner, TS Knoche, J Knox, L Laaninen, M Lahteenmaki, A Lamarre, JM Leonardi, R Leon-Tavares, J Leutenegger, P Lilje, PB Lopez-Caniego, M Lubin, PM Malaspina, M Marinucci, D Massardi, M Matarrese, S Matthai, F Melchiorri, A Mendes, L Miccolis, M Migliaccio, M Mitra, S Moss, A Natoli, P Nesti, R Norgaard-Nielsen, HU Pagano, L Paladini, R Paoletti, D Partridge, B Pasian, F Pettorino, V Pietrobon, D Pospieszalski, M Prezeau, G Prina, M Procopio, P Puget, JL Quercellini, C Rachen, JP Rebolo, R Reinecke, M Ricciardi, S Robbers, G Rocha, G Roddis, N Rubino-Martin, JA Savelainen, M Scott, D Silvestri, R Simonetto, A Sjoman, P Smoot, GF Sozzi, C Stringhetti, L Tauber, JA Tofani, G Toffolatti, L Tuovinen, J Turler, M Umana, G Valenziano, L Varis, J Vielva, P Vittorio, N Wade, LA Watson, C White, SDM Winder, F AF Mennella, A. Bersanelli, M. Butler, R. C. Curto, A. Cuttaia, F. Davis, R. J. Dick, J. Frailis, M. Galeotta, S. Gregorio, A. Kurki-Suonio, H. Lawrence, C. R. Leach, S. Leahy, J. P. Lowe, S. Maino, D. Mandolesi, N. Maris, M. Martinez-Gonzalez, E. Meinhold, P. R. Morgante, G. Pearson, D. Perrotta, F. Polenta, G. Poutanen, T. Sandri, M. Seiffert, M. D. Suur-Uski, A. -S. Tavagnacco, D. Terenzi, L. Tomasi, M. Valiviita, J. Villa, F. Watson, R. Wilkinson, A. Zacchei, A. Zonca, A. Aja, B. Artal, E. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaglia, P. Bennett, K. Bonaldi, A. Bonavera, L. Borrill, J. Bouchet, F. R. Burigana, C. Cabella, P. Cappellini, B. Chen, X. Colombo, L. Cruz, M. Danese, L. D'Arcangelo, O. Davies, R. D. de Gasperis, G. de Rosa, A. de Zotti, G. Dickinson, C. Diego, J. M. Donzelli, S. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Falvella, M. C. Finelli, F. Foley, S. Franceschet, C. Franceschi, E. Gaier, T. C. Genova-Santos, R. T. George, D. Gomez, F. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Hansen, F. K. Herranz, D. Herreros, J. M. Hoyland, R. J. Hughes, N. Jewell, J. Jukkala, P. Juvela, M. Kangaslahti, P. Keihanen, E. Keskitalo, R. Kilpia, V. -H. Kisner, T. S. Knoche, J. Knox, L. Laaninen, M. Lahteenmaki, A. Lamarre, J. -M. Leonardi, R. Leon-Tavares, J. Leutenegger, P. Lilje, P. B. Lopez-Caniego, M. Lubin, P. M. Malaspina, M. Marinucci, D. Massardi, M. Matarrese, S. Matthai, F. Melchiorri, A. Mendes, L. Miccolis, M. Migliaccio, M. Mitra, S. Moss, A. Natoli, P. Nesti, R. Norgaard-Nielsen, H. U. Pagano, L. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Pettorino, V. Pietrobon, D. Pospieszalski, M. Prezeau, G. Prina, M. Procopio, P. Puget, J. -L. Quercellini, C. Rachen, J. P. Rebolo, R. Reinecke, M. Ricciardi, S. Robbers, G. Rocha, G. Roddis, N. Rubino-Martin, J. A. Savelainen, M. Scott, D. Silvestri, R. Simonetto, A. Sjoman, P. Smoot, G. F. Sozzi, C. Stringhetti, L. Tauber, J. A. Tofani, G. Toffolatti, L. Tuovinen, J. Tuerler, M. Umana, G. Valenziano, L. Varis, J. Vielva, P. Vittorio, N. Wade, L. A. Watson, C. White, S. D. M. Winder, F. TI Planck early results. III. First assessment of the Low Frequency Instrument in-flight performance SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; space vehicles: instruments; instrumentation: detectors ID MAP-MAKING ALGORITHM; SKY MAPS; DESTRIPING TECHNIQUE; RADIOMETERS; POLARIZATION; CALIBRATION; MADAM AB The scientific performance of the Planck Low Frequency Instrument (LFI) after one year of in-orbit operation is presented. We describe the main optical parameters and discuss photometric calibration, white noise sensitivity, and noise properties. A preliminary evaluation of the impact of the main systematic effects is presented. For each of the performance parameters, we outline the methods used to obtain them from the flight data and provide a comparison with pre-launch ground assessments, which are essentially confirmed in flight. C1 [Mennella, A.; Bersanelli, M.; Maino, D.; Tomasi, M.; Franceschet, C.] Univ Milan, Dipartimento Fis, Milan, Italy. [Poutanen, T.; Lahteenmaki, A.; Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Polenta, G.; Natoli, P.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Falvella, M. C.] Agenzia Spaziale Italiana, Rome, Italy. [Bartlett, J. G.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Bonavera, L.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Banday, A. J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Hughes, N.; Jukkala, P.; Kilpia, V. -H.; Sjoman, P.] DA Design Oy, Jokioinen, Finland. [Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Aja, B.; Artal, E.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain. [Cruz, M.] Univ Cantabria, Dept Matemat Estadist & Computac, E-39005 Santander, Spain. [Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Savelainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Meinhold, P. R.; Zonca, A.; Leonardi, R.; Lubin, P. M.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bartolo, N.; Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Cabella, P.; de Gasperis, G.; Migliaccio, M.; Quercellini, C.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Marinucci, D.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00173 Rome, Italy. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Foley, S.; Watson, C.] European Space Agcy, ESOC, Darmstadt, Germany. [Bennett, K.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Lahteenmaki, A.; Savelainen, M.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Nesti, R.; Tofani, G.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Mennella, A.; Frailis, M.; Galeotta, S.; Maris, M.; Tavagnacco, D.; Zacchei, A.; Pasian, F.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Butler, R. C.; Cuttaia, F.; Mandolesi, N.; Morgante, G.; Sandri, M.; Terenzi, L.; Villa, F.; Burigana, C.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Malaspina, M.; Natoli, P.; Paoletti, D.; Procopio, P.; Ricciardi, S.; Stringhetti, L.; Valenziano, L.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Maino, D.; Tomasi, M.; Cappellini, B.; Donzelli, S.] INAF IASF Milano, Milan, Italy. [Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Chen, X.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Puget, J. -L.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Bouchet, F. R.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, Paris, France. [Efstathiou, G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Valiviita, J.; Donzelli, S.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Gomez, F.; Herreros, J. M.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Curto, A.; Martinez-Gonzalez, E.; Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [D'Arcangelo, O.; Simonetto, A.; Sozzi, C.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Lawrence, C. R.; Pearson, D.; Seiffert, M. D.; Bartlett, J. G.; Colombo, L.; Gaier, T. C.; Gorski, K. M.; Jewell, J.; Kangaslahti, P.; Keskitalo, R.; Mitra, S.; Pagano, L.; Pietrobon, D.; Prezeau, G.; Prina, M.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davis, R. J.; Leahy, J. P.; Lowe, S.; Watson, R.; Wilkinson, A.; Davies, R. D.; Dickinson, C.; Roddis, N.; Winder, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Ensslin, T. A.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Robbers, G.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Pospieszalski, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Laaninen, M.] Nokia Electr Ltd, Helsinki, Finland. [Dick, J.; Leach, S.; Perrotta, F.; Baccigalupi, C.; Bonavera, L.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Pettorino, V.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [George, D.] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Battaglia, P.; Leutenegger, P.; Miccolis, M.; Silvestri, R.] Thales Alenia Space Italia SpA, I-20090 Vimodrone, MI, Italy. [Banday, A. J.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Mennella, A (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. EM aniello.mennella@fisica.unimi.it RI Butler, Reginald/N-4647-2015; Artal, Eduardo/H-5546-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; Valiviita, Jussi/A-9058-2016; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Aja, Beatriz/H-5573-2015; bonavera, laura/E-9368-2017; Barreiro, Rita Belen/N-5442-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Sozzi, Carlo/F-4158-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Cruz, Marcos/N-3429-2014 OI Watson, Robert/0000-0002-5873-0124; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Matarrese, Sabino/0000-0002-2573-1243; Lowe, Stuart/0000-0002-2975-9032; Pasian, Fabio/0000-0002-4869-3227; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Nesti, Renzo/0000-0003-0303-839X; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Stringhetti, Luca/0000-0002-3961-9068; Melchiorri, Alessandro/0000-0001-5326-6003; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Artal, Eduardo/0000-0002-2569-1894; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Aja, Beatriz/0000-0002-4229-2334; bonavera, laura/0000-0001-8039-3876; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de Gasperis, Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Cruz, Marcos/0000-0002-4767-530X FU ESA; NASA (USA); CNES; CNRS/INSU-IN2P3; ASI; Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland; CSC; DEISA (EU) FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions from NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark.; Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission operations are as follows. The European Space Agency operates the satellite via its Mission Operations Centre located at ESOC (Darmstadt, Germany) and coordinates scientific operations via the Planck Science Office located at ESAC (Madrid, Spain). Two Consortia, comprising around 50 scientific institutes within Europe, the USA, and Canada, and funded by agencies from the participating countries, developed the scientific instruments LFI and HFI, and continue to operate them via Instrument Operations Teams located in Trieste (Italy) and Orsay (France). The Consortia are also responsible for scientific processing of the acquired data. The Consortia are led by the Principal Investigators: J.-L. Puget in France for HFI (funded principally by CNES and CNRS/INSU-IN2P3) and N. Mandolesi in Italy for LFI (funded principally via ASI). NASA's US Planck Project, based at JPL and involving scientists at many US institutions, contributes significantly to the efforts of these two Consortia. In Finland, the Planck LFI 70 GHz work was supported by the Finnish Funding Agency for Technology and Innovation (Tekes). This work was also supported by the Academy of Finland, CSC, and DEISA (EU). NR 61 TC 105 Z9 105 U1 2 U2 12 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A3 DI 10.1051/0004-6361/201116480 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100004 ER PT J AU Zacchei, A Maino, D Baccigalupi, C Bersanelli, M Bonaldi, A Bonavera, L Burigana, C Butler, RC Cuttaia, F de Zotti, G Dick, J Frailis, M Galeotta, S Gonzalez-Nuevo, J Gorski, KM Gregorio, A Keihanen, E Keskitalo, R Knoche, J Kurki-Suonio, H Lawrence, CR Leach, S Leahy, JP Lopez-Caniego, M Mandolesi, N Maris, M Matthai, F Meinhold, PR Mennella, A Morgante, G Morisset, N Natoli, P Pasian, F Perrotta, F Polenta, G Poutanen, T Reinecke, M Ricciardi, S Rohlfs, R Sandri, M Suur-Uski, AS Tauber, JA Tavagnacco, D Terenzi, L Tomasi, M Valiviita, J Villa, F Zonca, A Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Bedini, L Bennett, K Binko, P Borrill, J Bouchet, FR Bremer, M Cabella, P Cappellini, B Chen, X Colombo, L Cruz, M Curto, A Danese, L Davies, RD Davis, RJ de Gasperis, G de Rosa, A de Troia, G Dickinson, C Diego, JM Donzelli, S Dorl, U Efstathiou, G Ensslin, TA Eriksen, HK Falvella, MC Finelli, F Franceschi, E Gaier, TC Gasparo, F Genova-Santos, RT Giardino, G Gomez, F Gruppuso, A Hansen, FK Hell, R Herranz, D Hovest, W Huynh, M Jewell, J Juvela, M Kisner, TS Knox, L Lahteenmaki, A Lamarre, JM Leonardi, R Leon-Tavares, J Lilje, PB Lubin, PM Maggio, G Marinucci, D Martinez-Gonzalez, E Massardi, M Matarrese, S Meharga, MT Melchiorri, A Migliaccio, M Mitra, S Moss, A Norgaard-Nielsen, HU Pagano, L Paladini, R Paoletti, D Partridge, B Pearson, D Pettorino, V Pietrobon, D Prezeau, G Procopio, P Puget, JL Quercellini, C Rachen, JP Rebolo, R Robbers, G Rocha, G Rubino-Martin, JA Salerno, E Savelainen, M Scott, D Seiffert, MD Silk, JI Smoot, GF Sternberg, J Stivoli, F Stompor, R Tofani, G Toffolatti, L Tuovinen, J Turler, M Umana, G Vielva, P Vittorio, N Vuerli, C Wade, LA Watson, R White, SDM Wilkinson, A AF Zacchei, A. Maino, D. Baccigalupi, C. Bersanelli, M. Bonaldi, A. Bonavera, L. Burigana, C. Butler, R. C. Cuttaia, F. de Zotti, G. Dick, J. Frailis, M. Galeotta, S. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Keihanen, E. Keskitalo, R. Knoche, J. Kurki-Suonio, H. Lawrence, C. R. Leach, S. Leahy, J. P. Lopez-Caniego, M. Mandolesi, N. Maris, M. Matthai, F. Meinhold, P. R. Mennella, A. Morgante, G. Morisset, N. Natoli, P. Pasian, F. Perrotta, F. Polenta, G. Poutanen, T. Reinecke, M. Ricciardi, S. Rohlfs, R. Sandri, M. Suur-Uski, A. -S. Tauber, J. A. Tavagnacco, D. Terenzi, L. Tomasi, M. Valiviita, J. Villa, F. Zonca, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Bedini, L. Bennett, K. Binko, P. Borrill, J. Bouchet, F. R. Bremer, M. Cabella, P. Cappellini, B. Chen, X. Colombo, L. Cruz, M. Curto, A. Danese, L. Davies, R. D. Davis, R. J. de Gasperis, G. de Rosa, A. de Troia, G. Dickinson, C. Diego, J. M. Donzelli, S. Doerl, U. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Falvella, M. C. Finelli, F. Franceschi, E. Gaier, T. C. Gasparo, F. Genova-Santos, R. T. Giardino, G. Gomez, F. Gruppuso, A. Hansen, F. K. Hell, R. Herranz, D. Hovest, W. Huynh, M. Jewell, J. Juvela, M. Kisner, T. S. Knox, L. Lahteenmaki, A. Lamarre, J. -M. Leonardi, R. Leon-Tavares, J. Lilje, P. B. Lubin, P. M. Maggio, G. Marinucci, D. Martinez-Gonzalez, E. Massardi, M. Matarrese, S. Meharga, M. T. Melchiorri, A. Migliaccio, M. Mitra, S. Moss, A. Norgaard-Nielsen, H. U. Pagano, L. Paladini, R. Paoletti, D. Partridge, B. Pearson, D. Pettorino, V. Pietrobon, D. Prezeau, G. Procopio, P. Puget, J. -L. Quercellini, C. Rachen, J. P. Rebolo, R. Robbers, G. Rocha, G. Rubino-Martin, J. A. Salerno, E. Savelainen, M. Scott, D. Seiffert, M. D. Silk, J. I. Smoot, G. F. Sternberg, J. Stivoli, F. Stompor, R. Tofani, G. Toffolatti, L. Tuovinen, J. Tuerler, M. Umana, G. Vielva, P. Vittorio, N. Vuerli, C. Wade, L. A. Watson, R. White, S. D. M. Wilkinson, A. TI Planck early results. V. The Low Frequency Instrument data processing SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE methods: data analysis; cosmic background radiation; cosmology: observations; surveys ID PRE-LAUNCH STATUS; MAP-MAKING ALGORITHM; 30 GHZ DATA; MISSION; LFI; CALIBRATION; NOISE; MADAM AB We describe the processing of data from the Low Frequency Instrument (LFI) used in production of the Planck Early Release Compact Source Catalogue (ERCSC). In particular, we discuss the steps involved in reducing the data from telemetry packets to cleaned, calibrated, time-ordered data (TOD) and frequency maps. Data are continuously calibrated using the modulation of the temperature of the cosmic microwave background radiation induced by the motion of the spacecraft. Noise properties are estimated from TOD from which the sky signal has been removed using a generalized least square map-making algorithm. Measured 1/f noise knee-frequencies range from similar to 100 mHz at 30 GHz to a few tens of mHz at 70 GHz. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices required to compute statistical uncertainties on LFI and Planck products are also produced. Main beams are estimated down to the approximate to-10 dB level using Jupiter transits, which are also used for geometrical calibration of the focal plane. C1 [Zacchei, A.; Frailis, M.; Galeotta, S.; Maris, M.; Mennella, A.; Pasian, F.; Tavagnacco, D.; Gasparo, F.; Maggio, G.; Vuerli, C.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Poutanen, T.; Lahteenmaki, A.; Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Falvella, M. C.] Agenzia Spaziale Italiana, Rome, Italy. [Bartlett, J. G.; Smoot, G. F.; Stompor, R.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Bonavera, L.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Bedini, L.; Salerno, E.] CNR ISTI, Area Ric, Pisa, Italy. [Banday, A. J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Cruz, M.] Univ Cantabria, Dept Matemat Estadist & Computac, E-39005 Santander, Spain. [Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Juvela, M.; Savelainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Meinhold, P. R.; Zonca, A.; Leonardi, R.; Lubin, P. M.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Silk, J. I.] Univ Oxford, Dept Phys, Oxford, England. [Bartolo, N.; Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Maino, D.; Bersanelli, M.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Cabella, P.; de Gasperis, G.; de Troia, G.; Migliaccio, M.; Quercellini, C.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Marinucci, D.] Univ Roma Tor Vergata, Dipartimento Matemat, Rome, Italy. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Leonardi, R.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.; Bennett, K.; Bremer, M.; Giardino, G.; Leonardi, R.; Sternberg, J.] European Space Agcy, ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Lahteenmaki, A.; Savelainen, M.] Univ Helsinki, Helsinki, Finland. [Tofani, G.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Umana, G.] INAF Osservatorio Astrofis Catania, Catania, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] INAF Osservatorio Astron Padova, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Villa, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Paoletti, D.; Procopio, P.] INAF IASF Bologna, Bologna, Italy. [Maino, D.; Bersanelli, M.; Tomasi, M.; Cappellini, B.; Donzelli, S.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Morisset, N.; Rohlfs, R.; Binko, P.; Meharga, M. T.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Chen, X.; Huynh, M.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Puget, J. -L.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Bouchet, F. R.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Efstathiou, G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Valiviita, J.; Donzelli, S.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Gomez, F.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Lopez-Caniego, M.; Barreiro, R. B.; Curto, A.; Diego, J. M.; Herranz, D.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Gorski, K. M.; Keskitalo, R.; Lawrence, C. R.; Bartlett, J. G.; Colombo, L.; Gaier, T. C.; Jewell, J.; Mitra, S.; Pagano, L.; Pearson, D.; Pietrobon, D.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Leahy, J. P.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Watson, R.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Borrill, J.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Knoche, J.; Matthai, F.; Reinecke, M.; Banday, A. J.; Doerl, U.; Ensslin, T. A.; Hell, R.; Hovest, W.; Rachen, J. P.; Robbers, G.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Baccigalupi, C.; Bonavera, L.; de Zotti, G.; Dick, J.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.; Danese, L.; Pettorino, V.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Banday, A. J.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Zacchei, A (reprint author), INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. EM zacchei@oats.inaf.it RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; Valiviita, Jussi/A-9058-2016; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; bonavera, laura/E-9368-2017; Barreiro, Rita Belen/N-5442-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Lilje, Per/A-2699-2012; Salerno, Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Cruz, Marcos/N-3429-2014; Butler, Reginald/N-4647-2015; OI Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; silk, joe/0000-0002-1566-8148; Matarrese, Sabino/0000-0002-2573-1243; Pasian, Fabio/0000-0002-4869-3227; Finelli, Fabio/0000-0002-6694-3269; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; bonavera, laura/0000-0001-8039-3876; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Vuerli, Claudio/0000-0002-9640-8785; Lopez-Caniego, Marcos/0000-0003-1016-9283; Melchiorri, Alessandro/0000-0001-5326-6003; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Salerno, Emanuele/0000-0002-3433-3634; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Cruz, Marcos/0000-0002-4767-530X; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Watson, Robert/0000-0002-5873-0124; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796 FU European Space Agency (ESA) member states; CNES; CNRS/INSU-IN2P3; ASI; INAF; Academy of Finland [121703, 121962]; EU within the DEISA Virtual Community Support Initiative [RI-031513, RI-222919]; Spanish Ministerio de Ciencia e Innovacion; Space Agency of the German Aerospace Center (DLR) [50OP0901]; National Energy Research Scientific Computing Center; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions from NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark.; Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission operations are as follows. The European Space Agency operates the satellite via its Mission Operations Centre located at ESOC (Darmstadt, Germany) and coordinates scientific operations via the Planck Science Office located at ESAC (Madrid, Spain). Two Consortia, comprising around 50 scientific institutes within Europe, the USA, and Canada, and funded by agencies from the participating countries, developed the scientific instruments LFI and HFI, and continue to operate them via Instrument Operations Teams located in Trieste (Italy) and Orsay (France). The Consortia are also responsible for scientific processing of the acquired data. The Consortia are led by the Principal Investigators: J.L. Puget in France for HFI (funded principally by CNES and CNRS/INSU-IN2P3) and N. Mandolesi in Italy for LFI(funded principally via ASI). NASA US Planck Project, based at J.P.L. and involving scientists at many US institutions, contributes significantly to the efforts of these two Consortia. The author list for this paper has been selected by the Planck Science Team, and is composed of individuals from all of the above entities who have made multi-year contributions to the development of the mission. It does not pretend to be inclusive of all contributions. The Planck-LFI project is developed by an International Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI) and INAF. This work was supported by the Academy of Finland grants 121703 and 121962. We thank the DEISA Consortium (http://www.deisa.eu), co-funded through the EU FP6 project RI-031513 and the FP7 project RI-222919, for support within the DEISA Virtual Community Support Initiative. We thank CSC - IT Center for Science Ltd (Finland) for computational resources. We acknowledge financial support provided by the Spanish Ministerio de Ciencia e Innovacion through the Plan Nacional del Espacio y Plan Nacional de Astronomia y Astrofisica. We acknowledge The Max Planck Institute for Astrophysics Planck Analysis Centre (MPAC) is funded by the Space Agency of the German Aerospace Center (DLR) under grant 50OP0901 with resources of the German Federal Ministry of Economics and Technology, and by the Max Planck Society. This work has made use of the Planck satellite simulation package (Level-S), which is assembled by the Max Planck Institute for Astrophysics Planck Analysis Centre (MPAC) Reinecke et al. (2006). We acknowledge financial support provided by the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some of the results in this paper have been derived using the HEALPix package Gorski et al. (2005). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. NR 60 TC 74 Z9 74 U1 2 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A5 DI 10.1051/0004-6361/201116484 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100006 ER PT J AU Marsh, GE AF Marsh, Gerald E. TI Electromagnetic and gravitational waves: the third dimension SO CANADIAN JOURNAL OF PHYSICS LA English DT Article ID CHARGED TEST PARTICLES; GENERAL-RELATIVITY; MOTION; KINEMATICS; DEVIATION AB Plane electromagnetic and gravitational waves interact with particles in such a way as to cause them to oscillate not only in the transverse direction but also along the direction of propagation. The electromagnetic case is usually shown by use of the Hamilton-Jacobi equation and the gravitational by a transformation to a local inertial frame. Here, the covariant Lorentz force equation and the second-order equation of geodesic deviation followed by the introduction of a local inertial frame are, respectively, used. It is often said that there is an analogy between the motion of charged particles in the field of an electromagnetic wave and the motion of test particles in the field of a gravitational wave. This analogy is examined and found to be rather limited. It is also shown that a simple special relativistic relation leads to an integral of the motion, characteristic of plane waves, which is satisfied in both cases. C1 [Marsh, Gerald E.] Argonne Natl Lab, Chicago, IL 60615 USA. EM gemarsh@uchicago.edu NR 21 TC 0 Z9 0 U1 0 U2 3 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4204 J9 CAN J PHYS JI Can. J. Phys. PD DEC PY 2011 VL 89 IS 12 BP 1187 EP 1194 DI 10.1139/P11-132 PG 8 WC Physics, Multidisciplinary SC Physics GA 877OB UT WOS:000299190700002 ER PT J AU Guillen, DP Grimmett, T Gandrik, AM Antal, SP AF Guillen, Donna Post Grimmett, Tami Gandrik, Anastasia M. Antal, Steven P. TI Development of a computational multiphase flow model for Fischer Tropsch synthesis in a slurry bubble column reactor SO CHEMICAL ENGINEERING JOURNAL LA English DT Article; Proceedings Paper CT 19th International Conference on Chemical Reactors (CHEMREACTOR) CY SEP 05-09, 2010 CL Vienna, AUSTRIA DE Churn-turbulent flow; Fischer Tropsch; Slurry bubble column reactor; Computational multiphase fluid dynamics ID PHASE DISTRIBUTION; DRAG COEFFICIENT; REGIME; GAS AB The Hybrid Energy Systems Testing (HYTEST) Laboratory at the Idaho National Laboratory was established to develop and test hybrid energy systems with the principal objective of reducing dependence on imported fossil fuels. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions are performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. These SBCRs operate in the churn-turbulent flow regime, which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer. Results, our team is developing a research tool to aid in understanding the physicochemical processes occurring in the SBCR. A robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) consisting of thirteen species, which are CO reactant, H-2 reactant, hydrocarbon product, and H2O product in small bubbles, large bubbles, and the bulk fluid plus catalyst is outlined. Mechanistic submodels for interfacial momentum transfer in the churn-turbulent flow regime are incorporated, along with bubble breakup/coalescence and two-phase turbulence submodels. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield. The model includes heat generation produced by the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. A property method approach is employed to incorporate vapor-liquid equilibrium (VLE) in a robust manner. Physical and thermodynamic properties as functions of changes in both pressure and temperature are obtained from VLE calculations performed external to the computational multiphase fluid dynamics (CMFD) solver. The novelty of this approach is in its simplicity, as well as its accuracy over a specified temperature and pressure range. (C) 2011 Elsevier B.V. All rights reserved. C1 [Guillen, Donna Post; Grimmett, Tami; Gandrik, Anastasia M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Antal, Steven P.] Interphase Dynam, Ballston Lake, NY 12019 USA. RP Guillen, DP (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Donna.Guillen@inl.gov RI Guillen, Donna/B-9681-2017 OI Guillen, Donna/0000-0002-7718-4608 FU U.S. Department of Energy [DE-AC07-05ID14517]; German Federal Ministry of Economics and Technology [150 1329] FX This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The authors wish to thank Jon Shelley of INL for his assistance with the CMFD simulations. The TOPFLOW data were produced at Helmholtz-Zentrum Dresden-Rossendorf in the frame of a research project funded by the German Federal Ministry of Economics and Technology, project number 150 1329. NR 32 TC 3 Z9 4 U1 0 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1385-8947 EI 1873-3212 J9 CHEM ENG J JI Chem. Eng. J. PD DEC 1 PY 2011 VL 176 SI SI BP 83 EP 94 DI 10.1016/j.cej.2011.08.078 PG 12 WC Engineering, Environmental; Engineering, Chemical SC Engineering GA 873RH UT WOS:000298900200012 ER PT J AU Faust, TB Bellini, V Candini, A Carretta, S Lorusso, G Allan, DR Carthy, L Collison, D Docherty, RJ Kenyon, J Machin, J McInnes, EJL Muryn, CA Nowell, H Pritchard, RG Teat, SJ Timco, GA Tuna, F Whitehead, GFS Wernsdorfer, W Affronte, M Winpenny, REP AF Faust, Thomas B. Bellini, Valerio Candini, Andrea Carretta, Stefano Lorusso, Giulia Allan, David R. Carthy, Laura Collison, David Docherty, Rebecca J. Kenyon, Jasbinder Machin, John McInnes, Eric J. L. Muryn, Christopher A. Nowell, Harriott Pritchard, Robin G. Teat, Simon J. Timco, Grigore A. Tuna, Floriana Whitehead, George F. S. Wernsdorfer, Wolfgang Affronte, Marco Winpenny, Richard E. P. TI Chemical Control of Spin Propagation between Heterometallic Rings SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE chromium; EPR spectroscopy; heterometallic dimers; magnetic properties; metallacycles ID SINGLE-MOLECULE MAGNETS; COORDINATION POLYMERS; COMPLEXES; LIGANDS; DINUCLEAR; ANISOTROPY; CLUSTERS; EXCHANGE; COPPER(II); ABSORPTION AB We present a synthetic, structural, theoretical, and spectroscopic study of a family of heterometallic ring dimers which have the formula [{Cr(7)NiF(3)(Etglu)(O(2)CtBu)(15)}(2)(NLN)], in which Etglu is the pentadeprotonated form of the sugar N-ethyl-d-glucamine, and NLN is an aromatic bridging diimine ligand. By varying NLN we are able to adjust the strength of the interaction between rings with the aim of understanding how to tune our system to achieve weak magnetic communication between the spins, a prerequisite for quantum entanglement. Micro-SQUID and EPR data reveal that the magnetic coupling between rings is partly related to the through-bond distance between the spin centers, but also depends on spin-polarization mechanisms and torsion angles between aromatic rings. Density functional theory (DFT) calculations allow us to make predictions of how such chemically variable parameters could be used to tune very precisely the interaction in such systems. For possible applications in quantum information processing and molecular spintronics, such precise control is essential. C1 [Faust, Thomas B.; Carthy, Laura; Collison, David; Docherty, Rebecca J.; Kenyon, Jasbinder; Machin, John; McInnes, Eric J. L.; Muryn, Christopher A.; Pritchard, Robin G.; Timco, Grigore A.; Tuna, Floriana; Whitehead, George F. S.; Winpenny, Richard E. P.] Univ Manchester, Lewis Magnetism Lab, Sch Chem, Manchester M13 9PL, Lancs, England. [Faust, Thomas B.; Carthy, Laura; Collison, David; Docherty, Rebecca J.; Kenyon, Jasbinder; Machin, John; McInnes, Eric J. L.; Muryn, Christopher A.; Pritchard, Robin G.; Timco, Grigore A.; Tuna, Floriana; Whitehead, George F. S.; Winpenny, Richard E. P.] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England. [Bellini, Valerio; Candini, Andrea] Inst NanoSci S3 CNR, I-41125 Modena, Italy. [Carretta, Stefano] Univ Parma, Dipartimento Fis, Unita CNISM Parma, I-3100 Parma, Italy. [Lorusso, Giulia; Affronte, Marco] Univ Modena & Reggio Emilia, Dipartimento Fis, I-41125 Modena, Italy. [Allan, David R.; Nowell, Harriott] DIAMOND Light Source, Didcot OX11 0DE, Oxon, England. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wernsdorfer, Wolfgang] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Wernsdorfer, Wolfgang] UJF, F-38042 Grenoble 9, France. RP Winpenny, REP (reprint author), Univ Manchester, Lewis Magnetism Lab, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England. EM richard.winpenny@manchester.ac.uk RI Faust, Thomas/C-7096-2011; Bellini, Valerio/J-4077-2012; Lorusso, Giulia/L-9211-2013; Candini, Andrea/B-8521-2015; Wernsdorfer, Wolfgang/M-2280-2016; Affronte, Marco/P-2504-2016; Whitehead, George/E-6639-2017 OI Faust, Thomas/0000-0003-0715-4419; Bellini, Valerio/0000-0003-4520-7518; Lorusso, Giulia/0000-0002-4078-6808; Candini, Andrea/0000-0003-3909-473X; Wernsdorfer, Wolfgang/0000-0003-4602-5257; Affronte, Marco/0000-0001-5711-7822; Whitehead, George/0000-0003-1949-4250 FU EPSRC (UK); STREP MolSpin-QIP; ERC [226558]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-C02-05CH11231]; Royal Society FX This work was supported by the EPSRC (UK), by the STREP MolSpin-QIP, and partially by the ERC Advanced Grant MolNanoSpin No. 226558. The Advanced Light Source, where some X-ray diffraction measurements were taken, is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-C02-05CH11231. We also thank DIAMOND Light Source, Oxfordshire, UK, for the provision of additional synchrotron beamtime. R. E. P. W. is supported by a Royal Society Wolfson Merit Award. NR 49 TC 19 Z9 19 U1 2 U2 53 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD DEC PY 2011 VL 17 IS 50 BP 14020 EP 14030 DI 10.1002/chem.201101785 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 868RC UT WOS:000298540600014 PM 22083834 ER PT J AU Sanstad, AH Johnson, H Goldstein, N Franco, G AF Sanstad, Alan H. Johnson, Hans Goldstein, Noah Franco, Guido TI Projecting long-run socioeconomic and demographic trends in California under the SRES A2 and B1 scenarios SO CLIMATIC CHANGE LA English DT Article AB The State of California is developing and implementing a new generation of environmental policies to transition to a low-carbon economy and energy system in order to reduce the risks of future damages from global climate change. At the same time, it is increasingly clear that climate change impacts are already occurring and that further effects cannot be completely avoided. Thus, anticipating and planning for emerging and potential future climate change impacts in California must complement the state's greenhouse gas mitigation efforts. These impacts will depend substantially on the future evolution of the state's social structure and economy. To support impact studies, this report describes socioeconomic storylines and key scenario elements for California that are broadly consistent with the global "A2" and "B1" storylines in the 2000 Special Report on Emissions Scenarios of the Intergovernmental Panel on Climate Change, including qualitative socioeconomic context as well as quantitative projections of key variables such as population, urbanization patterns, economic growth, and electricity prices. C1 [Sanstad, Alan H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Johnson, Hans] Publ Policy Inst Calif, Sacramento, CA USA. [Goldstein, Noah] Lawrence Livermore Natl Lab, Livermore, CA USA. [Franco, Guido] Calif Energy Commiss, Sacramento, CA USA. RP Sanstad, AH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ahsanstad@lbl.gov FU California Energy Commission; California Environmental Protection Agency; U.S. Department of Energy [DE-AC02-05CH11231] FX This paper is adapted from a longer report, Sanstad et al. (2009), which was funded by the California Energy Commission and the California Environmental Protection Agency. Mr. Sanstad's work was supported through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 42 TC 5 Z9 5 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD DEC PY 2011 VL 109 SU 1 SI SI BP 21 EP 42 DI 10.1007/s10584-011-0296-1 PG 22 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 871SF UT WOS:000298757300002 ER PT J AU Vicuna, S Dracup, JA Dale, L AF Vicuna, Sebastian Dracup, John A. Dale, Larry TI Climate change impacts on two high-elevation hydropower systems in California SO CLIMATIC CHANGE LA English DT Article ID RIVER AB This paper describes research to estimate the effects of climate change on two high-elevation hydropower systems in California: the Upper American River Project, operated by the Sacramento Municipal Utility District, and the Big Creek system, operated by Southern California Edison. The study builds on a previous model of the Upper American River Project, which is here modified and extended for use to simulate two hydropower systems under various conditions. Future operations of the two high-elevation systems are simulated using climate change scenarios provided for the Second California Assessment. These scenarios suggest reduced precipitation and reduced runoff for both systems, and a shift toward runoff earlier in the year. The change in the hydrograph is somewhat greater for the Upper American River Project system, because its basins lie at a lower elevation. Reduced runoff directly reduces energy generation and revenues from both systems. Because the Upper American River Project system is projected to have greater spills with warmer climate conditions, it also has greater reduction in energy generation and revenues. Both systems continue to meet peak historical power demands in summer under most climate projections. However, if the number of heat waves increases in the late summer (September), reservoir operating strategies may need to be modified. C1 [Vicuna, Sebastian] Pontificia Univ Catolica Chile, Ctr Interdisciplinario Cambio Global, Santiago, Chile. [Dracup, John A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Dale, Larry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy & Technol Div, Berkeley, CA 94720 USA. RP Vicuna, S (reprint author), Pontificia Univ Catolica Chile, Ctr Interdisciplinario Cambio Global, Alameda 340, Santiago, Chile. EM svicuna@uc.cl FU California Energy Commission [MR-07-03A]; California Energy Commission (Energy Commission); California Environmental Protection Agency (Cal/EPA) FX We would like to acknowledge Kevin Cini and Tom Watson from Southern California Edison, Scott Flake and Dudley McFadden from Sacramento Municipal Utility District, and Guido Franco from the California Energy Commission. Funding for this project came from the Public Interest Energy Research (PIER) Program of the California Energy Commission (Project No. MR-07-03A).; This paper was prepared as the result of work sponsored by the California Energy Commission (Energy Commission) and the California Environmental Protection Agency (Cal/EPA). It does not necessarily represent the views of the Energy Commission, Cal/EPA, their employees, or the State of California. The Energy Commission, Cal/EPA, the State of California, their employees, contractors, and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this paper; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Energy Commission or Cal/EPA; nor has the Energy Commission or Cal/EPA passed upon the accuracy or adequacy of the information in this paper. NR 18 TC 16 Z9 16 U1 1 U2 26 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD DEC PY 2011 VL 109 SU 1 SI SI BP 151 EP 169 DI 10.1007/s10584-011-0301-8 PG 19 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 871SF UT WOS:000298757300008 ER PT J AU Lavin, FV Dale, L Hanemann, M Moezzi, M AF Vasquez Lavin, Felipe Dale, Larry Hanemann, Michael Moezzi, Mithra TI The impact of price on residential demand for electricity and natural gas SO CLIMATIC CHANGE LA English DT Article ID ENERGY DEMAND; WATER DEMAND AB Climate change will affect the demand of many resources that households consume, including electricity and natural gas. Although price is considered an effective tool for controlling demand for many resources that households consume, including electricity and natural gas, there is disagreement about the exact magnitude of the price elasticity. Part of the problem is that demand is confounded by block pricing and the interrelated consumption of electricity and natural gas, which prevent easy estimation of price impacts. Block pricing suggests that the purchaser controls the marginal price of a commodity by the quantity purchased, turning price into an endogenous variable. Interrelated consumption indicates that demand for one resource is affected by the price of another. These complications have made difficult the estimation of the price elasticity of demand for resources and consequently the household-level impact of climate change, which will affect resource supplies. This paper evaluates statistical tools for estimating the joint demand for natural gas and electricity when both resources face a block price setting and develops estimates of own and cross price elasticity. We use data from the Federal Residential Energy Consumption Survey, along with utility price data, to estimate the household demand for electricity and natural gas in California as separate commodities. We then use a joint estimation procedure to evaluate the household demand for natural gas and electricity. Finally, we evaluate the degree to which block pricing and interrelated demand affect the price elasticity of demand for the two resources. The paper ends by noting the continuing uncertainty surrounding the use of price to manage household demand for electricity and natural gas. C1 [Vasquez Lavin, Felipe] Univ Concepcion, Dept Econ & Nucl Cient Econ Ambiental & Recursos, Concepcion, Chile. [Dale, Larry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hanemann, Michael] Arizona State Univ, Dept Econ, Tempe, AZ 85287 USA. [Moezzi, Mithra] Ghoulem Res, Mill Valley, CA USA. RP Lavin, FV (reprint author), Univ Concepcion, Dept Econ & Nucl Cient Econ Ambiental & Recursos, Concepcion, Chile. EM fvasquez@udec.cl; lldale@lbl.gov; Hanemann@berkeley.edu; mmmoezzi@gmail.com FU California Energy Commission FX We thank Guido Franco of the California Energy Commission for his generous support of this project. NR 17 TC 4 Z9 5 U1 2 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD DEC PY 2011 VL 109 SU 1 SI SI BP 171 EP 189 DI 10.1007/s10584-011-0297-0 PG 19 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 871SF UT WOS:000298757300009 ER PT J AU Joyce, BA Mehta, VK Purkey, DR Dale, LL Hanemann, M AF Joyce, Brian A. Mehta, Vishal K. Purkey, David R. Dale, Larry L. Hanemann, Michael TI Modifying agricultural water management to adapt to climate change in California's central valley SO CLIMATIC CHANGE LA English DT Article ID PRIORITY-DRIVEN; DEMAND-DRIVEN; MODEL; WEAP21 AB Climate change impacts and potential adaptation strategies were assessed using an application of the Water Evaluation and Planning (WEAP) system developed for the Sacramento River basin and Delta export region of the San Joaquin Valley. WEAP is an integrated rainfall/runoff, water resources systems modeling framework that can be forced directly from time series of climatic input to estimate water supplies (watershed runoff) and demands (crop evapotranspiration). We applied the model to evaluate the hydrologic implications of 12 climate change scenarios as well as the water management ramifications of the implied hydrologic changes. In addition to evaluating the impacts of climate change with current operations, the model also assessed the impacts of changing agricultural management strategies in response to a changing climate. These adaptation strategies included improvements in irrigation technology and shifts in cropping patterns towards higher valued crops. Model simulations suggested that increasing agricultural demand under climate change brought on by increasing temperature will place additional stress on the water system, such that some water users will experience a decrease in water supply reliability. The study indicated that adaptation strategies may ease the burden on the water management system. However, offsetting water demands through these approaches will not be enough to fully combat the impacts of climate change on water management. To adequately address the impacts of climate change, adaptation strategies will have to include fundamental changes in the ways in which the water management system is operated. C1 [Joyce, Brian A.; Mehta, Vishal K.; Purkey, David R.] Stockholm Environm Inst, Stockholm, Sweden. [Dale, Larry L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hanemann, Michael] Arizona State Univ, Dept Econ, Tempe, AZ 85287 USA. RP Joyce, BA (reprint author), Stockholm Environm Inst, Stockholm, Sweden. EM brian.joyce@sei-us.org; vishal.mehta@sei-us.org; dpurkey@sei-us.org; lldale@lbl.gov; Hanemann@berkeley.edu NR 15 TC 14 Z9 14 U1 0 U2 60 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD DEC PY 2011 VL 109 SU 1 SI SI BP 299 EP 316 DI 10.1007/s10584-011-0335-y PG 18 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 871SF UT WOS:000298757300015 ER PT J AU Salice, CJ Rowe, CL Pechmann, JHK Hopkins, WA AF Salice, Christopher J. Rowe, Christopher L. Pechmann, Joseph H. K. Hopkins, William A. TI MULTIPLE STRESSORS AND COMPLEX LIFE CYCLES: INSIGHTS FROM A POPULATION-LEVEL ASSESSMENT OF BREEDING SITE CONTAMINATION AND TERRESTRIAL HABITAT LOSS IN AN AMPHIBIAN SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Amphibian; Complex life cycle; Stochasticity; Gastrophryne carolinensis; Population level ID DENSITY-DEPENDENT ASPECTS; COAL-COMBUSTION WASTES; LARVAL DENSITY; ECOLOGICAL TRAITS; AMBYSTOMA-OPACUM; JUVENILE FROGS; BUFFER ZONES; INSECTICIDE; DECLINES; COMPETITION AB Understanding the effects of chemical contaminants on natural populations is challenging, as multiple anthropogenic and natural stressors may individually and interactively influence responses. Population models can be used to evaluate the impacts of multiple stressors and to provide insight into population-level effects and/or data gaps. For amphibians with complex life cycles, population models may be useful in understanding impacts of stressors that are unique to the habitat type (aquatic, terrestrial) and that operate at different times in the life cycle. We investigated the population-level effects of aquatic contaminants (coal combustion residues, CCR) and terrestrial habitat loss on the eastern narrowmouth toad, Gastrophryne carolinensis, using existing empirical data that demonstrated negative reproductive and developmental effects of CCR and a series of population models that incorporated density dependence and environmental stochasticity. Results of deterministic models indicated that when terrestrial habitat was abundant, CCR-exposed toads had a larger population size compared to the reference population as a result of reduced density-dependent effects on larval survival. However, when stochasticity in the form of catastrophic reproductive failure was included, CCR-exposed toads were more susceptible to decline and extinction compared to toads from the reference populations. The results highlight the complexities involved in assessing the effects of anthropogenic factors on natural populations, especially for species that are exposed to multiple biotic and abiotic stressors during different periods in the life cycle. Environ. Toxicol. Chem. 2011;30:2874-2882. (C) 2011 SETAC C1 [Salice, Christopher J.] Texas Tech Univ, Inst Environm & Human Hlth, Lubbock, TX 79409 USA. [Rowe, Christopher L.] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA. [Pechmann, Joseph H. K.] Univ New Orleans, New Orleans, LA 70148 USA. [Hopkins, William A.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Hopkins, William A.] Virginia Tech, Dept Fish & Wildlife Conservat, Blacksburg, VA USA. RP Salice, CJ (reprint author), Texas Tech Univ, Inst Environm & Human Hlth, Lubbock, TX 79409 USA. EM chris.salice@ttu.edu RI Rowe, Christopher/D-5271-2012 FU U.S. Environmental Protection Agency through STAR [R-82908701] FX We thank Sarah DuRant, Brian Jackson, and Brandon Staub for dedicated efforts in many aspects of this project. The article was improved by comments from Michael Wilberg, Barbara Taylor, and J.D. Willson. This research was supported by the U.S. Environmental Protection Agency through STAR (grant R-82908701). The information presented here has not been subjected to review by the Agency, and no official endorsement should be inferred. This is contribution 4514 of the University of Maryland Center for Environmental Science. NR 58 TC 19 Z9 19 U1 2 U2 31 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0730-7268 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD DEC PY 2011 VL 30 IS 12 BP 2874 EP 2882 DI 10.1002/etc.680 PG 9 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 853GB UT WOS:000297413100031 PM 21922532 ER PT J AU van Wezel, J AF van Wezel, Jasper TI Chirality and orbital order in charge density waves SO EPL LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; TISE2 AB Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density, on the other hand, was discovered only very recently. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we use a Landau order parameter analysis to resolve this paradox, and show that the chiral charge order may be understood as a form of orbital ordering. We discuss the microscopic mechanism driving the transition and show it to be of a general form, thus allowing for a broad class of materials to display this novel type of orbital-ordered chiral charge density wave. Copyright (C) EPLA, 2011 C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP van Wezel, J (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jvanwezel@anl.gov RI van Wezel, Jasper/B-6779-2008 OI van Wezel, Jasper/0000-0002-9378-008X FU US DOE, Office of Science [DE-AC02-06CH11357] FX The author gratefully acknowledges insightful discussions with P. B. LITTLEWOOD and M. R. NORMAN, and support from the US DOE, Office of Science, under Contract No. DE-AC02-06CH11357. NR 19 TC 21 Z9 21 U1 1 U2 21 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD DEC PY 2011 VL 96 IS 6 AR 67011 DI 10.1209/0295-5075/96/67011 PG 5 WC Physics, Multidisciplinary SC Physics GA 868YE UT WOS:000298561600045 ER PT J AU Jana, MR AF Jana, M. R. TI Positive ion extraction from plasma source and its application in fusion research SO INDIAN JOURNAL OF PHYSICS LA English DT Article DE Ion extraction; ion source; neutral beam injection AB Neutral Beam Injection (NBI) is well established technique for heating tokamak plasma and is used in all fusion research programs [1-2]. In our Steady state Superconducting Tokamak (SST) machine [3], neutral hydrogen beam power of 0.5 MW at 30 kV is required to raise plasma ion temperature of similar to 1 keV. Future upgrade of the SST will require 1.7 MW of H(o) at 55 kV. To fulfill this requirement, an ion extractor system (heart of any NBI system) has been designed to extract 35A H(+) beam current at 30 kV and of 90 A at 55 kV respectively [4]. In this paper, we have described the physics and ion beam optics study for an ion extraction system suitable for above mentioned long dynamic range of acceleration voltage. The ion beam optics simulation result is used as an input to the engineering design. After fabrication, its performance test has been done. The experimental results are in very good agreement with beam optics simulation. C1 [Jana, M. R.] Inst Plasma Res, Gandhinagar 382428, Gujarat, India. RP Jana, MR (reprint author), Fermilab Natl Accelerator Lab, PO 500, Batavia, IL 60510 USA. EM mukti@fnal.gov NR 10 TC 2 Z9 2 U1 2 U2 3 PU INDIAN ASSOC CULTIVATION SCIENCE PI KOLKATA PA INDIAN J PHYSICS, JADAVPUR, KOLKATA 700 032, INDIA SN 0973-1458 J9 INDIAN J PHYS JI Indian J. Phys. PD DEC PY 2011 VL 85 IS 12 BP 1853 EP 1861 DI 10.1007/s12648-011-0190-8 PG 9 WC Physics, Multidisciplinary SC Physics GA 876EL UT WOS:000299090200019 ER PT J AU Lu, ZY Zhou, NJ Wu, Q Zhang, YK AF Lu, Zhenyu Zhou, Nengjie Wu, Qin Zhang, Yingkai TI Directional Dependence of Hydrogen Bonds: A Density-Based Energy Decomposition Analysis and Its Implications on Force Field Development SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; PROTEIN-PROTEIN INTERACTIONS; FRAGMENT POTENTIAL METHOD; FUNCTIONAL THEORY; ELECTROSTATIC POTENTIALS; COMPUTATIONAL CHEMISTRY; MECHANICS CALCULATIONS; FOLDING SIMULATIONS; POLARIZABLE MODEL; ATOMIC CHARGES AB One well-known shortcoming of widely used biomolecular force fields is the description of the directional dependence of hydrogen bonding (HB). Here we aim to better understand the origin of this difficulty and thus provide some guidance for further force field development. Our theoretical approaches center on a novel density-based energy decomposition analysis (DEDA) method (J. Chem. Phys. 2009, 131, 164112), in which the frozen density energy is variationally determined through constrained search. This unique and most significant feature of DEDA enables us to find that the frozen density interaction term is the key factor in determining the FIB orientation, while the sum of polarization and charge-transfer components shows very little HB directional dependence. This new insight suggests that the difficulty for current nonpolarizable force fields to describe the HB directional dependence is not due to the lack of explicit polarization or charge-transfer terms. Using the DEDA results as reference, we further demonstrate that the main failure coming from the atomic point charge model can be overcome largely by introducing extra charge sites or higher order multipole moments. Among all the electrostatic models explored, the smeared charge distributed multipole model (up to quadrupole), which also takes account of charge penetration effects, gives the best agreement with the corresponding DEDA results. Meanwhile, our results indicate that the van der Waals interaction term needs to be further improved to better model directional HB. C1 [Lu, Zhenyu; Zhou, Nengjie; Zhang, Yingkai] NYU, Dept Chem, New York, NY 10003 USA. [Wu, Qin] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Zhang, YK (reprint author), NYU, Dept Chem, New York, NY 10003 USA. EM yingkai.zhang@nyu.edu RI Zhang, Yingkai/A-3173-2008; Wu, Qin/C-9483-2009 OI Zhang, Yingkai/0000-0002-4984-3354; Wu, Qin/0000-0001-6350-6672 FU NIH [R01-GM079223]; NSF-MRSEC [DMR-0820341]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work carried out in part at NYU was supported by NIH (R01-GM079223) and NSF-MRSEC (DMR-0820341). Research carried out in part at the Center for Functional Nanomaterials was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-98CH10886. We thank NYU-ITS and CFN for providing computational resources. NR 103 TC 23 Z9 23 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2011 VL 7 IS 12 BP 4038 EP 4049 DI 10.1021/ct2003226 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 862TW UT WOS:000298118000020 PM 22267958 ER PT J AU Morris, GP Grabowski, PP Borevitz, JO AF Morris, Geoffrey P. Grabowski, Paul P. Borevitz, Justin O. TI Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape SO MOLECULAR ECOLOGY LA English DT Article DE chloroplast genome; coastal dunes; high-throughput sequencing; perennial grass; polymorphism ID POLYMORPHISM SNP DISCOVERY; MULTILOCUS GENOTYPE DATA; GENETIC DIVERSITY; REDUCED REPRESENTATION; BRASSICA-NAPUS; POPULATIONS; MARKERS; SINGLE; DNA; TOOLS AB Connecting broad-scale patterns of genetic variation and population structure to genetic diversity on a landscape is a key step towards understanding historical processes of migration and adaptation. New genomic approaches can be used to increase the resolution of phylogeographic studies while reducing locus sampling effects and circumventing ascertainment bias. Here, we use a novel approach based on high-throughput sequencing to characterize genetic diversity in complete chloroplast genomes and >10 000 nuclear loci in switchgrass, at continental and landscape scales. Switchgrass is a North American tallgrass species, which is widely used in conservation and perennial biomass production, and shows strong ecotypic adaptation and population structure across the continental range. We sequenced 40.9 billion base pairs from 24 individuals from across the species range and 20 individuals from the Indiana Dunes. Analysis of plastome sequence revealed 203 variable SNP sites that define eight haplogroups, which are differentiated by 4127 SNPs and confirmed by patterns of indel variation. These include three deeply divergent haplogroups, which correspond to the previously described lowlandupland ecotypic split and a novel upland haplogroup split that dates to the mid-Pleistocene. Most of the plastome haplogroup diversity present in the northern switchgrass range, including in the Indiana Dunes, originated in the mid- or upper Pleistocene prior to the most recent postglacial recolonization. Furthermore, a recently colonized landscape feature (approximately 150 ya) in the Indiana Dunes contains several deeply divergent upland haplogroups. Nuclear markers also support a deep lowlandupland split, followed by limited gene flow, and show extensive gene flow in the local population of the Indiana Dunes. C1 [Morris, Geoffrey P.; Grabowski, Paul P.; Borevitz, Justin O.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Morris, Geoffrey P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Morris, GP (reprint author), Univ Chicago, Dept Ecol & Evolut, 1101 E 57th St, Chicago, IL 60637 USA. EM gmorris@uchicago.edu RI Borevitz, Justin/B-5423-2012; OI Morris, Geoffrey/0000-0002-3067-3359 FU University of Chicago Energy Initiative; Argonne-University of Chicago Strategic Collaborative Initiative; National Institutes of Health [T32 GM007197] FX We thank Indiana Dunes State Park and Indiana Department of Natural Resources for help with sampling, Christian Tobias and Hugh Young for access to reference switchgrass chloroplast sequences prior to publication, Jonathan Pritchard for advice on use of STRUCTURE, Noel Pavlovic for information on dune geomorphology, Michael Casler for access to manuscripts prior to publication, Nina Noah for help with plant growth and manuscript editing and two anonymous reviewers for helpful suggestion. G.M. and J.B. were supported by University of Chicago Energy Initiative and the Argonne-University of Chicago Strategic Collaborative Initiative. P.G. was partially supported by National Institutes of Health Training Grant T32 GM007197. NR 73 TC 29 Z9 29 U1 3 U2 50 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0962-1083 J9 MOL ECOL JI Mol. Ecol. PD DEC PY 2011 VL 20 IS 23 BP 4938 EP 4952 DI 10.1111/j.1365-294X.2011.05335.x PG 15 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 859ZW UT WOS:000297915700012 PM 22060816 ER PT J AU Wang, MY Fang, C Yao, DX Tan, GT Harriger, LW Song, Y Netherton, T Zhang, CL Wang, M Stone, MB Tian, W Hu, JP Dai, PC AF Wang, Miaoyin Fang, Chen Yao, Dao-Xin Tan, GuoTai Harriger, Leland W. Song, Yu Netherton, Tucker Zhang, Chenglin Wang, Meng Stone, Matthew B. Tian, Wei Hu, Jiangping Dai, Pengcheng TI Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2 SO NATURE COMMUNICATIONS LA English DT Article ID SUPERCONDUCTIVITY AB The parent compounds of iron pnictide superconductors are bad metals with a collinear antiferromagnetic structure and Neel temperatures below 220 K. Although alkaline iron selenide A(y)Fe(1.6+x)Se(2) (A = K, Rb, Cs) superconductors are isostructural with iron pnictides, in the vicinity of the undoped limit they are insulators, forming a block antiferromagnetic order and having Neel temperatures of roughly 500 K. Here we show that the spin waves of the insulating antiferromagnet Rb0.89Fe1.58Se2 can be accurately described by a local moment Heisenberg Hamiltonian. A fitting analysis of the spin wave spectra reveals that the next-nearest neighbour couplings in Rb0.89Fe1.58Se2, (Ba,Ca,Sr)Fe2As2, and Fe1.05Te are of similar magnitude. Our results suggest a common origin for the magnetism of all the Fe-based superconductors, despite having different ground states and antiferromagnetic orderings. C1 [Wang, Miaoyin; Tan, GuoTai; Harriger, Leland W.; Song, Yu; Netherton, Tucker; Zhang, Chenglin; Wang, Meng; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Fang, Chen; Hu, Jiangping] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Yao, Dao-Xin] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China. [Tan, GuoTai] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China. [Wang, Meng; Hu, Jiangping; Dai, Pengcheng] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Wang, Meng; Hu, Jiangping; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Stone, Matthew B.; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Tian, Wei] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Tian, Wei] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM pdai@utk.edu RI Fang, Chen/C-8263-2011; Stone, Matthew/G-3275-2011; hu, jiangping /C-3320-2014; Wang, Miaoyin/C-9224-2012; Dai, Pengcheng /C-9171-2012; WANG, MENG/E-6595-2012; Abernathy, Douglas/A-3038-2012; Tian, Wei/C-8604-2013; Hu, Jiangping/A-9154-2010; BL18, ARCS/A-3000-2012 OI Netherton, Tucker/0000-0003-1583-7121; Stone, Matthew/0000-0001-7884-9715; Song, Yu/0000-0002-3460-393X; Dai, Pengcheng /0000-0002-6088-3170; WANG, MENG/0000-0002-8232-2331; Abernathy, Douglas/0000-0002-3533-003X; Tian, Wei/0000-0001-7735-3187; Hu, Jiangping/0000-0003-4480-1734; FU US NSF [DMR-1063866, OISE-0968226]; US DOE BES [DE-FG02-05ER46202]; US DOE, Division of Scientific User Facilities; Chinese Academy of Sciences; Ministry of Science and Technology of China [2012CB821400]; NSFC [11074310] FX We thank Masaaki Matsuda for his help on triple-axis measurements. The neutron-scattering work at UTK is supported by the US NSF-DMR-1063866 and NSF-OISE-0968226. The single-crystal growth effort at UTK is supported by US DOE BES under Grant No. DE-FG02-05ER46202. ORNL neutron scattering facilities are supported by the US DOE, Division of Scientific User Facilities. Work at IOP is supported by the Chinese Academy of Sciences and by the Ministry of Science and Technology of China 973 program (2012CB821400). D.X.Y. is supported by NSFC-11074310. NR 37 TC 68 Z9 68 U1 0 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2011 VL 2 AR 580 DI 10.1038/ncomms1573 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 877EM UT WOS:000299159900012 PM 22146399 ER PT J AU Xiao, D Zhu, WG Ran, Y Nagaosa, N Okamoto, S AF Xiao, Di Zhu, Wenguang Ran, Ying Nagaosa, Naoto Okamoto, Satoshi TI Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures SO NATURE COMMUNICATIONS LA English DT Article ID INSULATOR; SUPERLATTICES; GROWTH; PHASE; STATE; WELLS; FILMS AB Topological insulators are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of topological insulators, material realization is indispensable. Here we predict, based on tight-binding modelling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional topological insulators. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO3 bilayers have a topologically non-trivial energy gap of about 0.15 eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in eg systems are also discussed. C1 [Xiao, Di; Zhu, Wenguang; Okamoto, Satoshi] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhu, Wenguang] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ran, Ying] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Nagaosa, Naoto] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. [Nagaosa, Naoto] RIKEN ASI, Cross Correlated Mat Res Grp CMGR, Wako, Saitama 3150198, Japan. [Nagaosa, Naoto] RIKEN ASI, CERG, Wako, Saitama 3150198, Japan. RP Xiao, D (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM xiaod@ornl.gov; okapon@ornl.gov RI Xiao, Di/B-1830-2008; Okamoto, Satoshi/G-5390-2011; Nagaosa, Naoto/G-7057-2012; Zhu, Wenguang/F-4224-2011 OI Xiao, Di/0000-0003-0165-6848; Okamoto, Satoshi/0000-0002-0493-7568; Zhu, Wenguang/0000-0003-0819-595X NR 60 TC 178 Z9 179 U1 14 U2 97 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD DEC PY 2011 VL 2 AR 596 DI 10.1038/ncomms1602 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 877EM UT WOS:000299159900028 PM 22186892 ER PT J AU Baumgaertel, JA Belli, EA Dorland, W Guttenfelder, W Hammett, GW Mikkelsen, DR Rewoldt, G Tang, WM Xanthopoulos, P AF Baumgaertel, J. A. Belli, E. A. Dorland, W. Guttenfelder, W. Hammett, G. W. Mikkelsen, D. R. Rewoldt, G. Tang, W. M. Xanthopoulos, P. TI Simulating gyrokinetic microinstabilities in stellarator geometry with GS2 SO PHYSICS OF PLASMAS LA English DT Article ID TEMPERATURE-GRADIENT TURBULENCE; MAGNETOHYDRODYNAMIC STABILITY; PHYSICS; DESIGN; MICROTURBULENCE; EQUILIBRIA; TRANSPORT; EQUATIONS; TOKAMAKS; MODE AB The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellarator geometry. Electromagnetic perturbations and multiple trapped particle regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi-axisymmetric, three-field period national compact stellarator experiment (NCSX) design QAS3-C82 have been successfully benchmarked against the eigenvalue code FULL. Quantitatively, the linear stability calculations of GS2 and FULL agree to within similar to 10%. (C) 2011 American Institute of Physics. [doi:10.1063/1.3662064] C1 [Baumgaertel, J. A.; Guttenfelder, W.; Hammett, G. W.; Mikkelsen, D. R.; Rewoldt, G.; Tang, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Belli, E. A.] Gen Atom Co, San Diego, CA 92186 USA. [Dorland, W.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Xanthopoulos, P.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. RP Baumgaertel, JA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Dorland, William/B-4403-2009; Hammett, Gregory/D-1365-2011 OI Dorland, William/0000-0003-2915-724X; Hammett, Gregory/0000-0003-1495-6647 FU U.S. Department of Energy through the SciDAC Center for the Study of Plasma Microturbulence; Princeton Plasma Physics Laboratory, DOE [DE-AC02-09CH11466]; DOE FX The authors would like to thank Dr. L.-P. Ku and Dr. W. A. Cooper for providing equilibrium results from the VMEC and TERPSICHORE codes as well as the resulting parameters from the VVBAL code. Also, thank you to M. A. Barnes for useful discussion. This work was supported by the U.S. Department of Energy through the SciDAC Center for the Study of Plasma Microturbulence and the Princeton Plasma Physics Laboratory by DOE Contract No. DE-AC02-09CH11466 and by a DOE Fusion Energy Sciences Fellowship. NR 35 TC 9 Z9 9 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2011 VL 18 IS 12 AR 122301 DI 10.1063/1.3662064 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 870AX UT WOS:000298642600015 ER PT J AU Kagan, G Tang, XZ Hsu, SC Awe, TJ AF Kagan, Grigory Tang, Xian-Zhu Hsu, Scott C. Awe, Thomas J. TI Bounce-free spherical hydrodynamic implosion SO PHYSICS OF PLASMAS LA English DT Article AB In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain. (C) 2011 American Institute of Physics [doi:10.1063/1.3671949] C1 [Kagan, Grigory; Tang, Xian-Zhu; Hsu, Scott C.; Awe, Thomas J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kagan, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Hsu, Scott/0000-0002-6737-4934 FU LANL; U.S. Department of Energy Office of Fusion Energy Sciences [DE-AC52-06NA25396] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program of LANL (Kagan and Tang) and the U.S. Department of Energy Office of Fusion Energy Sciences under contract DE-AC52-06NA25396 (Hsu and Awe). NR 11 TC 3 Z9 3 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2011 VL 18 IS 12 AR 120702 DI 10.1063/1.3671949 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 870AX UT WOS:000298642600002 ER PT J AU Rose, HA Daughton, W AF Rose, Harvey A. Daughton, William TI Vlasov simulation in multiple spatial dimensions SO PHYSICS OF PLASMAS LA English DT Article ID NONLINEAR PLASMA-OSCILLATIONS; COLD-PLASMA; EQUATION; INSTABILITIES; INTEGRATION; BREAKING; SCATTER; SPACE; WAVES AB A long-standing challenge encountered in modeling plasma dynamics is achieving practical Vlasov equation simulation in multiple spatial dimensions over large length and time scales. While direct multi-dimension Vlasov simulation methods using adaptive mesh methods [M. Gutnic , Comput. Phys. Commun. 164, 214 (2004)] have recently shown promising results in two dimensions (2D) [J. W. Banks , Phys. Plasmas 18, 052102 (2011); B. I. Cohen , November 10, 2010, http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142], in this paper, we present an alternative, the Vlasov multi dimensional (VMD) model, that is specifically designed to take advantage of solution properties in regimes when plasma waves are confined to a narrow cone, as may be the case for stimulated Raman scatter in large optic f# laser beams. Perpendicular grid spacing large compared to a Debye length is then possible without instability or loss of accuracy, enabling an order 10 decrease in required computational resources compared to standard particle in cell (PIC) methods in 2D, with another reduction of that order in 3D. Further advantage compared to PIC methods accrues in regimes where particle noise is an issue. VMD and PIC results in a 2D model of localized Langmuir waves are in qualitative agreement. (C) 2011 American Institute of Physics. [doi:10.1063/1.3662112] C1 [Rose, Harvey A.] New Mexico Consortium, Los Alamos, NM 87544 USA. [Rose, Harvey A.; Daughton, William] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rose, HA (reprint author), New Mexico Consortium, Los Alamos, NM 87544 USA. EM hrose@newmexicoconsortium.org RI Daughton, William/L-9661-2013 FU New Mexico Consortium; National Science Foundation [1004110] FX We thank R. Berger, B. Cohen, and H. Hittinger for helpful discussions and a preprint of their work (Ref. 10). H. Rose thanks B. Wendroff for discussions on basic hydrodynamic numerical methods and Natalia Vladimirova for discussions about 3D VMD coding. H. Rose is supported by the New Mexico Consortium and National Science Foundation Award No. 1004110. NR 40 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2011 VL 18 IS 12 AR 122109 DI 10.1063/1.3662112 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 870AX UT WOS:000298642600011 ER PT J AU Vay, JL Geddes, CGR Esarey, E Schroeder, CB Leemans, WP Cormier-Michel, E Grote, DP AF Vay, J. -L. Geddes, C. G. R. Esarey, E. Schroeder, C. B. Leemans, W. P. Cormier-Michel, E. Grote, D. P. TI Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz boosted simulations SO PHYSICS OF PLASMAS LA English DT Article DE plasma accelerators; wakefield accelerators ID IN-CELL SIMULATION; WAKEFIELD ACCELERATORS; ELECTRON-ACCELERATORS; CODE; PULSES; FRAMES; BEAMS AB Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)] allows direct and efficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasma accelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5, and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV, and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. Obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular, particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness. (C) 2011 American Institute of Physics. [doi:10.1063/1.3663841] C1 [Vay, J. -L.; Geddes, C. G. R.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cormier-Michel, E.] Tech X Corp, Boulder, CO 80303 USA. [Grote, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Vay, JL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jlvay@lbl.gov OI Schroeder, Carl/0000-0002-9610-0166 FU US-DOE [DE-AC02-05CH11231, DE-AC52-07NA27344]; United States Government FX We are thankful to C. Benedetti, D. L. Bruhwiler, J. R. Cary, B. Cowan, A. Friedman, C. Huang, S. F. Martins, W. B. Mori, and B. A. Shadwick for insightful discussions. Work supported by US-DOE Contracts DE-AC02-05CH11231 and DE-AC52-07NA27344, and US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.r This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 51 TC 21 Z9 22 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2011 VL 18 IS 12 AR 123103 DI 10.1063/1.3663841 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 870AX UT WOS:000298642600033 ER PT J AU Tian, SK Lu, LL Labavitch, J Yang, XE He, ZL Hu, HN Sarangi, R Newville, M Commisso, J Brown, P AF Tian, Shengke Lu, Lingli Labavitch, John Yang, Xiaoe He, Zhenli Hu, Hening Sarangi, Ritimukta Newville, Matt Commisso, Joel Brown, Patrick TI Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii SO PLANT PHYSIOLOGY LA English DT Article ID ENERGY SYNCHROTRON-RADIATION; RAY-ABSORPTION SPECTROSCOPY; PLASMA-MASS SPECTROMETRY; ARABIDOPSIS-HALLERI; THLASPI-CAERULESCENS; METAL HYPERACCUMULATION; CALCIUM-CHANNELS; MICRO-PIXE; ZINC; LEAVES AB Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 mu g g(-1) were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii. C1 [Tian, Shengke; Lu, Lingli; Yang, Xiaoe] Zhejiang Univ, Coll Environm & Resource Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Zhejiang, Peoples R China. [Tian, Shengke; Lu, Lingli; Labavitch, John; Hu, Hening; Commisso, Joel; Brown, Patrick] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [He, Zhenli] Univ Florida, Inst Food & Agr Sci, Indian River Res & Educ Ctr, Ft Pierce, FL 34945 USA. [Sarangi, Ritimukta] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Newville, Matt] Argonne Natl Lab, GSECARS Adv Photon Source, Argonne, IL 60439 USA. RP Yang, XE (reprint author), Zhejiang Univ, Coll Environm & Resource Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Zhejiang, Peoples R China. EM phbrown@ucdavis.edu RI He, Zhenli/R-1494-2016; Brown, Patrick/E-4085-2012; Tian, Shengke/G-8307-2016 OI He, Zhenli/0000-0001-7761-2070; Brown, Patrick/0000-0001-6857-8608; Tian, Shengke/0000-0001-8242-3581 FU National Natural Science Foundation of China [30630046, 31000935]; Ministry of Education of China [310003]; Ministry of Environmental Protection of China [2011467057]; China Postdoctoral Science Foundation [201104731]; University of California, Davis; Stanford Synchrotron Radiation Lightsource; DOE Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources [P41RR001209]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by the National Natural Science Foundation of China (grant nos. 30630046 and 31000935), the Ministry of Education of China (grant no. 310003), the Ministry of Environmental Protection of China (grant no. 2011467057), and the China Postdoctoral Science Foundation (grant no. 201104731).; We express our sincere gratitude to Dario Cantu and Naoaki lkemiyagi of the University of California, Davis, and to all the staff of BL 7-3, BL 2-3, and BL 9-3 at the Stanford Synchrotron Radiation Lightsource, particularly Serena DeBeer, Samuel M. Webb, and Matthew Latimer, for their support. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of the Stanford Linear Accelerator Center National Accelerator Laboratory and an Office of Science User Facility operated by the U.S. Department of Energy Office (DOE) of Science by Stanford University. The Stanford Synchrotron Radiation Lightsource Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program (grant no. P41RR001209). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE of Science by Argonne National Laboratory, was supported by the U.S. DOE (contract no. DE-AC02-06CH11357). NR 51 TC 45 Z9 48 U1 1 U2 80 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD DEC PY 2011 VL 157 IS 4 BP 1914 EP 1925 DI 10.1104/pp.111.183947 PG 12 WC Plant Sciences SC Plant Sciences GA 866JC UT WOS:000298375600025 PM 22025609 ER PT J AU Biswas, M Voltz, K Smith, JC Langowski, J AF Biswas, Mithun Voltz, Karine Smith, Jeremy C. Langowski, Joerg TI Role of Histone Tails in Structural Stability of the Nucleosome SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; EMPIRICAL FORCE-FIELD; CORE PARTICLE; GENE ACTIVATION; NUCLEIC-ACIDS; IN-VIVO; DNA; H3; MUTATIONS; MOBILITY AB Histone tails play an important role in nucleosome structure and dynamics. Here we investigate the effect of truncation of histone tails H3, H4, H2A and H2B on nucleosome structure with 100 ns all-atom molecular dynamics simulations. Tail domains of H3 and H2B show propensity of alpha-helics formation during the intact nucleosome simulation. On truncation of H4 or H2B tails no structural change occurs in histones. However, H3 or H2A tail truncation results in structural alterations in the histone core domain, and in both the cases the structural change occurs in the H2A alpha 3 domain. We also find that the contacts between the histone H2A C terminal docking domain and surrounding residues are destabilized upon H3 tail truncation. The relation between the present observations and corresponding experiments is discussed. C1 [Biswas, Mithun] Univ Heidelberg, Interdisciplinary Ctr Sci Comp IWR, Heidelberg, Germany. [Voltz, Karine; Langowski, Joerg] German Canc Res Ctr, Heidelberg, Germany. [Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab Ctr Mol Biophys, Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Biswas, M (reprint author), Univ Heidelberg, Interdisciplinary Ctr Sci Comp IWR, Heidelberg, Germany. EM joerg.langowski@dkfz-heidelberg.de RI smith, jeremy/B-7287-2012; Langowski, Jorg/A-1843-2011 OI smith, jeremy/0000-0002-2978-3227; Langowski, Jorg/0000-0001-8600-0666 FU Deutsche Forschungsgemeinschaft [SM 63/11-1] FX We acknowledge the Deutsche Forschungsgemeinschaft (www.dfg.de) for financial support under Grant SM 63/11-1 for this project. We also acknowledge the HELICS supercomputer at Heidelberg and the NSF Teragrid for computational resources. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 49 TC 31 Z9 32 U1 1 U2 20 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD DEC PY 2011 VL 7 IS 12 AR e1002279 DI 10.1371/journal.pcbi.1002279 PG 12 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 877HH UT WOS:000299167800010 PM 22207822 ER PT J AU Maslin, MA Ettwein, VJ Wilson, KE Guilderson, TP Burns, SJ Leng, MJ AF Maslin, M. A. Ettwein, V. J. Wilson, K. E. Guilderson, T. P. Burns, S. J. Leng, M. J. TI Dynamic boundary-monsoon intensity hypothesis: evidence from the deglacial Amazon River discharge record SO QUATERNARY SCIENCE REVIEWS LA English DT Article DE Amazon Basin; Deglaciation; South American monsoon; Palaeoclimate; Amazon Fan sediment; Bi-polar climate forcing ID LAST GLACIAL MAXIMUM; INTERTROPICAL CONVERGENCE ZONE; TROPICAL SOUTH-AMERICA; SEA-SURFACE TEMPERATURE; NORTH BRAZIL CURRENT; CLIMATE-CHANGE; LATE QUATERNARY; NORTHEASTERN BRAZIL; POLLEN RECORD; ICE-CORE AB Glacioeustatic- and temperature-corrected planktonic foraminiferal oxygen isotope (Delta delta O-18) records from ODP Site 942 on the Amazon Fan provide a means of monitoring past changes in the outflow of the Amazon River. This study focuses on the last deglaciation and reveals that during this period there were significant variations in the outflow, which implies large changes in moisture availability in the Amazon Basin. Aridity in the Amazon Basin seems to occur between 20.5 ka (calendar) to 17.0 ka and 13.6 ka to 11 ka. The second arid period correlates with the start of the Antarctic Cold Reversal and aridity continues throughout the Younger Dryas period. We find that the large-scale trends in Amazon River outflow are dissimilar to high-latitude variability in either hemisphere. Instead high-resolution variations correlate with the delta O-18 difference between Greenland and Antarctica ice core temperature records. This suggests a link between Hemispheric temperature gradients and moisture availability over the Amazon. Based on our results and previously published work we present a new testable 'dynamic boundary-monsoon intensity hypothesis', which suggests that tropical moisture is not a simple belt that moves north or south. Rather, the northern and southern boundaries of the South American Summer Monsoon (SASM) are independently dynamic and driven by temperature gradients within their individual hemispheres. The intensity of rainfall within the SASM, however, is driven by precessionally modulated insolation and the resultant convection strength. Combining these two influences produces the dynamic heterogenic changes in the moisture availability observed over tropical South America since the Last Glacial Maximum. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Maslin, M. A.] UCL, Dept Geog, Environm Change Res Ctr, London WC1E 6BT, England. [Guilderson, T. P.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Guilderson, T. P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Burns, S. J.] Univ Massachusetts, Dept Geosci, Morrill Sci Ctr 233, Amherst, MA 01003 USA. [Leng, M. J.] Univ Leicester, Dept Geol, Leicester LE1 7RH, Leics, England. [Leng, M. J.] British Geol Survey, NERC, Isotope Geosci Lab, Nottingham NG12 5GG, England. RP Maslin, MA (reprint author), UCL, Dept Geog, Environm Change Res Ctr, Pearson Bldg,Gower St, London WC1E 6BT, England. EM m.maslin@ucl.ac.uk RI Burns, Stephen/H-9419-2013; OI Wilson, Katy/0000-0003-2917-3397; Leng, Melanie/0000-0003-1115-5166 FU University College London; Natural Environmental Research Council (NERC); U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory FX This work was made possible by the ODP and the efforts of the scientific party and crew of ODP Leg 155. This work formed part of the doctoral dissertation for VJE, under the supervision and funding of MM at University College London. We would like to thank the three reviewers for their detailed and insightful comments, which greatly improved the manuscript. We would like to thank Reviewer 1 for one of the best quotes we have ever received "I think Dr. Maslin is violating some of the fundamental laws of climatology". We thank Juliet Ettwein for assistance with sample material collection, Walter Hale for assistance at the IODP Sample Repository in Bremen, Germany, and members of the ECRC (UCL), NIGL, Department of Earth Sciences Cambridge University (Harry Elder-field and Aradhna Tripati) and CAMS (LLNL) especially Connie Weyhenmeyer for assistance with sample preparation and measurement. This research was supported by various grants from Natural Environmental Research Council (NERC). Radiocarbon analyses at CAMS were performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory. NR 135 TC 11 Z9 12 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD DEC PY 2011 VL 30 IS 27-28 BP 3823 EP 3833 DI 10.1016/j.quascirev.2011.10.007 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 877QW UT WOS:000299198000007 ER PT J AU Crabtree, G Greene, L Johnson, P AF Crabtree, George Greene, Laura Johnson, Peter TI Celebrating 100 years of superconductivity: special issue on the iron-based superconductors PREFACE SO REPORTS ON PROGRESS IN PHYSICS LA English DT Editorial Material C1 [Crabtree, George] Univ Illinois, Argonne Natl Lab, Chicago, IL 60607 USA. [Crabtree, George; Greene, Laura] Ctr Emergent Superconduct, Chicago, IL USA. [Greene, Laura] Univ Illinois, Urbana, IL USA. [Johnson, Peter] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crabtree, G (reprint author), Univ Illinois, Argonne Natl Lab, Chicago, IL 60607 USA. NR 0 TC 1 Z9 1 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 J9 REP PROG PHYS JI Rep. Prog. Phys. PD DEC PY 2011 VL 74 IS 12 AR 120301 DI 10.1088/0034-4885/74/12/120301 PG 1 WC Physics, Multidisciplinary SC Physics GA 862HB UT WOS:000298079500001 ER PT J AU Li, Q Si, WD Dimitrov, IK AF Li, Qiang Si, Weidong Dimitrov, Ivo K. TI Films of iron chalcogenide superconductors SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID FESE THIN-FILMS; BETA-FESE; FABRICATION AB Iron chalcogenides are of great interest for both basic physics and high-field applications. Although their superconducting transition temperatures are typically lower than those of iron pnictides, iron chalcogenides exhibit lower anisotropies with very high upper critical field slopes near the superconducting transition temperatures. They also have the simplest structures among the iron-based superconductors. This review covers recent progress in the field of superconducting thin films of iron chalcogenides, with primary focus on FeSe(1-x)Te(x) (0 <= x <= 1). High quality superconducting thin films with x = 0 and 0.5 have been fabricated by several groups. Of particular interest is that some of them exhibit significantly higher superconducting transition temperatures than those of bulk polycrystalline samples and single crystals over the entire doping regime. Upon the incorporation of small amounts of oxygen, superconductivity is seen to emerge in a thin film of FeTe (parent compound of the iron chalcogenides), but not in the bulk. Advances in superconducting-tape fabrication of iron chalcogenides are also described since the very high upper critical fields and critical current densities of these films suggest that they are prospective candidates for high-field applications. In addition, we present a brief comparison between iron chalcogenide films and iron pnictide films. C1 [Li, Qiang; Si, Weidong; Dimitrov, Ivo K.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Li, Q (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM qiangli@bnl.gov FU US Department of Energy, Office of Basic Energy Science, Materials Sciences and Engineering Division [DEAC0298CH10886] FX It is our great pleasure to acknowledge productive collaborations with Jie Qing, Juan Zhou, Su Jung Han, V Solovyov, P D Johnson, J Jaroszynski, V Matias and C Sheehan. The work at Brookhaven Lab was supported by the US Department of Energy, Office of Basic Energy Science, Materials Sciences and Engineering Division, under Contract No. DEAC0298CH10886. NR 64 TC 38 Z9 38 U1 6 U2 78 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 J9 REP PROG PHYS JI Rep. Prog. Phys. PD DEC PY 2011 VL 74 IS 12 AR 124510 DI 10.1088/0034-4885/74/12/124510 PG 20 WC Physics, Multidisciplinary SC Physics GA 862HB UT WOS:000298079500011 ER PT J AU Prozorov, R Kogan, VG AF Prozorov, R. Kogan, V. G. TI London penetration depth in iron-based superconductors SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; SINGLE-CRYSTALS; ANISOTROPIC SUPERCONDUCTORS; LAYERED SUPERCONDUCTOR; SUPERFLUID DENSITY; GAP FUNCTION; IMPURITIES; BA0.6K0.4FE2AS2; THERMODYNAMICS; STATE AB Measurements of London penetration depth, a sensitive tool to study multiband superconductivity, have provided several important insights into the behavior of Fe-based superconductors. We first briefly review the 'experimentalist-friendly' self-consistent Eilenberger two-band model that relates the measurable superfluid density and temperature dependences of the superconducting gaps. Then we focus on BaFe2As2-derived materials, for which the results are consistent with (1) two distinct superconducting gaps; (2) development of strong in-plane gap anisotropy with departure from optimal doping; (3) development of gap nodes along the c direction in a highly overdoped regime; (4) significant pair-breaking, presumably due to charge doping; (5) fully gapped intrinsic behavior (exponential at low temperatures) at optimal doping if the scattering is removed (probed in the 'self-doped' stoichiometric LiFeAs); (6) competition between the magnetically ordered state and superconductivity, which do coexist in underdoped compounds. Overall, it appears that while there are common trends in the behavior of Fe-based superconductors, the gap structure is non-universal and is quite sensitive to the doping level. It is plausible that the rich variety of possible gap structures within the general s(+/-) framework is responsible for the observed behavior. C1 [Prozorov, R.; Kogan, V. G.] Ames Lab, Ames, IA 50011 USA. [Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov; kogan@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; Alfred P Sloan Foundation FX This reviewis based on the experimental results obtained by the members of RP's laboratory: Makariy Tanatar, Catalin Martin, Kyuil Cho, Ryan Gordon and Hyunsoo Kim during 2008-2010. More details can be found in Ryan Gordon's PhD thesis [109]. Our colleague, Makariy Tanatar, was responsible for all sample preparation and handling. The samples were grown by the group of Paul Canfield and Sergey Bud'ko. We are grateful to many colleagues for insightful discussions-too many to be listed in the limited space of this review. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract No. DE-AC02-07CH11358. RP acknowledges support from the Alfred P Sloan Foundation. NR 110 TC 77 Z9 77 U1 4 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD DEC PY 2011 VL 74 IS 12 AR 124505 DI 10.1088/0034-4885/74/12/124505 PG 20 WC Physics, Multidisciplinary SC Physics GA 862HB UT WOS:000298079500006 ER PT J AU Sefat, AS AF Sefat, Athena S. TI Pressure effects on two superconducting iron-based families SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID LAYERED QUATERNARY COMPOUND; TRANSITION-TEMPERATURE; PHASE-TRANSITIONS; 43 K; LAO1-XFXFEAS; METAL; COMPRESSIBILITY; BAFE(2)AS(2); BAFE2AS2; PNICTIDE AB Insight into the mechanism of high-temperature superconductivity can be gained by pressure-dependent studies of structural, thermodynamics and transport data. The role of pressure may be complicated by the level of hydrostaticity. High-pressure studies on two iron-based families of RFeAsO (R = rare-earth metals) and AFe(2)As(2) (A = alkaline-earth metals) are reviewed here. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. RI Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering FX This work was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering. The authors appreciate discussions with Balazs Sipos and Yogesh K Vohra. They also thank Teresa Roe for submission of permissions for the figures. NR 110 TC 57 Z9 57 U1 6 U2 63 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD DEC PY 2011 VL 74 IS 12 AR 124502 DI 10.1088/0034-4885/74/12/124502 PG 14 WC Physics, Multidisciplinary SC Physics GA 862HB UT WOS:000298079500003 ER PT J AU Wen, JS Xu, GY Gu, GD Tranquada, JM Birgeneau, RJ AF Wen, Jinsheng Xu, Guangyong Gu, Genda Tranquada, J. M. Birgeneau, R. J. TI Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: crystal growth and characterizations SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; LAYERED QUATERNARY COMPOUND; T-C SUPERCONDUCTORS; SPIN-DENSITY-WAVE; PHASE-DIAGRAM; NEUTRON-SCATTERING; MOTT INSULATOR; ALPHA-FESE; 43 K; COEXISTENCE AB In this review, we present a summary of results on single crystal growth of two types of iron-chalcogenide superconductors, Fe1+yTe1-xSex (11), and A(x)Fe(2-y)Se(2)(A = K, Rb, Cs, Tl, Tl/K, Tl/Rb), using Bridgman, zone-melting, vapor self-transport and flux techniques. The superconducting and magnetic properties (the latter gained mainly from neutron scattering measurements) of these materials are reviewed to demonstrate the connection between magnetism and superconductivity. It will be shown that for the 11 system, while static magnetic order around the reciprocal lattice position (0.5, 0) competes with superconductivity, spin excitations centered around (0.5, 0.5) are closely coupled to the materials' superconductivity; this is made evident by the strong correlation between the spectral weight around (0.5, 0.5) and the superconducting volume fraction. The observation of a spin resonance below the superconducting temperature, T-c, and the magnetic-field dependence of the resonance emphasize the close interplay between spin excitations and superconductivity, similar to cuprate superconductors. In A(x)Fe(2-y)Se(2), superconductivity with T-c similar to 30K borders an antiferromagnetic insulating phase; this is closer to the behavior observed in the cuprates but differs from that in other iron-based superconductors. C1 [Wen, Jinsheng; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wen, Jinsheng; Xu, Guangyong; Gu, Genda; Tranquada, J. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wen, Jinsheng; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wen, JS (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jinshengwen@berkeley.edu; jtran@bnl.gov RI Wen, Jinsheng/F-4209-2010; Tranquada, John/A-9832-2009; Xu, Guangyong/A-8707-2010 OI Wen, Jinsheng/0000-0001-5864-1466; Tranquada, John/0000-0003-4984-8857; Xu, Guangyong/0000-0003-1441-8275 FU Office of Basic Energy Sciences, Division of Materials Science and Engineering, U S Department of Energy [DE-AC02-98CH10886]; Center for Emergent Superconductivity, an Energy Frontier Research Center; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The work at Brookhaven National Laboratory (JW, GX, GG and JMT) was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, U S Department of Energy, under Contract No. DE-AC02-98CH10886. JMT is also supported in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center. Work at Lawrence Berkeley National Laboratory (JW and RJB) was supported by the same Office under Contract No. DE-AC02-05CH11231. The authors thank all of their collaborators listed in the references. The authors are also grateful to their colleagues and collaborators for allowing them to reproduce their work here. NR 258 TC 74 Z9 75 U1 8 U2 130 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD DEC PY 2011 VL 74 IS 12 AR 124503 DI 10.1088/0034-4885/74/12/124503 PG 22 WC Physics, Multidisciplinary SC Physics GA 862HB UT WOS:000298079500004 ER PT J AU Akli, KU del Rio, MS Jiang, S Storm, MJ Krygier, A Stephens, RB Pereira, NR Baronova, EO Theobald, W Ping, Y McLean, HS Patel, PK Key, MH Freeman, RR AF Akli, K. U. del Rio, M. Sanchez Jiang, S. Storm, M. J. Krygier, A. Stephens, R. B. Pereira, N. R. Baronova, E. O. Theobald, W. Ping, Y. McLean, H. S. Patel, P. K. Key, M. H. Freeman, R. R. TI A novel zirconium K alpha imager for high energy density physics research SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE Monte Carlo methods; plasma collision processes; plasma density; plasma diagnostics; plasma light propagation; plasma simulation; plasma temperature AB We report on the development and characterization of a zirconium K alpha imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. We compare the performance of the imager in terms of integrated reflectivity (R-int) and temperature dependent collection efficiency (eta(Te)) to that of the widely used Cu K alpha imager. Our collisional-radiative simulations show that the new imager can be reliably used up to 250 eV plasma temperature. Monte Carlo simulations show that for a 25 mu m thick tracer layer of zirconium, the contribution to K alpha production from photo-pumping is only 2%. We present, for the first time, 2D spatially resolved images of zirconium plasmas generated by a high intensity short pulse laser interacting with Zr solid targets. (C) 2011 American Institute of Physics. [doi:10.1063/1.3665931] C1 [Akli, K. U.; Jiang, S.; Storm, M. J.; Krygier, A.; Freeman, R. R.] Ohio State Univ, Columbus, OH 43210 USA. [Stephens, R. B.] Gen Atom, San Diego, CA 92121 USA. [Pereira, N. R.] Ecopulse Inc, Springfield, VA 22152 USA. [Baronova, E. O.] RRC Kurchatov Inst, Moscow, Russia. [Theobald, W.] Laser Energet Lab, Rochester, NY 14623 USA. [Ping, Y.; McLean, H. S.; Patel, P. K.; Key, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Akli, KU (reprint author), Ohio State Univ, Columbus, OH 43210 USA. RI Patel, Pravesh/E-1400-2011 FU U.S. Department of Energy (DOE) [DE-FG02-05ER54834, DE-FC0204ER54789, DE-AC52-07NA27344] FX The authors wish to thank the staff of the Jupiter Laser Facility, LLNL. This work was performed under the auspices of the U.S. Department of Energy (DOE) under Contract Nos. DE-FG02-05ER54834, DE-FC0204ER54789, and DE-AC52-07NA27344. NR 24 TC 6 Z9 6 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2011 VL 82 IS 12 AR 123503 DI 10.1063/1.3665931 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 870BC UT WOS:000298643100025 PM 22225215 ER PT J AU Cheng, MD Allman, SE AF Cheng, Meng-Dawn Allman, Steve E. TI Improved measurement for volatile particles: Vapor-particle separator design and laboratory tests SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE pollution measurement ID DIFFERENTIAL MOBILITY ANALYZER; DUTY DIESEL EXHAUST; PARTICULATE-EMISSIONS; CATALYTIC STRIPPER; AEROSOL-PARTICLES; THERMODENUDER; ENGINES; FRACTIONS; AIRCRAFT; PROGRAM AB Sampling and measurement of volatile particles is a challenging task. It has been hampered by lack of a reliable technique capable of accurately capturing the phase-partition process of the pollutants without generating bias and artifacts in the data. The objective of this research is to design a new vapor-particle separation technique for performing the phase separation on-line (the sampling aspect), which, simultaneously, enables characterization of the vapors and particles. The new vapor-particle separator (VPS) consists of a thin metallic microporous membrane for (1) extraction of vapor molecules that are thermally desorbed from the condensed particulate phases and (2) collection of the vapors for subsequent chemical analysis. We evaluated this new separator using synthetic particles made of nonvolatile and or semi-volatile chemicals, and reported the laboratory test results in this paper. The laboratory particle test results showed reasonably high particle transmission efficiency across all particle sizes. The thermal dynamics of nanoparticles was succinctly observed on-line. The results successfully demonstrated the ability of VPS to separate particles and vapors thus enabling a faithful observation of the thermal behavior. We believe the new technology will make a great contribution to the measurement of volatile particles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3665095] C1 [Cheng, Meng-Dawn; Allman, Steve E.] Oak Ridge Natl Lab, Energy & Environm Sci Directorate, Oak Ridge, TN 37831 USA. RP Cheng, MD (reprint author), Oak Ridge Natl Lab, Energy & Environm Sci Directorate, Oak Ridge, TN 37831 USA. RI Allman, Steve/A-9121-2011; Cheng, Meng-Dawn/C-1098-2012; OI Allman, Steve/0000-0001-6538-7048; Cheng, Meng-Dawn/0000-0003-1407-9576 FU Strategic Environmental Research and Development Program (SERDP) [WP1627]; U.S. Department of Energy (DOE) [DE-AC05-00OR22725] FX We appreciate the constructive comments of the reviewers that help improve the quality of this paper. The authors express appreciation to Dr. Tommy J. Phelps of ORNL for lending a metallic membrane in the initial trial of the project leading to the development of this new vapor-particle separator. The author acknowledges Dr. Shannon M. Mahurin (ORNL) and Mr. Bradley Landgraf (former summer student at ORNL) for their works on an earlier version of the membrane-based thermodenuder. The research work was conducted under the auspices of the Strategic Environmental Research and Development Program (SERDP) under Project No. WP1627 in the Weapons Systems and Platforms Thrust Area. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy (DOE) (Contract No. DE-AC05-00OR22725). NR 40 TC 3 Z9 3 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2011 VL 82 IS 12 AR 125106 DI 10.1063/1.3665095 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 870BC UT WOS:000298643100059 PM 22225248 ER PT J AU Jorns, B Sorenson, R Choueiri, E AF Jorns, Benjamin Sorenson, Robert Choueiri, Edgar TI Variable dual-frequency electrostatic wave launcher for plasma applications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE antennas in plasma; capacitors; impedance matching; inductors; loop antennas; magnetic flux; plasma density; plasma electrostatic waves; plasma heating ID LOWER-HYBRID FREQUENCY; ION BERNSTEIN WAVES; MAGNETIZED PLASMA; ACCELERATION; DYNAMICS; ANTENNAS; CHAOS AB A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example-generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently-with a high adaptability to a number of plasma dynamics and heating applications. (C) 2011 American Institute of Physics. [doi:10.1063/1.3664785] C1 [Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar] Princeton Univ, Elect Prop & Plasma Dynam Lab, Princeton, NJ 08544 USA. RP Jorns, B (reprint author), Princeton Univ, Elect Prop & Plasma Dynam Lab, Princeton, NJ 08544 USA. FU National Science Foundation [0646086] FX The authors would like to acknowledge Nevell Greenough and Elmer Fredd of the Princeton Plasma Physics Laboratory for their assistance in procuring components for the tuning network. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 0646086. NR 32 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2011 VL 82 IS 12 AR 123501 DI 10.1063/1.3664785 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 870BC UT WOS:000298643100023 PM 22225213 ER PT J AU Martin, F Hendriksen, B Katan, A Ratera, I Qi, YB Harteneck, B Liddle, JA Salmeron, M AF Martin, Florent Hendriksen, Bas Katan, Allard Ratera, Imma Qi, Yabing Harteneck, Bruce Liddle, J. Alexander Salmeron, Miquel TI Ultra-flat coplanar electrodes for controlled electrical contact of molecular films SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE atomic force microscopy; electrical contacts; electrodes; elemental semiconductors; gold; metallic thin films; MIS devices; replica techniques; silicon; silicon compounds ID PERFORMANCE; FABRICATION; TRANSISTORS; INTERFACE; TRANSPORT AB Reliable measurement of electrical charge transport in molecular layers is a delicate task that requires establishing contacts with electrodes without perturbing the molecular structure of the film. We show how this can be achieved by means of novel device consisting of ultra-flat electrodes separated by insulating material to support the molecular film. We show the fabrication process of these electrodes using a replica technique where gold electrodes are embedded in a silicon oxide film deposited on the angstrom-level flat surface of a silicon wafer. Importantly, the co-planarity of the electrode and oxide areas of the substrate was in the sub-nanometer range. We illustrate the capabilities of the system by mapping the distribution of electrical transport pathways in molecular thin films of self-assembled oligothiophene derivatives using conductive atomic force microscopy. In comparison with traditional bottom contact non-coplanar electrodes, the films deposited on our electrodes exhibited contact resistances lower by a factor of 40 than that of the similar but non-coplanar electrodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3664789] C1 [Martin, Florent; Hendriksen, Bas; Katan, Allard; Ratera, Imma; Qi, Yabing; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Martin, Florent; Salmeron, Miquel] Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA. [Martin, Florent; Salmeron, Miquel] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. RP Martin, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Qi, Yabing/A-9243-2010; Liddle, James/A-4867-2013; Hendriksen, Bas/B-8427-2013; Ratera, Imma/E-2353-2014; Qi, Yabing/O-7807-2014 OI Liddle, James/0000-0002-2508-7910; Ratera, Imma/0000-0002-1464-9789; Qi, Yabing/0000-0002-4876-8049 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Generalitat de Catalunya FX We acknowledge Jeff Beeman and Ed Wong for technical support, and the CXRO at LBNL for the use of sputter deposition equipment. AFM measurements and fabrication of e-beam lithography were performed at the Molecular Foundry. Fabrication of optical lithography patterned devices was performed at the UC Berkeley Microlab. This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Imma Ratera acknowledges a grant from the Generalitat de Catalunya Nanotech fellowship program. NR 18 TC 5 Z9 5 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2011 VL 82 IS 12 AR 123901 DI 10.1063/1.3664789 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 870BC UT WOS:000298643100036 PM 22225225 ER PT J AU Soorkia, S Liu, CL Savee, JD Ferrell, SJ Leone, SR Wilson, KR AF Soorkia, Satchin Liu, Chen-Lin Savee, John D. Ferrell, Sarah J. Leone, Stephen R. Wilson, Kevin R. TI Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: Application to low-temperature kinetics and product detection SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE aerodynamics; chemically reactive flow; collimators; confined flow; flow measurement; free radical reactions; Mach number; mass spectroscopy; nozzles; photoionisation; reaction rate constants; supersonic flow; synchrotrons; temperature measurement; time resolved spectroscopy ID ETHYNYL RADICAL C2H; RATE COEFFICIENTS; TITANS ATMOSPHERE; ALLENE CH2=C=CH2; NOZZLE APPARATUS; BENZENE; HYDROCARBONS; EXPANSIONS; DESIGN; CN AB A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has been developed that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion with excellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by the airfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification based on the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic rates close to the collision-determined limit.[doi: 10.1063/1.3669537] C1 [Liu, Chen-Lin; Ferrell, Sarah J.; Leone, Stephen R.; Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Soorkia, Satchin; Liu, Chen-Lin; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Soorkia, Satchin; Liu, Chen-Lin; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Savee, John D.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Wilson, KR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM krwilson@lbl.gov FU National Aeronautics and Space Administration [NNX09AB60G]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Science Council, Taiwan [NSC97-2917-I-564-142]; National Nuclear Security Administration [DE-AC04-94-AL85000] FX The support of personnel (S.S.) for this research by the National Aeronautics and Space Administration (Grant No. NNX09AB60G) is gratefully acknowledged. Construction of this Laval instrument was made possible by a National Aeronautics and Space Administration Planetary Major Equipment grant. The Advanced Light Source and Chemical Sciences Division (C.C.L., S.J.F., S.R.L., and K.R.W.) are supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. C.L.L. is partly supported by the National Science Council, Taiwan, under Contract No. NSC97-2917-I-564-142. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94-AL85000 (J.D.S.). NR 27 TC 8 Z9 8 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2011 VL 82 IS 12 AR 124102 DI 10.1063/1.3669537 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 870BC UT WOS:000298643100044 PM 22225233 ER PT J AU Prettyman, TH Feldman, WC McSween, HY Dingler, RD Enemark, DC Patrick, DE Storms, SA Hendricks, JS Morgenthaler, JP Pitman, KM Reedy, RC AF Prettyman, Thomas H. Feldman, William C. McSween, Harry Y., Jr. Dingler, Robert D. Enemark, Donald C. Patrick, Douglas E. Storms, Steven A. Hendricks, John S. Morgenthaler, Jeffery P. Pitman, Karly M. Reedy, Robert C. TI Dawn's Gamma Ray and Neutron Detector SO SPACE SCIENCE REVIEWS LA English DT Review DE Dawn mission; Asteroid; Vesta; Ceres; Geochemistry; Gamma ray; Neutron; Spectroscopy ID LUNAR PROSPECTOR; ELEMENTAL COMPOSITION; COPLANAR ELECTRODES; CDZNTE DETECTORS; HYDROGEN CONTENT; 1 CERES; VESTA; SURFACE; SPECTROMETER; MOON AB The NASA Dawn Mission will determine the surface composition of 4 Vesta and 1 Ceres, providing constraints on their formation and thermal evolution. The payload includes a Gamma Ray and Neutron Detector (GRaND), which will map the surface elemental composition at regional spatial scales. Target elements include the constituents of silicate and oxide minerals, ices, and the products of volcanic exhalation and aqueous alteration. At Vesta, GRaND will map the mixing ratio of end-members of the howardite, diogenite, and eucrite (HED) meteorites, determine relative proportions of plagioclase and mafic minerals, and search for compositions not well sampled by the meteorite collection. The large south polar impact basin may provide an opportunity to determine the composition of Vesta's mantle and lower crust. At Ceres, GRaND will provide chemical information needed to test different models of Ceres' origin and thermal and aqueous evolution. GRaND is also sensitive to hydrogen layering and can determine the equivalent H2O/OH content of near-surface hydrous minerals as well as the depth and water abundance of an ice table, which may provide information about the state of water in the interior of Ceres. Here, we document the design and performance of GRaND with sufficient detail to interpret flight data archived in the Planetary Data System, including two new sensor designs: an array of CdZnTe semiconductors for gamma ray spectroscopy, and a loaded-plastic phosphor sandwich for neutron spectroscopy. An overview of operations and a description of data acquired from launch up to Vesta approach is provided, including annealing of the CdZnTe sensors to remove radiation damage accrued during cruise. The instrument is calibrated using data acquired on the ground and in flight during a close flyby of Mars. Results of Mars flyby show that GRaND has ample sensitivity to meet science objectives at Vesta and Ceres. Strategies for data analysis are described and prospective results for Vesta are presented for different operational scenarios and compositional models. C1 [Prettyman, Thomas H.; Feldman, William C.; Morgenthaler, Jeffery P.; Pitman, Karly M.; Reedy, Robert C.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Dingler, Robert D.; Enemark, Donald C.; Patrick, Douglas E.; Storms, Steven A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McSween, Harry Y., Jr.] Univ Tennessee, Knoxville, TN USA. [Hendricks, John S.] TechSource Inc, Los Alamos, NM 87544 USA. RP Prettyman, TH (reprint author), Planetary Sci Inst, Tucson, AZ 85719 USA. EM prettyman@psi.edu OI Reedy, Robert/0000-0002-2189-1303; Prettyman, Thomas/0000-0003-0072-2831 FU NASA; Jet Propulsion Laboratory, California Institute of Technology; Dawn Payload Team at the Jet Propulsion Laboratory FX We wish to express our sincere gratitude to everyone who contributed to the development and operation of GRaND. The hardware was built by a dedicated team of engineers and technicians at Los Alamos National Laboratory (LANL). Significant contributions were made by Frank Ameduri, Sean Apgar, Juan Baldonado, Bruce Barraclough, John Bernardin, Robert Clanton, David Cronk, Danny Everett, Ken Fuller (deceased), Jack Gioia, Irma Gonzales, Jerome Kolar, Cindy Little, Ruxanne Lopez, Gary Smith, James Sheldon, Belinda Wong-Swanson, Martin Sweet, Vernon Vigil, and Bob Williford. We greatly appreciate the support of David Seagraves and the staff of the LANL Calibration Facility. Key contributions to the development and manufacturing of sensor components were made by Chuck Hurlbut of Eljen Technology, Phil Parkhurst of Proteus, Inc., and Steve Soldner and Csaba Szeles of EI Detection and Imaging Systems. We are grateful for the support of the Dawn Payload Team at the Jet Propulsion Laboratory, especially Ed Miller and Betina Pavri, from development through launch, as well as the support of Mike Violet and his team at Orbital Sciences Corporation during integration. We acknowledge the Dawn Science Operations Team, including Steve Joy (UCLA), Joe Mafi (UCLA), and Carol Polanskey (JPL), who made many contributions essential to successful flight operations. GRaND suffered a major setback, late in development, when several photomultiplier tubes cracked during thermal cycling in vacuum. We are grateful to John Goldsten of JHU-APL for providing a flight-quality photomultiplier tube (PMT) to replace one that was damaged and to Holger Sierks (MPS) for his help in finding a source of tubes in Europe. David Lawrence (JHU-APL) and Larry Nittler (Carnegie Institution) provided thorough reviews data and documents submitted to the Planetary Data System. We wish to thank David Lawrence and Mike Toplis (University of Toulouse) for their insightful reviews of this manuscript. Finally, we are grateful for many helpful discussions with members of the planetary community and Dawn team, including Mike Gaffey, Ralph Milliken, David Mittlefehldt, Marc Rayman, Carol Raymond, Chris Russell, and Naoyuki Yamashita. A portion of this work was performed under a grant from the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 102 TC 67 Z9 67 U1 3 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2011 VL 163 IS 1-4 BP 371 EP 459 DI 10.1007/s11214-011-9862-0 PG 89 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 875AQ UT WOS:000299002100014 ER PT J AU Hsu, WH Ma, KL Correa, C AF Hsu, Wei-Hsien Ma, Kwan-Liu Correa, Carlos TI A Rendering Framework for Multiscale Views of 3D Models SO ACM TRANSACTIONS ON GRAPHICS LA English DT Article DE multiscale views; camera model; levels of detail; visualization ID PLUS CONTEXT VISUALIZATION; IMAGE AB Images that seamlessly combine views at different levels of detail are appealing. However, creating such multiscale images is not a trivial task, and most such illustrations are handcrafted by skilled artists. This paper presents a framework for direct multiscale rendering of geometric and volumetric models. The basis of our approach is a set of non-linearly bent camera rays that smoothly cast through multiple scales. We show that by properly setting up a sequence of conventional pinhole cameras to capture features of interest at different scales, along with image masks specifying the regions of interest for each scale on the projection plane, our rendering framework can generate non-linear sampling rays that smoothly project objects in a scene at multiple levels of detail onto a single image. We address two important issues with non-linear camera projection. First, our streamline-based ray generation algorithm avoids undesired camera ray intersections, which often result in unexpected images. Second, in order to maintain camera ray coherence and preserve aesthetic quality, we create an interpolated 3D field that defines the contribution of each pinhole camera for determining ray orientations. The resulting multiscale camera has three main applications: (1) presenting hierarchical structure in a compact and continuous manner, (2) achieving focus+context visualization, and (3) creating fascinating and artistic images. C1 [Hsu, Wei-Hsien] Univ Calif Davis, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hsu, WH (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM whhsu@ucdavis.edu; ma@cs.ucdavis.edu; correac@llnl.gov FU U.S. National Science Foundation [CCF 0811422]; U.S. Department of Energy [DE-FC02-06ER25777] FX This work was sponsored in part by the U.S. National Science Foundation through grant CCF 0811422, and the U.S. Department of Energy through the SciDAC program with Agreement No. DE-FC02-06ER25777. Data courtesy of the National Institutes of Health, the Institute of Computer Graphics and Algorithms, the Vienna University of Technology, and 3D Warehouse of Google Inc. NR 28 TC 0 Z9 0 U1 0 U2 6 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0730-0301 EI 1557-7368 J9 ACM T GRAPHIC JI ACM Trans. Graph. PD DEC PY 2011 VL 30 IS 6 AR 131 DI 10.1145/2024156.2024165 PG 9 WC Computer Science, Software Engineering SC Computer Science GA 856YP UT WOS:000297681100009 ER PT J AU Seal, SK Perumalla, KS AF Seal, Sudip K. Perumalla, Kalyan S. TI Reversible Parallel Discrete Event Formulation of a TLM-Based Radio Signal Propagation Model SO ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION LA English DT Article DE Parallel simulation; time warp; reverse computation; radio signal; electromagnetic wave propagation; transmission line matrix ID SIMULATION AB Radio signal strength estimation is essential in many applications, including the design of military radio communications and industrial wireless installations. For scenarios with large or richly featured geographical volumes, parallel processing is required to meet the memory and computation time demands. Here, we present a scalable and efficient parallel execution of the sequential model for radio signal propagation recently developed by Nutaro et al. [2008]. Starting with that model, we (a) provide a vector-based reformulation that has significantly lower computational overhead for event handling, (b) develop a parallel decomposition approach that is amenable to reversibility with minimal computational overheads, (c) present a framework for transparently mapping the conservative time-stepped model into an optimistic parallel discrete event execution, (d) present a new reversible method, along with its analysis and implementation, for inverting the vector-based event model to be executed in an optimistic parallel style of execution, and (e) present performance results from implementation on Cray XT platforms. We demonstrate scalability, with the largest runs tested on up to 127,500 cores of a Cray XT5, enabling simulation of larger scenarios and with faster execution than reported before on the radio propagation model. This also represents the first successful demonstration of the ability to efficiently map a conservative time-stepped model to an optimistic discrete-event execution. C1 [Seal, Sudip K.; Perumalla, Kalyan S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Seal, SK (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008,MS 6085, Oak Ridge, TN 37831 USA. EM sealsk@ornl.gov; perumallaks@ornl.gov OI Perumalla, Kalyan/0000-0002-7458-0832 FU UT-Battelle, LLC with the U.S. Department of Energy [AC05-00OR22725]; Oak Ridge National Laboratory (ORNL); DOE Office of Science, Advanced Scientific Computing Research FX This article has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. This effort was partly supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), and in part by the DOE Office of Science, Advanced Scientific Computing Research, Career Research Program. This research used resources of the National Center for Computational Sciences (NCCS) at ORNL. NR 23 TC 1 Z9 1 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1049-3301 EI 1558-1195 J9 ACM T MODEL COMPUT S JI ACM Trans. Model. Comput. Simul. PD DEC PY 2011 VL 22 IS 1 AR 4 DI 10.1145/2043635.2043639 PG 23 WC Computer Science, Interdisciplinary Applications; Mathematics, Applied SC Computer Science; Mathematics GA 870AD UT WOS:000298640600004 ER PT J AU Maruyama, J Hasegawa, T Amano, T Muramatsu, Y Gullikson, EM Orikasa, Y Uchimoto, Y AF Maruyama, Jun Hasegawa, Takahiro Amano, Taiji Muramatsu, Yasuji Gullikson, Eric M. Orikasa, Yuki Uchimoto, Yoshiharu TI Pore Development in Carbonized Hemoglobin by Concurrently Generated MgO Template for Activity Enhancement as Fuel Cell Cathode Catalyst SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE hemoglobin; carbonization; template; magnesium oxide; fuel cell; electrode catalyst; oxygen reduction ID OXYGEN REDUCTION; PYROLYZED IRON; ELECTROREDUCTION; STABILITY; COMPLEXES; COAL AB Various carbon materials with a characteristic morphology and pore structure have been produced using template methods in which a carbon-template composite is once formed and the characteristic features derived from the template are generated after the template removal. In this study, hemoglobin, which is a natural compound that could be abundantly and inexpensively obtained, was used as the carbon material source to produce a carbonaceous noble-metal-free fuel cell cathode catalyst. Magnesium oxide was used as the template concurrently generated with the hemoglobin carbonization from magnesium acetate mixed with hemoglobin as the starting material mixture to enable pore development for improving the activity of the carbonized hemoglobin for the cathodic oxygen reduction. After removal of the MgO template, the substantially developed pores were generated in the carbonized hemoglobin with an amorphous structure observed by total-electron-yield Xray absorption. The extended X-ray absorption fine structure at the Fe-K edge indicated that Fe was coordinated with four nitrogen atoms (Fe-N(4) moiety) in the carbonized hemoglobin. The oxygen reduction activity of the carbonized hemoglobin evaluated using rotating disk electrodes was dependent on the pore structure. The highly developed pores led to an improved activity. C1 [Maruyama, Jun; Hasegawa, Takahiro] Osaka Municipal Tech Res Inst, Environm Technol Res Div, Joto Ku, Osaka 5368553, Japan. [Amano, Taiji; Muramatsu, Yasuji] Univ Hyogo, Sch Engn, Grad Sch Engn, Dept Mat Sci & Chem, Himeji, Hyogo 6712201, Japan. [Gullikson, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Orikasa, Yuki; Uchimoto, Yoshiharu] Kyoto Univ, Grad Sch Human & Environm Studies, Dept Interdisciplinary Environm, Sakyo Ku, Kyoto 6068501, Japan. RP Maruyama, J (reprint author), Osaka Municipal Tech Res Inst, Environm Technol Res Div, Joto Ku, 1-6-50 Morinomiya, Osaka 5368553, Japan. EM maruyama@omtri.or.jp FU Ministry of Education, Culture, Sports, Science and Technology, Japan [20560628] FX The XAFS measurements were performed with the approval of the SPring-8 (Proposals 2008A1891, 2011A1019). This study was partly supported by a Grant-in-Aid for Scientific Research (Project 20560628) given to Y.M. from the Ministry of Education, Culture, Sports, Science and Technology, Japan, for which the authors are grateful. NR 34 TC 11 Z9 12 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC PY 2011 VL 3 IS 12 BP 4837 EP 4843 DI 10.1021/am2013294 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 865WJ UT WOS:000298341300041 PM 22091636 ER PT J AU In, JB Grigoropoulos, CP Chernov, AA Noy, A AF In, Jung Bin Grigoropoulos, Costas P. Chernov, Alexander A. Noy, Aleksandr TI Growth Kinetics of Vertically Aligned Carbon Nanotube Arrays in Clean Oxygen-free Conditions SO ACS NANO LA English DT Article DE carbon nanotube; CVD growth; growth kinetics; impurity removal ID CHEMICAL-VAPOR-DEPOSITION; CATALYST; HYDROGEN; WATER; TERMINATION; ACTIVATION; FORESTS; MODEL AB Vertically aligned carbon nanotubes (CNTs) are an important technological system, as well as a fascinating system for studying basic principles of nanomaterials synthesis; yet despite continuing efforts for the past decade many important questions about this process remain largely unexplained. We present a series of parametric ethylene chemical vapor deposition growth studies in a "hot-wall" reactor using ultrapure process gases that reveal the fundamental kinetics of the CNT growth. Our data show that the growth rate is proportional to the concentration of the carbon feedstock and monotonically decreases with the concentration of hydrogen gas and that the most important parameter determining the rate of the CNT growth is the production rate of active carbon precursor in the gas phase reaction. The growth termination times obtained with the purified gas mixtures were strikingly insensitive to variations in both hydrogen and ethylene pressures ruling out the carbon encapsulation of the catalyst as the main process termination cause. C1 [Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. [In, Jung Bin; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Chernov, Alexander A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Noy, Aleksandr] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Noy, A (reprint author), Univ Calif Merced, Sch Nat Sci, Merced, CA USA. FU National Science Foundation NIRT [CBET-0709090]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank Xiang Bin for TEM imaging of nanotubes. J.I. thanks Kang Rae Cho for valuable discussion. All authors thank the anonymous reviewer for helpful and insightful comments. Research was supported by National Science Foundation NIRT CBET-0709090 (A.N., C.G., and J.B.I.). A.N. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Parts of the work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 47 TC 22 Z9 24 U1 0 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2011 VL 5 IS 12 BP 9602 EP 9610 DI 10.1021/nn2028715 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 865ND UT WOS:000298316700031 PM 22070618 ER PT J AU Jesse, S Balke, N Eliseev, E Tselev, A Dudney, NJ Morozovska, AN Kalinin, SV AF Jesse, Stephen Balke, Nina Eliseev, Eugene Tselev, Alexander Dudney, Nancy J. Morozovska, Anna N. Kalinin, Sergei V. TI Direct Mapping of Ionic Transport in a Si Anode on the Nanoscale: Time Domain Electrochemical Strain Spectroscopy Study SO ACS NANO LA English DT Article DE time domain electrochemical strain microscopy; Si anode; lithium ion ID ATOMIC-FORCE MICROSCOPY; INTERCALATION-INDUCED STRESS; THIN-FILM MICROELECTRODES; NANOMETER RESOLUTION; AMORPHOUS-SILICON; PIEZOELECTRIC APPLICATIONS; FERROELECTRIC MATERIALS; BATTERY CATHODE; 1ST PRINCIPLES; LITHIUM AB Local Li-ion transport in amorphous silicon is studied on the nanometer scale using time domain electrochemical strain microscopy (ESM). A strong variability of ionic transport controlled by the anode surface morphology Is observed. The observed relaxing and nonrelaxing response components are discussed in terms of local and global ionic transport mechanisms, thus establishing the signal formation mechanisms in ESM. This behavior is further correlated with local conductivity measurements. The implications of these studies for Si-anode batteries are discussed. The universal presence of concentration strain coupling suggests that ESM and associated time and voltage spectroscopies can be applied to a broad range of electrochemical systems ranging from batteries to fuel cells. C1 [Jesse, Stephen; Balke, Nina; Tselev, Alexander; Dudney, Nancy J.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Eliseev, Eugene; Morozovska, Anna N.] Natl Acad Sci Ukraine, Kiev, Ukraine. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Tselev, Alexander/L-8579-2015; Balke, Nina/Q-2505-2015; Jesse, Stephen/D-3975-2016; Dudney, Nancy/I-6361-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Tselev, Alexander/0000-0002-0098-6696; Balke, Nina/0000-0001-5865-5892; Jesse, Stephen/0000-0002-1168-8483; Dudney, Nancy/0000-0001-7729-6178 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. DOE BES; Office of Basic Energy Sciences, U.S. Department of Energy FX This work is supported in part by the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. DOE BES. SPM imaging was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 82 TC 30 Z9 30 U1 5 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2011 VL 5 IS 12 BP 9682 EP 9695 DI 10.1021/nn203141g PG 14 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 865ND UT WOS:000298316700040 PM 22054414 ER PT J AU Feng, ZX Kazimirov, A Bedzyk, MJ AF Feng, Zhenxing Kazimirov, Alexander Bedzyk, Michael J. TI Atomic Imaging of Oxide-Supported Metallic Nanocrystals SO ACS NANO LA English DT Article DE nanoparticles; epitaxy; atomic imaging; interface structure; X-ray standing waves; platinum; strontium titanate ID RAY STANDING WAVES; PLATINUM NANOPARTICLES; HYDROGEN-PRODUCTION; SURFACE-MORPHOLOGY; SRTIO3(001); GROWTH; WATER; SRTIO3(100); PRINCIPLES; DEPOSITION AB The nucleation of noble metal nanoparticles on oxide surfaces can lead to dramatic enhancements in catalytic activity that are related to the atomic-scale formation of the nanoparticles and interfaces. For the case of submonolayer Pt deposited on the 2x1 SrTiO(3)(001) surface atomic-force microscopy shows the formation of nanoparticles. We use X-ray standing wave (XSW) atomic imaging to show that these nanoparticles are composed of Pt face-centered-cubic nanocrystals with cube-on-cube epitaxy laterally correlated to the substrate unit cell. The phase sensitivity of the XSW allows for a direct measurement of the Interface offset between the two unit cells along the c-axis. Different Pt coverages lead to differences In the observed XSW Image of the Interfacial structure, which Is explained by a proposed model based on the Pt-Pt interaction becoming stronger than the Pt-substrate Interaction as the global coverage is Increased from 0.2 to 0.6 ML. C1 [Feng, Zhenxing; Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Kazimirov, Alexander] Cornell Univ, CHESS, Ithaca, NY 14853 USA. [Bedzyk, Michael J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Bedzyk, MJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM bedzyk@northwestern.edu RI Bedzyk, Michael/B-7503-2009; Bedzyk, Michael/K-6903-2013; Feng, Zhenxing/J-7457-2013 OI Feng, Zhenxing/0000-0001-7598-5076 FU Institute for Catalysis in Energy Processes (U.S. DOE) [DE-FG02-03ER15457]; MRSEC (NSF) [DMR-0520513]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by the Institute for Catalysis in Energy Processes (U.S. DOE Grant DE-FG02-03ER15457) and MRSEC (NSF Grant DMR-0520513). X-ray measurements were performed at Argonne National Laboratory (U.S. DOE Grant DE-AC02-06CH11357). The authors are thankful for helpful discussions with and technical assistance from Steven Christensen, Stephen Streiffer, David Marasco, and Tien Lin Lee. NR 33 TC 8 Z9 8 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2011 VL 5 IS 12 BP 9755 EP 9760 DI 10.1021/nn203273e PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 865ND UT WOS:000298316700048 PM 22032686 ER PT J AU Ferry, VE Polman, A Atwater, HA AF Ferry, Vivian E. Polman, Albert Atwater, Harry A. TI Modeling Light Trapping in Nanostructured Solar Cells SO ACS NANO LA English DT Article DE thin-film solar cells; surface plasmon; light trapping; photovoltaics; silicon ID BROAD-BAND; PHOTONIC CRYSTAL; ABSORPTION; OPTIMIZATION; DEVICES; PLASMONICS; GRATINGS AB The integration of nanophotonic and plasmonic structures with solar cells offers the ability to control and confine light in nanoscale dimensions. These nanostructures can be used to couple incident sunlight Into both localized and guided modes, enhancing absorption while reducing the quantity of material. Here we use electromagnetic modeling to study the resonances in a solar cell containing both plasmonic metal back contacts and nanostructured semiconductor top contacts, identify the local and guided modes contributing to enhanced absorption, and optimize the design. We then study the role of the different interfaces and show that Al is a viable plasmonic back contact material. C1 [Ferry, Vivian E.; Polman, Albert] FOM Inst AMOLF, Ctr Nanophoton, Amsterdam, Netherlands. [Ferry, Vivian E.; Atwater, Harry A.] CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA. RP Ferry, VE (reprint author), Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM veferry@lbl.gov RI Polman, Albert/D-1490-2011; Wei, Zhanhua/D-7544-2013; OI Wei, Zhanhua/0000-0003-2687-0293; Atwater, Harry/0000-0001-9435-0201 FU Department of Energy [DE-FG02-07ER46405]; SETP [GO-18006]; NWO; European Research Counsel; Global Climate and Energy Project (GCEP) FX We are grateful to R. Schropp, C. van der Werf, and M. Verschuuren for cell fabrication. The Caltech portion of this work was supported by the Department of Energy under Contract Number DE-FG02-07ER46405 (modeling) and SETP GO-18006 (cell fabrication). Work at AMOLF is part of the research program of FOM which is financially supported by NWO; it is also supported by the European Research Counsel. This work is also part of the Global Climate and Energy Project (GCEP). NR 42 TC 127 Z9 127 U1 8 U2 148 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2011 VL 5 IS 12 BP 10055 EP 10064 DI 10.1021/nn203906t PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 865ND UT WOS:000298316700083 PM 22082201 ER PT J AU Iacovella, CR French, WR Cook, BG Kent, PRC Cummings, PT AF Iacovella, Christopher R. French, William R. Cook, Brandon G. Kent, Paul R. C. Cummings, Peter T. TI Role of Polytetrahedral Structures in the Elongation and Rupture of Gold Nanowires SO ACS NANO LA English DT Article DE gold, nanowire; atomic-scale contacts; polytetrahedra; icosahedra; electron-transport; conductance; simulation; density functional theory; molecular dynamics; reactive force fields ID METALLIC NANOWIRES; MOLECULAR-DYNAMICS; CONDUCTANCE QUANTIZATION; PLASTIC-DEFORMATION; POINT CONTACTS; CLUSTERS; ATOMS; TEMPERATURE; TRANSITION; MICROSCOPY AB We report comprehensive high-accuracy molecular dynamics simulations using the ReaxFF force field to explore the structural changes that occur as Au nanowires are elongated, establishing trends as a function of both temperature and nanowire diameter. Our simulations and subsequent quantitative structural analysis reveal that polytetrahedral structures (e.g., icosahedra) form within the "amorphous" neck regions, most prominently for systems with small diameter at high temperature. We demonstrate that the formation of polytetrahedra diminishes the conductance quantization as compared to systems without this structural motif. We demonstrate that use of the ReaxFF force field, fitted to high-accuracy first-principles calculations of Au, combines the accuracy of quantum calculations with the speed of semiempirical methods. C1 [Iacovella, Christopher R.; French, William R.; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Cook, Brandon G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Kent, Paul R. C.; Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Cummings, PT (reprint author), Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM peter.cummings@vanderbilt.edu RI Kent, Paul/A-6756-2008; Iacovella, Christopher/D-2050-2011; Cummings, Peter/B-8762-2013; French, William/D-4164-2013 OI Kent, Paul/0000-0001-5539-4017; Cummings, Peter/0000-0002-9766-2216; French, William/0000-0003-2927-0234 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; National Institute for Computational Sciences [UT-TNEDU014.61]; U.S. Department of Education [P200A090323]; Office of Basic Energy Sciences, DOE FX This work was funded by the U.S. Department of Energy (DOE) and supported by computational resources provided by the National Energy Research Scientific Computing Center (NERSC) of the DOE under Contract No. DE-AC02-05CH11231 and the National Institute for Computational Sciences, Project-ID UT-TNEDU014.61 W.R.F. was supported under the U.S. Department of Education Graduate Assistance in Areas of National Need (GAANN) Fellowship under Grant No. P200A090323. Research by PRCK at the Center for Nanophase Materials Sciences was sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, DOE. NR 64 TC 7 Z9 7 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2011 VL 5 IS 12 BP 10065 EP 10073 DI 10.1021/nn203941r PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 865ND UT WOS:000298316700084 PM 22040227 ER PT J AU Cheng, C Fan, W Cao, JB Ryu, SG Ji, J Grigoropoulos, CP Wu, JQ AF Cheng, Chun Fan, Wen Cao, Jinbo Ryu, Sang-Gil Ji, Jie Grigoropoulos, Costas P. Wu, Junqiao TI Heat Transfer across the Interface between Nanoscale Solids and Gas SO ACS NANO LA English DT Article DE heat transfer; solid - gas (vapor) interface; nanowire; vanadium dioxide; phase transition; conduction and convection ID METAL-INSULATOR DOMAINS; SILICON NANOWIRES; VO2; ORGANIZATION; PERFORMANCE; TRANSITION; CONDUCTION; EMISSION AB When solid materials and devices scale down In size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid Is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above similar to 10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO2 nanowire and surrounding air using laser thermography, where the temperature distribution along the VO2 nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments. C1 [Cheng, Chun; Fan, Wen; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Fan, Wen; Ji, Jie] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Peoples R China. [Cao, Jinbo; Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ryu, Sang-Gil; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Wu, Junqiao/G-7840-2011; cheng, chun/B-5043-2011; Ryu, Sang-gil/I-3968-2013 OI Wu, Junqiao/0000-0002-1498-0148; cheng, chun/0000-0001-7319-4393; FU U.S. Department of Energy [DE-FG02-11ER46796]; National Science Foundation (NSF) [CMMI-1000176] FX This work was supported by the U.S. Department of Energy Early Career Award DE-FG02-11ER46796. The materials synthesis part was supported by the National Science Foundation (NSF) under Grant No, CMMI-1000176. NR 27 TC 31 Z9 32 U1 3 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD DEC PY 2011 VL 5 IS 12 BP 10102 EP 10107 DI 10.1021/nn204072n PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 865ND UT WOS:000298316700089 PM 22070645 ER PT J AU Lee, OP Yiu, AT Beaujuge, PM Woo, CH Holcombe, TW Millstone, JE Douglas, JD Chen, MS Frechet, JMJ AF Lee, Olivia P. Yiu, Alan T. Beaujuge, Pierre M. Woo, Claire H. Holcombe, Thomas W. Millstone, Jill E. Douglas, Jessica D. Chen, Mark S. Frechet, Jean M. J. TI Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene-Directed Molecular Self-Assembly SO ADVANCED MATERIALS LA English DT Article DE self-assembly; pyrene; organic photovoltaics; donor-acceptor small molecules ID FIELD-EFFECT TRANSISTORS; ORGANIC PHOTOVOLTAIC CELLS; OLIGOTHIOPHENE DERIVATIVES; DIKETOPYRROLOPYRROLE; POLYMER; DONOR; PERFORMANCE; WEIGHT; MOBILITY; ELECTRONICS AB Efficient organic photovoltaic (OPV) materials are constructed by attaching completely planar, symmetric end-groups to donor-acceptor electroactive small molecules. Appending C2-pyrene as the small molecule end-group to a diketopyrrolopyrrole core leads to materials with a tight, aligned crystal packing and favorable morphology dictated by pi-pi interactions, resulting in high power conversion efficiencies and high fill factors. The use of end-groups to direct molecular self-assembly is an effective strategy for designing high-performance small molecule OPV devices. C1 [Lee, Olivia P.; Yiu, Alan T.; Beaujuge, Pierre M.; Woo, Claire H.; Holcombe, Thomas W.; Millstone, Jill E.; Douglas, Jessica D.; Chen, Mark S.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lee, Olivia P.; Yiu, Alan T.; Beaujuge, Pierre M.; Woo, Claire H.; Holcombe, Thomas W.; Millstone, Jill E.; Douglas, Jessica D.; Chen, Mark S.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Lee, Olivia P.; Yiu, Alan T.; Beaujuge, Pierre M.; Woo, Claire H.; Millstone, Jill E.; Douglas, Jessica D.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Beaujuge, Pierre M.; Frechet, Jean M. J.] King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi Arabia. RP Chen, MS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mark.s.chen2@gmail.com; jean.frechet@kaust.edu.sa OI Millstone, Jill/0000-0002-9499-5744; Frechet, Jean /0000-0001-6419-0163 FU Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Camille and Henry Dreyfus Postdoctoral Program FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. C.H.W. and T.W.H. thank the National Science Foundation for graduate student fellowships, and M.S.C. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for fellowship. The authors thank Dr. Antonio DiPasquale for acquiring the crystal structure. NR 41 TC 227 Z9 228 U1 14 U2 220 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD DEC 1 PY 2011 VL 23 IS 45 BP 5359 EP + DI 10.1002/adma.201103177 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 853WZ UT WOS:000297457700004 PM 22021084 ER PT J AU Macdonald, TE Helma, CH Shou, YL Valdez, YE Ticknor, LO Foley, BT Davis, SW Hannett, GE Kelly-Cirino, CD Barash, JR Arnon, SS Lindstrom, M Korkeala, H Smith, LA Smith, TJ Hill, KK AF Macdonald, Thomas E. Helma, Charles H. Shou, Yulin Valdez, Yolanda E. Ticknor, Lawrence O. Foley, Brian T. Davis, Stephen W. Hannett, George E. Kelly-Cirino, Cassandra D. Barash, Jason R. Arnon, Stephen S. Lindstrom, Miia Korkeala, Hannu Smith, Leonard A. Smith, Theresa J. Hill, Karen K. TI Analysis of Clostridium botulinum Serotype E Strains by Using Multilocus Sequence Typing, Amplified Fragment Length Polymorphism, Variable-Number Tandem-Repeat Analysis, and Botulinum Neurotoxin Gene Sequencing SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID BUTYRICUM STRAINS; DIVERSITY; INFANT; PCR; TOXIN AB A total of 41 Clostridium botulinum serotype E strains from different geographic regions, including Canada, Denmark, Finland, France, Greenland, Japan, and the United States, were compared by multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) analysis, variable-number tandem-repeat (VNTR) analysis, and botulinum neurotoxin (bont) E gene sequencing. The strains, representing environmental, food-borne, and infant botulism samples collected from 1932 to 2007, were analyzed to compare serotype E strains from different geographic regions and types of botulism and to determine whether each of the strains contained the transposon-associated recombinase rarA, involved with bont/E insertion. MLST examination using 15 genes clustered the strains into several clades, with most members within a cluster sharing the same BoNT/E subtype (BoNT/E1, E2, E3, or E6). Sequencing of the bont/E gene identified two new variants (E7, E8) that showed regions of recombination with other E subtypes. The AFLP dendrogram clustered the 41 strains similarly to the MLST dendrogram. Strains that could not be differentiated by AFLP, MLST, or bont gene sequencing were further examined using three VNTR regions. Both intact and split rarA genes were amplified by PCR in each of the strains, and their identities were confirmed in 11 strains by amplicon sequencing. The findings suggest that (i) the C. botulinum serotype E strains result from the targeted insertion of the bont/E gene into genetically conserved bacteria and (ii) recombination events (not random mutations) within bont/E result in toxin variants or subtypes within strains. C1 [Macdonald, Thomas E.; Helma, Charles H.; Shou, Yulin; Valdez, Yolanda E.; Hill, Karen K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Ticknor, Lawrence O.] Los Alamos Natl Lab, Div Comp Computat & Stat Sci, Los Alamos, NM 87545 USA. [Foley, Brian T.] Los Alamos Natl Lab, Div Theoret Biol, Los Alamos, NM 87545 USA. [Davis, Stephen W.; Hannett, George E.; Kelly-Cirino, Cassandra D.] New York State Dept Hlth, Biodef Lab, Wadsworth Ctr, Albany, NY 12208 USA. [Barash, Jason R.; Arnon, Stephen S.] Calif Dept Publ Hlth, Richmond, CA 94801 USA. [Lindstrom, Miia; Korkeala, Hannu] Univ Helsinki, Dept Food Hyg & Environm Hlth, FIN-00014 Helsinki, Finland. [Smith, Leonard A.] Med Res & Mat Command MRMC, Off Chief Scientist, Ft Detrick, MD 21702 USA. [Smith, Theresa J.] US Army Med Inst Infect Dis USAMRIID, Integrated Toxicol Div, Ft Detrick, MD 21702 USA. RP Hill, KK (reprint author), Los Alamos Natl Lab, Biosci Div, MS M888, Los Alamos, NM 87545 USA. EM khill@lanl.gov OI Foley, Brian/0000-0002-1086-0296; Ticknor, Lawrence/0000-0002-7967-7908; Korkeala, Hannu/0000-0003-0699-1290; Kelly-Cirino, Cassandra/0000-0002-4526-8487 FU Department of Homeland Security Science and Technology Directorate [HSHQDC-10-C-00139]; NIAID [IAA B18-120] FX Funding for this research was provided by Department of Homeland Security Science and Technology Directorate contract HSHQDC-10-C-00139 and NIAID IAA B18-120. NR 31 TC 30 Z9 31 U1 2 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD DEC PY 2011 VL 77 IS 24 BP 8625 EP 8634 DI 10.1128/AEM.05155-11 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 863JE UT WOS:000298157800020 PM 22003031 ER PT J AU Zemp, M Gnedin, OY Gnedin, NY Kravtsov, AV AF Zemp, Marcel Gnedin, Oleg Y. Gnedin, Nickolay Y. Kravtsov, Andrey V. TI ON DETERMINING THE SHAPE OF MATTER DISTRIBUTIONS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE methods: data analysis; methods: numerical ID COLD DARK-MATTER; N-BODY SIMULATIONS; DISSIPATIONLESS COLLAPSE; HALOS; ALIGNMENT; UNIVERSE; MODELS; GAS; SUBSTRUCTURES; DEPENDENCE AB A basic property of objects, such as galaxies and halos that form in cosmological structure formation simulations, is their shape. Here, we critically investigate shape determination methods that are commonly used in the literature. It is found that using an enclosed integration volume and weight factors r(-2) and r(ell)(-2) (elliptical radius) for the contribution of each particle or volume element in the shape tensor leads to biased axis ratios and smoothing of details when calculating the local shape as a function of distance from the center. To determine the local shape of matter distributions as a function of distance for well-resolved objects (typically more than O(10(4)) particles), we advocate a method that (1) uses an ellipsoidal shell (homoeoid) as an integration volume without any weight factors in the shape tensor and (2) removes subhalos. C1 [Zemp, Marcel; Gnedin, Oleg Y.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.; Kravtsov, Andrey V.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.; Kravtsov, Andrey V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Zemp, M (reprint author), Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. EM mzemp@umich.edu OI Zemp, Marcel/0000-0002-0498-3812; Gnedin, Oleg/0000-0001-9852-9954 FU NSF [AST-0708087]; Fermilab; Kavli Institute for Cosmological Physics; University of Chicago FX It is a pleasure to thank Jeremy Bailin, Jurg Diemand, Alexander Knebe, and Mike Kuhlen for stimulating discussions and feedback on a draft of this paper. M.Z., O.Y.G., N.Y.G., and A. V. K. are supported in part by NSF grant AST-0708087. The simulations and analysis in this work have been performed on the Joint Fermilab-KICP Supercomputing Cluster (supported by grants from Fermilab, Kavli Institute for Cosmological Physics, and the University of Chicago) and the Flux cluster at the Center for Advanced Computing at the University of Michigan. This research has made use of NASA's Astrophysics Data System (ADS), the arXiv.org preprint server, the visualization tool VisIt, and the Python plotting library Matplotlib. NR 40 TC 34 Z9 34 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2011 VL 197 IS 2 AR 30 DI 10.1088/0067-0049/197/2/30 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 864MN UT WOS:000298244300016 ER PT J AU Fisher, JA Jacob, DJ Wang, QQ Bahreini, R Carouge, CC Cubison, MJ Dibb, JE Diehl, T Jimenez, JL Leibensperger, EM Lu, ZF Meinders, MBJ Pye, HOT Quinn, PK Sharma, S Streets, DG van Donkelaar, A Yantosca, RM AF Fisher, Jenny A. Jacob, Daniel J. Wang, Qiaoqiao Bahreini, Roya Carouge, Claire C. Cubison, Michael J. Dibb, Jack E. Diehl, Thomas Jimenez, Jose L. Leibensperger, Eric M. Lu, Zifeng Meinders, Marcel B. J. Pye, Havala O. T. Quinn, Patricia K. Sharma, Sangeeta Streets, David G. van Donkelaar, Aaron Yantosca, Robert M. TI Sources, distribution, and acidity of sulfate-ammonium aerosol in the Arctic in winter-spring SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Arctic; Aerosol acidity; Sulfate; Ammonium; Pollution sources ID CIRCULATION MODEL ASSESSMENT; CLOUD RESOLVING SIMULATIONS; DRY DEPOSITION; CHEMICAL-COMPOSITION; ASIAN POLLUTION; ICE NUCLEATION; AIR-POLLUTION; INTEX-B; ATMOSPHERIC TRANSPORT; OZONE DEPLETION AB We use GEOS-Chem chemical transport model simulations of sulfate-ammonium aerosol data from the NASA ARCTAS and NOAA ARCPAC aircraft campaigns in the North American Arctic in April 2008, together with longer-term data from surface sites, to better understand aerosol sources in the Arctic in winter-spring and the implications for aerosol acidity. Arctic pollution is dominated by transport from mid-latitudes, and we test the relevant ammonia and sulfur dioxide emission inventories in the model by comparison with wet deposition flux data over the source continents. We find that a complicated mix of natural and anthropogenic sources with different vertical signatures is responsible for sulfate concentrations in the Arctic. East Asian pollution influence is weak in winter but becomes important in spring through transport in the free troposphere. European influence is important at all altitudes but never dominant. West Asia (non-Arctic Russia and Kazakhstan) is the largest contributor to Arctic sulfate in surface air in winter, reflecting a southward extension of the Arctic front over that region. Ammonium in Arctic spring mostly originates from anthropogenic sources in East Asia and Europe, with added contribution from boreal fires, resulting in a more neutralized aerosol in the free troposphere than at the surface. The ARCMS and ARCPAC data indicate a median aerosol neutralization fraction [NH4+]/(2[SO42-] + [NO3-]) of 0.5 mol mol(-1) below 2 km and 0.7 mol mol(-1) above. We find that East Asian and European aerosol transported to the Arctic is mostly neutralized, whereas West Asian and North American aerosol is highly acidic. Growth of sulfur emissions in West Asia may be responsible for the observed increase in aerosol acidity at Barrow over the past decade. As global sulfur emissions decline over the next decades, increasing aerosol neutralization in the Arctic is expected, potentially accelerating Arctic warming through indirect radiative forcing and feedbacks. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Fisher, Jenny A.; Jacob, Daniel J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Jacob, Daniel J.; Wang, Qiaoqiao; Carouge, Claire C.; Leibensperger, Eric M.; Yantosca, Robert M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Bahreini, Roya; Cubison, Michael J.; Jimenez, Jose L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Bahreini, Roya] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Cubison, Michael J.; Jimenez, Jose L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Dibb, Jack E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Dibb, Jack E.] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. [Diehl, Thomas] Univ Space Res Assoc, Columbia, MD USA. [Diehl, Thomas] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lu, Zifeng; Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Meinders, Marcel B. J.] Univ Wageningen & Res Ctr, Wageningen, Netherlands. [Pye, Havala O. T.] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA. [Quinn, Patricia K.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Sharma, Sangeeta] Environm Canada, Div Climate Res, Downsview, ON, Canada. [van Donkelaar, Aaron] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. RP Fisher, JA (reprint author), Harvard Univ, Dept Earth & Planetary Sci, Pierce Hall G3H,29 Oxford St, Cambridge, MA 02138 USA. EM jafisher@fas.harvard.edu RI Jimenez, Jose/A-5294-2008; Pye, Havala/F-5392-2012; Lu, Zifeng/F-3266-2012; Fisher, Jenny/J-3979-2012; Chem, GEOS/C-5595-2014; Yantosca, Robert/F-7920-2014; Wang, Qiaoqiao/M-3884-2016; Quinn, Patricia/R-1493-2016; Manager, CSD Publications/B-2789-2015; OI Jimenez, Jose/0000-0001-6203-1847; Pye, Havala/0000-0002-2014-2140; Fisher, Jenny/0000-0002-2921-1691; Yantosca, Robert/0000-0003-3781-1870; Quinn, Patricia/0000-0003-0337-4895; Streets, David/0000-0002-0223-1350; Carouge, Claire/0000-0002-0313-8385 FU NASA; U.S. National Science Foundation FX This work was supported by the NASA Tropospheric Chemistry Program and the Decadal and Regional Climate Prediction using Earth System Models (EaSM) Program of the U.S. National Science Foundation. We thank A. M. Middlebrook for obtaining the ARCPAC AMS data. NR 131 TC 71 Z9 72 U1 3 U2 73 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2011 VL 45 IS 39 BP 7301 EP 7318 DI 10.1016/j.atmosenv.2011.08.030 PG 18 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 862UU UT WOS:000298120400032 ER PT J AU Moore, MJK Furutani, H Roberts, GC Moffet, RC Gilles, MK Palenik, B Prather, KA AF Moore, Meagan J. K. Furutani, Hiroshi Roberts, Gregory C. Moffet, Ryan C. Gilles, Mary K. Palenik, Brian Prather, Kimberly A. TI Effect of organic compounds on cloud condensation nuclei (CCN) activity of sea spray aerosol produced by bubble bursting SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Sea salt; Marine aerosol; CCN activity; Air bubble bursting; Marine microorganisms ID MARINE AEROSOL; ATMOSPHERIC PARTICLES; SURFACTANT PROPERTIES; HYGROSCOPIC GROWTH; ACTIVATION; OCEAN; TRANSMISSION; INTERFACE; KINETICS; BACTERIA AB The ocean comprises over 70% of the surface of the earth and thus sea spray aerosols generated by wave processes represent a critical component of our climate system. The manner in which different complex oceanic mixtures of organic species and inorganic salts are distributed between individual particles in sea spray directly determines which particles will effectively form cloud nuclei. Controlled laboratory experiments were undertaken to better understand the full range of particle properties produced by bubbling solutions composed of simplistic model organic species, oleic acid and sodium dodecyl sulfate (SDS), mixed with NaCl to more complex artificial seawater mixed with complex organic mixtures produced by common oceanic microorganisms. Simple mixtures of NaCl and oleic acid or SDS had a significant effect on CCN activity, even in relatively small amounts. However, an artificial seawater (ASW) solution containing microorganisms, the common cyanobacteria (Synechococcus) and DMS-producing green algae (Ostreococcus), produced particles containing similar to 34 times more carbon than the particles produced from pure ASW, yet no significant change was observed in the overall CCN activity. We hypothesize that these microorganisms produce diverse mixtures of organic species with a wide range of properties that produced offsetting effects, leading to no net change in the overall average measured hygroscopicity of the collection of sea spray particles. Based on these observations, changes in CCN activity due to "bloom" conditions would be predicted to lead to small changes in the average CCN activity, and thus have a negligible impact on cloud formation. However, each sea spray particle will contain a broad spectrum of different species, and thus further studies are needed of the CCN activity of individual sea spray particles and biological processes under a wide range of controllable conditions. (C) 2011 Published by Elsevier Ltd. C1 [Moore, Meagan J. K.; Furutani, Hiroshi; Prather, Kimberly A.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Roberts, Gregory C.; Palenik, Brian] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Roberts, Gregory C.] Ctr Natl Rech Meteorol GAME, Toulouse, France. [Moffet, Ryan C.; Gilles, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Prather, KA (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM kprather@ucsd.edu RI Prather, Kimberly/A-3892-2008 OI Prather, Kimberly/0000-0003-3048-9890 FU UCSD; Office of Science, Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to Cassandra Gaston and Drs. Grant Deane and Dale Stokes, at Scripps Institution of Oceanography, for their assistance in validation of the bubbling technique via picture imaging used in these experiments. The authors are also grateful to Jessie Charrier and Ryan Sullivan, Department of Chemistry at UCSD, for helpful discussions on experimental techniques and data interpretation and the Lihini Aluwihare laboratory, Scripps Institution of Oceanography, for use of their oven for combustion of glassware. Funding for M.J.K.M. was provided by UCSD's Chancellor Interdisciplinary Collaboratories Fellowship. STXM/NEXAFS data was acquired at beamline 5.3.2.2 at the ALS, which is supported by the Director of the Office of Science, Department of Energy, under Contract No. DE-AC02-05CH11231, NR 47 TC 21 Z9 21 U1 2 U2 62 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2011 VL 45 IS 39 BP 7462 EP 7469 DI 10.1016/j.atmosenv.2011.04.034 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 862UU UT WOS:000298120400046 ER PT J AU Yan, BZ Kennedy, D Miller, RL Cowin, JP Jung, KH Perzanowski, M Balletta, M Perera, FP Kinney, PL Chillrud, SN AF Yan, Beizhan Kennedy, Daniel Miller, Rachel L. Cowin, James P. Jung, Kyung-Hwa Perzanowski, Matt Balletta, Marco Perera, Federica P. Kinney, Patrick L. Chillrud, Steven N. TI Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Black carbon; Integrating sphere; Optical absorbance; Teflon filter; Source apportionment; Cohort study; Method validation ID NEW-YORK-CITY; POLYCYCLIC AROMATIC-HYDROCARBONS; DIESEL EXHAUST PARTICLES; LUNG-CANCER; ELEMENTAL CARBON; RESIDENTIAL INDOOR; RAILROAD WORKERS; EXPOSURE; AIR; AETHALOMETER AB Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wave-length-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM(2.5) filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R(2) = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at filter loadings above 90 ng/mm(2). Furthermore, positive correlations (R(2) = 0.7) were observed between EC measured by NIOSH Method 5040 on quartz filters and BC measured in co-located Teflon filter samples collected from both heating and non-heating seasons. Overall, the validation data demonstrates the usefulness of this method to evaluate BC from archived Teflon filters while potentially providing additional component information. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yan, Beizhan; Kennedy, Daniel; Balletta, Marco; Chillrud, Steven N.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Miller, Rachel L.; Perzanowski, Matt; Perera, Federica P.; Kinney, Patrick L.] Columbia Univ, Mailman Sch Publ Hlth, New York, NY USA. [Miller, Rachel L.; Jung, Kyung-Hwa] Columbia Univ, Coll Phys & Surg, Div Pulm Allergy & Crit Care, New York, NY USA. [Cowin, James P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yan, BZ (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. EM yanbz@LDEO.columbia.edu RI Kinney, Patrick/H-7914-2012 FU NIEHS [ES016110, ES015905, ES013163, ES009089] FX This research is supported by NIEHS grants (ES016110, ES015905, ES013163 and ES009089). Thanks to Cheng-Chuan Ho for fruitful programming discussion and coding, and to summer interns who have worked on this project, specifically Molly Plotkin and Cristine White. We also thank Phil Lawless for providing extended details of his method and useful discussion of our method and two anonymous reviewers for their useful suggestions and efforts in improving this manuscript. This is LDEO contribution number XXXX. NR 37 TC 17 Z9 17 U1 1 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2011 VL 45 IS 39 BP 7478 EP 7486 DI 10.1016/j.atmosenv.2011.01.044 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 862UU UT WOS:000298120400048 PM 22125411 ER PT J AU Hagan, N Robins, N Hsu-Kim, H Halabi, S Morris, M Woodall, G Zhang, T Bacon, A Richter, DD Vandenberg, J AF Hagan, Nicole Robins, Nicholas Hsu-Kim, Heileen Halabi, Susan Morris, Mark Woodall, George Zhang, Tong Bacon, Allan Richter, Daniel de B. Vandenberg, John TI Estimating historical atmospheric mercury concentrations from silver mining and their legacies in present-day surface soil in Potosi, Bolivia SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Mercury; Silver; AERMOD; Soils; Potosi, Bolivia ID SPECTROSCOPY; EXTRACTIONS; ABSORPTION; SPECIATION; POLLUTION; AMERICA; AREA AB Detailed Spanish records of mercury use and silver production during the colonial period in Potosi, Bolivia were evaluated to estimate atmospheric emissions of mercury from silver smelting. Mercury was used in the silver production process in Potosi and nearly 32,000 metric tons of mercury were released to the environment. AERMOD was used in combination with the estimated emissions to approximate historical air concentrations of mercury from colonial mining operations during 1715, a year of relatively low silver production. Source characteristics were selected from archival documents, colonial maps and images of silver smelters in Potosi and a base case of input parameters was selected. Input parameters were varied to understand the sensitivity of the model to each parameter. Modeled maximum 1-h concentrations were most sensitive to stack height and diameter, whereas an index of community exposure was relatively insensitive to uncertainty in input parameters. Modeled 1-h and long-term concentrations were compared to inhalation reference values for elemental mercury vapor. Estimated 1-h maximum concentrations within 500 m of the silver smelters consistently exceeded present-day occupational inhalation reference values. Additionally, the entire community was estimated to have been exposed to levels of mercury vapor that exceed present-day acute inhalation reference values for the general public. Estimated long-term maximum concentrations of mercury were predicted to substantially exceed the EPA Reference Concentration for areas within 600 m of the silver smelters. A concentration gradient predicted by AERMOD was used to select soil sampling locations along transects in Potosi. Total mercury in soils ranged from 0.105 to 155 mg kg(-1), among the highest levels reported for surface soils in the scientific literature. The correlation between estimated air concentrations and measured soil concentrations will guide future research to determine the extent to which the current community of Potosi and vicinity is at risk of adverse health effects from historical mercury contamination. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Hagan, Nicole] US EPA, Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC 27711 USA. [Robins, Nicholas] N Carolina State Univ, Dept Hist, Raleigh, NC 27695 USA. [Hsu-Kim, Heileen; Zhang, Tong] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA. [Halabi, Susan] Duke Univ, Dept Biostat & Bioinformat, Med Ctr, Durham, NC 27710 USA. [Morris, Mark] US EPA, Off Air Qual Planning & Stand, Res Triangle Pk, NC 27711 USA. [Woodall, George; Vandenberg, John] US EPA, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Bacon, Allan; Richter, Daniel de B.] Duke Univ, Nicholas Sch Environm, LSRC, Durham, NC 27708 USA. RP Hagan, N (reprint author), US EPA, Oak Ridge Inst Sci & Educ, 109 TW Alexander Dr,Mail Drop B243-01, Res Triangle Pk, NC 27711 USA. EM hagan.nicole@epa.gov; nrobins1@yahoo.com; hsukim@duke.edu; susan.halabi@duke.edu; morris.mark@epa.gov; woodall.george@epa.gov; tong.zhang@duke.edu; allan.bacon@duke.edu; drichter@duke.edu; vandenberg.john@epa.gov RI Hsu-Kim, Heileen/A-5409-2008; Woodall, George/M-5658-2014; OI Hsu-Kim, Heileen/0000-0003-0675-4308; Vandenberg, John/0000-0003-2619-9460 FU U.S. EPA; Council for the International Exchange of Scholars; National Archive and Library of Bolivia; Casa Nacional de Moneda; Museum of the Nacional de Moneda de Potosi FX Special thanks to Ted Palma, James Hirtz, James Thurman, and Roger Brode of the U.S. EPA for their support and contributions to this paper. Nicholas Robins additionally thanks Joseph Graff and Diego Ballivian of the Council for the International Exchange of Scholars Fulbright program, and Marcela Inch, Director of the National Archive and Library of Bolivia, and her staff, as well as Ruben Julio Ruiz Ortiz, Director of the Casa Nacional de Moneda, Potosi and Sheila Beltran Lopez, Director of the Museum of the Nacional de Moneda de Potosi, for their support of this research. Additionally, the authors would like to thank Cesar Barrios and Gaston Serrano for his assistance in the field in Potosi. The authors would also like to thank Paul Heine for coordinating the soil importation and containments as a USDA permitted Soil Containment Officer. NR 35 TC 16 Z9 18 U1 2 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2011 VL 45 IS 40 SI SI BP 7619 EP 7626 DI 10.1016/j.atmosenv.2010.10.009 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 868HD UT WOS:000298513400011 ER PT J AU Gori, F Tringe, SG Kartal, B Marchiori, E Jetten, MSM AF Gori, Fabio Tringe, Susannah Green Kartal, Boran Marchiori, Elena Jetten, Mike S. M. TI The metagenomic basis of anammox metabolism in Candidatus 'Brocadia fulgida' SO BIOCHEMICAL SOCIETY TRANSACTIONS LA English DT Article DE anaerobic ammonium oxidation (anammox); Candidatus 'Brocadia fulgida'; Candidatus 'Kuenenia'; hydrazine; nitrate reductase ID ANAEROBIC AMMONIUM OXIDATION; OXIDIZING BACTERIA; NITROGEN LOSS; EVOLUTION; NITRITE; PROTEIN; SYSTEM AB Anammox (anaerobic ammonium oxidation) coupled to nitrite reduction is an important step in the nitrogen cycle and has been recognized as an important sink for fixed nitrogen in the ocean. Still little is known about the genomic blueprint of different anammox species. In the present article, we discuss the important genes of anammox metabolism in Candidatus 'Brocadia fulgida' that were retrieved via a metagenomic approach. C1 [Kartal, Boran; Jetten, Mike S. M.] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Microbiol, NL-6525 AJ Nijmegen, Netherlands. [Gori, Fabio; Marchiori, Elena] Radboud Univ Nijmegen, ICIS, NL-6525 AJ Nijmegen, Netherlands. [Tringe, Susannah Green] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Jetten, Mike S. M.] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands. RP Jetten, MSM (reprint author), Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Microbiol, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands. EM m.jetten@science.ru.nl RI Jetten, Mike/B-8834-2011; Kartal, Boran/D-2488-2014; OI Jetten, Mike/0000-0002-4691-7039; Tringe, Susannah/0000-0001-6479-8427 FU NWO-ALW (Netherlands Organisation for Scientific Research Division for the Earth and Life Sciences); STW (Dutch Foundation for Applied Research); STOWA (Dutch Foundation of Applied Water Research); European Union; Darwin; Paques BV; European Research Council [232937]; KRW (European Framework Directive on Water) [09035] FX NWO-ALW (Netherlands Organisation for Scientific Research Division for the Earth and Life Sciences), STW (Dutch Foundation for Applied Research), STOWA (Dutch Foundation of Applied Water Research), European Union, Darwin and Paques BV are acknowledged for financial support. M.S.M.J. is supported by the European Research Council [advanced grant number 232937] and B.K. is supported by the KRW (European Framework Directive on Water) [grant number 09035]. NR 20 TC 33 Z9 35 U1 5 U2 64 PU PORTLAND PRESS LTD PI LONDON PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND SN 0300-5127 J9 BIOCHEM SOC T JI Biochem. Soc. Trans. PD DEC PY 2011 VL 39 BP 1799 EP 1804 DI 10.1042/BST20110707 PN 6 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 863WW UT WOS:000298200000045 PM 22103529 ER PT J AU Edwards, TL Harper, JC Polsky, R Lopez, DM Wheeler, DR Allen, AC Brozik, SM AF Edwards, Thayne L. Harper, Jason C. Polsky, Ronen Lopez, DeAnna M. Wheeler, David R. Allen, Amy C. Brozik, Susan M. TI A parallel microfluidic channel fixture fabricated using laser ablated plastic laminates for electrochemical and chemiluminescent biodetection of DNA SO BIOMICROFLUIDICS LA English DT Article ID DEVICES; ELECTROPHORESIS; SYSTEMS; ELECTROCHEMILUMINESCENCE; MEMS; CHIP; PMMA AB Herein is described the fabrication and use of a plastic multilayer 3-channel microfluidic fixture. Multilayer devices were produced by laser machining of plastic polymethylmethacrylate and polyethyleneterapthalate laminates by ablation. The fixture consisted of an array of nine individually addressable gold or gold/ITO working electrodes, and a resistive platinum heating element. Laser machining of both the fluidic pathways in the plastic laminates, and the stencil masks used for thermal evaporation to form electrode regions on the plastic laminates, enabled rapid and inexpensive implementation of design changes. Electrochemiluminescence reactions in the fixture were achieved and monitored through ITO electrodes. Electroaddressable aryl diazonium chemistry was employed to selectively pattern gold electrodes for electrochemical multianalyte DNA detection from double stranded DNA (dsDNA) samples. Electrochemical detection of dsDNA was achieved by melting of dsDNA molecules in solution with the integrated heater, allowing detection of DNA sequences specific to breast and colorectal cancers with a non-specific binding control. Following detection, the array surface could be renewed via high temperature (95 degrees C) stripping using the integrated heating element. This versatile and simple method for prototyping devices shows potential for further development of highly integrated, multi-functional bioanalytical devices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3664694] C1 [Edwards, Thayne L.; Harper, Jason C.; Polsky, Ronen; Lopez, DeAnna M.; Wheeler, David R.; Allen, Amy C.; Brozik, Susan M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Edwards, TL (reprint author), Sandia Natl Labs, POB 5800,MS-0892, Albuquerque, NM 87185 USA. EM smbrozi@sandia.gov FU Sandia Labs; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded in part by the Sandia Labs Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 28 TC 6 Z9 6 U1 1 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1932-1058 J9 BIOMICROFLUIDICS JI Biomicrofluidics PD DEC PY 2011 VL 5 IS 4 AR 044115 DI 10.1063/1.3664694 PG 14 WC Biochemical Research Methods; Biophysics; Nanoscience & Nanotechnology; Physics, Fluids & Plasmas SC Biochemistry & Molecular Biology; Biophysics; Science & Technology - Other Topics; Physics GA 869ZK UT WOS:000298638700016 PM 22276087 ER PT J AU Wyman, CE Balan, V Dale, BE Elander, RT Falls, M Hames, B Holtzapple, MT Ladisch, MR Lee, YY Mosier, N Pallapolu, VR Shi, J Thomas, SR Warner, RE AF Wyman, Charles E. Balan, Venkatesh Dale, Bruce E. Elander, Richard T. Falls, Matthew Hames, Bonnie Holtzapple, Mark T. Ladisch, Michael R. Lee, Y. Y. Mosier, Nathan Pallapolu, Venkata R. Shi, Jian Thomas, Steven R. Warner, Ryan E. TI Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources SO BIORESOURCE TECHNOLOGY LA English DT Article DE Hydrolysis; Microscopy; Pretreatment; Switchgrass; Yields ID CORN STOVER; LIGNOCELLULOSIC BIOMASS; CELLULOSIC ETHANOL; PRESSURE COOKING; TECHNOLOGIES; WATER; AFEX; HYDROLYSIS; POPLAR; FUNDAMENTALS AB Dilute sulfuric acid (DA), sulfur dioxide (SO2), liquid hot water (LHW), soaking in aqueous ammonia (SAA), ammonia fiber expansion (AFEX), and lime pretreatments were applied to Alamo, Dacotah, and Shawnee switchgrass. Application of the same analytical methods and material balance approaches facilitated meaningful comparisons of glucose and xylose yields from combined pretreatment and enzymatic hydrolysis. Use of a common supply of cellulase, beta-glucosidase, and xylanase also eased comparisons. All pretreatments enhanced sugar recovery from pretreatment and subsequent enzymatic hydrolysis substantially compared to untreated switchgrass. Adding beta-glucosidase was effective early in enzymatic hydrolysis while cellobiose levels were high but had limited effect on longer term yields at the enzyme loadings applied. Adding xylanase improved yields most for higher pH pretreatments where more xylan was left in the solids. Harvest time had more impact on performance than switchgrass variety, and microscopy showed changes in different features could impact performance by different pretreatments. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Wyman, Charles E.] Univ Calif Riverside, Chem & Environm Engn Dept, Riverside, CA 92506 USA. [Wyman, Charles E.; Shi, Jian] Univ Calif Riverside, Ctr Environm Res & Technol, Riverside, CA 92506 USA. [Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, E Lansing, MI 48824 USA. [Elander, Richard T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Falls, Matthew; Holtzapple, Mark T.] Texas A&M Univ, College Stn, TX 77843 USA. [Hames, Bonnie; Thomas, Steven R.] Ceres Corp, Thousand Oaks, CA 91320 USA. [Ladisch, Michael R.; Mosier, Nathan] Purdue Univ, W Lafayette, IN 47907 USA. [Lee, Y. Y.; Pallapolu, Venkata R.] Auburn Univ, Auburn, AL 36849 USA. [Warner, Ryan E.] Genencor Inc, Palo Alto, CA USA. RP Wyman, CE (reprint author), Univ Calif Riverside, Chem & Environm Engn Dept, Riverside, CA 92506 USA. EM charles.wyman@ucr.edu RI Shi, Jian/K-8842-2012 OI Shi, Jian/0000-0003-3022-4446 FU Office of the Biomass of the United States Department of Energy [DE-FG36-07GO17102]; Ford Motor Company FX Funding by the Office of the Biomass Program of the United States Department of Energy through Contract No. DE-FG36-07GO17102 to the University of California at Riverside was vital to performing this research. The true collaborative spirit of the CAFI Team made this project possible and pleasurable, and we thank the many undergraduate and graduate students, postdoctoral candidates, technicians, administrative assistants, and others on the CAFI Team for their vital role in developing this information. Dr. Rajeev Kumar from the University of California at Riverside provided very thorough and thoughtful reviews of the paper and offered many suggestions and corrections that are greatly appreciated. We also acknowledge that this paper records the final project by the CAFI team that has been together for over 10 years. Finally, the corresponding author would like to thank the Ford Motor Company for funding the Chair in Environmental Engineering that helps make projects such as this possible. NR 32 TC 57 Z9 57 U1 2 U2 68 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2011 VL 102 IS 24 BP 11052 EP 11062 DI 10.1016/j.biortech.2011.06.069 PG 11 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 862XO UT WOS:000298127600002 PM 21816612 ER PT J AU Garlock, RJ Balan, V Dale, BE Pallapolu, VR Lee, YY Kim, Y Mosier, NS Ladisch, MR Holtzapple, MT Falls, M Sierra-Ramirez, R Shi, J Ebrik, MA Redmond, T Yang, B Wyman, CE Donohoe, BS Vinzant, TB Elander, RT Hames, B Thomas, S Warner, RE AF Garlock, Rebecca J. Balan, Venkatesh Dale, Bruce E. Pallapolu, V. Ramesh Lee, Y. Y. Kim, Youngmi Mosier, Nathan S. Ladisch, Michael R. Holtzapple, Mark T. Falls, Matthew Sierra-Ramirez, Rocio Shi, Jian Ebrik, Mirvat A. Redmond, Tim Yang, Bin Wyman, Charles E. Donohoe, Bryon S. Vinzant, Todd B. Elander, Richard T. Hames, Bonnie Thomas, Steve Warner, Ryan E. TI Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars SO BIORESOURCE TECHNOLOGY LA English DT Article DE Cellulosic ethanol; Enzymatic hydrolysis; Material balance; Pretreatment; Switchgrass ID DILUTE SULFURIC-ACID; ENZYMATIC-HYDROLYSIS; CORN STOVER; BIOETHANOL PRODUCTION; DEGRADATION-PRODUCTS; LEADING TECHNOLOGIES; ETHANOL-PRODUCTION; MASS-BALANCE; BIOMASS; LIGNOCELLULOSE AB For this project, six chemical pretreatments were compared for the Consortium for Applied Fundamentals and Innovation (CAR): ammonia fiber expansion (AFEX), dilute sulfuric acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide (SO(2)). For each pretreatment, a material balance was analyzed around the pretreatment, optional post-washing step, and enzymatic hydrolysis of Dacotah switchgrass. All pretreatments + enzymatic hydrolysis solubilized over two-thirds of the available glucan and xylan. Lime, post-washed LHW, and SO(2) achieved >83% total glucose yields. Lime, post-washed AFEX, and DA achieved >83% total xylose yields. Alkaline pretreatments, except AFEX, solubilized the most lignin and a portion of the xylan as xylo-oligomers. As pretreatment pH decreased, total solubilized xylan and released monomeric xylose increased. Low temperature-long time or high temperature-short time pretreatments are necessary for high glucose release from late-harvest Dacotah switchgrass but high temperatures may cause xylose degradation. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Biomass Convers Res Lab, Dept Chem Engn & Mat Sci, Lansing, MI 48910 USA. [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Pallapolu, V. Ramesh; Lee, Y. Y.] Auburn Univ, Dept Chem Engn, Auburn, AL 36849 USA. [Kim, Youngmi; Mosier, Nathan S.; Ladisch, Michael R.] Purdue Univ, Dept Agr & Biol Engn, LORRE, W Lafayette, IN 47907 USA. [Holtzapple, Mark T.; Falls, Matthew] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Sierra-Ramirez, Rocio] Univ Los Andes, Dept Chem Engn, Grp Convers Energia, Bogota, Colombia. [Shi, Jian; Ebrik, Mirvat A.; Redmond, Tim; Yang, Bin; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Donohoe, Bryon S.; Vinzant, Todd B.; Elander, Richard T.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Hames, Bonnie; Thomas, Steve] Ceres Inc, Thousand Oaks, CA 91320 USA. [Warner, Ryan E.] Genencor Inc, Palo Alto, CA 94304 USA. RP Garlock, RJ (reprint author), Michigan State Univ, Biomass Convers Res Lab, Dept Chem Engn & Mat Sci, 3900 Collins Rd, Lansing, MI 48910 USA. EM garlock1@msu.edu RI Shi, Jian/K-8842-2012; OI Shi, Jian/0000-0003-3022-4446; Sierra, Rocio/0000-0002-2074-7772; Ong, Rebecca/0000-0001-5020-646X; yang, bin/0000-0003-1686-8800 FU Office of Biomass of United States Department of Energy [DE-FG36-07GO17102] FX This research was funded under the Office of the Biomass Program of the United States Department of Energy (Contract: DE-FG36-07GO17102). We would like to acknowledge the many undergraduate and graduate students, post doctoral candidates, and technicians at their respective institutions for their vital role in obtaining and compiling this information. NR 35 TC 45 Z9 47 U1 7 U2 58 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2011 VL 102 IS 24 BP 11063 EP 11071 DI 10.1016/j.biortech.2011.04.002 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 862XO UT WOS:000298127600003 PM 21524908 ER PT J AU Falls, M Shi, J Ebrik, MA Redmond, T Yang, B Wyman, CE Garlock, R Balan, V Dale, BE Pallapolu, VR Lee, YY Kim, Y Mosier, NS Ladisch, MR Hames, B Thomas, S Donohoe, BS Vinzant, TB Elander, RT Warner, RE Sierra-Ramirez, R Holtzapple, MT AF Falls, Matthew Shi, Jian Ebrik, Mirvat A. Redmond, Tim Yang, Bin Wyman, Charles E. Garlock, Rebecca Balan, Venkatesh Dale, Bruce E. Pallapolu, V. Ramesh Lee, Y. Y. Kim, Youngmi Mosier, Nathan S. Ladisch, Michael R. Hames, Bonnie Thomas, Steve Donohoe, Bryon S. Vinzant, Todd B. Elander, Richard T. Warner, Ryan E. Sierra-Ramirez, Rocio Holtzapple, Mark T. TI Investigation of enzyme formulation on pretreated switchgrass SO BIORESOURCE TECHNOLOGY LA English DT Article DE Switchgrass; Pretreatment; Xylanase; beta-glucosidase; Enzymatic digestion ID COMPARATIVE SUGAR RECOVERY; CORN STOVER; TECHNOECONOMIC ANALYSIS; ETHANOL-PRODUCTION; FUEL ETHANOL; TECHNOLOGIES; HYDROLYSIS; FERMENTATION; BIOETHANOL; CONVERSION AB This work studied the benefits of adding different enzyme cocktails (cellulase, xylanase, B-glucosidase) to pretreated switchgrass. Pretreatment methods included ammonia fiber expansion (AFEX), dilute-acid (DA), liquid hot water (LHW), lime, lime + ball-milling, soaking in aqueous ammonia (SAA), and sulfur dioxide (SO(2)). The compositions of the pretreated materials were analyzed and showed a strong correlation between initial xylan composition and the benefits of xylanase addition. Adding xylanase dramatically improved xylan yields for SAA (+8.4%) and AFEX (+6.3%), and showed negligible improvement (0-2%) for the pretreatments with low xylan content (dilute-acid, SO(2)). Xylanase addition also improved overall yields with lime + ball-milling and SO(2) achieving the highest overall yields from pretreated biomass (98.3% and 93.2%, respectively). Lime + ball-milling obtained an enzymatic yield of 92.3 kg of sugar digested/kg of protein loaded. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Falls, Matthew; Holtzapple, Mark T.] Texas A&M Univ, College Stn, TX 77843 USA. [Shi, Jian; Ebrik, Mirvat A.; Redmond, Tim; Yang, Bin; Wyman, Charles E.] Univ Calif Riverside, Riverside, CA 95207 USA. [Garlock, Rebecca; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, E Lansing, MI 48824 USA. [Pallapolu, V. Ramesh; Lee, Y. Y.] Auburn Univ, Auburn, AL 36849 USA. [Kim, Youngmi; Mosier, Nathan S.; Ladisch, Michael R.] Purdue Univ, W Lafayette, IN 47907 USA. [Hames, Bonnie; Thomas, Steve] Ceres Inc, Thousand Oaks, CA 91320 USA. [Donohoe, Bryon S.; Vinzant, Todd B.; Elander, Richard T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Warner, Ryan E.] Genencor Inc, Palo Alto, CA 94304 USA. [Sierra-Ramirez, Rocio] Univ Los Andes, Grp Convers Energia, Bogota, Colombia. RP Falls, M (reprint author), Texas A&M Univ, College Stn, TX 77843 USA. EM mattdf23@gmail.com RI Shi, Jian/K-8842-2012; OI Shi, Jian/0000-0003-3022-4446; Sierra, Rocio/0000-0002-2074-7772; Ong, Rebecca/0000-0001-5020-646X; yang, bin/0000-0003-1686-8800 FU US Department of Energy [DE-FG36-07GO17102] FX This work was supported by the US Department of Energy, contract number DE-FG36-07GO17102. NR 23 TC 9 Z9 9 U1 2 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2011 VL 102 IS 24 BP 11072 EP 11079 DI 10.1016/j.biortech.2011.03.035 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 862XO UT WOS:000298127600004 PM 21478012 ER PT J AU Shi, J Ebrik, MA Yang, B Garlock, RJ Balan, V Dale, BE Pallapolu, VR Lee, YY Kim, Y Mosier, NS Ladisch, MR Holtzapple, MT Falls, M Sierra-Ramirez, R Donohoe, BS Vinzant, TB Elander, RT Hames, B Thomas, S Warner, RE Wyman, CE AF Shi, Jian Ebrik, Mirvat A. Yang, Bin Garlock, Rebecca J. Balan, Venkatesh Dale, Bruce E. Pallapolu, V. Ramesh Lee, Y. Y. Kim, Youngmi Mosier, Nathan S. Ladisch, Michael R. Holtzapple, Mark T. Falls, Matthew Sierra-Ramirez, Rocio Donohoe, Bryon S. Vinzant, Todd B. Elander, Richard T. Hames, Bonnie Thomas, Steve Warner, Ryan E. Wyman, Charles E. TI Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments SO BIORESOURCE TECHNOLOGY LA English DT Article DE Pretreatment; Enzymatic hydrolysis; Biofuels; Adsorption; Xylooligomers ID CORN STOVER; LIGNOCELLULOSIC BIOMASS; LIGNIN REMOVAL; HYDROLYSIS; TECHNOLOGIES; DIGESTIBILITY; FEATURES; ETHANOL; ACCESSIBILITY; ADSORPTION AB Accellerase 1000 cellulase, Spezyme CP cellulase, beta-glucosidase. Multifect xylanase, and beta-xylosidase were evaluated for hydrolysis of pure cellulose, pure xylan, and switchgrass solids from leading pretreatments of dilute sulfuric acid, sulfur dioxide, liquid hot water, lime, soaking in aqueous ammonia, and ammonia fiber expansion. Distinctive sugar release patterns were observed from Avicel, phosphoric acid swollen cellulose (PASC), xylan, and pretreated switchgrass solids, with accumulation of significant amounts of xylooligomers during xylan hydrolysis. The strong inhibition of cellulose hydrolysis by xylooligomers could be partially attributed to the negative impact of xylooligomers on cellulase adsorption. The digestibility of pretreated switchgrass varied with pretreatment but could not be consistently correlated to xylan, lignin, or acetyl removal. Initial hydrolysis rates did correlate well with cellulase adsorption capacities for all pretreatments except lime, but more investigation is needed to relate this behavior to physical and compositional properties of pretreated switchgrass. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Shi, Jian; Ebrik, Mirvat A.; Yang, Bin; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, Biomass Convers Res Lab, Lansing, MI 48910 USA. [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Pallapolu, V. Ramesh; Lee, Y. Y.] Auburn Univ, Dept Chem Engn, Auburn, AL 36849 USA. [Kim, Youngmi; Mosier, Nathan S.; Ladisch, Michael R.] Purdue Univ, Dept Agr & Biol Engn, LORRE, W Lafayette, IN 47907 USA. [Holtzapple, Mark T.; Falls, Matthew] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Sierra-Ramirez, Rocio] Univ Los Andes, Dept Chem Engn, Grp Convers Energia, Bogota, Colombia. [Donohoe, Bryon S.; Vinzant, Todd B.; Elander, Richard T.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Hames, Bonnie; Thomas, Steve] Ceres Inc, Thousand Oaks, CA 91320 USA. [Warner, Ryan E.] Genencor Inc, Palo Alto, CA 94304 USA. RP Wyman, CE (reprint author), Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, 1084 Columbia Ave, Riverside, CA 92507 USA. EM charles.wyman@ucr.edu RI Shi, Jian/K-8842-2012; OI Shi, Jian/0000-0003-3022-4446; Sierra, Rocio/0000-0002-2074-7772; Ong, Rebecca/0000-0001-5020-646X; yang, bin/0000-0003-1686-8800 FU US Department of Energy Office of Biomass [DE-FG36-07GO17102]; Ford Motor Company FX Support from the US Department of Energy Office of the Biomass Program (Contract DE-FG36-07GO17102) made this research possible. We thank the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) team of Auburn, Michigan State, Purdue, and Texas A&M Universities, the University of California at Riverside (UCR), the National Renewable Energy Laboratory, Ceres, Inc. and Genencor, a Danisco Division, for providing samples, suggestions, and other invaluable assistance for this research. We are also grateful to the Center for Environmental Research and Technology of the Bourns College of Engineering (CE-CERT) at the University of California, Riverside for providing key equipment and facilities. The authors also thank Dr. Rajeev Kumar for his internal review of this paper and helpful suggestions. The corresponding author is particularly grateful to the Ford Motor Company for funding the Chair in Environmental Engineering at the Center for Environmental Research and Technology of the Bourns College of Engineering at UCR that augments support for many projects such as this. NR 35 TC 22 Z9 23 U1 1 U2 38 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2011 VL 102 IS 24 BP 11080 EP 11088 DI 10.1016/j.biortech.2011.04.003 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 862XO UT WOS:000298127600005 PM 21596559 ER PT J AU Kim, Y Mosier, NS Ladisch, MR Pallapolu, VR Lee, YY Garlock, R Balan, V Dale, BE Donohoe, BS Vinzant, TB Elander, RT Falls, M Sierra, R Holtzapple, MT Shi, J Ebrik, MA Redmond, T Yang, B Wyman, CE Warner, RE AF Kim, Youngmi Mosier, Nathan S. Ladisch, Michael R. Pallapolu, V. Ramesh Lee, Y. Y. Garlock, Rebecca Balan, Venkatesh Dale, Bruce E. Donohoe, Bryon S. Vinzant, Todd B. Elander, Richard T. Falls, Matthew Sierra, Rocio Holtzapple, Mark T. Shi, Jian Ebrik, Mirvat A. Redmond, Tim Yang, Bin Wyman, Charles E. Warner, Ryan E. TI Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies SO BIORESOURCE TECHNOLOGY LA English DT Article DE Pretreatment; Switchgrass; Ethanol; Lignocellulose; Harvest season ID BIOMASS YIELD; CORN STOVER; HYBRID POPLAR; AMMONIA; QUALITY; ENVIRONMENTS; POPULATIONS; HYDROLYSIS; FEATURES; CROP AB Feedstock quality of switchgrass for biofuel production depends on many factors such as morphological types, geographic origins, maturity, environmental and cultivation parameters, and storage. We report variability in compositions and enzymatic digestion efficiencies for three cultivars of switchgrass (Alamo, Dacotah and Shawnee), grown and harvested at different locations and seasons. Saccharification yields of switchgrass processed by different pretreatment technologies (AFEX, dilute sulfuric acid, liquid hot water, lime, and soaking in aqueous ammonia) are compared in regards to switchgrass genotypes and harvest seasons. Despite its higher cellulose content per dry mass, Dacotah switchgrass harvested after wintering consistently gave a lower saccharification yield than the other two varieties harvested in the fall. The recalcitrance of upland cultivars and over-wintered switchgrass may require more severe pretreatment conditions. We discuss the key features of different pretreatment technologies and differences in switchgrass cultivars and harvest seasons on hydrolysis performance for the applied pretreatment methods. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kim, Youngmi; Mosier, Nathan S.; Ladisch, Michael R.] Purdue Univ, Potter Engn Ctr, Renewable Resources Engn Lab, W Lafayette, IN 47907 USA. [Pallapolu, V. Ramesh; Lee, Y. Y.] Auburn Univ, Dept Chem Engn, Auburn, AL 36849 USA. [Garlock, Rebecca; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Lansing, MI 48824 USA. [Donohoe, Bryon S.; Vinzant, Todd B.; Elander, Richard T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Falls, Matthew; Holtzapple, Mark T.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Sierra, Rocio] Univ Los Andes, Dept Chem Engn, Grp Convers Energia, Bogota, Colombia. [Shi, Jian; Ebrik, Mirvat A.; Redmond, Tim; Yang, Bin; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Warner, Ryan E.] Genencor Inc, Palo Alto, CA 94304 USA. RP Ladisch, MR (reprint author), Purdue Univ, Potter Engn Ctr, Renewable Resources Engn Lab, 500 Cent Dr, W Lafayette, IN 47907 USA. EM ladisch@purdue.edu RI Shi, Jian/K-8842-2012; OI Shi, Jian/0000-0003-3022-4446; Sierra, Rocio/0000-0002-2074-7772; Ong, Rebecca/0000-0001-5020-646X; yang, bin/0000-0003-1686-8800 FU U.S. Department of Energy Office of Biomass [DE-FG36-07GO17102] FX The material in this work was supported by U.S. Department of Energy Office of the Biomass Program (Contract # DE-FG36-07GO17102). We thank Genencor, a Danisco Division, for a gift of enzymes and all members of CAFI (Biomass Refining Consortium for Applied Fundamentals and Innovation) team. The authors also thank Dr. Rajeev Kumar and Dr. Eduardo Ximenes for their internal review of this paper and helpful suggestions, and Professor Charles Wyman for his leadership of CAFI. NR 35 TC 46 Z9 46 U1 3 U2 49 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2011 VL 102 IS 24 BP 11089 EP 11096 DI 10.1016/j.biortech.2011.06.054 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 862XO UT WOS:000298127600006 PM 21741233 ER PT J AU Donohoe, BS Vinzant, TB Elander, RT Pallapolu, VR Lee, YY Garlock, RJ Balan, V Dale, BE Kim, Y Mosier, NS Ladisch, MR Falls, M Holtzapple, MT Sierra-Ramirez, R Shi, J Ebrik, MA Redmond, T Yang, B Wyman, CE Hames, B Thomas, S Warner, RE AF Donohoe, Bryon S. Vinzant, Todd B. Elander, Richard T. Pallapolu, Venkata Ramesh Lee, Y. Y. Garlock, Rebecca J. Balan, Venkatesh Dale, Bruce E. Kim, Youngmi Mosier, Nathan S. Ladisch, Michael R. Falls, Matthew Holtzapple, Mark T. Sierra-Ramirez, Rocio Shi, Jian Ebrik, Mirvat A. Redmond, Tim Yang, Bin Wyman, Charles E. Hames, Bonnie Thomas, Steve Warner, Ryan E. TI Surface and ultrastructural characterization of raw and pretreated switchgrass SO BIORESOURCE TECHNOLOGY LA English DT Article DE Pretreatment; Enzymatic hydrolysis; Biomass; Switchgrass; Microscopy ID COMPARATIVE SUGAR RECOVERY; HOT-WATER PRETREATMENT; CORN STOVER; ENZYMATIC-HYDROLYSIS; HYBRID POPLAR; LIME PRETREATMENT; TECHNOLOGIES; AMMONIA; DIGESTIBILITY; OPTIMIZATION AB The US Department of Energy-funded Biomass Refining CAFI (Consortium for Applied Fundamentals and Innovation) project has developed leading pretreatment technologies for application to switchgrass and has evaluated their effectiveness in recovering sugars from the coupled operations of pretreatment and enzymatic hydrolysis. Key chemical and physical characteristics have been determined for pretreated switchgrass samples. Several analytical microscopy approaches utilizing instruments in the Biomass Surface Characterization Laboratory (BSCL) at the National Renewable Energy Laboratory (NREL) have been applied to untreated and CAFI-pretreated switchgrass samples. The results of this work have shown that each of the CAFI pretreatment approaches on switchgrass result in different structural impacts at the plant tissue, cellular, and cell wall levels. Some of these structural changes can be related to changes in chemical composition upon pretreatment. There are also apparently different structural mechanisms that are responsible for achieving the highest enzymatic hydrolysis sugar yields. (C) 2011 Published by Elsevier Ltd. C1 [Elander, Richard T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Donohoe, Bryon S.; Vinzant, Todd B.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Pallapolu, Venkata Ramesh; Lee, Y. Y.] Auburn Univ, Dept Chem Engn, Auburn, AL 36849 USA. [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, Biomass Convers Res Lab, Lansing, MI 48910 USA. [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Kim, Youngmi; Mosier, Nathan S.; Ladisch, Michael R.] Purdue Univ, Dept Agr & Biol Engn, LORRE, W Lafayette, IN 47907 USA. [Falls, Matthew; Holtzapple, Mark T.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Sierra-Ramirez, Rocio] Univ Los Andes, Dept Chem Engn, Grp Convers Energia, Bogota, Colombia. [Shi, Jian; Ebrik, Mirvat A.; Redmond, Tim; Yang, Bin; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Hames, Bonnie; Thomas, Steve] Ceres Inc, Thousand Oaks, CA 91320 USA. [Warner, Ryan E.] Genencor Inc, Palo Alto, CA 94304 USA. RP Elander, RT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM richard.elander@nrel.gov RI Shi, Jian/K-8842-2012; OI Shi, Jian/0000-0003-3022-4446; Sierra, Rocio/0000-0002-2074-7772; Ong, Rebecca/0000-0001-5020-646X; yang, bin/0000-0003-1686-8800 FU US Department of Energy's Office of Biomass FX Funding for this work was provided by the US Department of Energy's Office of Biomass Program. The authors would like to thank the CAFI team members and students for providing the samples and performing the pretreatment, compositional analysis, and enzymatic digestibility analysis that supported this work. NR 22 TC 20 Z9 23 U1 3 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2011 VL 102 IS 24 BP 11097 EP 11104 DI 10.1016/j.biortech.2011.03.092 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 862XO UT WOS:000298127600007 PM 21571527 ER PT J AU Tao, L Aden, A Elander, RT Pallapolu, VR Lee, YY Garlock, RJ Balan, V Dale, BE Kim, Y Mosier, NS Ladisch, MR Falls, M Holtzapple, MT Sierra, R Shi, J Ebrik, MA Redmond, T Yang, B Wyman, CE Hames, B Thomas, S Warner, RE AF Tao, Ling Aden, Andy Elander, Richard T. Pallapolu, Venkata Ramesh Lee, Y. Y. Garlock, Rebecca J. Balan, Venkatesh Dale, Bruce E. Kim, Youngmi Mosier, Nathan S. Ladisch, Michael R. Falls, Matthew Holtzapple, Mark T. Sierra, Rocio Shi, Jian Ebrik, Mirvat A. Redmond, Tim Yang, Bin Wyman, Charles E. Hames, Bonnie Thomas, Steve Warner, Ryan E. TI Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass SO BIORESOURCE TECHNOLOGY LA English DT Article DE Pretreatment; Enzymatic hydrolysis; Biomass; Switchgrass; Process economics ID FIBER EXPANSION AFEX; LIME PRETREATMENT; CORN STOVER AB Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured. The pretreatment area process design and simulation are based on the research data generated within the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) 3 project. Overall ethanol production, total capital investment, and minimum ethanol selling price (MESP) are reported along with selected sensitivity analysis. The results show limited differentiation between the projected economic performances of the pretreatment options, except for processes that exhibit significantly lower monomer sugar and resulting ethanol yields. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Tao, Ling; Aden, Andy; Elander, Richard T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Pallapolu, Venkata Ramesh; Lee, Y. Y.] Auburn Univ, Dept Chem Engn, Auburn, AL 36849 USA. [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, Biomass Convers Res Lab, Lansing, MI 48910 USA. [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Kim, Youngmi; Mosier, Nathan S.; Ladisch, Michael R.] Purdue Univ, Dept Agr & Biol Engn, LORRE, W Lafayette, IN 47907 USA. [Falls, Matthew; Holtzapple, Mark T.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Sierra, Rocio] Univ Los Andes, Dept Chem Engn, Grp Convers Energia, Bogota, Colombia. [Shi, Jian; Ebrik, Mirvat A.; Redmond, Tim; Yang, Bin; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Hames, Bonnie; Thomas, Steve] Ceres Inc, Thousand Oaks, CA 91320 USA. [Warner, Ryan E.] Genencor Inc, Palo Alto, CA 94304 USA. RP Tao, L (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM ling.tao@nrel.gov RI Shi, Jian/K-8842-2012; OI Shi, Jian/0000-0003-3022-4446; Ong, Rebecca/0000-0001-5020-646X; yang, bin/0000-0003-1686-8800 FU Office of Biomass Program of United States Department of Energy [DE-FG36-04GO14017] FX This research was funded under the Office of the Biomass Program of the United States Department of Energy through Contract No. DE-FG36-04GO14017. We would like to acknowledge all the generous help from each CAFI 3 project PI to establish the design basis for each pretreatment method. NR 16 TC 106 Z9 108 U1 4 U2 89 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2011 VL 102 IS 24 BP 11105 EP 11114 DI 10.1016/j.biortech.2011.07.051 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 862XO UT WOS:000298127600008 PM 21865030 ER PT J AU Pallapolu, VR Lee, YY Garlock, RJ Balan, V Dale, BE Kim, Y Mosier, NS Ladisch, MR Falls, M Holtzapple, MT Sierra-Ramirez, R Shi, J Ebrik, MA Redmond, T Yang, B Wyman, CE Donohoe, BS Vinzant, TB Elander, RT Hames, B Thomas, S Warner, RE AF Pallapolu, Venkata Ramesh Lee, Y. Y. Garlock, Rebecca J. Balan, Venkatesh Dale, Bruce E. Kim, Youngmi Mosier, Nathan S. Ladisch, Michael R. Falls, Matthew Holtzapple, Mark T. Sierra-Ramirez, Rocio Shi, Jian Ebrik, Mirvat A. Redmond, Tim Yang, Bin Wyman, Charles E. Donohoe, Bryon S. Vinzant, Todd B. Elander, Richard T. Hames, Bonnie Thomas, Steve Warner, Ryan E. TI Effects of enzyme loading and beta-glucosidase supplementation on enzymatic hydrolysis of switchgrass processed by leading pretreatment technologies SO BIORESOURCE TECHNOLOGY LA English DT Article DE Pretreatment; Switchgrass; Cellulase; beta-Glucosidase; Digestibility ID CELLULOSE; BIOMASS; INHIBITION; AFEX AB The objective of this work is to investigate the effects of cellulase loading and p-glucosidase supplementation on enzymatic hydrolysis of pretreated Dacotah switchgrass. To assess the difference among various pretreatment methods, the profiles of sugars and intermediates were determined for differently treated substrates. For all pretreatments, 72 h glucan/xylan digestibilities increased sharply with enzyme loading up to 25 mg protein/g-glucan, after which the response varied depending on the pretreatment method. For a fixed level of enzyme loading, dilute sulfuric acid (DA), SO(2), and Lime pretreatments exhibited higher digestibility than the soaking in aqueous ammonia (SAA) and ammonia fiber expansion (AFEX). Supplementation of Novozyme-188 to Spezyme-CP improved the 72 h glucan digestibility only for the SAA treated samples. The effect of p-glucosidase supplementation was discernible only at the early phase of hydrolysis where accumulation of cellobiose and oligomers is significant. Addition of p-glucosidase increased the xylan digestibility of alkaline treated samples due to the beta-xylosidase activity present in Novozyme-188. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Pallapolu, Venkata Ramesh; Lee, Y. Y.] Auburn Univ, Dept Chem Engn, Auburn, AL 36849 USA. [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, Lansing, MI 48910 USA. [Garlock, Rebecca J.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Kim, Youngmi; Mosier, Nathan S.; Ladisch, Michael R.] Purdue Univ, Dept Agr & Biol Engn, LORRE, W Lafayette, IN 47907 USA. [Falls, Matthew; Holtzapple, Mark T.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Sierra-Ramirez, Rocio] Univ Los Andes, Dept Chem Engn, Grp Convers Energia, Bogota, Colombia. [Shi, Jian; Ebrik, Mirvat A.; Redmond, Tim; Yang, Bin; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Donohoe, Bryon S.; Vinzant, Todd B.; Elander, Richard T.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Hames, Bonnie; Thomas, Steve] Ceres Inc, Thousand Oaks, CA 91320 USA. [Warner, Ryan E.] Genencor Inc, Palo Alto, CA 94304 USA. RP Lee, YY (reprint author), Auburn Univ, Dept Chem Engn, 212 Ross Hall, Auburn, AL 36849 USA. EM yylee@eng.auburn.edu RI Shi, Jian/K-8842-2012 OI Shi, Jian/0000-0003-3022-4446 FU Office of Biomass of DOE [DE-FG36-07GO17102] FX We gratefully acknowledge the financial support provided by the Office of the Biomass Program of DOE (Contract: DE-FG36-07GO17102). We also wish to thank the members of CAR team for their useful suggestions and collaboration, Genencor-Dansico (Paulo Alto, CA) for providing the enzymes used in this research and Ceres, Inc. (Thousand Oaks, CA) for providing switchgrass feedstocks. NR 15 TC 22 Z9 22 U1 2 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2011 VL 102 IS 24 BP 11115 EP 11120 DI 10.1016/j.biortech.2011.03.085 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 862XO UT WOS:000298127600009 PM 21507624 ER PT J AU Thomas, MF Li, LL Handley-Pendleton, JM van der Lelie, D Dunn, JJ Wishart, JF AF Thomas, Marie F. Li, Luen-Luen Handley-Pendleton, Jocelyn M. van der Lelie, Daniel Dunn, John J. Wishart, James F. TI Enzyme activity in dialkyl phosphate ionic liquids SO BIORESOURCE TECHNOLOGY LA English DT Article DE Ionic liquid; Cellulases; Enzyme activity; Enzymatic hydrolysis ID VOLVARIELLA-VOLVACEA; BETA-GLUCOSIDASE; CELLULOSE; HYDROLYSIS; EXPRESSION AB The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariella volvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp]], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep]] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v. Published by Elsevier Ltd. C1 [Thomas, Marie F.; Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Li, Luen-Luen; Handley-Pendleton, Jocelyn M.; van der Lelie, Daniel; Dunn, John J.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Thomas, MF (reprint author), Brookhaven Natl Lab, Dept Chem, POB 5000, Upton, NY 11973 USA. EM mthomas@bnl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; US Department of Energy Office of Basic Energy Sciences; BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science FX This work was supported by a Laboratory-Directed Research and Development grant from Brookhaven National Laboratory, under contract #DE-AC02-98CH10886 with the US Department of Energy Office of Basic Energy Sciences and by the BioEnergy Science Center. The BioEnergy Science Center is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 17 TC 20 Z9 20 U1 3 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2011 VL 102 IS 24 BP 11200 EP 11203 DI 10.1016/j.biortech.2011.09.069 PG 4 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 862XO UT WOS:000298127600022 PM 22001053 ER PT J AU Wang, J Schweitzer, J Tilmann, F White, RS Soosalu, H AF Wang, J. Schweitzer, J. Tilmann, F. White, R. S. Soosalu, H. TI Application of the Multichannel Wiener Filter to Regional Event Detection Using NORSAR Seismic-Array Data SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID SEISMOMETER ARRAYS AB Seismic arrays for detection of small earthquakes benefit from array processing aimed at reducing noise levels. We present a frequency-dependent multichannel Wiener filtering (MCWF) technique, which employs an adaptive least-squares method to remove coherent noise in seismic array data. The noise records on a number of reference channels are used to predict the noise on a primary channel, which can then be subtracted from the observed data. A sequence of aftershocks caused by the M(w) 6.1 21 February 2008 mainshock in Spitsbergen was recorded by the ARCES array in northern Norway. This aftershock sequence was filtered using the multichannel Wiener filters in both triggered and continuous modes. The Spitsbergen (SPITS) array, at a much closer distance to the source region, provides reliable reference information on the true number of detectable aftershocks. The conventional delay-and-sum beamforming combined with a band-pass filter could detect only 513 aftershocks with 181 false alarms, using a series of constraints comprised of signal-to-noise ratio, back azimuth, and slowness; the multichannel Wiener filtered results found 577 aftershocks with 165 false alarms using the same constraints. A complete automatic multichannel Wiener procedure is developed for event detection on continuous data. An appropriate signal-to-noise ratio threshold for aftershock detection of 2.7 is suggested. Compared to the beamforming method, the MCWF also reduces false alarms when detecting the same number of aftershocks. C1 [Wang, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Schweitzer, J.] NORSAR, N-2027 Kjeller, Norway. [Tilmann, F.] Deutsch GeoForschungsZentrum, Helmholtz Zentrum Potsdam, D-14473 Potsdam, Germany. [White, R. S.] Bullard Lab, Cambridge CB3 0EZ, England. [Soosalu, H.] Geol Survey Estonia, EE-12618 Tallinn, Estonia. [Tilmann, F.] Freie Univ Berlin Seismol Fachrichtung, D-12249 Berlin, Germany. RP Wang, J (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RI Tilmann, Frederik/E-4293-2012; Soosalu, Heidi/H-9980-2012; Geophysical Equipment Facility, NERC/G-5260-2010; White, Robert/B-8453-2015 OI Tilmann, Frederik/0000-0002-7439-8782; FU NERIES (EC) [026130]; Schlumberger Cambridge Research; University of Cambridge, Department of Earth Sciences [ESC2060]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank NORSAR for providing the data set, NERIES (EC project 026130) for funding J.W.'s visit to NORSAR and Schlumberger Cambridge Research for funding J.W.'s studentship (University of Cambridge, Department of Earth Sciences contribution No. ESC2060). This work was performed partly under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is LLNL contribution LLNL-JRNL-463935. We thank the associate editor and the reviewer for providing comments improving the clarity of this paper. NR 19 TC 2 Z9 4 U1 0 U2 3 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD DEC PY 2011 VL 101 IS 6 BP 2887 EP 2896 DI 10.1785/0120110003 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 862UE UT WOS:000298118800025 ER PT J AU Bonner, JL Stroujkova, A Anderson, D AF Bonner, Jessie L. Stroujkova, Anastasia Anderson, Dale TI Determination of Love- and Rayleigh-Wave Magnitudes for Earthquakes and Explosions SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID TELESEISMIC DISTANCES; TIME-DOMAIN; DISCRIMINATION; MS AB Since the 1960s, comparing a Rayleigh-wave magnitude M-s to the body-wave magnitude m(b) (M-s: m(b)) has been a robust tool for the discrimination of earthquakes and explosions. In this article, we apply a Rayleigh-wave formula as is to Love waves and examine the possibilities for discrimination using only surface-wave magnitudes (M-s: M-s). To calculate the magnitudes, we apply the time-domain magnitude technique called M-s(VMAX), developed by Russell (2006), to Rayleigh and Love waves from explosions and earthquakes. Our results indicate that, for the majority of the earthquakes studied (> 75%), the M-s(VMAX) obtained from Love waves is greater than that estimate from Rayleigh waves. Conversely, 79 of 82 nuclear explosions analyzed (96%) had network-averaged M-s(VMAX)-Rayleigh equal to or greater than the M-s(VMAX)-Love. We used logistic regression to examine an M-s(Rayleigh) : M-s(Love) discriminant. Cross-validation analysis of the new discriminant correctly identifies 57 of 82 explosions and 246 of 264 earthquakes, while misidentifying 22 explosions as earthquakes and 11 earthquakes as explosions. Further comparative research is planned for M-s (Rayleigh) : M-s (Love) versus M-s: m(b) using common data. We fully expect that M-s (Rayleigh) : M-s (Love) will contribute significantly to multivariate event identification. C1 [Bonner, Jessie L.] Weston Geophys Corp, Lufkin, TX 75904 USA. [Stroujkova, Anastasia] Weston Geophys Corp, Lexington, MA 02420 USA. [Anderson, Dale] Los Alamos Natl Lab, Los Alamos, NM USA. RP Bonner, JL (reprint author), Weston Geophys Corp, 2603 Copeland St, Lufkin, TX 75904 USA. EM bonner@westongeophysical.com; ana@westongeophysical.com; dand@lanl.gov OI Stroujkova, Anastasia/0000-0003-3196-0170 FU Air Force Research Laboratory [FA8718-09-C-0012] FX This manuscript is LA-UR 11-02092. We wish to thank David Russell, Robert Herrmann, and Harley Benz for their assistance with this collaboration and research. We thank Jack Murphy, Eli Baker, Paul Richards, and Jeff Stevens for suggestions regarding datasets and future directions. We thank Anton Dainty for his dedicated service to the Bulletin of the Seismological Society as an Associate Editor for nuclear explosion monitoring papers. We thank Jim Lewkowicz for his continued support and thoughtfulness. This research was funded by the Air Force Research Laboratory under Contract Number FA8718-09-C-0012. NR 20 TC 4 Z9 4 U1 0 U2 3 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD DEC PY 2011 VL 101 IS 6 BP 3096 EP 3104 DI 10.1785/0120110131 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 862UE UT WOS:000298118800042 ER PT J AU Song, ZG Jones, KW Marinkovic, N Xiao, XM Feng, H Tchouparova, E AF Song, Zhiguang Jones, Keith W. Marinkovic, Nebojsa Xiao, Xian Ming Feng, Huan Tchouparova, Elli TI Characterization of Organic Contaminants in New York/New Jersey Harbor Sediments Using FTIR-ATR and Synchrotron FTIR SO CLEAN-SOIL AIR WATER LA English DT Article DE FTIR-ATR; Marine sediment; Organic contaminants; Synchrotron FTIR ID POLYCYCLIC AROMATIC-HYDROCARBONS; INFRARED-SPECTROSCOPY; HUMIC ACIDS; DIFFUSE REFLECTANCE; IR SPECTROSCOPY; COAL; MACERALS; MATURATION; VITRINITE; KEROGENS AB Dredging and remediation of contaminated Harbor sediments requires characterization of organic pollutants. In this paper, we apply a combination of Fourier transform IR attenuated total reflectance (FTIR-ATR) and synchrotron FTIR techniques to the investigation of sediments and related materials from New York/New Jersey Harbor and other locations. The FTIR techniques give information on the functional groups of the compounds found in the sediments and make possible measurements with a spatial resolution of about 0.015?mm. Comparisons of natural organic materials namely, river and groundwater humic substances, recent marine and lacustrine sediments, and ancient sedimentary kerogen show that contaminated NY/NJ Harbor sediments display a strong and distinct absorption in their IR spectra at 28502950?cm-1 identified as a C?H stretching band, indicative of the presence of anthropogenic hydrocarbons. We suggest that the presence of this band could be used for rapid screening for the presence of contaminant organic compounds in sediments encountered in dredging operations and/or as an indicator for the efficacy of sediment decontamination technologies used for treatment of dredged material. C1 [Song, Zhiguang; Jones, Keith W.; Tchouparova, Elli] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Song, Zhiguang; Xiao, Xian Ming] Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Geochem, Guangzhou, Guangdong, Peoples R China. [Marinkovic, Nebojsa] Univ Delaware, Synchrotron Catalysis Consortium, Newark, DE USA. [Feng, Huan] Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ USA. [Tchouparova, Elli] Bellaire Technol Ctr, Houston, TX USA. RP Jones, KW (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. EM jones@bnl.gov RI Marinkovic, Nebojsa/A-1137-2016 OI Marinkovic, Nebojsa/0000-0003-3579-3453 FU U. S. Department of Energy [DE-AC02-98CH108866]; Chinese Academy of Sciences FX Work supported in part by the U. S. Department of Energy under Contract No. DE-AC02-98CH108866 and by the Chinese Academy of Sciences under the name of "Innovation Projects''. We are grateful to three anonymous reviewers who offered constructive comments and suggestions on an earlier draft of this paper. NR 44 TC 0 Z9 0 U1 3 U2 18 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1863-0650 J9 CLEAN-SOIL AIR WATER JI Clean-Soil Air Water PD DEC PY 2011 VL 39 IS 12 BP 1041 EP 1049 DI 10.1002/clen.201000430 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences; Marine & Freshwater Biology; Water Resources SC Science & Technology - Other Topics; Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 857CN UT WOS:000297692000022 ER PT J AU Atamturktur, S Hemez, F Williams, B Tome, C Unal, C AF Atamturktur, Sez Hemez, Francois Williams, Brian Tome, Carlos Unal, Cetin TI A forecasting metric for predictive modeling SO COMPUTERS & STRUCTURES LA English DT Article DE Modeling and simulation; Verification and validation; Model calibration; Bayesian inference; Extrapolation; Predictive maturity ID OUTPUT AB In science and engineering, simulation models calibrated against a limited number of experiments are commonly used to forecast at settings where experiments are unavailable, raising concerns about the unknown forecasting errors. Forecasting errors can be quantified and controlled by deploying statistical inference procedures, combined with an experimental campaign to improve the fidelity of a simulation model that is developed based on sound physics or engineering principles. This manuscript illustrates that the number of experiments required to reduce the forecasting errors to desired levels can be determined by focusing on the proposed forecasting metric. Published by Elsevier Ltd. C1 [Atamturktur, Sez] Clemson Univ, Dept Civil Engn, Clemson, SC 29631 USA. [Hemez, Francois] Los Alamos Natl Lab, XCP Div 1, Los Alamos, NM 87545 USA. [Williams, Brian] Los Alamos Natl Lab, CCS Div 6, Los Alamos, NM 87545 USA. [Tome, Carlos] Los Alamos Natl Lab, MST Div 8, Los Alamos, NM 87545 USA. [Unal, Cetin] Los Alamos Natl Lab, CCS DO Div, Los Alamos, NM 87545 USA. RP Atamturktur, S (reprint author), Clemson Univ, Dept Civil Engn, Clemson, SC 29631 USA. EM sez@clemson.edu; hemez@lanl.gov; bwilliams@lanl.gov; tome@lanl.gov; cu@lanl.gov RI Tome, Carlos/D-5058-2013; OI Hemez, Francois/0000-0002-5319-4078; Williams, Brian/0000-0002-3465-4972 FU Los Alamos National Laboratory (LANL) [2007847] FX This work is performed under the Verification and Uncertainty Quantification (VU) program element of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program at Los Alamos National Laboratory (LANL): the Grant Number 2007847. NR 7 TC 14 Z9 14 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7949 J9 COMPUT STRUCT JI Comput. Struct. PD DEC PY 2011 VL 89 IS 23-24 BP 2377 EP 2387 DI 10.1016/j.compstruc.2011.06.010 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Civil SC Computer Science; Engineering GA 859WW UT WOS:000297907500024 ER PT J AU Zhang, FZ Rodriguez, S Keasling, JD AF Zhang, Fuzhong Rodriguez, Sarah Keasling, Jay D. TI Metabolic engineering of microbial pathways for advanced biofuels production SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; ISOPROPANOL PRODUCTION; MEVALONATE PATHWAY; BIOSYNTHESIS; ACID; YEAST; OVERPRODUCTION; ALCOHOLS; ETHANOL AB Production of biofuels from renewable resources such as cellulosic biomass provides a source of liquid transportation fuel to replace petroleum-based fuels. This endeavor requires the conversion of cellulosic biomass into simple sugars, and the conversion of simple sugars into biofuels. Recently, microorganisms have been engineered to convert simple sugars into several types of biofuels, such as alcohols, fatty acid alkyl esters, alkanes, and terpenes, with high titers and yields. Here, we review recently engineered biosynthetic pathways from the well-characterized microorganisms Escherichia coli and Saccharomyces cerevisiae for the production of several advanced biofuels. C1 [Zhang, Fuzhong; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Rodriguez, Sarah] Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA. [Zhang, Fuzhong; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Keasling, Jay D.] Synthet Biol Engn Res Ctr, Emeryville, CA 94608 USA. [Zhang, Fuzhong; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Synthetic Biology Engineering Research Center; National Science Foundation [0540879]; Joint BioEnergy Institute; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Natural Sciences and Engineering Research Council of Canada FX The authors would like to thank Pamela Peralta-Yahya and Ee-Been Goh for discussion and critical reading of the manuscript. This work was supported in part by the Synthetic Biology Engineering Research Center, which is funded by National Science Foundation Award No. 0540879, and by the Joint BioEnergy Institute, which is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231. F.Z. is supported by the Postdoctoral Fellowships Program of the Natural Sciences and Engineering Research Council of Canada. NR 64 TC 136 Z9 141 U1 4 U2 178 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD DEC PY 2011 VL 22 IS 6 BP 775 EP 783 DI 10.1016/j.copbio.2011.04.024 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 868LB UT WOS:000298523700005 PM 21620688 ER PT J AU Stanley, C Rau, DC AF Stanley, Christopher Rau, Donald C. TI Evidence for water structuring forces between surfaces SO CURRENT OPINION IN COLLOID & INTERFACE SCIENCE LA English DT Review DE Hydration; Water structuring; Intermolecular forces; Osmotic stress technique; Repulsion; Attraction; DNA assembly; Solute exclusion ID DNA DOUBLE HELICES; ENTHALPY-ENTROPY COMPENSATION; X-RAY-DIFFRACTION; HYDRATION FORCES; PREFERENTIAL HYDRATION; SOLVENT REORGANIZATION; PHOSPHOLIPID-BILAYERS; INTERMOLECULAR FORCES; PROTEIN STABILITY; OSMOTIC-STRESS AB Structured water on apposing surfaces can generate significant energies due to reorganization and displacement of water as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate common features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water. Published by Elsevier Ltd. C1 [Rau, Donald C.] NICHD, Program Phys Biol, NIH, Bethesda, MD 20892 USA. [Stanley, Christopher] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Rau, DC (reprint author), NICHD, Program Phys Biol, NIH, Bethesda, MD 20892 USA. EM stanleycb@ornl.gov; raud@mail.nih.gov OI Stanley, Christopher/0000-0002-4226-7710 FU NICHD, National Institutes of Health FX This work was supported by the Intramural Research Program of the NICHD, National Institutes of Health. NR 57 TC 18 Z9 18 U1 2 U2 33 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1359-0294 J9 CURR OPIN COLLOID IN JI Curr. Opin. Colloid Interface Sci. PD DEC PY 2011 VL 16 IS 6 BP 551 EP 556 DI 10.1016/j.cocis.2011.04.010 PG 6 WC Chemistry, Physical SC Chemistry GA 868LD UT WOS:000298523900014 PM 22125414 ER PT J AU Endres, NF Engel, K Das, R Kovacs, E Kuriyan, J AF Endres, Nicholas F. Engel, Kate Das, Rahul Kovacs, Erika Kuriyan, John TI Regulation of the catalytic activity of the EGF receptor SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID EPIDERMAL-GROWTH-FACTOR; KINASE DOMAIN; TYROSINE KINASE; TRANSMEMBRANE DOMAIN; LIVING CELLS; NEGATIVE COOPERATIVITY; ALLOSTERIC ACTIVATION; STRUCTURAL-ANALYSIS; CRYSTAL-STRUCTURE; LIGAND-BINDING AB The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase involved in cell growth that is often misregulated in cancer. Several recent studies highlight the unique structural mechanisms involved in its regulation. Some elucidate the important role that the juxtamembrane segment and the transmembrane helix play in stabilizing the activating asymmetric kinase dimer, and suggest that its activation mechanism is likely to be conserved among the other human EGFR-related receptors. Other studies provide new explanations for two long observed, but poorly understood phenomena, the apparent heterogeneity in ligand binding and the formation of ligand-independent dimers. New insights into the allosteric mechanisms utilized by intracellular regulators of EGFR provide hope that allosteric sites could be used as targets for drug development. C1 [Endres, Nicholas F.; Engel, Kate; Das, Rahul; Kovacs, Erika; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Endres, Nicholas F.; Engel, Kate; Das, Rahul; Kovacs, Erika; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Calif Inst Quanitat Biosci, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Chem, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu FU National Cancer Institute [ROI CA96504-06]; Susan G. Komen Society FX We thank A. Cantor, T. Chen, Y. Huang, N. Jura and J. Iwig for initial discussion on the content of the review. Hand-drawn illustrations are by K.E. Work on EGFR in this lab was supported in part by a grant to J.K. from the National Cancer Institute (ROI CA96504-06) and the Susan G. Komen Society. N.E. was a fellow of the Leukemia and Lymphoma Society. R.D. is a fellow of the National Science and Engineering Research Council of Canada. NR 62 TC 56 Z9 57 U1 1 U2 14 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X EI 1879-033X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD DEC PY 2011 VL 21 IS 6 BP 777 EP 784 DI 10.1016/j.sbi.2011.07.007 PG 8 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 868KP UT WOS:000298522500012 PM 21868214 ER PT J AU Meduri, P Chen, HH Chen, XL Xiao, J Gross, ME Carlson, TJ Zhang, JG Deng, ZD AF Meduri, Praveen Chen, Honghao Chen, Xilin Xiao, Jie Gross, Mark E. Carlson, Thomas J. Zhang, Ji-Guang Deng, Z. Daniel TI Hybrid CFx-Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Carbon fluoride; Silver vanadium oxide; High power density; Cathode; Primary lithium battery; Micro battery ID PRIMARY LITHIUM BATTERIES; TELEMETRY SYSTEM; GRAPHITE FLUORIDE; TRACKING; CELLS AB This study demonstrates the excellent electrochemical performance of the hybrid carbon fluoride (CFx)/silver vanadium oxide (SVO)/graphene(G) cathode and its potential utilization in the Juvenile Salmon Acoustic Telemetry System (JSATS). The impedance increase caused by LiF formation is effectively addressed by silver metal deposition during SVO reduction. The coexistence of graphene additive reduces the initial voltage delay: thus, a prolonged operation voltage is observed with enhanced electronic conductivity, with specific capacity of similar to 462 mAhg(-1) at 5C rate and 661 mAhg(-1) at 1C rate. The peak current delivered from the as-designed hybrid cathode is improved over the commercial Zn/Ag2O batteries, suggesting battery size/weight reduction critical for the JSATS transmitters. (C) 2011 Elsevier B.V. All rights reserved. C1 [Meduri, Praveen; Chen, Honghao; Chen, Xilin; Xiao, Jie; Gross, Mark E.; Carlson, Thomas J.; Zhang, Ji-Guang; Deng, Z. Daniel] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Zhiqun.deng@pnnl.gov RI Meduri, Praveen/B-5915-2012; Chen, Xilin/A-1409-2012; Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Army Corps of Engineers (USACE), Portland District FX The study was funded by the U.S. Army Corps of Engineers (USACE), Portland District. Brad Eppard is the technical lead for USACE and we greatly appreciate his involvement and oversight. NR 19 TC 22 Z9 23 U1 1 U2 53 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD DEC PY 2011 VL 13 IS 12 BP 1344 EP 1348 DI 10.1016/j.elecom.2011.08.006 PG 5 WC Electrochemistry SC Electrochemistry GA 874FM UT WOS:000298940800015 ER PT J AU Thompson, RS Schroeder, DJ Lopez, CM Neuhold, S Vaughey, JT AF Thompson, Rebecca S. Schroeder, David J. Lopez, Carmen M. Neuhold, Susanna Vaughey, John T. TI Stabilization of lithium metal anodes using silane-based coatings SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium; Silane; Coatings; Battery ID BATTERIES; ELECTROLYTES; CYCLEABILITY; ELECTRODES AB For energy storage systems that use a charged cathode, the source of lithium is typically lithium metal. For several high energy systems under study, notably those that utilize elemental sulfur or oxygen (air) as the cathode, their very high capacity makes lithium metal anodes essential. In this study we evaluated the cycling performance of a series of silane-based coatings formed on a cleaned lithium metal surface before exposure to electrolyte. These substituted silane (R(3)Si-) based coatings are formed from the self-terminating reaction of the R(3)Si-Cl with lithium surface hydroxyl groups. The cycling performance of a trimethyl silyl coated surface and a triisopropyl silyl coated surface were compared to an uncoated sample and the results explained by a combination of surface coverage density and the ability of the coating to inhibit free solvent attack of the metal electrode surface. (C) 2011 Published by Elsevier B.V. C1 [Thompson, Rebecca S.; Lopez, Carmen M.; Neuhold, Susanna; Vaughey, John T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Schroeder, David J.] No Illinois Univ, Dept Engn Technol, De Kalb, IL 60115 USA. RP Vaughey, JT (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vaughey@anl.gov OI Lopez, Carmen M./0000-0002-6096-0674; Vaughey, John/0000-0002-2556-6129 FU ILIRP; Batteries for Transportation Technologies (BATT) Program; Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy; UChicago Argonne, LLC [DE-AC02-06CH11357] FX R.S.T. would like to acknowledge the support received while at Argonne National Laboratory as a participant in the Science Undergraduate Research Internship (SULI) program administered by the Office of Science: Office of Workforce Development for Teachers and Scientists, U.S. Department of Energy. This work was supported by the ILIRP Program, Batteries for Transportation Technologies (BATT) Program, Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy. SEM images were recorded using the equipment at the Electron Microscopy Center for Materials Research, Argonne National Laboratory; a US Department of Energy Office of Science Laboratory operated under Contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 14 TC 24 Z9 25 U1 4 U2 69 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD DEC PY 2011 VL 13 IS 12 BP 1369 EP 1372 DI 10.1016/j.elecom.2011.08.012 PG 4 WC Electrochemistry SC Electrochemistry GA 874FM UT WOS:000298940800021 ER PT J AU Yoon, KJ Coyle, CA Marina, OA AF Yoon, Kyung Joong Coyle, Christopher A. Marina, Olga A. TI Doped yttrium chromite-ceria composite as a redox-stable and sulfur-tolerant anode for solid oxide fuel cells SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Solid oxide fuel cell; Ceramic anode; Sulfur tolerance; Redox stability; Doped yttria chromite perovskite ID NI-YSZ ANODE; SOFC; PEROVSKITES; PERFORMANCE; STABILITY; OXIDATION; METHANE; CU AB dA new high performance ceramic solid oxide fuel cell (SOFC) anode, Ca- and Co-doped yttrium chromite (YCCC)-samaria-doped ceria (SDC) composite, that resists deactivation by sulfur and does not show degradation during multiple reduction-oxidation cycles is developed. The electrocatalytic activity of the YCCC-SDC anodes in yttria-stabilized zirconia (YSZ) electrolyte-supported cells toward hydrogen oxidation is comparable to that of the Ni/YSZ anode. YCCC-SDC exhibits superior sulfur tolerance showing less than 10% increase in electrode resistance, fully reversible, upon exposure to 20 ppm H2S. The excellent redox tolerance is attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal "chemical" expansion. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yoon, Kyung Joong; Coyle, Christopher A.; Marina, Olga A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Marina, OA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM olga.marina@pnnl.gov NR 23 TC 17 Z9 17 U1 0 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD DEC PY 2011 VL 13 IS 12 BP 1400 EP 1403 DI 10.1016/j.elecom.2011.08.025 PG 4 WC Electrochemistry SC Electrochemistry GA 874FM UT WOS:000298940800029 ER PT J AU Mathieu, JL Callaway, DS Kiliccote, S AF Mathieu, Johanna L. Callaway, Duncan S. Kiliccote, Sila TI Variability in automated responses of commercial buildings and industrial facilities to dynamic electricity prices SO ENERGY AND BUILDINGS LA English DT Article DE Demand response; Baseline models; Load prediction; Error analysis; Variability; Measurement & Verification ID RETROFIT SAVINGS AB Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during demand response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation. (C) 2011 Duncan S. Callaway. Published by Elsevier B.V. All rights reserved. C1 [Callaway, Duncan S.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Mathieu, Johanna L.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Kiliccote, Sila] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Callaway, DS (reprint author), Univ Calif Berkeley, Energy & Resources Grp, 310 Barrows Hall, Berkeley, CA 94720 USA. EM jmathieu@berkeley.edu; dcal@berkeley.edu; skiliccote@lbl.gov FU UC Berkeley; U.S. Department of Energy [DE-AC02-05CH11231]; California Energy Commission (CEC) [500-03-026] FX We thank Phillip Price, Mary Ann Piette, and Ashok Gadgil for great advice and feedback. We also thank PG&E Company for the electric load data. Johanna Mathieu was funded by a UC Berkeley Chancellor's Fellowship. Some of this work was conducted at the Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. Sila Kiliccote was funded by the California Energy Commission (CEC) under Contract No. 500-03-026. NR 22 TC 29 Z9 30 U1 4 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD DEC PY 2011 VL 43 IS 12 BP 3322 EP 3330 DI 10.1016/j.enbuild.2011.08.020 PG 9 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 864VM UT WOS:000298268600004 ER PT J AU Lee, JH Kennedy, DW Dohnalkova, A Moore, DA Nachimuthu, P Reed, SB Fredrickson, JK AF Lee, Ji-Hoon Kennedy, David W. Dohnalkova, Alice Moore, Dean A. Nachimuthu, Ponnusamy Reed, Samantha B. Fredrickson, James K. TI Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; ELEMENTAL SULFUR; BALTIC SEA; ANAEROBIC RESPIRATION; FACULTATIVE ANAEROBE; PUTREFACIENS MR-1; MARINE-SEDIMENTS; ORGANIC-MATTER; RICH SEDIMENTS; WATER COLUMN AB The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1 produced gamma-MnS (rambergite) nanoparticles during the concurrent reduction of MnO(2) and thiosulfate coupled to H(2) oxidation. To investigate effect of direct microbial reduction of MnO(2) on MnS formation, two MR-1 mutants defective in outer membrane c-type cytochromes (Delta mtrC/Delta omcA and Delta mtrC/Delta omcA/Delta mtrF) were also used and it was determined that direct reduction of MnO(2) was dominant relative to chemical reduction by biogenic sulfide generated from thiosulfate reduction. Although bicarbonate was excluded from the medium, incubations of strain MR-1 with lactate as the electron donor produced MnCO(3) (rhodochrosite) as well as MnS in nearly equivalent amounts as estimated by micro X-ray diffraction (micro-XRD) analysis. It was concluded that carbonate released from lactate metabolism promoted MnCO(3) formation and that Mn(II) mineralogy was strongly affected by carbonate ions even in the presence of abundant sulfide and weakly alkaline conditions expected to favour the precipitation of MnS. Formation of MnS, as determined by a combination of micro-XRD, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction analyses was consistent with equilibrium speciation modelling predictions. Biogenic manganese sulfide may be a manganese sink in the Mn biogeochemical cycle in select environments such as deep anoxic marine basins within the Baltic Sea. C1 [Lee, Ji-Hoon; Kennedy, David W.; Dohnalkova, Alice; Moore, Dean A.; Nachimuthu, Ponnusamy; Reed, Samantha B.; Fredrickson, James K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Fredrickson, JK (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jim.fredrickson@pnnl.gov OI Kennedy, David/0000-0003-0763-501X FU Korea Research Foundation; Korean Government (MOEHRD) [KRF-2007-357-D00141]; Pacific Northwest National Laboratory (PNNL)'s Scientific Focus Area (SFA); Subsurface Bio-geochemical Research (SBR); Office of Biological and Environmental Research (OBER); U.S. Department of Energy (DOE); DOE [DE-AC06-76RL01830] FX We wish to thank Dr Margaret F. Romine and Dr Liang Shi for providing the OMC mutants and discussion respectively. We also thank Dr Allan E. Konopka and Dr Tanya Peretyazhko for their review of the manuscript. This work was supported in part by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-357-D00141) and by Pacific Northwest National Laboratory (PNNL)'s Scientific Focus Area (SFA) supported by Subsurface Bio-geochemical Research (SBR), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE). TEM and micro-XRD analyses were performed at Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by OBER and located at PNNL. Battelle Memorial Institute operates PNNL for the DOE under contract DE-AC06-76RL01830. NR 53 TC 10 Z9 13 U1 8 U2 58 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD DEC PY 2011 VL 13 IS 12 BP 3275 EP 3288 DI 10.1111/j.1462-2920.2011.02587.x PG 14 WC Microbiology SC Microbiology GA 872XF UT WOS:000298843800017 PM 21951417 ER PT J AU McIntosh, BS Ascough, JC Twery, M Chew, J Elmahdi, A Haase, D Harou, JJ Hepting, D Cuddy, S Jakeman, AJ Chen, S Kassahun, A Lautenbach, S Matthews, K Merritt, W Quinn, NWT Rodriguez-Roda, I Sieber, S Stavenga, M Sulis, A Ticehurst, J Volk, M Wrobel, M van Delden, H El-Sawah, S Rizzoli, A Voinov, A AF McIntosh, B. S. Ascough, J. C., II Twery, M. Chew, J. Elmahdi, A. Haase, D. Harou, J. J. Hepting, D. Cuddy, S. Jakeman, A. J. Chen, S. Kassahun, A. Lautenbach, S. Matthews, K. Merritt, W. Quinn, N. W. T. Rodriguez-Roda, I. Sieber, S. Stavenga, M. Sulis, A. Ticehurst, J. Volk, M. Wrobel, M. van Delden, H. El-Sawah, S. Rizzoli, A. Voinov, A. TI Environmental decision support systems (EDSS) development - Challenges and best practices SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Environmental decision support systems; EDSS; Information systems; Decision-making; Software development; Adoption; Use ID RIVER-BASIN MANAGEMENT; ECOSYSTEM MANAGEMENT; RESOURCE MANAGEMENT; UNITED-STATES; INTEGRATION; MODELS; TOOLS; INFORMATION; POLICY; DSS AB Despite the perceived value of DSS in informing environmental and natural resource management, DSS tools often fail to be adopted by intended end users. By drawing together the experience of a global group of EDSS developers, we have identified and assessed key challenges in EDSS development and offer recommendations to resolve them. Challenges related to engaging end users in EDSS development emphasise the need for a participatory process that embraces end users and stakeholders throughout the design and development process. Adoption challenges concerned with individual and organisational capacities to use EDSS and the match between EDSS and organisational goals can be overcome through the use of an internal champion to promote the EDSS at different levels of a target organisation; coordinate and build capacity within the organisation, and; ensure that developers maintain focus on developing EDSS which are relatively easy and inexpensive to use and update (and which are perceived as such by the target users). Significant challenges exist in relation to ensuring EDSS longevity and financial sustainability. Such business challenges may be met through planning and design that considers the long-term costs of training, support, and maintenance; revenue generation and licensing by instituting processes which support communication and interactions; and by employing software technology which enables easy model expansion and re use to gain an economy of scale and reduce development costs. A final group of perhaps more problematic challenges relate to how the success of EDSS ought to be evaluated. Whilst success can be framed relatively easily in terms of interactions with end users, difficulties of definition and measurability emerge in relation to the extent to which EDSS achieve intended outcomes. To tackle the challenges described, the authors provide a set of best practice recommendations concerned with promoting design for ease of use, design for usefulness, establishing trust and credibility, promoting EDSS acceptance, and starting simple and small in functionality terms. Following these recommendations should enhance the achievement of successful EDSS adoption, but more importantly, help facilitate the achievement of desirable social and environmental outcomes. (C) 2011 Elsevier Ltd. All rights reserved. C1 [McIntosh, B. S.] Int Water Ctr, Brisbane, Qld 4000, Australia. [McIntosh, B. S.] Griffith Univ, Smart Water Res Ctr, Gold Coast, Qld, Australia. [Ascough, J. C., II] ARS, USDA, Agr Syst Res Unit, Ft Collins, CO USA. [Twery, M.] US Forest Serv, USDA, No Res Stn, S Burlington, VT USA. [Chew, J.] USDA FS, Rocky Mt Res Stn, Missoula Forestry Sci lab, Missoula, MT USA. [Elmahdi, A.] Bur Meteorol, Climate & Water Div, Urban Water Balance Unit, Melbourne, Vic, Australia. [Haase, D.; Lautenbach, S.; Volk, M.] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, Leipzig, Germany. [Harou, J. J.] UCL, Dept Civil Environm & Geomat Engn CEGE, London, England. [Hepting, D.] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada. [Cuddy, S.; Jakeman, A. J.; Chen, S.; Merritt, W.; Ticehurst, J.; El-Sawah, S.] Australian Natl Univ, Integrated Catchment Assessment & Management Ctr, Natl Ctr Groundwater Res & Training, Canberra, ACT, Australia. [Kassahun, A.] Wageningen UR, Wageningen, Netherlands. [Matthews, K.] Integrated Land Use Syst Grp, Macaulay Inst, Aberdeen, Scotland. [Quinn, N. W. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Hydroecol Engn Adv Decis Support Grp, Berkeley, CA 94720 USA. [Rodriguez-Roda, I.] Univ Girona, Lab Chem & Environm Engn, Girona, Spain. [Sieber, S.] Leibniz Ctr Agr Landscape Res ZALF, Muncheberg, Germany. [Stavenga, M.] Maralte BV, Crown Business Ctr, Leiden, Netherlands. [Sulis, A.] Univ Cagliari, Dept Land Engn, Cagliari, Italy. [Wrobel, M.] Potsdam Inst Climate Impact Res PIK, Potsdam, Germany. [van Delden, H.] RIKS Bv, Maastricht, Netherlands. [Rodriguez-Roda, I.] Catalan Inst Water Res ICRA, Girona, Spain. [Voinov, A.] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, Enschede, Netherlands. RP McIntosh, BS (reprint author), Int Water Ctr, Level 16 333 Ann St, Brisbane, Qld 4000, Australia. EM b.mcintosh@watercentre.org RI Volk, Martin/F-1172-2010; Faculty of ITC, Dep Nat. Resources/C-4295-2014; Rodriguez-Roda, Ignasi/D-4817-2015; Hepting, Daryl/A-8073-2010; Jakeman, Anthony/P-6786-2014; Quinn, Nigel/G-2407-2015; Voinov, Alexey/F-7397-2010; Lautenbach, Sven/C-1235-2010; Rizzoli, Andrea Emilio/B-2985-2010; Merritt, Wendy/I-9329-2014 OI Volk, Martin/0000-0003-0064-8133; Rodriguez-Roda, Ignasi/0000-0002-8989-9061; Hepting, Daryl/0000-0002-3138-3521; Jakeman, Anthony/0000-0001-5282-2215; Quinn, Nigel/0000-0003-3333-4763; Voinov, Alexey/0000-0002-2985-4574; Lautenbach, Sven/0000-0003-1825-9996; Rizzoli, Andrea Emilio/0000-0001-8179-0750; Merritt, Wendy/0000-0003-1200-3658 FU UK EPSRC [CASE/CNA/07/104] FX Dr. McIntosh would like to acknowledge the support of the UK EPSRC (contract CASE/CNA/07/104). The remaining authors would like to thank their funding agencies and employing organisations for supporting travel and writing paper times. NR 94 TC 88 Z9 89 U1 9 U2 92 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD DEC PY 2011 VL 26 IS 12 BP 1389 EP 1402 DI 10.1016/j.envsoft.2011.09.009 PG 14 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 864WD UT WOS:000298270300003 ER PT J AU Tesfa, TK Tarboton, DG Watson, DW Schreuders, KAT Baker, ME Wallace, RM AF Tesfa, Teklu K. Tarboton, David G. Watson, Daniel W. Schreuders, Kimberly A. T. Baker, Matthew E. Wallace, Robert M. TI Extraction of hydrological proximity measures from DEMs using parallel processing SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Digital elevation model analysis; Flow distance; Hydrological proximity measures; Message passing interface; Parallel computation; Topographic attributes ID DIGITAL ELEVATION MODELS; SOIL PROPERTIES; LAND-USE; FLOW; PREDICTION; NETWORKS; AREAS; COMPUTATION; STREAMS; BASIN AB Land surface topography is one of the most important terrain properties which impact hydrological, geomorphological, and ecological processes active on a landscape. In our previous efforts to develop a soil depth model based upon topographic and land cover variables, we derived a set of hydrological proximity measures (HPMs) from a Digital Elevation Model (DEM) as potential explanatory variables for soil depth. These HPMs are variations of the distance up to ridge points (cells with no incoming flow) and variations of the distance down to stream points (cells with a contributing area greater than a threshold), following the flow path. The HPMs were computed using the D-infinity flow model that apportions flow between adjacent neighbors based on the direction of steepest downward slope on the eight triangular facets constructed in a 3 x 3 grid cell window using the center cell and each pair of adjacent neighboring grid cells in turn. The D-infinity model typically results in multiple flow paths between 2 points on the topography, with the result that distances may be computed as the minimum, maximum or average of the individual flow paths. In addition, each of the HPMs, are calculated vertically, horizontally, and along the land surface. Previously, these HPMs were calculated using recursive serial algorithms which suffered from stack overflow problems when used to process large datasets, limiting the size of DEMs that could be analyzed. To overcome this limitation, we developed a message passing interface (MPI) parallel approach designed to both increase the size and speed with which these HPMs are computed. The parallel HPM algorithms spatially partition the input grid into stripes which are each assigned to separate processes for computation. Each of those processes then uses a queue data structure to order the processing of cells so that each cell is visited only once and the cross-process communications that are a standard part of MPI are handled in an efficient manner. This parallel approach allows efficient analysis of much larger DEMs than were possible using the serial recursive algorithms. The HPMs given here may also have other, more general modeling applicability in hydrology, geomorphology and ecology, and so are described here from a general perspective. In this paper, we present the definitions of the HPMs, the serial and parallel algorithms used in their computation and their potential applications. Published by Elsevier Ltd. C1 [Tesfa, Teklu K.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. [Tarboton, David G.; Schreuders, Kimberly A. T.] Utah State Univ, Dept Civil & Environm Engn, Logan, UT 84322 USA. [Watson, Daniel W.] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA. [Baker, Matthew E.] Univ Maryland, Dept Geog & Environm Syst, Baltimore, MD 21201 USA. [Wallace, Robert M.] USA, Engineer Res & Dev Ctr, Informat Technol Lab, Vicksburg, MS USA. RP Tesfa, TK (reprint author), Pacific NW Natl Lab, Hydrol Grp, POB 999, Richland, WA 99352 USA. EM teklu.tesfa@pnnl.gov RI Tarboton, David/G-8972-2011; Baker, Matthew/I-2839-2014 OI Tarboton, David/0000-0002-1998-3479; Baker, Matthew/0000-0001-5069-0204 FU Inland Northwest Research Alliance; Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET); National Oceanic and Atmospheric Administration [NA06NOS4190167]; University of New Hampshire; US Army Research and Development Center [W9124Z-08-P-0420] FX This work was funded in part by the Inland Northwest Research Alliance; the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET), a partnership of the National Oceanic and Atmospheric Administration (NA06NOS4190167) and the University of New Hampshire; and the US Army Research and Development Center under contract number W9124Z-08-P-0420. NR 60 TC 35 Z9 39 U1 2 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD DEC PY 2011 VL 26 IS 12 BP 1696 EP 1709 DI 10.1016/j.envsoft.2011.07.018 PG 14 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 864WD UT WOS:000298270300028 ER PT J AU Palmer, B Koontz, A Schuchardt, K Heikes, R Randall, D AF Palmer, Bruce Koontz, Annette Schuchardt, Karen Heikes, Ross Randall, David TI Efficient data IO for a Parallel Global Cloud Resolving Model SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE High performance IO; Parallel IO libraries; Data formatting; Geodesic grid; Global Cloud Resolving Model; Grid Specifications AB Execution of a Global Cloud Resolving Model (GCRM) at target resolutions of 2-4 km will generate, at a minimum, 10s of Gigabytes of data per variable per snapshot. Writing this data to disk, without creating a serious bottleneck in the execution of the GCRM code, while also supporting efficient post-execution data analysis is a significant challenge. This paper discusses an Input/Output (IO) application programmer interface (API) for the GCRM that efficiently moves data from the model to disk while maintaining support for community standard formats, avoiding the creation of very large numbers of files, and supporting efficient analysis. Several aspects of the API will be discussed in detail. First, we discuss the output data layout which linearizes the data in a consistent way that is independent of the number of processors used to run the simulation and provides a convenient format for subsequent analyses of the data. Second, we discuss the flexible API interface that enables modelers to easily add variables to the output stream by specifying where in the GCRM code these variables are located and to flexibly configure the choice of outputs and distribution of data across files. The flexibility of the API is designed to allow model developers to add new data fields to the output as the model develops and new physics is added. It also provides a mechanism for allowing users of the GCRM code to adjust the output frequency and the number of fields written depending on the needs of individual calculations. Third, we describe the mapping to the NetCDF data model with an emphasis on the grid description. Fourth, we describe our messaging algorithms and IO aggregation strategies that are used to achieve high bandwidth while simultaneously writing concurrently from many processors to shared files. We conclude with initial performance results. Published by Elsevier Ltd. C1 [Palmer, Bruce; Koontz, Annette; Schuchardt, Karen] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Heikes, Ross; Randall, David] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Palmer, B (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. EM bruce.palmer@pnl.gov; annette.koontz@pnl.gov; karen.schuchardt@pnl.gov; ross@atmos.colostate.edu; randall@atmos.colostate.edu RI Randall, David/E-6113-2011 OI Randall, David/0000-0001-6935-4112 FU U.S. Department of Energy's (DOE) Office of Advanced Scientific Computing Research; DOE's Office of Biological and Environmental Research; Battelle Memorial Institute [DE-AC05-76RL01830] FX This work was funded by the U.S. Department of Energy's (DOE) Office of Advanced Scientific Computing Research through its Scientific Discovery through Advanced Computing program. A portion of this work was performed using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. The remainder of this research was performed at DOE's National Energy Research Scientific Computing Center. NR 28 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD DEC PY 2011 VL 26 IS 12 BP 1725 EP 1735 DI 10.1016/j.envsoft.2011.08.007 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 864WD UT WOS:000298270300030 ER PT J AU Freeland, JW Liu, J Kareev, M Gray, B Kim, JW Ryan, P Pentcheva, R Chakhalian, J AF Freeland, J. W. Liu, Jian Kareev, M. Gray, B. Kim, J. W. Ryan, P. Pentcheva, R. Chakhalian, J. TI Orbital control in strained ultra-thin LaNiO3/LaAlO3 superlattices SO EPL LA English DT Article ID OXIDES AB In pursuit of rational control of orbital polarization, we present a combined experimental and theoretical study of single-unit-cell superlattices of the correlated metal LaNiO3 and the band insulator LaAlO3. Polarized X-ray absorption spectra show a distinct asymmetry in the orbital response under strain. A splitting of orbital energies consistent with octahedral distortions is found for the case of compressive strain. In sharp contrast, for tensile strain, no splitting is found although a strong orbital polarization is present. Density functional theory calculations including a Hubbard U-term reveal that this asymmetry is a result of the interplay of strain and confinement that induces octahedral rotations and distortions and altered covalency in the bonding across the interfacial Ni-O-Al apical oxygen, leading to a charge disproportionation at the Ni sites for tensile strain. Copyright (C) EPLA, 2011 C1 [Freeland, J. W.; Kim, J. W.; Ryan, P.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Liu, Jian; Kareev, M.; Gray, B.; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Pentcheva, R.] Univ Munich, Dept Earth & Environm Sci, D-80333 Munich, Germany. [Pentcheva, R.] Univ Munich, Ctr Nanosci CENS, D-80333 Munich, Germany. RP Freeland, JW (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM freeland@anl.gov RI Liu, Jian/I-6746-2013; Pentcheva, Rossitza/F-8293-2014; Chakhalian, Jak/F-2274-2015 OI Liu, Jian/0000-0001-7962-2547; FU U.S. Department of Energy, Office of Science [DEAC02-06CH11357]; DOD-ARO [0402-17291]; NSF [DMR-0747808]; DFG [TRR80]; Leibniz Rechenzentrum FX Work at the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science under grant No. DEAC02-06CH11357. JC was supported by DOD-ARO under grant No. 0402-17291 and NSF grant No. DMR-0747808. RP acknowledges support by DFG (TRR80) and a grant for computational time at the Leibniz Rechenzentrum. NR 29 TC 42 Z9 43 U1 3 U2 55 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD DEC PY 2011 VL 96 IS 5 AR 57004 DI 10.1209/0295-5075/96/57004 PG 5 WC Physics, Multidisciplinary SC Physics GA 862ZF UT WOS:000298131900037 ER PT J AU Storchak, VG Parfenov, OE Eshchenko, DG Stubbs, SL Gumeniuk, R Schnelle, W Hu, RW Petrovic, C AF Storchak, Vyacheslav G. Parfenov, Oleg E. Eshchenko, Dmitry G. Stubbs, Scott L. Gumeniuk, Roman Schnelle, Walter Hu, Rongwei Petrovic, Cedomir TI Spin-singlet state of electrons in filled skutterudites SO EPL LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTIVITY; PHASES; MATTER AB Muon spin rotation experiments have been performed on filled skutterudites PrOs(4)Sb(12) and REPt(4)Ge(12) (RE = La, Pr, Nd, Eu) over a temperature range 0.025-300K in magnetic fields up to 7 T. An electron bound state is detected spectroscopically in filled skutterudites containing magnetic ions, both below and above the superconducting transition temperature T(c) and both below and above the corresponding upper critical magnetic field H(c2), including the pseudogap region. This state is proposed to be a spin-singlet -an electron pair confined around the positive muon. Copyright (C) EPLA, 2011 C1 [Storchak, Vyacheslav G.; Parfenov, Oleg E.] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia. [Eshchenko, Dmitry G.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Stubbs, Scott L.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Gumeniuk, Roman; Schnelle, Walter] Max Planck Inst Chem Phys Fester Stoffe, D-01187 Dresden, Germany. [Hu, Rongwei; Petrovic, Cedomir] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Storchak, VG (reprint author), Kurchatov Inst, Natl Res Ctr, Kurchatov Sq 1, Moscow 123182, Russia. EM mussr@triumf.ca RI Hu, Rongwei/E-7128-2012; Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU NBIC Center of the Kurchatov Institute; Natural Sciences and Engineering Research Council of Canada; U.S. Department of Energy [DE-SC0001769]; U.S. Department of Energy and Brookhaven Science Associates [DE-Ac02-98CH10886] FX This work was supported by the NBIC Center of the Kurchatov Institute, the Natural Sciences and Engineering Research Council of Canada and the U.S. Department of Energy (Grant DE-SC0001769). Work carried out in Brookhaven National Labs was supported by the U.S. Department of Energy and Brookhaven Science Associates (No. DE-Ac02-98CH10886). NR 43 TC 0 Z9 0 U1 0 U2 8 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD DEC PY 2011 VL 96 IS 5 AR 57005 DI 10.1209/0295-5075/96/57005 PG 6 WC Physics, Multidisciplinary SC Physics GA 862ZF UT WOS:000298131900038 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, A Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antosb, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchou, C Bendel, M Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buescher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darboa, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Debbe, R Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummadaa, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Jung, CA Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsoua, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuze, M Kuzhir, P Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatt, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C dos Santos, DR Rodier, S Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmon, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tian, F Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakire, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valentea, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antosb, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchou, C. Bendel, M. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darboa, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Debbe, R. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. S. Gonzalez de la Hoz Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummadaa, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Jung, C. A. Juranek, V. Jussel, P. Juste Rozas, A. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsoua, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugelc, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuze, M. Kuzhir, P. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatt, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. dos Santos, D. Roda Rodier, S. Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmon, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakire, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valentea, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at root s=7 TeV with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID BOTTOM-QUARK PRODUCTION; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; DECAYS AB The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of root s = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb(-1). The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < p(T) < 400 GeV and rapidity in the range vertical bar y vertical bar < 2.1. The b<(b)over bar>-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m(jj) < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured b (b) over bar -dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Cooper-Smith, N. J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kiver, A. M.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Demirkoz, B.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakire, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; Cooper-Smith, N. J.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Kiver, A. M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Griso, S. Pagan; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, INFN Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cooper-Smith, N. J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Cooper-Smith, N. J.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, BR-21945 Rio De Janeiro, Brazil. Univ Fed Juiz de Fora, Juiz de Fora, Brazil. Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Koffas, T.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Cook, J.; Cooper-Smith, N. J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Kiver, A. M.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmitz, M.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; He, M.; Liu, D.; Meng, Z.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand 2, Phys Corpusculaire Lab, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Darboa, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Cooper-Smith, N. J.; Evangelakou, D.; Henrichs, A.; Hensel, C.; Knue, A.; Kohn, F.; Lemmer, B.; Magradze, E.; Mann, A.; Quadt, A.; Roe, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugelc, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Jussel, P.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Egham, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Cooper-Smith, N. J.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Kiver, A. M.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmon, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Cooper-Smith, N. J.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; Cooper-Smith, N. J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cooper-Smith, N. J.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchou, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Cooper-Smith, N. J.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchou, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Cooper-Smith, N. J.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsoua, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Guler, H.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cooper-Smith, N. J.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Capasso, L.; Cevenini, F.; Chiefari, G.; Cooper-Smith, N. J.; della Volpe, D.; Musto, E.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bobbink, G. J.; Colijn, A. P.; Daum, C.; Doxiadis, A. D.; Geerts, D. A. A.; Hartjes, F.; Koffeman, E.; Koutsman, A.; Linde, F.; Luijckx, G.; Massaro, G.; Reichold, A.; Ta, D.; Turlay, E.; van der Kraaij, E.; van der Poel, E.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] BINP, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; Cooper-Smith, N. J.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Kiver, A. M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Korn, A.; Kundu, N.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valentea, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummadaa, A.; Lablak, S.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Dept Phys, Fac Sci Semlalia, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay, Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatt, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antosb, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Pinamonti, M.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; S. Gonzalez de la Hoz; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; S. Gonzalez de la Hoz; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; S. Gonzalez de la Hoz; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; S. Gonzalez de la Hoz; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; S. Gonzalez de la Hoz; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sarangi, T.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Toronto, ON, Canada. Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI De Cecco, Sandro/B-1016-2012; Stoicea, Gabriel/B-6717-2011; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Rotaru, Marina/A-3097-2011; Doyle, Anthony/C-5889-2009; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; Gutierrez, Phillip/C-1161-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; Laurelli, Paolo/B-1432-2012; St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Goncalo, Ricardo/M-3153-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Mora Herrera, Maria Clemencia/L-3893-2016; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Ancu, Lucian Stefan/F-1812-2010; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; M, Saleem/B-9137-2013 OI Stoicea, Gabriel/0000-0002-7511-4614; Rotaru, Marina/0000-0003-3303-5683; Doyle, Anthony/0000-0001-6322-6195; Takai, Helio/0000-0001-9253-8307; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Goncalo, Ricardo/0000-0002-3826-3442; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Morozov, Sergey/0000-0002-6748-7277; Ancu, Lucian Stefan/0000-0001-5068-6723; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE and NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 41 TC 18 Z9 18 U1 4 U2 62 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD DEC PY 2011 VL 71 IS 12 AR 1846 DI 10.1140/epjc/s10052-011-1846-4 PG 22 WC Physics, Particles & Fields SC Physics GA 865YW UT WOS:000298347800030 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Aielli, G Akdogan, T Akesson, TP Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boeser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K De Asmundis, R De Castro, S Salgado, PEDCF De Cecco, S De Graat, J De Groot, N De Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U Santo, A Regie, JBDV Dean, S Debbe, R Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Micco, B Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duehrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimic, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhaisa, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregros, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ged, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitz, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Goepfert, T Goeringer, C Goessling, C Goettfert, T Goldfarb, S Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Costa, PF Gonella, L Gonidec, A Gonzalez, S De la Hoz, S Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamer, M Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Hen, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istina, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Jung, CA Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomicha, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablaka, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Lostya, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Maettig, P Mattig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzi, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzantia, M Mazzoni, E Mc Kee, SP McCarn, A Mc-Carthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjoernmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Mueller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Orama, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelisa, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Peng, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Ro-Mano, M Romanov, VM Romeo, G Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CSM Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoening, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedov, G Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shana, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipic, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirouta, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tian, F Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonga, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakire, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vanadia, M Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjesa, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A Nedden, MZ Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Aielli, G. Akdogan, T. Akesson, T. P. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Barreiro Guimaraes da Costa, J. Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. De Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. De Graat, J. De Groot, N. De Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Debbe, R. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimic, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhaisa, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregros, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ged, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitz, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez De la Hoz, S. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamer, M. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Quiles, A. Irles Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istina, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Jung, C. A. Juranek, V. Jussel, P. Rozas, A. Juste Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomicha, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablaka, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Lostya, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzi, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzantia, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. Mc-Carthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morii, M. Morin, J. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Orama, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelisa, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Peng, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Ro-Mano, M. Romanov, V. M. Romeo, G. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santa-Marina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shana, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipic, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St. Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirouta, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonga, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakire, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls van der Graaf, H. van der Kraaij, E. van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vanadia, M. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjesa, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. Nedden, M. Zur Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for massive colored scalars in four-jet final states in root s=7 TeV proton-proton collisions with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID PP COLLISIONS; SUPERSYMMETRY AB A search for pair-produced scalar particles decaying to a four-jet final state is presented. The analysis is performed using an integrated luminosity of 34 pb(-1) recorded by the ATLAS detector in 2010. No deviation from the Standard Model is observed. For a scalar mass of 100 GeV (190 GeV) the limit on the scalar gluon pair production cross section at 95% confidence level is 1 nb (0.28 nb). When these results are interpreted as mass limits, scalar-gluons (hyperpions) with masses of 100 to 185 GeV (100 to 155 GeV) are excluded at 95% confidence level with the exception of a mass window of width about 5 GeV (15 GeV) around 140 GeV. C1 [Aad, G.; Ahles, F.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Akiyama, A.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Temming, K. K.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Ghez, P.; Goy, C.; Helary, L.; Jeremie, A.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Temming, K. K.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Sun, X.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Demirkoz, B.; Dosil, M.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjesa, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Ceradini, F.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Griso, S. Pagan; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tassi, E.; Tompkins, L.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Aielli, G.; Arik, E.; Arik, M.; Istina, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Piccinini, M.; Polini, A.; Rinaldi, L.; Ro-Mano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Villa, M.; Zoccoli, A.] Univ Bologna, INFN Sez Bologna, Bologna, Italy. Univ Bologna, Dipartmento Fis, Bologna, Italy. [Anders, C. F.; Arutinov, D.; Bartsch, D.; Brock, I.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Hellmich, D.; Huegging, F.; Khoriauli, G.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Leyko, A. M.; Limbach, C.; Nanava, G.; Nuncio-Quiroz, A. -E.; Radics, B.; Schumacher, J. W.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Vogel, A.; von Toerne, E.; Zendler, C.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Hazen, E.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Salgado, P. E. De Castro Faria; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Majewski, S.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Pleier, M. -A.; Poblaguev, A.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Koffas, T.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Tarem, S.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Braem, A.; Catinaccio, A.; Cattai, A.; Cerri, A.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dudarev, A.; Foussat, A.; Gonidec, A.; Gorini, B.; Correia, A. M. Henriques; Hoecker, A.; Mapelli, A.; Messina, A.; Morley, A. K.; Nairz, A. M.; Poppleton, A.; Salzburger, A.; Sfyrla, A.; Tricoli, A.; Zsenei, A.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tudorache, V.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shana, L. Y.; Tonga, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Parsons, J. A.; Penson, A.; Perez, K.; Thompson, E. N.; Tian, F.; Urbaniec, D.; Williams, E.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Benchekroun, D.; Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastrandrea, P.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tasevsky, M.] Univ Calabria, INFN Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Trzupek, A.; Tuggle, J. M.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Dietrich, J.; Fischer, G.; Glazov, A.; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Katzy, J.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Moenig, K.; Petschull, D.; Rubinskiy, I.; Sedov, G.; Tackmann, K.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Bartoldus, R.; Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Johansen, M.; Johansson, K. E.; Ohm, C. C.] Fachhochsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] INFN Lab Nazl Frascati, Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Ferrere, D.; Navarro, J. E. Garcia; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin dit; Herrera, C. Mora; Nikolics, K.; Pasztor, G.; Rosbach, K.; Rosselet, L.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; Doyle, A. T.; Edwards, N. C.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St. Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albert, J.; Andrieux, M-L.; Clement, B.; Collot, J.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Barreiro Guimaraes da Costa, J.; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Childers, J. T.; Geweniger, C.; Henke, M.; Khomicha, A.; Kluge, E. -E.; Meier, K.; Mueller, F.; Schultz-Coulon, H. -C.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zhou, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cobal, M.; Cochran, J.; Dudziak, F.; Mete, A. S.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksa, M.; Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Rumyantsev, L.; Sisakyan, A. N.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akimov, A. V.; Alonso, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Kowalewski, R.; Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Dos Anjos, A.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, INFN Sez Lecce, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tuts, P. M.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Adragna, P.; Atoian, G.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Teinturier, M.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. S.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Pastore, Fr.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Boeser, S.; Butterworth, J. M.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Torres, H.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Akdogan, T.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Kawamura, G.; Kleinknecht, K.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Nicquevert, B.; Sander, H. G.; Schmitt, C.; Schroeder, C.; Tappern, G. P.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Jones, G.; Lane, J. L.; Loebinger, F. K.; Martyniuk, A. C.; Masik, J.; Oh, A.; Pilkington, A. D.; Schwanenberger, C.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santa-Marina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, F. E.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Harper, D.; Levin, D.; Liu, H.; Liu, J. B.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Wilson, A.; Wooden, G.; Yang, H.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Andreazza, A.] Univ Milan, Dipartimento Fis, Milan, Italy. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Baccaglioni, G.; Broggi, F.; Cavalli, D.; Costa, G.; Favareto, A.; Giugni, D.; Meroni, C.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Tarrade, F.; Troncon, C.; Turlay, E.; Vegni, G.; Volpini, G.] Univ Milan, INFN Sez Milano, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gilewsky, V.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Nat Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, C.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimoto, G.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Biebel, O.; Calfayan, P.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Will, J. Z.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Vanadia, M.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhong, J.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.; Tanaka, S.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, INFN Sez Napoli, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; De Nooij, L.; Doxiadis, A. D.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Kayl, M. S.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Cakire, I. Turk; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Vulpen, I.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bogdanchikov, A.; Kolachev, G. M.; Korol, A.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Zaytsev, A.] BINP, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Newman, P. R.; Prokofiev, K.; Shibata, A.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Lounis, A.; Matsumoto, H.; Niedercorn, F.; Poggioli, L.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Tanaka, J.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, LAL, Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Barr, A. J.; Boddy, C. R.; Buchanan, J.; Buira-Clark, D.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Doglioni, C.; Gallas, E. J.; Gwenlan, C.; Hawes, B. M.; Howell, D. F.; Issever, C.; Korn, A.; Larner, A.; Lewis, A.; Loken, J.; Mattravers, C.; Pinder, A.; Robichaud-Veronneau, A.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.] Univ Oxford, Dept Phys, Oxford, England. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nicolaidou, R.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Wemans, A. Do Valle; Fiolhaisa, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao Fis Expt Particulas LIP, Lisbon, Portugal. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Kepka, O.; Kupco, A.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Nevski, P.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tas, P.; Tic, T.; Valenta, J.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tartarelli, G. F.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Borisov, A.; Bozhko, N. I.; Ivashin, A. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Patel, N.; Pleskach, A. V.; Solodkov, A. A.; Starchenko, E. A.; Vorobiev, A. P.; Zaitsev, A. M.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Baines, J. T.; Barnett, B. M.; Botterill, D.; Dewhurst, A.; Emeliyanov, D.; Fenyuk, A. B.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Kirk, J.; McCubbin, N. A.; Norton, P. R.; Sankey, D. P. C.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, R.] Ritsumeikan Univ, Shiga, Japan. [Bagnaia, P.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Ceradini, F.; Farilla, A.; Graziani, E.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Spiriti, E.; Stanescu, C.] Univ Roma Tre, INFN Sez Roma Tre, Rome, Italy. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipic, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Kenney, C. J.; Kocian, M.; Lowe, A. J.; Malone, C.; Neusiedl, A.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Dept Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Papadelisa, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tykhonov, A.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Mc-Carthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Dept Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Tardif, D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Asai, S.; Dohmae, T.; Imori, M.; Kanaya, N.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Mashimo, T.; Mastroberardino, A.; Matricon, P.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akesson, T. P.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Mashimo, T.; Mastroberardino, A.; Matricon, P.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tapprogge, S.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Lostya, M. J.; Nugent, I. M.; Orama, C. J.; Schouten, D.; Stelzer-Chilton, O.; Tafirouta, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bondioli, M.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Nelson, A.; Okawa, H.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] INFN Grp Coll Udine, Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Nicolas, L.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Alam, M. A.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Chen, X.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Gerlach, P.; Glitz, K. W.; Gorfine, G.; Hamacher, K.; Hirschbuehl, D.; Kalinin, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Patel, N.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Akiyama, A.; Aloisio, A.; Alonso, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; De Cecco, Sandro/B-1016-2012; Stoicea, Gabriel/B-6717-2011; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Rotaru, Marina/A-3097-2011; Doyle, Anthony/C-5889-2009; valente, paolo/A-6640-2010; Buttar, Craig/D-3706-2011; Gutierrez, Phillip/C-1161-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; Laurelli, Paolo/B-1432-2012; Takai, Helio/C-3301-2012; Goncalo, Ricardo/M-3153-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; Vanadia, Marco/K-5870-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Robson, Aidan/G-1087-2011; Ancu, Lucian Stefan/F-1812-2010; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013 OI Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Stoicea, Gabriel/0000-0002-7511-4614; Rotaru, Marina/0000-0003-3303-5683; Doyle, Anthony/0000-0001-6322-6195; valente, paolo/0000-0002-5413-0068; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; Takai, Helio/0000-0001-9253-8307; Goncalo, Ricardo/0000-0002-3826-3442; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Vanadia, Marco/0000-0003-2684-276X; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Ancu, Lucian Stefan/0000-0001-5068-6723; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Fabbri, Laura/0000-0002-4002-8353; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 30 TC 28 Z9 28 U1 5 U2 65 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD DEC PY 2011 VL 71 IS 12 AR 1828 DI 10.1140/epjc/s10052-011-1828-6 PG 19 WC Physics, Particles & Fields SC Physics GA 865YW UT WOS:000298347800016 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbia, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Baia, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battagli, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherlea, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Biten, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Bohler, M Boek, J Boelaert, N Boeser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcib, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Brunckob, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Budaa, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescua, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corrivea, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuca, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazioa, A Da Silva, BPVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K De Asmundisa, R De Castro, S Salgado, PEDCF De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L De Pedisa, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dean, S Debbe, R Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaouid, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaza, MA Diblenc, F Diehl, EB Dietrich, J Dietzscha, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duehrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dueren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratin, S French, ST Friedrich, F Froesch, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudioa, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ged, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlaneb, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugnia, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goringer, C Gossling, C Gottfert, T Goldfarb, S Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighria, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstroem, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Hana, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E Hed, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Hen, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegia, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummadaa, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istina, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jhaa, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, J Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalilzada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, SB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koeneke, K Koenig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsoua, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, QN Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaeki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugelc, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshovb, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablaka, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Laria, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Dortz, O Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lessera, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniack, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, P Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Lostya, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Maettig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, P Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastrober-Ardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mckee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meiera, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miaod, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabellia, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Moeck, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, A Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Nieder-Corn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugenta, IM Nuncio-Quiroz, AE Hanninger, GN Nunne-Mann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, K Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Orama, J Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GY Ottersbach, JP Ouchrifd, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panesa, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrinoa, R Perrodo, P Persembe, S Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Radora, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A Lima, JGR Roda, C Santos, DR Rodier, S Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruehr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santosa, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schaefer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoening, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprinicesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shana, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shawa, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjoelin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Stroehmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoyd, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, C Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, P Tian, F Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakire, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valentea, P Valentinetti, S Valkar, S Gallego, EV Vallecors, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van der Leeuw, R Poel, ED Ster, DD Eijk, B Eldik, N Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H Loeben, J Radziewski, H Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wub, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yuc, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbia, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Baia, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battagli, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherlea, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Biten, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcib, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Brunckob, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Budaa, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescua, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corrivea, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuca, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazioa, A. Da Silva, B. P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. De Asmundisa, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. De Pedisa, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Debbe, R. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. Della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaouid, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaza, M. A. Diblenc, F. Diehl, E. B. Dietrich, J. Dietzscha, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratin, S. French, S. T. Friedrich, F. Froesch, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudioa, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ged, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlaneb, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugnia, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Golovnia, S. N. Gomes, A. Gomez Fajardo, L. S. Goncalo, R. Firmino Da Costa, J. Goncalves Pinto Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighria, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Hana, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. Hed, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Hen, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegia, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummadaa, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S-C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istina, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jhaa, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Juranek, V. Jussel, P. Rozas, A. Juste Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalilzada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsoua, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, Q. N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugelc, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshovb, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablaka, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Laria, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lessera, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniack, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Lostya, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastrober-Ardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. McKee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meiera, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miaod, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabellia, G. Verge, L. Miralles Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Monig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Muller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Nieder-Corn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugenta, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunne-Mann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Orama, J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrifd, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panesa, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrinoa, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Radora, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. RueHr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santosa, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprinicesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shana, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shawa, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoyd, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, P. Tian, F. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakire, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valentea, P. Valentinetti, S. Valkar, S. Gallego, E. Valladolid Vallecors, S. Ferrer, J. A. Valls van der Graaf, H. van der Kraaij, E. Van der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wub, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yuc, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for a heavy neutral particle decaying into an electron and a muon using 1 fb(-1) of ATLAS data SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID QCD AB A search is presented for a high mass neutral particle that decays directly to the e(+/-) mu(-/+) final state. The data sample was recorded by the ATLAS detector in root s = 7 TeV pp collisions at the LHC from March to June 2011 and corresponds to an integrated luminosity of 1.07 fb(-1). The data are found to be consistent with the Standard Model background. The high e(+/-) mu(-/+) mass region is used to set 95% confidence level upper limits on the production of two possible new physics processes: tau sneutrinos in an R-parity violating supersymmetric model and Z'-like vector bosons in a lepton flavor violating model. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Biten, U.; Bruneliere, R.; Christov, A.; Herten, G.; Ketterer, C.; Lumb, D.; Nilsen, H.; Schmidt, E.; Siegert, F.; Weiser, C.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Bahinipati, S.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.] LAPP, CNRS IN2P3, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Boterenbrood, H.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Lampen, C. L.; Paleari, C. P.; Suhr, C.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Brock, R.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Gazis, E. N.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Bansil, H. S.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battagli, A.; Beck, H. P.; Borer, C.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battagli, A.; Beck, H. P.; Borer, C.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bracinik, J.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istina, S.; Ozcan, V. E.; Radora, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.] Univ Bologna, INFN Sez Bologna, Bologna, Italy. [Bertin, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Anders, C. F.; Arutinov, D.; Geich-Gimbel, Ch.; Jackson, B.; Kruth, A.; Lapoire, C.; Leyko, A. M.; Limbach, C.; Nuncio-Quiroz, A. -E.; Radics, B.; Vogel, A.; Zendler, C.] Univ Bonn, Inst Phys, Bonn, Germany. [Black, K. M.; Butler, J. M.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Sedykh, E.; Shank, J. T.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Da Silva, B. P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Budaa, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescua, S.; Cuciuca, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Ruan, X.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. [Otero y Garzon, G.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaza, M. A.; Panesa, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshovb, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Baia, Y.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Guicheney, C.; Pallin, D.; Santoni, C.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Boldea, V.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastrober-Ardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Ciba, K.; Idzik, M.; Jelen, K.; Koperny, S.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Firan, A.; Joffe, D.; Kasmi, A.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Glazov, A.; Gosdzik, B.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Petschull, D.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Kuutmann, E. Bergeaas; Glazov, A.; Gosdzik, B.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Petschull, D.] DESY, Zeuthen, Germany. [Hirsch, F.; Klaiber-Lodewigs, J.; Reisinger, I.; Weber, J.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Ludwig, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Martin, V. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhochsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.] INFN Lab Nazl Frascati, Frascati, Italy. [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Biten, U.; Bruneliere, R.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherlea, R.; Caso, C.; Cornelissen, T.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rozanov, A.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Astvatsatourov, A.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Sliwa, K.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Behera, P. K.] Univ Iowa, Iowa City, IA USA. [Dudziak, F.; Mete, A. S.; Nelson, A.; Rosenberg, E. I.; Ruiz-Martinez, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Chilingarov, A.; De Mora, L.; Fox, H.; Love, P. A.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrinoa, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, INFN Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [D'Onofrio, M.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, J.; King, B. T.; Klein, M.; Kretzschmar, J.; Mehta, A.; Sellers, G.; Siragusa, G.; Vossebeld, J. H.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Carter, A. A.; Eisenhandler, E.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Traynor, D.] Queen Mary Univ London, Dept Phys, London, England. Royal Holloway Univ London, Dept Phys, Surrey, England. [Cooper, B. D.; Davison, A. R.; Richards, A.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corrivea, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; McKee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, P.; Walch, S.; Wilson, A.; Wooden, G.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.; Werner, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Muller, T. A.; Nunne-Mann, T.; Rauscher, F.; Reznicek, P.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Boterenbrood, H.; Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Capasso, L.; Cardarelli, R.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; De Asmundisa, R.; Della Pietra, M.; Della Volpe, D.; Doria, A.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] Univ Naples Federico II, INFN Sez Napoli, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bobbink, G. J.; Colijn, A. P.; Daum, C.; Doxiadis, A. D.; Garitaonandia, H.; Geerts, D. A. A.; Hartjes, F.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mussche, I.; Reichold, A.; Ta, D.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Vulpen, I.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nieder-Corn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Ruckstuhl, N.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, S. B.; Korn, A.; Kundu, N.; Larner, A.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.] Univ Oxford, Dept Phys, Oxford, England. [Ferrari, R.; Franchino, S.; Gaudioa, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, INFN Sez Pavia, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratin, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Psoroulas, S.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Baines, J. T.; Barnett, B. M.; Botterill, D.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Karyukhin, A. N.; Kirk, J.; McCubbin, N. A.; Sankey, D. P. C.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Ruckert, B.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Roth, I.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math, Bratislava, Slovakia. [Antos, J.; Brunckob, D.; Ferencei, J.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegia, A.; Holmgren, S. O.; Lessera, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Nordkvist, B.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Rossetti, V.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Tarem, S.; Vallecors, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Harpaz, S. Behar; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Dohmae, T.; Imori, M.; Kanaya, N.; Kawamoto, T.; Kessoku, K.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Oda, S.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Beare, B.; Brelier, B.; Deviveiros, P. O.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Rosenbaum, G. A.; Rossi, L. P.; Savard, P.; Sinervo, P.; Tardif, D.; Thompson, P. D.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Lostya, M. J.; Nugenta, I. M.; Palacino, G.; Stelzer-Chilton, O.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bondioli, M.; Deng, J.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Giordani, M. P.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Rubinskiy, I.; Silbert, O.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Ji, H.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Morales, M. I. Pedraza; Poveda, J.; Wang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan, Armenia. [Biscarat, C.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Abdesselam, A.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Alonso, A.; Amorim, A.; Andreazza, A.; Angerami, A.; Annovi, A.; Carter, A. A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Abdesselam, A.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Alonso, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Abdesselam, A.; Ahmad, A.; Akiyama, A.; Bocci, A.; Carter, A. A.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Baroncelli, A.; Belloni, A.; Bocci, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Beddall, A.; Bogdanchikov, A.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Dewhurst, A.; Firan, A.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Filippas, A.; Firan, A.; Formica, A.; Forti, A.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Filippas, A.; Kreisel, A.; Kruth, A.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Hoummadaa, A.; Ishikawa, A.; Kreisel, A.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Hoummadaa, A.; Ishikawa, A.; Jantsch, A.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Nisati, A.; Reinsch, A.; Renaud, A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Manousakis-Katsikakis, A.; Manz, A.; Varouchas, D.] Manhattan Coll, New York, NY USA. [Hernandez, A. M. Castaneda; Ciocca, C.; Martin, B.; Vachon, B.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Aloisio, A.; Andreazza, A.; Annovi, A.; Antonaki, A.; Artamonov, A.; Astvatsatourov, A.; Filippas, A.; Shibata, A.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Hoummadaa, A.; Ishikawa, A.; Kruth, A.; Kugelc, A.; La Rosa, A.] Univ Minho, Dept Fis, Braga, Portugal. [Armbruster, A. J.; Hernandez, A. M. Castaneda; Manousakis-Katsikakis, A.; Renaud, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Hernandez, A. M. Castaneda; Richter-Was, E.; Saxon, D. H.; Sellers, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Ahmad, A.; Aloisio, A.; Amorim, A.; Angerami, A.; Barashkou, A.; Battagli, A.] CALTECH, Pasadena, CA 91125 USA. [Andreazza, A.; Artamonov, A.; Bingul, A.; Borisov, A.; Chafaq, A.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Juste, Aurelio/I-2531-2015; Grinstein, Sebastian/N-3988-2014; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Ferrer, Antonio/H-2942-2015; Mir, Lluisa-Maria/G-7212-2015; Cavalli-Sforza, Matteo/H-7102-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Marti-Garcia, Salvador/F-3085-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Ancu, Lucian Stefan/F-1812-2010; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Britton, David/F-2602-2010; Gutierrez, Phillip/C-1161-2011; Li, Xuefei/C-3861-2012; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Laurelli, Paolo/B-1432-2012; De Cecco, Sandro/B-1016-2012; Stoicea, Gabriel/B-6717-2011; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Rotaru, Marina/A-3097-2011; Doyle, Anthony/C-5889-2009; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012 OI Chen, Chunhui /0000-0003-1589-9955; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Farrington, Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson, Aidan/0000-0002-1659-8284; Canelli, Florencia/0000-0001-6361-2117; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Cranmer, Kyle/0000-0002-5769-7094; Klinkby, Esben Bryndt/0000-0002-1908-5644; Vos, Marcel/0000-0001-8474-5357; Castro, Nuno/0000-0001-8491-4376; Grancagnolo, Francesco/0000-0002-9367-3380; Chen, Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; Osculati, Bianca Maria/0000-0002-7246-060X; De Lotto, Barbara/0000-0003-3624-4480; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Bailey, David C/0000-0002-7970-7839; Nisati, Aleandro/0000-0002-5080-2293; Cataldi, Gabriella/0000-0001-8066-7718; Evans, Harold/0000-0003-2183-3127; Giordani, Mario/0000-0002-0792-6039; Vari, Riccardo/0000-0002-2814-1337; Gray, Heather/0000-0002-5293-4716; Nielsen, Jason/0000-0002-9175-4419; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Solodkov, Alexander/0000-0002-2737-8674; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Mir, Lluisa-Maria/0000-0002-4276-715X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Ancu, Lucian Stefan/0000-0001-5068-6723; Villa, Mauro/0000-0002-9181-8048; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Britton, David/0000-0001-9998-4342; Ferrando, James/0000-0002-1007-7816; Stoicea, Gabriel/0000-0002-7511-4614; Rotaru, Marina/0000-0003-3303-5683; Doyle, Anthony/0000-0001-6322-6195; Takai, Helio/0000-0001-9253-8307 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 36 TC 7 Z9 7 U1 9 U2 73 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD DEC PY 2011 VL 71 IS 12 AR 1809 DI 10.1140/epjc/s10052-011-1809-9 PG 17 WC Physics, Particles & Fields SC Physics GA 865YW UT WOS:000298347800001 ER PT J AU Mandrus, D AF Mandrus, David TI Gifts from the superconducting curiosity shop SO FRONTIERS OF PHYSICS LA English DT Editorial Material C1 [Mandrus, David] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, David] Oak Ridge Natl Lab, Mat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Mandrus, D (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM dmandrus@utk.edu RI Mandrus, David/H-3090-2014 NR 14 TC 1 Z9 1 U1 1 U2 7 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 2095-0462 J9 FRONT PHYS-BEIJING JI Front. Phys. PD DEC PY 2011 VL 6 IS 4 BP 347 EP 349 DI 10.1007/s11467-011-0226-8 PG 3 WC Physics, Multidisciplinary SC Physics GA 872KI UT WOS:000298807900003 ER PT J AU Wang, F Lee, DH AF Wang, Fa Lee, Dung-Hai TI A reflection on the contrast between the Cooper pairing in iron-based and conventional superconductors SO FRONTIERS OF PHYSICS LA English DT Article DE Cooper pairing; iron-based superconductors; effective interaction; renormalization group ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; RENORMALIZATION-GROUP; FERMI-LIQUID; STRIPES; METALS; PHASE AB In this Perspective article we review retrospectively the streamline of our work on iron-based superconductors, and reflect on the mechanism of Cooper pairing in conventional and unconventional, such as iron-based superconductors. The main theme of this review is the concept of effective interaction and renormalization group. C1 [Wang, Fa] MIT, Dept Phys, Cambridge, MA 02139 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM wangfa@mit.edu; dunghai@berkeley.edu FU DOE [DE-AC02-05CH11231] FX This review is based on results obtained in collaboration with Hui Zhai and Fan Yang, to whom we are deeply grateful. D. H. Lee acknowledge the support by the DOE grant number DE-AC02-05CH11231. NR 35 TC 0 Z9 0 U1 2 U2 12 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 2095-0462 J9 FRONT PHYS-BEIJING JI Front. Phys. PD DEC PY 2011 VL 6 IS 4 BP 350 EP 356 DI 10.1007/s11467-011-0212-1 PG 7 WC Physics, Multidisciplinary SC Physics GA 872KI UT WOS:000298807900004 ER PT J AU Dagotto, E Moreo, A Nicholson, A Luo, QL Liang, SH Zhang, XT AF Dagotto, Elbio Moreo, Adriana Nicholson, Andrew Luo, Qinglong Liang, Shuhua Zhang, Xiaotian TI Properties of the multiorbital Hubbard models for the iron-based superconductors SO FRONTIERS OF PHYSICS LA English DT Review DE superconductivity ID HIGH-TEMPERATURE SUPERCONDUCTORS; LAYERED QUATERNARY COMPOUND; SPIN-DENSITY-WAVE; PHASE-DIAGRAM; PHOTOEMISSION-SPECTROSCOPY; MAGNETISM; GAPS; LAO0.9F0.1-DELTA-FEAS; OXIDES; ORDER AB A brief review of the main properties of multiorbital Hubbard models for the Fe-based superconductors is presented. The emphasis is on the results obtained by our group at the University of Tennessee and Oak Ridge National Laboratory, Tennessee, USA, but results by several other groups are also discussed. The models studied here have two, three, and five orbitals, and they are analyzed using a variety of computational and mean-field approximations. A "physical region" where the properties of the models are in qualitative agreement with neutron scattering, photoemission, and transport results is revealed. A variety of interesting open questions are briefly discussed such as: what are the dominant pairing tendencies in Hubbard models? Can pairing occur in an interorbital channel? Are nesting effects of fundamental relevance in the pnictides or approaches based on local moments are more important? What kind of magnetic states are found in the presence of iron vacancies? Can charge stripes exist in iron-based superconductors? Why is transport in the pnictides anisotropic? The discussion of results includes the description of these and other open problems in this fascinating area of research. C1 [Dagotto, Elbio; Moreo, Adriana; Nicholson, Andrew; Luo, Qinglong; Liang, Shuhua; Zhang, Xiaotian] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dagotto, Elbio; Moreo, Adriana; Nicholson, Andrew; Luo, Qinglong; Liang, Shuhua; Zhang, Xiaotian] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Dagotto, E (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM edagotto@utk.edu FU U. S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; National Science Foundation [DMR-1104386] FX The work of the authors has been supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and also by the National Science Foundation under grant DMR-1104386. NR 113 TC 10 Z9 10 U1 2 U2 29 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 2095-0462 J9 FRONT PHYS-BEIJING JI Front. Phys. PD DEC PY 2011 VL 6 IS 4 BP 379 EP 397 DI 10.1007/s11467-011-0222-z PG 19 WC Physics, Multidisciplinary SC Physics GA 872KI UT WOS:000298807900007 ER PT J AU Spendelow, JS Papageorgopoulos, DC AF Spendelow, J. S. Papageorgopoulos, D. C. TI Progress in PEMFC MEA Component R&D at the DOE Fuel Cell Technologies Program SO FUEL CELLS LA English DT Article; Proceedings Paper CT 2nd CARISMA International Conference on Progress in MEA Materials for Medium and High Temperature Polymer Electrolyte Fuel Cells CY SEP 19-22, 2010 CL La Grande Motte, FRANCE SP FuMA-Tech, Solvicore, efceco, Wiley-VCH DE Department of Energy; High Temperature Membranes; Membrane Electrode Assemblies; Non-Platinum Catalysts; PEMFCs; Platinum ID PLATINUM-MONOLAYER ELECTROCATALYSTS; OXYGEN REDUCTION REACTION; O-2 REDUCTION; CATALYSTS; DEGRADATION; MEMBRANES; ALLOYS AB The U.S. Department of Energy Fuel Cell Technologies Program supports research and development (R&D) of fuel cells and fuel cell systems for stationary, portable and transportation applications. The Program maintains a diverse portfolio of R&D projects aimed at reducing cost and improving durability of fuel cell systems, with an overarching goal of enabling fuel cell technology to compete with alternative technologies in the marketplace. This paper describes the Program's recent activities and progress in development of catalysts, membranes and membrane electrode assemblies for polymer electrolyte membrane fuel cells. C1 [Spendelow, J. S.; Papageorgopoulos, D. C.] US DOE, Washington, DC 20585 USA. [Spendelow, J. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Papageorgopoulos, DC (reprint author), US DOE, 1000 Independence Ave SW, Washington, DC 20585 USA. EM Dimitrios.Papageorgopoulos@ee.doe.gov NR 47 TC 16 Z9 16 U1 2 U2 20 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1615-6846 J9 FUEL CELLS JI Fuel Cells PD DEC PY 2011 VL 11 IS 6 SI SI BP 775 EP 786 DI 10.1002/fuce.201000189 PG 12 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA 865NI UT WOS:000298317200008 ER PT J AU Di Maio, PA Paradiso, D Dell'Orco, G Pitcher, CS Kalish, M AF Di Maio, P. A. Paradiso, D. Dell'Orco, G. Pitcher, C. S. Kalish, M. TI On the theoretical-numerical study of the ITER Upper Port Plug structure hydraulic behaviour under steady state and draining and drying transient conditions SO FUSION ENGINEERING AND DESIGN LA English DT Article DE ITER Upper Port Plug; Thermal-hydraulic; Draining and drying AB The ITER diagnostic Upper Port Plug (UPP) is a water-cooled stainless steel structure aimed to integrate within vacuum vessel the plasma diagnostic systems, shielding them from neutron and photon irradiation. Due to the very intense heat loads expected, a proper cooling circuit has been designed to ensure an adequate UPP cooling with an acceptable thermal rise and an unduly high pumping power and to perform its draining and drying procedure by injection of pressurized nitrogen. A theoretical research activity has been launched at the Department of Nuclear Engineering of the University of Palermo aiming to investigate the hydraulic behaviour of the UPP Trapezoid Section cooling circuit under steady state conditions and during its draining and drying transient procedure. The research activity has been performed following a theoretical-computational approach and adopting the RELAP5 thermal-hydraulic system code. The Trapezoid Section cooling circuit characteristic functions have been derived under steady state conditions at various coolant temperatures for both the coolant flow paths at the present under consideration for this circuit. The distributions of coolant mass flow rates along the channels of the cooling circuit have been calculated too. Results show that the flow path characterized by right plate inlet has improved hydraulic performances. The transient behaviour of the Trapezoid Section cooling circuit has been investigated during the draining and drying operational transient procedure, considering realistic operative scenarios, for both the coolant flow paths at the present under consideration for the cooling circuit. In particular, it has been found out that the recently proposed flow path seems to allow the complete draining of the Trapezoid Section circuit, eliminating the need for the drying procedure. (C) 2011 Elsevier B.V. All rights reserved. C1 [Di Maio, P. A.; Paradiso, D.] Univ Palermo, Dipartimento Ingn Nucl, I-90128 Palermo, Italy. [Dell'Orco, G.; Pitcher, C. S.] ITER Org, F-13115 St Paul Les Durance, France. [Kalish, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Di Maio, PA (reprint author), Univ Palermo, Dipartimento Ingn Nucl, Viale Sci,Edificio 6, I-90128 Palermo, Italy. EM dimaio@din.unipa.it OI DI MAIO, Pietro Alessandro/0000-0002-2018-3831 FU ITER Organization [ITER/CT/08/1215]; Department of Nuclear Engineering of the University of Palermo [ITER/CT/08/1215] FX This paper was supported by the ITER Organization under the consulting contract ITER/CT/08/1215 between the Department of Nuclear Engineering of the University of Palermo and the ITER Organization. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. NR 11 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2011 VL 86 IS 12 BP 2983 EP 2998 DI 10.1016/j.fusengdes.2011.08.003 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 871YP UT WOS:000298773900026 ER PT J AU Choi, I Yin, ZY Adamovich, IV Lempert, WR AF Choi, Inchul Yin, Zhiyao Adamovich, Igor V. Lempert, Walter R. TI Hydroxyl Radical Kinetics in Repetitively Pulsed Hydrogen-Air Nanosecond Plasmas SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Hydroxyl radical; laser induced fluorescence; plasma-assisted combustion ID CROSS-SECTIONS; SHOCK-TUBE; OH; MIXTURES; IGNITION; COMBUSTION; COLLISIONS; DISCHARGE; MOLECULES; ELECTRONS AB Absolute hydroxyl radical (OH) concentration is determined in stoichiometric hydrogen-air mixtures at P = 54-94 torr and initial temperature of T = 100 degrees C-200 degrees C, which are both functions of time, after the application of a single approximately 25-ns-duration approximately 20-kV discharge pulse and 60 mu s after the final pulse of a variable-length burst of pulses, using single-photon laser-induced fluorescence (LIF). Relative LIF signal levels are put on an absolute number density scale by means of calibration with a standard atmospheric-pressure near-adiabatic Hencken flat-flame burner. By obtaining OH LIF data in both the plasma and the flame and correcting for differences in the collisional quenching and vibrational energy transfer rates, absolute OH number density has been determined. For a single discharge pulse, the absolute OH temporal profile is found to rise rapidly during the initial similar to 0.1 ms after discharge initiation and decay relatively slowly, with a characteristic time scale of similar to 1 ms. In repetitive burst mode, the absolute OH number density is observed to rise rapidly during the first approximately ten pulses (0.25 ms) and then level off to a near steady-state plateau. In all cases, a large secondary rise in OH number density is also observed, which is clearly indicative of ignition, with ignition time ranging from 5 to 10 ms, for initial temperatures of 100 degrees C and 200 degrees C and pressures in the range of 54-94 torr. Plasma kinetic modeling predictions capture this trend quantitatively, using both a full 22-hydrogen-air-chemical-reaction set and a reduced 9-reaction set. C1 [Choi, Inchul; Yin, Zhiyao; Adamovich, Igor V.; Lempert, Walter R.] Ohio State Univ, Dept Mech Engn, Michael A Chaszeyka Nonequilibrium Thermodynam La, Columbus, OH 43210 USA. RP Choi, I (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RI Adamovich, Igor/E-6172-2014; OI Adamovich, Igor/0000-0001-6311-3940; Yin, Zhiyao/0000-0001-5141-1967 FU U.S. Air Force Office of Scientific Research; National Science Foundation FX This work was supported in part by the U.S. Air Force Office of Scientific Research (J. Tishkoff, Technical Monitor) and in part by the National Science Foundation (A. Atreya, Technical Monitor). NR 29 TC 21 Z9 21 U1 2 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD DEC PY 2011 VL 39 IS 12 SI SI BP 3288 EP 3299 DI 10.1109/TPS.2011.2163736 PN 1 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 861YF UT WOS:000298056300006 ER PT J AU Kesar, AS Petillo, JJ Nusinovich, GS Herrmannsfeldt, WB Granatstein, VL AF Kesar, Amit S. Petillo, John J. Nusinovich, Gregory S. Herrmannsfeldt, William Bill Granatstein, Victor L. TI Design of a Magnetron Injection Gun for a 670-GHz 300-kW Gyrotron SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Gyrotrons; magnetron injection guns (MIGs) ID SIMULATION AB A 300-kW 670-GHz gyrotron, operating with a pulsed coil at the fundamental cyclotron harmonic, is designed at the University of Maryland for an application of detecting concealed radioactive materials. The design of a low-spread diode-type magnetron injection gun for this gyrotron is presented. Constraints due to the pulsed coil design and the limitation of maximum electric field at the cathode result in a steep tilting angle of the cathode surface, 74 degrees, along with a Pierce-type focusing section and a high magnetic compression ratio larger than 170. A pitch ratio of 1.34 and a low pitch ratio spread of 2.5% for a cold beam and 9.2% due to emitter surface temperature of 0.1 eV and 1-mu m roughness were obtained. The results were benchmarked with three simulation codes: EGUN, TRAK, and MICHELLE. Numerical results were calculated for beam currents up to 19 A, accelerating voltage of 50-90 kV, and magnetic field of 25-30 T. A sensitivity analysis with respect to critical parameters such as the depth of the focusing section and the internal simulation parameters is provided. C1 [Kesar, Amit S.; Nusinovich, Gregory S.; Granatstein, Victor L.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Kesar, Amit S.] Soreq Nucl Res Ctr, Div Appl Phys, IL-81800 Yavne, Israel. [Petillo, John J.] Sci Applicat Int Corp, Billerica, MA 01821 USA. [Herrmannsfeldt, William Bill] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Kesar, AS (reprint author), Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RI Nusinovich, Gregory/C-1314-2017 OI Nusinovich, Gregory/0000-0002-8641-5156 FU Office of Naval Research FX This work was supported by the Office of Naval Research. NR 22 TC 7 Z9 7 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD DEC PY 2011 VL 39 IS 12 BP 3337 EP 3344 DI 10.1109/TPS.2011.2170436 PN 2 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 861YM UT WOS:000298057000001 ER PT J AU Groenewold, GS van Stipdonk, MJ Oomens, J de Jong, WA McIlwain, ME AF Groenewold, Gary S. van Stipdonk, Michael J. Oomens, Jos de Jong, Wibe A. McIlwain, Michael E. TI The gas-phase bis-uranyl nitrate complex [(UO2)(2)(NO3)(5)](-): Infrared spectrum and structure SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Infrared spectroscopy; Photodissociation; IRMPD; Density functional theory; Actinide complex; Uranium; Uranyl cluster; Free electron laser; FTMS ID RESONANCE MASS-SPECTROMETRY; PHOTON DISSOCIATION SPECTROSCOPY; ENERGY-ADJUSTED PSEUDOPOTENTIALS; ION-MOLECULE COMPLEXES; VIBRATIONAL SPECTROSCOPY; AB-INITIO; ACTINIDE CHEMISTRY; PARAMETER SETS; DENSITY; PHOTODISSOCIATION AB The infrared spectrum of the bis-uranyl nitrate complex [(UO2)(2)(NO3)(5)](-) was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate nu(3) vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO2)(2)(NO3)(5)](-) compared to the mono-complex [UO2(NO3)(3)](-), as indicated by a higher O-U-O asymmetric stretching (nu(3)) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the nu(3) frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment. (C) 2011 Elsevier B.V. All rights reserved. C1 [Groenewold, Gary S.; McIlwain, Michael E.] Idaho Natl Lab, Idaho Falls, ID 83402 USA. [van Stipdonk, Michael J.] Wichita State Univ, Dept Chem, Wichita, KS 67208 USA. [Oomens, Jos] FOM Inst Plasmaphys, Nieuwegein, Netherlands. [de Jong, Wibe A.] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. [Oomens, Jos] Univ Amsterdam, vant Hoff Inst Mol Sci, Amsterdam, Netherlands. RP Groenewold, GS (reprint author), Idaho Natl Lab, 2151 N Blvd, Idaho Falls, ID 83402 USA. EM gary.groenewold@inl.gov; michael.vanstipdonk@wsu.edu; joso@rijnh.nl; bert.dejong@pnl.gov RI DE JONG, WIBE/A-5443-2008; Oomens, Jos/F-9691-2015 OI DE JONG, WIBE/0000-0002-7114-8315; FU U.S. Department of Energy; INL Laboratory under DOE Idaho Operations Office [DE-AC07-05ID14517]; U.S. National Science Foundation (NSF) [CAREER-0239800]; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting Physica; National High Field FT-ICR Facility at the National High Magnetic Field Laboratory, Tallahassee, FL [CHE-9909502]; Office of Basic Energy Sciences, U.S. Department of Energy; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory FX Work by G.S. Groenewold, G.L. Gresham and M.E. McIlwain was supported by the U.S. Department of Energy, Assistant Secretary for Environmental Management, and the INL Laboratory Directed Research & Development Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. M.J. Van Stipdonk was supported through a grant from the U.S. National Science Foundation (NSF grant CAREER-0239800).J. omens was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) and the Stichting Physica. The skillful assistance by the FELIX staff, in particular Dr. B. Redlich, is gratefully acknowledged. Construction and shipping of the FT-ICR-MS instrument was made possible through funding from the National High Field FT-ICR Facility (grant CHE-9909502) at the National High Magnetic Field Laboratory, Tallahassee, FL. A portion of W.A. de Jong's research was supported by the BES Heavy Element Chemistry program, Office of Basic Energy Sciences, U.S. Department of Energy, and performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 58 TC 9 Z9 9 U1 3 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD DEC 1 PY 2011 VL 308 IS 2-3 SI SI BP 175 EP 180 DI 10.1016/j.ijms.2011.06.002 PG 6 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 871ZP UT WOS:000298776500005 ER PT J AU Steill, JD Oomens, J AF Steill, Jeffrey D. Oomens, Jos TI Spectroscopically resolved competition between dissociation and detachment from nitrobenzene radical anion SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Nitrobenzene; Radical anion; IRMPD; Electron detachment; QET; Distonic ion ID RESONANCE MASS-SPECTROMETRY; AB-INITIO CALCULATIONS; PHASE IR SPECTROSCOPY; GAS-PHASE; VIBRATIONAL-SPECTRA; INFRARED-SPECTROSCOPY; INTERNAL-ROTATION; MOLECULAR-IONS; ELECTRON-AFFINITIES; PROJECTION ANALYSIS AB We report the vibrational spectrum of the gas-phase isolated nitrobenzene radical anion. The spectrum has been acquired by infrared multiple-photon absorption induced dissociation and electron detachment using the FT mass spectrometer coupled to the infrared free-electron laser FELIX. Upon wavelength-dependent multiple-photon absorption of intense IR irradiation, the vibrational spectrum acquired by on-resonance dissociation to NO2- was shown to correlate with the more sensitive electron detachment channel which is indirectly observed by using SF6 as electron scavenger. The spectrum is compared to previous spectroscopic studies and novel OFT calculations. The frequency and intensity changes of the vibrational bands for the radical anion with respect to the neutral are interpreted with the aid of molecular orbital calculations and mode projection analysis. The vibrations of the neutral and the anion are interpreted in terms of the component benzene modes. The anion shows a reversal of the familiar strongly deactivating meta-directing electrophilic aromatic substitution effect of the neutral due to a resonance effect placing electron density at the ortho- and para-positions, resulting in a structure of distonic character. The greater abundance of the electron detachment channel over the NO2- loss dissociation channel is interpreted in terms of statistical models of the energy-dependent unimolecular rates. The anion and neutral vibrational frequencies employed in a quasi-equilibrium theory (QET) model of electron detachment compare favorably to previous experimental results of metastable anion autodetachment lifetimes. The ratio of dissociation to detachment is investigated as a function of FEL power and the competition between these channels is in agreement with a statistical model. Published by Elsevier B.V. C1 [Steill, Jeffrey D.; Oomens, Jos] FOM Inst Plasma Phys Rijnhuizen, NL-3439 MN Nieuwegein, Netherlands. [Oomens, Jos] Univ Amsterdam, vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands. RP Steill, JD (reprint author), Sandia Natl Labs, Combust Res Facil, 7011 E Ave, Livermore, CA 94551 USA. EM jdsteil@sandia.gov RI Oomens, Jos/F-9691-2015 FU Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting Physica FX We acknowledge the excellent support of Drs. Britta Redlich and Lex van der Meer as well as others of the FELIX staff, and thank H. Alvaro Galue and Prof. Robert N. Compton for helpful discussions. This work is part of the research program of FOM, which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Support by the Stichting Physica is gratefully acknowledged. NR 87 TC 7 Z9 7 U1 0 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD DEC 1 PY 2011 VL 308 IS 2-3 SI SI BP 239 EP 252 DI 10.1016/j.ijms.2011.08.001 PG 14 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 871ZP UT WOS:000298776500013 ER PT J AU Laskin, J Yang, ZB AF Laskin, Julia Yang, Zhibo TI Energetics and dynamics of dissociation of deprotonated peptides: Fragmentation of angiotensin analogs SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Surface-induced dissociation; Deprotonated peptide; Threshold energy; Activation entropy; Charge-remote fragmentation ID SURFACE-INDUCED DISSOCIATION; COLLISION-INDUCED DISSOCIATION; OFF-RESONANCE EXCITATION; MASS-SPECTROMETRY; GAS-PHASE; PROTONATED PEPTIDES; SELECTIVE CLEAVAGE; FIBRINOPEPTIDE-B; ACIDIC RESIDUES; RADICAL-CATION AB We present a first study of the energetics and dynamics of dissociation of deprotonated peptides using time- and collision-energy resolved surface-induced dissociation (SID) experiments. SID of four model peptides (RVYIHPF, HVYIHPF, DRVYIHPF, and DHVYIHPF) was studied using a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for studying ion-surface collisions. Energy and entropy effects for the overall decomposition of the precursor ion were deduced by modeling the time- and collision energy-resolved survival curves using an RRKM based approach developed in our laboratory. The results were compared to the energetics and dynamics of dissociation of the corresponding protonated species. We demonstrate that acidic peptides are less stable in the negative mode because of the low threshold associated with the kinetically hindered loss of H(2)O from [M-H](-) ions. Comparison between the two basic peptides indicates that the lower stability of the [M-H](-) ion of RVYIHPF as compared to HVYIHPF towards fragmentation is attributed to the differences in fragmentation mechanisms. Specifically, threshold energy associated with losses of NH(3) and NHCNH from RVYIHPF is lower than the barrier for backbone fragmentation that dominates gas-phase decomposition of HVYIHPF. The results provide a first quantitative comparison between the energetics and dynamics of dissociation of [M+H](+) and [M-H](-) ions of acidic and basic peptides. (C) 2011 Elsevier B.V. All rights reserved. C1 [Laskin, Julia; Yang, Zhibo] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, POB 999 K8-88, Richland, WA 99352 USA. EM Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU Chemical Sciences Division, Office of Basic Energy Sciences of the US Department of Energy (DOE); DOE's Office of Biological and Environmental Research FX The research described in this paper was supported by the grant from the Chemical Sciences Division, Office of Basic Energy Sciences of the US Department of Energy (DOE). The research was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE. The authors thank Mr. Tao Song and Prof. Iven Chu for providing peptide samples. NR 37 TC 4 Z9 4 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD DEC 1 PY 2011 VL 308 IS 2-3 SI SI BP 275 EP 280 DI 10.1016/j.ijms.2011.07.003 PG 6 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 871ZP UT WOS:000298776500017 ER PT J AU Henley, EM Johnson, MB Kisslinger, LS AF Henley, Ernest M. Johnson, Mikkel B. Kisslinger, Leonard S. TI TIME REVERSAL IN NEUTRINO OSCILLATIONS IN MATTER SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Symmetries; neutrinos; oscillations ID T VIOLATION AB We estimate the time reversal violations for neutrino oscillations in matter for typical experimental energies and baselines. We examine the present status of experiments on neutrino oscillations, propose experiments for TRV, and discuss the future. C1 [Henley, Ernest M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Henley, Ernest M.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Johnson, Mikkel B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kisslinger, Leonard S.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Henley, EM (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM kisslinger@andrew.cmu.edu FU NSF [PHY-00070888]; DOE [W-7405-ENG-36, DE-FG02-97ER41014] FX This work was supported in part by the NSF grant PHY-00070888, in part by the DOE contracts W-7405-ENG-36 and DE-FG02-97ER41014. NR 30 TC 10 Z9 10 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD DEC PY 2011 VL 20 IS 12 BP 2463 EP 2473 DI 10.1142/S0218301311020472 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 863TF UT WOS:000298190200005 ER PT J AU Alberi, K Fluegel, B Steiner, MA France, R Olavarria, W Mascarenhas, A AF Alberi, K. Fluegel, B. Steiner, M. A. France, R. Olavarria, W. Mascarenhas, A. TI Direct-indirect crossover in GaxIn1-xP alloys SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID QUASI-DIRECT TRANSITIONS; LUMINESCENCE PROCESSES; IN1-XGAXP ALLOYS; BAND-STRUCTURE; PHOTOLUMINESCENCE AB The energy and composition of the direct to indirect bandgap crossover in GaxIn1-xP significantly influences its potential for optoelectronic devices, such as solar cells and light emitting diodes, however considerable discrepancies still remain in the literature with regard to the precise value of the crossover composition x(c). We revisit this issue in GaxIn1-xP films epitaxially grown on GaAs substrates. Observation of concurrent yet distinct direct and indirect transitions in Ga0.719In0.281P at 2 K using time integrated and time resolved photoluminescence studies places the crossover very near the composition x(C) = 0.71. (C) 2011 American Institute of Physics. [doi:10.1063/1.3663439] C1 [Alberi, K.; Fluegel, B.; Steiner, M. A.; France, R.; Olavarria, W.; Mascarenhas, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Alberi, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Kirstin.Alberi@nrel.gov FU U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC36-08GO28308]; DOE [DE-FC26-0NT20286]; NREL LDRD [06591001] FX Research supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under Award DE-AC36-08GO28308, DOE Solid State Lighting Contract DE-FC26-0#NT20286, and NREL LDRD Award 06591001. NR 20 TC 8 Z9 9 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2011 VL 110 IS 11 AR 113701 DI 10.1063/1.3663439 PG 5 WC Physics, Applied SC Physics GA 864QL UT WOS:000298254800051 ER PT J AU Berman, D Walker, MJ Nordquist, CD Krim, J AF Berman, D. Walker, M. J. Nordquist, C. D. Krim, J. TI Impact of adsorbed organic monolayers on vacuum electron tunneling contributions to electrical resistance at an asperity contact SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; THIN INSULATING FILM; MEMS SWITCH CONTACTS; RF-MEMS; CARBON NANOTUBES; LUBRICATION; SURFACES; PROBE; COMPATIBILITY; PERFORMANCE AB Electrical contact resistance measurements are reported for RF micro-electromechanical switches situated within an ultrahigh vacuum system equipped with in situ oxygen plasma cleaning capabilities. Measurements were performed on fused (permanently adhered) switches with Au/Au contacts and functioning switches with Au/RuO2 contacts in both the presence and absence of adsorbed monolayers of pentane and dodecane. For switches adhered in the closed position, adsorption occurs only in regions external to direct contact. For functioning switches, however, it can occur either within or exterior to the contact. The data are analyzed within the framework of two distinct geometries, to explore how the presence of adsorbed molecules in regions close to the contact may impact vacuum tunneling contributions to the experimentally measured resistance: (1) The resistance associated with direct contact in parallel with a vacuum tunneling path, which upon uptake of the monolayer is replaced by the molecular resistance and (2) a series connection of the direct contact resistance with the molecular layer after adsorption occurs, with the vacuum tunneling path assumed to be negligible. In all cases, the experimental results quantitatively favor scenario (1), whereby uptake of the molecular layer effectively shuts down the vacuum tunneling path, in this case approximately 30 Omega in the absence of an adsorbed film. The methods described herein thus constitute a new and original approach to documenting vacuum tunneling levels in regions of close proximity. (C) 2011 American Institute of Physics. [doi:10.1063/1.3664770] C1 [Berman, D.; Krim, J.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Walker, M. J.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Nordquist, C. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Berman, D (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM dyanchu@ncsu.edu FU NSF [DMR0805204]; AFOSR [FA9550-04-1-0381]; DARPA; Center for RF MEMS Reliability and Design Fundamentals [HR0011-06-1-0051]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work has been supported by NSF DMR0805204, the Extreme Friction MURI program, AFOSR # FA9550-04-1-0381, and the DARPA S&T Fundamentals Program, "Center for RF MEMS Reliability and Design Fundamentals," Grant No. HR0011-06-1-0051. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors acknowledge G. A. Patrizi, F. A. Austin, and Sandia MESAfab operations for switch fabrication and G. M. Rebeiz for visionary direction of the DARPA S&T program. Useful discussions with D. Dougherty, K. Komvopoulos, M. Zikry, D. A. Czaplewski, W. D. Cowan, and C. W. Dyck are greatly appreciated. NR 63 TC 5 Z9 5 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2011 VL 110 IS 11 AR 114307 DI 10.1063/1.3664770 PG 8 WC Physics, Applied SC Physics GA 864QL UT WOS:000298254800123 ER PT J AU Johnson, JA Manke, KJ Veyssett, DG Maznev, AA Ramos, KJ Hooks, DE Nelson, KA AF Johnson, Jeremy A. Manke, Kara J. Veyssett, David G. Maznev, A. A. Ramos, Kyle J. Hooks, Daniel E. Nelson, Keith A. TI Photoacoustic determination of the speed of sound in single crystal cyclotrimethylene trinitramine at acoustic frequencies from 0.5 to 15 GHz SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RESONANT ULTRASOUND SPECTROSCOPY; ELASTIC-CONSTANTS; BRILLOUIN-SCATTERING; OPTICAL-GENERATION; FILMS; RDX; SENSITIVITIES; SOLIDS; WAVES AB We report photoacoustic measurements of the quasi-longitudinal speed of sound along different crystallographic directions in the energetic molecular crystal cyclotrimethylene trinitramine (RDX). Measurements in (100)-oriented RDX were made using two complimentary techniques to probe acoustic frequencies from 0.5 to 15 GHz to resolve large discrepancies in reported sound speed values measured using different techniques and frequency ranges. In impulsive stimulated light scattering (ISS), two laser beams were crossed at various angles in a sample to generate coherent acoustic waves with well-defined wavevectors. Picosecond acoustic interferometry (PAI) measurements were conducted in which a laser pulse heated a thin metal transducer layer coated on the sample surface to generate a broadband acoustic wave-packet that propagated into the sample. Time-dependent coherent Brillouin scattering of probe light from the acoustic waves revealed frequencies in the 0.5-3.5 GHz range in ISS measurements and at similar to 15 GHz in the PAI measurements, yielding the speed of sound in each case. Our ISS results are in agreement with previous ultrasonic and ISS measurements at kilo-and megahertz frequencies. Our PAI results yielded a 15 GHz sound speed essentially equal to those at megahertz frequencies in contrast to an earlier report based on Brillouin light scattering measurements. The lack of acoustic dispersion over six orders of magnitude in frequency indicates that there is no relaxation process that significantly couples to acoustic waves in RDX at acoustic frequencies up to 15 GHz. (C) 2011 American Institute of Physics. [doi:10.1063/1.3667291] C1 [Johnson, Jeremy A.; Manke, Kara J.; Veyssett, David G.; Maznev, A. A.; Nelson, Keith A.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Ramos, Kyle J.; Hooks, Daniel E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Johnson, JA (reprint author), MIT, Dept Chem, Cambridge, MA 02139 USA. EM jeremyj@mit.edu OI /0000-0003-4473-1983; Johnson, Jeremy/0000-0001-9808-7172 FU ONR [N00014-06-1-0459]; Los Alamos National Laboratory by National Nuclear Security Administration Science Campaign [2] FX This material is based upon work supported under ONR Grant No. N00014-06-1-0459. Crystal growth capabilities were supported at Los Alamos National Laboratory by National Nuclear Security Administration Science Campaign 2. NR 25 TC 6 Z9 6 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2011 VL 110 IS 11 AR 113513 DI 10.1063/1.3667291 PG 5 WC Physics, Applied SC Physics GA 864QL UT WOS:000298254800034 ER PT J AU Li, JV Crandall, RS Young, DL Page, MR Iwaniczko, E Wang, Q AF Li, Jian V. Crandall, Richard S. Young, David L. Page, Matthew R. Iwaniczko, Eugene Wang, Qi TI Capacitance study of inversion at the amorphous-crystalline interface of n-type silicon heterojunction solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB We use capacitance techniques to directly measure the Fermi level at the crystalline/amorphous interface in n-type silicon heterojunction solar cells. The hole density calculated from the Fermi level position and the inferred band-bending picture show strong inversion of (n) crystalline silicon at the interface at equilibrium. Bias dependent experiments show that the Fermi level is not pinned at the interface. Instead, it moves farther from and closer to the crystalline silicon valence band under a reverse and forward bias, respectively. Under a forward bias or illumination, the Fermi level at the interface moves closer to the crystalline silicon valence band thus increases the excess hole density and band bending at the interface. This band bending further removes majority electrons away from the interface leading to lower interface recombination and higher open-circuit voltage. (C) 2011 American Institute of Physics. [doi:10.1063/1.3663433] C1 [Li, Jian V.; Crandall, Richard S.; Young, David L.; Page, Matthew R.; Iwaniczko, Eugene; Wang, Qi] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, JV (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jian.li@nrel.gov RI Li, Jian/B-1627-2016 FU U.S. Department of Energy [DE-AC36-08GO28308] FX The authors thank Ana Kanevce and Howard Branz for insightful discussions. This research is supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 13 TC 10 Z9 10 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2011 VL 110 IS 11 AR 114502 DI 10.1063/1.3663433 PG 5 WC Physics, Applied SC Physics GA 864QL UT WOS:000298254800141 ER PT J AU McCloy, J Kukkadapu, R Crum, J Johnson, B Droubay, T AF McCloy, John Kukkadapu, Ravi Crum, Jarrod Johnson, Brad Droubay, Tim TI Size effects on gamma radiation response of magnetic properties of barium hexaferrite powders SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOSSBAUER-SPECTROSCOPY; SMALL PARTICLES; BAFE12O19; FERRITE; TEMPERATURE; SRFE12O19; DAMAGE AB Little is currently known about the effects of gamma-ray irradiation on oxide magnet materials. In particular, the effect of particle size on radiation susceptibility was investigated. Two commercial powders of BaFe(12)O(19) were thoroughly characterized, then exposed to 1 MGy of gamma radiation from a (60)Co source. AC susceptibility and DC magnetometry and Mossbauer spectroscopy were performed after irradiation and compared to pre-irradiated measurements. DC magnetization and AC susceptibility decreased for both samples with the relative change of DC magnetization being larger for the micrometer-sized particles and the relative change of the AC susceptibility being larger for the nanometer-sized particles. Mossbauer spectroscopy indicated a decrease in both the hyperfine fields and in their distribution for each Fe site, particularly in the larger particle sample. Decreases in susceptibility are believed to be due to radiation-induced amorphization at the particle surfaces as well as amorphization and nucleation of new crystallites at internal crystallite boundaries, resulting in overall reduction in the particle magnetic moment. This radiation damage mechanism is different than that seen in previous studies of neutron and heavy ion irradiation of BaFe(12)O(19). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3665769] C1 [McCloy, John; Kukkadapu, Ravi; Crum, Jarrod; Johnson, Brad; Droubay, Tim] Pacific NW Natl Lab, Richland, WA 99352 USA. RP McCloy, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM john.mccloy@pnnl.gov RI McCloy, John/D-3630-2013; Droubay, Tim/D-5395-2016 OI McCloy, John/0000-0001-7476-7771; Droubay, Tim/0000-0002-8821-0322 FU Defense Threat Reduction Agency, U.S. Department of Defense [IACRO 10-4951I]; U.S. Department of Energy [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research FX This work was supported in part by the Defense Threat Reduction Agency, U.S. Department of Defense, IACRO 10-4951I. The Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. A portion of the research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. The authors thank Cindy Warner and Marvin Warner for general assistance, Bill Buchmiller for particle size distributions, Ryan Rutledge for specific surface areas, and Mark Murphy for irradiation. Thanks also to Mohammad Afsar and Konstantin Korolev of Tufts University for providing the Aldrich and AFT powders. NR 29 TC 2 Z9 2 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2011 VL 110 IS 11 AR 113912 DI 10.1063/1.3665769 PG 10 WC Physics, Applied SC Physics GA 864QL UT WOS:000298254800086 ER PT J AU Narayanan, S Daniilidis, N Moller, SA Clark, R Ziesel, F Singer, K Schmidt-Kaler, F Haffner, H AF Narayanan, S. Daniilidis, N. Moeller, S. A. Clark, R. Ziesel, F. Singer, K. Schmidt-Kaler, F. Haeffner, H. TI Electric field compensation and sensing with a single ion in a planar trap SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID QUANTUM COMPUTER; ARCHITECTURE AB We use a single ion as a movable electric field sensor with accuracies on the order of a few V/m. For this, we compensate undesired static electric fields in a planar radio frequency trap and characterize the static field and its curvature over an extended region along the trap axis. We observe a strong buildup of stray charges around the loading region on the trap resulting in an electric field of up to 1.3 kV/m at the ion position. We also find that the profile of the stray field remains constant over a time span of a few months. (C) 2011 American Institute of Physics. [doi:10.1063/1.3665647] C1 [Narayanan, S.; Daniilidis, N.; Moeller, S. A.; Haeffner, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Narayanan, S.; Daniilidis, N.; Moeller, S. A.; Clark, R.] Inst Quantenopt & Quanteninformat, Innsbruck, Austria. [Moeller, S. A.; Haeffner, H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Clark, R.] MIT, Ctr Ultracold Atoms, Cambridge, MA 02139 USA. [Ziesel, F.; Singer, K.; Schmidt-Kaler, F.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. RP Narayanan, S (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM hhaeffner@berkeley.edu RI Haeffner, Hartmut/D-8046-2012; Schmidt-Kaler, Ferdinand/E-2151-2017 OI Haeffner, Hartmut/0000-0002-5113-9622; FU Austrian Ministry of Sciences; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; European Union; German-Israel foundation; EU network AQUTE FX The experiments are supported by the Austrian Ministry of Sciences with a START grant and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. N. Daniilidis was supported by the European Union with a Marie Curie fellowship. F. Schmidt-Kaler acknowledges support from the German-Israel foundation and the EU network AQUTE. NR 31 TC 20 Z9 20 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2011 VL 110 IS 11 AR 114909 DI 10.1063/1.3665647 PG 5 WC Physics, Applied SC Physics GA 864QL UT WOS:000298254800173 ER PT J AU Reed, BW Stolken, JS Minich, RW Kumar, M AF Reed, Bryan W. Stolken, James S. Minich, Roger W. Kumar, Mukul TI A unified approach for extracting strength information from nonsimple compression waves. Part I: Thermodynamics and numerical implementation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID IRREVERSIBLE THERMODYNAMICS; LAGRANGIAN ANALYSIS; CONSTITUTIVE MODEL; SHOCK COMPRESSION; STRESS; SOLIDS; METALS; DEFORMATION; FLOW; RELAXATION AB We describe a comprehensive method of extracting estimates of the complete plastic deformation behavior, including full deviatoric-stress/plastic-strain (tau - psi) curves, from one-dimensional dynamic compression experiments at moderate pressures (up to similar to 50 GPa). The method combines and extends selected aspects of previous approaches and features a second-order velocity interpolation function designed to accommodate highly rate-dependent phenomena. Assumptions, and the expected limitations thereof, are made explicit and kept to a minimum. In particular, we do not assume any particular plasticity model, nor do we assume that the wave propagation is either simple or steady. Instead, we allow the data themselves to constrain any such behavior. We develop generalizations of standard equation-of-state analyses that account for the effects of rate-dependent relaxation on wave speeds and paths through thermodynamic space and show the potential to extract a great deal of strength information from the details of wave propagation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3653821] C1 [Reed, Bryan W.; Stolken, James S.; Minich, Roger W.; Kumar, Mukul] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Reed, BW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM reed12@llnl.gov RI Reed, Bryan/C-6442-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 38 TC 7 Z9 7 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2011 VL 110 IS 11 AR 113505 DI 10.1063/1.3653821 PG 12 WC Physics, Applied SC Physics GA 864QL UT WOS:000298254800026 ER PT J AU Reed, BW Patterson, JR Swift, DC Stolken, JS Minich, RW Kumar, M AF Reed, Bryan W. Patterson, J. Reed Swift, Damian C. Stolken, James S. Minich, Roger W. Kumar, Mukul TI A unified approach for extracting strength information from nonsimple compression waves. Part II. Experiment and comparison with simulation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LAGRANGIAN ANALYSIS; STRESS; SOLIDS; TANTALUM; SHOCKS; RELAXATION; EQUATION; METALS; STATE; FLOW AB We apply general thermodynamics-based wave analysis methods to a gas-gun-driven plate impact experiment designed to derive strength information from tantalum at pressures of 10-25GPa. The analysis provides estimates of the complete deformation paths in terms of the coupled evolution of mean stress, deviatoric stress, plastic strain, and plastic strain rate, yielding detailed information for direct comparison to strength models. This inverse analysis (deriving estimates of strength behavior directly from the measurements, with no strength model assumed) is compared to forward analysis (hydrodynamic simulations with specific strength models, in general adjusting parameters to optimally match the experiment). This comparison fulfills three goals. (1) To determine the parameter sensitivity and overall stability of the inverse analysis by analyzing simulated data as if it were experimental data. We find that, in reasonably favorable cases, precision to similar to 10% is possible for the flow curve during loading and similar to 30% for the shape of the curve during unloading. (2) To distinguish the ability of different strength models to account for the measurements. In particular we find that a new multiscale strength model seems to capture the rate-dependent release behavior very well but that it is difficult to capture the effects of a particular material's microstructure and texture. (3) To bracket our understanding of the actual strength behavior in the experiment and enhance our confidence in both the forward and inverse calculations. The results show a peak deviatoric stress of similar to 0.7-1.4GPa occurring nearly at the point of peak plastic strain rate, followed by a complex evolution in which the material's internal relaxation and strain-hardening properties interact with the rest of the loading wave, the post-shock plateau, and the unloading wave. The results show the importance of extreme precision in measurement timing and equation-of-state calibrations, particularly at higher pressures. (C) 2011 American Institute of Physics. [doi:10.1063/1.3662173] C1 [Reed, Bryan W.; Patterson, J. Reed; Swift, Damian C.; Stolken, James S.; Minich, Roger W.; Kumar, Mukul] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Reed, BW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Reed, Bryan/C-6442-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 35 TC 9 Z9 9 U1 1 U2 26 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2011 VL 110 IS 11 AR 113506 DI 10.1063/1.3662173 PG 12 WC Physics, Applied SC Physics GA 864QL UT WOS:000298254800027 ER PT J AU Salvadori, MC Teixeira, FS Cattani, M Brown, IG AF Salvadori, M. C. Teixeira, F. S. Cattani, M. Brown, I. G. TI Electrical conductivity of platinum-implanted polymethylmethacrylate nanocomposite SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DYNAMIC COMPOSITION CHANGES; ION-IMPLANTATION; VACUUM-ARC; SIMULATION; TRIDYN AB Platinum/polymethylmethacrylate (Pt/PMMA) nanocomposite material was formed by low energy ion implantation of Pt into PMMA, and the transition from insulating to conducting phase was explored. In situ resistivity measurements were performed as the implantation proceeded, and transmission electron microscopy was used for direct visualization of Pt nanoparticles. Numerical simulation was carried out using the TRIDYN computer code to calculate the expected depth profiles of the implanted platinum. The maximum dose for which the Pt/PMMA system remains an insulator/conductor composite was found to be phi(0) = 1.6 x 10(16) cm(-2), the percolation dose was 0.5 x 10(16) cm(-2), and the critical exponent was t = 1.46, indicating that the conductivity is due only to percolation. The results are compared with previously reported results for a Au/PMMA composite. (C) 2011 American Institute of Physics. [doi:10.1063/1.3668096] C1 [Salvadori, M. C.; Teixeira, F. S.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05315970 Sao Paulo, Brazil. EM mcsalva@if.usp.br RI Salvadori, Maria Cecilia/A-9379-2013; Teixeira, Fernanda/A-9395-2013; Cattani, Mauro/N-9749-2013 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. NR 10 TC 7 Z9 7 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 1 PY 2011 VL 110 IS 11 AR 114905 DI 10.1063/1.3668096 PG 3 WC Physics, Applied SC Physics GA 864QL UT WOS:000298254800169 ER PT J AU Kappler, KN Gasperikova, E AF Kappler, Karl N. Gasperikova, Erika TI A Hybrid Method for UXO vs. Non-UXO Discrimination SO JOURNAL OF ENVIRONMENTAL AND ENGINEERING GEOPHYSICS LA English DT Article ID EQUIVALENT DIPOLE POLARIZABILITIES AB Remediation of sites contaminated by unexploded ordnance is complicated by the problem of discriminating between buried conductors that are intact munitions and those that are harmless scrap metal. Here we present two distinct approaches of object discrimination, both of which rely on training data in the form of polarizability curves. These curves show remarkable similarity for same-type objects over a broad range of depths and attitudes, but marked differences when comparing curves from different object types. The first method, called the "voting scheme," compares field data polarizabilities against templates in a series of cross validations. The second method applies Bayesian statistics on features extracted from the polarizabilities. Here the methods are applied to a 346 element dataset. The voting scheme misclassified fewer UXO objects, but at a cost of more false digs. A hybrid technique combining both methods generates an ordered dig list that ensures efficient use of cleanup resources. For the dataset considered here, the hybrid method identifies over 80% of UXO before the first hole containing scrap metal is dug, with only 7 false digs before all 219 UXO are excavated. C1 [Kappler, Karl N.; Gasperikova, Erika] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Kappler, KN (reprint author), SJ Geophys, 11966 95A Ave, Delta, BC V4C 3W2, Canada. RI Gasperikova, Erika/D-1117-2015 OI Gasperikova, Erika/0000-0003-1553-4569 FU Office of Management Budget, and Evaluation of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Defense FX This research was supported by the Office of Management Budget, and Evaluation of the U.S. Department of Energy under contract DE-AC02-05CH11231 and the U.S. Department of Defense under the Strategic Environmental Research and Development Program (SERDP). NR 15 TC 2 Z9 2 U1 0 U2 2 PU ENVIRONMENTAL ENGINEERING GEOPHYSICAL SOC PI DENVER PA 1720 SOUTH BELLAIRE, STE 110, DENVER, CO 80222-433 USA SN 1083-1363 J9 J ENVIRON ENG GEOPH JI J. Environ. Eng. Geophys. PD DEC PY 2011 VL 16 IS 4 BP 177 EP 189 PG 13 WC Geochemistry & Geophysics; Engineering, Geological SC Geochemistry & Geophysics; Engineering GA 863WB UT WOS:000298197900003 ER PT J AU Wehner, M Easterling, DR Lawrimore, JH Heim, RR Vose, RS Santer, BD AF Wehner, Michael Easterling, David R. Lawrimore, Jay H. Heim, Richard R., Jr. Vose, Russell S. Santer, Benjamin D. TI Projections of Future Drought in the Continental United States and Mexico SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID AIR-TEMPERATURE; SEVERITY INDEX; CLIMATE-CHANGE; PRECIPITATION; INTERPOLATION; ASSUMPTIONS; MODELS AB Using the Palmer drought severity index, the ability of 19 state-of-the-art climate models to reproduce observed statistics of drought over North America is examined. It is found that correction of substantial biases in the models' surface air temperature and precipitation fields is necessary. However, even after a bias correction, there are significant differences in the models' ability to reproduce observations. Using metrics based on the ability to reproduce observed temporal and spatial patterns of drought, the relationship between model performance in simulating present-day drought characteristics and their differences in projections of future drought changes is investigated. It is found that all models project increases in future drought frequency and severity. However, using the metrics presented here to increase confidence in the multimodel projection is complicated by a correlation between models' drought metric skill and climate sensitivity. The effect of this sampling error can be removed by changing how the projection is presented, from a projection based on a specific time interval to a projection based on a specified temperature change. This modified class of projections has reduced intermodel uncertainty and could be suitable for a wide range of climate change impacts projections. C1 [Wehner, Michael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Easterling, David R.; Lawrimore, Jay H.; Heim, Richard R., Jr.; Vose, Russell S.] NOAA, Natl Climat Data Ctr, Asheville, NC USA. [Santer, Benjamin D.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. RP Wehner, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS50F, Berkeley, CA 94720 USA. EM mfwehner@lbl.gov RI Langholtz, Matthew/B-9416-2012; Santer, Benjamin/F-9781-2011 OI Langholtz, Matthew/0000-0002-8153-7154; FU U.S. Department of Energy (DOE) by the Lawrence Berkeley National Laboratory (LBNL) [DE-AC03-76SF00098 (LBNL)]; DOE; U.S. Department of Energy, Office of Biological and Environmental Sciences [DE-AI02-96ER62276]; NOAA/Climate Program Office; Office of Science, U.S. Department of Energy FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by the Lawrence Berkeley National Laboratory (LBNL) under Contract DE-AC03-76SF00098 (LBNL) and with support from the DOE Regional and Global Climate Modeling Program. Support for the National Climatic Data Center was provided by the U.S. Department of Energy, Office of Biological and Environmental Sciences under Interagency Agreement DE-AI02-96ER62276, and the NOAA/Climate Program Office. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and the WCRP's Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multimodel dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. NR 24 TC 32 Z9 32 U1 0 U2 31 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD DEC PY 2011 VL 12 IS 6 BP 1359 EP 1377 DI 10.1175/2011JHM1351.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 864CU UT WOS:000298215400012 ER PT J AU Murph, SEH Murphy, CJ Colon-Mercado, HR Torres, RD Heroux, KJ Fox, EB Thompson, LB Haasch, RT AF Murph, Simona E. Hunyadi Murphy, Catherine J. Colon-Mercado, Hector R. Torres, Ricardo D. Heroux, Katie J. Fox, Elise B. Thompson, Lucas B. Haasch, Richard T. TI Tuning of size and shape of Au-Pt nanocatalysts for direct methanol fuel cells SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Gold-platinum nanocatalysts; Direct methanol fuel cells; Anisotropic nanostructures; Energy conversion ID GOLD NANORODS; OXYGEN-REDUCTION; PLATINUM NANOPARTICLES; CATALYTIC-ACTIVITY; METAL NANOPARTICLES; OPTICAL-PROPERTIES; OXIDATION; SURFACES; GROWTH; NANOCRYSTALS AB In this article, we report the precise control of the size, shape, and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons, and dogbones) synthesized via a seed-mediated approach. Gold "seeds" of different aspect ratios (1-4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 A degrees C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis, UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectrometry were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was employed to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black; however, its performance is affected by the presence of MeOH. C1 [Murph, Simona E. Hunyadi; Colon-Mercado, Hector R.; Torres, Ricardo D.; Heroux, Katie J.; Fox, Elise B.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Murphy, Catherine J.; Thompson, Lucas B.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Murph, SEH (reprint author), Savannah River Natl Lab, Savannah River Site,735-11A, Aiken, SC 29808 USA. EM Simona.Murph@srnl.doe.gov RI Fox, Elise/G-5438-2013; OI Fox, Elise/0000-0002-4527-5820; Thompson, Lucas/0000-0003-3805-2431; Murphy, Catherine/0000-0001-7066-5575 FU Savannah River National Laboratory LDRD-DOE FX The authors gratefully acknowledge the financial support for this study by the Savannah River National Laboratory LDRD-DOE. The authors would like to thank Dr. Kimberly Roberts, Prof. Apparao Rao, Dr. Robert Lascola, Dr. Charles Chuck, and the staff of electron microscopy facility at Clemson for making their instrumentation available to us. NR 65 TC 6 Z9 6 U1 4 U2 67 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD DEC PY 2011 VL 13 IS 12 BP 6347 EP 6364 DI 10.1007/s11051-011-0449-1 PG 18 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 861YD UT WOS:000298056100013 ER PT J AU Tekobo, S Richter, AG Dergunov, SA Pingali, SV Urban, VS Yan, B Pinkhassik, E AF Tekobo, Samuel Richter, Andrew G. Dergunov, Sergey A. Pingali, Sai Venkatesh Urban, Volker S. Yan, Bing Pinkhassik, Eugene TI Synthesis, characterization, and controlled aggregation of biotemplated polystyrene nanodisks SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Nanoparticles; Directed assembly; Carbon-based materials; Templated materials; Aggregation; Nanocomposite materials ID THIN ORGANIC MATERIALS; BUILDING-BLOCKS; SOLUTION-STATE; BICELLES; NANOPARTICLES; SURFACTANT; NANOPORES; SCAFFOLDS; SYSTEM AB Cross-linked polystyrene nanodisks were prepared by controlled polymerization of styrene and divinylbenzene in the interior of bicelles, discoidal lipid aggregates. Aggregation behavior of polymer nanodisks was studied in water, organic solvents, and solid phase. Nanodisks form stable dispersions in aqueous solutions of surfactants, such as sodium dodecyl sulfate (SDS). Varying SDS/nanodisk ratio allowed us to control the size of nanodisk aggregates. Nanodisks are readily solubilized in nonpolar organic solvents, such as toluene and carbon tetrachloride, to yield stable monodisperse suspensions. These findings open opportunities for creating nanodisk-based nanocomposite materials. Stable nanodisk suspension in toluene enabled small angle neutron scattering (SANS) measurements. SANS data confirmed the nanodisk diameter and allowed accurate measurement of nanodisk thickness (19.5 +/- A 1.0 ). In solid phase, nanodisks aggregate in sub-micron platelets. C1 [Tekobo, Samuel; Dergunov, Sergey A.; Pinkhassik, Eugene] Univ Memphis INDIUM, Inst Nanomat Dev & Innovat, Memphis, TN 38152 USA. [Tekobo, Samuel; Dergunov, Sergey A.; Pinkhassik, Eugene] Univ Memphis, Dept Chem, Memphis, TN 38152 USA. [Richter, Andrew G.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Pingali, Sai Venkatesh; Urban, Volker S.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [Yan, Bing] St Jude Childrens Res Hosp, Dept Chem Biol & Therapeut, Memphis, TN 38105 USA. [Yan, Bing] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China. RP Pinkhassik, E (reprint author), Univ Memphis INDIUM, Inst Nanomat Dev & Innovat, 213 Smith Chem Bldg, Memphis, TN 38152 USA. EM epnkhssk@memphis.edu RI Urban, Volker/N-5361-2015; OI Urban, Volker/0000-0002-7962-3408; Pingali, Sai Venkatesh/0000-0001-7961-4176 FU National Science Foundation [CHE-0349315, CHE-1012951]; National Institutes of Health [1R01HL079147-01]; FedEx Institute of Technology; CIBA foundation; American Lebanese Syrian Associated Charities (ALSAC); St. Jude Children's Research Hospital; First Generation Ph.D. fellowship; U.S. D.O.E. Office of Basic Energy Sciences, Materials Sciences and Engineering Division [ERKCC02]; Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the National Science Foundation grants (CHE-0349315 and CHE-1012951), National Institutes of Health grant (1R01HL079147-01), FedEx Institute of Technology Innovation Award, CIBA foundation, and by the American Lebanese Syrian Associated Charities (ALSAC) and St. Jude Children's Research Hospital. S.T. is the recipient of the First Generation Ph.D. fellowship. V.S.U. acknowledges support by the U.S. D.O.E. Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Field Work Proposal ERKCC02, Polymer-Based Multicomponent Materials. SANS experiments at Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB) were supported by the Office of Biological and Environmental Research, using facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC under contract no. DE-AC05-00OR22725. NR 27 TC 7 Z9 7 U1 1 U2 30 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD DEC PY 2011 VL 13 IS 12 BP 6427 EP 6437 DI 10.1007/s11051-011-0395-y PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 861YD UT WOS:000298056100020 ER PT J AU El-Dasher, B Farmer, J Ferreira, J de Caro, MS Rubenchik, A Kimura, A AF El-Dasher, Bassem Farmer, Joseph Ferreira, James de Caro, Magdalena Serrano Rubenchik, Alexander Kimura, Akihiko TI Corrosion of oxide dispersion strengthened iron-chromium steels and tantalum in fluoride salt coolant: An in situ compatibility study for fusion and fusion-fission hybrid reactor concepts SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Primary candidate classes of materials for future nuclear power plants, whether they be fission, fusion or hybrids, include oxide dispersion strengthened (ODS) terrific steels which rely on a dispersion of nano-oxide particles in the matrix for both mechanical strength and swelling resistance, or tantalum alloys which have an inherent neutron-induced swelling resistance and high temperature strength. For high temperature operation, eutectic molten lithium containing fluoride salts are attractive because of their breeding capability as well as their relatively high thermal capacity, which allow for a higher average operating temperature that increases power production. In this paper we test the compatibility of Flinak (LiF-NaF-KF) salts on ODS steels, comparing the performance of current generation ODS steels developed at Kyoto University with the commercial alloy MA956. Pure tantalum was also tested for comparative purposes. In situ data was obtained for temperatures ranging from 600 to 900 degrees C using a custom-built high temperature electrochemical impedance spectroscopy cell. Results for ODS steels show that steel/coolant interfacial resistance increases from 600 to 800 degrees C due to an aluminum enriched layer forming at the surface, however an increase in temperature to 900 degrees C causes this layer to break up and aggressive attack to occur. Performance of current generation ODS steels surpassed that of the MA956 ODS steel, with an in situ impedance behavior similar or better than that of pure tantalum. (C) 2011 Published by Elsevier B.V. C1 [El-Dasher, Bassem; Farmer, Joseph; Ferreira, James; de Caro, Magdalena Serrano; Rubenchik, Alexander] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kimura, Akihiko] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan. RP El-Dasher, B (reprint author), Lawrence Livermore Natl Lab, L-367,7000 East Ave, Livermore, CA 94550 USA. EM eldasher2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [10-ERD-056] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 10-ERD-056. NR 17 TC 13 Z9 13 U1 2 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 15 EP 23 DI 10.1016/j.jnucmat.2011.07.036 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600003 ER PT J AU Ozaltun, H Shen, MHH Medvedev, P AF Ozaltun, Hakan Shen, M. -H. Herman Medvedev, Pavel TI Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during Hot Isostatic Pressing SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID IRRADIATION BEHAVIOR; THERMAL-STRESSES; MO ALLOYS; FUELS; TEMPERATURE; CREEP AB This article presents an assessment of the residual stresses in U-10 wt.% Mo (U10Mo) alloy based monolithic fuel plates and the elasto-plastic response to thermo-mechanical processing. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Understanding of the three-dimensional residual stress field is important for understanding the in-reactor performance of these plate-type fuels. To define fuel-cladding stress-strain characteristics, a thermo-mechanical finite element model was developed. During fuel plate fabrication, the hot pressing temperature approaches the melting temperature of the cladding, so that temperature dependent material properties were incorporated to improve the accuracy of the model. By using elasto-thermo-plastic material models, it was determined that the cladding material (Al6061-O) is subjected to tensile stresses that exceed its proportional limits. The fuel foil is subject to compressive stresses and remains below yield. The residual stresses in the plates are significant, and therefore, should not be neglected. In particular, the simulations indicate the presence of high stress gradients at the fuel/cladding interface, thus emphasizing the need for a high quality bond. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ozaltun, Hakan; Shen, M. -H. Herman] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. [Medvedev, Pavel] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Shen, MHH (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, N350 Scott Lab,201 W 19th Ave, Columbus, OH 43210 USA. EM shen.1@osu.edu OI Ozaltun, Hakan/0000-0002-9975-2506 FU US Department of Energy [DE-AC07-05ID14517] FX This manuscript has been authored under Contract No. DE-AC07-05ID14517 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. NR 24 TC 17 Z9 18 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 76 EP 84 DI 10.1016/j.jnucmat.2011.08.029 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600011 ER PT J AU Gan, J Keiser, DD Miller, BD Jue, JF Robinson, AB Madden, JW Medvedev, PG Wachs, DM AF Gan, J. Keiser, D. D., Jr. Miller, B. D. Jue, J. -F. Robinson, A. B. Madden, J. W. Medvedev, P. G. Wachs, D. M. TI Microstructure of the irradiated U(3)Si(2)/Al silicide dispersion fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID THERMAL COMPATIBILITY; ALUMINUM; PLATES AB The silicide dispersion fuel of U(3)Si(2)/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm(3) fuel loading. An irradiated U(3)Si(2)/Al dispersion fuel ((235)U similar to 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U(3)Si(2) fuel particles for the TEM sample are estimated to be approximately 110 degrees C and 5.4 x 10(27) f/m(3). The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 mu m) in the fuel particle are similar to 94 nm, 1.05 x 10(20) m(-3) and similar to 11%, respectively. The results and their implication on the performance of the U(3)Si(2)/Al silicide dispersion fuel are discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gan, J.; Keiser, D. D., Jr.; Miller, B. D.; Jue, J. -F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. RP Gan, J (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Jian.Gan@inl.gov FU US Department of Energy (DOE) [DE-AC07-05ID14517] FX The authors would like to express their gratitude to the HFEF staff at INL for producing the TEM punching sample. This work was supported through funding provided by the US Department of Energy (DOE) to the RERTR program at INL, operated by Battelle Energy Alliance, LLC, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 19 TC 6 Z9 6 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 97 EP 104 DI 10.1016/j.jnucmat.2011.07.030 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600013 ER PT J AU Wang, XJ Xiao, HY Zu, XT Weber, WJ AF Wang, X. J. Xiao, H. Y. Zu, X. T. Weber, W. J. TI Study of cerium solubility in Gd2Zr2O7 by DFT + U calculations SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STRUCTURAL PHASE-TRANSITION; TOTAL-ENERGY CALCULATIONS; NUCLEAR-WASTE DISPOSAL; WAVE BASIS-SET; AB-INITIO; GADOLINIUM ZIRCONATE; THERMAL-CONDUCTIVITY; SOLID-SOLUTION; PYROCHLORE; PLUTONIUM AB The pyrochlore Gd2Zr2O7 has been proposed as a favorable structure for the immobilization of actinide nuclear waste, due to its high radiation resistance. Because CeO2 exhibits similar properties and radiation response to many actinide dioxides, it is often used as a surrogate for actinide dioxides in both experimental and computational studies. In the present work, we investigate the solubility of Ce in Gd2Zr2O7, as well as the energetic and electronic properties of Gd2-yCeyZr2O7, based on density functional theory plus Hubbard U correction (DFT + U). Our calculations show that Gd2Zr2O7 and Ce2Zr2O7 form a solid solution over the entire range of Ce content, in excellent agreement with experiments. The increased stability of the ordered pyrochlore structure with increasing Ce content may affect radiation resistance. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wang, X. J.; Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Xiao, H. Y.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Xiao, HY (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM hxiao@utk.edu RI Xiao, Haiyan/A-1450-2012; Weber, William/A-4177-2008; wang, xiangjian/K-4923-2012 OI Weber, William/0000-0002-9017-7365; FU National Natural Science Foundation of China [11004023]; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry; Materials Science of Actinides, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the National Natural Science Foundation of China (Grant No. 11004023), by the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. W.J. Weber and H.Y. Xiao were supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The theoretical calculations were partially performed using the supercomputer resources at the Environmental Molecular Sciences Laboratory located at Pacific Northwest National Laboratory and at the National Energy Research Scientific Computing Center located at Lawrence Berkeley National Laboratory. NR 68 TC 13 Z9 13 U1 7 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 105 EP 111 DI 10.1016/j.jnucmat.2011.08.008 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600014 ER PT J AU Souidi, A Hou, M Becquart, CS Malerba, L Domain, C Stoller, RE AF Souidi, A. Hou, M. Becquart, C. S. Malerba, L. Domain, C. Stoller, R. E. TI On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID KINETIC MONTE-CARLO; MOLECULAR-DYNAMICS SIMULATIONS; REACTOR PRESSURE-VESSEL; HEAVY-ION IRRADIATIONS; DISPLACEMENT CASCADES; ALPHA-IRON; INTERSTITIAL CLUSTERS; COMPUTER-SIMULATION; DISLOCATION LOOPS; RADIATION-DAMAGE AB Atomic displacement cascades in solids are complex phenomena, the outcome of which can be statistically characterised by properties such as their spatial extent, morphology and the spatial correlation of defects. Some properties scale in a simple way with parameters such as the cascade energy, others have limited variability with energy, for example point defect cluster size distributions. Taking advantage of the latter invariance, we use object kinetic Monte Carlo simulations to demonstrate that most properties of displacement cascade play no significant role in the evolution of point defect cluster size distributions after long enough time. It is suggested that reliable long-term predictions are possible, when using only the self-interstitial and vacancy cluster size distributions from low energy displacement cascades as building blocks to represent the complete spectrum of cascade energies obtained under neutron irradiation conditions. This is shown on the basis of recursive properties of displacement cascades evidenced for the first time and taking only approximately into account the average volumes in which vacancies and self-interstitial atoms are confined. The model has been successfully used to simulate the evolution of point defect clusters in iron for displacement rates in the range of 10(-6) dpa/s and doses of the order of 0.1 dpa. The applicability beyond this range and to more complex materials is discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Souidi, A.; Hou, M.] Univ Libre Bruxelles, Phys Solides Irradies & Nanostruct CP234, B-1050 Brussels, Belgium. [Souidi, A.] Univ Dr Tahar Moulay Saida, Saida 20000, Algeria. [Becquart, C. S.] Univ Lille 1, UMET, UMR 8207, F-59655 Villeneuve Dascq, France. [Malerba, L.] SCK CEN, Inst Nucl Mat Sci, Struct Mat Grp, B-2400 Mol, Belgium. [Domain, C.] EDF R&D Dept MMC, F-77818 Moret Sur Loing, France. [Stoller, R. E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Hou, M (reprint author), Univ Libre Bruxelles, Phys Solides Irradies & Nanostruct CP234, Bd Triomphe, B-1050 Brussels, Belgium. EM mhou@ulb.ac.be RI Stoller, Roger/H-4454-2011 FU European seventh Framework Program [232612]; Division of Materials Sciences and Engineering, US Department of Energy FX The authors are thankful to many colleagues and, in particular, to A. De Backer, for fruitful discussions. The research was partially supported by The European seventh Framework Program, under Grant Agreement No. 232612 (PERFORM60 project), and (Stoller) by the Division of Materials Sciences and Engineering, US Department of Energy under contract with UT-Battelle, LLC. NR 45 TC 17 Z9 17 U1 2 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 122 EP 133 DI 10.1016/j.jnucmat.2011.08.049 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600016 ER PT J AU Moore, E Corrales, LR Desai, T Devanathan, R AF Moore, Emily Corrales, L. Rene Desai, Tapan Devanathan, Ram TI Molecular dynamics simulation of Xe bubble nucleation in nanocrystalline UO(2) nuclear fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID INTERATOMIC POTENTIALS; URANIUM-DIOXIDE; DEFECTS; DAMAGE AB We have performed molecular dynamics (MD) simulations to investigate the dynamical interactions between vacancy defects, fission gas atoms (Xe), and grain boundaries in a model of polycrystalline UO(2) nuclear fuel with average grain diameter of about 20 nm. We followed the mobility and aggregation of Xe atoms in the vacancy-saturated model compound for up to 2 ns. During this time we observed the aggregation of Xe atoms into nuclei, which are possible precursors to Xe bubbles. The nucleation was driven by the migration of Xe atoms via vacancy-assisted diffusion. The Xe clusters aggregate faster than grain boundary diffusion rates and are smaller than experimentally observed bubbles. As the system evolves towards equilibrium, the Xe atom cluster growth slows down significantly, and the lattice relaxes around the cluster. These simulations provide insights into fundamental physical processes that are inaccessible to experiment. (C) 2011 Elsevier B.V. All rights reserved. C1 [Devanathan, Ram] PNNL, Chem & Mat Sci Div, Richland, WA 99352 USA. [Moore, Emily; Corrales, L. Rene] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [Corrales, L. Rene] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Desai, Tapan] Adv Cooling Technol, Lancaster, PA 17601 USA. RP Devanathan, R (reprint author), PNNL, Chem & Mat Sci Div, MS K2-01,POB 999, Richland, WA 99352 USA. EM ram.devanathan@pnl.gov RI Devanathan, Ram/C-7247-2008 OI Devanathan, Ram/0000-0001-8125-4237 FU US Department of Energy (DOE) Computational Material Science Network (Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-Reactor Materials) [DE-FG02-07ER46369]; DOE [DE-FG02-07ER46368]; Division of Materials Science and Engineering, Office of Basic Energy Sciences, DOE [DE-AC05-76RL01830]; DOE Science Undergraduate Laboratory at Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research and located at PNNL FX This work was supported by the US Department of Energy (DOE) Computational Material Science Network (Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-Reactor Materials) under the DOE Grant DE-FG02-07ER46369 and the DOE Grant DE-FG02-07ER46368. RD was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, DOE under Contract DE-AC05-76RL01830. EM was partly supported by the DOE Science Undergraduate Laboratory Internship program at Pacific Northwest National Laboratory (PNNL). This work was performed using the Molecular Science Computing Facility in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 27 TC 10 Z9 10 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 140 EP 144 DI 10.1016/j.jnucmat.2011.08.052 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600018 ER PT J AU Bajaj, S Landa, A Soderlind, P Turchi, PEA Arroyave, R AF Bajaj, Saurabh Landa, Alexander Soederlind, Per Turchi, Patrice E. A. Arroyave, Raymundo TI The U-Ti system: Strengths and weaknesses of the CALPHAD method SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BRILLOUIN-ZONE; SPECIAL POINTS; ZR ALLOYS; APPROXIMATION; TRANSITION; EQUATION; PHASE AB Input from Density Functional Theory (DFT) calculations is used to understand phase equilibria in a binary metallic alloy fuel system: U-Ti. The CALPHAD approach is employed to calculate a U-Ti phase diagram that is consistent not only with experimental data but also-more importantly-with thermodynamic data from DFT calculations: heat of formation of gamma(bcc)-U-Ti alloys as a function of composition, and formation enthalpy of the delta-U(2)Ti compound. Three DFT-based electronic structure methods are utilized: SR-KKR-ASA-CPA, SR-EMTO-CPA, and FPLMTO-SQS, and the use of derived ab initio data avoids the manifestation of unreasonable or inaccurate phase stabilities that result from an otherwise unconstrained Gibbs energy minimization within the CALPHAD approach. We also investigate phase formation of the delta-U(2)Ti phase in the U-Ti system, that stabilizes in the same C32 structure as other binary metallic fuel alloys such as U-Zr and Np-Zr. (C) 2011 Elsevier B.V. All rights reserved. C1 [Bajaj, Saurabh; Arroyave, Raymundo] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Landa, Alexander; Soederlind, Per; Turchi, Patrice E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Arroyave, Raymundo] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA. RP Arroyave, R (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM rarroyave@tamu.edu RI Arroyave, Raymundo/A-4106-2013 OI Arroyave, Raymundo/0000-0001-7548-8686 FU US DOE [DE-AC52-07NA27344]; Computational Chemistry and Materials Science (CCMS) Summer Institute FX This work has been performed under the auspices of the US DOE by the Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. S.B. would like to acknowledge the support provided by the Computational Chemistry and Materials Science (CCMS) Summer Institute 2010 held at Lawrence Livermore National Laboratory, where a part of this work was performed. S.B. also thanks R.A. for the computational resources provided during the entirety of this work. R. A. would like to acknowledge the Texas A&M Supercomputing Facility as well as the Texas Advanced Computing Center for computational resources provided. NR 42 TC 11 Z9 11 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 177 EP 185 DI 10.1016/j.jnucmat.2011.08.050 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600021 ER PT J AU Hetherly, J Martinez, E Nastasi, M Caro, A AF Hetherly, J. Martinez, E. Nastasi, M. Caro, A. TI Helium bubble growth at BCC twist grain boundaries SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ALPHA-FE; EDGE DISLOCATIONS; SCREW DISLOCATIONS; VACANCY CLUSTERS; IRON; ALLOYS; HE; METALS; FUSION AB We study the growth of helium bubbles in alpha-Fe at low angle twist grain boundaries and in bulk using molecular dynamics and Metropolis Monte Carlo simulations. We describe the pressures and volumes of the helium bubbles and analyze the maximum pressure a bubble can sustain before emitting interstitial loops. We give a quantitative analysis of how these emitted loops behave differently in the bulk and at the grain boundary. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hetherly, J.; Martinez, E.; Nastasi, M.; Caro, A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Caro, A (reprint author), Los Alamos Natl Lab, MST-8, Los Alamos, NM 87544 USA. EM hetherly@lanl.gov; caro@lanl.gov OI Martinez Saez, Enrique/0000-0002-2690-2622 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; US Department of Energy at Los Alamos National Laboratory [2008LANL1026]; Laboratory Directed Research and Development Program FX Work performed with support from the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy (Award Number 2008LANL1026) at Los Alamos National Laboratory, and with support from the Laboratory Directed Research and Development Program. NR 27 TC 10 Z9 10 U1 1 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 201 EP 207 DI 10.1016/j.jnucmat.2011.08.009 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600024 ER PT J AU Keiser, DD Jue, JF Woolstenhulme, NE Ewh, A AF Keiser, Dennis D., Jr. Jue, Jan-Fong Woolstenhulme, Nicolas E. Ewh, Ashley TI Potential annealing treatments for tailoring the starting microstructure of low-enriched U-Mo dispersion fuels to optimize performance during irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DEGREES-C; ALLOY; INTERDIFFUSION AB Low-enriched uranium-molybdenum (U-Mo) alloy particles dispersed in aluminum alloy (e.g., dispersion fuels) are being developed for application in research and test reactors. To achieve the best performance of these fuels during irradiation, optimization of the starting microstructure may be required by utilizing a heat treatment that results in the formation of uniform, Si-rich interaction layers between the U-Mo particles and Al-Si matrix. These layers behave in a stable manner under certain irradiation conditions. To identify the optimum heat treatment for producing these kinds of layers in a dispersion fuel plate, a systematic annealing study has been performed using actual dispersion fuel samples, which were fabricated at relatively low temperatures to limit the growth of any interaction layers in the samples prior to controlled heat treatment. These samples had different Al matrices with varying Si contents and were annealed between 450 and 525 degrees C for up to 4 h. The samples were then characterized using scanning electron microscopy (SEM) to examine the thickness, composition, and uniformity of the interaction layers. Image analysis was performed to quantify various attributes of the dispersion fuel microstructures that related to the development of the interaction layers. The most uniform layers were observed to form in fuel samples that had an Al matrix with at least 4 wt.% Si and a heat treatment temperature of at least 475 degrees C. (C) 2011 Elsevier B.V. All rights reserved. C1 [Keiser, Dennis D., Jr.; Jue, Jan-Fong; Woolstenhulme, Nicolas E.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. [Ewh, Ashley] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Ewh, Ashley] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. RP Keiser, DD (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Dennis.Keiser@inl.gov RI Paz y Puente, Ashley/M-2022-2015 OI Paz y Puente, Ashley/0000-0001-7108-7164 FU US Department of Energy, Office of Nuclear Materials Threat Reduction [NA-212]; National Nuclear Security Administration FX This work was supported by the US Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, and this manuscript authored by a contractor of the US Government under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. NR 13 TC 13 Z9 13 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 226 EP 234 DI 10.1016/j.jnucmat.2011.08.039 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600028 ER PT J AU Mariani, RD Porter, DL O'Holleran, TP Hayes, SL Kennedy, JR AF Mariani, R. D. Porter, D. L. O'Holleran, T. P. Hayes, S. L. Kennedy, J. R. TI Lanthanides in metallic nuclear fuels: Their behavior and methods for their control SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MINOR ACTINIDES; SYSTEM; CERIUM AB The thermodynamic and experimental basis is given for using dopant additives to bind lanthanides as intermetallic compounds in metallic nuclear fuels. Lanthanide fission products are a major factor in limiting the lifetime of the fuel, because they migrate to the fuel slug peripheral surface where they participate in fuel-cladding chemical interactions (FCCI) with the D9 or HT9 steel cladding. Lanthanide carryover in recycled metal fuels can accelerate FCCI, as recycled lanthanides would likely segregate from the fuel phase, putting the lanthanides in prompt contact with the cladding. In out-of-pile tests, the use of palladium was examined for binding the lanthanides, with palladium selected because of its known metallurgical properties in fuel-related systems and because of its known behavior in irradiated Experimental Breeder Reactor-II (EBR-II) fuels. Initial results confirmed that palladium may be expected to mitigate FCCI arising from lanthanides, and it has been recommended for in-pile tests. Transport phenomena responsible for lanthanide migration were also evaluated, and liquid-like behaviors were identified as being dominant. Liquid-like behaviors include transport with liquid metals, liquid metal solutions, and rapid surface transport of alloys/metals near their melting temperatures. The analysis led to establishing general criteria for selecting dopant additives and identifying tin, antimony, and tellurium as alternates for further testing. (C) 2011 Elsevier B.V. All rights reserved. C1 [Mariani, R. D.; Porter, D. L.; O'Holleran, T. P.; Hayes, S. L.; Kennedy, J. R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Porter, DL (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Douglas.Porter@inl.gov RI Hayes, Steven/D-8373-2017 OI Hayes, Steven/0000-0002-7583-2069 FU US Government under DOE [DE-AC07-05ID14517] FX This submitted manuscript was authored by a contractor of the US Government under DOE Contract No. DE-AC07-05ID14517. Accordingly, the US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. NR 25 TC 14 Z9 14 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 263 EP 271 DI 10.1016/j.jnucmat.2011.08.036 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600033 ER PT J AU Kim, YS Hofman, GL AF Kim, Yeon Soo Hofman, G. L. TI Fission product induced swelling of U-Mo alloy fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RESEARCH REACTOR-FUEL; CENTRIFUGAL ATOMIZATION; NUCLEAR-FUEL; BUBBLE AB Fuel swelling of U-Mo alloy was modeled using the measured data from samples irradiated up to a fission density of similar to 7 x 10(27) fissions/m(3) at temperatures below similar to 250 degrees C. The overall fuel swelling was measured from U-Mo foils with as-fabricated thickness of 250 mu m. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo; Hofman, G. L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov FU U.S. Department of Energy, Office of Global Threat Reduction, National Nuclear Security Administration [NA-21]; UChicago Argonne, LLC [DE-AC-02-06CH11357]; Department of Energy FX The authors would like to acknowledge Mr. C. Clark for fabrication of the monolithic plate samples tested in the RERTR-6 and RERTR-7, Mr. G. Moore and Dr. J. Jue for those tested in RERTR-8 and -9, Dr. D. Keiser for pre-irradiation characterization, Dr. D. Wachs for irradiation test design and direction of these tests, Mr. M.R. Finlay for RERTR-6 and -7 PIE, and Mr. A. Robinson for RERTR-8 and -9 test PIE. The operations staffs at FASB, ATR and HFEF in INL are also acknowledged for fabrication, irradiation, and PIE support for the tests. This paper also contains information gathered from five reduced-size plate tests (RERTR-1, -2, -3, -4, and -5) for dispersion plate samples irradiated at the ATR. The contributors for these irradiation tests and post irradiation examinations include Drs. S.L. Hayes and M. Meyer from INL and G.L. Hofman from ANL for the irradiation test designs, Mr. T. Wiencek from ANL for the test plate fabrication, and late Dr. R. Strain from ANL for PI Es. The operations staff at ATR is also acknowledged for these irradiation tests. The physics data available by Dr. G. Chang and Ms. M. Lillo are also appreciated. The authors specially thank Mr. A. Robinson for his PIE data and Dr. D. Wachs and Mr. C. Clark for careful review of the manuscript and fruitful discussion. The authors are also grateful to Dr. J.M. Park of KAERI, Korea, for allowing the use of the image in Fig. 4. Discussion with Dr. J. Rest was helpful. This work was supported by the U.S. Department of Energy, Office of Global Threat Reduction (NA-21), National Nuclear Security Administration, under Contract No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the Department of Energy. NR 25 TC 49 Z9 50 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 291 EP 301 DI 10.1016/j.jnucmat.2011.08.018 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600036 ER PT J AU Zhang, J Wang, YQ Valdez, JA Tang, M Sickafus, KE AF Zhang, J. Wang, Y. Q. Valdez, J. A. Tang, M. Sickafus, K. E. TI Irradiation induced order-disorder phase transformation in A(4)Zr(3)O(12) (A = Sc, Lu and Dy) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Conference on NuMat CY OCT 04-07, 2010 CL Karlsruhe, GERMANY ID ION-IRRADIATION; RADIATION TOLERANCE; NUCLEAR-WASTE; PLUTONIUM; IMMOBILIZATION; TRANSITION; ZIRCONIA; DISPOSAL; OXIDES AB In this study, 200 key Ne+ ion irradiations were performed under cryogenic conditions (similar to 77 K) on delta-phase oxide compounds with formula, A(4)Zr(3)O(12) (A = Sc, Lu and Dy). An order-to-disorder (O-D) phase transformation was observed in delta-Lu4Zr3O12 and delta-Sc4Zr3O12 after Ne+ ion irradiation, but no phase change was observed in Dy4Zr3O12. The latter compound exhibited a disordered fluorite structure before and after irradiation. The threshold doses to produce O-D phase transformations using Ne+ ions were found to be significantly lower than for similar irradiations (reported previously) using Kr++ ions. This suggests that light ions are more efficient than heavy ions in producing the retained defects that are ultimately responsible for the observed O-D transformation. The ion irradiation-induced O-D transformations observed here are discussed in terms of analogous transformations found in temperature-composition (T-C) phase diagrams for A(4)Zr(3)O(12) compounds. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zhang, J.] Xiamen Univ, Sch Energy Res, Xiamen 361005, Fujian, Peoples R China. [Zhang, J.] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Gansu, Peoples R China. [Zhang, J.; Wang, Y. Q.; Valdez, J. A.; Tang, M.; Sickafus, K. E.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Zhang, J (reprint author), Xiamen Univ, Sch Energy Res, Xiamen 361005, Fujian, Peoples R China. EM zhangjian@xmu.edu.cn RI Lujan Center, LANL/G-4896-2012 NR 20 TC 5 Z9 6 U1 6 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 386 EP 391 DI 10.1016/j.jnucmat.2011.08.004 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600050 ER PT J AU Yun, D Oaks, AJ Chen, WY Kirk, MA Rest, J Insepov, ZZ Yacout, AM Stubbins, JF AF Yun, Di Oaks, Aaron J. Chen, Wei-ying Kirk, Marquis A. Rest, Jeffrey Insepov, Zinetula Z. Yacout, Abdellatif M. Stubbins, James F. TI Kr and Xe irradiations in lanthanum (La) doped ceria: Study at the high dose regime (vol 418, pg 80, 2011) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Correction C1 [Yun, Di; Kirk, Marquis A.; Rest, Jeffrey; Insepov, Zinetula Z.; Yacout, Abdellatif M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Oaks, Aaron J.; Chen, Wei-ying; Stubbins, James F.] Univ Illinois, Urbana, IL USA. RP Yun, D (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM diyun@anl.gov RI Insepov, Zinetula/L-2095-2013 OI Insepov, Zinetula/0000-0002-8079-6293 NR 1 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2011 VL 419 IS 1-3 BP 397 EP 397 DI 10.1016/j.jnucmat.2011.11.007 PG 1 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 874DW UT WOS:000298936600052 ER PT J AU Ekdahl, C Abeyta, EO Aragon, P Archuleta, R Cook, G Dalmas, D Esquibel, K Gallegos, R Garnett, R Harrison, J Johnson, J Jacquez, E McCuistian, BT Montoya, N Nath, S Nielsen, K Oro, D Rose, C Sanchez, M Schauer, M Schulze, M Seitz, G Smith, V Temple, R Anaya, R Caporaso, G Chambers, F Chen, YJ Falabella, S Guethlein, G Raymond, B Richardson, R Scarpetti, R Watson, J Weir, J Bender, H Broste, W Carlson, C Frayer, D Tom, CY Trainham, C Williams, J Genoni, T Hughes, T Thoma, C Prichard, B AF Ekdahl, Carl Abeyta, E. O. Aragon, P. Archuleta, R. Cook, G. Dalmas, D. Esquibel, K. Gallegos, R. Garnett, R. Harrison, J. Johnson, J. Jacquez, E. McCuistian, B. Trent Montoya, N. Nath, S. Nielsen, K. Oro, D. Rose, C. Sanchez, M. Schauer, M. Schulze, M. Seitz, G. Smith, V. Temple, R. Anaya, R. Caporaso, G. Chambers, F. Chen, Y. J. Falabella, S. Guethlein, G. Raymond, B. Richardson, R. Scarpetti, R. Watson, J. Weir, J. Bender, H. Broste, W. Carlson, C. Frayer, D. Tom, C. Y. Trainham, C. Williams, J. Genoni, T. Hughes, T. Thoma, C. Prichard, B. TI Beam Dynamics in a Long-pulse Linear Induction Accelerator SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Linear-induction accelerator; Radiography; Particle beam; Beam stability; Beam motion AB The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and is accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High-frequency motion, such as from the beam breakup instability, would blur individual spots. Low-frequency motion, such as produced by a pulsed power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion and the measures we have taken to minimize it. C1 [Ekdahl, Carl; Abeyta, E. O.; Aragon, P.; Archuleta, R.; Cook, G.; Dalmas, D.; Esquibel, K.; Gallegos, R.; Garnett, R.; Harrison, J.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Oro, D.; Rose, C.; Sanchez, M.; Schauer, M.; Schulze, M.; Seitz, G.; Smith, V.; Temple, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Anaya, R.; Caporaso, G.; Chambers, F.; Chen, Y. J.; Falabella, S.; Guethlein, G.; Raymond, B.; Richardson, R.; Scarpetti, R.; Watson, J.; Weir, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bender, H.; Broste, W.; Carlson, C.; Frayer, D.; Tom, C. Y.; Trainham, C.; Williams, J.] Natl Secur Technol, Los Alamos, NM 87544 USA. [Genoni, T.; Hughes, T.; Thoma, C.] Voss Sci, Albuquerque, NM 87108 USA. [Prichard, B.] SAIC, San Diego, CA 92121 USA. RP Ekdahl, C (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM cekdahl@lanl.gov FU US National Nuclear Security Agency; US Department of Energy [W-7405-ENG-36] FX This work was supported by the US National Nuclear Security Agency and the US Department of Energy under contract W-7405-ENG-36. NR 14 TC 5 Z9 5 U1 1 U2 5 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD DEC PY 2011 VL 59 IS 6 SI SI BP 3448 EP 3452 DI 10.3938/jkps.59.3448 PN 1 PG 5 WC Physics, Multidisciplinary SC Physics GA 863WH UT WOS:000298198500003 ER PT J AU Ekdahl, C AF Ekdahl, Carl TI Characterizing flash-radiography source spots SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article AB Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. The size of the radiographic source spot is often quoted as an indication of the resolving power of a particular flash-radiography machine. A variety of techniques for measuring spot size have evolved at the different laboratories, as well as different definitions of spot size. Some definitions are highly dependent on the source spot intensity distributions, and not necessarily well correlated with resolution. The concept of limiting resolution based on bar target measurements is introduced, and shown to be equivalent to the spatial wavenumber at a modulation transfer function value of 5%. This resolution is shown to be better correlated with the full width at half-maximum of the spot intensity distribution than it is with other definitions of spot size. (C) 2011 Optical Society of America C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ekdahl, C (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM cekdahl@lanl.gov FU United States Department of Energy (DOE) [W-7405-ENG-36] FX The author acknowledges stimulating discussions with Tom Beery, Evan Rose, B. Trent McCuistian, and Scott Watson on these, and other, topics. This work was supported by the United States Department of Energy (DOE) under contract number W-7405-ENG-36. NR 8 TC 6 Z9 6 U1 2 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD DEC PY 2011 VL 28 IS 12 BP 2501 EP 2509 PG 9 WC Optics SC Optics GA 863PU UT WOS:000298179100008 PM 22193263 ER PT J AU Horlein, R Steinke, S Henig, A Rykovanov, SG Schnurer, M Sokollik, T Kiefer, D Jung, D Yan, XQ Tajima, T Schreiber, J Hegelich, M Nickles, PV Zepf, M Tsakiris, GD Sandner, W Habs, D AF Hoerlein, R. Steinke, S. Henig, A. Rykovanov, S. G. Schnuerer, M. Sokollik, T. Kiefer, D. Jung, D. Yan, X. Q. Tajima, T. Schreiber, J. Hegelich, M. Nickles, P. V. Zepf, M. Tsakiris, G. D. Sandner, W. Habs, D. TI Dynamics of nanometer-scale foil targets irradiated with relativistically intense laser pulses SO LASER AND PARTICLE BEAMS LA English DT Article DE Frequency conversion; Laser-driven acceleration; Laser-plasma interaction; Particle-in-cell method; Plasma-generated coherent radiation ID OVERDENSE PLASMA; HIGH HARMONICS; SOLID TARGETS; ULTRASHORT; GENERATION; ROUTE AB In this paper we report on an experimental study of high harmonic radiation generated in nanometer-scale foil targets irradiated under normal incidence. The experiments constitute the first unambiguous observation of odd-numbered relativistic harmonics generated by the v x B component of the Lorentz force verifying a long predicted property of solid target harmonics. Simultaneously the observed harmonic spectra allow in-situ extraction of the target density in an experimental scenario which is of utmost interest for applications such as ion acceleration by the radiation pressure of an ultraintense laser. C1 [Steinke, S.; Schnuerer, M.; Sokollik, T.; Nickles, P. V.; Sandner, W.] Max Born Inst, D-12489 Berlin, Germany. [Hoerlein, R.; Henig, A.; Rykovanov, S. G.; Kiefer, D.; Yan, X. Q.; Schreiber, J.; Zepf, M.; Tsakiris, G. D.; Habs, D.] Max Planck Inst Quantum Opt, Garching, Germany. [Hoerlein, R.; Henig, A.; Rykovanov, S. G.; Kiefer, D.; Jung, D.; Tajima, T.; Schreiber, J.; Hegelich, M.; Habs, D.] Univ Munich, Fak Phys, D-8046 Garching, Germany. [Jung, D.; Hegelich, M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Yan, X. Q.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Tajima, T.] JAEA, Photomed Res Ctr, Kyoto, Japan. [Nickles, P. V.] GIST, Kwangju, South Korea. [Zepf, M.] Queens Univ Belfast, Dept Phys & Astron, Belfast, Antrim, North Ireland. RP Steinke, S (reprint author), Max Born Inst, D-12489 Berlin, Germany. EM steinke@mbi-berlin.de RI Hegelich, Bjorn/J-2689-2013; Zepf, Matt/M-1232-2014; Sokollik, Thomas/P-2584-2015; Steinke, Sven/D-8086-2011 OI Steinke, Sven/0000-0003-0507-698X FU DFG [SFB Transregio 18]; Cluster of Excellence Munich Center for Advanced Photonics (MAP); Association EURATOM - Max-Planck-Institut fur Plasmaphysik; IMPRS-APS; Humboldt Foundation; NSFC [10935002] FX We would like to thank the Berlin laser staff for their support. This work was funded in part by the DFG through SFB Transregio 18 and the Cluster of Excellence Munich Center for Advanced Photonics (MAP) and by the Association EURATOM - Max-Planck-Institut fur Plasmaphysik. A. H., S. G. R., D. K. and D. J. acknowledge financial support from IMPRS-APS. X. Q. Y. acknowledges financial support from the Humboldt Foundation and NSFC (10935002). NR 31 TC 7 Z9 7 U1 0 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD DEC PY 2011 VL 29 IS 4 BP 383 EP 388 DI 10.1017/S0263034611000462 PG 6 WC Physics, Applied SC Physics GA 871CG UT WOS:000298714600001 ER PT J AU Schnurer, M Andreev, AA Steinke, S Sokollik, T Paasch-Colberg, T Nickles, PV Henig, A Jung, D Kiefer, D Horlein, R Schreiber, J Tajima, T Habs, D Sandner, W AF Schnuerer, M. Andreev, A. A. Steinke, S. Sokollik, T. Paasch-Colberg, T. Nickles, P. V. Henig, A. Jung, D. Kiefer, D. Hoerlein, R. Schreiber, J. Tajima, T. Habs, D. Sandner, W. TI Comparison of femtosecond laser-driven proton acceleration using nanometer and micrometer thick target foils SO LASER AND PARTICLE BEAMS LA English DT Article DE Coherent acceleration of ions by laser pulses; Laser ion acceleration; Radiation pressure; Relativistic laser intensity; Target normal sheath acceleration ID ION-ACCELERATION; PULSES; PLASMA; BEAMS; ELECTRON AB Advancement of ion acceleration by intense laser pulses is studied with ultra-thin nanometer-thick diamond like carbon and micrometer-thick Titanium target foils. Both investigations aim at optimizing the electron density distribution which is the key for efficient laser driven ion acceleration. While recently found maximum ion energies achieved with ultra-thin foils mark record values micrometer thick foils are flexible in terms of atomic constituents. Electron recirculation is one prerequisite for the validity of a very simple model that can approximate, the dependence of ion energies of nanometer-thick targets when all electrons of the irradiated target area interact coherently with the laser pulse and Coherent Acceleration of Ions by Laser pulses (CAIL) becomes dominant. Complementary experiments, an analytical model and particle in cell computer simulations show, that with regard to ultra-short laser pulses (duration similar to 45 fs at intensities up to 5 x 10(19) W/cm(2)) and a mierometer-thick target foil with higher atomic number a close to linear increase of ion energies manifests in a certain range of laser intensities. C1 [Schnuerer, M.; Andreev, A. A.; Steinke, S.; Sokollik, T.; Sandner, W.] Max Born Inst, D-12489 Berlin, Germany. [Andreev, A. A.] STC Vavilov State Opt Inst, St Petersburg, Russia. [Sokollik, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Paasch-Colberg, T.; Henig, A.; Jung, D.; Kiefer, D.; Hoerlein, R.; Schreiber, J.; Tajima, T.; Habs, D.] Max Planck Inst Quantum Opt, Garching, Germany. [Nickles, P. V.] GIST, Gwangju City, South Korea. [Henig, A.; Jung, D.; Kiefer, D.; Hoerlein, R.; Schreiber, J.; Habs, D.] Univ Munich, Dept Phys, D-8046 Garching, Germany. [Tajima, T.] JAEA, Photomed Res Ctr, Kyoto, Japan. [Sandner, W.] Tech Univ Berlin, Berlin, Germany. RP Schnurer, M (reprint author), Max Born Inst, Max Born Str 2A, D-12489 Berlin, Germany. EM schnuerer@mbi-berlin.de RI Sokollik, Thomas/P-2584-2015; Steinke, Sven/D-8086-2011 OI Steinke, Sven/0000-0003-0507-698X FU Deutsche Forschungsgemeinschaft [Transregio SFB TR18]; European Community [PIIF-GA-2008-221727]; World Class University, NRF of Korea [R31-2008-000-10026-0] FX This work was partly supported by Deutsche Forschungsgemeinschaft through Transregio SFB TR18. This research was supported by a Marie Curie International Incoming Fellowship (No. PIIF-GA-2008-221727) within the 7th European Community Framework Programme. P.V.N. acknowledges the support of World Class University program (R31-2008-000-10026-0) grant provided by NRF of Korea. NR 45 TC 9 Z9 9 U1 1 U2 17 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD DEC PY 2011 VL 29 IS 4 BP 437 EP 446 DI 10.1017/S0263034611000553 PG 10 WC Physics, Applied SC Physics GA 871CG UT WOS:000298714600007 ER PT J AU Du, HW Chen, M Sheng, ZM Zhang, J AF Du, H. W. Chen, M. Sheng, Z. M. Zhang, J. TI Numerical studies on terahertz radiation generated from two-color laser pulse interaction with gas targets SO LASER AND PARTICLE BEAMS LA English DT Article DE Ionization current; Particle-in-cell simulation; Terahertz-wave emission ID EMISSION; AIR; IONIZATION; FIELD AB Based upon the Ammosov-Delone-Krainov ionization model, it is shown that two-color laser interaction with neutral gas generates strong ionization currents, which lead to electromagnetic emission at terahertz frequency when the gas density is at proper values. The emission efficiency depends on the difference of the phases between the fundamental and its second harmonic. The intensity ratio between the two pulses also affects the emission strength. An optimum intensity ratio has been found within our parameter region. The above ionization current theory is in agreement with one-dimensional particle-in-cell simulations with field ionization included. C1 [Du, H. W.; Sheng, Z. M.; Zhang, J.] Shanghai Jiao Tong Univ, Dept Phys, Minist Educ, Key Lab Laser Plasmas, Shanghai 200240, Peoples R China. [Chen, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sheng, Z. M.; Zhang, J.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing, Peoples R China. [Sheng, Z. M.] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310003, Zhejiang, Peoples R China. RP Sheng, ZM (reprint author), Shanghai Jiao Tong Univ, Dept Phys, Minist Educ, Key Lab Laser Plasmas, Shanghai 200240, Peoples R China. EM zmsheng@sjtu.edu.cn RI Chen, Min/A-9955-2010; Sheng, Zheng-Ming/H-5371-2012 OI Chen, Min/0000-0002-4290-9330; FU NSFC [10734130, 10925421, 11075105]; National Basic Research Program of China [2007CB310406, 2009GB105002] FX This work is supported in part by the NSFC (Grants 10734130, 10925421, and 11075105), the National Basic Research Program of China (Grants 2007CB310406 and 2009GB105002). NR 19 TC 10 Z9 11 U1 1 U2 10 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD DEC PY 2011 VL 29 IS 4 BP 447 EP 452 DI 10.1017/S0263034611000577 PG 6 WC Physics, Applied SC Physics GA 871CG UT WOS:000298714600008 ER PT J AU Ziomek-Moroz, M Jablonski, P AF Ziomek-Moroz, M. Jablonski, P. TI Effects of Ceric Oxide Coatings on Materials Performance of 430 Steel in Coal Synthetic Gas SO MATERIALS PERFORMANCE LA English DT Article ID FERRITIC STAINLESS-STEEL; SOFC AB The surfaces of low silicon and aluminum 430 stainless steel (UNS 43000) coupons with and without ceria (CeO(2)) surface treatment were investigated after exposure to simulated coal syngas-based fuel at 800 degrees C The results indicate a different mechanism of carburization for the ceria-treated steel than that for the untreated steel. C1 [Ziomek-Moroz, M.; Jablonski, P.] US DOE, NETL, Albany, OR 97321 USA. RP Ziomek-Moroz, M (reprint author), US DOE, NETL, 1450 Queen Ave SW, Albany, OR 97321 USA. NR 18 TC 0 Z9 0 U1 1 U2 4 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0094-1492 J9 MATER PERFORMANCE JI Mater. Perform. PD DEC PY 2011 VL 50 IS 12 BP 40 EP 44 PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA 862DM UT WOS:000298070000008 ER PT J AU Spirig, T Weiner, EM Clubb, RT AF Spirig, Thomas Weiner, Ethan M. Clubb, Robert T. TI Sortase enzymes in Gram-positive bacteria SO MOLECULAR MICROBIOLOGY LA English DT Review ID STAPHYLOCOCCUS-AUREUS SORTASE; RLRA PATHOGENICITY ISLET; PILUS-LIKE STRUCTURES; CELL-WALL ENVELOPE; STREPTOCOCCUS-PNEUMONIAE; BACILLUS-ANTHRACIS; SURFACE-PROTEINS; CORYNEBACTERIUM-DIPHTHERIAE; ACTIVE-SITE; STREPTOMYCES-COELICOLOR AB In Gram-positive bacteria proteins are displayed on the cell surface using sortase enzymes. These cysteine transpeptidases join proteins bearing an appropriate sorting signal to strategically positioned amino groups on the cell surface. Working alone, or in concert with other enzymes, sortases either attach proteins to the cross-bridge peptide of the cell wall or they link proteins together to form pili. Because surface proteins play a fundamental role in microbial physiology and are frequently virulence factors, sortase enzymes have been intensely studied since their discovery a little more than a decade ago. Based on their primary sequences and functions sortases can be partitioned into distinct families called class A to F enzymes. Most bacteria elaborate their surfaces using more than one type of sortase that function non-redundantly by recognizing unique sorting signals within their protein substrates. Here we review what is known about the functions of these enzymes and the molecular basis of catalysis. Particular emphasis is placed on pilin specific class C sortases that construct structurally complex pili. Exciting new data have revealed that these enzymes are amazingly promiscuous in the substrates that they can employ and that there is a startling degree of diversity in their mechanism of action. We also review recent data that suggest that sortases are targeted to specific sites on the cell surface where they work with other sortases and accessory factors to properly function. C1 [Spirig, Thomas; Weiner, Ethan M.; Clubb, Robert T.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Spirig, Thomas; Weiner, Ethan M.; Clubb, Robert T.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Clubb, Robert T.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Clubb, RT (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 611 Charles Young Dr E, Los Angeles, CA 90095 USA. EM rclubb@mbi.ucla.edu OI Spirig, Thomas/0000-0001-8936-238X FU Swiss National Science Foundation [PBEZP3-124281]; Ruth L. Kirschstein National Research Service [GM07185]; National Institutes of Health [AI52217] FX Because of space limitations we were unable to fully discuss all sortase-related research and apologize to those investigators whose work has not been mentioned here. We would like to thank Dr. Marie Elliot and the three anonymous reviewers of this manuscript for very helpful comments. This work was supported by Swiss National Science Foundation Fellowship PBEZP3-124281 (T. S.), Ruth L. Kirschstein National Research Service Award GM07185 (E. W.) and National Institutes of Health Grant AI52217 (R.T.C). NR 98 TC 85 Z9 86 U1 1 U2 44 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0950-382X J9 MOL MICROBIOL JI Mol. Microbiol. PD DEC PY 2011 VL 82 IS 5 BP 1044 EP 1059 DI 10.1111/j.1365-2958.2011.07887.x PG 16 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 862JO UT WOS:000298087200002 PM 22026821 ER PT J AU Xie, A Yan, J Yue, L Feng, F Mir, F Abdel-Halim, H Chebib, M Le Breton, GC Standaert, RF Qian, HH Pepperberg, DR AF Xie, An Yan, Jun Yue, Lan Feng, Feng Mir, Fozia Abdel-Halim, Heba Chebib, Mary Le Breton, Guy C. Standaert, Robert F. Qian, Haohua Pepperberg, David R. TI 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABA(A)-rho 1 Receptors SO MOLECULAR PHARMACOLOGY LA English DT Article ID GAMMA-AMINOBUTYRIC-ACID; THROMBOXANE A(2) RECEPTOR; GABA(C) RECEPTOR; PHOSPHINIC ACID; BINDING-SITE; A RECEPTOR; MEMBRANE-RECEPTORS; ACCURATE DOCKING; AGONIST; ANALOGS AB 2-Aminoethyl methylphosphonate (2-AEMP), an analog of GABA, has been found to exhibit antagonist activity at GABA(A)-rho 1 (also known as rho 1 GABA(C)) receptors. The present study was undertaken to elucidate 2-AEMP's action and to test the activities of 2-AEMP analogs. Whole-cell patch-clamp techniques were used to record membrane currents in neuroblastoma cells stably transfected with human GABA(A)-rho 1 receptors. The action of 2-AEMP was compared with that of 1,2,5,6-tetrahydropyridin-4-yl methylphosphinic acid (TPMPA), a commonly used GABA(A)-rho 1 antagonist. With 10 mu M GABA, 2-AEMP's IC50 (18 mu M) differed by less than 2.5-fold from that of TPMPA (7 mu M), and results obtained were consistent with a primarily competitive mode of inhibition by 2-AEMP. Terminating the presentation of 2-AEMP or TPMPA in the presence of GABA produced a release from inhibition. How-ever, the rate of inhibition release upon the termination of 2-AEMP considerably exceeded that determined with termination of TPMPA. Moreover, when presented at concentrations near their respective IC50 values, the preincubation period associated with 2-AEMP's onset of inhibition was much shorter than that for TPMPA. Analogs of 2-AEMP possessing a benzyl or n-butyl rather than a methyl substituent at the phosphorus atom, as well as analogs bearing a C-methyl substituent on the aminoethyl side chain, exhibited reduced potency relative to 2-AEMP. Of these analogs, only (R)-2-aminopropyl methylphosphonate significantly diminished the response to 10 mu M GABA. Structure-activity relationships are discussed in the context of molecular modeling of ligand binding to the antagonist binding site of the GABA(A)-rho 1 receptor. C1 [Xie, An; Yue, Lan; Feng, Feng; Qian, Haohua; Pepperberg, David R.] Univ Illinois, Dept Ophthalmol & Visual Sci, Lions Illinois Eye Res Inst, Coll Med, Chicago, IL 60612 USA. [Yan, Jun; Standaert, Robert F.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Yan, Jun] Chengdu Kanghong Pharmaceut Co Ltd, Chengdu, Sichuan, Peoples R China. [Yue, Lan; Pepperberg, David R.] Univ Illinois, Dept Bioengn, Chicago, IL 60612 USA. [Mir, Fozia; Le Breton, Guy C.] Univ Illinois, Coll Med, Dept Pharmacol Sci, Chicago, IL 60612 USA. [Abdel-Halim, Heba; Chebib, Mary] Univ Sydney, Fac Pharm, Sydney, NSW 2006, Australia. [Standaert, Robert F.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. [Qian, Haohua] NEI, NIH, Bethesda, MD 20892 USA. RP Pepperberg, DR (reprint author), Univ Illinois, Dept Ophthalmol & Visual Sci, Lions Illinois Eye Res Inst, Coll Med, 1855 W Taylor St, Chicago, IL 60612 USA. EM davipepp@uic.edu RI Standaert, Robert/D-9467-2013 OI Standaert, Robert/0000-0002-5684-1322 FU National Institutes of Health National Eye Institute [EY016094, EY001792]; National Institutes of Health National Heart, Lung, and Blood Institute [HL024530]; Daniel F. and Ada L. Rice Foundation; Hope for Vision; American Health Assistance Foundation; Arnold and Mabel Beckman Initiative for Macular Research; Research to Prevent Blindness; Oak Ridge National Laboratory FX This work was supported by the National Institutes of Health National Eye Institute [Grants EY016094, EY001792]; the National Institutes of Health National Heart, Lung, and Blood Institute [Grant HL024530]; the Daniel F. and Ada L. Rice Foundation; Hope for Vision; the Macular Degeneration Research Program of the American Health Assistance Foundation; the Arnold and Mabel Beckman Initiative for Macular Research; Research to Prevent Blindness; and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the United States Department of Energy. NR 48 TC 3 Z9 3 U1 0 U2 5 PU AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3995 USA SN 0026-895X J9 MOL PHARMACOL JI Mol. Pharmacol. PD DEC PY 2011 VL 80 IS 6 BP 965 EP 978 DI 10.1124/mol.111.071225 PG 14 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 866VM UT WOS:000298414200003 PM 21810922 ER PT J AU Bissell, MJ AF Bissell, Mina J. TI Heeding a mentor's advice: A lesson in persistence SO NATURE CELL BIOLOGY LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mjbissell@lbl.gov FU NCI NIH HHS [R37 CA064786] NR 0 TC 1 Z9 1 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1465-7392 J9 NAT CELL BIOL JI Nat. Cell Biol. PD DEC PY 2011 VL 13 IS 12 BP 1386 EP 1386 DI 10.1038/ncb2392 PG 1 WC Cell Biology SC Cell Biology GA 863JB UT WOS:000298157500002 PM 22134757 ER PT J AU Li, ZQ Niu, F Fan, JW Liu, YG Rosenfeld, D Ding, YN AF Li, Zhanqing Niu, Feng Fan, Jiwen Liu, Yangang Rosenfeld, Daniel Ding, Yanni TI Long-term impacts of aerosols on the vertical development of clouds and precipitation SO NATURE GEOSCIENCE LA English DT Article ID MICROPHYSICS PARAMETERIZATION; ATMOSPHERIC RADIATION; PART I; CLIMATE; REMOTE; MODEL; PROGRAM; SURFACE; SYSTEM; AMAZON AB Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term impact of aerosols on the vertical development of clouds and rainfall frequencies, using a 10-year dataset of aerosol, cloud and meteorological variables collected in the Southern Great Plains in the United States. We show that cloud-top height and thickness increase with aerosol concentration measured near the ground in mixed-phase clouds-which contain both liquid water and ice-that have a warm, low base. We attribute the effect, which is most significant in summer, to an aerosol-induced invigoration of upward winds. In contrast, we find no change in cloud-top height and precipitation with aerosol concentration in clouds with no ice or cool bases. We further show that precipitation frequency and rain rate are altered by aerosols. Rain increases with aerosol concentration in deep clouds that have a high liquid-water content, but declines in clouds that have a low liquid-water content. Simulations using a cloud-resolving model confirm these observations. Our findings provide unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation. C1 [Li, Zhanqing] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, GCESS, Beijing 100875, Peoples R China. [Li, Zhanqing] Nanjing Univ Informat Sci & Technol, Coll Atmospher Phys, Nanjing 210044, Peoples R China. [Li, Zhanqing; Niu, Feng; Ding, Yanni] Univ Maryland, Dept Atmospher & Ocean Sci & ESSIC, College Pk, MD 20742 USA. [Fan, Jiwen] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Liu, Yangang] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Rosenfeld, Daniel] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. RP Li, ZQ (reprint author), Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, GCESS, Beijing 100875, Peoples R China. EM zli@atmos.umd.edu RI li, dongsheng/B-2285-2012; Fan, Jiwen/E-9138-2011; Liu, Yangang/H-6154-2011; Rosenfeld, Daniel/F-6077-2016; Ding, Yanni/H-8980-2016; Li, Zhanqing/F-4424-2010 OI Rosenfeld, Daniel/0000-0002-0784-7656; Li, Zhanqing/0000-0001-6737-382X FU US Department of Energy; National Aeronautics and Space Administration (NASA) [NNX08AH71G]; National Science Foundation (NSF) [AGS1118325]; Ministry of Science and Technology of China [2012CB955400, 2006CB403706] FX The investigation would not be possible without the ARM measurements of the US Department of Energy, which also funds all investigators under its Atmospheric System Research programme. Z.L. was also supported by National Aeronautics and Space Administration (NASA) (NNX08AH71G), the National Science Foundation (NSF) (AGS1118325), and the Ministry of Science and Technology of China (2012CB955400, 2006CB403706). NR 42 TC 138 Z9 150 U1 18 U2 106 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD DEC PY 2011 VL 4 IS 12 BP 888 EP 894 DI 10.1038/NGEO1313 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 863HK UT WOS:000298153200023 ER PT J AU Leonard, F Talin, AA AF Leonard, Francois Talin, A. Alec TI Electrical contacts to one- and two-dimensional nanomaterials SO NATURE NANOTECHNOLOGY LA English DT Review ID CARBON NANOTUBE TRANSISTORS; SILICON NANOWIRES; NICKEL; PERFORMANCE; ELECTRODES; RESISTANCE; GERMANIUM; GROWTH; STATES; LOGIC AB Existing models of electrical contacts are often inapplicable at the nanoscale because there are significant differences between nanostructures and bulk materials arising from unique geometries and electrostatics. In this Review, we discuss the physics and materials science of electrical contacts to carbon nanotubes, semiconductor nanowires and graphene, and outline the main research and development challenges in the field. We also include a case study of gold contacts to germanium nanowires to illustrate these concepts. C1 [Leonard, Francois] Sandia Natl Labs, Livermore, CA 94551 USA. [Talin, A. Alec] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. RP Leonard, F (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM fleonar@sandia.gov; atalin@nist.gov FU Sandia National Laboratories [DE-AC04-94-AL85000] FX F.L. acknowledges financial support from the Laboratory Directed Research and Development Program at Sandia National Laboratories, which is by operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy (contract DE-AC04-94-AL85000). NR 66 TC 213 Z9 214 U1 39 U2 304 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD DEC PY 2011 VL 6 IS 12 BP 773 EP 783 DI 10.1038/NNANO.2011.196 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 864OA UT WOS:000298248300008 PM 22120529 ER PT J AU Laroche, D Gervais, G Lilly, MP Reno, JL AF Laroche, D. Gervais, G. Lilly, M. P. Reno, J. L. TI Positive and negative Coulomb drag in vertically integrated one-dimensional quantum wires SO NATURE NANOTECHNOLOGY LA English DT Article ID SPIN-CHARGE SEPARATION; LUTTINGER-LIQUID; CARBON NANOTUBE; CIRCUITS; HETEROSTRUCTURES AB Electron interactions in and between wires become increasingly complex and important as circuits are scaled to nanometre sizes, or use reduced-dimensional conductors(1) such as carbon nanotubes(2-6), nanowires(7-10) and gated high-mobility two-dimensional electron systems(11-13). This is because the screening of the long-range Coulomb potential of individual carriers is weakened in these systems, which can lead to phenomena such as Coulomb drag, where a current in one wire induces a voltage in a second wire through Coulomb interactions alone. Previous experiments have demonstrated Coulomb electron drag in wires separated by a soft electrostatic barrier of width greater than or similar to 80 nm (ref. 12), which was interpreted as resulting entirely from momentum transfer. Here, we measure both positive and negative drag between adjacent vertical quantum wires that are separated by similar to 15 nm and have independent contacts, which allows their electron densities to be tuned independently. We map out the drag signal versus the number of electron sub-bands occupied in each wire, and interpret the results both in terms of momentum-transfer and charge-fluctuation induced transport models. For wires of significantly different sub-band occupancies, the positive drag effect can be as large as 25%. C1 [Laroche, D.; Lilly, M. P.; Reno, J. L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Laroche, D.; Gervais, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RP Lilly, MP (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM mplilly@sandia.gov RI Kovac, Martin/B-3975-2012 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy (DOE); US DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; Natural Sciences and Engineering Research Council of Canada (NSERC); CIFAR; FQRNT (Quebec) FX The authors acknowledge the outstanding technical assistance of D. Tibbetts and J. Hedberg. The authors also thank A. Clerk and T. Szkopek for inspiring discussions. This work has been supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy (DOE). This work was performed, in part, at the Center for Integrated Nanotechnologies, a US DOE, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE's National Nuclear Security Administration (contract no. DE-AC04-94AL85000). The authors also acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), CIFAR, and from the FQRNT (Quebec). NR 24 TC 23 Z9 23 U1 1 U2 23 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD DEC PY 2011 VL 6 IS 12 BP 793 EP 797 DI 10.1038/NNANO.2011.182 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 864OA UT WOS:000298248300012 PM 22036809 ER PT J AU Zhang, LY Zhang, Y Camacho, J Khodas, M Zaliznyak, I AF Zhang, Liyuan Zhang, Yan Camacho, Jorge Khodas, Maxim Zaliznyak, Igor TI The experimental observation of quantum Hall effect of l=3 chiral quasiparticles in trilayer graphene SO NATURE PHYSICS LA English DT Article ID FEW-LAYER GRAPHENE; RAMAN-SPECTROSCOPY; BILAYER GRAPHENE; BERRYS PHASE; FIELD; TRANSPORT; STACKING AB The linear dispersion of the low-energy electronic structure of monolayer graphene supports chiral quasiparticles that obey the relativistic Dirac equation and have a Berry phase of pi (refs 1,2). In bilayer graphene(3), the shape of the energy bands is quadratic, and its quasiparticles have a chiral degree, l = 2, and a Berry phase of 2 pi. These characteristics are usually determined from quantum Hall effect (QHE) measurements in which the Berry phase causes shifts in Shubnikov-de Haas (SdH) resistance oscillations. The QHE in graphene also exhibits an unconventional sequence of plateaux of Hall conductivity, sigma(xy), with quantized steps of 4e(2)/h, except for the first plateau, where it is governed by the Berry phase. Here, we report magnetotransport measurements in ABC-stacked trilayer graphene, and their variation with carrier density, magnetic field and temperature. Our results provide the first evidence of the presence of l = 3 chiral quasiparticles with cubic dispersion, predicted to occur in ABC-stacked trilayer graphene(4-12). The SdH oscillations we observe suggest Landau levels with four-fold degeneracy, a Berry phase of 3 pi, and the marked increase of cyclotron mass near charge neutrality. We also observe the predicted unconventional sequence of QHE plateaux, sigma(xy) = +/- 6e(2)/h, +/- 10e(2)/h, and so on. C1 [Zhang, Liyuan; Camacho, Jorge; Khodas, Maxim; Zaliznyak, Igor] Brookhaven Natl Lab, CMP & MS Dept, Upton, NY 11973 USA. [Zhang, Liyuan] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Zhang, Liyuan; Zhang, Yan] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Khodas, Maxim] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Zaliznyak, I (reprint author), Brookhaven Natl Lab, CMP & MS Dept, Upton, NY 11973 USA. EM zaliznyak@bnl.gov RI 石, 源/D-5929-2012; ruc, phy/E-4170-2012; Zaliznyak, Igor/E-8532-2014; Zhang, Liyuan/L-8616-2016 OI Zaliznyak, Igor/0000-0002-9886-3255; Zhang, Liyuan/0000-0001-7968-3294 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US DOE [DE-AC02-98CH10886]; NSF [DMR-0705131, DMR-0084173]; State of Florida FX We acknowledge discussions with E. Mendez, T. Valla, A. Tsvelik, and D. Kharzeev. Work at BNL was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US DOE, under Contract DE-AC02-98CH10886 Y.Z. acknowledges financial support from NSF contract DMR-0705131. Magnetic field experiments were carried out at NHMFL, which is supported by the NSF through DMR-0084173 and by the State of Florida. NR 30 TC 85 Z9 86 U1 4 U2 62 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD DEC PY 2011 VL 7 IS 12 BP 953 EP 957 DI 10.1038/NPHYS2104 PG 5 WC Physics, Multidisciplinary SC Physics GA 863RU UT WOS:000298186100018 ER PT J AU Chadwick, MB Herman, M Oblozinsky, P Dunn, ME Danon, Y Kahler, AC Smith, DL Pritychenko, B Arbanas, G Arcilla, R Brewer, R Brown, DA Capote, R Carlson, AD Cho, YS Derrien, H Guber, K Hale, GM Hoblit, S Holloway, S Johnson, TD Kawano, T Kiedrowski, BC Kim, H Kunieda, S Larson, NM Leal, L Lestone, JP Little, RC McCutchan, EA MacFarlane, RE MacInnes, M Mattoon, CM McKnight, RD Mughabghab, SF Nobre, GPA Palmiotti, G Palumbo, A Pigni, MT Pronyaev, VG Sayer, RO Sonzogni, AA Summers, NC Talou, P Thompson, IJ Trkov, A Vogt, RL van der Marck, SC Wallner, A White, MC Wiarda, D Young, PC AF Chadwick, M. B. Herman, M. Oblozinsky, P. Dunn, M. E. Danon, Y. Kahler, A. C. Smith, D. L. Pritychenko, B. Arbanas, G. Arcilla, R. Brewer, R. Brown, D. A. Capote, R. Carlson, A. D. Cho, Y. S. Derrien, H. Guber, K. Hale, G. M. Hoblit, S. Holloway, S. Johnson, T. D. Kawano, T. Kiedrowski, B. C. Kim, H. Kunieda, S. Larson, N. M. Leal, L. Lestone, J. P. Little, R. C. McCutchan, E. A. MacFarlane, R. E. MacInnes, M. Mattoon, C. M. McKnight, R. D. Mughabghab, S. F. Nobre, G. P. A. Palmiotti, G. Palumbo, A. Pigni, M. T. Pronyaev, V. G. Sayer, R. O. Sonzogni, A. A. Summers, N. C. Talou, P. Thompson, I. J. Trkov, A. Vogt, R. L. van der Marck, S. C. Wallner, A. White, M. C. Wiarda, D. Young, P. C. TI ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data SO NUCLEAR DATA SHEETS LA English DT Article ID NEUTRON-INDUCED-FISSION; RESONANCE PARAMETER ANALYSIS; STRUCTURE DATA FILE; ENERGY-RANGE; DATA LIBRARY; SPECTRUM N+PU-239; THERMAL-NEUTRONS; MONTE-CARLO; CAPTURE; PU-242 AB The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He; Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl; K; Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides U-235,U-238 and Pu-239 at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es; Fm; and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on Pu-239; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range of MCNP simulations of criticality benchmarks, with improved performance coming from new structural material evaluations, especially for Ti, Mn, Cr, Zr and W. For Be we see some improvements although the fast assembly data appear to be mutually inconsistent. Actinide cross section updates are also assessed through comparisons of fission and capture reaction rate measurements in critical assemblies and fast reactors, and improvements are evident. Maxwellian-averaged capture cross sections at 30 keV are also provided for astrophysics applications. We describe the cross section evaluations that have been updated for ENDF/B-VII.1 and the measured data and calculations that motivated the changes, and therefore this paper augments the ENDF/B-VII.0 publication [H. C1 [Chadwick, M. B.; Kahler, A. C.; Brewer, R.; Hale, G. M.; Holloway, S.; Kawano, T.; Kiedrowski, B. C.; Kunieda, S.; Lestone, J. P.; Little, R. C.; MacFarlane, R. E.; MacInnes, M.; Talou, P.; White, M. C.; Young, P. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Herman, M.; Oblozinsky, P.; Pritychenko, B.; Arcilla, R.; Brown, D. A.; Hoblit, S.; Johnson, T. D.; McCutchan, E. A.; Mughabghab, S. F.; Nobre, G. P. A.; Palumbo, A.; Sonzogni, A. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dunn, M. E.; Arbanas, G.; Derrien, H.; Guber, K.; Larson, N. M.; Leal, L.; Pigni, M. T.; Sayer, R. O.; Wiarda, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Danon, Y.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Smith, D. L.; McKnight, R. D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Brown, D. A.; Mattoon, C. M.; Summers, N. C.; Thompson, I. J.; Vogt, R. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Capote, R.] IAEA, A-1400 Vienna, Austria. [Carlson, A. D.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Pronyaev, V. G.] Inst Phys & Power Engn, Obninsk, Russia. [Trkov, A.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [van der Marck, S. C.] Nucl Res & Consultancy Grp, NL-1755 ZG Petten, Netherlands. [Wallner, A.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Cho, Y. S.; Kim, H.] Korea Atom Energy Res Inst, Taejon, South Korea. [Palmiotti, G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Kunieda, S.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. RP Chadwick, MB (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mbchadwick@lanl.gov RI Wallner, Anton/G-1480-2011; Capote Noy, Roberto/M-1245-2014; OI Wallner, Anton/0000-0003-2804-3670; Capote Noy, Roberto/0000-0002-1799-3438; White, Morgan/0000-0003-3876-421X FU National Nuclear Security Agency of the U.S. Department of Energy [DE-AC52-06NA25396]; Office of Nuclear Physics, Office of Science of the U.S. Department of Energy [DE-AC02-98CH10886]; Brookhaven Science Associates, LLC; Oak Ridge National Laboratory [DE-AC05-00OR22725]; U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-05ID14517]; [DE-AC52-07NA27344] FX Work at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Agency of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. Work at Brookhaven National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. Work at Lawrence Livermore National Laboratory was performed under Contract DE-AC52-07NA27344 and Oak Ridge National Laboratory under contract DE-AC05-00OR22725. Work supported at INL by the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 293 TC 630 Z9 642 U1 9 U2 84 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD DEC PY 2011 VL 112 IS 12 SI SI BP 2887 EP 2996 DI 10.1016/j.nds.2011.11.002 PG 110 WC Physics, Nuclear SC Physics GA 862DP UT WOS:000298070300002 ER PT J AU Kahler, AC MacFarlane, RE Mosteller, RD Kiedrowski, BC Frankle, SC Chadwick, MB McKnight, RD Lell, RM Palmiotti, G Hiruta, H Herman, M Arcilla, R Mughabghab, SF Sublet, JC Trkov, A Trumbull, TH Dunn, M AF Kahler, A. C. MacFarlane, R. E. Mosteller, R. D. Kiedrowski, B. C. Frankle, S. C. Chadwick, M. B. McKnight, R. D. Lell, R. M. Palmiotti, G. Hiruta, H. Herman, M. Arcilla, R. Mughabghab, S. F. Sublet, J. C. Trkov, A. Trumbull, T. H. Dunn, M. TI ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments SO NUCLEAR DATA SHEETS LA English DT Article ID VALIDATION; SPHERE AB The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unrnoderated and uranium reflected (235)U and (239)Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as (236)U; (238,242)Pu and (241,243)Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues and a decreasing trend in calculated eigenvalue for (233)U fueled systems as a function of Above-Thermal Fission Fraction remain. The comprehensive nature of this critical benchmark suite and the generally accurate calculated eigenvalues obtained with ENDF/B-VII.1 neutron cross sections support the conclusion that this is the most accurate general purpose ENDF/B cross section library yet released to the technical community. C1 [Kahler, A. C.; MacFarlane, R. E.; Mosteller, R. D.; Kiedrowski, B. C.; Frankle, S. C.; Chadwick, M. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McKnight, R. D.; Lell, R. M.] Argonne Natl Lab, Argonne, IL 60349 USA. [Palmiotti, G.; Hiruta, H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Herman, M.; Arcilla, R.; Mughabghab, S. F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sublet, J. C.] Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England. [Trkov, A.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Trumbull, T. H.] Knolls Atom Power Lab, Schenectady, NY 12309 USA. [Dunn, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kahler, AC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM akahler@lanl.gov FU U. S. Department of Energy (DOE) [DE-AC52-06NA25396,]; DOE [W-31-109-ENG-38, DE-AC02-98H10886, DE-AC07-05ID14517, DE-AC05-00OR22725]; RCUK [EP/I501045] FX Work at Los Alamos National Laboratory was supported by U. S. Department of Energy (DOE) contract DE-AC52-06NA25396, at Argonne National Laboratory under DOE contract W-31-109-ENG-38, at Brookhaven National Laboratory under DOE contract DE-AC02-98H10886, at Idaho National Laboratory under DOE contract DE-AC07-05ID14517, at Oak Ridge National Laboratory under DOE contract DE-AC05-00OR22725 and at the Culham Centre for Fusion Energy under RCUK Energy Programme grant EP/I501045. NR 23 TC 23 Z9 25 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD DEC PY 2011 VL 112 IS 12 SI SI BP 2997 EP 3036 DI 10.1016/j.nds.2011.11.003 PG 40 WC Physics, Nuclear SC Physics GA 862DP UT WOS:000298070300003 ER PT J AU Smith, DL AF Smith, Donald L. TI Evaluated Nuclear Data Covariances: The Journey From ENDF/B-VII.0 to ENDF/B-VII.1 SO NUCLEAR DATA SHEETS LA English DT Article AB Recent interest from data users on applications that utilize the uncertainties of evaluated nuclear reaction data has stimulated the data evaluation community to focus on producing covariance data to a far greater extent than ever before. Although some uncertainty information has been available in the ENDF/B libraries since the 1970's, this content has been fairly limited in scope, the quality quite variable, and the use of covariance data confined to only a few application areas. Today, covariance data are more widely and extensively utilized than ever before in neutron dosirnetry, in advanced fission reactor design studies, in nuclear criticality safety assessments, in national security applications, and even in certain fusion energy applications. The main problem that now faces the ENDF/B evaluator community is that of providing covariances that are adequate both in quantity and quality to meet the requirements of contemporary nuclear data users in a timely manner. In broad terms, the approach pursued during the past several years has been to purge any legacy covariance information contained in ENDF/B-VI.8 that was judged to be subpar, to include in ENDF/B-VII.0 (released in 2006) only those covariance data deemed then to be of reasonable quality for contemporary applications, and to subsequently devote as much effort as the available time and resources allowed to producing additional covariance data of suitable scope and quality for inclusion in ENDF/B-VII.1. Considerable attention has also been devoted during the five years since the release of ENDF/B-VII.0 to examining and improving the methods used to produce covariance data from thermal energies up to the highest energies addressed in the ENDF/B library, to processing these data in a robust fashion so that they can be utilized readily in contemporary nuclear applications, and to developing convenient covariance data visualization capabilities. Other papers included in this issue discuss in considerable detail various aspects of the data producer community's efforts to improve the evaluation methods and to add covariance content to the ENDF/B library. The present paper offers just a brief glimpse of these activities by drawing material from covariance papers presented at meetings, workshops and international conferences during the past five years. Highlighted are: advances in methods for producing and processing covariance data, recently developed covariance visualization capabilities, and the development and implementation of quality assurance (QA) requirements that should be satisfied for covariance data to be included in ENDF/B-VII.1. C1 Argonne Natl Lab, Coronado, CA 92118 USA. RP Smith, DL (reprint author), Argonne Natl Lab, 1710 Ave Mundo 1506, Coronado, CA 92118 USA. EM Donald.L.Smith@anl.gov FU Argonne National Laboratory FX The author is indebted to Argonne National Laboratory for providing the encouragement and support that were essential for the preparation of this paper. Fruitful discussions between the author and Mark Chadwick, Pavel Oblozinsky, Michal Herman, Allan Carlson, Richard McKnight, Douglas Muir, and Roberto Capote are also gratefully acknowledged. NR 40 TC 10 Z9 10 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD DEC PY 2011 VL 112 IS 12 SI SI BP 3037 EP 3053 DI 10.1016/j.nds.2011.11.004 PG 17 WC Physics, Nuclear SC Physics GA 862DP UT WOS:000298070300004 ER PT J AU Talou, P Young, PG Kawano, T Rising, M Chadwick, MB AF Talou, P. Young, P. G. Kawano, T. Rising, M. Chadwick, M. B. TI Quantification of Uncertainties for Evaluated Neutron-Induced Reactions on Actinides in the Fast Energy Range SO NUCLEAR DATA SHEETS LA English DT Article ID FUTURE NUCLEAR SYSTEMS; CROSS-SECTION; SPONTANEOUS FISSION; CAPTURE; DEPENDENCE; SIMULATION; LIBRARY; AM-241; PU-239 AB Covariance matrix evaluations in the fast energy range were performed for a large number of actinides, either using low-fidelity techniques or more sophisticated methods that rely on both experimental data as well as model calculations. The latter covariance evaluations included in the ENDF/B-VII.1 library are discussed for each actinide separately. C1 [Talou, P.; Young, P. G.; Kawano, T.] Los Alamos Natl Lab, Div Theoret, Nucl Phys Grp, Los Alamos, NM 87545 USA. [Rising, M.] Univ New Mexico, Dept Nucl Engn, Albuquerque, NM 87131 USA. [Chadwick, M. B.] Los Alamos Natl Lab, X CP, Los Alamos, NM 87545 USA. RP Talou, P (reprint author), Los Alamos Natl Lab, Div Theoret, Nucl Phys Grp, T-2, Los Alamos, NM 87545 USA. EM talou@lanl.gov NR 51 TC 16 Z9 16 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD DEC PY 2011 VL 112 IS 12 SI SI BP 3054 EP 3074 DI 10.1016/j.nds.2011.11.005 PG 21 WC Physics, Nuclear SC Physics GA 862DP UT WOS:000298070300005 ER PT J AU Hoblit, S Cho, YS Herman, M Mattoon, CM Mughabghab, SF Oblozinsky, P Pigni, MT Sonzogni, AA AF Hoblit, S. Cho, Y. -S. Herman, M. Mattoon, C. M. Mughabghab, S. F. Oblozinsky, P. Pigni, M. T. Sonzogni, A. A. TI Neutron Cross Section Covariances for Structural Materials and Fission Products SO NUCLEAR DATA SHEETS LA English DT Article ID LIBRARY; EMPIRE; CODE AB We describe neutron cross section covariances for 78 structural materials and fission products produced for the new US evaluated nuclear reaction library ENDF/B-V11.1. Neutron incident energies cover full range from 10(-5) eV to 20 MeV and covariances are primarily provided for capture, elastic and inelastic scattering as well as (n,2n). The list of materials follows priorities defined by the Advanced Fuel Cycle Initiative, the major application being data adjustment for advanced fast reactor systems. Thus, in addition to 28 structural materials and 49 fission products, the list includes also (23)Na which is important fast reactor coolant. Due to extensive amount of materials, we adopted a variety of methodologies depending on the priority of a specific material. In the resolved resonance region we primarily used resonance parameter uncertainties given in Atlas of Neutron Resonances and either applied the kernel approximation to propagate these uncertainties into cross section uncertainties or resorted to simplified estimates based on integral quantities. For several priority materials we adopted MF32 covariances produced by SAMMY at ORNL, modified by us by adding MF33 covariances to account for systematic uncertainties. In the fast neutron region we resorted to three methods. The most sophisticated was EMPIRE-KALMAN method which combines experimental data from EXFOR library with nuclear reaction modeling and least-squares fitting. The two other methods used simplified estimates, either based on the propagation of nuclear reaction model parameter uncertainties or on a dispersion analysis of central cross section values in recent evaluated data files. All covariances were subject to quality assurance procedures adopted recently by CSEWG. In addition, tools were developed to allow inspection of processed covariances and computed integral quantities, and for comparing these values to data from the Atlas and the astrophysics database KADoNiS. C1 [Hoblit, S.; Cho, Y. -S.; Herman, M.; Mattoon, C. M.; Mughabghab, S. F.; Oblozinsky, P.; Pigni, M. T.; Sonzogni, A. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Hoblit, S (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. EM hoblit@bnl.gov FU United States DOE Nuclear Criticality Safety and Advanced Fuel Cycle Initiative; Office of Nuclear Physics, Office of Science, U.S. Department of Energy [DE-AC02-98CH10886]; Brookhaven Science Associates FX We are grateful to numerous colleagues for useful discussions and criticism. The authors appreciate the valuable assistance of Ramon Arcilla in covariance processing with the code NJOY. We also are grateful to Boris Pritychenko for his efforts with the EXFOR module of the quality assurance system and to Gustavo Nobre , Annalia Palumbo, and David Brown for their careful work in checking the covariance libraries. We wish to thank ANL and INL reactor analysts led by M. Salvatores and G. Palmiotti for most useful feedback. We acknowledge support provided by the United States DOE Nuclear Criticality Safety and Advanced Fuel Cycle Initiative programs. This work was sponsored by the Office of Nuclear Physics, Office of Science, U.S. Department of Energy under contract No. DE-AC02-98CH10886 with Brookhaven Science Associates. NR 34 TC 3 Z9 3 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD DEC PY 2011 VL 112 IS 12 SI SI BP 3075 EP 3097 DI 10.1016/j.nds.2011.11.006 PG 23 WC Physics, Nuclear SC Physics GA 862DP UT WOS:000298070300006 ER PT J AU Trkov, A Capote, R Soukhovitskii, ES Leal, LC Sin, M Kodeli, I Muir, DW AF Trkov, A. Capote, R. Soukhovitskii, E. Sh Leal, L. C. Sin, M. Kodeli, I. Muir, D. W. TI Covariances of Evaluated Nuclear Cross Section Data for Th-232, W-180,W-182,W-183,W-184,W-186 and Mn-55 SO NUCLEAR DATA SHEETS LA English DT Article ID UNIFIED MONTE-CARLO; CODE SYSTEM; RESONANCE REGION; NEUTRON; TUNGSTEN; UNCERTAINTY; LIBRARY; EMPIRE AB The EMPIRE code system is a versatile package for nuclear model calculations that is often used for nuclear data evaluation. Its capabilities include random sampling of model parameters, which can be utilised to generate a full covariance matrix of all scattering cross sections, including cross-reaction correlations. The EMPIRE system was used to prepare the prior covariance matrices of reaction cross sections of Th-232, W-180,W-182,W-183,W-184,W-186 and Mn-55 nuclei for incident neutron energies up to 60 MeV. The obtained modelling prior was fed to the GANDR system, which is a package for a global assessment of nuclear data, based on the Generalised Least-Squares method. By introducing experimental data from the EXFOR database into GANDR, the constrained covariance matrices and cross section adjustment functions were obtained. Applying the correction functions on the cross sections and formatting the covariance matrices, the final evaluations in ENDF-6 format including covariances were derived. In the resonance energy range, separate analyses were performed to determine the resonance parameters with their respective covariances. The data files thus obtained were then subjected to detailed testing and validation. Described evaluations with covariances of Th-232, W-180,W-182,W-183,W-184,W-186 and Mn-55 nuclei are included into the ENDF/B-VII.1 library release. C1 [Capote, R.] IAEA, NAPC Nucl Data Sect, A-1400 Vienna, Austria. [Trkov, A.; Kodeli, I.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Soukhovitskii, E. Sh] Joint Inst Power & Nucl Res Sosny, BY-220109 Minsk, Byelarus. [Leal, L. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sin, M.] Univ Bucharest, Dept Nucl Phys, Bucharest 077125, Romania. [Muir, D. W.] Argonne Natl Lab, Jacksonville, FL 32256 USA. RP Capote, R (reprint author), IAEA, NAPC Nucl Data Sect, POB 100, A-1400 Vienna, Austria. EM r.capotenoy@iaea.org RI Capote Noy, Roberto/M-1245-2014 OI Capote Noy, Roberto/0000-0002-1799-3438 FU IAEA CRP; IAEA; EFDA [TW6-TTMN-001B task D7b]; Slovenian Research Agency (Reactor Physics Programme Group) FX The work was supported by the IAEA CRP on "Evaluated Nuclear Data Files for the Th-U Fuel Cycle", the IAEA Data Development Project on the "Maintenance and Upgrading of the International Reactor Dosimetry library (IRDF)", the EFDA (Project TW6-TTMN-001B task D7b), and by the Slovenian Research Agency (Reactor Physics Programme Group). NR 58 TC 11 Z9 11 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD DEC PY 2011 VL 112 IS 12 SI SI BP 3098 EP 3119 DI 10.1016/j.nds.2011.11.007 PG 22 WC Physics, Nuclear SC Physics GA 862DP UT WOS:000298070300007 ER PT J AU Lestone, JP AF Lestone, J. P. TI Energy Dependence of Plutonium Fission-Product Yields SO NUCLEAR DATA SHEETS LA English DT Article ID NEUTRON-INDUCED FISSION; THERMAL-NEUTRONS; PU-239; FRAGMENTS; U-238; SPECTRUM; MASS AB A method is developed for interpolating between and/or extrapolating from two pre-neutron-emission first-chance mass-asymmetric fission-product yield curves. Measured (240)Pu spontaneous fission and thermal-neutron-induced fission of (239)Pu fission-product yields (FPY) are extrapolated to give predictions for the energy dependence of the n + (239)Pu FPY for incident neutron energies from 0 to 16 MeV. After the inclusion of corrections associated with mass-symmetric fission, prompt-neutron emission, and multi-chance fission, model calculated FPY are compared to data and the ENDF/B-VII.1 evaluation. The ability of the model to reproduce the energy dependence of the ENDF/B-VII.1 evaluation suggests that plutonium fission mass distributions are not locked in near the fission barrier region, but are instead determined by the temperature and nuclear potential-energy surface at larger deformation. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lestone, JP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lestone@lanl.gov NR 30 TC 14 Z9 14 U1 2 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD DEC PY 2011 VL 112 IS 12 SI SI BP 3120 EP 3134 DI 10.1016/j.nds.2011.11.008 PG 15 WC Physics, Nuclear SC Physics GA 862DP UT WOS:000298070300008 ER PT J AU Mac Innes, M Chadwick, MB Kawano, T AF Mac Innes, M. Chadwick, M. B. Kawano, T. TI Fission Product Yields for 14 MeV Neutrons on U-235, U-238 and Pu-239 SO NUCLEAR DATA SHEETS LA English DT Article ID THERMAL-NEUTRONS; STANDARDIZATION; SPECTRUM AB We report cumulative fission product yields (FPY) measured at Los Alamos for 14 MeV neutrons on U-235, U-238 and Pu-239. The results are from historical measurements made in the 1950s-1970s, not previously available in the peer reviewed literature, although an early version of the data was reported in the Ford and Norris review. The results are compared with other measurements and with the ENDF/B-VI England and Rider evaluation. Compared to the Laurec (CEA) data and to ENDF/B-VI evaluation, good agreement is seen for U-235 and U-238, but our FPYs are generally higher for (PU)-P-239. The reason for the higher plutonium FPYs compared to earlier Los Alamos assessments reported by Ford and Norris is that we update the measured values to use modern nuclear data, and in particular the 14 MeV Pu-239 fission cross section is now known to be 15-20% lower than the value assumed in the 1950s, and therefore our assessed number of fissions in the plutonium sample is correspondingly lower. Our results are in excellent agreement with absolute FPY measurements by Nethaway (1971), although Nethaway later renormalized his data down by 9% having hypothesized that he had a normalization error. The new ENDF/B-VII.1 14 MeV FPY evaluation is in good agreement with our data. C1 [Mac Innes, M.; Chadwick, M. B.; Kawano, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mac Innes, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM macinnes@lanl.gov NR 22 TC 13 Z9 13 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD DEC PY 2011 VL 112 IS 12 SI SI BP 3135 EP 3152 DI 10.1016/j.nds.2011.11.009 PG 18 WC Physics, Nuclear SC Physics GA 862DP UT WOS:000298070300009 ER PT J AU Geelhood, K AF Geelhood, Kenneth TI RECENT UPDATES TO NRC FUEL PERFORMANCE CODES AND PLANS FOR FUTURE IMPROVEMENTS SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE FRAPCON; FRAPTRAN; Fuel Performance; Fission Gas Release; Loss-of-coolant Accident; Reactivity Initiated Accident AB FRAPCON-3.4a and FRAPTRAN 1.4 are the most recent versions of the U.S. Nuclear Regulatory Commission (NRC) steady-state and transient fuel performance codes, respectively. These codes have been assessed against separate effects data and integral assessment data and have been determined to provide a best estimate calculation of fuel performance. Recent updates included in FRAPCON-3.4a include updated material properties models, models for new fuel and cladding types, cladding finite element analysis capability, and capability to perform uncertainty analyses and calculate upper tolerance limits for important outputs. Recent updates included in FRAPTRAN 1.4 include: material properties models that are consistent with FRAPCON-3.4a, cladding failure models that are applicable for loss-of coolant-accident and reactivity initiated accident modeling, and updated heat transfer models. This paper briefly describes these code updates and data assessments, highlighting the particularly important improvements and data assessments. This paper also discusses areas of improvements that will be addressed in upcoming code versions. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Geelhood, K (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM kenneth.geelhood@pnnl.gov FU U.S. NRC [JCN V6197]; U.S. Department of Energy [DE-AC05-76RL01830] FX PNNL develops and maintains the fuel performance codes, FRAPCON-3 and FRAPTRAN for the U.S. NRC under contract JCN V6197.; Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830. NR 23 TC 4 Z9 4 U1 1 U2 6 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD DEC PY 2011 VL 43 IS 6 BP 509 EP 522 DI 10.5516/NET.2011.43.6.509 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 873PV UT WOS:000298896200004 ER PT J AU Wise, C Bergeson, G Fielding, K AF Wise, Craig Bergeson, Gary Fielding, Kurt TI US veteran gets a facelift SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 [Wise, Craig; Bergeson, Gary; Fielding, Kurt] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wise, C (reprint author), Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD DEC PY 2011 VL 56 IS 689 BP 32 EP 34 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 869DM UT WOS:000298575900016 ER PT J AU Kritz, AH Rafiq, T Kessel, C Bateman, G McCune, DC Budny, RV Pankin, AY AF Kritz, A. H. Rafiq, T. Kessel, C. Bateman, G. McCune, D. C. Budny, R. V. Pankin, A. Y. TI Integrated modelling for prediction of optimized ITER performance SO NUCLEAR FUSION LA English DT Article ID TOKAMAK PLASMAS; TRANSPORT; SIMULATIONS; PEDESTAL; COLLISIONALITY; TEMPERATURE; EDGE AB ITER hybrid and target steady-state fusion burn scenarios are simulated using the PTRANSP integrated modelling code together with input from the TSC code. In the hybrid scenarios, the majority of the current is driven inductively; whereas, for the target steady-state scenarios, approximately 22% of the current (at 1000 s) is driven inductively with the remaining current driven by the bootstrap, neutral beam and radio frequency sources. Predictive simulations are carried out using either the new Multi-Mode or the GLF23 anomalous transport model. Momentum transport is used to compute the toroidal angular frequency profile which, in turn, is used to compute the self-consistent flow shear suppression of anomalous transport. The simulations of the hybrid scenario indicate that the fusion power production at 1000 s will be approximately 500 MW corresponding to a fusion Q = 9.4. The fusion power predicted in the simulations of the target steady-state scenarios is found to depend on the time dependence of the input heating and associated current drive. It is found that turning off some components of auxiliary heating causes the fusion power production to increase. The fusion power obtained in the target steady-state scenarios, depending on the transport model and input injected power, ranges from 168 MW up to 226 MW, corresponding to a fusion Q ranging from 2.0 to 6.8. C1 [Kritz, A. H.; Rafiq, T.; Bateman, G.; Pankin, A. Y.] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Kessel, C.; McCune, D. C.; Budny, R. V.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kritz, AH (reprint author), Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA. EM kritz@lehigh.edu FU US Department of Energy [DE-FG02-92-ER-54141]; ITER [C19TD30FU, C19TD38FU] FX This work was supported by US Department of Energy under contract no. DE-FG02-92-ER-54141 and by ITER under task agreements C19TD30FU and C19TD38FU. The views and opinions expressed herein do not necessarily reflect those of the ITER Organisation. NR 37 TC 13 Z9 13 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2011 VL 51 IS 12 AR 123009 DI 10.1088/0029-5515/51/12/123009 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 865YK UT WOS:000298346600010 ER PT J AU Tala, T Salmi, A Angioni, C Casson, FJ Corrigan, G Ferreira, J Giroud, C Mantica, P Naulin, V Peeters, AG Solomon, WM Strintzi, D Tsalas, M Versloot, TW de Vries, PC Zastrow, KD AF Tala, T. Salmi, A. Angioni, C. Casson, F. J. Corrigan, G. Ferreira, J. Giroud, C. Mantica, P. Naulin, V. Peeters, A. G. Solomon, W. M. Strintzi, D. Tsalas, M. Versloot, T. W. de Vries, P. C. Zastrow, K. -D. CA JET-EFDA Contributors TI Parametric dependences of momentum pinch and Prandtl number in JET SO NUCLEAR FUSION LA English DT Article ID DENSITY PEAKING; H-MODES; TRANSPORT; TURBULENCE; ROTATION; SHEAR; TOKAMAKS; PLASMAS; PROFILE; COLLISIONALITY AB Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density gradient length, with an experimental scaling for the pinch number being - Rv(pinch)/chi(phi) = 1.2R/L-n + 1.4. There is no dependence of the pinch number on collisionality, whereas the pinch seems to depend weakly on q-profile, the pinch number decreasing with increasing q. The Prandtl number was not found to depend either on R/L-n, collisionality or on q. The gyro-kinetic simulations show qualitatively similar dependence of the pinch number on R/L-n, but the dependence is weaker in the simulations. Gyro-kinetic simulations do not find any clear parametric dependence in the Prandtl number, in agreement with experiments, but the experimental values are larger than the simulated ones, in particular in L-mode plasmas. The extrapolation of these results to ITER illustrates that at large enough R/L-n > 2 the pinch number becomes large enough (>3-4) to make the rotation profile peaked, provided that the edge rotation is non-zero. And this rotation peaking can be achieved with small or even with no core torque source. The absolute value of the core rotation is still very challenging to predict partly due to the lack of the present knowledge of the rotation at the plasma edge, partly due to insufficient understanding of 3D effects like braking and partly due to the uncertainties in the extrapolation of the present momentum transport results to a larger device. C1 [Tala, T.] Assoc EURATOM Tekes, VTT, FIN-02044 Espoo, Finland. [JET-EFDA Contributors] Culham Sci Ctr, JET EFDA, Abingdon OX14 3DB, Oxon, England. [Salmi, A.] Aalto Univ, Assoc EURATOM Tekes, Dept Appl Phys, Helsinki, Finland. [Angioni, C.; Casson, F. J.] EURATOM Assoziat, Max Planck Iinst Plasmaphys, Garching, Germany. [Corrigan, G.; Giroud, C.; Zastrow, K. -D.] EURATOM CCFE Fusion Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Ferreira, J.] Assoc EURATOM IST, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal. [Mantica, P.] Ist Fis Plasma CNR EURATOM, I-20125 Milan, Italy. [Peeters, A. G.; Strintzi, D.] Univ Bayreuth, Dept Phys, D-95440 Bayreuth, Germany. [Solomon, W. M.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Tsalas, M.; Versloot, T. W.; de Vries, P. C.] EURATOM, FOM Inst Rijnhuizen, Nieuwegein, Netherlands. RP Tala, T (reprint author), Assoc EURATOM Tekes, VTT, POB 1000, FIN-02044 Espoo, Finland. EM tuomas.tala@vtt.fi RI Peeters, Arthur/A-1281-2009; Naulin , Volker/A-2419-2012; Mantica, Paola/K-3033-2012; Salmi, Antti/I-7413-2013; OI Naulin , Volker/0000-0001-5452-9215; Ferreira, Jorge/0000-0001-5015-7207; Solomon, Wayne/0000-0002-0902-9876 FU EURATOM FX This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 70 TC 19 Z9 19 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2011 VL 51 IS 12 AR 123002 DI 10.1088/0029-5515/51/12/123002 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 865YK UT WOS:000298346600003 ER PT J AU Turnbull, AD Cooper, WA Lao, LL Ku, LP AF Turnbull, A. D. Cooper, W. A. Lao, L. L. Ku, Long-Poe TI Ideal MHD spectrum calculations for the ARIES-CS configuration SO NUCLEAR FUSION LA English DT Article ID DIII-D TOKAMAK; QUASI-AXISYMMETRICAL STELLARATOR; REVERSED MAGNETIC SHEAR; EDGE LOCALIZED MODES; MAGNETOHYDRODYNAMIC STABILITY; PHYSICS DESIGN; D DISCHARGES; BETA; CONFINEMENT; PLASMAS AB Ideal MHD stability calculations for the ARIES compact stellarator (ARIES-CS) reactor design (Najmabadi et al 2008 Fusion Sci. Technol. 54 655) show a spectrum of instabilities. The ARIES design considered is a three field-period stellarator with engineering coil constraints optimized for magnetic well and alpha particle confinement. The reference design has high beta similar to 5%. The study is restricted to ideal modes and the calculations assume nested flux surfaces, with a limited plasma boundary surrounded by a vacuum. At beta = 4%, with a conformal wall at twice the minor plasma radius, the equilibrium is slightly unstable to a periodicity-preserving, predominantly m/n = 9/6 mode peaked at the edge and a periodicity-breaking global m/n = 3/2 mode. At beta similar to 5%, these modes are destabilized but the growth rates are still moderate. At higher beta, above the design value, several modes become unstable. Stabilization by a close fitting conducting wall is ineffective at beta = 5% and below but becomes more effective at stabilizing external modes at higher beta. The equilibrium at beta similar to 6% can be stabilized by a conformal wall at 1.1 times the minor plasma radius, although very weakly unstable internal modes remain at beta > 6% with a wall on the plasma boundary. The sensitivity to the presence of the rational rotational transform iota = 2/3 surface at the edge of the plasma was also investigated. Generally, either the m/n = 3/2 mode is further destabilized or other modes are introduced. The stability calculations numerically impose a broadening of the singular perturbed current to eliminate spurious singularities. The effect of this is considered in detail and it is suggested that this numerical resonance detuning can model a physical broadening from non-ideal effects. Although the reference design with beta similar to 5% is above the strict ideal beta limit, common experience in tokamaks indicates that weakly unstable internal modes and edge-localized modes result in relatively benign MHD activity. This is consistent with observations in large stellarator experiments that indicate some level of instability is tolerated and the results are discussed in this context and in relation to the numerical broadening of the singular perturbed currents. C1 [Turnbull, A. D.; Lao, L. L.] Gen Atom Co, San Diego, CA 92186 USA. [Cooper, W. A.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland. [Ku, Long-Poe] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Turnbull, AD (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM turnbull@fusion.gat.com FU US Department of Energy [DE-FC02-04ER54698, DE-AC02-09CH11466] FX This work was supported by the US Department of Energy under Cooperative Agreement No DE-FC02-04ER54698 and DE-AC02-09CH11466. NR 68 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2011 VL 51 IS 12 AR 123011 DI 10.1088/0029-5515/51/12/123011 PG 25 WC Physics, Fluids & Plasmas SC Physics GA 865YK UT WOS:000298346600012 ER PT J AU Usov, IO Devlin, DJ Won, J Kossoy, A Valdez, JA Wang, YQ Sickafus, KE AF Usov, I. O. Devlin, D. J. Won, J. Kossoy, A. Valdez, J. A. Wang, Y. Q. Sickafus, K. E. TI Medium energy ion irradiation capability for studies of radiation damage effects over a wide temperature range SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Dispersion nuclear fuel; High temperature ion irradiation; Intermixing AB In this report, we present preliminary ion irradiation experiments performed using a new medium energy (up to similar to 20 MeV), high temperature ion irradiation capability that we developed at Los Alamos National Laboratory. Details of ion fluence and irradiation temperature (including ion beam heating) control, measurements procedure and accuracy are described. In particular, we investigated irradiation-induced atomic intermixing in a layered structure composed of MgO and HfO(2) thin films deposited on a sapphire substrate. This multi-layered structure represents a dispersion nuclear fuel form surrogate. To simulate a nuclear reactor environment, we performed ion irradiation using 10 MeV Au ions to a fluence of 5 x 10(15) cm(-2) at a substrate temperature of 1000 degrees C. The degree of atomic intermixing was assessed from depth profiles of Mg, Hf, and Al atoms, which were obtained using Rutherford backscattering spectrometry. We found considerable interlayer mixing for sample regions in close proximity to the sapphire substrate. (C) 2011 Elsevier B.V. All rights reserved. C1 [Usov, I. O.; Devlin, D. J.; Won, J.; Kossoy, A.; Valdez, J. A.; Wang, Y. Q.; Sickafus, K. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Usov, IO (reprint author), Los Alamos Natl Lab, Mailstop E549, Los Alamos, NM 87545 USA. EM iusov@lanl.gov OI won, Jonghan/0000-0002-7612-1322 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; US Department of Energy Advanced Fuel Cycle Campaign and Fuel Cycle FX This work was sponsored by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and US Department of Energy Advanced Fuel Cycle Campaign and Fuel Cycle R&D Program. RBS analyses were performed in the Ion Beam Materials Laboratory (IBML) at LANL. TEM analyses were performed at the Electron Microscopy Laboratory (EML) at LANL. The authors would like to thank J. Tesmer and R. Greco from the IBML facility and R. Dickerson from EML for their technical assistance. NR 14 TC 4 Z9 4 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD DEC 1 PY 2011 VL 269 IS 23 BP 2734 EP 2739 DI 10.1016/j.nimb.2011.08.018 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 862EG UT WOS:000298072000008 ER PT J AU Liu, Y Baktash, C Beene, JR Havener, CC Krause, HF Schultz, DR Stracener, DW Vane, CR Geppert, C Kessler, T Wies, K Wendt, K AF Liu, Y. Baktash, C. Beene, J. R. Havener, C. C. Krause, H. F. Schultz, D. R. Stracener, D. W. Vane, C. R. Geppert, Ch. Kessler, T. Wies, K. Wendt, K. TI Time profiles of ions produced in a hot-cavity resonant ionization laser ion source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Laser ion source; Hot cavity; Time profile; Resonant ionization ID MASS SEPARATOR; GAS CELL; BEAMS; ISOTOPES; FACILITY; TRIUMF; NI; GE AB The time profiles of Cu, Sn, and Ni ions extracted from a hot-cavity resonant ionization laser ion source are investigated. The ions are produced in the ion source by three-photon resonant ionization with pulsed Ti:Sapphire lasers. Measurements show that the time spread of these ions generated within laser pulses of about 30 ns duration could be larger than 100 mu s when the ions are extracted from the ion source. A one-dimensional ion-transport model using the Monte Carlo method is developed to simulate the time dependence of the ion pulses. The prediction of the model agrees reasonably well with the experimental data. To reproduce the observed ion time profiles, we find it necessary to postulate that ion-wall collisions are suppressed inside the ion source by an undetermined ion confinement mechanism and that a substantial fraction of the extracted ions are generated in the vapor-transfer tube rather than the hot cavity. Three-dimensional modeling will be necessary to understand the strong reduction in losses expected from ion-wall collisions which we interpret as evidence for confinement. (C) 2011 Elsevier B.V. All rights reserved. C1 [Liu, Y.; Baktash, C.; Beene, J. R.; Havener, C. C.; Krause, H. F.; Schultz, D. R.; Stracener, D. W.; Vane, C. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Geppert, Ch.; Kessler, T.; Wies, K.; Wendt, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. RP Liu, Y (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM liuy@ornl.gov RI Wendt, Klaus/D-7306-2011 OI Wendt, Klaus/0000-0002-9033-9336 FU Office of Nuclear Physics; Office of Fusion Energy; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy; Deutsches Bundeministerium fur Bildung und Forschung [06MZ215] FX This work has been supported by the Office of Nuclear Physics, and in part by the Office of Fusion Energy and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy and the Deutsches Bundeministerium fur Bildung und Forschung under Grant 06MZ215. NR 24 TC 8 Z9 8 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD DEC 1 PY 2011 VL 269 IS 23 BP 2771 EP 2780 DI 10.1016/j.nimb.2011.08.009 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 862EG UT WOS:000298072000015 ER PT J AU Longhurst, GR Tsuchiya, K Dorn, CH Folkman, SL Fronk, TH Ishihara, M Kawamura, H Tranter, TN Rohe, R Uchida, M Vidal, E AF Longhurst, G. R. Tsuchiya, K. Dorn, C. H. Folkman, S. L. Fronk, T. H. Ishihara, M. Kawamura, H. Tranter, T. N. Rohe, R. Uchida, M. Vidal, E. TI MANAGING BERYLLIUM IN NUCLEAR FACILITY APPLICATIONS SO NUCLEAR TECHNOLOGY LA English DT Article DE beryllium; activation; disposal ID IRRADIATED BERYLLIUM; MECHANICAL-PROPERTIES AB Beryllium plays important roles in nuclear facilities. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. Its low atomic number and high chemical affinity for oxygen have led to its consideration as a plasma-facing material in fusion reactors. In both applications, the beryllium and the impurities in it become activated by neutrons, transmuting them to radionuclides, some of which are long-lived and difficult to dispose of Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant (60)Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient (14)C and (94)Nb to render the irradiated beryllium "Greater-Than-Class-C" for disposal in U.S. radioactive waste facilities. It was further found that there was sufficient uranium impurity in beryllium that had been used in,fission reactors up to that time that the irradiated beryllium had become transuranic in character, making it even more difficult to dispose of In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling. C1 [Longhurst, G. R.] So Utah Univ, Cedar City, UT USA. [Tsuchiya, K.; Ishihara, M.; Kawamura, H.] Japan Atom Energy Agcy, Oarai, Ibaraki, Japan. [Dorn, C. H.] Mater Brush Beryllium & Composites, Upland, CA USA. [Folkman, S. L.; Fronk, T. H.] Utah State Univ, Logan, UT 84322 USA. [Tranter, T. N.; Rohe, R.] Idaho Natl Lab, Idaho Falls, ID USA. [Uchida, M.] NGK Insulators Ltd, Handa, Aichi, Japan. [Vidal, E.] Mater Brush Beryllium & Composites, Elmore, OH USA. RP Longhurst, GR (reprint author), So Utah Univ, Cedar City, UT USA. EM glenlonghurst@suu.edu NR 41 TC 0 Z9 0 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2011 VL 176 IS 3 BP 430 EP 441 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 874RT UT WOS:000298976500008 ER PT J AU Balasubramanian, S Voropayev, SI Fernando, HJS AF Balasubramanian, S. Voropayev, S. I. Fernando, H. J. S. TI Heterogeneous sediment beds under weak oscillatory flow and turbulence: Ripples' transformation and decay SO OCEAN ENGINEERING LA English DT Article DE Sediment ripples; Grain sorting; Ripple decay; Heterogeneous sediment; Turbulence; Ripple diffusivity ID SAND RIPPLES; WAVES; MODEL; SCOUR; ZONE AB Laboratory experiments were conducted on the evolution of ripples in a bimodal heterogeneous mixture under the conditions of oscillatory flow and background turbulence. First, data on sediment concentration and effective sediment size were collected during ripples' formation on an initially flat bed, which were used to clarify the characteristic grain sorting patterns (with coarse sediment on the crests and fine sediments in the troughs) reported in previous studies. Based on the differences in the mobility of sediments, a physical explanation was provided for grain sorting in ripples. Second, in a series of experiments, the ripples' decay was modeled. It was shown that when established ripples in a heterogeneous mixture are subjected to either a weak oscillatory flow (below the threshold for ripple formation) or external (shear-free) turbulence, their height decays much the same (qualitative) manner as in homogeneous sediments. The decay of ripples in bimodal heterogeneous mixture was quantified by extending a ripple "diffusion" model proposed earlier for homogeneous sediments. The results revealed that under weak oscillatory flow, the effective ripple diffusivities K for a heterogeneous mixture are of the same order of magnitude as for homogeneous sediments, while under turbulence the values of K are smaller for a heterogeneous mixture. Published by Elsevier Ltd. C1 [Balasubramanian, S.; Fernando, H. J. S.] Arizona State Univ, Dept Aerosp & Mech Engn, Tempe, AZ 85287 USA. [Voropayev, S. I.; Fernando, H. J. S.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Environm Fluid Dynam Labs, Notre Dame, IN 46556 USA. [Voropayev, S. I.] Russian Acad Sci, PP Shirshov Inst Oceanol, Moscow 117851, Russia. RP Balasubramanian, S (reprint author), Los Alamos Natl Lab, Div Phys, POB 1663, Los Alamos, NM 87545 USA. EM sridharb@gmail.com FU Office of Naval Research [N00014-04-1-0626] FX This research was supported by the Office of Naval Research, Grant no. N00014-04-1-0626. NR 31 TC 1 Z9 1 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0029-8018 J9 OCEAN ENG JI Ocean Eng. PD DEC PY 2011 VL 38 IS 17-18 BP 2281 EP 2289 DI 10.1016/j.oceaneng.2011.10.012 PG 9 WC Engineering, Marine; Engineering, Civil; Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 874CT UT WOS:000298933700039 ER PT J AU Storm, P Aits, S Puthia, MK Urbano, A Northen, T Powers, S Bowen, B Chao, Y Reindl, W Lee, DY Sullivan, NL Zhang, J Trulsson, M Yang, H Watson, JD Svanborg, C AF Storm, P. Aits, S. Puthia, M. K. Urbano, A. Northen, T. Powers, S. Bowen, B. Chao, Y. Reindl, W. Lee, D. Y. Sullivan, N. L. Zhang, J. Trulsson, M. Yang, H. Watson, J. D. Svanborg, C. TI Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis SO ONCOGENE LA English DT Article DE HAMLET; metabolism; c-Myc; glycolysis ID APOPTOSIS-LIKE MECHANISM; HUMAN ALPHA-LACTALBUMIN; ENERGY-METABOLISM; TUMOR-CELLS; GLUCOSE-METABOLISM; PYRUVATE-KINASE; GROWTH; HYPOXIA; PROTEIN; HEXOKINASE AB HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1 alpha modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing similar to 8000 targets, and HK activity decreased within 15min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect. Oncogene (2011) 30, 4765-4779; doi: 10.1038/onc.2011.196; published online 6 June 2011 C1 [Storm, P.; Aits, S.; Trulsson, M.; Svanborg, C.] Lund Univ, Dept Lab Med, Div Microbiol Immunol & Glycobiol, S-22362 Lund, Sweden. [Puthia, M. K.; Urbano, A.; Chao, Y.; Yang, H.] ASTAR, Inst Biomed Sci, Singapore Immunol Network SIgN, Singapore, Singapore. [Northen, T.; Bowen, B.; Reindl, W.; Lee, D. Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Powers, S.; Sullivan, N. L.; Zhang, J.; Watson, J. D.] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. RP Svanborg, C (reprint author), Lund Univ, Dept Microbiol Immunol & Glycobiol MIG, Inst Lab Med, Solvegatan 23, S-22362 Lund, Sweden. EM catharina.svanborg@med.lu.se RI Aits, Sonja/D-1496-2011; Northen, Trent/K-3139-2012; OI Aits, Sonja/0000-0002-1321-0678; Northen, Trent/0000-0001-8404-3259 FU Sharon D Lund foundation; American Cancer Society; Swedish Cancer Society; Swedish Medical Research Council; Medical Faculty (Lund University); Soderberg Foundation; Anna-Lisa and Sven-Erik Lundgren Foundation for Medical Research; Knut and Alice Wallenberg Foundation; Lund City Jubileumsfond; John and Augusta Persson Foundation for Medical Research; Maggie Stephens Foundation; Gunnar Nilsson Cancer Foundation; Inga-Britt and Arne Lundberg Foundation; HJ Forssman Foundation for Medical Research; Royal Physiographic Society; Swedish Society for Medical Research; Network of Excellence: EuroPathoGenomics; Crafoord Foundation; Osterlund Foundation; US Department of Energy at Berkeley Lab [DE-AC02-05CH11231]; National Institutes of Health, National Cancer Institute [U54 CA 112970]; California Breast Cancer Research Program [15IB-0063] FX This study was supported by the Sharon D Lund foundation grant and the American Cancer Society, the Swedish Cancer Society, the Swedish Medical Research Council, the Medical Faculty (Lund University), the Soderberg Foundation, the Anna-Lisa and Sven-Erik Lundgren Foundation for Medical Research, the Knut and Alice Wallenberg Foundation, the Lund City Jubileumsfond, the John and Augusta Persson Foundation for Medical Research, the Maggie Stephens Foundation, the Gunnar Nilsson Cancer Foundation, the Inga-Britt and Arne Lundberg Foundation, the HJ Forssman Foundation for Medical Research, the Royal Physiographic Society, the Swedish Society for Medical Research, the Network of Excellence: EuroPathoGenomics, the Crafoord Foundation, the Osterlund Foundation, the US Department of Energy Low Dose SFA Program at Berkeley Lab [DE-AC02-05CH11231], the National Institutes of Health, National Cancer Institute grant U54 CA 112970 and the California Breast Cancer Research Program [15IB-0063]. NR 52 TC 27 Z9 27 U1 0 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD DEC PY 2011 VL 30 IS 48 BP 4765 EP 4779 DI 10.1038/onc.2011.196 PG 15 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 863AH UT WOS:000298134700001 PM 21643007 ER PT J AU Endstrasser, N Rohde, V Balden, M Humrickhouse, P von Toussaint, U Braams, BJ Chung, HK Neu, R AF Endstrasser, Nikolaus Rohde, Volker Balden, Martin Humrickhouse, Paul von Toussaint, Udo Braams, Bastiaan J. Chung, Hyun-Kyung Neu, Rudolf CA ASDEX Upgrade Team TI Comparative study of the dust particle population sampled during four consecutive campaigns in full-tungsten ASDEX Upgrade SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC)/1st International Conference on Fusion Energy Materials Science (FEMaS) CY MAY 09-13, 2011 CL Rosenheim, GERMANY SP IPP, European Commiss AB Scanning electron microscopy images and energy-dispersive x-ray spectra were recorded for a total of about 4 x 10(4) dust particles collected on the same position within the vacuum vessel via silicon wafers during four consecutive full-tungsten first wall campaigns of ASDEX Upgrade between 2007 and 2009. By careful analysis of the elemental composition and shape of the sampled particles, seven statistically relevant classes of dust were identified. The particle flux and area coverage of each class were normalized to the total plasma duration of each sampling period, revealing a high sensitivity of the dust composition to device conditioning. According to the present results, particles produced by arcing on divertor tiles with delaminated coatings were transported to the main chamber first wall. C1 [Endstrasser, Nikolaus; Rohde, Volker; Balden, Martin; von Toussaint, Udo; Neu, Rudolf; ASDEX Upgrade Team] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Humrickhouse, Paul] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Braams, Bastiaan J.; Chung, Hyun-Kyung] Vienna Int Ctr, Dept Nucl Sci & Applicat, Int Atom Energy Agcy, A-1400 Vienna, Austria. RP Endstrasser, N (reprint author), EURATOM, Max Planck Inst Plasmaphys, Boltzmannstr 2, D-85748 Garching, Germany. EM Nikolaus.Endstrasser@ipp.mpg.de RI Braams, Bastiaan/E-7687-2011; Neu, Rudolf /B-4438-2010 OI Braams, Bastiaan/0000-0003-4086-9969; Neu, Rudolf /0000-0002-6062-1955 NR 12 TC 13 Z9 13 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2011 VL T145 AR 014021 DI 10.1088/0031-8949/2011/T145/014021 PG 6 WC Physics, Multidisciplinary SC Physics GA 867SU UT WOS:000298475200022 ER PT J AU Oya, Y Shimada, M Kobayashi, M Oda, T Hara, M Watanabe, H Hatano, Y Calderoni, P Okuno, K AF Oya, Yasuhisa Shimada, Masashi Kobayashi, Makoto Oda, Takuji Hara, Masanori Watanabe, Hideo Hatano, Yuji Calderoni, Pattrick Okuno, Kenji TI Comparison of deuterium retention for ion-irradiated and neutron-irradiated tungsten SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC)/1st International Conference on Fusion Energy Materials Science (FEMaS) CY MAY 09-13, 2011 CL Rosenheim, GERMANY SP IPP, European Commiss AB The behavior of D retention for Fe(2+)-irradiated tungsten with a damage of 0.025-3 dpa was compared with that for neutron-irradiated tungsten with 0.025 dpa. The D(2) thermal desorption spectroscopy (TDS) spectra for Fe(2+)-irradiated tungsten consisted of two desorption stages at 450 and 550 K, while that for neutron-irradiated tungsten was composed of three stages and an addition desorption stage was found at 750 K. The desorption rate of the major desorption stage at 550 K increased as the displacement damage increased due to Fe(2+) irradiation increasing. In addition, the first desorption stage at 450 K was found only for damaged samples. Therefore, the second stage would be based on intrinsic defects or vacancy produced by Fe(2+) irradiation, and the first stage should be the accumulation of D in mono-vacancy and the activation energy would be relatively reduced, where the dislocation loop and vacancy is produced. The third one was found only for neutron irradiation, showing the D trapping by a void or vacancy cluster, and the diffusion effect is also contributed to by the high full-width at half-maximum of the TDS spectrum. Therefore, it can be said that the D(2) TDS spectra for Fe(2+)-irradiated tungsten cannot represent that for the neutron-irradiated one, indicating that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten is different from that for the ion-irradiated one. C1 [Oya, Yasuhisa; Kobayashi, Makoto; Okuno, Kenji] Shizuoka Univ, Fac Sci, Radiosci Res Lab, Shizuoka 4228529, Japan. [Shimada, Masashi; Calderoni, Pattrick] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Oda, Takuji] Univ Tokyo, Sch Engn, Dept Nucl Engn & Management, Tokyo 1138656, Japan. [Hara, Masanori; Hatano, Yuji] Toyama Univ, Hydrogen Isotope Res Ctr, Toyama 9308555, Japan. [Watanabe, Hideo] Kyushu Univ, Inst Appl Mech, Kasuga, Fukuoka 8168580, Japan. RP Oya, Y (reprint author), Shizuoka Univ, Fac Sci, Radiosci Res Lab, Shizuoka 4228529, Japan. EM syoya@ipc.shizuoka.ac.jp RI Kyushu, RIAM/F-4018-2015; U-ID, Kyushu/C-5291-2016; OI Shimada, Masashi/0000-0002-1592-843X; Calderoni, Pattrick/0000-0002-2316-6404 NR 16 TC 29 Z9 29 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2011 VL T145 AR 014050 DI 10.1088/0031-8949/2011/T145/014050 PG 5 WC Physics, Multidisciplinary SC Physics GA 867SU UT WOS:000298475200051 ER PT J AU Roche, H Barbuti, A Bucalossi, J Ducobu, L Grisolia, C Loarer, T Pegourie, B Rosanvallon, S Spuig, P Skinner, CH Vartanian, S Vincent, B AF Roche, H. Barbuti, A. Bucalossi, J. Ducobu, L. Grisolia, C. Loarer, T. Pegourie, B. Rosanvallon, S. Spuig, P. Skinner, C. H. Vartanian, S. Vincent, B. TI First results from dust detection during plasma discharges on Tore Supra SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC)/1st International Conference on Fusion Energy Materials Science (FEMaS) CY MAY 09-13, 2011 CL Rosenheim, GERMANY SP IPP, European Commiss AB In-vessel dust has been recognized as a safety and operational issue for next-step devices such as ITER. As a consequence, it is essential to develop methods for dust detection and dust removal. An electrostatic dust detector has been developed by Princeton Plasma Physics Laboratory (PPPL) to detect dust particles on a remote surface and provide locally real-time information on dust generation. A set of these dust detectors has been installed and tested in one of the pumping ducts of Tore Supra. A total of 481 shots from the plasma campaign in late 2010 have been analyzed. The dust signals from the detector and the particles observed on the visible CCD images have been investigated and exhibited good correlation. Dust particles are typically detected for about 5 s after a plasma disruption. Sometimes dust particles are detected during plasma current ramp-up on shots following a disruption. Finally, it is shown that 82% of the dust particles detected are due to disruptions and that the quantity of dust particles increases with the severity of the disruption. C1 [Roche, H.; Barbuti, A.; Bucalossi, J.; Ducobu, L.; Grisolia, C.; Loarer, T.; Pegourie, B.; Spuig, P.; Vartanian, S.; Vincent, B.] IRFM, CEA, F-13108 St Paul Les Durance, France. [Rosanvallon, S.] ITER Org, CS 90 046, F-13067 St Paul Les Durance, France. [Skinner, C. H.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Roche, H (reprint author), IRFM, CEA, F-13108 St Paul Les Durance, France. EM helene.roche@cea.fr NR 8 TC 4 Z9 4 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2011 VL T145 AR 014022 DI 10.1088/0031-8949/2011/T145/014022 PG 5 WC Physics, Multidisciplinary SC Physics GA 867SU UT WOS:000298475200023 ER PT J AU Shimada, M Cao, G Hatano, Y Oda, T Oya, Y Hara, M Calderoni, P AF Shimada, Masashi Cao, G. Hatano, Y. Oda, T. Oya, Y. Hara, M. Calderoni, P. TI The deuterium depth profile in neutron-irradiated tungsten exposed to plasma SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC)/1st International Conference on Fusion Energy Materials Science (FEMaS) CY MAY 09-13, 2011 CL Rosenheim, GERMANY SP IPP, European Commiss ID THERMAL-DESORPTION; HYDROGEN; RETENTION; RELEASE AB Tungsten samples (99.99% purity from A. L. M. T. Corp., 6 mm in diameter, 0.2 mm in thickness) were irradiated by high-flux neutrons at 50 degrees C to 0.025 dpa in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Subsequently, the neutron-irradiated tungsten samples were exposed to high-flux deuterium plasmas (ion flux: 10(21)-10(22) m(-2) s(-1), ion fluence: 10(25)-10(26) m(-2)) in the Tritium Plasma Experiment at Idaho National Laboratory. This paper reports the results of deuterium depth profiling in neutron-irradiated tungsten exposed to plasmas at 100, 200 and 500 degrees C via nuclear reaction analysis (NRA). The NRA measurements show that a significant amount of deuterium (> 0.1 at.% D/W) remains trapped in the bulk material (up to 5 mu m) at 500 degrees C. Tritium Migration Analysis Program simulation results using the NRA profiles indicate that different trapping mechanisms exist for neutron-irradiated and unirradiated tungsten. C1 [Shimada, Masashi; Calderoni, P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Cao, G.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Hatano, Y.; Hara, M.] Toyama Univ, Hydrogen Isotope Res Ctr, Toyama 9308555, Japan. [Oda, T.] Univ Tokyo, Dept Nucl Engn & Management, Tokyo 1138656, Japan. [Oya, Y.] Shizuoka Univ, Fac Sci, Radiosci Res Lab, Shizuoka 4228529, Japan. RP Shimada, M (reprint author), Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. EM Masashi.Shimada@inl.gov OI Shimada, Masashi/0000-0002-1592-843X; Calderoni, Pattrick/0000-0002-2316-6404 NR 21 TC 21 Z9 21 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2011 VL T145 AR 014051 DI 10.1088/0031-8949/2011/T145/014051 PG 5 WC Physics, Multidisciplinary SC Physics GA 867SU UT WOS:000298475200052 ER PT J AU Skinner, CH Allain, JP Bell, MG Friesen, FQL Heim, B Jaworski, MA Kugel, H Maingi, R Rais, B Taylor, CN AF Skinner, C. H. Allain, J. P. Bell, M. G. Friesen, F. Q. L. Heim, B. Jaworski, M. A. Kugel, H. Maingi, R. Rais, B. Taylor, C. N. TI Lithium wall conditioning and surface dust detection on NSTX, and dust removal SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC)/1st International Conference on Fusion Energy Materials Science (FEMaS) CY MAY 09-13, 2011 CL Rosenheim, GERMANY SP IPP, European Commiss ID TOKAMAK AB Lithium evaporation onto National Spherical Torus Experiment (NSTX) plasma-facing components (PFCs) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma-material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that the binding of D atoms to the polycrystalline graphite material of PFCs is fundamentally changed by lithium-in particular, deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high-voltage three-phase waveform was evaluated for its potential application to fusion reactors. C1 [Skinner, C. H.; Bell, M. G.; Jaworski, M. A.; Kugel, H.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Allain, J. P.; Heim, B.; Taylor, C. N.] Purdue Univ, W Lafayette, IN 47907 USA. [Friesen, F. Q. L.] Grinnell Coll, Grinnell, IA 50112 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Rais, B.] Univ Aix Marseille 1, PACA, F-13001 Marseille, France. RP Skinner, CH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM cskinner@pppl.gov OI Allain, Jean Paul/0000-0003-1348-262X NR 39 TC 0 Z9 0 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2011 VL T145 AR 014020 DI 10.1088/0031-8949/2011/T145/014020 PG 6 WC Physics, Multidisciplinary SC Physics GA 867SU UT WOS:000298475200021 ER PT J AU Wampler, WR Allen, SL Brooks, NH Chrobak, CP Davis, JW Ellis, R Fitzpatrick, BWN Haasz, AA McLean, AG Stangeby, PC Taylor, PL Tsui, CK AF Wampler, W. R. Allen, S. L. Brooks, N. H. Chrobak, C. P. Davis, J. W. Ellis, R. Fitzpatrick, B. W. N. Haasz, A. A. McLean, A. G. Stangeby, P. C. Taylor, P. L. Tsui, C. K. TI Ion beam analysis of C-13 and deuterium deposition in DIII-D and their removal by in-situ oxygen baking SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC)/1st International Conference on Fusion Energy Materials Science (FEMaS) CY MAY 09-13, 2011 CL Rosenheim, GERMANY SP IPP, European Commiss AB An experiment was conducted in DIII-D to examine carbon deposition when a secondary separatrix is near the wall. The magnetic configuration for this experiment was a biased double-null, similar to that foreseen for ITER. C-13 methane was injected toroidally symmetrically near the secondary separatrix into ELMy H-mode deuterium plasmas. The resulting deposition of C-13 was determined by nuclear reaction analysis. These results show that very little of the injected C-13 was deposited at the primary separatrix, whereas a large fraction of injected C-13 was deposited close to the point of injection near the secondary separatrix. Six of the tiles were put back into DIII-D, where they were baked at 350-360 degrees C for 2 h at similar to 1 kPa in a 20% O-2/80% He gas mixture. Subsequent ion beam analysis of these tiles showed that about 21% of the C-13 and 54% of the deuterium were removed by the bake. C1 [Wampler, W. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Allen, S. L.; Ellis, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Davis, J. W.; Fitzpatrick, B. W. N.; Haasz, A. A.; Stangeby, P. C.; Tsui, C. K.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. [Brooks, N. H.; Chrobak, C. P.; Taylor, P. L.] Gen Atom Co, San Diego, CA 92186 USA. [McLean, A. G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wampler, WR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wrwampl@sandia.gov NR 8 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2011 VL T145 AR 014025 DI 10.1088/0031-8949/2011/T145/014025 PG 5 WC Physics, Multidisciplinary SC Physics GA 867SU UT WOS:000298475200026 ER PT J AU Khare, A Rasmussen, KO Samuelsen, MR Saxena, A AF Khare, Avinash Rasmussen, Kim O. Samuelsen, Mogens R. Saxena, Avadh TI Exact solutions of a two-dimensional cubic-quintic discrete nonlinear Schrodinger equation SO PHYSICA SCRIPTA LA English DT Article ID DIFFERENTIAL-DIFFERENCE EQUATIONS; JACOBI ELLIPTIC FUNCTIONS; CYCLIC IDENTITIES AB We show that a two-dimensional generalized cubic-quintic Ablowitz-Ladik lattice admits periodic solutions that can be expressed in analytical form. The framework for the stability analysis of these solutions is developed and applied to reveal the intricate stability behavior of this nonlinear system. We examine the stability of these solutions and find that staggering along one of the two dimensions is important for stability. C1 [Khare, Avinash] Inst Phys, Bhubaneswar 751005, Orissa, India. [Rasmussen, Kim O.; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rasmussen, Kim O.; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Samuelsen, Mogens R.] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby KGS, Denmark. RP Khare, A (reprint author), Inst Phys, Bhubaneswar 751005, Orissa, India. EM kor@lanl.gov RI Rasmussen, Kim/B-5464-2009 OI Rasmussen, Kim/0000-0002-4029-4723 FU National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX Research at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy under Contract No DE-AC52-06NA25396. NR 20 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD DEC PY 2011 VL 84 IS 6 AR 065001 DI 10.1088/0031-8949/84/06/065001 PG 6 WC Physics, Multidisciplinary SC Physics GA 863QK UT WOS:000298181300001 ER PT J AU Troncoso-Ponce, MA Kilaru, A Cao, X Durrett, TP Fan, JL Jensen, JK Thrower, NA Pauly, M Wilkerson, C Ohlrogge, JB AF Troncoso-Ponce, Manuel A. Kilaru, Aruna Cao, Xia Durrett, Timothy P. Fan, Jilian Jensen, Jacob K. Thrower, Nick A. Pauly, Markus Wilkerson, Curtis Ohlrogge, John B. TI Comparative deep transcriptional profiling of four developing oilseeds SO PLANT JOURNAL LA English DT Article DE lipid metabolism; triacylglycerol synthesis; fatty acid biosynthesis; pyrosequencing; expressed sequence tags; comparative transcriptomics ID DIACYLGLYCEROL ACYLTRANSFERASE ACTIVITY; EXPRESSED SEQUENCE TAGS; RICINUS-COMMUNIS L; FATTY-ACID; ARABIDOPSIS-THALIANA; SEED OIL; TRIACYLGLYCEROL SYNTHESIS; BRASSICA-NAPUS; GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE; ENDOPLASMIC-RETICULUM AB Transcriptome analysis based on deep expressed sequence tag (EST) sequencing allows quantitative comparisons of gene expression across multiple species. Using pyrosequencing, we generated over 7 million ESTs from four stages of developing seeds of Ricinus communis, Brassica napus, Euonymus alatus and Tropaeolum majus, which differ in their storage tissue for oil, their ability to photosynthesize and in the structure and content of their triacylglycerols (TAG). The larger number of ESTs in these 16 datasets provided reliable estimates of the expression of acyltransferases and other enzymes expressed at low levels. Analysis of EST levels from these oilseeds revealed both conserved and distinct species-specific expression patterns for genes involved in the synthesis of glycerolipids and their precursors. Independent of the species and tissue type, ESTs for core fatty acid synthesis enzymes maintained a conserved stoichiometry and a strong correlation in temporal profiles throughout seed development. However, ESTs associated with non-plastid enzymes of oil biosynthesis displayed dissimilar temporal patterns indicative of different regulation. The EST levels for several genes potentially involved in accumulation of unusual TAG structures were distinct. Comparison of expression of members from multi-gene families allowed the identification of specific isoforms with conserved function in oil biosynthesis. In all four oilseeds, ESTs for Rubisco were present, suggesting its possible role in carbon metabolism, irrespective of light availability. Together, these data provide a resource for use in comparative and functional genomics of diverse oilseeds. Expression data for more than 350 genes encoding enzymes and proteins involved in lipid metabolism are available at the ARALIP website (). C1 [Troncoso-Ponce, Manuel A.; Cao, Xia; Durrett, Timothy P.; Fan, Jilian; Jensen, Jacob K.; Wilkerson, Curtis; Ohlrogge, John B.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Kilaru, Aruna; Cao, Xia; Durrett, Timothy P.; Thrower, Nick A.; Pauly, Markus; Wilkerson, Curtis; Ohlrogge, John B.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Pauly, Markus] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Pauly, Markus] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Ohlrogge, JB (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM ohlrogge@msu.edu RI Pauly, Markus/B-5895-2008; Troncoso-Ponce, Manuel Adrian/M-8194-2013 OI Pauly, Markus/0000-0002-3116-2198; FU NSF [DBI-0701919]; Bayer CropSciences; USDA [2005-35504-16195]; DOE Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; DOE Joint Genome Institute [DE-AC02-05CH11231] FX We thank Christa Pennacchio and Erika Lindquist (Joint Genome Institute) and Shari Tjugum-Holland and Jeff Landgraf (Michigan State University) for 454 pyrosequencing. We thank Vincent Arondel (CNRS, Bordeaux) for discussions and suggestions, Basil Shorrosh for ARALIP website developments, Peter Denholf (Bayer) for advice on sequence analysis and Jorg Schwender (Brookhaven National Laboratory) for discussions on Rubisco. This work was supported by NSF award DBI-0701919, by Bayer CropSciences, by USDA grant 2005-35504-16195 and by the DOE Great Lakes Bioenergy Research Center Cooperative Agreement DE-FC02-07ER64494. Sequencing by the DOE Joint Genome Institute is supported under contract no. DE-AC02-05CH11231. NR 80 TC 101 Z9 104 U1 4 U2 54 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD DEC PY 2011 VL 68 IS 6 BP 1014 EP 1027 DI 10.1111/j.1365-313X.2011.04751.x PG 14 WC Plant Sciences SC Plant Sciences GA 862LZ UT WOS:000298094000008 PM 21851431 ER PT J AU Chapman, IT Graves, JP Johnson, T Asunta, O Bonoli, P Choi, M Jaeger, EF Jucker, M Sauter, O AF Chapman, I. T. Graves, J. P. Johnson, T. Asunta, O. Bonoli, P. Choi, M. Jaeger, E. F. Jucker, M. Sauter, O. TI Sawtooth control in ITER using ion cyclotron resonance heating SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 38th European-Physical-Society Conference on Plasma Physics CY JUN 27-JUL 01, 2011 CL Strasburg, FRANCE ID TOROIDAL PLASMAS; FULL-WAVE; MODEL; STABILITY; STABILIZATION; TRANSPORT; TOKAMAKS AB Numerical modelling of the effects of ion cyclotron resonance heating (ICRH) on the stability of the internal kink mode suggests that ICRH should be considered as an essential sawtooth control tool in ITER. Sawtooth control using ICRH is achieved by directly affecting the energy of the internal kink mode rather than through modification of the magnetic shear by driving localized currents. Consequently, ICRH can be seen as complementary to the planned electron cyclotron current drive actuator, and indeed will improve the efficacy of current drive schemes. Simulations of the ICRH distribution using independent RF codes give confidence in numerical predictions that the stabilizing influence of the fusion-born alphas can be negated by appropriately tailored minority He-3 ICRH heating in ITER. Finally, the effectiveness of all sawtooth actuators is shown to increase as the q = 1 surface moves towards the manetic axis, whilst the passive stabilization arising from the alpha and NBI particles decreases. C1 [Chapman, I. T.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Graves, J. P.; Jucker, M.; Sauter, O.] Ecole Polytech Fed Lausanne, Assoc EURATOM Confederat Suisse, CRPP, CH-1015 Lausanne, Switzerland. [Johnson, T.] KTH, EES, EURATOM VR Assoc, Stockholm, Sweden. [Asunta, O.] Aalto Univ, Dept Appl Phys, Assoc EURATOM Tekes, FI-00076 Aalto, Finland. [Bonoli, P.] MIT, Plasma Sci & Fusion Ctr, Cambridge, MA 02139 USA. [Choi, M.] Gen Atom Co, San Diego, CA 92186 USA. [Jaeger, E. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chapman, IT (reprint author), Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM ian.chapman@ccfe.ac.uk RI Asunta, Otto/E-7357-2012; Jucker, Martin/C-3914-2014 OI Jucker, Martin/0000-0002-4227-315X FU RCUK [EP/I501045]; Swiss National Science Foundation; US Department of Energy [DE-FC02-01ER54648, DE-AC05-00OR22725, DE-FC02-08ER54952]; European Community under EURATOM; European Community under CCFE FX This work was partly funded by the RCUK Energy Programme under grant EP/I501045, the Swiss National Science Foundation, the European Communities under the contract of Association between EURATOM and CCFE and US Department of Energy under DE-FC02-01ER54648, DE-AC05-00OR22725 and DE-FC02-08ER54952. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 55 TC 11 Z9 12 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2011 VL 53 IS 12 AR 124003 DI 10.1088/0741-3335/53/12/124003 PN 1-2 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 870BL UT WOS:000298644000005 ER PT J AU Classen, IGJ Lauber, P Curran, D Boom, JE Tobias, BJ Domier, CW Luhmann, NC Park, HK Munoz, MG Geiger, B Maraschek, M Van Zeeland, MA da Graca, S AF Classen, I. G. J. Lauber, Ph Curran, D. Boom, J. E. Tobias, B. J. Domier, C. W. Luhmann, N. C., Jr. Park, H. K. Munoz, M. Garcia Geiger, B. Maraschek, M. Van Zeeland, M. A. da Graca, S. CA ASDEX Upgrade Team TI Investigation of fast particle driven instabilities by 2D electron cyclotron emission imaging on ASDEX Upgrade SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 38th European-Physical-Society Conference on Plasma Physics CY JUN 27-JUL 01, 2011 CL Strasburg, FRANCE ID ALFVEN MODES; TOKAMAK; EIGENMODES; STABILITY; CASCADES AB Detailed measurements of the 2D mode structure of Alfven instabilities in the current ramp-up phase of neutral beam heated discharges were performed on ASDEX Upgrade, using the electron cyclotron emission imaging (ECEI) diagnostic. This paper focuses on the observation of reversed shear Alfven-eigenmodes (RSAEs) and bursting modes that, with the use of the information from ECEI, have been identified as beta-induced Alfven eigenmodes (BAEs). Both RSAEs with first and second radial harmonic mode structures were observed. Calculations with the linear gyro-kinetic code LIGKA revealed that the ratio of the damping rates and the frequency difference between the first and second harmonic modes strongly depended on the shape of the q-profile. The bursting character of the BAE type modes, which were radially localized to rational q surfaces, was observed to sensitively depend on the plasma parameters, ranging from strongly bursting to almost steady state. C1 [Classen, I. G. J.; Boom, J. E.] FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Lauber, Ph; Munoz, M. Garcia; Geiger, B.; Maraschek, M.; ASDEX Upgrade Team] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Curran, D.] Univ Coll Cork, Dept Phys, Cork, Ireland. [Tobias, B. J.] Princeton Plasma Phys Lab, Princeton, NJ USA. [Domier, C. W.; Luhmann, N. C., Jr.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Park, H. K.] Pohang Univ Sci & Technol, Pohang, South Korea. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [da Graca, S.] Inst Plasma & Fusao Nucl, P-1049001 Liboa, Portugal. RP Classen, IGJ (reprint author), FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. EM ivo.classen@ipp.mpg.de RI garcia-munoz, manuel/C-6825-2008; OI garcia-munoz, manuel/0000-0002-3241-502X; Ramos, Silvia/0000-0003-1823-6567 NR 27 TC 16 Z9 16 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2011 VL 53 IS 12 AR 124018 DI 10.1088/0741-3335/53/12/124018 PN 1-2 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 870BL UT WOS:000298644000020 ER PT J AU Fisch, NJ Raitses, Y Fruchtman, A AF Fisch, N. J. Raitses, Y. Fruchtman, A. TI Ion acceleration in supersonically rotating magnetized-electron plasma SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 38th European-Physical-Society Conference on Plasma Physics CY JUN 27-JUL 01, 2011 CL Strasburg, FRANCE ID HALL THRUSTER; FIELD; MIRROR; TRAP; FLOW AB A leading method of propelling plasma is through the electrical acceleration of ions through a cloud of rotating electrons, where the rotating electrons are held in place axially by a magnetic filter. However, in certain parameter regimes, devices based on this propulsion principle appear to work far better than they should, at least based on the accepted design principles. This unexpected fortunate performance is explained here by self-organizing features of supersonically rotating electron plasma. In fact, several ion acceleration mechanisms that narrow the plume can be identified. These useful acceleration mechanisms, which persist even as the electron temperature vanishes, are newly identified here and are common to rotating electron plasmas in a variety of settings. C1 [Fisch, N. J.; Raitses, Y.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Fruchtman, A.] HIT Holon Inst Technol, Holon, Israel. RP Fisch, NJ (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM fisch@princeton.edu FU AFOSR; DOE [DE-AC02-09CH-11466]; US-Israel Binational Science Foundation [2008224] FX This work was supported by AFOSR, by DOE under contract DE-AC02-09CH-11466, and by the US-Israel Binational Science Foundation under Grant No 2008224. NR 27 TC 13 Z9 13 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2011 VL 53 IS 12 AR 124038 DI 10.1088/0741-3335/53/12/124038 PN 1-2 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 870BL UT WOS:000298644000040 ER PT J AU Groth, M Porter, GD Rognlien, TD Wiesen, S Wischmeier, M Beurskens, MNA Bonnin, X Bray, BD Brezinsek, S Brooks, NH Coster, DP Eich, T Fenstermacher, ME Fuchs, C Groebner, RA Harting, D Huber, A Jachmich, S Kallenbach, A Lasnier, CJ Leonard, AW Meigs, A Muller, HW Rensink, ME Rudakov, DL Watkins, JG Wolfrum, E AF Groth, M. Porter, G. D. Rognlien, T. D. Wiesen, S. Wischmeier, M. Beurskens, M. N. A. Bonnin, X. Bray, B. D. Brezinsek, S. Brooks, N. H. Coster, D. P. Eich, T. Fenstermacher, M. E. Fuchs, C. Groebner, R. A. Harting, D. Huber, A. Jachmich, S. Kallenbach, A. Lasnier, C. J. Leonard, A. W. Meigs, A. Muller, H. W. Rensink, M. E. Rudakov, D. L. Watkins, J. G. Wolfrum, E. CA DIII D Team ASDEX Upgrade Team JET EFDA Contributors TI Poloidal distribution of recycling sources and core plasma fueling in DIII-D, ASDEX-Upgrade and JET L-mode plasmas SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 38th European-Physical-Society Conference on Plasma Physics CY JUN 27-JUL 01, 2011 CL Strasburg, FRANCE ID TOKAMAK EDGE PLASMAS; TRANSPORT; SIMULATION; PHYSICS; FLUX; PEDESTAL; PROGRESS; DIVERTOR AB Deuterium fueling profiles across the separatrix have been calculated with the edge fluid codes UEDGE, SOLPS and EDGE2D/EIRENE for lower single null, ohmic and low-confinement plasmas in DIII-D, ASDEX Upgrade and JET. The fueling profiles generally peak near the divertor x-point, and broader profiles are predicted for the open divertor geometry and horizontal targets in DIII-D than for the more closed geometries and vertical targets in AUG and JET. Significant fueling from the low-field side midplane may also occur when assuming strong radial ion transport in the far scrape-off layer. The dependence of the fueling profiles on upstream density is investigated for all three devices, and between the different codes for a single device. The validity of the predictions is assessed for the DIII-D configuration by comparing the measured ion current to the main chamber walls at the low-field side and divertor targets, and deuterium emission profiles across the divertor legs, and the high-field and low-field side midplane regions to those calculated by UEDGE and SOLPS. C1 [Groth, M.] Aalto Univ, Assoc EURATOM Tekes, Espoo 02015, Finland. [Groth, M.; Porter, G. D.; Rognlien, T. D.; Fenstermacher, M. E.; Lasnier, C. J.; Rensink, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rognlien, T. D.; Wiesen, S.; Brezinsek, S.; Harting, D.; Huber, A.] Forschungszentrum Julich, EURATOM Assoziat, TEC, Julich, Germany. [Wischmeier, M.; Coster, D. P.; Eich, T.; Fuchs, C.; Kallenbach, A.; Muller, H. W.; Wolfrum, E.] EURATOM Assoziat, Max Planck Inst Plasmaphys, Garching, Germany. [Beurskens, M. N. A.; Meigs, A.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. [Bonnin, X.] Univ Paris 13, LSPM CNRS, F-93430 Villetaneuse, France. [Bray, B. D.; Brooks, N. H.; Groebner, R. A.; Leonard, A. W.] Gen Atom Co, San Diego, CA 92121 USA. [Jachmich, S.] Ecole Royale Militaire, Assoc Euratom Belgian State, Brussels, Belgium. [Rudakov, D. L.] Univ Calif San Diego, EBU II, La Jolla, CA 92093 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87123 USA. Gen Atom Co, DIII Natl Fus Facil, San Diego, CA 92121 USA. ASDEX Upgrade, D-85748 Garching, Germany. Culham Sci Ctr, JET EFDA, Abingdon OX14 3DB, Oxon, England. RP Groth, M (reprint author), Aalto Univ, Assoc EURATOM Tekes, Otakaari 4, Espoo 02015, Finland. RI Groth, Mathias/G-2227-2013; Coster, David/B-4311-2010; Brezinsek, Sebastijan/B-2796-2017 OI Coster, David/0000-0002-2470-9706; Brezinsek, Sebastijan/0000-0002-7213-3326 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, DE-FG02-07ER54917, DE-AC05-00OR22725, DE-AC04-94AL85000]; EURATOM FX This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also performed in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, DE-FG02-07ER54917, DE-AC05-00OR22725 and DE-AC04-94AL85000. NR 34 TC 2 Z9 2 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2011 VL 53 IS 12 AR 124017 DI 10.1088/0741-3335/53/12/124017 PN 1-2 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 870BL UT WOS:000298644000019 ER PT J AU Mantica, P Angioni, C Baiocchi, B Baruzzo, M Beurskens, MNA Bizarro, JPS Budny, RV Buratti, P Casati, A Challis, C Citrin, J Colyer, G Crisanti, F Figueiredo, ACA Frassinetti, L Giroud, C Hawkes, N Hobirk, J Joffrin, E Johnson, T Lerche, E Migliano, P Naulin, V Peeters, AG Rewoldt, G Ryter, F Salmi, A Sartori, R Sozzi, C Staebler, G Strintzi, D Tala, T Tsalas, M Van Eester, D Versloot, T de Vries, PC Weiland, J AF Mantica, P. Angioni, C. Baiocchi, B. Baruzzo, M. Beurskens, M. N. A. Bizarro, J. P. S. Budny, R. V. Buratti, P. Casati, A. Challis, C. Citrin, J. Colyer, G. Crisanti, F. Figueiredo, A. C. A. Frassinetti, L. Giroud, C. Hawkes, N. Hobirk, J. Joffrin, E. Johnson, T. Lerche, E. Migliano, P. Naulin, V. Peeters, A. G. Rewoldt, G. Ryter, F. Salmi, A. Sartori, R. Sozzi, C. Staebler, G. Strintzi, D. Tala, T. Tsalas, M. Van Eester, D. Versloot, T. de Vries, P. C. Weiland, J. CA JET EFDA Contributors TI Ion heat transport studies in JET SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 38th European-Physical-Society Conference on Plasma Physics CY JUN 27-JUL 01, 2011 CL Strasburg, FRANCE ID H-MODE PLASMAS; T-E/T-I; TURBULENCE SIMULATIONS; THERMAL TRANSPORT; ASDEX UPGRADE; CONFINEMENT; INSTABILITIES; TOKAMAKS; SHEAR; RATIO AB Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with He-3 minority. The determination of ion temperature gradient (ITG) threshold and ion stiffness offers unique opportunities for validation of the well-established theory of ITG driven modes. Ion stiffness is observed to decrease strongly in the presence of toroidal rotation when the magnetic shear is sufficiently low. This effect is dominant with respect to the well-known omega(ExB) threshold up-shift and plays a major role in enhancing core confinement in hybrid regimes and ion internal transport barriers. The effects of T-e/T-i and s/q on ion threshold are found rather weak in the domain explored. Quasi-linear fluid/gyro-fluid and linear/non-linear gyro-kinetic simulations have been carried out. Whilst threshold predictions show good match with experimental observations, some significant discrepancies are found on the stiffness behaviour. C1 [Mantica, P.; Baiocchi, B.; Migliano, P.; Sozzi, C.] Assoc Euratom ENEA CNR, Ist Fis Plasma P Caldirola, Milan, Italy. Culham Sci Ctr, JET EFDA, Abingdon OX14 3DB, Oxon, England. [Angioni, C.; Hobirk, J.; Ryter, F.; Strintzi, D.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. [Baiocchi, B.] Univ Milan, Dept Phys, Milan, Italy. [Baruzzo, M.] ENEA Euratom Assoc, Consorzio RFX, Padua, Italy. [Beurskens, M. N. A.; Challis, C.; Colyer, G.; Giroud, C.; Hawkes, N.] Culham Sci Ctr, Euratom CCFE Assoc, Abingdon OX14 3DB, Oxon, England. [Bizarro, J. P. S.; Figueiredo, A. C. A.] Univ Tecn Lisboa, Assoc Euratom IST, Inst Plasmas & Fusao Nucl, Inst Super Tecn, P-1049001 Lisbon, Portugal. [Budny, R. V.; Rewoldt, G.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Buratti, P.; Crisanti, F.] CR Frascati, Assoc EURATOM ENEA Fus, Frascati, Italy. [Casati, A.; Joffrin, E.] CEA IRFM, Assoc Euratom CEA, F-13108 St Paul Les Durance, France. [Citrin, J.; Tsalas, M.; Versloot, T.; de Vries, P. C.] EURATOM, FOM Inst Rijnhuizen, Nieuwegein, Netherlands. [Frassinetti, L.; Johnson, T.] KTH, Assoc EURATOM VR, EES, Stockholm, Sweden. [Lerche, E.; Van Eester, D.] TEC, Assoc Euratom Belgian State, LPP ERM KMS, B-1000 Brussels, Belgium. [Migliano, P.] Univ Milano Bicocca, Dept Phys, Milan, Italy. [Naulin, V.] Assoc Euratom Riso DTU, DK-4000 Roskilde, Denmark. [Peeters, A. G.] Univ Bayreuth, Dept Phys, D-95440 Bayreuth, Germany. [Salmi, A.] Aalto Univ, Assoc EURATOM Tekes, Dept Appl Phys, Espoo, Finland. [Sartori, R.] Fus Energy Joint Undertaking, Barcelona 08019, Spain. [Staebler, G.] Gen Atom Co, San Diego, CA 92186 USA. [Tala, T.] VTT, Assoc EURATOM Tekes, FIN-02044 Espoo, Finland. [Weiland, J.] Chalmers, S-41296 Gothenburg, Sweden. [Weiland, J.] Euratom VR Assoc, Gothenburg, Sweden. RP Mantica, P (reprint author), Assoc Euratom ENEA CNR, Ist Fis Plasma P Caldirola, Milan, Italy. EM mantica@ifp.cnr.it RI Peeters, Arthur/A-1281-2009; Naulin , Volker/A-2419-2012; Bizarro, Joao P. S./F-4124-2011; Figueiredo, Antonio/F-9261-2011; Sozzi, Carlo/F-4158-2012; Mantica, Paola/K-3033-2012; Salmi, Antti/I-7413-2013 OI Frassinetti, Lorenzo/0000-0002-9546-4494; Naulin , Volker/0000-0001-5452-9215; Bizarro, Joao P. S./0000-0002-0698-6259; Figueiredo, Antonio/0000-0003-0487-8956; Sozzi, Carlo/0000-0001-8951-0071; FU European Communities FX Non-linear gyro-kinetic simulations were performed on the parallel server Power 6 (Vip) of the IPP-MPG Rechenzentrum Garching, Germany. This work, supported by the European Communities under the contract of Association EURATOM/ENEA-CNR, was carried out within EFDA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 58 TC 13 Z9 13 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2011 VL 53 IS 12 AR 124033 DI 10.1088/0741-3335/53/12/124033 PN 1-2 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 870BL UT WOS:000298644000035 ER PT J AU Kurtz, S Whitfield, K TamizhMani, G Koehl, M Miller, D Joyce, J Wohlgemuth, J Bosco, N Kempe, M Zgonena, T AF Kurtz, Sarah Whitfield, Kent TamizhMani, G. Koehl, Michael Miller, David Joyce, James Wohlgemuth, John Bosco, Nick Kempe, Michael Zgonena, Timothy TI Evaluation of high-temperature exposure of photovoltaic modules SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE thermal endurance; long-term degradation; qualification tests AB Photovoltaic (PV) modules operate at temperatures above ambient owing to the thermal energy of sunlight. The operating temperature primarily depends on the ambient temperature, incident sunlight, mounting configuration, packaging configuration, and wind speed. In this paper, the cumulative thermal degradation is modeled to follow Arrhenius behavior. The data are analyzed to determine the constant temperature that would give average aging equivalent to the variable temperatures observed in the field. These equivalent temperatures are calculated for various locations using six configurations, providing a technical basis for defining accelerated thermal-endurance and -degradation testing. This data may also be useful as a starting point for studies of the combined effects of elevated temperature and other factors such as UV, moisture, and mechanical stress. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Kurtz, Sarah; Miller, David; Wohlgemuth, John; Bosco, Nick; Kempe, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Whitfield, Kent] Solaria, Fremont, CA USA. [TamizhMani, G.] TUV Rheinland PTL, Tempe, AZ USA. [Koehl, Michael] Fraunhofer ISE, Freiburg, Germany. [Joyce, James; Zgonena, Timothy] Underwriters Labs Inc, Northbrook, IL USA. RP Kurtz, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM sarah.kurtz@nrel.gov FU U.S. Department of Energy [DOE-AC36-08GO28308]; National Renewable Energy Laboratory FX We thank R. Smith for providing the 1-min data. This work was supported by the U.S. Department of Energy under Contract No. DOE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 23 TC 30 Z9 30 U1 2 U2 24 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD DEC PY 2011 VL 19 IS 8 BP 954 EP 965 DI 10.1002/pip.1103 PG 12 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 860HE UT WOS:000297938600006 ER PT J AU Hersh, PA Curtis, CJ van Hest, MFAM Kreuder, JJ Pasquarelli, R Miedaner, A Ginley, DS AF Hersh, Peter A. Curtis, Calvin J. van Hest, Maikel F. A. M. Kreuder, John J. Pasquarelli, Robert Miedaner, Alex Ginley, David S. TI Inkjet printed metallizations for Cu(In1-xGax)Se-2 photovoltaic cells SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE cigs; contacts; inkjet ID SOLAR-CELLS AB This study reports the inkjet printing of Ag front contacts on Aluminum doped Zinc Oxide (AZO)/intrinsic Zinc Oxide (i-ZnO)/CdS/Cu(In1-xGax)Se-2 (CIGS)/Mo thin film photovoltaic cells. The printed Ag contacts are being developed to replace the currently employed evaporated Ni/Al bi-layer contacts. Inkjet deposition conditions were optimized to reduce line resistivity and reduce contact resistance to the Al:ZnO layer. Ag lines printed at a substrate temperature of 200 degrees C showed a line resistivity of 2.06 mu Omega . cm and a contact resistance to Al:ZnO of 8.2 +/- 0.2 m Omega . cm(2) compared to 6.93 +/- 0.3 m Omega . cm(2) for thermally evaporated contacts. These deposition conditions were used to deposit front contacts onto high quality CIGS thin film photovoltaic cells. The heating required to print the Ag contacts caused the performance to degrade compared to similar devices with evaporated Ni/Al contacts that were not heated. Devices with inkjet printed contacts showed 11.4% conversion efficiency compared to 14.8% with evaporated contacts. Strategies to minimize heating, which is detrimental for efficiency, during inkjet printing are proposed. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Hersh, Peter A.] Heliovolt Corp, Austin, TX 78744 USA. [Curtis, Calvin J.; van Hest, Maikel F. A. M.; Kreuder, John J.; Pasquarelli, Robert; Miedaner, Alex; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hersh, PA (reprint author), Heliovolt Corp, 6301-8 E Stassney Lane, Austin, TX 78744 USA. EM phersh@heliovolt.com NR 11 TC 4 Z9 6 U1 1 U2 30 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD DEC PY 2011 VL 19 IS 8 BP 973 EP 976 DI 10.1002/pip.1105 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 860HE UT WOS:000297938600008 ER PT J AU Alers, GB Zhou, J Deline, C Hacke, P Kurtz, SR AF Alers, G. B. Zhou, J. Deline, C. Hacke, P. Kurtz, S. R. TI Degradation of individual cells in a module measured with differential IV analysis SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar; module; reliability; differential resistance; shunt resistance; series resistance ID PHOTOVOLTAIC MODULE; SOLAR-CELLS AB A methodology is developed for the extraction of cell-level properties from the analysis of differential IV response in a solar module with series connected cells. Through a combination of simulation and experimental verification we show that the shunt resistance and short circuit current of individual cells can be determined from a peak in the module differential resistance with cells that are partially shaded. The magnitude of the peak is equal to the shunt resistance of the cell for small values of shunt resistance. The current at which the peak occurs is proportional to the product of the short circuit current and the shading factor of the particular cell. With this methodology, we are able to measure degradation of 72 individual cells in a single commercial module after a high temperature/high humidity/high voltage stress test. Therefore, the statistics of degradation in this test were improved 72-fold. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Alers, G. B.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95066 USA. [Zhou, J.] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95066 USA. [Deline, C.; Hacke, P.; Kurtz, S. R.] Natl Renewable Energy Lab, Golden, CO USA. RP Alers, GB (reprint author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95066 USA. EM galers@ucsc.edu RI Deline, Christopher/K-5998-2013 OI Deline, Christopher/0000-0002-9867-8930 FU US Department of Energy [DE-FC36-08GO18014.A000] FX This work was supported in part by the US Department of Energy grant number DE-FC36-08GO18014.A000. NR 14 TC 9 Z9 9 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD DEC PY 2011 VL 19 IS 8 BP 977 EP 982 DI 10.1002/pip.1013 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 860HE UT WOS:000297938600009 ER PT J AU Yarrington, CD Son, SF Foley, TJ Obrey, SJ Pacheco, AN AF Yarrington, Cole D. Son, Steven F. Foley, Timothy J. Obrey, Stephen J. Pacheco, Adam N. TI Nano Aluminum Energetics: The Effect of Synthesis Method on Morphology and Combustion Performance SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Nanoenergetic; Aluminum; PTFE; ALEX; Nanothermite ID METASTABLE INTERSTITIAL COMPOSITES; PROPAGATION; OXIDATION; THERMITES AB Nanoscale aluminum based energetic composites were prepared using polytetrafluoroethylene (PTFE) as an oxidizer, and optimized according to the maximum experimentally observed flame propagation rate in an instrumented burn tube. Optimization of the aluminum-based composites was performed using nanometric aluminum from two manufacturers, Argonide Corporation and Novacentrix, and the combustion results represent the first direct comparison of these two materials in a burn tube configuration. Argonide aluminum was found to consist of many fused spheres of nano aluminum mixed with some larger micron sized particles. Novacentrix aluminum consisted of spherical particles with a closer particle size distribution. The propagation rate optimized wt.-% aluminum powder values were 50 and 44.5 for Novacentrix and Argonide, respectively. At the optimized conditions, the time to steady propagation for both Argonide and Novacentrix were similar, however the startup time for the Novacentrix based mixtures was more sensitive to changes in the mixture ratio. The presence of micron sized aluminum and lower surface area, but higher active content in the Argonide mixtures resulted in lower propagation rates, pressurization rates and peak pressures but higher total impulse values. It was found that peak pressure is not the sole determining factor in propagation rate, but the highest pressurization rates correlate with propagation rate. C1 [Yarrington, Cole D.; Son, Steven F.] Purdue Univ, W Lafayette, IN 47905 USA. [Foley, Timothy J.; Obrey, Stephen J.; Pacheco, Adam N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yarrington, CD (reprint author), Purdue Univ, W Lafayette, IN 47905 USA. EM cyarring@purdue.edu OI Son, Steven/0000-0001-7498-2922 NR 16 TC 14 Z9 14 U1 1 U2 34 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2011 VL 36 IS 6 BP 551 EP 557 DI 10.1002/prep.201000156 PG 7 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 866OW UT WOS:000298391600010 ER PT J AU Kinsinger, CR Apffel, J Baker, M Bian, XP Borchers, CH Bradshaw, R Brusniak, MY Chan, DW Deutsch, EW Domon, B Gorman, J Grimm, R Hancock, W Hermjakob, H Horn, D Hunter, C Kolar, P Kraus, HJ Langen, H Linding, R Moritz, RL Omenn, GS Orlando, R Pandey, A Ping, PP Rahbar, A Rivers, R Seymour, SL Simpson, RJ Slotta, D Smith, RD Stein, SE Tabb, DL Tagle, D Yates, JR Rodriguez, H AF Kinsinger, Christopher R. Apffel, James Baker, Mark Bian, Xiaopeng Borchers, Christoph H. Bradshaw, Ralph Brusniak, Mi-Youn Chan, Daniel W. Deutsch, Eric W. Domon, Bruno Gorman, Jeff Grimm, Rudolf Hancock, William Hermjakob, Henning Horn, David Hunter, Christie Kolar, Patrik Kraus, Hans-Joachim Langen, Hanno Linding, Rune Moritz, Robert L. Omenn, Gilbert S. Orlando, Ron Pandey, Akhilesh Ping, Peipei Rahbar, Amir Rivers, Robert Seymour, Sean L. Simpson, Richard J. Slotta, Douglas Smith, Richard D. Stein, Stephen E. Tabb, David L. Tagle, Danilo Yates, John R., III Rodriguez, Henry TI Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam principles) SO PROTEOMICS CLINICAL APPLICATIONS LA English DT Article DE Amsterdam principles; Bioinformatics; Data quality; Metrics; Open access; Selected reaction monitoring; Standards ID PROTEIN IDENTIFICATION DATA; SHOTGUN PROTEOMICS; PEPTIDE IDENTIFICATION; CLINICAL PROTEOMICS; MINIMUM INFORMATION; STATISTICAL-MODEL; GUIDELINES; RESOURCE; SPECTRA; REPRODUCIBILITY AB Policies supporting the rapid and open sharing of proteomic data are being implemented by the leading journals in the field. The proteomics community is taking steps to ensure that data are made publicly accessible and are of high quality, a challenging task that requires the development and deployment of methods for measuring and documenting data quality metrics. On September 18, 2010, the U.S. National Cancer Institute (NCI) convened the "International Workshop on Proteomic Data Quality Metrics" in Sydney, Australia, to identify and address issues facing the development and use of such methods for open access proteomics data. The stakeholders at the workshop enumerated the key principles underlying a framework for data quality assessment in mass spectrometry data that will meet the needs of the research community, journals, finding agencies, and data repositories. Attendees discussed and agreed up on two primary needs for the wide use of quality metrics: (i) an evolving list of comprehensive quality metrics and (ii) standards accompanied by software analytics. Attendees stressed the importance of increased education and training programs to promote reliable protocols in proteomics. This workshop report explores the historic precedents, key discussions, and necessary next steps to enhance the quality of open access data. By agreement, this article is published simultaneously in Proteomics, Proteomics Clinical Applications, Journal of Proteome Research, and Molecular and Cellular Proteomics, as a public service to the research community. The peer review process was a coordinated effort conducted by a panel of referees selected by the journals. C1 [Kinsinger, Christopher R.; Rahbar, Amir; Rodriguez, Henry] NCI, Off Canc Clin Prote Res, NIH, Bethesda, MD 20892 USA. [Apffel, James] Agilent Res Labs, Santa Clara, CA USA. [Baker, Mark] Macquarie Univ, Dept Chem & Biomol Sci, Sydney, NSW 2109, Australia. [Bian, Xiaopeng] NCI, Ctr Bioinformat & Informat Technol, NIH, Bethesda, MD 20892 USA. [Borchers, Christoph H.] Univ Victoria, Genome BC Prote Ctr, Victoria, BC, Canada. [Bradshaw, Ralph] Univ Calif San Francisco, Mass Spectrometry Facil, San Francisco, CA 94143 USA. [Moritz, Robert L.] Inst Syst Biol, Cellular & Mol Log Unit, Seattle, WA USA. [Chan, Daniel W.] Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD 21205 USA. [Domon, Bruno] CRP Sante, Luxembourg Clin Prote Ctr, Luxembourg, Luxembourg. [Gorman, Jeff] Queensland Inst Med Res, Prot Discovery Ctr, Herston, Qld 4006, Australia. [Grimm, Rudolf] Agilent Technol, Santa Clara, CA USA. [Hancock, William] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA. [Hermjakob, Henning] European Bioinformat Inst, Prote Serv, Cambridge, England. [Horn, David] Thermo Fisher Sci, Prote Software Strateg Mkt, San Jose, CA USA. [Hunter, Christie; Rivers, Robert] AB SCIEX, Foster City, CA USA. [Kolar, Patrik] European Commiss, Directorate Gen Res, Brussels, Belgium. [Kraus, Hans-Joachim] Wiley VCH, Weinheim, Germany. [Langen, Hanno] Hoffmann La Roche AG, Exploratory Biomarkers, Basel, Switzerland. [Linding, Rune] Tech Univ Denmark, C SIG, Ctr Biol Sequence Anal CBS, Dept Syst Biol, DK-2800 Lyngby, Denmark. [Omenn, Gilbert S.] Univ Michigan, Ctr Computat Med & Bioinformat, Ann Arbor, MI 48109 USA. [Orlando, Ron] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Pandey, Akhilesh] Johns Hopkins Univ, McKusick Nathans Inst Genet Med, Baltimore, MD USA. [Ping, Peipei] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Seymour, Sean L.] NCI, Small Business Dev Ctr, NIH, Bethesda, MD 20892 USA. [Simpson, Richard J.] La Trobe Univ, La Trobe Inst Mol Sci, Bundoora, Vic, Australia. [Slotta, Douglas] NIH, Ctr Biotechnol Informat, Bethesda, MD 20892 USA. [Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Stein, Stephen E.] NIST, Chem Reference Data Grp, Gaithersburg, MD 20899 USA. [Tabb, David L.] Vanderbilt Ingram Canc Ctr, Nashville, TN USA. [Tagle, Danilo] Natl Inst Neurol Disorders & Stroke, NIH, Bethesda, MD USA. [Yates, John R., III] Scripps Res Inst, La Jolla, CA 92037 USA. RP Kinsinger, CR (reprint author), NCI, Off Canc Clin Prote Res, NIH, 31 Ctr Dr,MSC 2580, Bethesda, MD 20892 USA. EM kinsingc@mail.nih.gov RI Simpson, Richard/A-6947-2012; Pandey, Akhilesh/B-4127-2009; Smith, Richard/J-3664-2012; Bradshaw, Ralph/K-1515-2013; OI Hermjakob, Henning/0000-0001-8479-0262; Baker, Mark/0000-0001-5858-4035; Pandey, Akhilesh/0000-0001-9943-6127; Smith, Richard/0000-0002-2381-2349; Ping, Peipei/0000-0003-3583-3881; Omenn, Gilbert S./0000-0002-8976-6074 NR 51 TC 4 Z9 4 U1 1 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1862-8346 EI 1862-8354 J9 PROTEOM CLIN APPL JI Proteom. Clin. Appl. PD DEC PY 2011 VL 5 IS 11-12 BP 580 EP 589 DI 10.1002/prca.201100097 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 865TU UT WOS:000298334000002 PM 22213554 ER PT J AU Bjornstad, DJ Wolfe, AK AF Bjornstad, David J. Wolfe, Amy K. TI Adding to the Mix: Integrating ELSI into a National Nanoscale Science and Technology Center SO SCIENCE AND ENGINEERING ETHICS LA English DT Article DE ELSI; Ethical, legal, and social issues; Nanotechnology; Center for nanophase materials sciences; Science policy ID UNITED-STATES; EMERGING TECHNOLOGIES; NANOTECHNOLOGY; NANOMEDICINE; SOCIETY; EUROPE; RISKS AB This paper describes issues associated with integrating the study of Ethical, Legal and Social Issues (ELSI) into ongoing scientific and technical research and describes an approach adopted by the authors for their own work with the center for nanophase materials sciences (CNMS) at the Oak Ridge national laboratory (ORNL). Four key questions are considered: (a) What is ELSI and how should it identify and address topics of interest for the CNMS? (b) What advantages accrue to incorporating ELSI into the CNMS? (c) How should the integration of ELSI into the CNMS take place? (d) How should one judge the effectiveness of the activity? We conclude that ELSI research is not a monolithic body of knowledge, but should be adapted to the question at hand. Our approach focuses on junctures in the R&D continuum at which key decisions occur, avoids topics of a purely ethical nature or advocacy, and seeks to gather data in ways that permit testing the validity of generalization. Integrating ELSI into the CNMS allows dealing with topics firmly grounded in science, offers concrete examples of potential downstream applications and provides access to the scientists using the CNMS and their insights and observations. As well, integration provides the opportunity for R&D managers to benefit from ELSI insights and the potential to modify R&D agendas. Successful integration is dependent on the particular ELSI question set that drives the project. In this case questions sought to identify key choices, information of value to scientists, institutional attributes, key attributes of the CNMS culture, and alternatives for communicating results. The opportunity to consult with scientists on ELSI implications is offered, but not promoted. Finally, ELSI effectiveness is judged by observing the use to which research products are put within the CNMS, ORNL, and the community of external scholars. C1 [Bjornstad, David J.; Wolfe, Amy K.] Oak Ridge Natl Lab, Div Environm Sci, Soc Technol Interact Grp, Oak Ridge, TN 37831 USA. [Bjornstad, David J.] Univ Tennessee, Howard H Baker Jr Ctr Publ Policy, Knoxville, TN USA. RP Bjornstad, DJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Soc Technol Interact Grp, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. EM bjornstaddj@ornl.gov FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [KP1603000] FX The authors would like to thank two anonymous reviewers and guest editor Erik Fisher for insightful and detailed comments on various drafts of this paper. We also thank Barry Shumpert of Oak Ridge National Laboratory for helping to incorporate recent additions to the literature in the final version of the paper and journal editor Stephanie Bird. All improved the final product. The authors accept responsibility for any remaining errors or omissions. This work is funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research through its Ethical, Legal, and Social Issues Activity (ELSI), KP1603000. NR 50 TC 3 Z9 3 U1 0 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1353-3452 EI 1471-5546 J9 SCI ENG ETHICS JI Sci. Eng. Ethics PD DEC PY 2011 VL 17 IS 4 BP 743 EP 760 DI 10.1007/s11948-011-9311-1 PG 18 WC Ethics; Engineering, Multidisciplinary; History & Philosophy Of Science; Multidisciplinary Sciences; Philosophy SC Social Sciences - Other Topics; Engineering; History & Philosophy of Science; Science & Technology - Other Topics; Philosophy GA 865TA UT WOS:000298332000012 PM 22068631 ER PT J AU Campisi, J Andersen, JK Kapahi, P Melov, S AF Campisi, Judith Andersen, Julie K. Kapahi, Pankaj Melov, Simon TI Cellular senescence: A link between cancer and age-related degenerative disease? SO SEMINARS IN CANCER BIOLOGY LA English DT Review DE Aging; Cancer; Senescence; Inflammation; Damage ID INFLAMMATORY CYTOKINE SECRETION; DNA-DAMAGE RESPONSE; IN-VIVO; HUMAN FIBROBLASTS; GENE-EXPRESSION; CELLS; MICROENVIRONMENT; MECHANISMS; PHENOTYPE; BIOMARKER AB Cellular senescence is an established cellular stress response that acts primarily to prevent the proliferation of cells that experience potentially oncogenic stress. In recent years, it has become increasingly apparent that the senescence response is a complex phenotype, which has a variety of cell non-autonomous effects. The senescence-associated secretory phenotype, or SASP, entails the secretion of numerous cytokines, growth factors and proteases. The SASP can have beneficial or detrimental effects, depending on the physiological context. One recently described beneficial effect is to aid tissue repair. Among the detrimental effects, the SASP can disrupt normal tissue structures and function, and, ironically, can promote malignant phenotypes in nearby cells. These detrimental effects in many ways recapitulate the degenerative and hyperplastic pathologies that develop during aging. Because the SASP is largely a response to genomic or epigenomic damage, we suggest it may be a model for a cellular damage response that can propagate damage signals both within and among tissues. We propose that both the degenerative and hyperplastic diseases of aging may be fueled by such damage signals. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Campisi, Judith; Andersen, Julie K.; Kapahi, Pankaj; Melov, Simon] Buck Inst Res Aging, Novato, CA 94545 USA. [Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Campisi, J (reprint author), Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94545 USA. EM jcampisi@buckinstitute.org; jandersen@buckinstitute.org; pkapahi@buckinstitute.org; smelov@buckinstitute.org FU US National Institutes of Health FX US National Institutes of Health for the authors Judith Campisi, Julie Andersen, Pankaj Kapahi and Simon Melov. NR 89 TC 124 Z9 125 U1 5 U2 33 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1044-579X J9 SEMIN CANCER BIOL JI Semin. Cancer Biol. PD DEC PY 2011 VL 21 IS 6 BP 354 EP 359 DI 10.1016/j.semcancer.2011.09.001 PG 6 WC Oncology SC Oncology GA 869BS UT WOS:000298571300003 PM 21925603 ER PT J AU Oudinot, AY Koperna, GJ Philip, ZG Liu, N Heath, JE Wells, A Young, GB Wilson, T AF Oudinot, Anne Y. Koperna, George J., Jr. Philip, Zeno G. Liu, Ning Heath, Jason E. Wells, Arthur Young, Genevieve B. Wilson, Tom TI CO2 Injection Performance in the Fruitland Coal Fairway, San Juan Basin: Results of a Field Pilot SO SPE JOURNAL LA English DT Article ID PERMEABILITY; MODEL AB The Pump Canyon CO2-enhanced coalbed methane (ECBM)/sequestration demonstration in New Mexico has the primary objective of demonstrating the feasibility of CO2 sequestration in deep, unmineable coal seams through a small-scale geologic sequestration pilot. This project is not the first of its kind; several small- or large-scale pilots were already conducted previously in the United States [Allison Unit (Reeves et al. 2003) in the San Juan, Appalachian, and Warrior basins] as well as internationally [the Recopol (Reeves and Oudinot 2002) project in Poland, and the Yubari project in Japan, Canada, and Australia]. Additional pilots are currently under way. At the project site, a new CO2-injection well was drilled within an existing pattern of coalbed-methane-production wells. Primarily operated by ConocoPhillips, these wells produce from the Late Cretaceous Fruitland coals. CO2 injection into these coal seams was initiated in late July 2008 and ceased in August 2009. A variety of monitoring, verification, and accounting (MVA) methods were employed to track the movement of the CO2 in order to determine the occurrence of leakage. Within the injection well, MVA methods included continuous measurement of injection volumes, pressures, and temperatures. The offset production wells sampled gas-production rates, pressures, and gas composition through CO2 sensors, tracers in the injected CO2, time-lapse vertical seismic profiling, and surface tiltmeter arrays. A detailed study of the overlying Kirtland shale was also conducted to investigate the integrity of this primary caprock. This information was used to develop a detailed geologic characterization and reservoir model that has been used to further understand the behavior of this reservoir. The CO2-injection pilot has ended with no significant CO2 buildup occurring in the offset production wells. However, a small but steady increase in CO2 and N-2 at two of the offset wells may have been an indication of imminent breakthrough. More recent gas samples are, however, showing a decrease in CO2 and N-2 content at those wells. This paper describes the project, covering the regulatory process and injection-well construction, the different techniques used to monitor for CO2 leakage, and the results of the modeling work. C1 [Heath, Jason E.] Sandia Natl Labs, Livermore, CA 94550 USA. [Wilson, Tom] W Virginia Univ, Morgantown, WV 26506 USA. FU Department of Energy National Energy Technology Laboratory [DE-FC26-05NT42591]; United States Government FX This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under DE-FC26-05NT42591. This technical paper was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 32 TC 13 Z9 13 U1 1 U2 13 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X J9 SPE J JI SPE J. PD DEC PY 2011 VL 16 IS 4 BP 864 EP 879 PG 16 WC Engineering, Petroleum SC Engineering GA 869CZ UT WOS:000298574600012 ER PT J AU Carey, JW Lichtner, PC AF Carey, J. William Lichtner, Peter C. TI Computational Studies of Two-Phase Cement/CO2/Brine Interaction in Wellbore Environments SO SPE JOURNAL LA English DT Article ID CEMENT AB Wellbore integrity is essential to ensuring long-term isolation of buoyant supercritical carbon dioxide (CO2) during geologic sequestration of CO2. In this paper, we summarize recent progress in numerical simulations of cement/brine/CO2 interactions with respect to migration of CO2 outside of casing. Using typical values for the hydrologic properties of cement, caprock (shale), and reservoir materials, we show that the capillary properties of good-quality cement will prevent flow of CO2 into and through cement. Rather, CO2, if present, is likely to be confined to the casing/cement or cement/formation interface. CO2 does react with the cement by diffusion from the interface into the cement, in which case it produces distinct carbonation fronts within the cement. This is consistent with observations of cement performance at the CO2-enhanced-oil-recovery Scurry Area Canyon Reef Operators Committee (SACROC) unit in west Texas (Carey et al. 2007). For poor-quality cement, flow through cement may occur and would produce a pattern of uniform carbonation without reaction fronts. We also consider an alternative explanation for cement carbonation reactions as caused by CO2 derived from caprock. We show that carbonation reactions in cement are limited to surficial reactions when CO2 pressure is low (< 10 bar), as might be expected in many caprock environments. For the case of caprock overlying natural CO2 reservoirs for millions of years, we consider the Scherer and Huet (2009) hypothesis of diffusive steady state between CO2 in the reservoir and in the caprock. We find that, in this case, the aqueous CO2 concentration would differ little from that in the reservoir and would be expected to produce carbonation reaction fronts in cements that are relatively uniform as a function of depth. C1 [Carey, J. William; Lichtner, Peter C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Carey, JW (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU US Department of Energy [04FE04-09]; CO2 Capture Project FX The authors express gratitude to the US Department of Energy Fossil Energy program (04FE04-09) and the CO2 Capture Project for financial support. NR 11 TC 7 Z9 7 U1 0 U2 5 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X J9 SPE J JI SPE J. PD DEC PY 2011 VL 16 IS 4 BP 940 EP 948 PG 9 WC Engineering, Petroleum SC Engineering GA 869CZ UT WOS:000298574600018 ER PT J AU Zhang, G Taberner, C Cartwright, L Xu, T AF Zhang, G. Taberner, C. Cartwright, L. Xu, T. TI Injection of Supercritical CO2 Into Deep Saline Carbonate Formations: Predictions From Geochemical Modeling SO SPE JOURNAL LA English DT Article ID FLUID-ROCK INTERACTION; ENHANCED OIL-RECOVERY; HIGH-PRESSURES; SEQUESTRATION; ELECTROLYTES; TEMPERATURES; SIMULATION; TRANSPORT; DISPOSAL; MEDIA AB Modeling of supercritical CO2 injection into a deep saline carbonate formation (calcite and dolomite with minor anhydrite) was performed using TOUGHREACT (Xu et al. 2006) with Pitzer ion-interaction-model implementation for handling high-salinity problems (Zhang et al. 2006). The formation-brine salinity is approximately 225,000 ppm (NaCl dominant), the temperature is 102 degrees C, and the pressure is 225 bar. The CO2 is injected through a horizontal well in a 3D model domain at a constant rate for a period of 1 year. The carbonate formation was assumed to have homogeneous porosity and permeability and to be overlain by an impermeable seal. The effect of a high-permeability fault with orientation perpendicular to the horizontal well and bounded by the impermeable overburden was evaluated. The changes in mineralogy and rock property during the injection have been assessed. The simulation results illustrate that (1) the high-permeability fault acts as a CO2 conduit; (2) a dry-out zone is developed within a few meters from the injection well because of displacement by supercritical CO2 and evaporation of water into the CO2 stream; (3) at the front of the dry-out zone, brine is further concentrated because of water evaporation into the supercritical CO2, the pH is lowered from 5.5 to 3.1, halite (NaCl) and anhydrite (CaSO4) precipitate, and the brine becomes CaCl2 dominant; (4) near-wellbore porosity reduces by approximately 5-17% (1-3 pu) because of halite precipitation in the dry-out zone; (5) HCl gas is generated from the dry-out front; (6) calcite and dolomite dissolve as the CO2 plume advances during injection; (7) anhydrite, however, slightly dissolves along the CO2 front but precipitates in the area corresponding to the CO2 plume, with higher proportions of this mineral precipitated near the wellbore dry-out zone. These findings are valuable for the assessment of injectivity changes and near-wellbore stability of saline aquifers in carbonate formations during injection of CO2. The overall mineral trapping in hundreds of years is not the focus of this paper. The method of this study is useful for further evaluation of engineering options to enhance immobile trapping of CO2 and mitigation measures for potential injectivity impairment. C1 [Xu, T.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. FU Sour Gas Center of Expertise at Shell International Exploration and Production FX Sascha van Putten, Lingli Wei, Ye Wang, and Juan Jose Pueyo are acknowledged for the critical review of the manuscript. We also thank two anonymous reviewers whose comments have improved this paper. The present work was continuously supported by the Sour Gas Center of Expertise at Shell International Exploration and Production. NR 32 TC 9 Z9 9 U1 1 U2 20 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X J9 SPE J JI SPE J. PD DEC PY 2011 VL 16 IS 4 BP 959 EP 967 PG 9 WC Engineering, Petroleum SC Engineering GA 869CZ UT WOS:000298574600020 ER PT J AU Fu, Q Huang, WH Jia, WT Rahaman, MN Liu, X Tomsia, AP AF Fu, Qiang Huang, Wenhai Jia, Weitao Rahaman, Mohamed N. Liu, Xin Tomsia, Antoni P. TI Three-Dimensional Visualization of Bioactive Glass-Bone Integration in a Rabbit Tibia Model Using Synchrotron X-Ray Microcomputed Tomography SO TISSUE ENGINEERING PART A LA English DT Article ID RADIATION MICROTOMOGRAPHY; HUMAN OSTEOBLASTS; BIOGLASS(R) 45S5; CANCELLOUS BONE; DENTAL IMPLANTS; IONIC PRODUCTS; ILIAC CREST; SCAFFOLDS; BORATE; OSTEOMYELITIS AB Synchrotron X-ray microcomputed tomography (SR microCT), with a micron resolution, was used to evaluate the osteoconduction and osteointegration by borate bioactive glass after implantation 12 weeks in a rabbit tibia model. The study focused on the biomaterial-bone interface. Results from SR microCT two-dimensional and three-dimensional (3D) reconstructions provided precise imaging of the biomaterial-bone integration and detailed microarchitecture of both the bone-like glass graft and the newly formed trabecular bone. Osteoconduction, the formation of new trabecular bone within a tibia defect, occurred only in the tibiae implanted with teicoplanin-loaded borate glass but not in those with teicoplanin-loaded CaSO(4) beads, indicating the excellent biocompatibility of the glass implants. 3D reconstruction of the tibiae also showed the infiltration of vascular tissue in both the bioactive glass graft and the new trabecular bone. This study indicates that SR microCT can serve as a valuable complementary technique for imaging bone repair when using bioactive glass implants. C1 [Fu, Qiang; Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Huang, Wenhai] Tongji Univ, Inst Bioengn & Informat Technol Mat, Shanghai 200092, Peoples R China. [Jia, Weitao] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 6, Dept Orthoped Surg, Shanghai 200030, Peoples R China. [Rahaman, Mohamed N.; Liu, Xin] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Ctr Bone & Tissue Repair & Regenerat, Rolla, MO USA. RP Fu, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM qfu@lbl.gov RI Fu, Qiang/B-1972-2013 FU National Institutes of Health/National Institute of Dental and Craniofacial Research [1 R01 DE015633]; Shanghai Committee of Science and Technology of China [084411900500, 0952nm03400]; NNFC of China [51072133]; Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institutes of Health/National Institute of Dental and Craniofacial Research Grant No. 1 R01 DE015633; the Shanghai Committee of Science and Technology of China through the major project Grant No. 084411900500 and for special projects of nanotechnology Grant No. 0952nm03400; and the NNFC of China Grant No. 51072133. We acknowledge support from the dedicated X-ray tomography beamline 8.3.2 at the Advanced Light Source, funded by Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 6 Z9 8 U1 0 U2 8 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1937-3341 J9 TISSUE ENG PT A JI Tissue Eng. Part A PD DEC PY 2011 VL 17 IS 23-24 BP 3077 EP 3084 DI 10.1089/ten.tea.2011.0068 PG 8 WC Cell & Tissue Engineering; Biotechnology & Applied Microbiology; Cell Biology SC Cell Biology; Biotechnology & Applied Microbiology GA 862GN UT WOS:000298077900018 PM 21875330 ER PT J AU Satchwell, A Cappers, P Goldman, C AF Satchwell, Andrew Cappers, Peter Goldman, Charles TI Carrots and sticks: A comprehensive business model for the successful achievement of energy efficiency resource standards SO UTILITIES POLICY LA English DT Article DE Utility regulation; Decoupling; Energy efficiency; Energy efficiency resource standard AB U.S. utilities face significant financial disincentives under traditional regulation in aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals and alternative utility business model components to align the utility's business and financial interests with state and federal energy efficiency public policy goals. We analyze the financial impacts of an Energy Efficiency Resource Standard on an Arizona electric utility using a pro-forma utility financial model, including impacts on utility earnings, ROE, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable benefits for utility customers. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Satchwell, Andrew; Goldman, Charles] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cappers, Peter] Lawrence Berkeley Natl Lab, Fayetteville, NY 13066 USA. RP Satchwell, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Mailstop 90R4000, Berkeley, CA 94720 USA. EM ASatchwell@lbl.gov; PACappers@lbl.gov; CAGoldman@lbl.gov FU U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability (OE) - Permitting, Siting and Analysis Division [DE-AC02-05CH11231]; DOE OE FX The work described in this report was funded by the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability (OE) - Permitting, Siting and Analysis Division under Contract No. DE-AC02-05CH11231. The authors would like to thank Larry Mansueti (DOE OE) for his support of this project. The authors would also like to thank Jeff Schlegel for his comments and feedback on this paper. NR 16 TC 3 Z9 3 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0957-1787 J9 UTIL POLICY JI Util. Policy PD DEC PY 2011 VL 19 IS 4 BP 218 EP 225 DI 10.1016/j.jup.2011.07.004 PG 8 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 868LV UT WOS:000298525700002 ER PT J AU Lee, BC Zuckermann, RN AF Lee, Byoung-Chul Zuckermann, Ronald N. TI Protein Side-Chain Translocation Mutagenesis via Incorporation of Peptoid Residues SO ACS CHEMICAL BIOLOGY LA English DT Article ID RIBONUCLEASE-A; CHEMICAL-SYNTHESIS; NONBIOLOGICAL POLYMER; S-PEPTIDE; LIGATION; POLYPEPTOIDS; SEMISYNTHESIS; STABILIZES; OLIGOMERS; EFFICIENT AB For the last few decades, chemistry has played an important role in protein engineering by providing a variety of synthetic tools such as chemoselective side-chain modifications, chemical conjugation, incorporation of non-natural amino acids, and the development of protein-mimetic heteropolymers. Here we study protein backbone engineering in order to better understand the molecular mechanism of protein function and to introduce protease stable, non-natural residues into a protein structure. Using a combination of genetic engineering and chemical synthesis, we were able to introduce peptoid residues (N-substituted glycine residues) at defined positions into bovine pancreatic ribonuclease A. This results in a side-chain translocation from the C alpha carbon to the neighboring backbone , nitrogen atom. To generate these peptoid substitutions, we removed the N-terminal S-peptide of the protein by proteolysis and chemically conjugated synthetic peptide-peptoid hybrids to the new N-terminus. A triple peptoid mutant containing a catalytic His12 peptoid mutation was active with a k(cat)/K(m) value of 1.0 x 10(4) m s(-1). This k(cat)/K(m) value is only 10-fold lower than the control wild-type conjugate and comparable in magnitude to many other natural enzymes. The peptoid mutations increased the chain flexibility at the site of peptoid substitution and at its C-terminal neighboring residue. Our ability to translocate side chains by one atom along the proten backbone advances a synthetic mutagenesis tool and opens up a new level of protein engineering. C1 [Lee, Byoung-Chul; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Nanostruct Facil, Mol Foundry, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Nanostruct Facil, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov RI Zuckermann, Ronald/A-7606-2014 OI Zuckermann, Ronald/0000-0002-3055-8860 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Prof. Ron Raines at the University of Wisconsin for providing the bovine pancreatic ribonuclease A plasmid pBXR. We also thank Dr. David King for the ESI-Q-FTICR mass spectrometry and Michael Connolly for valuable comments and assistance. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 51 TC 21 Z9 21 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD DEC PY 2011 VL 6 IS 12 BP 1367 EP 1374 DI 10.1021/cb200300w PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 861MW UT WOS:000298024500009 PM 21958072 ER PT J AU Phillips, CM Beeson, WT Cate, JH Marletta, MA AF Phillips, Christopher M. Beeson, William T. Cate, Jamie H. Marletta, Michael A. TI Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa SO ACS CHEMICAL BIOLOGY LA English DT Article ID FUNGUS PHANEROCHAETE-CHRYSOSPORIUM; GLYCOSIDE HYDROLASE FAMILY; OXIDOREDUCTASE; PURIFICATION; PROTEINS; BINDING; WOOD AB The high cost of enzymes for saccharification of lignocellulosic biomass is a major barrier to the production of second generation biofuels. Using a combination of genetic and biochemical techniques, we report that filamentous fungi use oxidative enzymes to cleave glycosidic bonds in cellulose. Deletion of cdh-1, the gene encoding the major cellobiose dehydrogenase of Neurospora crassa, reduced cellulase activity substantially, and addition of purified cellobiose dehydrogenases from M. thermophila to the Delta cdh-1 strain resulted in a 1.6- to 2.0-fold stimulation in cellulase activity. Addition of cellobiose dehydrogenase to a mixture of purified cellulases showed no stimulatory effect. We show that cellobiose dehydrogenase enhances cellulose degradation by coupling the oxidation of cellobiose to the reductive activation of copper-dependent polysaccharide monooxygenases (PMOs) that catalyze the insertion of oxygen into C-H bonds adjacent to the glycosidic linkage. Three of these PMOs were characterized and shown to have different regiospecifities resulting in oxidized products modified at either the reducing or nonreducing end of a glucan chain. In contrast to previous models where oxidative enzymes were thought to produce reactive oxygen species that randomly attacked the substrate, the data here support a direct,enzyme-catalyzed oxidation of cellulose. Cellobiose dehydrogenases and proteins related to the polysaccharide monooxygenases described here are found throughout both ascomycete and basidiomycete fungi, suggesting that this model for oxidative cellulose degradation may be widespread throughout the fungal kingdom. When added to mixtures of cellulases, these proteins enhance cellulose saccharification, suggesting that they could be used to reduce the cost of biofuel production. C1 [Phillips, Christopher M.; Cate, Jamie H.; Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Beeson, William T.; Cate, Jamie H.; Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H.; Marletta, Michael A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Cate, Jamie H.; Marletta, Michael A.] Univ Calif Berkeley, Div Phys Biosci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu FU NSF; Energy Biosciences Institute FX S. Bauer for advice and technical assistance with LC-MS. W. Beeson and C. Phillips are recipients of NSF predoctoral fellowships. This work was funded by a grant from the Energy Biosciences Institute to J.H.C. and M.A.M. NR 33 TC 195 Z9 199 U1 9 U2 124 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD DEC PY 2011 VL 6 IS 12 BP 1399 EP 1406 DI 10.1021/cb200351y PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 861MW UT WOS:000298024500013 PM 22004347 ER PT J AU Blessent, D Therrien, R Gable, CW AF Blessent, Daniela Therrien, Rene Gable, Carl W. TI Large-scale numerical simulation of groundwater flow and solute transport in discretely-fractured crystalline bedrock SO ADVANCES IN WATER RESOURCES LA English DT Article DE Olkiluoto; Fracture zones; Boreholes; Numerical modeling; Tetrahedra ID FINITE-ELEMENTS; POROUS-MEDIA; ROCK AB A large-scale fluid flow and solute transport model was developed for the crystalline bedrock at Olkiluoto Island, Finland, which is considered as potential deep geological repository for spent nuclear fuel. Site characterization showed that the main flow pathways in the low-permeability crystalline bedrock on the island are 13 subhorizontal fracture zones. Compared to other sites investigated in the context of deep disposal of spent nuclear fuel, most deep boreholes drilled at Olkiluoto are not packed-off but are instead left open. These open boreholes intersect the main fracture zones and create hydraulic connections between them, thus modifying groundwater flow. The combined impact of fracture zones and open boreholes on groundwater flow is simulated at the scale of the island. The modeling approach couples a geomodel that represents the fracture zones and boreholes with a numerical model that simulates fluid flow and solute transport. The geometry of the fracture zones that are intersected by boreholes is complex, and the 3D geomodel was therefore constructed with a tetrahedral mesh. The geomodel was imported into the numerical model to simulate a pumping test conducted on Olkiluoto Island. The pumping test simulation demonstrates that fracture-borehole intersections must be accurately discretized, because they strongly control groundwater flow. The tetrahedral mesh provides an accurate representation of these intersections. The calibrated flow model was then used for illustrative scenarios of radionuclide migration to show the impact of fracture zones on solute transport once the boreholes were backfilled. These mass transport simulations constitute base cases for future predictive analyses and sensitivity studies, since they represent key processes to take into consideration for repository performance assessment. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Blessent, Daniela] Ecole Polytech, Dept Civil Geol & Min Engn, Montreal, PQ H3C 3A7, Canada. [Therrien, Rene] Univ Laval, Dept Geol & Geol Engn, Quebec City, PQ G1V 0A6, Canada. [Gable, Carl W.] Los Alamos Natl Lab, Computat Earth Sci Grp, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Blessent, D (reprint author), Ecole Polytech, Dept Civil Geol & Min Engn, CP 6079,Succ Ctr Ville, Montreal, PQ H3C 3A7, Canada. EM daniela.blessent@polymtl.ca RI Blessent, Daniela/N-3248-2014; Therrien, Rene/N-3354-2014; OI Blessent, Daniela/0000-0002-8347-381X; Therrien, Rene/0000-0002-7650-0824; Gable, Carl/0000-0001-7063-0815 FU GEOIDE through Networks of Centres of Excellence of Canadian government FX This work was supported by the GEOIDE network through the Networks of Centres of Excellence program of the Canadian government. The comments and suggestions of four anonymous reviewers are greatly appreciated and have helped improve the manuscript. NR 42 TC 9 Z9 11 U1 1 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD DEC PY 2011 VL 34 IS 12 BP 1539 EP 1552 DI 10.1016/j.advwatres.2011.09.008 PG 14 WC Water Resources SC Water Resources GA 864VZ UT WOS:000298269900003 ER PT J AU Tartakovsky, AM Scheibe, TD AF Tartakovsky, A. M. Scheibe, T. D. TI Dimension reduction numerical closure method for advection-diffusion-reaction systems SO ADVANCES IN WATER RESOURCES LA English DT Article DE Model reduction; ODEs; Multiscale modeling; Coarse integration; Upscaling; Closure problem ID PORE-SCALE MODELS; TRANSPORT; CONTINUUM; SIMULATIONS AB Many natural physical processes allow different mathematical descriptions on different scales. The microscale description is usually based on fundamental conservation laws that form a closed system of ordinary differential equations (ODEs) or partial differential equations (PDEs) but the numerical discretization of these equations may produce a system of ODEs with an enormous number of unknowns. Furthermore, time integration of the microscale equations usually requires time steps that are smaller than the observation time by many orders of magnitude. A direct solution of these ODEs can be extremely expensive. Often, we are only interested in the average behavior of the microscale system rather than the exact solution of the ODEs. Here we propose a novel dimension reduction computational closure (DRNC) method that gives an approximate solution of the ODEs and provides an accurate prediction of the average behavior. The DRNC method consists of two main elements. First, effective ODEs for evolution of average variables (e.g. average velocity, concentration and mass of a mineral precipitate) are obtained by averaging the micro-scale ODEs over the entire micro-scale domain. These effective ODEs contain non-local terms in the form of volume integrals of functions of the micro-scale variables. Second, a numerical closure is used to close the system of the effective equations. The numerical closure is achieved via short bursts of the microscale model. The DRNC method is used to simulate flow and transport with mixing controlled reactions and mineral precipitation by reducing porescale (microscale) Navier-Stokes and advection-diffusion-reaction equations to ODEs for averaged velocity and concentrations. Good agreement between direct solutions of the microscale equations and DRNC solutions for different boundary conditions and Damkohler numbers confirms the accuracy and computational efficiency of DRNC method. The DRNC method significantly accelerates microscale simulations, while providing accurate approximation of the microscale solution and accurate prediction of the average behavior of the system. (C) 2011 Published by Elsevier Ltd. C1 [Tartakovsky, A. M.; Scheibe, T. D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM alexandre.tartakovsky@pnl.gov RI Scheibe, Timothy/A-8788-2008 OI Scheibe, Timothy/0000-0002-8864-5772 FU Office of Science, US Department of Energy; Pacific Northwest National Laboratory; US Department of Energy by Battelle [DE-AC06-76RL01830] FX This research was supported in part by the Scientific Discovery through Advanced Computing Program of the Office of Science, US Department of Energy and the Laboratory Directed Research and Development program at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract DE-AC06-76RL01830. NR 24 TC 8 Z9 8 U1 0 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD DEC PY 2011 VL 34 IS 12 BP 1616 EP 1626 DI 10.1016/j.advwatres.2011.07.011 PG 11 WC Water Resources SC Water Resources GA 864VZ UT WOS:000298269900009 ER PT J AU Pan, LH Webb, SW Oldenburg, CM AF Pan, Lehua Webb, Stephen W. Oldenburg, Curtis M. TI Analytical solution for two-phase flow in a wellbore using the drift-flux model SO ADVANCES IN WATER RESOURCES LA English DT Article DE Wellbore flow; Analytical solution; Two-phase flow; Production from wells; Geologic carbon sequestration; Well leakage ID ANNULI; TUBES AB This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO(2) leakage problem as well as to field data from a CO(2) production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO(2) is leaking upward responds to the mass flow rate of CO(2)-water mixture. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Pan, Lehua; Oldenburg, Curtis M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Webb, Stephen W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pan, LH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, MS 9016,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM LPAN@lbl.gov RI Oldenburg, Curtis/L-6219-2013; Pan, Lehua/G-2439-2015 OI Oldenburg, Curtis/0000-0002-0132-6016; FU Joint Industry Program (JIP); National Risk Assessment Partnership through the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL); Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the CO2 Capture Project (CCP) of the Joint Industry Program (JIP), by the National Risk Assessment Partnership through the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. We thank James E. Houseworth (LBNL) for comments on an earlier draft, and three anonymous reviewers who provided comments that helped us improve the paper. NR 21 TC 21 Z9 21 U1 0 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD DEC PY 2011 VL 34 IS 12 BP 1656 EP 1665 DI 10.1016/j.advwatres.2011.08.009 PG 10 WC Water Resources SC Water Resources GA 864VZ UT WOS:000298269900012 ER PT J AU Butcher, T AF Butcher, Thomas TI Performance of Combination Hydronic Systems SO ASHRAE JOURNAL LA English DT Article C1 Brookhaven Natl Lab, Energy Convers Grp, Upton, NY 11973 USA. RP Butcher, T (reprint author), Brookhaven Natl Lab, Energy Convers Grp, Upton, NY 11973 USA. FU New York State Energy Research and Development Authority; National Oilheat Research Alliance FX This work has been sponsored by the New York State Energy Research and Development Authority and the National Oilheat Research Alliance. NR 10 TC 3 Z9 3 U1 2 U2 5 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD DEC PY 2011 VL 53 IS 12 BP 36 EP 41 PG 6 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 861OE UT WOS:000298028300015 ER PT J AU Cooperman, A Dieckmann, J Brodrick, J AF Cooperman, Alissa Dieckmann, John Brodrick, James TI Residential Evaporative Cooling Water/Electricity Trade-Offs SO ASHRAE JOURNAL LA English DT Article AB Evaporative cooling saves energy by using the heat of vaporization of water to provide cooling directly or to reduce the condensing temperature of active cooling. The evaporated water is consumed in the sense that the water vapor is dissipated to the atmosphere and must be continually replaced from a liquid water source, usually from a municipal water system. This month's column will cover the basic trade-off involved in avoided electric energy consumption vs. water consumption from the residential consumer's point of view, comparing water costs incurred with evaporative cooling with avoided electric energy costs. C1 [Cooperman, Alissa; Dieckmann, John] TIAX LLC, Mech Syst Grp, Lexington, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Cooperman, A (reprint author), TIAX LLC, Mech Syst Grp, Lexington, MA USA. NR 2 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD DEC PY 2011 VL 53 IS 12 BP 118 EP 120 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 861OE UT WOS:000298028300019 ER PT J AU Eltarras, R Eltoweissy, M AF Eltarras, Ramy Eltoweissy, Mohamed TI Associative routing for wireless sensor networks SO COMPUTER COMMUNICATIONS LA English DT Article DE Associative routing; Routing protocol; Adaptive routing; Wireless sensor networks; Multi-criteria routing ID DART AB Traditionally routing in computer networks has focused on finding paths along which data packets could be delivered to pre-identified destination nodes. Most existing routing protocols rely on the use of network addresses as unique node or group identifiers that are usually numeric and independent of any application semantics. The semantically-oblivious identification has forced network designers to incorporate resource/service discovery techniques at higher layers of the network stack, resulting in unnecessary overhead. While such overhead can be tolerated in high-speed wired networks, it significantly limits performance and network lifetime in wireless infrastructure-less networks with battery-powered resource-constrained devices like sensor networks. Moreover. sensor nodes are more naturally anonymous and therefore assigning unique identifiers to individual node limits network scalability and imposes significant overhead on resource management. In this paper, we propose associative routing as a class of routing protocols that enables dynamic semantically-rich descriptive identification of network resources and services. As such, associative routing presents a clear departure from most current network addressing schemes, eliminating the need for a separate phase of resource/service discovery. We hypothesize that since, in essence, resource discovery operates similarly to path discovery then both can be performed in a single phase, leading to significant reduction in traffic load and communication latency without any loss of generality. We also propose a framework for associative routing and present adaptive multi-criteria routing (AMCR) protocol as a realization of associative routing for sensor networks. AMCR exploits application-specific message semantics, represented as generic criteria, and adapts its operation according to observed traffic patterns. Analytical results demonstrate the effectiveness, efficiency, and scalability of AMCR. (C) 2011 Elsevier B.V. All rights reserved. C1 [Eltarras, Ramy] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Eltoweissy, Mohamed] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Eltarras, R (reprint author), Virginia Polytech Inst & State Univ, 118 N Main St 0337, Blacksburg, VA 24061 USA. EM ramy@vt.edu FU NSF [0721523] FX This work is sponsored in part by NSF award 0721523. NR 19 TC 2 Z9 2 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-3664 J9 COMPUT COMMUN JI Comput. Commun. PD DEC 1 PY 2011 VL 34 IS 18 BP 2162 EP 2173 DI 10.1016/j.comcom.2011.01.010 PG 12 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 861NZ UT WOS:000298027700004 ER PT J AU Zhang, YQ Pan, LH Pruess, K Finsterle, S AF Zhang, Yingqi Pan, Lehua Pruess, Karsten Finsterle, Stefan TI A time-convolution approach for modeling heat exchange between a wellbore and surrounding formation SO GEOTHERMICS LA English DT Article DE Wellbore model; Heat exchange; Geothermal; Geological CO(2) storage AB In oil, gas, and geothermal energy production, as well as geological CO(2) storage, the target formation is typically deeper than 1000 meters. As a result, associated wellbores have a large heat exchange area with the surrounding formation. Large gradients and temporal variations in temperature induced by the injection and production of fluids require accurate and efficient ways to calculate the heat exchange between fluids in the wellbore and the formation. One way to calculate this heat exchange is to fully discretize and numerically model the formation that surrounds the wellbore. However, because only the energy equation needs to be solved (i.e., there is no fluid exchange between the cased wellbore and the formation), this approach is computationally inefficient. In this work, we propose a lime-convolution method, where only the wellbore is fully discretized, and heat exchange between fluids in the wellbore and the formation is calculated using semi-analytical solutions of radial conductive heat flow. The time-dependent temperature evolution in the wellbore is calculated numerically using a wellbore simulator for non-isothermal, multiphase fluid mixtures. At each time step, radial heat transfer with the formation is calculated by superposition of analytical solutions of heat flow that are dependent on the temperature differences between subsequent time steps. This coupling scheme is implemented in the TOUGH2 suite of reservoir simulators. To verify the proposed semi-analytical method and demonstrate its applicability. we present examples and compare them to full numerical solutions. (C) 2011 Elsevier Ltd. A I rights reserved. C1 [Zhang, Yingqi; Pan, Lehua; Pruess, Karsten; Finsterle, Stefan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, YQ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM yqzhang@lbl.gov RI Finsterle, Stefan/A-8360-2009; Zhang, Yingqi/D-1203-2015; Pan, Lehua/G-2439-2015 OI Finsterle, Stefan/0000-0002-4446-9906; FU Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-FOA-0000075] FX The authors wish to thank Chris Doughty, Pat Dobson, and Curt Oldenburg (LBNL) for their very constructive comments. This work was supported by Lawrence Berkeley National Laboratory under U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, Contract No. DE-FOA-0000075: Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis. NR 17 TC 11 Z9 11 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 J9 GEOTHERMICS JI Geothermics PD DEC PY 2011 VL 40 IS 4 BP 261 EP 266 DI 10.1016/j.geothermics.2011.08.003 PG 6 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA 862DT UT WOS:000298070700003 ER PT J AU Chen, H Meyerhofer, DD Wilks, SC Cauble, R Dollar, F Falk, K Gregori, G Hazi, A Moses, EI Murphy, CD Myatt, J Park, J Seely, J Shepherd, R Spitkovsky, A Stoeckl, C Szabo, CI Tommasini, R Zulick, C Beiersdorfer, P AF Chen, Hui Meyerhofer, D. D. Wilks, S. C. Cauble, R. Dollar, F. Falk, K. Gregori, G. Hazi, A. Moses, E. I. Murphy, C. D. Myatt, J. Park, J. Seely, J. Shepherd, R. Spitkovsky, A. Stoeckl, C. Szabo, C. I. Tommasini, R. Zulick, C. Beiersdorfer, P. TI Towards laboratory produced relativistic electron-positron pair plasmas SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Positron; Picosecond laser ID INTENSE LASER-PULSES; PARTICLE-ACCELERATION; COLLISIONLESS SHOCKS; ASTROPHYSICAL SHOCKS; ULTRAINTENSE LASERS; ANTIMATTER PLASMAS; FEMTOSECOND-LASER; SOLID TARGETS; GENERATION; PHOTON AB We review recent experimental results on the path to producing electron-positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 10(16) cm(-3) and 10(13) cm(-3), respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 10(18) cm(-3), relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chen, Hui; Wilks, S. C.; Cauble, R.; Hazi, A.; Moses, E. I.; Park, J.; Shepherd, R.; Tommasini, R.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Meyerhofer, D. D.; Myatt, J.; Stoeckl, C.] Univ Rochester, LLE, Rochester, NY 14623 USA. [Dollar, F.; Zulick, C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Falk, K.; Gregori, G.; Murphy, C. D.] Univ Oxford, Oxford, England. [Seely, J.; Szabo, C. I.] USN, Res Lab, Washington, DC 20375 USA. [Spitkovsky, A.] Princeton Univ, Princeton, NJ 08544 USA. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM chen33@llnl.gov RI Dollar, Franklin/C-9214-2013; Falk, Katerina/D-2369-2017; Tommasini, Riccardo/A-8214-2009 OI Dollar, Franklin/0000-0003-3346-5763; Falk, Katerina/0000-0001-5975-776X; Tommasini, Riccardo/0000-0002-1070-3565 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LDRD [10-ERD-044] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by LDRD # 10-ERD-044. We are thankful for the support and discussion with Drs. Don Correll, Bill Goldstein, Chris Keane and Bruce Remington. NR 44 TC 22 Z9 22 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 225 EP 229 DI 10.1016/j.hedp.2011.05.006 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400003 ER PT J AU Galloudec, NRL Cobble, J Nelson, SL Merwin, A Paudel, Y Shrestha, I Osborne, GC Williamson, KM Kantsyrev, VL AF Galloudec, Nathalie Renard-Le Cobble, J. Nelson, S. L. Merwin, A. Paudel, Y. Shrestha, I. Osborne, G. C. Williamson, K. M. Kantsyrev, V. L. TI Advantages of a soft protective layer for good signal-to-noise ratio proton radiographs in high debris environments SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Proton radiography; CR39; Debris; Z-pinch; NIF ID OMEGA-LASER FACILITY; X-RAY POWER; IMPLOSIONS; ENHANCEMENT; TRACKS; CR-39 AB Proton radiography is a very powerful diagnostic but in some high debris environments it may be challenging to get a good signal-to-noise ratio radiograph to gain insights into the electric and magnetic field topology, and thus the basic physics. Such environments are produced for example on z-pinches and also on lasers such as the National Ignition Facility. We demonstrate here the feasibility of clean, very high signal-to-noise ratio proton radiographs in extremely hostile environments. (C) 2011 Elsevier B.V. All rights reserved. C1 [Galloudec, Nathalie Renard-Le; Merwin, A.; Paudel, Y.] Univ Nevada, Dept Phys, Nevada Terawatt Facil, Reno, NV 89557 USA. [Cobble, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nelson, S. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Galloudec, NRL (reprint author), Univ Nevada, Dept Phys, Nevada Terawatt Facil, Reno, NV 89557 USA. EM nathalie@unr.edu FU National Nuclear Security Administration, University of Nevada Reno [DE-FC52-03NA00156]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL [09-ERD-085] FX This work was supported by the National Nuclear Security Administration under cooperative agreements DE-FC52-03NA00156 at the University of Nevada Reno, performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and funded in part by the Laboratory Directed Research and Development Program at LLNL under project tracking code 09-ERD-085. NR 41 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 247 EP 251 DI 10.1016/j.hedp.2011.05.012 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400007 ER PT J AU Colvin, JD Fournier, KB Kane, J Langer, S May, MJ Scott, HA AF Colvin, Jeffrey D. Fournier, Kevin B. Kane, Jave Langer, Steven May, Mark J. Scott, Howard A. TI A computational study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Radiation sources; X-ray emission; High-Z emitters; NIF ID CONVERSION EFFICIENCY; PLASMAS AB We have begun to use 350-500 kJ of 1/3-micron laser light from the National Ignition Facility (NIF) laser to create millimeter-scale, bright multi-keV x-ray sources. In the first set of shots we achieved 15%-18% x-ray conversion efficiency into Xe M-shell (similar to 1.5-2.5 keV), Ar K-shell (similar to 3 keV) and Xe L-shell (similar to 4-5.5 keV) emission (Fournier et al., Phys. Plasmas 17, 082701, 2010), in good agreement with the emission modeled using a 2D radiation-hydrodynamics code incorporating a modern Detailed Configuration Accounting atomic model in non-LTE (Colvin et al., Phys. Plasmas, 17, 073111, 2010). In this paper we first briefly review details of the computational model and comparisons of the simulations with the Ar/Xe NIF data. We then discuss a computational study showing sensitivity of the x-ray emission to various beam illumination details (beam configuration, pointing, peak power, pulse shape, etc.) and target parameters (size, initial density, etc.), and finally make some predictions of how the x-ray conversion efficiency expected from NIF shots scales with atomic number of the emitting plasma. (C) 2011 Elsevier B.V. All rights reserved. C1 [Colvin, Jeffrey D.; Fournier, Kevin B.; Kane, Jave; Langer, Steven; May, Mark J.; Scott, Howard A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Colvin, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM colvin5@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; US Defense Threat Reduction Agency under the IACRO [09-45501] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (LLNL) under contract No. DE-AC52-07NA27344, with some support received from the US Defense Threat Reduction Agency under the IACRO 09-45501, "Evaluation of Lasers for X-Ray Production on NIF". One of the authors (JDC) would like to thank Judy Harte of LLNL for help with the Lasnex simulations, Denise Hinkel of LLNL for help with the LIP simulations, and Mordy Rosen of LLNL for useful discussions. NR 30 TC 15 Z9 15 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 263 EP 270 DI 10.1016/j.hedp.2011.05.009 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400010 ER PT J AU Kritcher, AL Doppner, T Fortmann, C Landen, OL Wallace, R Glenzer, SH AF Kritcher, A. L. Doeppner, T. Fortmann, C. Landen, O. L. Wallace, R. Glenzer, S. H. TI Development of X-ray Thomson scattering for implosion target characterization SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE K-alpha X-ray scattering; Thomson scattering; Compton scattering; Shock compression ID NATIONAL-IGNITION-FACILITY; DENSITY PLASMAS; MATTER AB X-ray Thomson scattering from spherically imploding, direct-drive capsules is used to study the in-flight density, temperature, and ionization state at electron densities of up to similar to 10(24) cm(-3). We present scattering data from Be cone-in-shell targets with similar to 2 x 10(6) photons in the scattered spectrum. These measurements display the ability for single-shot characterization of the shell conditions in capsule implosions. This is important for diagnosing inertial confinement fusion experiments that determine the likelihood of ignition at the National Ignition Facility (NIF), LLNL. We will discuss the experimental geometry, or platform, and the outlook for further improvement of the signal-to-noise. Published by Elsevier B.V. C1 [Kritcher, A. L.; Doeppner, T.; Fortmann, C.; Landen, O. L.; Wallace, R.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Fortmann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Kritcher, AL (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. EM Kritcher2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Alexander von Humboldt-Foundation; National Laboratory User Facility, Laboratory Directed Research and Development [11-ER-050, 08-LW- 004] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and C.F. is supported by the Alexander von Humboldt-Foundation. Work was also supported by the National Laboratory User Facility, Laboratory Directed Research and Development Grants No. 11-ER-050 and No. 08-LW- 004. NR 28 TC 3 Z9 3 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 271 EP 276 DI 10.1016/j.hedp.2011.05.013 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400011 ER PT J AU Girard, F Primout, M Villette, B Brebion, D Nishimura, H Fournier, KB AF Girard, F. Primout, M. Villette, B. Brebion, D. Nishimura, H. Fournier, K. B. TI Experimental X-ray characterization of Gekko-XII laser propagation through very low-density aerogels (2-5 mg/cc) creating multi-keV photons from a titanium solid foil SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Aerogel; Titanium foil; Multi-keV X-ray; GEKKO-XII AB This work describes measurements of laser propagation through very low-density aerogels and subsequent multi-keV photon production from titanium foils. For efficient foil heating, SiO(2) aerogel with densities of 2 and 5 mg/cm(3) have been cast into a plastic cylinder, which are then mounted to Ti foils that are 3-20 mu m thick. Experiments have been performed on the GEKKO-XII laser facility to characterize laser propagation through the aerogel and X-ray production from the Ti foil. Multi-keV emission is diagnosed with a full set of diagnostics giving laser-to-X-ray conversion efficiencies, time-dependent X-ray power and two-dimensional X-ray imaging. (C) 2011 Elsevier B.V. All rights reserved. C1 [Girard, F.; Primout, M.; Villette, B.; Brebion, D.] CEA, DAM, DIF, F-97297 Arpajon, France. [Nishimura, H.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Fournier, K. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Girard, F (reprint author), CEA, DAM, DIF, F-97297 Arpajon, France. EM frederic.girard@cea.fr RI Nishimura, Hiroaki/I-4908-2015 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52- 07NA27344] FX K.B. Fournier's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52- 07NA27344. NR 6 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 285 EP 287 DI 10.1016/j.hedp.2011.05.004 PG 3 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400013 ER PT J AU Hansen, SB Jones, B Giuliani, JL Apruzese, JP Thornhill, JW Scott, HA Ampleford, DJ Jennings, CA Coverdale, CA Cuneo, ME Rochau, GA Bailey, JE Dasgupta, A Clark, RW Davis, J AF Hansen, S. B. Jones, B. Giuliani, J. L. Apruzese, J. P. Thornhill, J. W. Scott, H. A. Ampleford, D. J. Jennings, C. A. Coverdale, C. A. Cuneo, M. E. Rochau, G. A. Bailey, J. E. Dasgupta, A. Clark, R. W. Davis, J. TI Doppler effects on 3-D non-LTE radiation transport and emission spectra SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Collisional-radiative; Non-LTE; Spectroscopic; Radiative transfer ID Z-PINCHES; EQUATION; PLASMA; STATE; APPROXIMATION; MODEL; DENSE; IONS AB Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission and absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L-and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hansen, S. B.; Ampleford, D. J.; Jennings, C. A.; Coverdale, C. A.; Cuneo, M. E.; Rochau, G. A.; Bailey, J. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Jones, B.; Giuliani, J. L.; Apruzese, J. P.; Thornhill, J. W.; Dasgupta, A.; Clark, R. W.; Davis, J.] USN, Div Plasma Phys, Res Lab, Washington, DC 20375 USA. [Scott, H. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hansen, SB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sbhanse@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC5-207NA27344] FX We are grateful to C. Nakhleh and M. Herrmann for support and to the editor for helpful comments. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. The work of H.A. Scott was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC5-207NA27344. NR 41 TC 10 Z9 10 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 303 EP 311 DI 10.1016/j.hedp.2011.06.002 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400016 ER PT J AU Gilles, D Turck-Chieze, S Loisel, G Piau, L Ducret, JE Poirier, M Blenski, T Thais, F Blancard, C Cosse, P Faussurier, G Gilleron, F Pain, JC Porcherot, Q Guzik, JA Kilcrease, DP Magee, NH Harris, J Busquet, M Delahaye, F Zeippen, CJ Bastiani-Ceccotti, S AF Gilles, D. Turck-Chieze, S. Loisel, G. Piau, L. Ducret, J. -E. Poirier, M. Blenski, T. Thais, F. Blancard, C. Cosse, P. Faussurier, G. Gilleron, F. Pain, J. C. Porcherot, Q. Guzik, J. A. Kilcrease, D. P. Magee, N. H. Harris, J. Busquet, M. Delahaye, F. Zeippen, C. J. Bastiani-Ceccotti, S. TI Comparison of Fe and Ni opacity calculations for a better understanding of pulsating stellar envelopes SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Absorption spectra; Rosseland and Planck opacity coefficients; Stellar plasma; Ionization ID LOCAL-DENSITY APPROXIMATION; NU-ERIDANI; CODE; CONSTRAINTS; STARS; IRON; OP AB Opacity is an important ingredient of the evolution of stars. The calculation of opacity coefficients is complicated by the fact that the plasma contains partially ionized heavy ions that contribute to opacity dominated by H and He. Up to now, the astrophysical community has greatly benefited from the work of the contributions of Los Alamos [1], Livermore [2] and the Opacity Project (OP) [3]. However unexplained differences of up to 50% in the radiative forces and Rosseland mean values for Fe have been noticed for conditions corresponding to stellar envelopes. Such uncertainty has a real impact on the understanding of pulsating stellar envelopes, on the excitation of modes, and on the identification of the mode frequencies. Temperature and density conditions equivalent to those found in stars can now be produced in laboratory experiments for various atomic species. Recently the photo-absorption spectra of nickel and iron plasmas have been measured during the LULI 2010 campaign, for temperatures between 15 and 40 eV and densities of similar to 3 mg/cm(3). A large theoretical collaboration, the "OPAC", has been formed to prepare these experiments. We present here the set of opacity calculations performed by eight different groups for conditions relevant to the LULI 2010 experiment and to astrophysical stellar envelope conditions. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gilles, D.; Turck-Chieze, S.; Loisel, G.; Piau, L.; Ducret, J. -E.] CEA IRFU SAp, F-91191 Gif Sur Yvette, France. [Poirier, M.; Blenski, T.; Thais, F.] CEA IRAMIS SPAM, F-91191 Gif Sur Yvette, France. [Blancard, C.; Cosse, P.; Faussurier, G.; Gilleron, F.; Pain, J. C.; Porcherot, Q.] CEA DAM DIF, F-91297 Arpajon, France. [Guzik, J. A.; Kilcrease, D. P.; Magee, N. H.] LANL, Div Theoret, Los Alamos, NM 87545 USA. [Harris, J.] AWE, Reading RG7 4PR, Berks, England. [Busquet, M.] ARTEP, Ellicott City, MD 21042 USA. [Delahaye, F.; Zeippen, C. J.] Observ Paris, LERMA, Paris, France. [Bastiani-Ceccotti, S.] UPMC, LULI, Ecole Polytech, CNRS,CEA, F-91128 Palaiseau, France. RP Gilles, D (reprint author), CEA IRFU SAp, F-91191 Gif Sur Yvette, France. EM dominique.gilles@cea.fr OI Pain, Jean-Christophe/0000-0002-7825-1315; Kilcrease, David/0000-0002-2319-5934 NR 42 TC 27 Z9 27 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 312 EP 319 DI 10.1016/j.hedp.2011.06.001 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400017 ER PT J AU Welser-Sherrill, L Fincke, JR Lanier, NE AF Welser-Sherrill, L. Fincke, J. R. Lanier, N. E. TI Complex hydrodynamics in heated and shocked conditions SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Inertial confinement fusion; Radiation transport; Mix AB In inertial confinement fusion double-shell designs, the inner shell experiences heating that can amplify non-uniformities and consequently enhance mixing, which degrades capsule performance. Recent OMEGA experiments study the time-dependent evolution of mix under heated and shocked conditions. In each experiment, a cylindrical Be tube was filled with a layered system of a BeCu disk and low-density CH foam. The BeCu disks were machined with a multi-mode perturbation representative of the target surface roughness present in ICF capsules. The targets were heated from one end using a hohlraum and subsequently shocked using direct-drive from the opposite end. X-ray radiography was used to quantitatively diagnose the transmission profiles of the disk/foam interface. We focus primarily on an assessment of the applicability of the radiation transport models available in the RAGE (Radiation Adaptive Grid Eulerian) hydrodynamics code. These include grey diffusion, several types of multi-group diffusion, and a new frequency-dependent source capability that addresses the NLTE nature of the laser energy deposition. (C) 2011 Elsevier B.V. All rights reserved. C1 [Welser-Sherrill, L.; Fincke, J. R.; Lanier, N. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Welser-Sherrill, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lwelser@lanl.gov FU Los Alamos National Security, LLC [DE-AC52-06NA25396] FX The authors would like to gratefully acknowledge the contributions of the following LANL scientists: Rick Rauenzahn (FDS model development and implementation), Glenn Magelssen (independent simulations), and Christopher Fontes (multi-group analytic model). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, under contract DE-AC52-06NA25396 for the U.S. Department of Energy. NR 3 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 327 EP 335 DI 10.1016/j.hedp.2011.06.003 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400019 ER PT J AU Iwan, B Andreasson, J Andrejczuk, A Abreu, E Bergh, M Caleman, C Nelson, AJ Bajt, S Chalupsky, J Chapman, HN Faustlin, RR Hajkova, V Heimann, PA Hjorvarsson, B Juha, L Klinger, D Krzywinski, J Nagler, B Palsson, GK Singer, W Seibert, MM Sobierajski, R Toleikis, S Tschentscher, T Vinko, SM Lee, RW Hajdu, J Timneanu, N AF Iwan, B. Andreasson, J. Andrejczuk, A. Abreu, E. Bergh, M. Caleman, C. Nelson, A. J. Bajt, S. Chalupsky, J. Chapman, H. N. Faeustlin, R. R. Hajkova, V. Heimann, P. A. Hjorvarsson, B. Juha, L. Klinger, D. Krzywinski, J. Nagler, B. Palsson, G. K. Singer, W. Seibert, M. M. Sobierajski, R. Toleikis, S. Tschentscher, T. Vinko, S. M. Lee, R. W. Hajdu, J. Timneanu, N. TI TOF-OFF: A method for determining focal positions in tightly focused free-electron laser experiments by measurement of ejected ions SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE X-ray free-electron laser; FLASH; Ion acceleration; Time-of-flight ion spectrometry; Ablation; Crater formation; Focus determination ID X-RAY PULSES; HYDRODYNAMIC SIMULATION; MOLECULAR-SOLIDS; WAVELENGTH; CLUSTERS; MATTER AB Pulse intensities greater than 10(17) Watt/cm(2) were reached at the FLASH soft X-ray laser in Hamburg, Germany, using an off-axis parabolic mirror to focus 15 fs pulses of 5-70 mu J energy at 13.5 nm wavelength to a micron-sized spot. We describe the interaction of such pulses with niobium and vanadium targets and their deuterides. The beam produced craters in the solid targets, and we measured the kinetic energy of ions ejected from these craters. Ions with several keV kinetic energy were observed from craters approaching 5 mu m in depth when the sample was at best focus. We also observed the onset of saturation in both ion acceleration and ablation with pulse intensities exceeding 10(16) W/cm(2), when the highest detected ion energies and the crater depths tend to saturate with increasing intensity. A general difficulty in working with micron and sub-micron focusing optics is finding the exact focus of the beam inside a vacuum chamber. Here we propose a direct method to measure the focal position to a resolution better than the Rayleigh length. The method is based on the correlation between the energies of ejected ions and the physical dimensions of the craters. We find that the focus position can be quickly determined from the ion time-of-flight (TOF) data as the target is scanned through the expected focal region. The method does not require external access to the sample or venting the vacuum chamber. Profile fitting employed to analyze the TOF data can extend resolution beyond the actual scanning step size. (C) 2011 Elsevier B.V. All rights reserved. C1 [Iwan, B.; Andreasson, J.; Abreu, E.; Seibert, M. M.; Hajdu, J.; Timneanu, N.] Uppsala Univ, Lab Mol Biophys, Dept Cell & Mol Biol, SE-75124 Uppsala, Sweden. [Andrejczuk, A.] Univ Bialystok, Fac Phys, PL-15424 Bialystok, Poland. [Abreu, E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Bergh, M.] Swedish Def Res Agcy, SE-16490 Stockholm, Sweden. [Caleman, C.; Chapman, H. N.] DESY, Ctr Free Electron Laser Sci, DE-22607 Hamburg, Germany. [Nelson, A. J.; Lee, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bajt, S.; Faeustlin, R. R.; Singer, W.; Toleikis, S.] Deutsch Elektronen Synchrotron DESY, DE-22607 Hamburg, Germany. [Chalupsky, J.; Hajkova, V.; Juha, L.] Inst Phys ASCR, CZ-18821 Prague 8, Czech Republic. [Chapman, H. N.] Univ Hamburg, Dept Phys, DE-22761 Hamburg, Germany. [Heimann, P. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hjorvarsson, B.; Palsson, G. K.] Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. [Klinger, D.; Sobierajski, R.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Krzywinski, J.; Nagler, B.; Lee, R. W.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Sobierajski, R.] FOM Inst Plasma Phys Rijnhuizen, NL-3430 Nieuwegein, Netherlands. [Tschentscher, T.] European XFEL GmbH, DE-22761 Hamburg, Germany. [Vinko, S. M.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. RP Timneanu, N (reprint author), Uppsala Univ, Lab Mol Biophys, Dept Cell & Mol Biol, Box 596, SE-75124 Uppsala, Sweden. EM nicusor@xray.bmc.uu.se RI Chapman, Henry/G-2153-2010; Hjorvarsson, Bjorgvin/B-3022-2011; Timneanu, Nicusor/C-7691-2012; Sobierajski, Ryszard/E-7619-2012; Andrejczuk, Andrzej/B-4031-2013; Vinko, Sam/I-4845-2013; Hajkova, Vera/G-9391-2014; Chalupsky, Jaromir/H-2079-2014; Bajt, Sasa/G-2228-2010; Klinger, Dorota/K-8819-2016 OI Hjorvarsson, Bjorgvin/0000-0003-1803-9467; Chapman, Henry/0000-0002-4655-1743; Timneanu, Nicusor/0000-0001-7328-0400; Andrejczuk, Andrzej/0000-0001-9736-6321; Vinko, Sam/0000-0003-1016-0975; FU Swedish Research Council; Helmoltz Association [VH-VI-302]; Helmholtz Association through the Center for Free Electron Laser Research; DFG Cluster of Excellence at the Munich Center for Advanced Photonics; Portuguese Science and Technology Foundation; Czech Ministry of Education [LC510, LC528, ME10046, LA08024]; Academy of Sciences [AV0Z10100523, IAAX00100903, KAN300100702]; MSHE of Poland [DESY/68/2007]; UPPMAX [p2009018]; European Union [RII3-CT-2004-506008] FX We thank the staff at FLASH for the help during the experiment. This work was supported by the following agencies: The Swedish Research Council, the Virtual Institute Program of the Helmoltz Association (VH-VI-302), the Helmholtz Association through the Center for Free Electron Laser Research, the DFG Cluster of Excellence at the Munich Center for Advanced Photonics, the Portuguese Science and Technology Foundation, the Czech Ministry of Education (LC510, LC528, ME10046 and LA08024) and Academy of Sciences (AV0Z10100523, IAAX00100903, and KAN300100702), and the MSHE of Poland, SPB nr.DESY/68/2007. Computations were performed on UPPMAX under project p2009018. SEM measurements were performed at the Microscopy and Microanalysis Group, Chalmers University of Technology. Access to FLASH was supported by the European Union under contract RII3-CT-2004-506008 (IA-SFS). NR 40 TC 3 Z9 3 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 336 EP 342 DI 10.1016/j.hedp.2011.06.008 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400020 ER PT J AU Kaganovich, ID Startsev, EA Davidson, RC AF Kaganovich, Igor D. Startsev, Edward A. Davidson, Ronald C. TI Thin foil transformation into liquid droplets due to the Rayleigh-Taylor instability in NDCX-1 experiments SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Liquid droplets; Rayleigh-Taylor instability; NDCX-1 experiment AB It is proposed that a likely scenario for droplet formation in the NDCX-I experiments is a result of the Rayleigh-Taylor instability for targets with a thickness larger than the range of ions in the film (similar to 100 nm for NDCX-I parameters). (C) 2011 Elsevier B.V. All rights reserved. C1 [Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kaganovich, ID (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ikaganov@pppl.gov FU U.S. Department of Energy FX Research supported by the U.S. Department of Energy. NR 13 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 343 EP 345 DI 10.1016/j.hedp.2011.06.009 PG 3 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400021 ER PT J AU Scott, HA Whelan, CT Glenzer, SH AF Scott, H. A. Whelan, Colm T. Glenzer, S. H. TI A study of the contribution of doubly excited ionic states to the properties of hot dense high-Z plasmas SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Dielectronic recombination; Autoionization; X-ray emission ID CONFINEMENT FUSION IMPLOSIONS; DIELECTRONIC RECOMBINATION; ENERGY-BALANCE; IONIZATION AB The role of two-electron processes, i.e. dielectronic recombination and autoionization, in the ionization balance and X-ray emission of hot dense plasmas composed of various high-Z materials is explored. Tungsten, gold, lead and uranium are considered. It is shown that the average ion charge and the high-energy emissivity are both sensitive to the dielectronic recombination rate. A systematic study demonstrates the degree of this sensitivity. It is found that the complete neglect of these 2-electron processes introduces a large error but once included, the key physical properties are quite insensitive to the rate over the important 2-3 keV temperature range. The high-energy emissivity depends strongly on temperature, peaking at conditions corresponding to a closed shell system, and on the square of the electron density, as for a coronal system. (C) 2011 Elsevier B.V. All rights reserved. C1 [Scott, H. A.; Whelan, Colm T.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Whelan, Colm T.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Scott, HA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hascott@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 25 TC 1 Z9 1 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 371 EP 376 DI 10.1016/j.hedp.2011.08.001 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400025 ER PT J AU Iglesias, CA Sonnad, V AF Iglesias, Carlos A. Sonnad, Vijay TI Algorithm comparisons for Stark-profile calculations SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Stark broadening; Line shapes ID SPECTRAL-LINES; PLASMAS; IMPLEMENTATION; IONS; QMR AB The efficiency of several algorithms to calculate Stark broadened line shapes in the quasi-static ion approximation is compared. The algorithms can be grouped into three general approaches: simultaneous equation solvers, matrix decompositions, and model-reduction. It is emphasized that the tested algorithms do not rely on approximations beyond the quasi-static ion assumption. The comparisons show that model-reduction schemes are the most efficient and are more than 2 orders of magnitude faster than the conventional method for large-scale calculations. Consequently, complex line shape calculations become practical without the compromises often required in the past. (C) 2011 Elsevier B.V. All rights reserved. C1 [Iglesias, Carlos A.; Sonnad, Vijay] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Iglesias, CA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM iglesias1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Howard A. Scott for the atomic data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 28 TC 4 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2011 VL 7 IS 4 BP 391 EP 399 DI 10.1016/j.hedp.2011.09.001 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 861SV UT WOS:000298040400028 ER PT J AU de Silva, V Morozov, D Vejdemo-Johansson, M AF de Silva, Vin Morozov, Dmitriy Vejdemo-Johansson, Mikael TI Dualities in persistent (co)homology SO INVERSE PROBLEMS LA English DT Article ID NATURAL IMAGES; HOMOLOGY AB We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establish algebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existing algorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. We present experimental evidence for the practical efficiency of the latter algorithm. C1 [de Silva, Vin] Pomona Coll, Dept Math, Claremont, CA 91711 USA. [Morozov, Dmitriy] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Vejdemo-Johansson, Mikael] Sch Comp Sci, St Andrews KY16 9SX, Fife, Scotland. RP de Silva, V (reprint author), Pomona Coll, Dept Math, 610 N Coll Ave, Claremont, CA 91711 USA. EM mik@mcs.st-andrews.ac.uk RI Vejdemo-Johansson, Mikael/B-6799-2013 OI Vejdemo-Johansson, Mikael/0000-0001-6322-7542 FU DARPA [HR0011-05-1-0007, HR0011-07-1-0002]; DOE Office of Science, Advanced Scientific Computing Research [KJ0402-KRD047, DE-AC02-05CH11231]; Office of Naval Research [N00014-08-1-0931]; Stanford University FX VdS has been partially supported by DARPA, through grants HR0011-05-1-0007 (TDA) and HR0011-07-1-0002 (SToMP), and holds a Digiteo Chair. DM has been partially supported by DARPA grant HR0011-05-1-0007 (TDA) and by the DOE Office of Science, Advanced Scientific Computing Research, under award number KJ0402-KRD047, under contract number DE-AC02-05CH11231. MVJ has been partially supported by the Office of Naval Research, through grant N00014-08-1-0931, as well as by Stanford University. NR 15 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0266-5611 J9 INVERSE PROBL JI Inverse Probl. PD DEC PY 2011 VL 27 IS 12 AR 124003 DI 10.1088/0266-5611/27/12/124003 PG 17 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 862GQ UT WOS:000298078200004 ER PT J AU Bhat, KS Haran, M Terando, A Keller, K AF Bhat, K. Sham Haran, Murali Terando, Adam Keller, Klaus TI Climate Projections Using Bayesian Model Averaging and Space-Time Dependence SO JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS LA English DT Article DE Bayesian hierarchical modeling; Bayesian model averaging; Climate change; Climate model; Gaussian process; Space-time data ID CHAIN MONTE-CARLO; MULTIMODEL ENSEMBLES; MAXIMUM-LIKELIHOOD; SEASONAL FORECASTS; WEATHER FORECASTS; INCOMPLETE DATA; REA METHOD; UNCERTAINTY; PROBABILITY; SIMULATIONS AB Projections of future climatic changes are a key input to the design of climate change mitigation and adaptation strategies. Current climate change projections are deeply uncertain. This uncertainty stems from several factors, including parametric and structural uncertainties. One common approach to characterize and, if possible, reduce these uncertainties is to confront (calibrate in a broad sense) the models with historical observations. Here, we analyze the problem of combining multiple climate models using Bayesian Model Averaging (BMA) to derive future projections and quantify uncertainty estimates of spatiotemporally resolved temperature hindcasts and projections. One advantage of the BMA approach is that it allows the assessment of the predictive skill of a model using the training data, which can help identify the better models and discard poor models. Previous BMA approaches have broken important new ground, but often neglected space-time dependencies and/or imposed prohibitive computational demands. Here we improve on the current state-of-the-art by incorporating space-time dependence while using historical data to estimate model weights. We achieve computational efficiency using a kernel mixing approach for representing a space-time process. One key advantage of our new approach is that it enables us to incorporate multiple sources of uncertainty and biases, while remaining computationally tractable for large data sets. We introduce and apply our approach using BMA to an ensemble of Global Circulation Model output from the Intergovernmental Panel on Climate Change Fourth Assessment Report of surface temperature on a grid of space-time locations. C1 [Bhat, K. Sham] Los Alamos Natl Lab, Stat Sci Div, Los Alamos, NM 87545 USA. [Haran, Murali] Penn State Univ, Dept Stat, University Pk, PA 16802 USA. [Terando, Adam] N Carolina State Univ, Dept Biol, Raleigh, NC 27695 USA. [Keller, Klaus] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. RP Bhat, KS (reprint author), Los Alamos Natl Lab, Stat Sci Div, POB 1663, Los Alamos, NM 87545 USA. EM bhat9999@lanl.gov; mharan@stat.psu.edu; adam_terando@ncsu.edu; klaus@psu.edu RI Keller, Klaus/A-6742-2013; OI Terando, Adam/0000-0002-9280-043X FU National Science Foundation; US Geological Survey FX This work was partially supported by the National Science Foundation and from the US Geological Survey. Any opinions, findings, and conclusions expressed in this work are those of the authors alone, and do not necessarily reflect the views of the NSF and USGS. The authors also thank Nathan Urban, Veronica Berrocal, Kary Myers, Jim Gattiker, Dave Higdon, and Matt Pratola for helpful insights. NR 62 TC 8 Z9 8 U1 1 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1085-7117 EI 1537-2693 J9 J AGR BIOL ENVIR ST JI J. Agric. Biol. Environ. Stat. PD DEC PY 2011 VL 16 IS 4 SI SI BP 606 EP 628 DI 10.1007/s13253-011-0069-3 PG 23 WC Biology; Mathematical & Computational Biology; Statistics & Probability SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology; Mathematics GA 864IE UT WOS:000298231500010 ER PT J AU Mace, PD Wallez, Y Dobaczewska, MK Lee, JJ Robinson, H Pasquale, EB Riedl, SJ AF Mace, Peter D. Wallez, Yann Dobaczewska, Malgorzata K. Lee, JeongEun J. Robinson, Howard Pasquale, Elena B. Riedl, Stefan J. TI NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID GUANINE-NUCLEOTIDE EXCHANGE; ADHESION TARGETING DOMAIN; BREAST-CANCER CELLS; RAS ACTIVATOR SON; ANTIESTROGEN RESISTANCE; ADAPTER PROTEIN; CRYSTAL-STRUCTURES; R-RAS; COMPLEX; SHEP1 AB Members of the novel SH2-containing protein (NSP) and Crk-associated substrate (Cas) protein families form multidomain signaling platforms that mediate cell migration and invasion through a collection of distinct signaling motifs. Members of each family interact via their respective C-terminal domains, but the mechanism of this association has remained enigmatic. Here we present the crystal structures of the C-terminal domain from the NSP protein BCAR3 and the complex of NSP3 with p130Cas. BCAR3 adopts the Cdc25-homology fold of Ras GTPase exchange factors, but it has a 'closed' conformation incapable of enzymatic activity. The structure of the NSP3-p130Cas complex reveals that this closed conformation is instrumental for interaction of NSP proteins with a focal adhesion-targeting domain present in Cas proteins. This enzyme-to-adaptor conversion enables high-affinity, yet promiscuous, interactions between NSP and Cas proteins and represents an unprecedented mechanistic paradigm linking cellular signaling networks. C1 [Mace, Peter D.; Dobaczewska, Malgorzata K.; Lee, JeongEun J.; Riedl, Stefan J.] Sanford Burnham Med Res Inst, Ctr Canc, Program Apoptosis & Cell Death Res, La Jolla, CA USA. [Wallez, Yann; Pasquale, Elena B.] Sanford Burnham Med Res Inst, Ctr Canc, Program Signal Transduct, La Jolla, CA USA. [Pasquale, Elena B.] Univ Calif San Diego, Dept Pathol, San Diego, CA 92103 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Riedl, SJ (reprint author), Sanford Burnham Med Res Inst, Ctr Canc, Program Apoptosis & Cell Death Res, La Jolla, CA USA. EM sriedl@sanfordburnham.org RI Wallez, Yann/H-1033-2013; OI Mace, Peter/0000-0003-2175-9537 FU US National Institutes of Health (NIH) [P01CA102583, R01CA160457, R01CA116099, P01HD025938]; National Synchrotron Light Source [BC100466]; Biological and Environmental Research Department of Energy; NIH National Center for Research Resources FX We thank S. Snipas for protein sequencing, A. Bobkov for analytical ultracentrifugation and isothermal titration calorimetry and G. Salvesen for critical discussion of the manuscript. We also thank the Hope for a Cure Foundation for donation of equipment, J. Badger (DeltaG Technologies) for assistance in model evaluation, and the NKI Protein Facility for providing expression vectors. This work was supported by US National Institutes of Health (NIH) grants P01CA102583 and R01CA160457 to S.J.R. and E.B.P., R01CA116099 and P01HD025938 to E.B.P. and DOD-BCRP Fellowship BC100466 to P.D.M. Data collection at beamline X29 of the National Synchrotron Light Source was also supported by Biological and Environmental Research Department of Energy and the NIH National Center for Research Resources. NR 51 TC 15 Z9 17 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 EI 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD DEC PY 2011 VL 18 IS 12 BP 1381 EP U98 DI 10.1038/nsmb.2152 PG 8 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 861IC UT WOS:000298011600026 PM 22081014 ER PT J AU Rabinovici, GD Rosen, HJ Alkalay, A Kornak, J Furst, AJ Agarwal, N Mormino, EC O'Neil, JP Janabi, M Karydas, A Growdon, ME Jang, JY Huang, EJ DeArmond, SJ Trojanowski, JQ Grinberg, LT Gorno-Tempini, ML Seeley, WW Miller, BL Jagust, WJ AF Rabinovici, G. D. Rosen, H. J. Alkalay, A. Kornak, J. Furst, A. J. Agarwal, N. Mormino, E. C. O'Neil, J. P. Janabi, M. Karydas, A. Growdon, M. E. Jang, J. Y. Huang, E. J. DeArmond, S. J. Trojanowski, J. Q. Grinberg, L. T. Gorno-Tempini, M. L. Seeley, W. W. Miller, B. L. Jagust, W. J. TI Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD SO NEUROLOGY LA English DT Article ID FRONTOTEMPORAL LOBAR DEGENERATION; ONSET ALZHEIMERS-DISEASE; PITTSBURGH COMPOUND-B; COGNITIVE IMPAIRMENT; GLUCOSE-METABOLISM; C-11-PIB PET; DEMENTIA; BETA; DEPOSITION; PRESENTATIONS AB Objective: To compare the diagnostic performance of PET with the amyloid ligand Pittsburgh compound B (PiB-PET) to fluorodeoxyglucose (FDG-PET) in discriminating between Alzheimer disease (AD) and frontotemporal lobar degeneration (FTLD). Methods: Patients meeting clinical criteria for AD (n = 62) and FTLD (n = 45) underwent PiB and FDG-PET. PiB scans were classified as positive or negative by 2 visual raters blinded to clinical diagnosis, and using a quantitative threshold derived from controls (n = 25). FDG scans were visually rated as consistent with AD or FTLD, and quantitatively classified based on the region of lowest metabolism relative to controls. Results: PiB visual reads had a higher sensitivity for AD (89.5% average between raters) than FDG visual reads (77.5%) with similar specificity (PiB 83%, FDG 84%). When scans were classified quantitatively, PiB had higher sensitivity (89% vs 73%) while FDG had higher specificity (83% vs 98%). On receiver operating characteristic analysis, areas under the curve for PiB (0.888) and FDG (0.910) were similar. Interrater agreement was higher for PiB (kappa = 0.96) than FDG (kappa = 0.72), as was agreement between visual and quantitative classification (PiB kappa = 0.88-0.92; FDG kappa = 0.64-0.68). In patients with known histopathology, overall classification accuracy (2 visual and 1 quantitative classification per patient) was 97% for PiB (n = 12 patients) and 87% for FDG (n = 10). Conclusions: PiB and FDG showed similar accuracy in discriminating AD and FTLD. PiB was more sensitive when interpreted qualitatively or quantitatively. FDG was more specific, but only when scans were classified quantitatively. PiB slightly outperformed FDG in patients with known histopathology. Neurology (R) 2011;77:2034-2042 C1 [Rabinovici, G. D.; Rosen, H. J.; Alkalay, A.; Karydas, A.; Growdon, M. E.; Jang, J. Y.; Grinberg, L. T.; Gorno-Tempini, M. L.; Seeley, W. W.; Miller, B. L.; Jagust, W. J.] Univ Calif San Francisco, Memory & Aging Ctr, San Francisco, CA 94143 USA. [Rabinovici, G. D.; Rosen, H. J.; Alkalay, A.; Karydas, A.; Growdon, M. E.; Jang, J. Y.; Grinberg, L. T.; Gorno-Tempini, M. L.; Seeley, W. W.; Miller, B. L.; Jagust, W. J.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. [Kornak, J.] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA. [Huang, E. J.; DeArmond, S. J.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94143 USA. [Rabinovici, G. D.; Alkalay, A.; Furst, A. J.; Agarwal, N.; Mormino, E. C.; Jagust, W. J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Rabinovici, G. D.; Furst, A. J.; Mormino, E. C.; O'Neil, J. P.; Janabi, M.; Jagust, W. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Trojanowski, J. Q.] Univ Penn, Ctr Neurodegenerat Res, Philadelphia, PA 19104 USA. RP Rabinovici, GD (reprint author), UCSF Memory & Aging Ctr, 350 Parnassus Ave,Suite 905, San Francisco, CA 94143 USA. EM grabinovici@memory.ucsf.edu RI Gorno-Tempini, Maria Luisa/E-7203-2012; OI Huang, Eric/0000-0002-5381-3801; grinberg, lea/0000-0002-6809-0618 FU National Institute on Aging [K23-AG031861, R01-AG027859, P01-AG1972403, P50-AG023501]; State of California Department of Health Services Alzheimer's Disease Research Center of California [04-33516]; Alzheimer's Association [NIRG-07-59422, ZEN-08-87090]; John Douglas French Alzheimer's Foundation; Consortium for Frontotemporal Dementia Research; NIH/NIA; Alzheimer's Association; Emotional Brain (Oxford University Press); NIH (NIA, NINDS, DHS/ADP/ARCC); Larry L. Hillblom Foundation; UCSF Pilot Research Award for Junior Investigators; NIH (NCRR, NIA, NINDS, NCI); US Department of Defense; National Multiple Sclerosis Society; Genzyme Corporation; US Department of Energy; US Army Medical Research & Materiel Command; NIH; Takeda Pharmaceutical Company Ltd.; Marian S. Ware Alzheimer Program; NIH (NINDS, NIA); McBean Family Foundation; James S. McDonnell Foundation; John Douglas French Alzheimer's Disease Foundation; publication of Behavioral Neurology of Dementia (Cambridge); Handbook of Neurology (Elsevier); Human Frontal Lobes (Guilford); Novartis; State of California Alzheimer's Center FX This work was supported by the National Institute on Aging grants K23-AG031861, R01-AG027859, P01-AG1972403, and P50-AG023501; State of California Department of Health Services Alzheimer's Disease Research Center of California grant 04-33516; Alzheimer's Association grants NIRG-07-59422 and ZEN-08-87090; John Douglas French Alzheimer's Foundation; and the Consortium for Frontotemporal Dementia Research.; Dr. Rabinovici serves on scientific advisory boards for Novartis and GE Healthcare; received a speaker honorarium from Novartis; and receives research support from the NIH/NIA, the Alzheimer's Association, and the John Douglas French Alzheimer's Foundation. Dr. Rosen serves on a scientific advisory board for Avanir Pharmaceuticals; receives publishing royalties for The Emotional Brain (Oxford University Press); and receives research support from the NIH (NIA, NINDS, DHS/ADP/ARCC) and the Larry L. Hillblom Foundation. Dr. Alkalay reports no disclosures. Dr. Kornak receives research support from a UCSF Pilot Research Award for Junior Investigators, the NIH (NCRR, NIA, NINDS, NCI), the US Department of Defense, and the National Multiple Sclerosis Society. Dr. Furst, N. Agarwal, and Dr. Mormino report no disclosures. Dr. O'Neill receives research support from Genzyme Corporation, the US Department of Energy, the US Army Medical Research & Materiel Command, and the NIH. Dr. Janabi has received research support from the NIH. A. Karydas, M. E. Growdon, J.Y. Jang, Dr. Huang, and Dr. DeArmond report no disclosures. Dr. Trojanowski has received funding for travel and honoraria from Takeda Pharmaceutical Company Ltd.; has received speaker honoraria from Pfizer Inc.; serves as an Associate Editor of Alzheimer's & Dementia; may accrue revenue on patents re: Modified avidinbiotin technique, Method of stabilizing microtubules to treat Alzheimer's disease, Method of detecting abnormally phosphorylated tau, Method of screening for Alzheimer's disease or disease associated with the accumulation of paired helical filaments, Compositions and methods for producing and using homogeneous neuronal cell transplants, Rat comprising straight filaments in its brain, Compositions and methods for producing and using homogeneous neuronal cell transplants to treat neurodegenerative disorders and brain and spinal cord injuries, Diagnostic methods for Alzheimer's disease by detection of multiple MRNAs, Methods and compositions for determining lipid peroxidation levels in oxidant stress syndromes and diseases, Compositions and methods for producing and using homogenous neuronal cell transplants, Method of identifying, diagnosing and treating alpha-synuclein positive neurodegenerative disorders, Mutation-specific functional impairments in distinct tau isoforms of hereditary frontotemporal dementia and parkinsonism linked to chromosome-17: genotype predicts phenotype, Microtubule stabilizing therapies for neurodegenerative disorders, and Treatment of Alzheimer's and related diseases with an antibody; and receives research support from the NIH/NIA and from the Marian S. Ware Alzheimer Program. Dr. Grinberg serves as an Associate Editor for Frontiers in Dementia and Cell and Tissue Banking; and receives research support from the John Douglas French Alzheimer's Foundation and the Alzheimer's Association. Dr. Gorno-Tempini receives research support from the NIH (NINDS, NIA), the John Douglas French Alzheimer's Foundation, the Alzheimer's Association, the Larry L. Hillblom Foundation, the Koret Family Foundation, and the McBean Family Foundation. Dr. Seeley receives research support from the NIH, the James S. McDonnell Foundation, the Consortium for Frontotemporal Dementia Research, and the John Douglas French Alzheimer's Disease Foundation. Dr.; Miller serves on a scientific advisory board for the Alzheimer's Disease Clinical Study; serves as an Editor for Neurocase and as an Associate Editor of ADAD; receives royalties from the publication of Behavioral Neurology of Dementia(Cambridge, 2009), Handbook of Neurology (Elsevier, 2009), and The Human Frontal Lobes (Guilford, 2008); serves as a consultant for Lundbeck Inc., Elan Corporation, and Allon Therapeutics, Inc.; serves on speakers' bureaus for Novartis and Pfizer Inc.; and receives research support from Novartis and the NIH/NIA and the State of California Alzheimer's Center. Dr. Jagust has served on a scientific advisory board for Genentech, Inc.; serves as Associate Editor for Frontiers in Human Neuroscience and on the editorial boards of Annals of Neurology, Brain Imaging and Behavior, and Alzheimer's Disease and Associated Disorders; receives publishing royalties for Imaging the Aging Brain (Oxford University Press, 2009); has served as a consultant for Synarc, Elan Corporation/Janssen Alzheimer Immunotherapy, Genentech, Inc., Abbott, GE Healthcare, Ceregene, Bayer Schering Pharma, Schering-Plough Corp., TauRx Pharmaceuticals, Otsuka Pharmaceutical Co., Ltd., and Merck & Co; and receives research support from the NIH and from the Alzheimer's Association. NR 40 TC 87 Z9 89 U1 0 U2 5 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0028-3878 J9 NEUROLOGY JI Neurology PD DEC PY 2011 VL 77 IS 23 BP 2034 EP 2042 DI 10.1212/WNL.0b013e31823b9c5e PG 9 WC Clinical Neurology SC Neurosciences & Neurology GA 861TP UT WOS:000298042400011 PM 22131541 ER PT J AU Caspers, C Muller, M Gray, AX Kaiser, AM Gloskovskii, A Fadley, CS Drube, W Schneider, CM AF Caspers, C. Mueller, M. Gray, A. X. Kaiser, A. M. Gloskovskii, A. Fadley, C. S. Drube, W. Schneider, C. M. TI Electronic structure of EuO spin filter tunnel contacts directly on silicon SO PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS LA English DT Article DE magnetic materials; EuO; X-ray photoemission spectra; spin injection; silicon ID INJECTION; TRANSPORT AB We present an electronic structure study of a magnetic oxide/semiconductor model system, EuO on silicon, which is dedicated for efficient spin injection and spin detection in silicon-based spintronics devices. A combined electronic structure analysis of Eu core levels and valence bands using hard X-ray photoemission spectroscopy was performed to quantify the nearly ideal stoichiometry of EuO "spin filter" tunnel barriers directly on silicon, and the absence of silicon oxide at the EuO/Si interface. These results provide evidence for the successful integration of a magnetic oxide tunnel barrier with silicon, paving the way for the future integration of magnetic oxides into functional spintronics devices. [GRAPHICS] Hard X-ray photoemission spectroscopy of an Al/EuO/Si heterostructure probing the buried EuO and EuO/Si interface. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Caspers, C.; Mueller, M.; Kaiser, A. M.; Schneider, C. M.] Forschungszentrum Julich, Peter Grunberg Inst PGI 6, D-52425 Julich, Germany. [Caspers, C.; Mueller, M.; Schneider, C. M.] Forschungszentrum Julich, D-52425 Julich, Germany. [Gray, A. X.; Kaiser, A. M.; Fadley, C. S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Gray, A. X.; Kaiser, A. M.; Fadley, C. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Gloskovskii, A.] Johannes Gutenberg Univ Mainz, Inst Analyt & Anorgan Chem, D-55128 Mainz, Germany. [Drube, W.] DESY, DESY Photon Sci, D-22603 Hamburg, Germany. [Schneider, C. M.] Fak Phys, D-47048 Duisburg, Germany. [Schneider, C. M.] Ctr Nanointegrat Duisburg Essen CeNIDE, D-47048 Duisburg, Germany. RP Muller, M (reprint author), Forschungszentrum Julich, Peter Grunberg Inst PGI 6, D-52425 Julich, Germany. EM mart.mueller@fz-juelich.de RI Drube, Wolfgang/C-9310-2012; Gray, Alexander/F-9267-2011; MSD, Nanomag/F-6438-2012; Schneider, Claus/H-7453-2012; Muller, Martina/O-2473-2015; Hloskovsky, Andrei/A-3009-2012 OI Schneider, Claus/0000-0002-3920-6255; Muller, Martina/0000-0001-6082-9038; FU DFG [MU 3160/1-1]; BMBF [813405-8 WW3, 05K10CHB] FX M.M. acknowledges financial support by DFG under grant MU 3160/1-1. This work was supported by BMBF under contracts 813405-8 WW3 and 05K10CHB. NR 13 TC 16 Z9 16 U1 1 U2 21 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1862-6254 J9 PHYS STATUS SOLIDI-R JI Phys. Status Solidi-Rapid Res. Lett. PD DEC PY 2011 VL 5 IS 12 SI SI BP 441 EP 443 DI 10.1002/pssr.201105403 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 861SD UT WOS:000298038600010 ER PT J AU Smith, MF AF Smith, Mark F. TI Understanding Thermal Spray Technology SO WELDING JOURNAL LA English DT Editorial Material C1 Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. RP Smith, MF (reprint author), Sandia Natl Labs, Mat Sci & Engn Ctr, POB 5800, Albuquerque, NM 87185 USA. EM mfsmith@sandia.gov NR 0 TC 1 Z9 1 U1 0 U2 0 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD DEC PY 2011 VL 90 IS 12 BP 22 EP 27 PG 6 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 861OX UT WOS:000298030200004 ER PT J AU Yoon, CW Hirsekorn, KF Neidig, ML Yang, XZ Tilley, TD AF Yoon, Chang Won Hirsekorn, Kurt F. Neidig, Michael L. Yang, Xinzheng Tilley, T. Don TI Mechanism of the Decomposition of Aqueous Hydrogen Peroxide over Heterogeneous TiSBA15 and TS-1 Selective Oxidation Catalysts: Insights from Spectroscopic and Density Functional Theory Studies SO ACS CATALYSIS LA English DT Article DE heterogeneous catalysts; titanium; SBA15; hydrogen peroxide; decomposition; mechanism; green process ID MODIFIED TITANIUM SILICALITE; MOLECULAR PRECURSOR; TITANOSILICATE CATALYSTS; CYCLOHEXENE EPOXIDATION; SURFACE MODIFICATION; ALKENE EPOXIDATION; OLEFIN EPOXIDATION; CRYSTAL-STRUCTURE; OXYGEN-TRANSFER; ANHYDRIDE FORM AB The Ti-based heterogeneous catalysts TiSBA15, Bu(cap)TiSBA15, TS-1, and [Ti,Al]-MFI were investigated with respect to controlling factors for the competitive decomposition of aqueous H(2)O(2) during selective catalytic oxidations. DRUV vis spectroscopy revealed that the titanium species in these materials exist mainly in isolated, tetrahedral coordination environments. The observed rates of H(2)O(2) decomposition at 65 degrees C in acetonitrile decreased in the following order: Bu(cap)TiSBA15 > TiSBA15 and TS-1 > [Ti,Al]-MFI. The decompositions of H(2)O(2) were also monitored in the presence of inorganic additives and Bronsted acids and bases, in benzene/aqueous biphasic solutions. Significant retardation of the decomposition rates with the KH(2)PO(4) additive was found with TiSBA15, which suggests that the. KH(2)PO(4) stabilizer may be useful for optimization of hydrogen peroxide efficiency in catalytic oxidations. DRUV-vis spectroscopy was employed to identify possible catalytically active intermediates, proposed to be Ti(IV) (OOH) species that are produced upon reaction of the Ti-based materials and H(2)O(2). Density Functional Theory (DFT) studies starting from a molecular model, (HO)Ti[OSi(OH)(3)](3), suggest that three Ti(IV) (OOH) intermediates are in equilibrium,rand the formation of Ti-O(circle) and HOO(circle) radical species may be involved in the H(2)O(2) decomposition. In addition, the potential role of KH(2)PO(4) in the H(2)O(2) decomposition process, as a proton acceptor in a [Ti(OO)(HOP(O)(OH)(2))] complex, has been investigated. C1 [Yoon, Chang Won; Yang, Xinzheng; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tilley, T. Don] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Hirsekorn, Kurt F.; Neidig, Michael L.] Dow Chem Co USA, Core R&D Chem & Catalysis, Midland, MI 48674 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu RI Yang, Xinzheng/F-6893-2010 OI Yang, Xinzheng/0000-0002-2036-1220 FU Dow Chemical Company; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [CHE-0840505] FX The authors are grateful to Dow Chemical Company for support of this work. Aspects of the work were also supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The computational work was supported by the National Science Foundation (CHE-0840505) and the Molecular Graphics and Computation Facility (Dr. Kathleen A. Durkin, Director) in the College of Chemistry at the University of California, Berkeley. NR 71 TC 30 Z9 32 U1 5 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD DEC PY 2011 VL 1 IS 12 BP 1665 EP 1678 DI 10.1021/cs2003774 PG 14 WC Chemistry, Physical SC Chemistry GA 856AS UT WOS:000297609200005 ER PT J AU Liu, Y Li, DG Stamenkovic, VR Soled, S Henao, JD Sun, SH AF Liu, Yi Li, Dongguo Stamenkovic, Vojislav R. Soled, Stuart Henao, Juan D. Sun, Shouheng TI Synthesis of Pt3Sn Alloy Nanoparticles and Their Catalysis for Electro-Oxidation of CO and Methanol SO ACS CATALYSIS LA English DT Article DE Pt3Sn nanoparticles; synthesis; CO oxidation; methanol oxidation; catalysis ID ALCOHOL-REDUCTION PROCESS; CARBON-MONOXIDE; PTSN CATALYSTS; ETHANOL ELECTROOXIDATION; REFORMING CATALYSTS; OXIDATION; ELECTROCATALYSTS; SURFACES; TIN; CROTONALDEHYDE AB Monodisperse Pt3Sn alloy nanoparticles (NPs) were synthesized by a controlled coreduction of Pt(II) acetylacetonate and Sn(II) acetylacetonate at 180-280 degrees C in 1-octadecene. In the synthesis, oleylamine was used as a reducing agent, and oleylamine/oleic acid served as surfactants. The sizes of the Pt3Sn NPs were tuned from 4 to 7 nm by controlling the metal salt injection temperatures from 180 to 240 degrees C. These mono-disperse Pt3Sn NPs were highly active for CO and methanol oxidation in 0.1 M HClO4 solutions, and therir activity and stability could be further improved by a postsynthesis thermal treatment of 400 degrees C in Ar + 5% H-2 for 1 h. They are promising as a practical catalyst for CO and methanol oxidation reactions in polymer electrolyte membrane fuel cell conditions. C1 [Liu, Yi; Li, Dongguo; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Li, Dongguo; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Soled, Stuart; Henao, Juan D.] ExxonMobil Res & Engn Co, Annandale, NJ 08801 USA. RP Sun, SH (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM ssun@brown.edu RI Li, Dongguo/O-6253-2016 OI Li, Dongguo/0000-0001-7578-7811 FU ExxonMobil Research and Engineering Co. FX Supported in part by ExxonMobil Research and Engineering Co. NR 32 TC 39 Z9 39 U1 8 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD DEC PY 2011 VL 1 IS 12 BP 1719 EP 1723 DI 10.1021/cs200430r PG 5 WC Chemistry, Physical SC Chemistry GA 856AS UT WOS:000297609200011 ER PT J AU Bogin, GE DeFilippo, A Chen, JY Chin, G Luecke, J Ratcliff, MA Zigler, BT Dean, AM AF Bogin, Gregory E., Jr. DeFilippo, Anthony Chen, J. Y. Chin, Gregory Luecke, Jon Ratcliff, Matthew A. Zigler, Bradley T. Dean, Anthony M. TI Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester (IQT) SO ENERGY & FUELS LA English DT Article ID RAPID COMPRESSION; TEMPERATURE COMBUSTION; RAYLEIGH-SCATTERING; AUTO-IGNITION; KINETIC-MODEL; SHOCK-TUBE; HYDROCARBONS; MIXTURES; ENGINE; ESTERS AB Development of advanced compression ignition and low-temperature combustion engines is increasingly dependent on chemical kinetic ignition models. However, rigorous experimental validation of kinetic models has been limited under engine-like conditions. For example, shock tubes and rapid compression machines are usually restricted to premixed gas-phase studies, precluding the study of heterogeneous combustion and the use of low-volatility surrogates for commercial diesel fuels. The Ignition Quality Tester (IQT) is a constant-volume spray combustion system designed to measure ignition delay of low-volatility fuels, having the potential to validate ignition models. However, a better understanding of the IQT's fuel spray and combustion processes is necessary to enable chemical kinetic studies. As a first step, n-heptane was studied because numerous reduced chemical mechanisms are available in the literature as it is a common diesel fuel surrogate, as well as a calibration fuel for the IQT. A modified version of the KIVA-3V software was utilized to develop a three-dimensional computational fluid dynamics (CFD) model that accurately and efficiently reproduces n-heptane ignition behavior and temporally resolves temperature and equivalence ratio regions inside the IQT. Measured fuel spray characteristics (e.g., spray-tip velocity, spray cone-angle, and flow oscillation) for n-heptane were programmed into the CFD model. Sensitivity analyses of fuel droplet size and velocity showed that their effects on ignition delay were small compared to the large chemical effects of increased chain branching in the isomers 2-methylhexane and 2,4-dimethylpentane. CFD model predictions of ignition delay using reduced/skeletal chemical mechanisms for n-heptane (60-, 42-, and 33-species, and one-step chemistry) were compared, again indicating that chemical kinetics control the ignition process. C1 [Bogin, Gregory E., Jr.; Dean, Anthony M.] Colorado Sch Mines, Golden, CO 80401 USA. [DeFilippo, Anthony; Chen, J. Y.; Chin, Gregory] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Luecke, Jon; Ratcliff, Matthew A.; Zigler, Bradley T.] Natl Renewable Energy Lab, Golden, CO USA. RP Bogin, GE (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM gbogin@mines.edu OI DeFilippo, Anthony C/0000-0001-7923-1036 FU U.S. Department of Energy FX The authors thank the U.S. Department of Energy Vehicle Technologies Program and Fuel Technologies Program Manager Kevin Stork for their support of this fuels research. NR 65 TC 17 Z9 17 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD DEC PY 2011 VL 25 IS 12 BP 5562 EP 5572 DI 10.1021/ef201079g PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 860KF UT WOS:000297946500003 ER PT J AU Skeen, SA Yang, B Jasper, AW Pitz, WJ Hansen, N AF Skeen, Scott A. Yang, Bin Jasper, Ahren W. Pitz, William J. Hansen, Nils TI Chemical Structures of Low-Pressure Premixed Methylcyclohexane Flames as Benchmarks for the Development of a Predictive Combustion Chemistry Model SO ENERGY & FUELS LA English DT Article ID FUEL-RICH FLAMES; PHOTOIONIZATION MASS-SPECTROMETRY; STOICHIOMETRIC CYCLOHEXANE FLAME; ELEVATED PRESSURES; CROSS-SECTIONS; WIDE-RANGE; PYROLYSIS; IGNITION; IDENTIFICATION; DECOMPOSITION AB The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of phi = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C(7)H(12), C(7)H(10), C(6)H(12), and C(6)H(10) isomers sampled from the flames as a function of distance from the burner. Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C(7) species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C(6) species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst. 2007, 31, 267-275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism. C1 [Skeen, Scott A.; Jasper, Ahren W.; Hansen, Nils] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Yang, Bin] Princeton Univ, Combust Energy Frontier Res Ctr, Princeton, NJ 08540 USA. [Pitz, William J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Skeen, SA (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM sskeen@sandia.gov; nhansen@sandia.gov RI Hansen, Nils/G-3572-2012; Yang, Bin/A-7158-2008; Jasper, Ahren/A-5292-2011; OI Yang, Bin/0000-0001-7333-0017; Skeen, Scott/0000-0002-4444-0759 FU U.S. Department of Energy, Office of Basic Energy Sciences under the Single Investigator Small Group Research (SISGR) [DE-SC0002619]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration [DE-AC04-94-AL85000] FX This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under the Single Investigator Small Group Research (SISGR, Grant No. DE-SC0002619) with Angela Violi as the principle investigator. The measurements are performed within the "Flame Team" collaboration at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. We thank Terrill Cool, Patrick Osswald, and Wenjun Li for valuable contributions to the data collection. We also acknowledge the expert technical assistance of Paul Fugazzi. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work at LLNL was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94-AL85000. NR 45 TC 14 Z9 14 U1 4 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD DEC PY 2011 VL 25 IS 12 BP 5611 EP 5625 DI 10.1021/ef201507x PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 860KF UT WOS:000297946500008 ER PT J AU Vrba, L Garbe, JC Stampfer, MR Futscher, BW AF Vrba, Lukas Garbe, James C. Stampfer, Martha R. Futscher, Bernard W. TI Epigenetic regulation of normal human mammary cell type-specific miRNAs SO GENOME RESEARCH LA English DT Article ID DNA METHYLATION; BREAST-CANCER; MESENCHYMAL TRANSITION; GENE-EXPRESSION; MIR-200 FAMILY; HUMAN GENOME; MICRORNAS; TRANSCRIPTION; PROMOTERS; DISTINCT AB Epigenetic mechanisms are important regulators of cell type-specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type-specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in non-expressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type-specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type-specific miRNA expression. C1 [Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.] Univ Arizona, Arizona Canc Ctr, Tucson, AZ 85724 USA. [Vrba, Lukas] Acad Sci Czech Republic, Inst Plant Mol Biol, Biol Ctr ASCR, Vvi, CR-37005 Ceske Budejovice, Czech Republic. [Garbe, James C.; Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Futscher, Bernard W.] Univ Arizona, Dept Pharmacol & Toxicol, Coll Pharm, Tucson, AZ 85724 USA. RP Futscher, BW (reprint author), Univ Arizona, Arizona Canc Ctr, Tucson, AZ 85724 USA. EM bfutscher@azcc.arizona.edu RI Vrba, Lukas/J-9268-2015 OI Vrba, Lukas/0000-0003-3042-6275 FU Margaret E. and Fenton L. Maynard Endowment for Breast Cancer Research; Department of Defense [BCRP BC060444, DE-AC02-05CH11231]; [CA-65662]; [1U01CA153086-01] FX This work was supported by grants CA-65662 and 1U01CA153086-01, and by the Margaret E. and Fenton L. Maynard Endowment for Breast Cancer Research. J.C.G. and M.R.S. were supported by Department of Defense grant BCRP BC060444 carried out at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 43 TC 46 Z9 47 U1 1 U2 8 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD DEC PY 2011 VL 21 IS 12 BP 2026 EP 2037 DI 10.1101/gr.123935.111 PG 12 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 860AU UT WOS:000297918600004 PM 21873453 ER PT J AU Earl, D Bradnam, K St John, J Darling, A Lin, DW Fass, J Hung, OKY Buffalo, V Zerbino, DR Diekhans, M Nguyen, N Ariyaratne, PN Sung, WK Ning, ZM Haimel, M Simpson, JT Fonseca, NA Birol, I Docking, TR Ho, IY Rokhsar, DS Chikhi, R Lavenier, D Chapuis, G Naquin, D Maillet, N Schatz, MC Kelley, DR Phillippy, AM Koren, S Yang, SP Wu, W Chou, WC Srivastava, A Shaw, TI Ruby, JG Skewes-Cox, P Betegon, M Dimon, MT Solovyev, V Seledtsov, I Kosarev, P Vorobyev, D Ramirez-Gonzalez, R Leggett, R MacLean, D Xia, FF Luo, RB Li, ZY Xie, YL Liu, BH Gnerre, S MacCallum, I Przybylski, D Ribeiro, FJ Yin, SY Sharpe, T Hall, G Kersey, PJ Durbin, R Jackman, SD Chapman, JA Huang, XQ DeRisi, JL Caccamo, M Li, YR Jaffe, DB Green, RE Haussler, D Korf, I Paten, B AF Earl, Dent Bradnam, Keith St John, John Darling, Aaron Lin, Dawei Fass, Joseph Hung On Ken Yu Buffalo, Vince Zerbino, Daniel R. Diekhans, Mark Ngan Nguyen Ariyaratne, Pramila Nuwantha Sung, Wing-Kin Ning, Zemin Haimel, Matthias Simpson, Jared T. Fonseca, Nuno A. Birol, Inanc Docking, T. Roderick Ho, Isaac Y. Rokhsar, Daniel S. Chikhi, Rayan Lavenier, Dominique Chapuis, Guillaume Naquin, Delphine Maillet, Nicolas Schatz, Michael C. Kelley, David R. Phillippy, Adam M. Koren, Sergey Yang, Shiaw-Pyng Wu, Wei Chou, Wen-Chi Srivastava, Anuj Shaw, Timothy I. Ruby, J. Graham Skewes-Cox, Peter Betegon, Miguel Dimon, Michelle T. Solovyev, Victor Seledtsov, Igor Kosarev, Petr Vorobyev, Denis Ramirez-Gonzalez, Ricardo Leggett, Richard MacLean, Dan Xia, Fangfang Luo, Ruibang Li, Zhenyu Xie, Yinlong Liu, Binghang Gnerre, Sante MacCallum, Iain Przybylski, Dariusz Ribeiro, Filipe J. Yin, Shuangye Sharpe, Ted Hall, Giles Kersey, Paul J. Durbin, Richard Jackman, Shaun D. Chapman, Jarrod A. Huang, Xiaoqiu DeRisi, Joseph L. Caccamo, Mario Li, Yingrui Jaffe, David B. Green, Richard E. Haussler, David Korf, Ian Paten, Benedict TI Assemblathon 1: A competitive assessment of de novo short read assembly methods SO GENOME RESEARCH LA English DT Article ID SHORT DNA-SEQUENCES; STRING GRAPH; GENOME; ALIGNMENT; ALGORITHMS; ACCURACY; MILLIONS; BASE AB Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: ( 1) It is possible to assemble the genome to a high level of coverage and accuracy, and that ( 2) large differences exist between the assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available from http://www.assemblathon.org/. C1 [Earl, Dent; St John, John; Diekhans, Mark; Ngan Nguyen; Haussler, David; Paten, Benedict] Univ Calif Santa Cruz, Ctr Biomol Sci & Engn, Santa Cruz, CA 95064 USA. [Earl, Dent; St John, John; Zerbino, Daniel R.; Diekhans, Mark; Ngan Nguyen; Green, Richard E.; Haussler, David; Paten, Benedict] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Bradnam, Keith; Darling, Aaron; Lin, Dawei; Fass, Joseph; Hung On Ken Yu; Buffalo, Vince; Korf, Ian] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Lin, Dawei; Fass, Joseph; Buffalo, Vince] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Ariyaratne, Pramila Nuwantha; Sung, Wing-Kin] Genome Inst Singapore, Computat & Math Biol Grp, Singapore 119077, Singapore. [Sung, Wing-Kin] Natl Univ Singapore, Sch Comp, Singapore 119077, Singapore. [Ning, Zemin; Simpson, Jared T.; Durbin, Richard] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England. [Haimel, Matthias; Kersey, Paul J.] EMBL EBI, Cambridge CB10 1SA, England. [Fonseca, Nuno A.] Univ Porto, CRACS INESC Porto LA, P-4169007 Oporto, Portugal. [Birol, Inanc; Docking, T. Roderick; Jackman, Shaun D.] British Columbia Canc Agcy, Genome Sci Ctr, Vancouver, BC V5Z 4E6, Canada. [Ho, Isaac Y.; Rokhsar, Daniel S.; Chapman, Jarrod A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Chikhi, Rayan; Lavenier, Dominique; Chapuis, Guillaume] ENS Cachan IRISA, Dept Comp Sci, F-35042 Rennes, France. [Chikhi, Rayan; Lavenier, Dominique; Chapuis, Guillaume; Naquin, Delphine; Maillet, Nicolas] IRISA, CNRS Symbiose, F-35042 Rennes, France. [Lavenier, Dominique; Naquin, Delphine; Maillet, Nicolas] INRIA, F-35042 Rennes, France. [Schatz, Michael C.] Cold Spring Harbor Lab, Simons Ctr Quantitat Biol, Cold Spring Harbor, NY 11724 USA. [Kelley, David R.; Phillippy, Adam M.; Koren, Sergey] Univ Maryland, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA. [Phillippy, Adam M.; Koren, Sergey] Natl Biodef Anal & Countermeasures Ctr, Frederick, MD 20702 USA. [Yang, Shiaw-Pyng; Wu, Wei] Monsanto Co, Chesterfield, MO 63017 USA. [Chou, Wen-Chi; Srivastava, Anuj; Shaw, Timothy I.] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA. [Ruby, J. Graham; Skewes-Cox, Peter; Betegon, Miguel; Dimon, Michelle T.; DeRisi, Joseph L.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA. [Skewes-Cox, Peter] Univ Calif San Francisco, Biol & Med Informat Program, San Francisco, CA 94143 USA. [Ruby, J. Graham; Skewes-Cox, Peter; Betegon, Miguel; Dimon, Michelle T.; DeRisi, Joseph L.; Haussler, David] Howard Hughes Med Inst, Bethesda, MD 20814 USA. [Solovyev, Victor] Univ London, Dept Comp Sci, London WC1E 7HU, England. [Seledtsov, Igor; Kosarev, Petr; Vorobyev, Denis] Softberry Inc, Mt Kisco, NY 10549 USA. [Ramirez-Gonzalez, Ricardo; Caccamo, Mario] Norwich Res Pk, Genome Anal Ctr, Norwich NR4 7UH, Norfolk, England. [Leggett, Richard; MacLean, Dan] Norwich Res Pk, Sainsbury Lab, Norwich NR4 71H, Norfolk, England. [Xia, Fangfang] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Luo, Ruibang; Li, Zhenyu; Xie, Yinlong; Liu, Binghang; Li, Yingrui] BGI Shenzhen, Shenzhen 518083, Peoples R China. [Gnerre, Sante; MacCallum, Iain; Przybylski, Dariusz; Ribeiro, Filipe J.; Yin, Shuangye; Sharpe, Ted; Hall, Giles; Jaffe, David B.] Broad Inst, Cambridge, MA 02142 USA. [Huang, Xiaoqiu] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA. [Korf, Ian] Univ Calif Davis, Genome Ctr, Santa Cruz, CA 95064 USA. RP Paten, B (reprint author), Univ Calif Santa Cruz, Ctr Biomol Sci & Engn, Santa Cruz, CA 95064 USA. EM benedict@soe.ucsc.edu RI Sincan, Murat /A-3794-2010; INESC-TEC, CRACS/F-7527-2012; MacLean, Dan/C-7046-2013; Ning, Zemin/D-2411-2013; Tang, Macy/B-9798-2014; Yin, Shuangye/C-3707-2009; Li, Yingrui/K-1064-2015; Fonseca, Nuno/B-7801-2009; Birol, Inanc/G-5440-2011; OI Docking, Rod/0000-0003-3248-4081; Ning, Zemin/0000-0003-4359-776X; Kersey, Paul/0000-0002-7054-800X; Leggett, Richard/0000-0003-3044-4297; Zerbino, Daniel/0000-0001-5350-3056; Darling, Aaron/0000-0003-2397-7925; Skewes-Cox, Peter/0000-0003-1633-5190; Solovyev, Victor/0000-0001-8885-493X; MacLean, Dan/0000-0003-1032-0887; Yin, Shuangye/0000-0002-2779-2584; Fonseca, Nuno/0000-0003-4832-578X; Birol, Inanc/0000-0003-0950-7839; Ramirez Gonzalez, Ricardo Humberto/0000-0001-5745-7085; Bradnam, Keith/0000-0002-3881-294X; Durbin, Richard/0000-0002-9130-1006 FU NHGRI [U01HG004695, U41HG004568, P41HG002371, U54HG004555]; NCI [1U24CA143858-01]; NIH [HG00064]; Fundacao para a Ciencia e Tecnologia; National Natural Science Foundation of China [30725008, 30890032, 30811130531, 30221004]; National Basic Research Program of China (973 program) [2011CB809200]; Chinese 863 program [2006AA02Z177, 2006AA02Z334, 2006AA02A302, 2009AA022707]; NSF [DBI 0821263, EF-0949453]; [PTDC/BIA-BEC/100616/2008]; [PTDC/EIA-EIA/100897/2008] FX We thank Robert Edgar, Arend Sidow, and George Asimenos for their help with using Evolver. We thank three anonymous reviewers for comments and discussion on previous versions of this manuscript. We acknowledge the following grants: ENCODE DAC (data analysis center) subaward on NHGRI grant no. U01HG004695 to the European Bioinformatics Institute; ENCODE DCC (data coordination center) NHGRI grant no. U41HG004568; Browser (Center for Genomic Science) NHGRI grant no. P41HG002371; GENCODE subaward on NHGRI grant no. U54HG004555 to the Sanger Center; NCI 1U24CA143858-01; NIH HG00064; PTDC/BIA-BEC/100616/2008; PTDC/EIA-EIA/100897/2008; the Fundacao para a Ciencia e Tecnologia; National Natural Science Foundation of China (30725008; 30890032; 30811130531; 30221004); a National Basic Research Program of China (973 program no. 2011CB809200); the Chinese 863 program (2006AA02Z177; 2006AA02Z334; 2006AA02A302; 2009AA022707); NSF, Major Research Instrumentation grant DBI 0821263 (University of Georgia Georgia Advanced Computing Resource Center), and NSF EF-0949453. NR 73 TC 179 Z9 184 U1 5 U2 60 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD DEC PY 2011 VL 21 IS 12 BP 2224 EP 2241 DI 10.1101/gr.126599.111 PG 18 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 860AU UT WOS:000297918600021 PM 21926179 ER PT J AU Sukumar, N Choi, M Davidson, VL AF Sukumar, Narayanasami Choi, Moonsung Davidson, Victor L. TI Replacement of the axial copper ligand methionine with lysine in amicyanin converts it to a zinc-binding protein that no longer binds copper SO JOURNAL OF INORGANIC BIOCHEMISTRY LA English DT Article DE Cupredoxin; Metalloprotein; Protein folding; X-ray structure ID ELECTRON-TRANSFER COMPLEX; METHYLAMINE DEHYDROGENASE; PARACOCCUS-DENITRIFICANS; X-RAY; MOLECULAR-GRAPHICS; CRYSTAL-STRUCTURE; RESOLUTION; DIFFRACTION; SOFTWARE; NEUTRON AB The mutation of the axial ligand of the type I copper protein amicyanin from Met to Lys results in a protein that is spectroscopically invisible and redox inactive. M98K amicyanin acts as a competitive inhibitor in the reaction of native amicyanin with methylamine dehydrogenase indicating that the M98K mutation has not affected the affinity for its natural electron donor. The crystal structure of M98K amicyanin reveals that its overall structure is very similar to native amicyanin but that the type I binding site is occupied by zinc. Anomalous difference Fourier maps calculated using the data collected around the absorption edges of copper and zinc confirm the presence of Zn(2+) at the type I site. The Lys98 NZ donates a hydrogen bond to a well-ordered water molecule at the type I site which enhances the ability of Lys98 to provide a ligand for Zn(2+). Attempts to reconstitute M98K apoamicyanin with copper resulted in precipitation of the protein. The fact that the M98K mutation generated such a selective zinc-binding protein was surprising as ligation of zinc by Lys is rare and this ligand set is unique for zinc. (C) 2011 Elsevier Inc. All rights reserved. C1 [Sukumar, Narayanasami] Cornell Univ, Argonne Natl Lab, NE CAT, Argonne, IL 60439 USA. [Sukumar, Narayanasami] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Argonne, IL 60439 USA. [Choi, Moonsung] Univ Mississippi, Dept Biochem, Med Ctr, Jackson, MS 39216 USA. [Davidson, Victor L.] Univ Cent Florida, Burnett Sch Biomed Sci, Coll Med, Orlando, FL 32827 USA. RP Sukumar, N (reprint author), Cornell Univ, Argonne Natl Lab, NE CAT, Bldg 436E, Argonne, IL 60439 USA. EM sukumar@anl.gov; victor.davidson@ucf.edu OI Davidson, Victor/0000-0002-1966-7302 FU NCRR of NIH, NE-CAT facility at the APS [RR-15301]; NIH [GM-41574]; U.S. DOE, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX This work and the 24ID-C beamline used to collect data were supported by RR-15301 (NE-CAT facility at the APS) from NCRR of NIH. This work was supported by NIH grant GM-41574 (V.L.D.). Use of the APS is supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Contract No. DE-AC02-06CH11357. NR 34 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0162-0134 J9 J INORG BIOCHEM JI J. Inorg. Biochem. PD DEC PY 2011 VL 105 IS 12 SI SI BP 1638 EP 1644 DI 10.1016/j.jinorgbio.2011.08.002 PG 7 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA 859VW UT WOS:000297904900015 PM 22071089 ER PT J AU Brittman, S Gao, HW Garnett, EC Yang, PD AF Brittman, Sarah Gao, Hanwei Garnett, Erik C. Yang, Peidong TI Absorption of Light in a Single-Nanowire Silicon Solar Cell Decorated with an Octahedral Silver Nanocrystal SO NANO LETTERS LA English DT Article DE Nanowire; solar cell; photovoltaics; plasmonics; nanocrystal ID ENHANCED RAMAN-SCATTERING; OPTICAL-PROPERTIES; AU NANOPARTICLES; SI NANOWIRE; DEVICES; PLASMONICS; DESIGN AB In recent photovoltaic research, nanomaterials have offered two new approaches for trapping light within solar cells to increase their absorption: nanostructuring the absorbing semiconductor and using metallic nanostructures to couple light into the absorbing layer. This work combines these two approaches by decorating a single-nanowire silicon solar cell with an octahedral silver nanocrystal. Wavelength-dependent photocurrent measurements and finite-difference time domain simulations show that increases in photocurrent arise at wavelengths corresponding to the nanocrystal's surface plasmon resonances, while decreases occur at wavelengths corresponding to optical resonances of the nanowire. Scanning photocurrent mapping with submicrometer spatial resolution experimentally confirms that changes in the device's photocurrent come from the silver nanocrystal. These results demonstrate that understanding the interactions between nanoscale absorbers and plasmonic nanostructures is essential to optimizing the efficiency of nanostructured solar cells. C1 [Brittman, Sarah; Gao, Hanwei; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Brittman, Sarah; Gao, Hanwei; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Garnett, Erik C.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Garnett, Erik/A-6847-2009; Gao, Hanwei/B-3634-2010; Yuwen, Yu/J-3399-2014 OI Garnett, Erik/0000-0002-9158-8326; FU National Science Foundation Center of Integrated Nanomechanical Systems (NSF COINS) [0832819] FX The authors thank Dr. Xing Yi Ling for synthesis of the octahedral silver nanocrystals, Dr. Daniel Gargas and Dr. Hung-Ta Wang for experimental assistance, and Dr. Jinyao Tang and Chong Liu for helpful discussions. Funding from the National Science Foundation Center of Integrated Nanomechanical Systems (NSF COINS) under Contract No. 0832819 is greatly appreciated. NR 39 TC 48 Z9 49 U1 7 U2 131 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD DEC PY 2011 VL 11 IS 12 BP 5189 EP 5195 DI 10.1021/nl2023806 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 860LQ UT WOS:000297950200016 PM 22082022 ER PT J AU Bai, F Sun, ZC Wu, HM Haddad, RE Coker, EN Huang, JY Rodriguez, MA Fan, HY AF Bai, Feng Sun, Zaicheng Wu, Huimeng Haddad, Raid E. Coker, Eric N. Huang, Jian Yu Rodriguez, Mark A. Fan, Hongyou TI Porous One-Dimensional Nanostructures through Confined Cooperative Self-Assembly SO NANO LETTERS LA English DT Article DE Hierarchical nanostructure; nanoporous; self-assembly; one-dimensional nanowire and nanorod; j-aggregate; porphyrin ID PORPHYRIN NANOTUBES; NANORODS AB We report a simple confined self-assembly process to synthesize nanoporous one-dimensional photoactive nanostructures. Through surfactant-assisted cooperative interactions (e.g., pi-pi stacking, ligand coordination, and so forth) of the macrocyclic building block, zinc meso-tetra (4-pyridyl) porphyrin (ZnTPyP), self-assembled ZnTPyP nanowires and nanorods with controlled diameters and aspect ratios are prepared. Electron microscopy characterization in combination with X-ray diffraction and gas sorption experiments indicate that these materials exhibit stable single-crystalline and high surface area nanoporous frameworks with well-defined external morphology. Optical characterizations using UV-vis spectroscopy and fluorescence imaging and spectroscopy show enhanced collective optical properties over the individual chromophores (ZnTPyP), favorable for exciton formation and transport. C1 [Bai, Feng; Sun, Zaicheng; Haddad, Raid E.; Fan, Hongyou] Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Bai, Feng] Henan Univ, Minist Educ, Key Lab Special Funct Mat, Kaifeng 475004, Peoples R China. [Sun, Zaicheng] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, Changchun 130033, Peoples R China. [Wu, Huimeng; Coker, Eric N.; Huang, Jian Yu; Rodriguez, Mark A.; Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Fan, HY (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA. EM hfan@sandia.gov RI Sun, Zaicheng/B-5397-2012; Huang, Jianyu/C-5183-2008 OI Sun, Zaicheng/0000-0001-5277-5308; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Sandia National Laboratories' LDRD; National Science Foundation [DMI-0625897]; National Natural Science Foundation of China [21171049, 50828302]; NSF EPSCOR; NNIN; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Dr. Dongmei Ye for her valuable discussions and help on the paper. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Sandia National Laboratories' LDRD program, National Science Foundation (DMI-0625897), and the National Natural Science Foundation of China (No. 21171049 and No. 50828302). TEM studies were performed in the Department of Earth and Planetary Sciences at University of New Mexico. We acknowledge the use of the SEM facility supported by the NSF EPSCOR and NNIN grants. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 24 TC 26 Z9 26 U1 10 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD DEC PY 2011 VL 11 IS 12 BP 5196 EP 5200 DI 10.1021/nl203598n PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 860LQ UT WOS:000297950200017 PM 22082076 ER PT J AU Malko, AV Park, YS Sampat, S Galland, C Vela, J Chen, YF Hollingsworth, JA Klimov, VI Htoon, H AF Malko, Anton V. Park, Young-Shin Sampat, Siddharth Galland, Christophe Vela, Javier Chen, Yongfen Hollingsworth, Jennifer A. Klimov, Victor I. Htoon, Han TI Pump-Intensity- and Shell-Thickness-Dependent Evolution of Photoluminescence Blinking in Individual Core/Shell CdSe/CdS Nanocrystals SO NANO LETTERS LA English DT Article DE Nanocrystal; fluorescence blinking; multiexciton; core/shell heterostructure; PL lifetime; Auger recombination ID QUANTUM-DOT BLINKING; CADMIUM SELENIDE NANOCRYSTALS; PHOTON-COUNTING STATISTICS; LIGHT-EMITTING-DIODES; POWER-LAW BEHAVIOR; LEVY WALK PROCESS; SEMICONDUCTOR NANOCRYSTALS; FLUORESCENCE; SUPPRESSION; EMISSION AB We report a systematic study of photoluminescence (PL) intensity and lifetime fluctuations in individual CdSe/CdS core/shell nanocrystal quantum dots (NQDs) as a function of shell thickness. We show that while at low pump intensities PL blinking in thin-shell (4-7 monolayers, MLs) NQDs can be described by random switching between two states of high (ON) and low (OFF) emissivities, it changes to the regime with a continuous distribution of ON intensity levels at high pump powers. A similar behavior is observed in samples with a medium shell thickness (10-12 MLs) without, however, the PL intensity ever switching to a complete "OFF" state and maintaining ca. 30% emissivity ("gray" state). Further, our data indicate that highly stable, blinking-free PL of thick-shell (15-19 MLs) NQDs ("giant" or g-NQDs) is characterized by nearly perfect Poisson statistics, corresponding to a narrow, shot-noise limited PL intensity distribution. Interestingly, in this case the PL lifetime shortens with increasing pump power and the PL decay may deviate from monoexponential. However, the PL intensity distribution remains shot-noise limited, indicating the absence of significant quantum yield fluctuations at a given pump power intensity during the experimental time window. C1 [Malko, Anton V.; Sampat, Siddharth] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. [Park, Young-Shin; Galland, Christophe; Vela, Javier; Chen, Yongfen; Hollingsworth, Jennifer A.; Klimov, Victor I.; Htoon, Han] Los Alamos Natl Lab, Chem Div Phys Chem & Appl Spect, Los Alamos, NM 87545 USA. [Park, Young-Shin; Vela, Javier; Chen, Yongfen; Hollingsworth, Jennifer A.; Htoon, Han] Los Alamos Natl Lab, Mat Phys & Applicat Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Galland, Christophe; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. RP Malko, AV (reprint author), Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. EM anton.malko@utdallas.edu; klimov@lanl.gov; htoon@lanl.gov RI Park, Young-Shin/E-7181-2012; Galland, Christophe/A-1075-2013; Vela, Javier/I-4724-2014; OI Htoon, Han/0000-0003-3696-2896; Galland, Christophe/0000-0001-5627-0796; Vela, Javier/0000-0001-5124-6893; Park, Young-Shin/0000-0003-4204-1305; Klimov, Victor/0000-0003-1158-3179 FU UT Dallas start-up funds; CINT; Los Alamos National Laboratory; Center for Advanced Solar Photophysics (CASP); Energy Frontier Research Center; OBES, OS, U.S. DOE; NIH-NIGMS [IR01GM084702-01]; OBES, OS, U.S. DOE [2009LANL1096] FX This work was conducted, in part, at the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy (DOE), Office of Science (OS), Office of Basic Energy Sciences (OBES) user facility and Nanoscale Science Research Center. Work of A.V.M. was supported by UT Dallas start-up funds. Y.P. is supported by CINT. Y.G., J.V., Y.C. acknowledge Los Alamos National Laboratory Directed Research and Development Funds. C.G. and V.I.K acknowledge support of the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by OBES, OS, U.S. DOE. J.A.H. acknowledges NIH-NIGMS Grant IR01GM084702-01 and H.H. acknowledges a Single-Investigator Small-Group Research Award (2009LANL1096), OBES, OS, U.S. DOE. NR 37 TC 57 Z9 57 U1 2 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD DEC PY 2011 VL 11 IS 12 BP 5213 EP 5218 DI 10.1021/nl2025272 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 860LQ UT WOS:000297950200020 PM 22098269 ER PT J AU Liu, Y Gibbs, M Perkins, CL Tolentino, J Zarghami, MH Bustamante, J Law, M AF Liu, Yao Gibbs, Markelle Perkins, Craig L. Tolentino, Jason Zarghami, Mohammad H. Bustamante, Jorge, Jr. Law, Matt TI Robust, Functional Nanocrystal Solids by Infilling with Atomic Layer Deposition SO NANO LETTERS LA English DT Article DE Nanocrystal; quantum dot; PbSe; atomic layer deposition; solar cell ID LOW-TEMPERATURE; ELECTRICAL-PROPERTIES; SOLAR-CELLS; PBSE NANOCRYSTALS; FILMS; GROWTH; AIR AB Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies.(1) The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. mulling NC field-effect transistors and solar cells with amorphous alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm(2) V(-1) s(-1). Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices. C1 [Liu, Yao; Gibbs, Markelle; Tolentino, Jason; Zarghami, Mohammad H.; Bustamante, Jorge, Jr.; Law, Matt] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Liu, Yao; Gibbs, Markelle; Zarghami, Mohammad H.; Law, Matt] Univ Calif Irvine, Ctr Adv Solar Photophys, Irvine, CA 92697 USA. [Perkins, Craig L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Law, M (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM matt.law@uci.edu FU Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES); Department of Energy [DE-SC0003904]; U.S. Department of Energy [DEAC36-G028308]; National Renewable Energy Laboratory; NSF FX Y.L., M.G., and M.H.Z. acknowledge support by the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES). J.B. and M.L. were supported by the Department of Energy under Award DE-SC0003904. C.L.P. was supported by the U.S. Department of Energy under Contract No. DEAC36-G028308 with the National Renewable Energy Laboratory. J.T. acknowledges support from an NSF Graduate Research Fellowship. We thank the UCI School of Physical Sciences Center for Solar Energy for facilities support. NR 28 TC 59 Z9 60 U1 8 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD DEC PY 2011 VL 11 IS 12 BP 5349 EP 5355 DI 10.1021/nl2028848 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 860LQ UT WOS:000297950200042 PM 22023409 ER PT J AU Jiang, DE Jin, ZH Wu, JZ AF Jiang, De-en Jin, Zhehui Wu, Jianzhong TI Oscillation of Capacitance inside Nanopores SO NANO LETTERS LA English DT Article DE Supercapacitors; capacitance oscillation; electric double layers; ionic liquids; interference; density functional theory ID DENSITY-FUNCTIONAL THEORY; DOUBLE-LAYER CAPACITOR; IONIC LIQUIDS; CARBON SUPERCAPACITORS; ENERGY-STORAGE; ELECTROCHEMICAL CAPACITORS; GRAPHITE; SIMULATION; MODEL AB Porous carbons of high surface area are promising as cost-effective electrode materials for supercapacitors. Although great attention has been given to the anomalous increase of the capacitance as the pore size approaches the ionic dimensions, there remains a lack of full comprehension of the size dependence of the capacitance in nanopores. Here we predict from a classical density functional theory that the capacitance of an ionic-liquid electrolyte inside a nanopore oscillates with a decaying envelope as the pore size increases. The oscillatory behavior can be attributed to the interference of the overlapping electric double layers (EDLs); namely, the maxima in capacitance appear when superposition of the two EDLs is most constructive. The theoretical prediction agrees well with the experiment when the pore size is less than twice the ionic diameter. Confirmation of the entire oscillatory spectrum invites future experiments with a precise control of the pore size from micro- to mesoscales. C1 [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Jin, Zhehui; Wu, Jianzhong] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov; jwu@engr.ucr.edu RI Jiang, De-en/D-9529-2011; Wu, Jianzhong/I-5164-2013; Jin, Zhehui/G-5522-2014; OI Jiang, De-en/0000-0001-5167-0731; Wu, Jianzhong/0000-0002-4582-5941 FU Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61]; National Science Foundation [NSF-CBET-0852353]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX D.J. was supported as part of the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. ERKCC61 (D.J.). Additional support (J.W.) is provided by the National Science Foundation (NSF-CBET-0852353). This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 118 Z9 118 U1 11 U2 97 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD DEC PY 2011 VL 11 IS 12 BP 5373 EP 5377 DI 10.1021/nl202952d PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 860LQ UT WOS:000297950200046 PM 22029395 ER PT J AU Takahashi, T Takei, K Gillies, AG Fearing, RS Javey, A AF Takahashi, Toshitake Takei, Kuniharu Gillies, Andrew G. Fearing, Ronald S. Javey, Ali TI Carbon Nanotube Active-Matrix Backplanes for Conformal Electronics and Sensors SO NANO LETTERS LA English DT Article DE Carbon nanotube electronics; macroelectronics; artificial electronic skin; stretchable sensors; semiconductor-enriched nanotubes; flexible backplane ID FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; LARGE-AREA; STRETCHABLE ELECTRONICS; INTEGRATED-CIRCUITS; ARTIFICIAL SKIN; PRESSURE; DISPLAYS; ARRAYS AB In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of similar to 20 cm(2) V(-1) s(-1) and I(ON)/I(OFF) of similar to 10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12 x 8 pixels, physical size of 6 x 4 cm(2)) for pressure mapping using a pressure sensitive rubber as the sensor element. C1 [Takahashi, Toshitake; Takei, Kuniharu; Fearing, Ronald S.; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94702 USA. [Takahashi, Toshitake; Takei, Kuniharu; Javey, Ali] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94702 USA. EM ajavey@eecs.berkeley.edu RI Javey, Ali/B-4818-2013 FU NSF; DARPA/DSO Maximum Mobility and Manipulation; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; World Class University at Sunchon National University; Sloan Fellowship FX This work was partially funded by NSF COINS, NSF CAREER Award, and DARPA/DSO Maximum Mobility and Manipulation. The materials characterization part of this work was supported by was partially supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.J. acknowledges support from the World Class University program at Sunchon National University and a Sloan Fellowship. NR 38 TC 122 Z9 125 U1 12 U2 112 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD DEC PY 2011 VL 11 IS 12 BP 5408 EP 5413 DI 10.1021/nl203117h PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 860LQ UT WOS:000297950200053 PM 22050705 ER PT J AU Aydin, C Lu, J Liang, AJ Chen, CY Browning, ND Gates, BC AF Aydin, Ceren Lu, Jing Liang, Ann J. Chen, Cong-Yan Browning, Nigel D. Gates, Bruce C. TI Tracking Iridium Atoms with Electron Microscopy: First Steps of Metal Nanocluster Formation in One-Dimensional Zeolite Channels SO NANO LETTERS LA English DT Article DE Aberration-corrected STEM; zeolite SSZ-53; iridium; single atom tracking; channel confinement; cluster formation ID SCAN CCD CAMERA; CATALYTIC-PROPERTIES; IRRADIATION; STABILITY; OXIDATION; CLUSTERS; SSZ-53 AB Using aberration-corrected scanning transmission electron microscopy (STEM), we imaged iridium atoms in isolated iridium complexes in the one-dimensional nonintersecting 14-ring channels of zeolite SSZ-53. STEM allows tracking of the movement of atoms in the channels, demonstrating the interaction of iridium with the zeolite framework (channel confinement) and providing a direct visualization of the initial steps of metal nanocluster formation. The results demonstrate how STEM can be used to help design improved catalysts by identifying the catalytic sites and observing how they change in reactive atmospheres. C1 [Aydin, Ceren; Lu, Jing; Browning, Nigel D.; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Liang, Ann J.; Chen, Cong-Yan] Chevron Energy Technol Co, Richmond, CA 94802 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM bcgates@ucdavis.edu OI Browning, Nigel/0000-0003-0491-251X FU Department of Energy (DOE) [DE-FG02-03ER46057, DE-SC0005822]; University of California; DOE Office of Science, Materials Sciences, FX We thank Saleh Elomari for providing the organic structure-directing agent for the zeolite synthesis and Stacey Zones for helpful comments. This work was supported by the Department of Energy (DOE), Grant DE-FG02-03ER46057 (C.A.) and Grant DE-SC0005822 (J.L.) and the University of California Lab Fee Program. We acknowledge beam time and support of the DOE Office of Science, Materials Sciences, for its role in the operation and development of beamline X-18B at the National Synchrotron Light Source. NR 28 TC 24 Z9 24 U1 3 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD DEC PY 2011 VL 11 IS 12 BP 5537 EP 5541 DI 10.1021/nl2034305 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 860LQ UT WOS:000297950200075 PM 22088173 ER PT J AU Hens, K Feuz, JD Isakova, A Iagovitina, A Massouras, A Bryois, J Callaerts, P Celniker, SE Deplanckeadenine, B AF Hens, Korneel Feuz, Jean-Daniel Isakova, Alina Iagovitina, Antonina Massouras, Andreas Bryois, Julien Callaerts, Patrick Celniker, Susan E. Deplanckeadenine, Bart TI Automated protein-DNA interaction screening of Drosophila regulatory elements SO NATURE METHODS LA English DT Article ID TWIN-OF-EYELESS; SINE-OCULIS; TRANSCRIPTION FACTORS; VISUAL-SYSTEM; GENE; MELANOGASTER; SEQUENCE; ENHANCER; DATABASE; NETWORK AB Drosophila melanogaster has one of the best characterized metazoan genomes in terms of functionally annotated regulatory elements. To explore how these elements contribute to gene regulation, we need convenient tools to identify the proteins that bind to them. Here we describe the development and validation of a high-throughput yeast one-hybrid platform, which enables screening of DNA elements versus an array of full-length, sequence-verified clones containing over 85% of predicted Drosophila transcription factors. Using six well-characterized regulatory elements, we identified 33 transcription factor-DNA interactions of which 27 were previously unidentified. To simultaneously validate these interactions and locate the binding sites of involved transcription factors, we implemented a powerful microfluidics-based approach that enabled us to retrieve DNA-occupancy data for each transcription factor throughout the respective target DNA elements. Finally, we biologically validated several interactions and identified two new regulators of sine oculis gene expression and hence eye development. C1 [Hens, Korneel; Feuz, Jean-Daniel; Isakova, Alina; Iagovitina, Antonina; Massouras, Andreas; Bryois, Julien; Deplanckeadenine, Bart] Ecole Polytech Fed Lausanne, Sch Life Sci, Inst Bioengn, Lab Syst Biol & Genet, Lausanne, Switzerland. [Callaerts, Patrick] Katholieke Univ Leuven VIB, Lab Dev Genet, Louvain, Belgium. [Callaerts, Patrick] Catholic Univ Louvain, Dept Human Genet, Lab Dev Genet, B-3000 Louvain, Belgium. [Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Drosophila Genome Project, Dept Genome Dynam, Berkeley, CA 94720 USA. RP Deplanckeadenine, B (reprint author), Ecole Polytech Fed Lausanne, Sch Life Sci, Inst Bioengn, Lab Syst Biol & Genet, Lausanne, Switzerland. EM bart.deplancke@epfl.ch RI Hens, Korneel/L-9000-2014; OI Hens, Korneel/0000-0002-0362-7007; Bryois, Julien/0000-0002-4747-2166; Deplancke, Bart/0000-0001-9935-843X FU Swiss National Science Foundation; SystemsX.ch,; Marie Curie International Reintegration grant from Seventh Research Framework Programme; Frontiers in Genetics National Centres of Competence in Research Program FX We thank the members of the Lausanne genomic technologies facility for performing the Illumina sequencing, K. H. Wan for managing cDNA sequencing and transcription factor cDNA clone production, J. Reece-Hoyes and M. Walhout (University of Massachusetts Medical School, Worcester) for discussions of this work and for providing the Y1H-aS2 strain, N. Gheldof for making figures, N. W. Kelley (Biozentrum, University of Basel) for providing PWMs, S. Waszak for MARE data analysis, S. Plaza (Centre de Biologie du Developpement, Universite de Toulouse) for providing so10-GAL4 flies, and members of the TRiP at Harvard Medical School (US National Institutes of Health National Institute of General Medical Sciences R01-GM084947) and the Vienna Drosophila RNAi Center for providing transgenic RNAi fly stocks used in this study. This work was supported by funds from the Swiss National Science Foundation and SystemsX.ch, by a Marie Curie International Reintegration grant (BD) from the Seventh Research Framework Programme, by the Frontiers in Genetics National Centres of Competence in Research Program and by Institutional support from the Ecole Polytechnique Federale de Lausanne. NR 35 TC 34 Z9 34 U1 0 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD DEC PY 2011 VL 8 IS 12 BP 1065 EP + DI 10.1038/NMETH.1763 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 860EN UT WOS:000297931700020 PM 22037703 ER PT J AU Alexov, E Mehler, EL Baker, N Baptista, AM Huang, Y Milletti, F Nielsen, JE Farrell, D Carstensen, T Olsson, MHM Shen, JK Warwicker, J Williams, S Word, JM AF Alexov, Emil Mehler, Ernest L. Baker, Nathan Baptista, Antonio M. Huang, Yong Milletti, Francesca Nielsen, Jens Erik Farrell, Damien Carstensen, Tommy Olsson, Mats H. M. Shen, Jana K. Warwicker, Jim Williams, Sarah Word, J. Michael TI Progress in the prediction of pK(a) values in proteins SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Review DE pKa; protein electrostatics; pH dependent properties of proteins; predicting pKa values in proteins ID PH MOLECULAR-DYNAMICS; POISSON-BOLTZMANN EQUATION; OVOMUCOID 3RD DOMAIN; CONTINUUM ELECTROSTATIC MODEL; MULTIPLE-SITE TITRATION; ADAPTIVE FAST MULTIPOLE; GENERALIZED BORN MODEL; CONSTANT-PH; DIELECTRIC-CONSTANTS; CONFORMATIONAL FLEXIBILITY AB The pK(a)-cooperative aims to provide a forum for experimental and theoretical researchers interested in protein pK(a) values and protein electrostatics in general. The first round of the pK(a)-cooperative, which challenged computational labs to carry out blind predictions against pK(a)s experimentally determined in the laboratory of Bertrand Garcia-Moreno, was completed and results discussed at the Telluride meeting (July 6-10, 2009). This article serves as an introduction to the reports submitted by the blind prediction participants that will be published in a special issue of PROTEINS: Structure, Function and Bioinformatics. Here, we briefly outline existing approaches for pK(a) calculations, emphasizing methods that were used by the participants in calculating the blind pK(a) values in the first round of the cooperative. We then point out some of the difficulties encountered by the participating groups in making their blind predictions, and finally try to provide some insights for future developments aimed at improving the accuracy of pK(a) calculations. Proteins 2011; 79:3260-3275. (C) 2011 Wiley-Liss, Inc. C1 [Alexov, Emil] Clemson Univ, Dept Phys, Clemson, SC 29634 USA. [Mehler, Ernest L.] Cornel Univ, Weill Med Coll, New York, NY USA. [Baker, Nathan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Baptista, Antonio M.] Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-1200 Lisbon, Portugal. [Huang, Yong] Washington Univ, Dept Biochem & Mol Biophys, St Louis, MO USA. [Milletti, Francesca] Univ Perugia, I-06100 Perugia, Italy. [Nielsen, Jens Erik; Farrell, Damien; Carstensen, Tommy] Univ Coll Dublin, Sch Biomol & Biomed Sci, Dublin 2, Ireland. [Olsson, Mats H. M.] Univ Copenhagen, Dept Chem, DK-1168 Copenhagen, Denmark. [Shen, Jana K.] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA. [Warwicker, Jim] Univ Manchester, Fac Life Sci, Manchester M13 9PL, Lancs, England. [Williams, Sarah] Univ Calif San Diego, San Diego, CA 92103 USA. [Word, J. Michael] OpenEye Sci Software Inc, Santa Fe, NM USA. RP Alexov, E (reprint author), Clemson Univ, Dept Phys, Clemson, SC 29634 USA. EM ealexov@clemson.edu; elm2020@med.cornell.edu RI Baptista, Antonio/C-7246-2012; Olsson, Mats/E-4501-2011; Shen, Jana/I-7950-2014; Baker, Nathan/A-8605-2010; OI Baptista, Antonio/0000-0002-7044-1210; Olsson, Mats/0000-0002-9533-6599; Baker, Nathan/0000-0002-5892-6506; Farrell, Damien/0000-0003-3020-7945 FU NIGMS [R01GM093937]; NIH [R03LM009748, R01 DA015170, R01 GM069702] FX Grant sponsor: NIGMS; Grant number: R01GM093937; Grant sponsor: NIH; Grant numbers: R03LM009748 (to E. A.) and R01 DA015170 (to E. L. M.) and R01 GM069702 (to NB) NR 123 TC 86 Z9 86 U1 5 U2 91 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD DEC PY 2011 VL 79 IS 12 SI SI BP 3260 EP 3275 DI 10.1002/prot.23189 PG 16 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 860JK UT WOS:000297944400002 PM 22002859 ER PT J AU Carstensen, T Farrell, D Huang, Y Baker, NA Nielsen, JE AF Carstensen, Tommy Farrell, Damien Huang, Yong Baker, Nathan A. Nielsen, Jens Erik TI On the development of protein pK(a) calculation algorithms SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE pK(a) prediction; Poisson-Boltzmann Equation; F-test ID PH MOLECULAR-DYNAMICS; SURFACE-CHARGE; VALUES; PREDICTION; TITRATION; ENZYME; DETERMINANTS; ENERGIES; SOLVENT AB Protein pK(a) calculation methods are developed partly to provide fast non-experimental estimates of the ionization constants of protein side chains. However, the most significant reason for developing such methods is that a good pK(a) calculation method is presumed to provide an accurate physical model of protein electrostatics, which can be applied in methods for drug design, protein design, and other structure-based energy calculation methods. We explore the validity of this presumption by simulating the development of a pK(a) calculation method using artificial experimental data derived from a human-defined physical reality. We examine the ability of an RMSD-guided development protocol to retrieve the correct (artificial) physical reality and find that a rugged optimization landscape and a huge parameter space prevent the identification of the correct physical reality. We examine the importance of the training set in developing pK(a) calculation methods and investigate the effect of experimental noise on our ability to identify the correct physical reality, and find that both effects have a significant and detrimental impact on the physical reality of the optimal model identified. Our findings are of relevance to all structure-based methods for protein energy calculations and simulation, and have large implications for all types of current pK(a) calculation methods. Our analysis furthermore suggests that careful and extensive validation on many types of experimental data can go some way in making current models more realistic. Proteins 2011; 79:3287-3298. (C) 2011 Wiley-Liss, Inc. C1 [Carstensen, Tommy; Farrell, Damien; Nielsen, Jens Erik] Univ Coll Dublin, Sch Biomol & Biomed Sci, Ctr Synth & Chem Biol, UCD Conway Inst, Dublin 4, Ireland. [Huang, Yong] Washington Univ, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA. [Baker, Nathan A.] Pacific NW Natl Lab, Knowledge Discovery & Informat Grp, Richland, WA 99352 USA. RP Nielsen, JE (reprint author), Univ Coll Dublin, Sch Biomol & Biomed Sci, Ctr Synth & Chem Biol, UCD Conway Inst, Dublin 4, Ireland. EM Jens.Nielsen@ucd.ie RI Baker, Nathan/A-8605-2010; OI Baker, Nathan/0000-0002-5892-6506; Farrell, Damien/0000-0003-3020-7945 FU NIH [R01 GM069702, P41 RR0860516]; Science Foundation Ireland PIYRA [04/YI1/M537]; Irish Health Research Board [RP/2004/140]; Science Foundation Ireland [08/RFP/BIC1140]; CSCB (HEA) FX Grant sponsor: NIH; Grant numbers: R01 GM069702; P41 RR0860516; Grant sponsor: Science Foundation Ireland PIYRA; Grant number: 04/YI1/M537; Grant sponsor: Irish Health Research Board; Grant number: RP/2004/140; Grant sponsor: Science Foundation Ireland Research Frontiers Program Award; Grant number: 08/RFP/BIC1140; Grant sponsor: CSCB (HEA) NR 34 TC 11 Z9 11 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD DEC PY 2011 VL 79 IS 12 SI SI BP 3287 EP 3298 DI 10.1002/prot.23091 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 860JK UT WOS:000297944400004 PM 21744393 ER PT J AU Suresh, AK Doktycz, MJ Wang, W Moon, JW Gu, BH Meyer, HM Hensley, DK Allison, DP Phelps, TJ Pelletier, DA AF Suresh, Anil K. Doktycz, Mitchel J. Wang, Wei Moon, Ji-Won Gu, Baohua Meyer, Harry M., III Hensley, Dale K. Allison, David P. Phelps, Tommy J. Pelletier, Dale A. TI Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the gamma-proteobacterium, Shewanella oneidensis SO ACTA BIOMATERIALIA LA English DT Article DE Ag2S nanoparticles; Biofabrication; Biocompatible; Monodisperse; Shewanella ID IMMOBILIZED RHODOBACTER-SPHAEROIDES; REDUCTASE-MEDIATED SYNTHESIS; QUANTUM DOTS; GOLD NANOPARTICLES; BIOLOGICAL SYNTHESIS; METAL NANOPARTICLES; MICROBIAL SYNTHESIS; NANOCRYSTALS; AG2S; NANOMATERIALS AB Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size- and shape-dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs has become a priority. In the present article we report for the first time on the efficient generation of extracellular silver sulfide (Ag2S) nanoparticles by the metal-reducing bacterium Shewanella oneidensis. The particles are reasonably monodispersed and homogeneously shaped. They are produced under ambient temperatures and pressures at high yield, 85% theoretical maximum. UV-visible and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical and surface properties, purity and crystallinity of the synthesized particles. Further characterization revealed that the particles consist of spheres with a mean diameter of 9 +/- 3.5 nm, and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these biogenic Ag2S nanoparticles on Gram-negative (Escherichia coli and S. oneidensis) and Gram-positive (Bacillus subtilis) bacterial systems, as well as eukaryotic cell lines including mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells, showed that the particles were non-inhibitory and non-cytotoxic to any of these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag2S nanoparticles. These particles are dispersible and biocompatible, thus providing excellent potential for use in optical imaging, electronic devices and solar cell applications. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Suresh, Anil K.; Doktycz, Mitchel J.; Moon, Ji-Won; Phelps, Tommy J.; Pelletier, Dale A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Allison, David P.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Doktycz, Mitchel J.; Hensley, Dale K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Meyer, Harry M., III] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Suresh, AK (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM sureshak@ornl.gov; pelletierda@ornl.gov RI Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012; Moon, Ji-Won/A-9186-2011; Hensley, Dale/A-6282-2016; Doktycz, Mitchel/A-7499-2011 OI Gu, Baohua/0000-0002-7299-2956; Moon, Ji-Won/0000-0001-7776-6889; Hensley, Dale/0000-0001-8763-7765; Doktycz, Mitchel/0000-0003-4856-8343 FU Office of Biological and Environmental Research, US Department of Energy (DOE); US DOE [DE-AC05-00OR22725]; ORNL; Office of Basic Energy Sciences, US Department of Energy; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, US Department of Energy FX This research was accomplished with support from the Office of Biological and Environmental Research, US Department of Energy (DOE). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US DOE under contract DE-AC05-00OR22725. XPS measurements were conducted at the High Temperature Materials Laboratory, supported by ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, US Department of Energy. The authors acknowledge Scott T. Retterer for providing the eukaryotic cell lines. NR 47 TC 34 Z9 37 U1 4 U2 75 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 EI 1878-7568 J9 ACTA BIOMATER JI Acta Biomater. PD DEC PY 2011 VL 7 IS 12 BP 4253 EP 4258 DI 10.1016/j.actbio.2011.07.007 PG 6 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 853OV UT WOS:000297436500019 PM 21798382 ER PT J AU Baca, SG Breukers, S Ellern, A Kogerler, P AF Baca, Svetlana G. Breukers, Stefanie Ellern, Arkady Koegerler, Paul TI An octanuclear iron(III) isobutyrate wheel SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS LA English DT Article ID SINGLE-MOLECULE MAGNETS; FERRIC WHEELS; CLUSTERS; IRON; COMPLEXES; LIGANDS AB The reaction of the mu(3)-oxido-centred trinuclear isobutyrate cluster [Fe3O(O2CCHMe2)(6)(H2O)(3)](+) with an excess of phenol (PhOH) in chloroform produces a novel octanuclear Fe-III cluster, cyclo-tetra-mu(2)-hydroxido-dodeca-mu(2)-isobutyrato-kappa O-24:O'-octa-mu(2)-phenolato-kappa O-16:O'-octairon(III) phenol hexasolvate monohydrate, [Fe-8(C4H7O2)(12)(C6H5O)(8)(OH)(4)]center dot-6C(6)H(5)OH center dot H2O. The neutral cluster is located about a centre of inversion and consists of a planar ring of eight Fe-III centres with two types of bridges between adjacent Fe atoms: each Fe atom is bridged to one of its neighbours by a mu-hydroxide and two 1,3-bridging carboxylates, or by two phenolate and one 1,3-bridging isobutyrate ligand. The cavity within the {Fe-8} wheel is occupied by a disordered water molecule. Intermolecular O-H center dot center dot center dot O hydrogen bonds and C-H center dot center dot center dot pi interactions connect the clusters and the phenol solvent molecules to form a three-dimensional network. C1 [Baca, Svetlana G.; Breukers, Stefanie; Koegerler, Paul] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany. [Ellern, Arkady] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kogerler, P (reprint author), Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52074 Aachen, Germany. EM paul.koegerler@ac.rwth-aachen.de RI Baca, Svetlana/J-9336-2012; Kogerler, Paul/H-5866-2013 OI Baca, Svetlana/0000-0002-2121-2091; Kogerler, Paul/0000-0001-7831-3953 FU German Federal Ministry of Education and Research [MDA 08/022]; Academy of Sciences of Moldova [09.820.05.10 GF]; European Commission [252984]; Iowa State University [40, DE-AC02-07CH11358] FX Financial support of this work was provided by the German Federal Ministry of Education and Research (grant No. MDA 08/022) and the Academy of Sciences of Moldova (grant No. 09.820.05.10 GF). The authors thank the European Commission for an IIF Marie Curie Fellowship (POLYMAG, contract No. 252984). The Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract 40 No. DE-AC02-07CH11358. NR 30 TC 3 Z9 3 U1 0 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-2701 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun. PD DEC PY 2011 VL 67 BP M371 EP M374 DI 10.1107/S010827011104412X PN 12 PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 855RA UT WOS:000297580700018 PM 22138911 ER PT J AU Dauter, M Dauter, Z AF Dauter, Miroslawa Dauter, Zbigniew TI Deprotonated imidodiphosphate in AMPPNP-containing protein structures SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID P-N-P; ADENOSINE TRIPHOSPHATE; KINASE; MECHANISM AB Many different proteins utilize the chemical energy provided by the cofactor adenosine triphosphate (ATP) for their proper function. A number of structures in the Protein Data Bank (PDB) contain adenosine 5'-(beta,gamma-imido) triphosphate (AMPPNP), a nonhydrolysable analog of ATP in which the bridging O atom between the two terminal phosphate groups is substituted by the imido function. Under mild conditions imides do not have acidic properties and thus the imide nitrogen should be protonated. However, an analysis of protein structures containing AMPPNP reveals that the imide group is deprotonated in certain complexes if the negative charges of the phosphate moieties in AMPPNP are in part neutralized by coordinating divalent metals or a guanidinium group of an arginine. C1 [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Ctr, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. [Dauter, Miroslawa] Argonne Natl Lab, Basic Res Program, SAIC Frederick Inc, Argonne, IL 60439 USA. RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Ctr, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. EM dauter@anl.gov FU NIH; National Cancer Institute; Center for Cancer Research; National Cancer Institute, National Institutes of Health [HHSN261200800001] FX This work was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research and with Federal funds from the National Cancer Institute, National Institutes of Health under Contract No. HHSN261200800001. NR 14 TC 2 Z9 2 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD DEC PY 2011 VL 67 BP 1073 EP 1075 DI 10.1107/S0907444911046105 PN 12 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 853KI UT WOS:000297424400010 PM 22120745 ER PT J AU Alahuhta, M Chandrayan, P Kataeva, I Adams, MWW Himmel, ME Lunin, VV AF Alahuhta, Markus Chandrayan, Puja Kataeva, Irina Adams, Michael W. W. Himmel, Michael E. Lunin, Vladimir V. TI A 1.5 A resolution X-ray structure of the catalytic module of Caldicellulosiruptor bescii family 3 pectate lyase SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE pectate lyases; PL3; Caldicellulosiruptor bescii ID REFINEMENT AB A 1.5 angstrom resolution X-ray structure of the catalytic module of Caldicellulosiruptor bescii family 3 pectate lyase is reported (PDB entry ). The resulting structure was refined to an R factor of 0.143 and an Rfree of 0.178. Structural analysis shows that this new structure is very similar to the previously solved structure of a family 3 pectate lyase from Bacillus sp. strain KSM-P15 (PDB entry ), with a root-mean-square deviation of 0.93 angstrom and a sequence identity of 53%. This structural similarity is significant considering that C. bescii is a hyperthermophile and Bacillus sp. is a mesophile. C1 [Alahuhta, Markus; Himmel, Michael E.; Lunin, Vladimir V.] Natl Renewable Energy Lab, BioSci Ctr, Golden, CO 80401 USA. [Chandrayan, Puja; Kataeva, Irina; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. RP Lunin, VV (reprint author), Natl Renewable Energy Lab, BioSci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM vladimir.lunin@nrel.gov RI Alahuhta, Markus/E-9344-2012 FU DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center FX This work was supported by the DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center. NR 13 TC 5 Z9 5 U1 2 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD DEC PY 2011 VL 67 BP 1498 EP 1500 DI 10.1107/S1744309111038449 PN 12 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 857SW UT WOS:000297741100006 PM 22139151 ER PT J AU Serrano-Posada, H Valderrama, B Stojanoff, V Rudino-Pinera, E AF Serrano-Posada, Hugo Valderrama, Brenda Stojanoff, Vivian Rudino-Pinera, Enrique TI Thermostable multicopper oxidase from Thermus thermophilus HB27: crystallization and preliminary X-ray diffraction analysis of apo and holo forms SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE laccases; multicopper oxidases; Thermus thermophilus ID CRYSTAL-STRUCTURE; LACCASE; ENZYME AB A thermostable multicopper oxidase from Thermus thermophilus HB27 (Tth-MCO) was successfully crystallized using the sitting-drop and hanging-drop vapour-diffusion methods. Crystallization conditions and preliminary X-ray diffraction data to 1.5 angstrom resolution obtained using synchrotron radiation at 100 K are reported. The crystals belonged to space group C2221, with unit-cell parameters a = 93.6, b = 110.3, c = 96.3 angstrom. A monomer in the asymmetric unit yielded a Matthews coefficient (VM) of 2.60 angstrom 3 Da-1 and a solvent content of 53%. An inactive enzyme form, apo-Tth-MCO, was also crystallized and diffraction data were collected to 1.7 angstrom resolution. In addition, a second inactive form of the enzyme, Hg-Tth-MCO, was obtained by soaking apo-Tth-MCO crystals with mercury(II) chloride and data were collected to a resolution of 1.7 angstrom. C1 [Serrano-Posada, Hugo; Valderrama, Brenda; Rudino-Pinera, Enrique] UNAM, Dept Med Mol & Bioproc, Inst Biotecnol, Cuernavaca 62210, Morelos, Mexico. [Stojanoff, Vivian] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Serrano-Posada, H (reprint author), UNAM, Dept Med Mol & Bioproc, Inst Biotecnol, Ave Univ 2001, Cuernavaca 62210, Morelos, Mexico. EM serrano@ibt.unam.mx; rudino@ibt.unam.mx RI stojanoff, vivian /I-7290-2012; OI stojanoff, vivian /0000-0002-6650-512X; Serrano-Posada, Hugo/0000-0002-7901-475X FU CONACyT [102370, 128156]; PAPIIT [IN204611]; NIGMS [GM-0080]; US Department of Energy [DE-AC02-98CH10886] FX HSP was supported by a PhD fellowship from CONACyT. ERP and BV acknowledge financial support from CONACyT projects 102370 and 128156, respectively. ERP gratefully acknowledges financial support of PAPIIT project IN204611. We thank the staff at BNL NSLS beamline X6A for data-collection facilities. Beamline X6A is funded by NIGMS (GM-0080) and the US Department of Energy (No. DE-AC02-98CH10886). The authors thank Biol. Sonia P. Rojas-Trejo, Biol. Guadalupe Paredes-Valdez and Dr Hector Ayala-Castro for technical assistance. NR 27 TC 8 Z9 9 U1 1 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD DEC PY 2011 VL 67 BP 1595 EP 1598 DI 10.1107/S174430911103805X PN 12 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 857SW UT WOS:000297741100030 PM 22139175 ER PT J AU Whittle, KR Blackford, MG Aughterson, RD Lumpkin, GR Zaluzec, NJ AF Whittle, Karl R. Blackford, Mark G. Aughterson, Robert D. Lumpkin, Gregory R. Zaluzec, Nestor J. TI Ion irradiation of novel yttrium/ytterbium-based pyrochlores: The effect of disorder SO ACTA MATERIALIA LA English DT Article DE Radiation damage; Pyrochlore; Oxide dispersion strengthened ID CONDUCTORS LN(2+X)TI(2-X)O(7-X/2) LN; ELECTRICAL-CONDUCTIVITY; YB2+XTI2-XO7-X/2 MATERIALS; INDUCED AMORPHIZATION; SOLID-SOLUTIONS; DY-LU; PHASE; SYSTEMS; ORDER; BEAM AB Pyrochlores based on the general composition Ln(2)TiO(5) (Ln(2.67)Ti(1.33)O(6.67)) and Ln(2)Ti(2)O(7), where Ln = Y or Yb, have been irradiated through the crystalline amorphous transition with 1 MeV Kr ions at the IVEM-TANDEM facility, Argonne National Laboratory. The results show that the T(c) (critical temperature for amorphization) differs significantly between each series, e.g. for Y(2)TiO(5) it is 589 +/- 18 K and for Y(2)Ti(2)O(7) 665 +/- 33 K. The difference suggests that recovery from damage is more rapid with increasing Ln content, i.e. a lower T(c) for amorphization. These results are discussed in the context of the melting points of each phase, atomic disorder, the pyrochlore-fluorite order-disorder transition and the implications for oxide dispersion-strengthened additives. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Whittle, Karl R.; Blackford, Mark G.; Aughterson, Robert D.; Lumpkin, Gregory R.] Australian Nucl Sci & Technol Org, Inst Mat Engn, Menai, NSW 2234, Australia. [Zaluzec, Nestor J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Whittle, KR (reprint author), Australian Nucl Sci & Technol Org, Inst Mat Engn, PMB 1, Menai, NSW 2234, Australia. EM karlwhittle@me.com RI Whittle, Karl/A-7404-2008; Lumpkin, Gregory/A-7558-2008 OI Whittle, Karl/0000-0002-8000-0857; FU US Department of Energy, Basic Energy Sciences [W-31-10-ENG-38] FX We wish to acknowledge the help of the staff at the Electron Microscopy Center, in particular Peter Baldo, Edward Ryan, and Marques Kirk, for their efficient and continued running of the IVEM-TANDEM facility. The IVEM-TANDEM facility is supported as a User Facility by the US Department of Energy, Basic Energy Sciences, under Contract W-31-10-ENG-38. We acknowledge the funding provided by the Access to Major Facilities Research Programme (a component of the International Science Linkages programme established under the Australian government's innovation statement, Backing Australia's Ability). NR 55 TC 21 Z9 21 U1 1 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2011 VL 59 IS 20 BP 7530 EP 7537 DI 10.1016/j.actamat.2011.09.021 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 858SE UT WOS:000297822200010 ER PT J AU Wang, L Bei, H Gao, YF Lu, ZP Nieh, TG AF Wang, L. Bei, H. Gao, Y. F. Lu, Z. P. Nieh, T. G. TI Effect of residual stresses on the onset of yielding in a Zr-based metallic glass SO ACTA MATERIALIA LA English DT Article DE Residual stresses; Onset of yielding; Metallic glasses; Nanoindentation; Glass transition ID SHEAR TRANSFORMATION ZONES; BULK AMORPHOUS-ALLOYS; PLASTIC-FLOW; INELASTIC DEFORMATION; HOMOGENEOUS FLOW; SINGLE-CRYSTALS; BUBBLE RAFT; BEHAVIOR; STRAIN; NANOINDENTATION AB Indentation experiments were performed on as-cast and elastically-bent-and-constrained Zr-based metallic glass samples to investigate the effect of strain rate and residual stresses on the onset of yielding in the material. The critical shear stress for the onset of yielding in the as-cast sample was found to be insensitive to the applied strain rate. By contrast, in the elastically-stressed sample, the maximum contact pressure from the Hertzian stress field at the onset of yielding was found to largely decrease under tensile residual stress, but only slightly increase under compressive residual stress. Despite the different residual stresses, the effective shear stress, i.e. the superimposition of residual and Hertzian stress fields, for the onset of yielding in the Zr-based metallic glass was essentially a constant. The constancy of the effective stress for the onset of yielding was discussed in light of a critical excess volume associated with the atomic structure upon loading. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wang, L.; Gao, Y. F.; Nieh, T. G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Wang, L.; Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Metall Mat, Beijing 100083, Peoples R China. [Bei, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Nieh, TG (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM tnieh@utk.edu RI Gao, Yanfei/F-9034-2010; Bei, Hongbin/I-6576-2012; Lu, Zhao-Ping/A-2718-2009; Nieh, Tai-Gang/G-5912-2011; OI Gao, Yanfei/0000-0003-2082-857X; Nieh, Tai-Gang/0000-0002-2814-3746; Bei, Hongbin/0000-0003-0283-7990 FU National Science Foundation [DMR-0905979, DMR-0909037]; Tennessee Agricultural Experiment Station; UT College of Engineering; US Department of Energy, Office of Basic Energy Science, Materials Sciences and Engineering Division; National Natural Science Foundation of China [50725104, 51010001] FX This work was supported by the National Science Foundation under Contract DMR-0905979 (T.G.N. and L.W.). Instrumentation for the nanoindentation work was jointly funded by the Tennessee Agricultural Experiment Station and UT College of Engineering. Work conducted in ORNL was supported by the US Department of Energy, Office of Basic Energy Science, Materials Sciences and Engineering Division (HB). Financial support was also provided by the National Science Foundation under Grant No. DMR-0909037 (YFG) and National Natural Science Foundation of China with Grant Nos. 50725104 and 51010001 (ZPL). NR 58 TC 13 Z9 13 U1 2 U2 59 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2011 VL 59 IS 20 BP 7627 EP 7633 DI 10.1016/j.actamat.2011.09.029 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 858SE UT WOS:000297822200020 ER PT J AU Gallops, S Fett, T Ager, JW Kruzic, JJ AF Gallops, S. Fett, T. Ager, J. W., III Kruzic, J. J. TI Fatigue threshold R-curves predict small crack fatigue behavior of bridging toughened materials SO ACTA MATERIALIA LA English DT Article DE Fatigue; Fracture; Toughness; Crack bridging ID IN-SITU; PROPAGATION; FRACTURE; ALUMINA; MECHANISMS; CERAMICS; GROWTH; FLUORESCENCE; CLOSURE; SPECTROSCOPY AB Small crack fatigue is a widely recognized problem in the fatigue of materials; however, there has been limited progress in developing methods to predict small crack fatigue behavior. In this paper small crack effects due to crack bridging are addressed. A fatigue threshold R-curve was measured for a 99.5% pure polycrystalline alumina using standard compact tension specimens and was used (i) to determine the bridging stress profile for the material and (ii) to make fatigue endurance strength predictions for realistic semi-elliptical surface cracks. Furthermore, it has been shown that the fatigue threshold R-curve can equivalently be determined by measuring the bridging stress distribution, in this case using fluorescence spectroscopy, using only a long crack compact tension specimen without the need for difficult small crack experiments. It is expected that this method will be applicable to a wide range of bridging toughened materials, including composites, toughened ceramics, intermetallics, and multi-phase materials. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Gallops, S.; Kruzic, J. J.] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. [Fett, T.] Karlsruhe Inst Technol, Inst Ceram Mech Engn, D-76131 Karlsruhe, Germany. [Ager, J. W., III] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kruzic, JJ (reprint author), Oregon State Univ, Sch Mech Ind & Mfg Engn, 204 Rogers Hall, Corvallis, OR 97331 USA. EM jamie.kruzic@oregonstate.edu RI Kruzic, Jamie/M-3558-2014; OI Kruzic, Jamie/0000-0002-9695-1921; Ager, Joel/0000-0001-9334-9751 FU Karlsruhe House of Young Scientists; National Science Foundation [0547394] FX S.G. would like to acknowledge support from the Karlsruhe House of Young Scientists, while both J.J.K. and S.G. would like to acknowledge support from the National Science Foundation Career Award No. 0547394. The authors would also like to acknowledge the assistance of Rawley Greene in helping with the spectroscopy experiments and data analysis and Joseph Ferron in helping make the indentation cracks. NR 39 TC 6 Z9 6 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2011 VL 59 IS 20 BP 7654 EP 7661 DI 10.1016/j.actamat.2011.08.038 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 858SE UT WOS:000297822200023 ER PT J AU Zhou, CZ Beyerlein, IJ LeSar, R AF Zhou, Caizhi Beyerlein, Irene J. LeSar, Richard TI Plastic deformation mechanisms of fcc single crystals at small scales SO ACTA MATERIALIA LA English DT Article DE Dislocation dynamics; Size effects; Small scales; Dislocation starvation; Cross-slip ID DISCRETE DISLOCATION SIMULATIONS; STRAIN GRADIENT PLASTICITY; MEAN FREE PATHS; UNIAXIAL COMPRESSION; NICKEL MICROCRYSTALS; SIZE DEPENDENCE; MICRO-PILLARS; CROSS-SLIP; DYNAMICS; STRENGTH AB Three-dimensional (3-D) dislocation dynamics simulations were employed to examine the fundamental mechanisms of plasticity in small-scale face-centered cubic single crystals. Guided by the simulation results, we examined two distinct modes of behavior that reflect the dominant physical mechanisms of plastic deformation at small scales. We found that the residence lifetimes of internal dislocation sources formed by cross-slip decrease as the system size decreases. Below a critical sample size (which depends on the initial density of dislocations) the dislocation loss rate exceeds the multiplication rate, leading to the loss of internal dislocation sources. In this case nucleation of surface dislocations is required to provide dislocations for deformation and the "starvation hardening" mechanism becomes the dominant deformation process. When the sample is larger than a critical size multiplication of internal dislocation sources provides the dominant mechanism for plastic flow. As the strain is increased the rising dislocation density leads to reactions that shut off these sources, creating "exhaustion hardening". Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Zhou, Caizhi; Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [LeSar, Richard] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [LeSar, Richard] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Zhou, CZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM czhou@lanl.gov RI Zhou, Caizhi/A-7983-2012; LeSar, Richard/G-1609-2012; Beyerlein, Irene/A-4676-2011 FU US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358]; Center for Nonlinear Studies, Statistical Physics Beyond Equilibrium from the Los Alamos National Laboratory Directed Research and Development Office FX This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. C.Z. acknowledges support provided by the Center for Nonlinear Studies, Statistical Physics Beyond Equilibrium Project from the Los Alamos National Laboratory Directed Research and Development Office. NR 59 TC 33 Z9 33 U1 5 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2011 VL 59 IS 20 BP 7673 EP 7682 DI 10.1016/j.actamat.2011.08.032 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 858SE UT WOS:000297822200025 ER PT J AU Heinz, NA Ikeda, T Snyder, GJ Medlin, DL AF Heinz, N. A. Ikeda, T. Snyder, G. J. Medlin, D. L. TI Interfacial disconnections at Sb2Te3 precipitates in PbTe: Mechanisms of strain accommodation and phase transformation at a tetradymite/rocksalt telluride interface SO ACTA MATERIALIA LA English DT Article DE Interface structure; Phase transformations; Dislocations; High-resolution transmission electron microscopy (HRTEM); Thermoelectric materials ID BULK THERMOELECTRIC-MATERIALS; IV-VI COMPOUNDS; MARTENSITIC TRANSFORMATIONS; BISMUTH TELLURIDE; COHERENCY STRAIN; GRAIN-BOUNDARY; DEFECTS; NANOCOMPOSITE; CRYSTALS; AGSBTE2 AB Understanding the structure and formation mechanisms of interfaces between different telluride phases is important to the development of thermoelectric nanocomposites. Here, we investigate the interfacial structure of tetradymite precipitates in a rocksalt telluride matrix, focusing in particular on precipitates of Sb2Te3 in PbTe. Using high-resolution transmission electron microscopy, we investigate the structure and arrangement of interfacial disconnections-i.e. interfacial steps possessing dislocation character-observed in this system. Our analyses provide insight concerning the roles of these defects in accommodating the large interfacial misfit (6.7%) in this system and in mediating the transformation from the rocksalt to the tetradymite structure. Our observations also suggest how such interfacial disconnections could arise through the dissociation of crystal lattice dislocations that accommodate the misfit on initially flat segments of the interface. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Medlin, D. L.] Sandia Natl Labs, Livermore, CA 94551 USA. [Heinz, N. A.; Ikeda, T.; Snyder, G. J.] CALTECH, Pasadena, CA 91125 USA. RP Medlin, DL (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9161, Livermore, CA 94551 USA. EM dlmedli@sandia.gov RI Snyder, G. Jeffrey/E-4453-2011; Ikeda, Teruyuki/J-6176-2014; Snyder, G/I-2263-2015 OI Snyder, G. Jeffrey/0000-0003-1414-8682; Ikeda, Teruyuki/0000-0001-7076-6958; FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia LDRD office FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Support for this project was provided in part by the Sandia LDRD office. The authors thank Joshua D. Sugar for useful discussions and helpful comments on the manuscript. NR 29 TC 8 Z9 8 U1 2 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2011 VL 59 IS 20 BP 7724 EP 7735 DI 10.1016/j.actamat.2011.08.043 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 858SE UT WOS:000297822200030 ER PT J AU Wolfer, WG AF Wolfer, Wilhelm G. TI Elastic properties of surfaces on nanoparticles SO ACTA MATERIALIA LA English DT Article DE Elastic properties; Lattice strains; Nanoparticles; Surface stress ID ARTICLE ENTITLED INCOMPATIBILITY; HERMANNS MATHEMATICAL STRUCTURE; SMALL PALLADIUM PARTICLES; LATTICE-PARAMETER; SHUTTLEWORTH EQUATION; DJ BOTTOMLEY; LINEAR COMBINATION; ATOMIC ORBITALS; STRESS; SIZE AB Lattice parameter changes in nanoparticles can be used to determine the surface stress of solids. In the past a Laplace-Young relationship has been employed to interpret the lattice parameter changes as a function of the particle size. In the meantime, however, atomistic calculations revealed a purely mechanical origin of the surface stress that is consistent with elasticity theory for solid surfaces as developed by Gurtin and Murdoch. In this theory the equilibrium distance for surface atoms may differ from that in the bulk solid, and the elastic properties of the surface layer may also deviate from bulk values. We apply this Gurtin-Murdoch theory to spherical nanoparticles and reanalyze past data as well as results from recent theoretical calculations on lattice parameter changes, thereby enabling us to determine surface properties commensurate with the mechanical interpretation of surface stress. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wolfer, Wilhelm G.] Sandia Natl Labs, Livermore, CA 94550 USA. [Wolfer, Wilhelm G.] Ktech Corp Inc, Albuquerque, NM 87123 USA. RP Wolfer, WG (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM wgwolfe@sandia.gov NR 39 TC 17 Z9 17 U1 2 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD DEC PY 2011 VL 59 IS 20 BP 7736 EP 7743 DI 10.1016/j.actamat.2011.08.033 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 858SE UT WOS:000297822200031 ER PT J AU Kang, BS Stan, L Usov, IO Lee, JK Harriman, TA Lucca, DA DePaula, RF Arendt, PN Nastasi, M MacManus-Driscoll, JL Park, BH Jia, Q AF Kang, Bo Soo Stan, Liliana Usov, Igor O. Lee, Jung-Kun Harriman, Tres A. Lucca, Don A. DePaula, Raymond F. Arendt, Paul N. Nastasi, Michael MacManus-Driscoll, Judith L. Park, Bae Ho Jia, Quanxi TI Strain Mismatch Induced Tilted Heteroepitaxial (000l) Hexagonal ZnO Films on (001) Cubic Substrates SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID PULSED-LASER DEPOSITION; THIN-FILMS; BUFFER LAYER; OPTICAL-PROPERTIES; GROWTH; PHOTOLUMINESCENCE; IMPROVEMENT; EMISSION AB A novel strain mismatch induced tilted epitaxy method has been demonstrated for producing high quality (000l) hexagonal films on (001) cubic substrates. Highly oriented hexagonal (000l) ZnO films are grown on cubic (001) MgO substrates using Sm0.28Zr0.72O2-d (SZO) as a template. The large lattice mismatch of >13% between the obvious crystallographic matching directions of the template and substrate means that cube-on-cube epitaxy is energetically unfavorable, leading to growth instead of two high index, low energy compact planes, close to the {111} orientation. These planes give three different in-plane orientations resulting from coincidence site lattice matching (12 in-plane orientations in total) and provide a pseudo-hexagonal symmetry surface for the ZnO to grow on. The texture of the ensuing (000l) ZnO layer is markedly improved over the template. The work opens up both a new avenue for growing technologically important hexagonal structures on a range of readily available, (001) cubic substrates, as well as showing that there are wide possibilities for heteroepitaxial growth of a range of dissimilar materials. C1 [Kang, Bo Soo] Hanyang Univ, Dept Appl Phys, Ansan 426791, South Korea. [Stan, Liliana; Usov, Igor O.; DePaula, Raymond F.; Arendt, Paul N.; Nastasi, Michael; Jia, Quanxi] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lee, Jung-Kun] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Harriman, Tres A.; Lucca, Don A.] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. [MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Park, Bae Ho] Konkuk Univ, Div Quantum Phases & Devices, Dept Phys, Seoul 143701, South Korea. RP Kang, BS (reprint author), Hanyang Univ, Dept Appl Phys, Ansan 426791, South Korea. EM bosookang@hanyang.ac.kr; qxjia@lanl.gov RI Park, Bae Ho/D-4840-2011; Jia, Q. X./C-5194-2008 NR 16 TC 0 Z9 0 U1 2 U2 37 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD DEC PY 2011 VL 13 IS 12 BP 1142 EP 1145 DI 10.1002/adem.201100106 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 857UD UT WOS:000297745900021 ER PT J AU Grate, JW O'Hara, MJ Farawila, AF Douglas, M Haney, MM Petersen, SL Maiti, TC Aardahl, CL AF Grate, Jay W. O'Hara, Matthew J. Farawila, Anne F. Douglas, Matthew Haney, Morgan M. Petersen, Steven L. Maiti, Tapas C. Aardahl, Christopher L. TI Extraction Chromatographic Methods in the Sample Preparation Sequence for Thermal Ionization Mass Spectrometric Analysis of Plutonium Isotopes SO ANALYTICAL CHEMISTRY LA English DT Article ID ION-EXCHANGE; BIOASSAY SAMPLES; SEPARATION; URANIUM; RATIO; BEADS; PU; GROUNDWATER; QUANTITIES; FALLOUT AB A sample preparation sequence for actinide isotopic analysis by thermal ionization mass spectrometry (TIMS) is described that includes column-based extraction chromatography as the first separation step, followed by anion-exchange column separations. The sequence is designed to include a wet ashing step after the extraction chromatography to prevent any leached extractant or oxalic acid eluent reagents from interfering with subsequent separations, source preparation, or TIMS ionization. TEVA resin and DGA resin materials, containing extractants that consist only of C, N, O, and H atoms, were investigated for isolation of plutonium. Radiotracer level studies confirmed expected high yields from column-based separation procedures. Femtogram-level studies were carried out with TIMS detection, using multiple monoisotopic spikes applied sequentially throughout the separation sequence. Pu recoveries were 87% and 86% for TEVA and DGA resin separations, respectively. The Pu recoveries from 400 mu L, anion-exchange column separation sequences were 89% and 93% for trial sequences incorporating TEVA and DGA resin. Thus, a prior extraction chromatography step in the sequence did not interfere with the subsequent anion-exchange separation when a simple wet ash step was carried out in between these column separations. The average measurement efficiency for Pu, encompassing the chemical separation recoveries and the TIMS ionization efficiency, was 2.73% +/- 0.77% (2 sigma) for the DGA resin trials and 2.67% +/- 0.54% for the TEVA resin trials, compared to 3.41% and 2.37% (average 2.89%) for two control trials. These compare with an average measurement efficiency of 2.78% +/- 1.70%, n = 33 from process benchmark analyses using Pu spikes processed through a sequence of oxalate precipitation, wet ash, iron hydroxide precipitation, and anion-exchange column separations. We conclude that extraction chromatography can be a viable separation procedure as part of a multistep sequence for TIMS sample preparation. C1 [Grate, Jay W.; O'Hara, Matthew J.; Farawila, Anne F.; Douglas, Matthew; Haney, Morgan M.; Petersen, Steven L.; Maiti, Tapas C.; Aardahl, Christopher L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Grate, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. OI Douglas, Matthew/0000-0001-9708-1780; O'Hara, Matthew/0000-0003-3982-5897 FU U.S. Department of Energy, National Nuclear Security Administration, Office of Nonproliferation and Verification Research and Development [NA-22] FX The authors gratefully acknowledge funding from U.S. Department of Energy, National Nuclear Security Administration, Office of Nonproliferation and Verification Research and Development (NA-22). We thank Harry Zack Taylor for preparing the samples and capturing the images in Figure 3. The Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute. NR 50 TC 12 Z9 12 U1 5 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD DEC 1 PY 2011 VL 83 IS 23 BP 9086 EP 9091 DI 10.1021/ac202150v PG 6 WC Chemistry, Analytical SC Chemistry GA 854FZ UT WOS:000297481700039 PM 22004461 ER PT J AU Shvartsburg, AA Smith, RD AF Shvartsburg, Alexandre A. Smith, Richard D. TI Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen SO ANALYTICAL CHEMISTRY LA English DT Article ID DISSOCIATION MASS-SPECTROMETRY; DRIFT-GAS POLARIZABILITY; PEPTIDE ISOMERS; TRYPTIC PEPTIDES; FAIMS; MIXTURES; ANALYZERS; SYSTEM; PHASE; CHROMATOGRAPHY AB The resolving power of differential ion mobility spectrometry (FAIMS) was dramatically increased recently by carrier gases comprising up to 75% He or various vapors, enabling many new applications. However, the need for resolution of complex mixtures is virtually open-ended and many topical analyses demand yet finer separations. Also, the resolving power gains are often at the expense of speed, in particular making high-resolution FAIMS poorly compatible with online liquid-phase separations. Here, we report FAIMS employing hydrogen, specifically in mixtures with N(2) containing up to 90% H(2). Such compositions raise the mobilities of all ions and thus the resolving power beyond that previously feasible, while avoiding the electrical breakdown inevitable in He-rich mixtures, The increases in resolving power and ensuing peak resolution are especially significant at H(2) fractions above similar to 50%. Higher resolution can be exchanged for acceleration of the analyses by up to similar to 4 times. For more mobile species such as multiply charged peptides, this exchange is presently forced by the constraints of existing PALMS devices, but future designs optimized for H(2) should consistently improve resolution for all analytes. C1 [Shvartsburg, Alexandre A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 99, Richland, WA 99352 USA. EM alexandre.shvartsburg@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH National Center for Research Resources [RR18522]; Battelle FX We thank Ron Moore, Karl Weitz, Heather Brewer, and Dr. Keqi Tang for help in the lab, Dr. Andrew Creese and Prof. Helen Cooper (Birmingham, U.K.) for the peptide samples, and Dr. David Koppenaal for discussions. Portions of this research were supported by the NIH National Center for Research Resources (Grant RR18522) and Battelle. Work was performed in the Environmental Molecular Sciences Laboratory, a U.S. DoE OBER national scientific user facility at PNNL. NR 57 TC 24 Z9 24 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD DEC 1 PY 2011 VL 83 IS 23 BP 9159 EP 9166 DI 10.1021/ac202386w PG 8 WC Chemistry, Analytical SC Chemistry GA 854FZ UT WOS:000297481700049 PM 22074292 ER PT J AU Hopewell, JW Morris, GM Schwint, A Coderre, JA AF Hopewell, J. W. Morris, G. M. Schwint, A. Coderre, J. A. TI The radiobiological principles of boron neutron capture therapy: A critical review SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE BNCT; Radiobiological principles; Biological effectiveness ID RAT SPINAL-CORD; V79 CELLS; TOLERANCE; SURVIVAL; ENERGY; SKIN; RBE AB The radiobiology of the dose components in a BNCT exposure is examined. The effect of exposure time in determining the biological effectiveness of gamma-rays, due to the repair of sublethal damage, has been largely overlooked in the application of BNCT. Recoil protons from fast neutrons vary in their relative biological effectiveness (RBE) as a function of energy and tissue endpoint. Thus the energy spectrum of a beam will influence the RBE of this dose component. Protons from the neutron capture reaction in nitrogen have not been studied but in practice protons from nitrogen capture have been combined with the recoil proton contribution into a total proton dose. The relative biological effectiveness of the products of the neutron capture reaction in boron is derived from two factors, the RBE of the short range particles and the bio-distribution of boron, referred to collectively as the compound biological effectiveness factor. Caution is needed in the application of these factors for different normal tissues and tumors. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hopewell, J. W.] Univ Oxford, Green Templeton Coll, Oxford, England. [Hopewell, J. W.] Univ Oxford, Particle Therapy Canc Res Inst, Oxford, England. [Morris, G. M.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Schwint, A.] Natl Atom Energy Commiss, Dept Radiobiol, Constituyentes Atom Ctr, Buenos Aires, DF, Argentina. [Coderre, J. A.] Ora Inc, Andover, MA USA. RP Hopewell, JW (reprint author), Univ Oxford, Green Templeton Coll, Oxford, England. EM john.hopewell@gtc.ox.ac.uk NR 17 TC 24 Z9 25 U1 0 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD DEC PY 2011 VL 69 IS 12 SI SI BP 1756 EP 1759 DI 10.1016/j.apradiso.2011.04.019 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 853KU UT WOS:000297426000034 PM 21543233 ER PT J AU Pozzi, ECC Thorp, S Brockman, J Miller, M Nigg, DW Hawthorne, MF AF Pozzi, Emiliano C. C. Thorp, Silvia Brockman, John Miller, Marcelo Nigg, David W. Hawthorne, M. Frederick TI Intercalibration of physical neutron dosimetry for the RA-3 and MURR thermal neutron sources for BNCT small-animal research SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE BNCT; Research reactors; Neutron sources; Dosimetry ID CAPTURE THERAPY BNCT; BEAM AB New thermal neutron irradiation facilities to perform cell and small-animal irradiations for Boron Neutron Capture Therapy research have been installed at the Missouri University Research Reactor and at the RA-3 research reactor facility in Buenos Aires, Argentina. Recognizing the importance of accurate and reproducible physical beam dosimetry as an essential tool for combination and intercomparisons of preclinical and clinical results from the different facilities, we have conducted an experimental intercalibration of the neutronic performance of the RA-3 and MURR thermal neutron sources. Published by Elsevier Ltd. C1 [Nigg, David W.] Idaho Natl Lab, Idaho Falls, ID USA. [Brockman, John; Hawthorne, M. Frederick] Univ Missouri, Columbia, MO 65211 USA. RP Nigg, DW (reprint author), Idaho Natl Lab, POB 1625,MS 3860, Idaho Falls, ID USA. EM dwn@inel.gov OI Brockman, John/0000-0001-7419-5558 FU University of Missouri International Institute for Nano and Molecular Medicine; United States Department of Energy via DOE Idaho Operations Office [DE-AC07-05ID14517] FX INL participation in this work was supported by the University of Missouri International Institute for Nano and Molecular Medicine and by the United States Department of Energy Faculty-Staff Exchange Program via DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 6 TC 1 Z9 1 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD DEC PY 2011 VL 69 IS 12 SI SI BP 1921 EP 1923 DI 10.1016/j.apradiso.2011.01.031 PG 3 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 853KU UT WOS:000297426000078 PM 21330143 ER PT J AU Abreu, P Aglietta, M Ahn, EJ Albuquerque, IFM Allard, D Allekotte, I Allen, J Allison, P Castillo, JA Alvarez-Muniz, J Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Anticic, T Anzalone, A Aramo, C Arganda, E Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Backer, T Balzer, M Barber, KB Barbosa, AF Bardenet, R Barroso, SLC Baughman, B Bauml, J Beatty, JJ Becker, BR Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Caballero-Mora, KS Caramete, L Caruso, R Castellina, A Catalano, O Cataldi, G Cazon, L Cester, R Chauvin, J Cheng, SH Chiavassa, A Chinellato, JA Chou, A Chudoba, J Clay, RW Coluccia, MR Conceicao, R Contreras, F Cook, H Cooper, MJ Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Dallier, R Dasso, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTD De Mitri, I de Souza, V de Vries, KD Decerprit, G del Peral, L Deligny, O Dembinski, H Dhital, N Di Giulio, C Diaz, JC Castro, MLD Diep, PN Dobrigkeit, C Docters, W D'Olivo, JC Dong, PN Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I Ebr, TJ Engel, R Erdmann, M Escobar, CO Etchegoyen, A San Luis, PF Tapia, IF Falcke, H Farrar, G Fauth, AC Fazzini, N Ferguson, AP Ferrero, A Fick, B Filevich, A Filipcic, A Fliescher, S Fracchiolla, CE Fraenkel, ED Frohlich, U Fuchs, B Gaior, R Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Gascon, A Gemmeke, H Gesterling, K Ghia, PL Giaccari, U Giller, M Glass, H Cold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P Gonzalez, D Gonzalez, JG Gookin, B Gora, D Gorgi, A Gouffon, P Gozzini, SR Grashorn, E Grebe, S Griffith, N Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Guzman, A Hague, JD Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Hebbeker, T Heck, D Herve, AE Hojvat, C Hollon, N Holmes, VC Homola, P Horandel, JR Horneffer, A Hrabovsky, M Huege, T Insolia, A Ionita, F Italiano, A Jarne, C Jiraskova, S Kadija, K Kampert, KH Karhan, P Kasper, P Kegl, B Keilhauer, B Keivani, A Kelley, JL Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapp, J Koang, DH Kotera, K Krohm, N Kromer, O Kruppke-Hansen, D Kuehn, F Kuempel, D Kulbartz, JK Kunka, N La Rosa, G Lachaud, C Lautridou, P Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Lemiere, A Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, AL Louedec, K Bahilo, JL Lucero, A Ludwig, M Lyberis, H Maccarone, MC Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Marini, J Marin, V Maris, IC Falcon, HRM Marsella, G Martello, D Martin, L Martinez, H Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Mertsch, P Meurer, C Mitanovic, S Micheletti, MI Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, E Moreno, JC Morris, C Mostafa, M Moura, CA Mueller, S Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Nelles, A Nhung, PT Niemietz, L Nierstenhoefer, N Nitz, D Nosek, D Nazka, L Nyklicek, M Oehischlager, J Olinto, A Oliva, P Olmos-Gilbaja, VM Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Parente, G Parizot, E Parra, A Parsons, RD Pastor, S Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Phan, N Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Querchfeld, S Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Riggi, S Risse, M Ristori, P Rivera, H Rizi, V Roberts, J Robledo, C de Carvalho, WR Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Rossier, T Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Ruhle, C Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, B Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, J Schovaneky, P Schroder, F Schulte, S Schuster, D Scilltto, SJ Scuderi, M Segreto, A Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Lopez, HHS Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Stapleton, J Stasielak, J Stephan, M Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Susa, T Sutherland, MS Swain, J Szadkowski, Z Szuba, M Tamashiro, A Tapia, A Tartare, M Tascau, O Ruiz, CGT Tcaciuc, R Tegolo, D Thao, NT Thomas, D Tiffenberg, J Timmermans, C Tiwari, DK Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Varela, E Cardenas, BV Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Westerhoff, S Whelan, BJ Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Winders, L Winnick, MG Wommer, M Wundheiler, B Yamamoto, T Yapici, T Younk, P Yuan, G Yushkov, A Zamorano, B Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abreu, P. Aglietta, M. Ahn, E. J. Albuquerque, I. F. M. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez Castillo, J. Alvarez-Muniz, J. Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Anticic, T. Anzalone, A. Aramo, C. Arganda, E. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Baecker, T. Balzer, M. Barber, K. B. Barbosa, A. F. Bardenet, R. Barroso, S. L. C. Baughman, B. Baeuml, J. Beatty, J. J. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Caballero-Mora, K. S. Caramete, L. Caruso, R. Castellina, A. Catalano, O. Cataldi, G. Cazon, L. Cester, R. Chauvin, J. Cheng, S. H. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Clay, R. W. Coluccia, M. R. Conceicao, R. Contreras, F. Cook, H. Cooper, M. J. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Dallier, R. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. Decerprit, G. del Peral, L. Deligny, O. Dembinski, H. Dhital, N. Di Giulio, C. Diaz, J. C. Diaz Castro, M. L. Diep, P. N. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dong, P. N. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. Ebr, T. J. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. San Luis, P. Facal Fajardo Tapia, I. Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Froehlich, U. Fuchs, B. Gaior, R. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Gascon, A. Gemmeke, H. Gesterling, K. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Cold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. Gonzalez, D. Gonzalez, J. G. Gookin, B. Gora, D. Gorgi, A. Gouffon, P. Gozzini, S. R. Grashorn, E. Grebe, S. Griffith, N. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Guzman, A. Hague, J. D. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Herve, A. E. Hojvat, C. Hollon, N. Holmes, V. C. Homola, P. Hoerandel, J. R. Horneffer, A. Hrabovsky, M. Huege, T. Insolia, A. Ionita, F. Italiano, A. Jarne, C. Jiraskova, S. Kadija, K. Kampert, K. H. Karhan, P. Kasper, P. Kegl, B. Keilhauer, B. Keivani, A. Kelley, J. L. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapp, J. Koang, D. -H. Kotera, K. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuehn, F. Kuempel, D. Kulbartz, J. K. Kunka, N. La Rosa, G. Lachaud, C. Lautridou, P. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Lemiere, A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Lopez Agueera, A. Louedec, K. Lozano Bahilo, J. Lucero, A. Ludwig, M. Lyberis, H. Maccarone, M. C. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Marini, J. Marin, V. Maris, I. C. Marquez Falcon, H. R. Marsella, G. Martello, D. Martin, L. Martinez, H. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Mertsch, P. Meurer, C. Mitanovic, S. Micheletti, M. I. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, E. Moreno, J. C. Morris, C. Mostafa, M. Moura, C. A. Mueller, S. Muller, M. A. Mueller, G. Muenchmeyer, M. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Nelles, A. Nhung, P. T. Niemietz, L. Nierstenhoefer, N. Nitz, D. Nosek, D. Nazka, L. Nyklicek, M. Oehischlaeger, J. Olinto, A. Oliva, P. Olmos-Gilbaja, V. M. Ortiz, M. Pacheco, N. Pakk Selmi-Dei, D. Palatka, M. Pallotta, J. Palmieri, N. Parente, G. Parizot, E. Parra, A. Parsons, R. D. Pastor, S. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Phan, N. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Querchfeld, S. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Riggi, S. Risse, M. Ristori, P. Rivera, H. Rizi, V. Roberts, J. Robledo, C. Rodrigues de Carvalho, W. Rodriguez, G. Rodriguez Martino, J. Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossier, T. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Ruehle, C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, B. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovaneky, P. Schroeder, F. Schulte, S. Schuster, D. Scilltto, S. J. Scuderi, M. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Silva Lopez, H. H. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Stapleton, J. Stasielak, J. Stephan, M. Strazzeri, E. Stutz, A. Suarez, F. Suomijarvi, T. Supanitsky, A. D. Susa, T. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Tamashiro, A. Tapia, A. Tartare, M. Tascau, O. Tavera Ruiz, C. G. Tcaciuc, R. Tegolo, D. Thao, N. T. Thomas, D. Tiffenberg, J. Timmermans, C. Tiwari, D. K. Tkaczyk, W. Todero Peixoto, C. J. Tome, B. Tonachini, A. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Varela, E. Vargas Cardenas, B. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Westerhoff, S. Whelan, B. J. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Winders, L. Winnick, M. G. Wommer, M. Wundheiler, B. Yamamoto, T. Yapici, T. Younk, P. Yuan, G. Yushkov, A. Zamorano, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. CA Pierre Auger Collaboration TI The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory SO ASTROPARTICLE PHYSICS LA English DT Article DE Ultra-High Energy Cosmic Rays; Pierre Auger Observatory; Extensive Air Showers; Trigger performance; Surface detector; Hybrid detector ID EXTENSIVE AIR-SHOWERS; SURFACE DETECTOR; SIMULATION AB In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10(17) and 10(19) eV and zenith angles up to 65 degrees. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data C1 [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Allekotte, I.; Asorey, H.; dos Anjos, J. C.; Fuchs, B.; Golup, G.; Gomez Berisso, M.; Harari, D.; Herve, A. E.; Mollerach, S.] CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; dos Anjos, J. C.; Fuchs, B.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Sidelnik, I.; Suarez, F.; Tapia, A.; Wainberg, O.; Wundheiler, B.] Comis Nacl Energia Atom CONICET UTN FRBA, Ctr Atom Constituyentes, Buenos Aires, DF, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Piegaia, R.; Pieroni, P.; Tiffenberg, J.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1053 Buenos Aires, DF, Argentina. [Gomez Albarracin, F.; Herve, A. E.; Jarne, C.; Mariazzi, A. G.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Scilltto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.; Tamashiro, A.] CONICET UBA, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Micheletti, M. I.] Inst Fis Rosario IFIR CONICET UNR, Rosario, Santa Fe, Argentina. [Micheletti, M. I.] Fac Ciencias Bioquim & Farmaceut UNR, Rosario, Santa Fe, Argentina. [De La Vega, G.; Garcia, B.; Herve, A. E.; Videla, M.] Natl Technol Univ, Fac Mendoza CONICET CNEA, Mendoza, Argentina. [Avila, G.; Contreras, F.; Marini, J.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Herve, A. E.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Barbosa, A. F.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Diaz Castro, M. L.; Shellard, R. C.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [de Souza, V.; Todero Peixoto, C. J.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Rodrigues de Carvalho, W.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira de Santana, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.; Moura, C. A.; Todero Peixoto, C. J.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Santos, E. M.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [de Almeida, R. M.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [Anticic, T.; Kadija, K.; Mitanovic, S.; Susa, T.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Karhan, P.; Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Ebr, T. J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Nazka, L.; Nyklicek, M.; Palatka, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovaneky, P.; Smida, R.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hrabovsky, M.; Rossier, T.] Palacky Univ, RCATM, CR-77147 Olomouc, Czech Republic. [Bertou, X.; Deligny, O.; Dong, P. N.; Lemiere, A.; Lhenry-Yvon, I.; Lyberis, H.; Roulet, E.; Suomijarvi, T.] Univ Paris 11, IPNO, CNRS Orsay IN2P3, Paris, France. [Allard, D.; Creusot, A.; Decerprit, G.; Lachaud, C.; Parizot, E.; Tristram, G.] Univ Paris 07, Lab AstroParticule & Cosmol APC, CNRS Paris IN2P3, F-75221 Paris 05, France. [Bardenet, R.; Cordier, A.; Dagoret-Campagne, S.; Kegl, B.; Louedec, K.; Ragaigne, D. Monnier; Urban, M.] Univ Paris 11, LAL, CNRS Orsay IN2P3, Paris, France. [Aublin, J.; Billoir, P.; Bonifazi, C.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.] Univ Paris 06, LPNHE, F-75252 Paris 05, France. [Avenier, M.; Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Stutz, A.; Tartare, M.] Univ Grenoble 1, LPSC, INPG, CNRS Grenoble IN2P3, F-38041 Grenoble, France. [Belletoile, A.; Dallier, R.; Lautridou, P.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.] CNRS IN2P3, SUBATECH, Nantes, France. [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Niemietz, L.; Nierstenhoefer, N.; Oliva, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany. [Baeuml, J.; Bluemer, H.; Daumiller, K.; Dembinski, H.; Engel, R.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehischlaeger, J.; Pierog, T.; Roth, M.; Salamida, F.; Schieler, H.; Schroeder, F.; Smida, R.; Szuba, M.; Ulrich, R.; Unger, M.; Valino, I.; Weindl, A.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany. [Balzer, M.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Ruehle, C.; Schmidt, A.; Weber, M.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elektron, Karlsruhe, Germany. [Baeuml, J.; Bluemer, H.; Dembinski, H.; Gora, D.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, Karlsruhe, Germany. [Ave, M.; Biermann, P. L.; Caballero-Mora, K. S.; Caramete, L.; Curutiu, A.; Dutan, I.; Gonzalez, D.; Gonzalez, J. G.; Link, K.; Ludwig, M.; Melissas, M.; Palmieri, N.; Schmidt, T.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Meurer, C.; Mueller, G.; Scharf, N.; Schiffer, P.; Schulte, S.; Stephan, M.; Weidenhaupt, K.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Kulbartz, J. K.; Sigl, G.] Univ Hamburg, Hamburg, Germany. [Baecker, T.; Buchholz, P.; Froehlich, U.; Pontz, M.; Risse, M.; Settimo, M.; Tcaciuc, R.; Younk, P.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Di Giulio, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [Grillo, A. F.] INFN, Lab Nazl Gran Sasso, Laquila, Italy. [De Donato, C.; Miramonti, L.; Rivera, H.; Scherini, V.] Univ Milan, Milan, Italy. [De Donato, C.; Miramonti, L.; Rivera, H.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Martello, D.] Univ Solento, Dipartimento Fis, Lecce, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Martello, D.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Ambrosio, M.; Aramo, C.; D'Urso, D.; Guarino, F.; Moura, C. A.; Valore, L.; Yushkov, A.] Univ Naples Federico 2, Naples, Italy. [Ambrosio, M.; Aramo, C.; D'Urso, D.; Guarino, F.; Moura, C. A.; Valore, L.; Yushkov, A.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Marini, J.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario INAF, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Marini, J.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Marsella, G.; Perrone, L.] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy. [Marsella, G.; Perrone, L.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.; Strazzeri, E.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Tegolo, D.] Univ Palermo, Catania, Italy. [Lopez, R.; Martinez Bravo, O.; Moreno, E.; Robledo, C.; Salazar, H.; Varela, E.] Benemerita Univ Autanoma Puebla, Puebla, Mexico. [Martinez, H.; Zepeda, A.] Ctr Invest & Estudios Avanzados IPN CINVESTAV, Mexico City, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Muenchmeyer, M.; Tiwari, D. K.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; De Donato, C.; D'Olivo, J. C.; Fajardo Tapia, I.; Guzman, A.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Silva Lopez, H. H.; Supanitsky, A. D.; Tavera Ruiz, C. G.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Hoerandel, J. R.; Horneffer, A.; Jiraskova, S.; Kelley, J. L.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [de Vries, K. D.; Docters, W.; Fraenkel, E. D.; Harmsma, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Petrovic, J.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Gora, D.; Homola, P.; Pekala, J.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] J Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.] CSIC Univ Valencia, Inst Fis Corpuscular, Valencia, Spain. [Arganda, E.; Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [Blanco, M.; del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala De Henares, Alcala De Henares, Madrid, Spain. [Bueno, A.; Garcia Gamez, D.; Gascon, A.; Herve, A. E.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.; Zamorano, B.] Univ Granada, Granada, Spain. [Bueno, A.; Garcia Gamez, D.; Gascon, A.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.; Zamorano, B.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Lopez Agueera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Parra, A.; Pelayo, R.; Riggi, S.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez-Cabo, I.; Tueros, M.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Mertsch, P.; Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bruijn, R.; Cook, H.; Gozzini, S. R.; Knapp, J.; Parsons, R. D.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferguson, A. P.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.; Yushkov, A.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Fracchiolla, C. E.; Gookin, B.; Harton, J. L.; Mostafa, M.; Petrov, Y.; Thomas, D.; Warner, D.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Kuehn, F.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Spinka, H.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Keivani, A.; Matthews, J.; Shadkam, A.; Sutherland, M. S.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Dhital, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.; Roberts, J.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Grashorn, E.; Griffith, N.; Morris, C.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Cheng, S. H.; Coutu, S.; Criss, A.; Sommers, P.; Ulrich, R.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] So Univ, Baton Rouge, LA USA. [Bohacova, M.; Cronin, J.; San Luis, P. Facal; Hollon, N.; Ionita, F.; Kotera, K.; Monasor, M.; Olinto, A.; Privitera, P.; Rouille-d'Orfeuil, B.; Schmidt, F.; Williams, C.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gesterling, K.; Cold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.; Phan, N.] Univ New Mexico, Albuquerque, NM 87131 USA. [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Winders, L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. [Yamamoto, T.] Konan Univ, Kobe, Hyogo, Japan. RP Abreu, P (reprint author), LIP, P-1000 Lisbon, Portugal. EM auger_spokespersons@fnal.gov RI Oliva, Pietro/K-5915-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; Abreu, Pedro/L-2220-2014; Navas, Sergio/N-4649-2014; Assis, Pedro/D-9062-2013; Arqueros, Fernando/K-9460-2014; Blanco, Francisco/F-1131-2015; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; de Mello Neto, Joao/C-5822-2013; Lozano-Bahilo, Julio/F-4881-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; De Domenico, Manlio/B-5826-2014; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Di Giulio, Claudio/B-3319-2015; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Carvalho Jr., Washington/H-9855-2015; De Donato, Cinzia/J-9132-2015; Bohacova, Martina/G-5898-2014; Cazon, Lorenzo/G-6921-2014; Vicha, Jakub/G-8440-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Yushkov, Alexey/A-6958-2013; Falcke, Heino/H-5262-2012; Anjos, Joao/C-8335-2013; Nierstenhofer, Nils/H-3699-2013; Pakk Selmi-Dei, Daniel/H-2675-2013; Goncalves, Patricia /D-8229-2013; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Fauth, Anderson/F-9570-2012; Shellard, Ronald/G-4825-2012; Caramete, Laurentiu/C-2328-2011; Petrolini, Alessandro/H-3782-2011; Albuquerque, Ivone/H-4645-2012; Muller, Marcio Aparecido/H-9112-2012; de souza, Vitor/D-1381-2012; Todero Peixoto, Carlos Jose/G-3873-2012; OI Ulrich, Ralf/0000-0002-2535-402X; Garcia, Beatriz/0000-0003-0919-2734; Dembinski, Hans/0000-0003-3337-3850; Del Peral, Luis/0000-0003-2580-5668; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Mussa, Roberto/0000-0002-0294-9071; Knapp, Johannes/0000-0003-1519-1383; Tiwari, Dhirendra Kumar/0000-0002-6754-3398; Mertsch, Philipp/0000-0002-2197-3421; Zamorano, Bruno/0000-0002-4286-2835; Asorey, Hernan/0000-0002-4559-8785; Andringa, Sofia/0000-0002-6397-9207; Aramo, Carla/0000-0002-8412-3846; Anzalone, Anna/0000-0003-1849-198X; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Marsella, Giovanni/0000-0002-3152-8874; La Rosa, Giovanni/0000-0002-3931-2269; Ravignani, Diego/0000-0001-7410-8522; Segreto, Alberto/0000-0001-7341-6603; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; Oliva, Pietro/0000-0002-3572-3255; De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; Gomez Berisso, Mariano/0000-0001-5530-0180; Salamida, Francesco/0000-0002-9306-8447; Catalano, Osvaldo/0000-0002-9554-4128; Abreu, Pedro/0000-0002-9973-7314; Navas, Sergio/0000-0003-1688-5758; Assis, Pedro/0000-0001-7765-3606; Arqueros, Fernando/0000-0002-4930-9282; Blanco, Francisco/0000-0003-4332-434X; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; de Mello Neto, Joao/0000-0002-3234-6634; Lozano-Bahilo, Julio/0000-0003-0613-140X; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; De Domenico, Manlio/0000-0001-5158-8594; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Di Giulio, Claudio/0000-0002-0597-4547; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Carvalho Jr., Washington/0000-0002-2328-7628; De Donato, Cinzia/0000-0002-9725-1281; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Garcia Pinto, Diego/0000-0003-1348-6735; Tome, Bernardo/0000-0002-7564-8392; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Goncalves, Patricia /0000-0003-2042-3759; Prouza, Michael/0000-0002-3238-9597; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Fauth, Anderson/0000-0001-7239-0288; Shellard, Ronald/0000-0002-2983-1815; Petrolini, Alessandro/0000-0003-0222-7594; Albuquerque, Ivone/0000-0001-7328-0136; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Coutu, Stephane/0000-0003-2923-2246 FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR [AV0Z10100502, AV0Z10100522, GAAV KJB300100801, KJB100100904, MSMT-CR LA08016, LC527, 1M06002, MSM0021620859]; Czech Republic; Centre de Calcul IN2P3/CNRS; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS); Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Innovation; Wissenschaft und Forschung, Nordrhein-Westfalen; Ministerium fur Wissenschaft; Forschung und Kunst; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR); Gran Sasso Center for Astroparticle Physics (CFA), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs; Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Poland [1 P03 D 014 30, N N202 207238]; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology; Slovenian Research Agency, Slovenia; Comunidad de Madrid; Consejeria de Educacion de la Comunidad de Castilla La Mancha; FEDER; Ministerio de Ciencia e Innovacion and Consolider-Ingenio (CPAN); Generalitat Valenciana; Junta deAndalucia; Xunta deGalicia, Spain; Science and Technology FacilitiesCouncil, United Kingdom; Department ofEnergy [DE-AC02-07CH11359, DE-FR02-04ER41300]; National Science Foundation [0969400]; Grainger Foundation USA; NAFOSTED, Viet-Nam; ALFA-EC/ HELEN; European Union [MEIF-CT-2005-025057, PIEF-GA-2008-220240]; UNESCO FX We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR, AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859. Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Innovation, Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. 1 P03 D 014 30 and N N202 207238, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Generalitat Valenciana, Junta deAndalucia, Xunta deGalicia, Spain; Science and Technology FacilitiesCouncil, United Kingdom; Department ofEnergy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0969400, The Grainger Foundation USA; NAFOSTED, Viet-Nam; ALFA-EC/ HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO. NR 21 TC 9 Z9 9 U1 0 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD DEC PY 2011 VL 35 IS 5 BP 266 EP 276 DI 10.1016/j.astropartphys.2011.08.001 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 853OB UT WOS:000297434500006 ER PT J AU D'Allura, A Kulkarni, S Carmichael, GR Finardi, S Adhikary, B Wei, C Streets, D Zhang, Q Pierce, RB Al-Saadi, JA Diskin, G Wennberg, P AF D'Allura, Alessio Kulkarni, Sarika Carmichael, Gregory R. Finardi, Sandro Adhikary, Bhupesh Wei, Chao Streets, David Zhang, Qiang Pierce, Robert B. Al-Saadi, Jassim A. Diskin, Glenn Wennberg, Paul TI Meteorological and air quality forecasting using the WRF-STEM model during the 2008 ARCTAS field campaign SO ATMOSPHERIC ENVIRONMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Air Quality - Science and Application CY MAR 24-27, 2009 CL Istanbul, TURKEY DE ARCTAS; Arctic; Air quality forecasting; Chemical weather ID DEPOSITION; KNOWLEDGE; CHEMISTRY; SULFATE; MISSION AB In this study, the University of Iowa's Chemical Weather Forecasting System comprising meteorological predictions using the WRF model, and off-line chemical weather predictions using tracer and full chemistry versions of the STEM model, designed to support the flight planning during the ARCTAS 2008 mission is described and evaluated. The system includes tracers representing biomass burning and anthropogenic emissions from different geographical emissions source regions, as well as air mass age indicators. We demonstrate how this forecasting system was used in flight planning and in the interpretation of the experimental data obtained through the case study of the summer mission ARCTAS DC-8 flight executed on July 9 2008 that sampled near the North Pole. The comparison of predicted meteorological variables including temperature, pressure, wind speed and wind direction against the flight observations shows that the WRF model is able to correctly describe the synoptic circulation and cloud coverage in the Arctic region The absolute values of predicted CO match the measured CO closely suggesting that the STEM model is able to capture the variability in observations within the Arctic region. The time altitude cross sections of source region tagged CO tracers along the flight track helped in identifying biomass burning (from North Asia) and anthropogenic (largely China) as major sources contributing to the observed CO along this flight. The difference between forecast and post analysis biomass burning emissions can lead to significant changes (similar to 10-50%) in primary CO predictions reflecting the large uncertainty associated with biomass burning estimates and the need to reduce this uncertainty for effective flight planning. (C) 2011 Elsevier ltd. All rights reserved. C1 [D'Allura, Alessio; Finardi, Sandro] ARIANET, I-20128 Milan, Italy. [Kulkarni, Sarika; Carmichael, Gregory R.; Adhikary, Bhupesh; Wei, Chao] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Streets, David; Zhang, Qiang] Argonne Natl Lab, Argonne, IL 60439 USA. [Pierce, Robert B.] NOAA, NESDIS, Madison, WI USA. [Al-Saadi, Jassim A.; Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Wennberg, Paul] CALTECH, Pasadena, CA 91125 USA. RP D'Allura, A (reprint author), ARIANET, Via Gilino 9, I-20128 Milan, Italy. EM a.dallura@aria-net.it RI Wennberg, Paul/A-5460-2012; Pierce, Robert Bradley/F-5609-2010; Zhang, Qiang/D-9034-2012; wei, chao/E-4379-2011; OI Pierce, Robert Bradley/0000-0002-2767-1643; Finardi, Sandro/0000-0002-9772-785X; Streets, David/0000-0002-0223-1350 FU NASA [NNX08AH56G] FX We would like to thank the ARCTAS Measurement Team for permission in using the measurements, CGRER and teh University of Iowa. This work was supported in part by NASA grant NNX08AH56G. We would like to acknowledge Space Science and Engineering Center, University of Wisconsin-Madison, WI, USA for providing the cloud cover satellite composite images centered over the Arctic region. NR 28 TC 5 Z9 5 U1 2 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2011 VL 45 IS 38 BP 6901 EP 6910 DI 10.1016/j.atmosenv.2011.02.073 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 854IT UT WOS:000297488900008 ER PT J AU Hsu, S Chu, JS Chen, FQF Wang, AJ Li, S AF Hsu, Steven Chu, Julia S. Chen, Fanqing F. Wang, Aijun Li, Song TI Effects of Fluid Shear Stress on a Distinct Population of Vascular Smooth Muscle Cells SO CELLULAR AND MOLECULAR BIOENGINEERING LA English DT Article DE Smooth muscle cell; Fluid shear stress; Neural crest; Proliferation ID MESENCHYMAL STEM-CELLS; NEURAL CREST; IN-VITRO; PROLIFERATION; ATHEROSCLEROSIS; DIFFERENTIATION; MECHANISMS; EXPRESSION; ARTERY; FLOW AB Vascular smooth muscle cells (SMCs) are a major cell type involved in vascular remodeling. The various developmental origins of SMCs such as neural crest and mesoderm result in the heterogeneity of SMCs, which plays an important role in vascular remodeling and disease development. Upon vascular injury, SMCs are exposed to blood flow and subjected to fluid shear stress. Previous studies have shown that fluid shear stress inhibits SMC proliferation. However, the effect of shear stress on the subpopulation of SMCs from specific developmental origin and vascular bed is not well understood. Here we investigated how shear stress regulates human aortic SMCs positive for neural crest markers. DNA microarray analysis showed that shear stress modulates the expression of genes involved in cell proliferation, matrix synthesis, cell signaling, transcription and cytoskeleton organization. Further studies demonstrated that shear stress induced SMC proliferation and cyclin D1, downregulated cell cycle inhibitor p21, and activated Akt pathway. Inhibition of PI-3 kinase blocked these shear stress-induced changes. These results suggest that SMCs with neural crest characteristics may respond to shear stress in a different manner. This finding has significant implications in the remodeling and disease development of blood vessels. C1 [Hsu, Steven; Chu, Julia S.; Wang, Aijun; Li, Song] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Hsu, Steven; Li, Song] UC Berkeley, UCSF Grad Program Bioengn, Berkeley, CA USA. [Chen, Fanqing F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Li, S (reprint author), Univ Calif Berkeley, Dept Bioengn, B108A Stanley Hall, Berkeley, CA 94720 USA. EM song_li@berkeley.edu RI Wang, Aijun/C-7559-2013 OI Wang, Aijun/0000-0002-2985-3627 FU National Institute of Health [HL083900, EB012240] FX We thank Alex Hsiao, Ryan Hoshi and Mike Ichikawa for their excellent assistance in the experiments. This work was supported in part by grants HL083900 and EB012240 from National Institute of Health. NR 36 TC 4 Z9 4 U1 4 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1865-5025 J9 CELL MOL BIOENG JI Cell. Mol. Bioeng. PD DEC PY 2011 VL 4 IS 4 SI SI BP 627 EP 636 DI 10.1007/s12195-011-0205-8 PG 10 WC Cell & Tissue Engineering; Biophysics; Cell Biology SC Cell Biology; Biophysics GA 859GW UT WOS:000297865900012 PM 22924082 ER PT J AU Wu, Y Song, WL Zhang, ZY Hui, XD Ma, D Wang, XL Shang, XC Lu, ZP AF Wu Yuan Song WenLi Zhang ZhongYan Hui XiDong Ma Dong Wang XunLi Shang XinCun Lu ZhaoPing TI Relationship between composite structures and compressive properties in CuZr-based bulk metallic glass system SO CHINESE SCIENCE BULLETIN LA English DT Article DE bulk metallic glass composites; transformation-induced plasticity; compressive mechanical properties ID MATRIX COMPOSITES; MECHANICAL-PROPERTIES; MARTENSITIC-TRANSFORMATION; TENSILE DUCTILITY; BEHAVIOR; MICROSTRUCTURE; PLASTICITY; STRENGTH; DENSITY AB Bulk metallic glass (BMG) composites with the austenite B2 phase as reinforcement macroscopically showed strain hardening behavior due to the plasticity induced by martensitic transformation during deformation. Relationship between characteristics of the B2-CuZr reinforcing phase and uniaxial compressive properties of CuZr-based BMG composites was studied. Mechanical properties of these BMG composites were found to depend on not only the reinforced phases but also the amorphous matrix, and the yield and fracture strength can be roughly estimated by the rule of mixture principle. Distribution of the reinforced B2-CuZr phase has an important impact on the compressive plasticity even for the composites with a similar volume fraction of the crystalline phase. C1 [Wu Yuan; Song WenLi; Zhang ZhongYan; Hui XiDong; Lu ZhaoPing] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Ma Dong; Wang XunLi] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Shang XinCun] Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 100083, Peoples R China. RP Lu, ZP (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. EM luzp@ustb.edu.cn RI Ma, Dong/G-5198-2011; Wang, Xun-Li/C-9636-2010; Hui, Xidong/A-1741-2010; Lu, Zhao-Ping/A-2718-2009; Wu, Yuan/C-4025-2015 OI Ma, Dong/0000-0003-3154-2454; Wang, Xun-Li/0000-0003-4060-8777; Wu, Yuan/0000-0001-7857-0247 FU National Natural Science Foundation of China [50725104, 51010001, 51001009]; China Postdoctoral Science Foundation [20100470208]; Fundamental Research Funds for the Central Universities [FRF-BR-10-036B] FX This work was supported in part by the National Natural Science Foundation of China (50725104, 51010001 and 51001009), China Postdoctoral Science Foundation (20100470208) and "the Fundamental Research Funds for the Central Universities (FRF-BR-10-036B)". NR 25 TC 13 Z9 15 U1 3 U2 38 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1001-6538 EI 1861-9541 J9 CHINESE SCI BULL JI Chin. Sci. Bull. PD DEC PY 2011 VL 56 IS 36 BP 3960 EP 3964 DI 10.1007/s11434-011-4858-4 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 859HG UT WOS:000297866900013 ER PT J AU Sarathy, SM Westbrook, CK Mehl, M Pitz, WJ Togbe, C Dagaut, P Wang, H Oehlschlaeger, MA Niemann, U Seshadri, K Veloo, PS Ji, C Egolfopoulos, FN Lu, T AF Sarathy, S. M. Westbrook, C. K. Mehl, M. Pitz, W. J. Togbe, C. Dagaut, P. Wang, H. Oehlschlaeger, M. A. Niemann, U. Seshadri, K. Veloo, P. S. Ji, C. Egolfopoulos, F. N. Lu, T. TI Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C-7 to C-20 SO COMBUSTION AND FLAME LA English DT Article DE 2-Methylheptane; Iso-alkanes; n-Alkanes; 2-Methylalkanes; Chemical kinetic modeling; Mechanism reduction ID ENGINE COMBUSTION SIMULATIONS; HIGH-TEMPERATURE OXIDATION; DIRECTED RELATION GRAPH; PRIMARY REFERENCE FUELS; JET-STIRRED REACTOR; SHOCK-TUBE; REACTION-MECHANISMS; N-HEPTANE; ALIPHATIC-HYDROCARBONS; RAPID COMPRESSION AB Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydro-treated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C-7 to C-20. The mechanism also includes an updated version of our previously published C-8-C-16 n-alkanes model. The complete detailed mechanism contains approximately 7200 species 31400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and non-premixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Sarathy, S. M.; Westbrook, C. K.; Mehl, M.; Pitz, W. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Togbe, C.; Dagaut, P.] CNRS INSIS, Orleans, France. [Wang, H.; Oehlschlaeger, M. A.] Rensselaer Polytech Inst, Troy, NY USA. [Niemann, U.; Seshadri, K.] Univ Calif San Diego, San Diego, CA 92103 USA. [Veloo, P. S.; Ji, C.; Egolfopoulos, F. N.] Univ So Calif, Los Angeles, CA USA. [Lu, T.] Univ Connecticut, Storrs, CT USA. RP Sarathy, SM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM sarathy1@llnl.gov RI Dagaut, Philippe/C-1709-2008; Ji, chunsheng/B-4111-2012; Veloo, Peter/G-1196-2010; Oehlschlaeger, Matthew/C-5745-2009; Lu, Tianfeng/D-7455-2014; Niemann, Ulrich/E-4737-2015; Sarathy, S. Mani/M-5639-2015; Mehl, Marco/A-8506-2009 OI Egolfopoulos, Fokion/0000-0002-7115-5304; Dagaut, Philippe/0000-0003-4825-3288; Veloo, Peter/0000-0003-1135-4018; Oehlschlaeger, Matthew/0000-0003-3174-9615; Lu, Tianfeng/0000-0001-7536-1976; Niemann, Ulrich/0000-0001-9268-5040; Sarathy, S. Mani/0000-0002-3975-6206; Mehl, Marco/0000-0002-2227-5035 FU US Department of Energy; Office of Vehicle Technologies; Office of Basic Energy Sciences; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Army Research Office [W911NF-09-1-0108]; National Science Foundation [0904771]; U.S. Air Force Office of Scientific Research AFOSR [FA9550-10-1-0087, FA9550-08-1-0040]; Natural Science and Engineering Research Council of Canada (NSERC) FX The authors thank National Renewable Energy Laboratory researchers Matthew Ratcliffe and Jon Luecke, as well as Gregory Bogin, Jr. from the Colorado School of Mines for providing unpublished derived cetane numbers for n-alkanes and 2-methylalkanes. The work at LLNL work was supported by the US Department of Energy, Office of Vehicle Technologies and the Office of Basic Energy Sciences, and the authors thank program managers Gurpreet Singh, Kevin Stork, and Wade Sisk. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The research at the University of California at San Diego was supported by the US Army Research Office, Grant # W911NF-09-1-0108, Program Manager Dr. Ralph A. Anthenien, Jr. The work at University of Connecticut was supported by the National Science Foundation under Grant 0904771. The work at the University of Southern California was sponsored by the U.S. Air Force Office of Scientific Research AFOSR (Grants No. FA9550-10-1-0087 and FA9550-08-1-0040) under the technical supervision of Dr. Julian M. Tishkoff. The coauthor S.M.S. acknowledges fellowship support from the Natural Science and Engineering Research Council of Canada (NSERC). NR 97 TC 144 Z9 144 U1 7 U2 67 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD DEC PY 2011 VL 158 IS 12 BP 2338 EP 2357 DI 10.1016/j.combustflame.2011.05.007 PG 20 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 855MF UT WOS:000297567800005 ER PT J AU Kempf, AM Geurts, BJ Oefelein, JC AF Kempf, A. M. Geurts, B. J. Oefelein, J. C. TI Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame SO COMBUSTION AND FLAME LA English DT Article DE Large-eddy simulation; Turbulent non-premixed combustion; Error analysis ID FILTERED DENSITY-FUNCTION; BOUNDARY-CONDITIONS; NONPREMIXED FLAMES; DIFFUSION FLAME; COMBUSTION-LES; REACTING FLOWS; CHEMISTRY; MODEL; VALIDATION; SYSTEMS AB A computational error analysis is applied to the large-eddy simulation of the turbulent non-premixed Sydney bluff-body flame, where the error is defined with respect to experimental data. The error-landscape approach is extended to heterogeneous compressible turbulence, which is coupled to combustion as described by a flamelet model. The Smagorinsky model formulation is used to model the unknown turbulent stresses. We introduce several measures to quantify the total simulation error and observe a striking 'valley-structure' in the error that arises as function of the spatial resolution and the Smagorinsky length parameter. The optimal refinement strategy that can be extracted from this error-landscape is reminiscent of that for non-reacting turbulent flow. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Kempf, A. M.] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England. [Geurts, B. J.] Univ Twente, Fac EEMCS, NL-7500 AE Enschede, Netherlands. [Geurts, B. J.] Eindhoven Univ Technol, Lab Fluid Dynam, Fac Appl Phys, NL-5600 MB Eindhoven, Netherlands. [Oefelein, J. C.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Kempf, AM (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, Exhibit Rd, London SW7 2AZ, England. EM a.kempf@imperial.ac.uk RI Kempf, Andreas/B-7444-2013 FU UK Engineering and Physical Sciences Research Council (EPSRC); US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences FX The authors would like to acknowledge the support of the UK Engineering and Physical Sciences Research Council (EPSRC), and also the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We are grateful to Rob Barlow at Sandia National Laboratories, the main organiser of the TNF Workshop from which the present paper has evolved. NR 56 TC 22 Z9 23 U1 0 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD DEC PY 2011 VL 158 IS 12 BP 2408 EP 2419 DI 10.1016/j.combustflame.2011.04.012 PG 12 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 855MF UT WOS:000297567800010 ER PT J AU Menikoff, R Shaw, MS AF Menikoff, Ralph Shaw, M. Sam TI Modeling detonation waves in nitromethane SO COMBUSTION AND FLAME LA English DT Article DE Equation of state; Reaction rate; CJ state; Detonation wave stability; Shock initiation; Nitromethane ID EQUATION-OF-STATE; LIQUID NITROMETHANE; SHOCK INITIATION; EXPLOSIVES; SPECTROSCOPY; TEMPERATURE; STABILITY AB Nitromethane is a liquid explosive. It has been extensively studied as an example of a homogeneous condensed phase explosive. Moreover, small particles can be added to obtain a well characterized heterogeneous explosive for experimental studies of shock initiation due to hot spots. Corresponding mesoscale simulations of hot-spot initiation require a model with a good chemical reaction rate and an equation of state with good thermal properties. Here we describe such a model for nitromethane. Detonation wave properties of the model are compared with experimental data. In addition, we discuss issues with the accuracy to which the CJ pressure can be inferred from the available data and the stability of an under-driven or CJ detonation wave in pure nitromethane. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Menikoff, Ralph; Shaw, M. Sam] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Menikoff, R (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM rtm@lanl.gov; mss@lanl.gov FU US Dept. of Energy at LANL [DE-AC52-06NA25396]; Laboratory Directed Research and Development [20080015DR] FX This work was carried out under the auspices of the US Dept. of Energy at LANL under contract DE-AC52-06NA25396 as part of a Laboratory Directed Research and Development project on hot spots (project #20080015DR). We have benefited from discussions with Stephen Sheffield and Dana Dattelbaum on nitromethane shock initiation experiments. NR 38 TC 8 Z9 8 U1 4 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD DEC PY 2011 VL 158 IS 12 BP 2549 EP 2558 DI 10.1016/j.combustflame.2011.05.009 PG 10 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 855MF UT WOS:000297567800022 ER PT J AU Gopalakrishnan, G Kirby, RM Siegel, S Thakur, R Gropp, W Lusk, E De Supinski, BR Schulz, M Bronevetsky, G AF Gopalakrishnan, Ganesh Kirby, Robert M. Siegel, Stephen Thakur, Rajeev Gropp, William Lusk, Ewing De Supinski, Bronis R. Schulz, Martin Bronevetsky, Greg TI Formal Analysis of MPI-based Parallel Programs SO COMMUNICATIONS OF THE ACM LA English DT Article ID SYMBOLIC EXECUTION C1 [Gopalakrishnan, Ganesh] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. [Gopalakrishnan, Ganesh] Ctr Parallel Comp Utah, Salt Lake City, UT USA. [Kirby, Robert M.] Univ Utah, Imaging Inst, Salt Lake City, UT USA. [Kirby, Robert M.] Univ Utah, Sch Comp & Sci Comp, Salt Lake City, UT USA. [Siegel, Stephen] Univ Delaware, Dept Comp & Informat Sci, Newark, DE 19716 USA. [Siegel, Stephen] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA. [Thakur, Rajeev; Lusk, Ewing] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Gropp, William] Univ Illinois, Urbana, IL 61801 USA. [Gropp, William] ACM, New York, NY USA. [Gropp, William] IEEE, New York, NY USA. [Gropp, William] SIAM, Philadelphia, PA USA. [De Supinski, Bronis R.] Lawrence Livermore Natl Lab, Applicat Dev Environm & Performance Team, Livermore, CA USA. RP Gopalakrishnan, G (reprint author), Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. EM ganesh@cs.utah.edu; kirby@cs.utah.edu; siegel@udel.edu; thakur@mcs.anl.gov; wgropp@illinois.edu; lusk@mcs.anl.gov; bronis@llnl.gov; schulzm@llnl.gov; bronevetsky@llnl.gov OI Gropp, William/0000-0003-2905-3029 FU Microsoft; National Science Foundation [CNS-0509379, CCF-0811429, CCF-0903408, CCF-0953210, CCF-0733035]; Department of Energy [ASCR DE-AC0206CH11357]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work is supported in part by Microsoft, National Science Foundation grants CNS-0509379, CCF-0811429, CCF-0903408, CCF-0953210, and CCF-0733035, and Department of Energy grant ASCR DE-AC0206CH11357. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 35 TC 21 Z9 21 U1 0 U2 7 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0001-0782 J9 COMMUN ACM JI Commun. ACM PD DEC PY 2011 VL 54 IS 12 BP 82 EP 91 DI 10.1145/2043174.2043194 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 857AU UT WOS:000297686900027 ER PT J AU Knorowski, C Travesset, A AF Knorowski, C. Travesset, A. TI Materials design by DNA programmed self-assembly SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE DNA; Nanoparticle (NP); Polymer nanocomposite (PNC); Molecular dynamics (MD); Self-assembly; Block copolymer; Solution ID GOLD-NANOPARTICLE; BLOCK-COPOLYMERS; BUILDING-BLOCKS; POLYMER; OLIGONUCLEOTIDES; CRYSTALLIZATION; COLLOIDS; PHASE; NANOCOMPOSITES; SUPERLATTICES AB DNA linker mediated self-assembly, i.e. grafting complementary sequences of single stranded DNA to nanoparticles in order to program their self-assembly, is a general and robust strategy for designing a completely new class of materials and metamaterials. In this paper, we first provide an overview of both experiment and theory on the subject, and then present new results based on a previously developed coarse-grained model. Particularly emphasis is made about the dynamics of self-assembly and the characterization of both the self-assembly process and crystallization. We also consider triblocks or diblock copolymers containing hydrophobic blocks and DNA linkers attached at their ends, and show that the phase diagram of these new materials can be predicted from existing theoretical results on functionalized polymer nanoparticle systems, leading to concrete predictions where nanoparticles can be programmed to order in bicontinuous (gyroids), columnar phases or lamellar catenoids among many others. We conclude with general considerations on the possibilities and limitations of current experimental systems as well as the implications of the results for the general field of polymer nanocomposite design. (C) 2011 Published by Elsevier Ltd. C1 [Travesset, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Ames Lab, Ames, IA 50011 USA. RP Travesset, A (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM cdknorow@iastate.edu; trvsst@ameslab.gov FU DOE through the Ames Lab [DE-AC02-07CH11358] FX We thank O. Gang and A. Tkachenko for sharing their insights, J. Anderson and C. Philips for discussions as well as for making the rigid body integration in HOOMD-blue available to us. We also would like to acknowledge all our collaborators who have participated in parts of this work: J. Anderson, S. Burleigh, M. Lamm, R. Sknepnek and J. Schmalian as well as our experimental collaborators at the Ames Lab, Mufit Akinc, Surya Mallapragada, Klaus Schmidt-Rohr and David Vaknin as well as all their postdocs and students. This work is funded by DOE through the Ames Lab under Contract DE-AC02-07CH11358. NR 66 TC 32 Z9 33 U1 5 U2 96 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD DEC PY 2011 VL 15 IS 6 SI SI BP 262 EP 270 DI 10.1016/j.cossms.2011.07.002 PG 9 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 859SC UT WOS:000297895100005 ER PT J AU Borole, AP Reguera, G Ringeisen, B Wang, ZW Feng, YJ Kim, BH AF Borole, Abhijeet P. Reguera, Gemma Ringeisen, Bradley Wang, Zhi-Wu Feng, Yujie Kim, Byung Hong TI Electroactive biofilms: Current status and future research needs SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID MICROBIAL FUEL-CELLS; SHEWANELLA-ONEIDENSIS MR-1; EXTRACELLULAR POLYMERIC SUBSTANCES; WASTE-WATER TREATMENT; GEOBACTER-SULFURREDUCENS BIOFILMS; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; CONTINUOUS ELECTRICITY-GENERATION; CATHODIC OXYGEN REDUCTION; METAL-REDUCING BACTERIUM; ANODE-RESPIRING BACTERIA AB Electroactive biofilms (EABFs) generated by electrochemically active microorganisms have many potential applications in bioenergy and chemicals production. Biofilm electroactivity can have a significant impact on the yield and efficiency of the conversion processes. This review assesses the effects of process and design parameters on the growth and activity of biofilms in bioelectrochemical systems (BESs). First we compare the role of planktonic and biofilm-forming microorganisms in BESs. The effect of physical, chemical, and electrochemical operating parameters such as flow rate, temperature, pH, ionic strength, substrate concentration and loading, external resistance, and redox potential on EABF attributes such as growth rate, exoelectrogen population, formation of extracellular polymeric substances, mediator synthesis, and rate of electron transfer are discussed. The relationship between electrochemical performance and operating parameters is also examined to identify gaps in assessment and the potential role of future modeling efforts. Similarly, we review what is currently known about the mechanisms that enable electroactive biofilms to transfer electrons and also the contribution of the electrical conductivity of the biofilms' exopolymeric components to BES performance. The current status of cathodic biofilms is also reviewed. Complementary approaches that use process control to optimize EABF composition and biomass density, while minimizing mass transfer effects and changes to system design parameters, are likely necessary to improve BES performance to a level needed for commercial consideration. Finally, future research needs that enable better understanding and optimization of the performance of EABFs are outlined. C1 [Borole, Abhijeet P.; Wang, Zhi-Wu] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Reguera, Gemma] Michigan State Univ, E Lansing, MI 48824 USA. [Ringeisen, Bradley] USN, Res Lab, Washington, DC 20375 USA. [Feng, Yujie; Kim, Byung Hong] Harbin Inst Technol, Harbin 150006, Peoples R China. [Kim, Byung Hong] Korea Inst Sci & Technol, Seoul, South Korea. RP Borole, AP (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM borolea@ornl.gov RI Wang, Zhi-Wu/B-5552-2009; Feng, Yujie/L-9133-2013; zhang, zhaohan/B-4460-2014; OI Feng, Yujie/0000-0002-0686-3937; zhang, zhaohan/0000-0003-3233-0621; Borole, Abhijeet/0000-0001-8423-811X FU U.S. Department of Energy Office of the Biomass Program; U.S. Department of Energy [DE-AC05-00OR22725]; NIEHS [R01 ES017052-01]; Office of Naval Research [62123N]; Oak Ridge National Laboratory (ORNL); NSF [MCB 1021948] FX Support from the U.S. Department of Energy Office of the Biomass Program and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725 to APB is acknowledged. Support from grants R01 ES017052-01 from NIEHS Superfund Program and MCB 1021948 from NSF to GR are also acknowledged. Support from the Office of Naval Research through internal NRL 6.2 funds (Program Element#62123N) is also acknowledged. The authors acknowledge the editorial support provided by Amy Harkey. NR 249 TC 114 Z9 116 U1 21 U2 264 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD DEC PY 2011 VL 4 IS 12 BP 4813 EP 4834 DI 10.1039/c1ee02511b PG 22 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 855KF UT WOS:000297562300004 ER PT J AU Bardhan, R Ruminski, AM Brand, A Urban, JJ AF Bardhan, Rizia Ruminski, Anne M. Brand, Alyssa Urban, Jeffrey J. TI Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID METAL-ORGANIC FRAMEWORKS; SODIUM ALANATE NANOPARTICLES; LITHIUM-ION BATTERIES; FUEL-CELL GENERATORS; AMMONIA-BORANE; HYDROLYTIC DEHYDROGENATION; HYDRIDING PROPERTIES; COLLOIDAL MAGNESIUM; ALUMINUM-HYDRIDE; CARBON MATERIALS AB Metal hydrides, with their inherently high gravimetric and volumetric densities, present a compelling platform for hydrogen storage for mobile applications. However, several fundamental barriers have persistently impeded technological progress. This perspective provides an overview of the current hurdles plaguing metal hydride technology and the novel approaches recently adopted that may potentially surmount these challenges. In particular, nanocomposites, a homogenous matrix of two or more components synergistically integrated for enhanced material performance, is emerging as a new and promising class of material for hydrogen storage. This perspective highlights the potential of nanocomposites, specifically magnesium nanocomposites, for hydrogen storage. First, the existing challenges of metal hydrides are reviewed, followed by the progress achieved thus far by metal hydride size reduction to the nanoscale, and incorporation in a matrix material. Lastly, a novel nanocomposite synthesized by confining magnesium nanocrystals within a gas-selective polymer matrix is highlighted and the potential for improvement is discussed. This metal-polymer nanocomposite holds great promise as a general approach for future work on hydrogen-storage composites, as it simultaneously provides air-stability, high hydrogen storage density, and rapid hydrogenation kinetics. C1 [Bardhan, Rizia; Ruminski, Anne M.; Brand, Alyssa; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Bardhan, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. EM jjurban@lbl.gov RI bardhan, rizia/A-9393-2010; Bardhan, Rizia/B-4674-2014 FU Office of Science, Office of Basic Energy Sciences, at the U.S. Department of Energy [DE-AC02-05CH11231]; US Department of Energy; Center for Nanoscale Control of Geologic CO2; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, at the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. R.B. is supported under the US Department of Energy Hydrogen Storage Program. A.M.R. is supported as part of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231. NR 145 TC 46 Z9 47 U1 7 U2 114 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD DEC PY 2011 VL 4 IS 12 BP 4882 EP 4895 DI 10.1039/c1ee02258j PG 14 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 855KF UT WOS:000297562300009 ER PT J AU Foston, M Hubbell, CA Samuel, R Jung, S Fan, H Ding, SY Zeng, YN Jawdy, S Davis, M Sykes, R Gjersing, E Tuskan, GA Kalluri, U Ragauskas, AJ AF Foston, Marcus Hubbell, Christopher A. Samuel, Reichel Jung, Seokwon Fan, Hu Ding, Shi-You Zeng, Yining Jawdy, Sara Davis, Mark Sykes, Robert Gjersing, Erica Tuskan, Gerald A. Kalluri, Udaya Ragauskas, Arthur J. TI Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID STEAM EXPLOSION PRETREATMENT; DILUTE-ACID PRETREATMENT; ENZYMATIC-HYDROLYSIS; CELL-WALLS; CELLULOSE HYDROLYSIS; NMR-SPECTROSCOPY; BIOMASS; MICROSCOPY; POPLAR; GROWTH AB Biomass is one of the most abundant potential sustainable sources for fuel and material production, however to fully realize this potential an improved understanding of lignocellulosic recalcitrance must be developed. In an effort to appreciate the underlying phenotypic, biochemical and morphological properties associated with the reduced recalcitrance observed in tension stress-induced reaction wood, we report the increased enzymatic sugar yield and corresponding chemical and ultrastructural properties of Populus tension wood. Populus tremula x alba (PTA) was grown under tension and stem segments containing three different wood types: normal wood (NW), tension wood (TV) from the elongated stem side and opposite wood (OW) from the compressed stem side were collected. A variety of analytical techniques were used to describe changes occurring as a result of the tension stress-induced formation of a gelatinous cell wall layer (G-layer). For example, gel permeation chromatography (GPC) and C-13 solid-state nuclear magnetic resonance (NMR) revealed that the molecular weight and crystallinity of cellulose in TW is greater than that of cellulose acquired from NW. Whole cell ionic liquid and other solid-state NMR analysis detailed the structure of lignin and hemicellulose in the samples, detecting the presence of variations in lignin and hemicellulose sub-units, linkages and semi-quantitatively estimating the relative amounts of syringyl (S), guaiacyl (G) and p-hydroxybenzoate (PB) monolignol units. It was confirmed that TW displayed an increase in PB or H-like lignin and S to G ratio from 1.25 to 1.50 when compared to the NW sample. Scanning electron microscopy (SEM) and coherent anti-Stokes Raman scattering (CARS) were also used to evaluate the morphology and corresponding spatial distribution of the major lignocellulosic components. We found changes in a combination of cell wall properties appear to influence recalcitrance more than any single factor alone. C1 [Foston, Marcus; Hubbell, Christopher A.; Samuel, Reichel; Jung, Seokwon; Fan, Hu; Ragauskas, Arthur J.] Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, BioEnergy Sci Ctr, Atlanta, GA 30332 USA. [Ding, Shi-You; Zeng, Yining; Davis, Mark; Sykes, Robert; Gjersing, Erica] Natl Renewable Energy Lab, BioEnergy Sci Ctr, Golden, CO 80401 USA. [Jawdy, Sara; Tuskan, Gerald A.; Kalluri, Udaya] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Foston, M (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, BioEnergy Sci Ctr, 500 10th St, Atlanta, GA 30332 USA. EM Ragauskas@chemistry.gatech.edu RI Tuskan, Gerald/A-6225-2011; OI Tuskan, Gerald/0000-0003-0106-1289; davis, mark/0000-0003-4541-9852; KALLURI, UDAYA/0000-0002-5963-8370; Ragauskas, Arthur/0000-0002-3536-554X FU BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported and performed as part of the BioEnergy Science Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. NR 46 TC 19 Z9 20 U1 5 U2 62 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD DEC PY 2011 VL 4 IS 12 BP 4962 EP 4971 DI 10.1039/c1ee02073k PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 855KF UT WOS:000297562300021 ER PT J AU Pilli, SK Furtak, TE Brown, LD Deutsch, TG Turner, JA Herring, AM AF Pilli, Satyananda Kishore Furtak, Thomas E. Brown, Logan D. Deutsch, Todd G. Turner, John A. Herring, Andrew M. TI Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID LIGHT-DRIVEN PHOTOCATALYST; OXYGEN-EVOLVING CATALYST; VISIBLE-LIGHT; THIN-FILMS; SEMICONDUCTOR; PHOTOANODES; ELECTRODES; EVOLUTION; DECOMPOSITION; NANOCRYSTALS AB A cobalt-phosphate based oxygen evolution catalyst (Co-PiOEC) was electrochemically deposited onto the surface of a porous bismuth vanadate electrode doped with 2 atom% Mo (BiV0.98Mo0.02O4). The porous BiV0.98Mo0.02O4 electrode was prepared using a surfactant assisted metal-organic decomposition technique at 500 degrees C. The comparison of the photocurrent-voltage characteristics of the BiV0.98Mo0.02O4 electrodes with and without the presence of Co-Pi catalyst demonstrated that the Co-Pi catalyst enhanced the anodic photocurrent of the BiV0.98Mo0.02O4 electrode with its effect more pronounced at lower potentials. A stable photocurrrent density of 1.0mA cm(-2) at 1.0V vs. Ag/AgCl was achieved under standard AM 1.5 illumination using 0.5M Na2SO4 aqueous solution in phosphate buffer at pH7. Relative to the BiV0.98Mo0.02O4 electrode, a sustained enhancement, nearly doubled photocurrent density was observed at 1.0V vs. Ag/AgCl for Co-Pi/BiV0.98Mo0.02O4 composite photoelectrode. Significant performance gains are obtained on BiV0.98Mo0.02O4 electrodes upon modification with Co-Pi water oxidation catalyst. C1 [Pilli, Satyananda Kishore; Brown, Logan D.; Herring, Andrew M.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Furtak, Thomas E.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Deutsch, Todd G.; Turner, John A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Pilli, SK (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. EM aherring@mines.edu RI Brown, Logan/E-7699-2011; OI Deutsch, Todd/0000-0001-6577-1226; Herring, Andrew/0000-0001-7318-5999 FU Center for Revolutionary Solar Photoconversion; National Science Foundation [DMR-0820518] FX We thank the Center for Revolutionary Solar Photoconversion for a seed grant. Portions of this material are based upon work supported by the National Science Foundation MRSEC program under Grant No. DMR-0820518 at the Renewable Energy MRSEC. NR 63 TC 177 Z9 178 U1 29 U2 254 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD DEC PY 2011 VL 4 IS 12 BP 5028 EP 5034 DI 10.1039/c1ee02444b PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 855KF UT WOS:000297562300030 ER PT J AU Ji, LW Rao, MM Aloni, S Wang, L Cairns, EJ Zhang, YG AF Ji, Liwen Rao, Mumin Aloni, Shaul Wang, Lei Cairns, Elton J. Zhang, Yuegang TI Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CYCLE LIFE CHARACTERISTICS; IONIC LIQUID ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; RECHARGEABLE BATTERIES; POLYMER ELECTROLYTES; ENERGY-STORAGE; PERFORMANCE; CHALLENGES AB Sulfur (S) encapsulated in porous carbon nanofibers (CNFs) was synthesized via electrospinning, carbonization and solution-based chemical reaction-deposition method. The chemical reaction-deposition strategy provides intimate contact between the S and the CNFs. This would not necessarily be the case for other reported methods, such as ball milling and thermal treatment. These novel porous carbon nanofiber-sulfur (CNF-S) nanocomposites with various S loadings showed high reversible capacity, good discharge capacity retention and enhanced rate capability when they were used as cathodes in rechargeable Li/S cells. We demonstrated here that an electrode prepared from a porous CNF-S nanocomposite with 42 wt% S maintains a stable discharge capacity of about 1400 mA h g(-1) at 0.05 C, 1100 mA h g(-1) at 0.1 C and 900 mA h g(-1) at 0.2 C. We attribute the good electrochemical performance to the high electrical conductivity and the extremely high surface area of the CNFs that homogeneously disperse and immobilize S on their porous structures, alleviating the polysulfide shuttle phenomenon. SEM measurements showed that the porous CNF structures remained nearly unchanged even after 30 cycles' discharging/charging at 0.05 C. C1 [Ji, Liwen; Aloni, Shaul; Zhang, Yuegang] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Rao, Mumin; Wang, Lei; Cairns, Elton J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Rao, Mumin; Wang, Lei; Cairns, Elton J.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Ji, LW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM yzhang5@lbl.gov RI Wang, Lei/D-4773-2012; Zhang, Y/E-6600-2011; Cairns, Elton/E-8873-2012 OI Zhang, Y/0000-0003-0344-8399; Cairns, Elton/0000-0002-1179-7591 FU Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231]; China Scholarship Council FX This work was partially supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under contract no. DE-AC02-05CH11231. M.R. was partially supported by the China Scholarship Council while visiting the Department of Chemical & Biomolecular Engineering at UC Berkeley. The authors would like to thank Virginia Altoe, Tevye Kuykendall, Yanbo Fu and Vincent Battaglia for their assistance in experiments. NR 60 TC 289 Z9 296 U1 32 U2 424 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD DEC PY 2011 VL 4 IS 12 BP 5053 EP 5059 DI 10.1039/c1ee02256c PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 855KF UT WOS:000297562300033 ER PT J AU Richter, SC Jackson, JA Hinderliter, M Epperson, D Theodorakis, CW Adams, SM AF Richter, Stephen C. Jackson, Jeffrey A. Hinderliter, Matthew Epperson, Deborah Theodorakis, Christopher W. Adams, S. Marshall TI CONSERVATION GENETICS OF THE LARGEST CLUSTER OF FEDERALLY THREATENED GOPHER TORTOISE (GOPHERUS POLYPHEMUS) COLONIES WITH IMPLICATIONS FOR SPECIES MANAGEMENT SO HERPETOLOGICA LA English DT Article DE Conservation genetics; Gopherus polyphemus; Habitat quality; Land-use history; Management; Population structure ID MULTILOCUS GENOTYPE DATA; ALLELE FREQUENCY DATA; PER-GENERATION RULE; POPULATION-STRUCTURE; LANDSCAPE GENETICS; DESERT TORTOISE; MICROSATELLITE ANALYSIS; PROTECTED AREAS; LONGLEAF PINE; HOME RANGE AB We conducted a genetic study of the largest cluster of US federally threatened Gopher Tortoise (Gopherus polyphemus) colonies. Our objectives were to (1) identify genetic variation within and among colonies across the landscape; (2) determine which factors are important in affecting genetic variation, including land use, habitat quality, and population size; and (3) determine whether genetic partitioning among populations exists and how this relates to (a) geographic distance between sites, (b) Gopher Tortoise natural history and spatial ecology, and (c) land-use history. We studied genetic variability of nine microsatellite DNA loci for 340 adult tortoises from 34 colonies separated by 1.3-45.1 km across a 56,000-ha military installation. Overall genetic variation was low across the landscape and within colonies. Observed heterozygosity (H(O)) of tortoise colonies was 49% and allelic richness was 52% of that found in populations located in the eastern portion of the species distribution where habitat is naturally more continuous. Our single colony with highest genetic variation had HO that was 57% and allelic richness that was 60% of eastern colonies. Genetic variation was greatest in sites with suitable habitat. We found weak to no genetic structure across the 45-km landscape (F(ST) = 0.031; D(ST) = 0.006) and evidence for only one genetic group (K). Although landscape reconfiguration to create sites for military activity has redistributed tortoise colonies and home ranges, we concluded that weak population structure is natural across our study area. Comparison to similar results from a cluster of connected eastern colonies suggests this is a general characteristic of tortoises across large, continuous landscapes and that populations are composed of multiple colonies across the landscape and are naturally large in spatial extent. To alleviate the tortoise-human land use conflict on Camp Shelby, Mississippi, USA and to ensure these created areas continue to benefit tortoises in the long term, maintenance of forest habitat surrounding these created open areas is required. We recommend managing tortoises at Camp Shelby as one unit. C1 [Richter, Stephen C.; Jackson, Jeffrey A.] Eastern Kentucky Univ, Dept Biol Sci, Richmond, KY 40475 USA. [Hinderliter, Matthew] Camp Shelby Field Off, Camp Shelby, MS 39407 USA. [Epperson, Deborah] So Illinois Univ, Environm Sci Program, Edwardsville, IL 62025 USA. [Epperson, Deborah] So Illinois Univ, Dept Biol Sci, Edwardsville, IL 62025 USA. [Theodorakis, Christopher W.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Richter, SC (reprint author), Eastern Kentucky Univ, Dept Biol Sci, Richmond, KY 40475 USA. EM stephen.richter@eku.edu FU Strategic Environmental Research and Development Program (SERDP) [SI-1395]; Kentucky NSF EPSCoR Environmental Genomics Initiative FX We thank the Mississippi Army National Guard and the US Forest Service for their ongoing support of conservation efforts for Gopher Tortoises on Camp Shelby. We also thank The Nature Conservancy staff at the Camp Shelby Field Office and the Department of Biological Sciences at Eastern Kentucky University (EKU). Research was approved by EKU Institutional Animal Care and Use Committee (IACUC) protocol 001-2006 and Oak Ridge National Laboratory IACUC protocol 0333. Primary funding was provided by the Strategic Environmental Research and Development Program (SERDP SI-1395). Additional support was provided by the Kentucky NSF EPSCoR Environmental Genomics Initiative. NR 90 TC 3 Z9 3 U1 7 U2 33 PU HERPETOLOGISTS LEAGUE PI EMPORIA PA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA SN 0018-0831 J9 HERPETOLOGICA JI Herpetologica PD DEC PY 2011 VL 67 IS 4 BP 406 EP 419 PG 14 WC Zoology SC Zoology GA 854NT UT WOS:000297502200006 ER PT J AU Ward, CD Sohns, CW AF Ward, Christina D. Sohns, Carl W. TI Electronic Component Obsolescence SO IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE LA English DT Article C1 [Sohns, Carl W.] Oak Ridge Natl Lab, Oak Ridge, TN USA. EM wardcd@ornl.gov; sohnscw@ornl.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1094-6969 J9 IEEE INSTRU MEAS MAG JI IEEE Instrum. Meas. Mag. PD DEC PY 2011 VL 14 IS 6 BP 8 EP 12 PG 5 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 857GI UT WOS:000297705400003 ER PT J AU Quach, TT AF Quach, Tu-Thach TI Optimal Cover Estimation Methods and Steganographic Payload Location SO IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY LA English DT Article DE Cover estimation; payload location; steganalysis; Viterbi decoding AB Cover estimation is an important part of steganalysis and has many applications. One such application is steganographic payload location using residuals, which is effective when a large number of stego images are available. In the ideal case when the cover images are available, we show that the expected number of stego images needed to perfectly locate all load-carrying pixels is approximately the logarithm of the payload size. In more practical settings when the cover images are not available, the accuracy of payload location depends primarily on the chosen cover estimation method. We present optimal, linear runtime algorithms for finding the most likely cover estimate given the stego image and experimentally demonstrate that they can be used to locate payload on both least-significant bit (LSB) replacement and LSB matching stego images. The algorithms can be extended to higher order statistical models of cover images. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Quach, TT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tong@sandia.gov NR 11 TC 8 Z9 9 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1556-6013 J9 IEEE T INF FOREN SEC JI IEEE Trans. Inf. Forensic Secur. PD DEC PY 2011 VL 6 IS 4 BP 1214 EP 1222 DI 10.1109/TIFS.2011.2160855 PG 9 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 852GI UT WOS:000297344200003 ER PT J AU Zhang, D Wang, F Burgos, R Boroyevich, D AF Zhang, Di Wang, Fei (Fred) Burgos, Rolando Boroyevich, Dushan TI Common-Mode Circulating Current Control of Paralleled Interleaved Three-Phase Two-Level Voltage-Source Converters With Discontinuous Space-Vector Modulation SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE Circulating current; discontinuous space-vector modulation (SVM); interleaving; parallel; voltage-source converter (VSC) ID INVERTERS; PWM; CONNECTION; TOPOLOGY AB This paper presents a control method to limit the common-mode (CM) circulating current between paralleled three-phase two-level voltage-source converters (VSCs) with discontinuous space-vector pulsewidth modulation (DPWM) and interleaved switching cycles. This CM circulating current can be separated into two separate components based on their frequency; the high-frequency component, close to the switching frequency, can be effectively limited by means of passive components; the low-frequency component, close to the fundamental frequency, embodies the jumping CM circulating current observed in parallel VSCs. This is the main reason why it is usually recommended not to implement discontinuous and interleaving PWM together. The origin of this low-frequency circulating current is analyzed in detail, and based on this, a method to eliminate its presence is proposed by impeding the simultaneous use of different zero vectors between the converters. This control method only requires six additional switching actions per line cycle, presenting a minimum impact on the converter thermal design. The analysis and the feasibility of the control method are verified by simulation and experimental results. C1 [Zhang, Di] GE Global Res Ctr, Elect Power Convers Lab, Niskayuna, NY 12309 USA. [Wang, Fei (Fred)] Univ Tennessee, Knoxville, TN 37996 USA. [Wang, Fei (Fred)] Oak Ridge Natl Lab, Knoxville, TN 37996 USA. [Burgos, Rolando] ABB Corp Res Ctr, Raleigh, NC 27606 USA. [Boroyevich, Dushan] Virginia Polytech Inst & State Univ, Ctr Power Elect Syst, Blacksburg, VA 24061 USA. RP Zhang, D (reprint author), GE Global Res Ctr, Elect Power Convers Lab, Niskayuna, NY 12309 USA. EM zhangd@ge.com FU General Electric Company FX This work was supported by a General Electric Company fellowship. This paper was presented in its original form at the 2009 IEEE Energy Conversion Congress and Exposition, in San Jose, CA, September 20-24, 2009, and it has been fully revised and expanded prior to its submission for consideration to the IEEE Transactions on Power Electronics. Recommended for publication by Associate Editor B. Wang. NR 24 TC 48 Z9 56 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8993 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD DEC PY 2011 VL 26 IS 12 BP 3925 EP 3935 DI 10.1109/TPEL.2011.2131681 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA 857HY UT WOS:000297710300041 ER PT J AU Whitler, J Stormont, C AF Whitler, John Stormont, Caitlin TI Lessons Learned From WARN Tabletop Exercises SO JOURNAL AMERICAN WATER WORKS ASSOCIATION LA English DT Editorial Material C1 [Whitler, John; Stormont, Caitlin] US EPA, Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Whitler, J (reprint author), US EPA, Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. EM Whitler.John@epamail.epa.gov; Stormont.Caitlin@epamail.epa.gov NR 3 TC 3 Z9 3 U1 0 U2 2 PU AMER WATER WORKS ASSOC PI DENVER PA 6666 W QUINCY AVE, DENVER, CO 80235 USA SN 0003-150X J9 J AM WATER WORKS ASS JI J. Am. Water Work Assoc. PD DEC PY 2011 VL 103 IS 12 BP 24 EP + PG 3 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 857JV UT WOS:000297715700006 ER PT J AU Casjens, SR Mongodin, EF Qiu, WG Dunn, JJ Luft, BJ Fraser-Liggett, CM Schutzer, SE AF Casjens, Sherwood R. Mongodin, Emmanuel F. Qiu, Wei-Gang Dunn, John J. Luft, Benjamin J. Fraser-Liggett, Claire M. Schutzer, Steve E. TI Whole-Genome Sequences of Two Borrelia afzelii and Two Borrelia garinii Lyme Disease Agent Isolates SO JOURNAL OF BACTERIOLOGY LA English DT Article ID BURGDORFERI; SPIROCHETE AB Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04. C1 [Casjens, Sherwood R.] Univ Utah, Dept Pathol, Sch Med, Div Microbiol & Immunol, Salt Lake City, UT 84112 USA. [Mongodin, Emmanuel F.; Fraser-Liggett, Claire M.] Univ Maryland, Sch Med, Inst Genome Sci, Dept Microbiol & Immunol, Baltimore, MD 21201 USA. [Qiu, Wei-Gang] CUNY Hunter Coll, Dept Biol Sci, New York, NY 10065 USA. [Dunn, John J.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11793 USA. [Luft, Benjamin J.] SUNY Stony Brook, Dept Med, Hlth Sci Ctr, Stony Brook, NY 11794 USA. [Schutzer, Steve E.] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA. RP Casjens, SR (reprint author), Univ Utah, Dept Pathol, Sch Med, Div Microbiol & Immunol, Room 2200 EEJMRB,15 N Med Dr E, Salt Lake City, UT 84112 USA. EM sherwood.casjens@path.utah.edu; schutzer@umdnj.edu OI Luft, Benjamin/0000-0001-9008-7004; Fraser, Claire/0000-0003-1462-2428 FU National Institutes of Health FX This research was supported by grants AI49003, N01-AI30071, AI37256, GM083722, and RR03037 from the National Institutes of Health. NR 13 TC 24 Z9 209 U1 0 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD DEC PY 2011 VL 193 IS 24 BP 6995 EP 6996 DI 10.1128/JB.05951-11 PG 2 WC Microbiology SC Microbiology GA 858ON UT WOS:000297810500021 PM 22123755 ER PT J AU Klassen, JL Adams, SM Bramhacharya, S Giles, SS Goodwin, LA Woyke, T Currie, CR AF Klassen, Jonathan L. Adams, Sandye M. Bramhacharya, Shanti Giles, Steven S. Goodwin, Lynne A. Woyke, Tanja Currie, Cameron R. TI Draft Genome Sequence of Streptomyces sp Strain Wigar10, Isolated from a Surface-Sterilized Garlic Bulb SO JOURNAL OF BACTERIOLOGY LA English DT Article ID RNA GENES; IDENTIFICATION; ANNOTATION; BACTERIAL; DATABASE AB Streptomyces sp. strain Wigar10 was isolated from a surface-sterilized garlic bulb (Allium sativum var. Purple Stripe). Its genome encodes several novel secondary metabolite biosynthetic gene clusters and provides a genetic basis for further investigation of this strain's chemical biology and potential for interaction with its garlic host. C1 [Adams, Sandye M.; Currie, Cameron R.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Klassen, Jonathan L.; Adams, Sandye M.; Bramhacharya, Shanti; Giles, Steven S.; Currie, Cameron R.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Goodwin, Lynne A.; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA USA. [Goodwin, Lynne A.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Currie, CR (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, 6155 MSB,1550 Linden Dr, Madison, WI 53706 USA. EM currie@bact.wisc.edu RI Klassen, Jonathan/B-5060-2010 OI Klassen, Jonathan/0000-0003-1745-8838 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Office of Science of the U.S. Department of Energy [DEAC02-05CH11231]; National Science Foundation [MCB-0702025, MCB-0731822] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract DEAC02-05CH11231. Support for J. L. K. comes from an NSERC postdoctoral fellowship, and support for S. M. A. was provided by the National Science Foundation (MCB-0702025 and MCB-0731822). NR 11 TC 4 Z9 4 U1 2 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD DEC PY 2011 VL 193 IS 24 BP 6999 EP 7000 DI 10.1128/JB.06257-11 PG 2 WC Microbiology SC Microbiology GA 858ON UT WOS:000297810500023 PM 22123757 ER PT J AU Boden, R Cunliffe, M Scanlan, J Moussard, H Kits, KD Klotz, MG Jetten, MSM Vuilleumier, S Han, J Peters, L Mikhailova, N Teshima, H Tapia, R Kyrpides, N Ivanova, N Pagani, I Cheng, JF Goodwin, L Han, C Hauser, L Land, ML Lapidus, A Lucas, S Pitluck, S Woyke, T Stein, L Murrell, JC AF Boden, Rich Cunliffe, Michael Scanlan, Julie Moussard, Helene Kits, K. Dimitri Klotz, Martin G. Jetten, Mike S. M. Vuilleumier, Stephane Han, James Peters, Lin Mikhailova, Natalia Teshima, Hazuki Tapia, Roxanne Kyrpides, Nikos Ivanova, Natalia Pagani, Ioanna Cheng, Jan-Fang Goodwin, Lynne Han, Cliff Hauser, Loren Land, Miriam L. Lapidus, Alla Lucas, Susan Pitluck, Sam Woyke, Tanja Stein, Lisa Murrell, J. Colin TI Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID GENE; ESTUARINE; BACTERIA; WATER; BAY AB Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph. C1 [Boden, Rich; Cunliffe, Michael; Scanlan, Julie; Moussard, Helene; Murrell, J. Colin] Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England. [Kits, K. Dimitri; Stein, Lisa] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. [Klotz, Martin G.] Univ N Carolina, Dept Biol, Charlotte, NC 28223 USA. [Jetten, Mike S. M.] Radboud Univ Nijmegen, Fac Sci, NL-6525 ED Nijmegen, Netherlands. [Vuilleumier, Stephane] Univ Strasbourg, UMR CRNS 7156, F-67000 Strasbourg, France. [Han, James; Peters, Lin; Mikhailova, Natalia; Tapia, Roxanne; Kyrpides, Nikos; Ivanova, Natalia; Pagani, Ioanna; Cheng, Jan-Fang; Han, Cliff; Hauser, Loren; Land, Miriam L.; Lapidus, Alla; Lucas, Susan; Pitluck, Sam; Woyke, Tanja] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Teshima, Hazuki; Tapia, Roxanne; Goodwin, Lynne; Han, Cliff] Los Alamos Natl Lab, Joint Genome Inst, Biosci Div Genome Sci B6, Los Alamos, NM 87545 USA. [Hauser, Loren; Land, Miriam L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Boden, R (reprint author), Univ Warwick, Sch Life Sci, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. EM rich.boden@warwick.ac.uk RI Murrell, John/B-1443-2012; Vuilleumier, Stephane/D-2647-2012; Pagani, Ioanna/E-7390-2012; Hauser, Loren/H-3881-2012; Lapidus, Alla/I-4348-2013; Jetten, Mike/B-8834-2011; Land, Miriam/A-6200-2011; Klotz, Martin/D-2091-2009; Stein, Lisa/E-6374-2016; Kyrpides, Nikos/A-6305-2014 OI Vuilleumier, Stephane/0000-0003-2232-7023; Lapidus, Alla/0000-0003-0427-8731; Jetten, Mike/0000-0002-4691-7039; Land, Miriam/0000-0001-7102-0031; Klotz, Martin/0000-0002-1783-375X; Stein, Lisa/0000-0001-5095-5022; Kyrpides, Nikos/0000-0002-6131-0462 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSERC; University of Louisville FX The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. L.S. was supported by a grant from the NSERC. M.G.K. was supported by incentive funds from the University of Louisville. M.C. and R.B. were supported by the NERC. NR 22 TC 23 Z9 23 U1 1 U2 19 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD DEC PY 2011 VL 193 IS 24 BP 7001 EP 7002 DI 10.1128/JB.06267-11 PG 2 WC Microbiology SC Microbiology GA 858ON UT WOS:000297810500024 PM 22123758 ER PT J AU Persson, T Benson, DR Normand, P Vanden Heuvel, B Pujic, P Chertkov, O Teshima, H Bruce, DC Detter, C Tapia, R Han, SS Han, J Woyke, T Pitluck, S Pennacchio, L Nolan, M Ivanova, N Pati, A Land, ML Pawlowski, K Berry, AM AF Persson, Tomas Benson, David R. Normand, Philippe Vanden Heuvel, Brian Pujic, Petar Chertkov, Olga Teshima, Hazuki Bruce, David C. Detter, Chris Tapia, Roxanne Han, Shunsheng Han, James Woyke, Tanja Pitluck, Sam Pennacchio, Len Nolan, Matt Ivanova, Natalia Pati, Amrita Land, Miriam L. Pawlowski, Katharina Berry, Alison M. TI Genome Sequence of "Candidatus Frankia datiscae" Dg1, the Uncultured Microsymbiont from Nitrogen-Fixing Root Nodules of the Dicot Datisca glomerata SO JOURNAL OF BACTERIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; PHYLOGENY; STRAINS; GENE AB Members of the noncultured clade of Frankia enter into root nodule symbioses with actinorhizal species from the orders Cucurbitales and Rosales. We report the genome sequence of a member of this clade originally from Pakistan but obtained from root nodules of the American plant Datisca glomerata without isolation in culture. C1 [Persson, Tomas; Pawlowski, Katharina] Stockholm Univ, Dept Bot, S-10691 Stockholm, Sweden. [Benson, David R.] Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06269 USA. [Normand, Philippe; Pujic, Petar] Univ Lyon 1, CNRS, Ecol Microbienne UMR5557, F-69622 Villeurbanne, France. [Vanden Heuvel, Brian] Colorado State Univ, Dept Biol, Pueblo, CO 81001 USA. [Chertkov, Olga; Teshima, Hazuki; Bruce, David C.; Detter, Chris; Tapia, Roxanne; Han, Shunsheng] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Han, James; Woyke, Tanja; Pitluck, Sam; Pennacchio, Len; Nolan, Matt; Ivanova, Natalia; Pati, Amrita] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Land, Miriam L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Berry, Alison M.] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. RP Pawlowski, K (reprint author), Stockholm Univ, Dept Bot, S-10691 Stockholm, Sweden. EM pawlowski@botan.su.se RI Normand, Philippe/A-1142-2012; Land, Miriam/A-6200-2011; OI Land, Miriam/0000-0001-7102-0031; Normand, Philippe/0000-0002-2139-2141; Pawlowski, Katharina/0000-0003-2693-885X FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Swedish Research Council FORMAS FX The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The isolation of the genomic DNA was supported by a grant from the Swedish Research Council FORMAS to K.P. NR 8 TC 29 Z9 30 U1 1 U2 15 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD DEC PY 2011 VL 193 IS 24 BP 7017 EP 7018 DI 10.1128/JB.06208-11 PG 2 WC Microbiology SC Microbiology GA 858ON UT WOS:000297810500033 PM 22123767 ER PT J AU Lee, HK Melamud, R Kim, B Hopcroft, MA Salvia, JC Kenny, TW AF Lee, Hyung Kyu Melamud, Renata Kim, Bongsang Hopcroft, Matthew A. Salvia, James C. Kenny, Thomas W. TI Electrostatic Tuning to Achieve Higher Stability Microelectromechanical Composite Resonators SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Composite resonators; electrostatic tuning; oscillators; temperature compensation ID MEMS RESONATORS; TEMPERATURE-DEPENDENCE; REFERENCE OSCILLATORS; POLYSILICON; SENSOR AB Electrostatic tuning of the frequency in micromachined Si-SiO2 composite resonators for temperature compensation is demonstrated and analyzed. Electrostatic tuning exploits the bias voltage dependence of frequency for the compensation. Si-SiO2 composite resonators have intrinsically small frequency variation over temperature, thus being appropriate for electrostatic tuning. We developed a tuning procedure and applied it to a flexural-mode composite resonator. Experimental results show similar to 2.5-ppm stability over a 90 degrees C-wide temperature range. C1 [Lee, Hyung Kyu; Kenny, Thomas W.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Melamud, Renata; Salvia, James C.] SiTime Corp, Sunnyvale, CA 94085 USA. [Kim, Bongsang] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hopcroft, Matthew A.] Hewlett Packard Labs, Palo Alto, CA 94304 USA. RP Lee, HK (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM hyungkyu@stanford.edu; rmelamud@gmail.com; bongsang@gmail.com; mhopeng@ml1.net; jimsalvia@gmail.com; tkenny@stanford.edu FU Defense Advanced Research Projects Agency [ONRN66001-03-1-8942]; National Nanofabrication Users Network facilities; National Science Foundation [ECS-9731294, DMR 9504099]; Robert Bosch Corporation Research and Technology Center, Palo Alto, CA; Samsung Scholarship FX This work was supported in part by the Defense Advanced Research Projects Agency's Harsh Environment Robust Micromechanical Technology Program under Grant ONRN66001-03-1-8942, in part by the National Nanofabrication Users Network facilities funded by the National Science Foundation under Award ECS-9731294, in part by the National Science Foundation Instrumentation for Materials Research Program under Grant DMR 9504099, and in part by the Robert Bosch Corporation Research and Technology Center, Palo Alto, CA. The work of H. K. Lee was supported by a Samsung Scholarship. Subject Editor C. Hierold. NR 38 TC 5 Z9 5 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 EI 1941-0158 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD DEC PY 2011 VL 20 IS 6 BP 1355 EP 1365 DI 10.1109/JMEMS.2011.2168083 PG 11 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 855TZ UT WOS:000297589200016 ER PT J AU Yakovlev, S Downing, KH AF Yakovlev, S. Downing, K. H. TI Freezing in sealed capillaries for preparation of frozen hydrated sections SO JOURNAL OF MICROSCOPY LA English DT Article DE Amorphous ice; cryomicroscopy; cryosection; high-pressure freezing; isochoric freezing; isochoric subcooling; self-pressure freezing; self-pressurized rapid freezing ID HIGH-PRESSURE; VITREOUS SECTIONS; CRYOELECTRON MICROSCOPY; ELECTRON-MICROSCOPY; CRYSTALLINE ICE; WATER; COMPRESSIBILITY; PRESERVATION; CRYOFIXATION; TEMPERATURE AB We have investigated the freezing of specimens in a confined volume for preparation of vitreous samples for cryosectioning. With 15% dextran as a cryoprotectant, a sample sealed in a copper tube begins to freeze into crystalline ice when plunged into liquid ethane. Crystallization rapidly causes an increase in the pressure to the point that much of the sample freezes in a vitreous state. We used synchrotron X-ray diffraction of samples frozen with various amounts of dextran to characterize the ice phases and crystal orientation, providing insights on the freezing process. We have characterized cryosections obtained from these samples to explore the optimum amount of cryoprotectant. Images of cryosectioned bacteria frozen with various levels of cryoprotectant illustrate effects of cryoprotectant concentration. C1 [Yakovlev, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Donner Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Downing, K. H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Yakovlev, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Donner Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM SYakovlev@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231]; NIH [GM051487] FX We express our thanks to Dr. Luis R. Comolli (LBNL) for sharing the ideas that initiated this work and for help with preparing Caulobacter samples, and Dr. Robert M. Glaeser (LBNL) for helpful discussions. This work has been supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by NIH grant GM051487. The Xray diffraction was performed at the SIBYLS beamline of the Advanced Light Source, Lawrence Berkeley National Laboratory, which is a national user facility supported by the Department of Energy, Office of Basic Energy Sciences. NR 38 TC 7 Z9 7 U1 1 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-2720 J9 J MICROSC-OXFORD JI J. Microsc.. PD DEC PY 2011 VL 244 IS 3 BP 235 EP 247 DI 10.1111/j.1365-2818.2011.03530.x PG 13 WC Microscopy SC Microscopy GA 858XT UT WOS:000297837300003 PM 22077543 ER PT J AU Kamaladasa, RJ Liu, F Porter, LM Davis, RF Koleske, DD Mulholland, G Jones, KA Picard, YN AF Kamaladasa, Ranga J. . Liu, Fang Porter, Lisa M. Davis, Robert F. Koleske, Daniel D. Mulholland, Greg Jones, Kenneth A. Picard, Yoosuf N. TI Identifying threading dislocations in GaN films and substrates by electron channelling SO JOURNAL OF MICROSCOPY LA English DT Article DE Channelling contrast; chemical etch; ECCI; gallium nitride; screw; edge; TEM ID SURFACE STRESS-RELAXATION; GALLIUM NITRIDE; CONTRAST; MICROSCOPE; IMAGES; DIFFRACTION; DEFECTS; GROWTH AB Electron channelling contrast imaging of threading dislocations in GaN (0002) substrates and epitaxial films has been demonstrated using a conventional polepiece-mounted backscatter detector in a commercial scanning electron microscope. The influence of accelerating voltage and diffraction vector on contrast features denoting specific threading dislocation types has been studied. As confirmed by coordinated transmission electron microscopy analysis, electron channelling contrast imaging contrast features for edge-type threading dislocations are spatially smaller than mixed-type threading dislocations in GaN. This ability to delineate GaN edge threading dislocations from mixed type was also confirmed by defect-selective etch processing using molten MgO/KOH. This study validates electron channelling contrast imaging as a nondestructive and widely accessible method for spatially mapping and identifying dislocations in GaN with wider applicability for other single-crystal materials. C1 [Kamaladasa, Ranga J. .; Liu, Fang; Porter, Lisa M.; Davis, Robert F.; Picard, Yoosuf N.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Koleske, Daniel D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Mulholland, Greg] Kyma Technol, Raleigh, NC USA. [Picard, Yoosuf N.] USA, Res Lab, Adelphi, MD USA. RP Kamaladasa, RJ (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. EM rkamalad@andrew.cmu.edu RI Davis, Robert/A-9376-2011; OI Davis, Robert/0000-0002-4437-0885; Picard, Yoosuf/0000-0002-2853-5213 FU Army Research Office [58259-MS-II]; Berkman Faculty Development Fund; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors recognize financial support from the Army Research Office (Contract No. 58259-MS-II) managed by P. Varanasi, and from the Berkman Faculty Development Fund. The authors also appreciate insightful discussions with A. Winkelmann, M. De Graef, C. Trager-Cowan and for the technical assistance provided by Tom Nuhfer. Some samples were generated at Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 32 TC 6 Z9 6 U1 1 U2 23 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-2720 J9 J MICROSC-OXFORD JI J. Microsc.. PD DEC PY 2011 VL 244 IS 3 BP 311 EP 319 DI 10.1111/j.1365-2818.2011.03538.x PG 9 WC Microscopy SC Microscopy GA 858XT UT WOS:000297837300009 PM 21883210 ER PT J AU Roldan, A Illas, F Tarakeshwar, P Mujica, V AF Roldan, Alberto Illas, Francesc Tarakeshwar, Pilarisetty Mujica, Vladimiro TI Stability and Quenching of Plasmon Resonance Absorption in Magnetic Gold Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CAPPED GOLD; PERMANENT MAGNETISM; NANOCLUSTERS; CLUSTERS; METALS; SIZE AB The transition from diamagnetic to ferromagnetic behavior is one of the most dramatic quantum size-dependent effects in noble metals. The origin of the ferromagnetic behavior of Au nanoparticles is associated with a spin symmetry breaking at the Fermi level, which leads to a quasi-degeneracy of states whose magnetic properties differ markedly from the diamagnetic behavior encountered in bulk Au. We have performed quantum-chemical density functional theory-based calculations of the electronic, optical, and magnetic properties of Au clusters to clarify several aspects of the behavior of nanogold. In some cases, we found a remarkable stability of the localized magnetic moments of the clusters that support a dual domain model for Au nanoparticles to explain their magnetic properties, that is, a diamagnetic core and localized surface moments. This magnetic transition influences the optical response of the nanoparticles, quenching the intensity of the absorption associated to the plasmon resonance. We found that this striking inverse relationship between the onset of magnetism and the reduction of the absorption intensity is due to a reduction of the oscillator strengths of the transitions involved in the optical response. This reduction is in turn caused by an enhanced participation of d electrons in the magnetic state. C1 [Tarakeshwar, Pilarisetty; Mujica, Vladimiro] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Roldan, Alberto; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Roldan, Alberto; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. [Roldan, Alberto] Univ Rovira & Virgili, Dept Quim Fis & Inorgan, Tarragona 43007, Spain. [Mujica, Vladimiro] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mujica, Vladimiro] Ctr Nanoscale Mat, Argonne Natl Lab, Argonne, IL 60439 USA. RP Mujica, V (reprint author), Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RI Illas, Francesc /C-8578-2011; Tarakeshwar, P./B-6609-2008; OI Illas, Francesc /0000-0003-2104-6123; Tarakeshwar, P./0000-0002-0893-0670; Roldan, Alberto/0000-0003-0353-9004 FU Spanish Ministry of Education and Science [FIS2008-02238]; Generalitat de Catalunya, XRQTC [2009SGR1041]; Generalitat de Catalunya [2007PIV10007]; ICREA Academia; NSF [CHE-1124895] FX We acknowledge support from the Spanish Ministry of Education and Science (grant FIS2008-02238) and from Generalitat de Catalunya grants 2009SGR1041, XRQTC. V.M. thanks Generalitat de Catalunya for having supported his stay at the Universitat de Barcelona through the 2007PIV10007 invited professor scholarship. F.I. acknowledges additional support through the 2009 ICREA Academia award for excellence in research. V.M. acknowledges support of NSF through grant CHE-1124895. We thank Dr. Iberio de P.R. Moreira for important comments and suggestions that allowed us to significantly improve the manuscript. V.M. would like to thank Prof. Fernando Gonzalez-Jimenez for sharing with him his deep knowledge about nanomagnetism. NR 36 TC 4 Z9 4 U1 0 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 1 PY 2011 VL 2 IS 23 BP 2996 EP 3001 DI 10.1021/jz201326k PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 856AI UT WOS:000297608100010 ER PT J AU Rinaldi, RG Boyce, MC Weigand, SJ Londono, DJ Guise, MW AF Rinaldi, R. G. Boyce, M. C. Weigand, S. J. Londono, D. J. Guise, M. W. TI Microstructure Evolution during Tensile Loading Histories of a Polyurea SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE DMA; in situ; polyurea; tensile loading; WAXS-SAXS ID X-RAY-SCATTERING; STRESS-STRAIN BEHAVIOR; SEGMENTED POLYURETHANES; HARD SEGMENT; SMALL-ANGLE; THERMOPLASTIC POLYURETHANES; BLOCK-COPOLYMERS; MECHANICAL DEFORMATION; CHAIN EXTENDERS; IN-SITU AB The evolution in the hard/soft domain microstructure of an elastomeric-like polyurea during different tensile loading histories was studied using in situ small-and wide-angle X-ray scattering (SAXS/WAXS). The nonlinear stress-strain behavior is initially stiff with a rollover yield to a more compliant response; unloading is highly nonlinear showing substantial hysteresis while also exhibiting significant recovery. Reloading reveals a substantially more compliant "softened" behavior and dramatically reduced hysteresis. WAXS peaks monitor characteristic dimensions of regular features within the hard domains; the peak location remains unchanged with tensile deformation indicating no separation of the internal structure within a domain, but the peak intensity becomes anisotropic with deformation evolving in a reversible manner consistent with orientation due to stretch. The SAXS profiles provide information between major hard domains. SAXS peaks are found to shift with tensile loading in a relatively affine manner up to a tensile true strain of similar to 0.4, which, using a Bragg reduction to aid interpretation, reveals an axial increase and a transverse decrease in inter-domain spacings; this evolution is reversible for strains less than similar to 0.4. Increasing axial strain beyond a true strain of similar to 0.4 is accompanied by a dramatic, progressive, and irreversible reduction in axial Bragg spacing, indicating a breakdown in the hard domain aggregate network structure. A four-point pattern is seen to develop during stretching. The breakdown in networked structure during a first load cycle gives a new structure for subsequent load cycles, which is seen to evolve in a reversible manner for strains less than or equal to the prior maximum strain. However, for strains exceeding the prior maximum strain excursion, additional breakdown is found. These SAXS results show that a breakdown in the hard domain aggregate network structure is a governing mechanism for the large dissipation (hysteresis) loops of the first load cycle and are also responsible for the softened reloading response. The absence of structure breakdown during subsequent load cycles corresponds to the substantially reduced hysteresis loops as well as the stable softened behavior. DMA data on pristine and previously deformed samples show a more compliant storage modulus in the predeformed sample, supporting the softened cyclic stress-strain data and the structural breakdown observed in the SAXS; the loss modulus was unchanged with deformation, which correlates with the lossy features measured in DMA with time-dependent viscosity rather than losses due to structural breakdown. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1660-1671, 2011 C1 [Rinaldi, R. G.; Boyce, M. C.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Weigand, S. J.] Argonne Natl Lab, Adv Photon Source, DuPont NW Dow Collaborat Access Team, Synchrotron Res Ctr, Argonne, IL 60439 USA. [Londono, D. J.; Guise, M. W.] DuPont Res & Dev, Wilmington, DE 19880 USA. RP Boyce, MC (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA. EM mcboyce@mit.edu FU Office of Naval Research [N00014-04-10469]; E.I. DuPont de Nemours Co.; Northwestern University; Dow Chemical Company; State of Illinois through the Department of Commerce; board of education (HECA); US Department of Energy Office of Energy Research; U.S. National Science Foundation Division of Materials Research FX This research is funded by the Office of Naval Research through grant number N00014-04-10469. The SAXS/WAXS experiments were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center at the Advanced Photon Source (APS). DND-CAT is supported by the E.I. DuPont de Nemours & Co., Northwestern University, The Dow Chemical Company, the State of Illinois through the Department of Commerce and the board of education (HECA), the US Department of Energy Office of Energy Research, and the U.S. National Science Foundation Division of Materials Research (http://www.dnd.aps.anl.gov/). The authors are grateful to Damien Eggenspieler, Meredith Silberstein, Brian Greviskes, and Dr. Katia Bertoldi for their sleepless help during the Argonne runs. Last but not least, they thank Professor Ed. Kramer for the strong expertise and time he put in their scientific discussion. NR 48 TC 16 Z9 16 U1 2 U2 26 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD DEC 1 PY 2011 VL 49 IS 23 BP 1660 EP 1671 DI 10.1002/polb.22352 PG 12 WC Polymer Science SC Polymer Science GA 853WR UT WOS:000297456900004 ER PT J AU Lochner, A Giannone, RJ Keller, M Antranikian, G Graham, DE Hettich, RL AF Lochner, Adriane Giannone, Richard J. Keller, Martin Antranikian, Garabed Graham, David E. Hettich, Robert L. TI Label-free Quantitative Proteomics for the Extremely Thermophilic Bacterium Caldicellulosiruptor obsidiansis Reveal Distinct Abundance Patterns upon Growth on Cellobiose, Crystalline Cellulose, and Switchgrass SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE microbial proteomics; microbial cellulose degradation; quantitative proteomics; thermophilic bacteria; bioenergy research ID CLOSTRIDIUM-THERMOCELLUM; PLANT BIOMASS; ANAEROCELLUM-THERMOPHILUM; GLYCOSIDE HYDROLASE; SHOTGUN PROTEOMICS; ACID PRETREATMENT; BETA-GLUCOSIDASES; DSM 6725; PROTEIN; IDENTIFICATION AB Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47_0549 together with the COB47_1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47_0096 and COB47_0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 beta-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation. C1 [Lochner, Adriane; Keller, Martin; Graham, David E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Giannone, Richard J.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Lochner, Adriane; Giannone, Richard J.; Keller, Martin; Hettich, Robert L.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Lochner, Adriane; Antranikian, Garabed] Hamburg Univ Technol, D-21073 Hamburg, Germany. [Graham, David E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. RP Graham, DE (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM grahamde@ornl.gov; hettichrl@ornl.gov RI Keller, Martin/C-4416-2012; Graham, David/F-8578-2010; Hettich, Robert/N-1458-2016 OI Graham, David/0000-0001-8968-7344; Hettich, Robert/0000-0001-7708-786X FU BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science FX We thank Manesh Shah, Barbara Klippel, Andrew Dykstra, Scott Hamilton-Brehm and James Elkins for helpful discussions. This study was funded by the BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the Department of Energy. NR 57 TC 21 Z9 22 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD DEC PY 2011 VL 10 IS 12 BP 5302 EP 5314 DI 10.1021/pr200536j PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 855AZ UT WOS:000297537200004 PM 21988591 ER PT J AU Macaluso, RT Francisco, M Young, DP Stadler, S Mitchell, JF Geiser, U Hong, HY Kanatzidis, MG AF Macaluso, Robin T. Francisco, Melanie Young, David P. Stadler, Shane Mitchell, John F. Geiser, Urs Hong, Han-yul Kanatzidis, Mercouri G. TI Structure and properties of rhombohedral CePd3Ga8: A variant of the cubic parent compound with BaHg11 structure type SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE BaHg11 type; Flux growth; Single-crystal X-ray diffraction; Intermetallic; CePd3Ga8 ID CRYSTAL-CHEMISTRY; MOLTEN GALLIUM; ALUMINUM FLUX; LA-ND; SM; RE; PHASES; YB; GA; CE AB Single crystals of a new intermetallic gallide, R-CePd3Ga8, have been synthesized from excess molten gallium. Single-crystal X-ray diffraction reveals that R-CePd3Ga8 crystallizes in. the R-3m space group with a=b=c=8.4903(10) angstrom and alpha=beta=gamma=89.993(17). R-CePd3Ga8 is a variant of the cubic BaHg11 structure type with three structural units: a Ce-centered polyhedron, a distorted cube of Pd2Ga6 and a Pd-centered cuboctahedron. The distortions of these units are compared to undistorted analogous units in intermetallic compounds with BaHg11 structure type. Field and temperature-dependent magnetization measurements on R-CePd3Ga8 reveal a paramagnetic material with strong antiferromagnetic correlations and a magnetization consistent with Ce3+. Electrical resistance measurements indicate Kondo behavior between localized Ce3+ magnetic moments. (C) 2011 Elsevier Inc. All rights reserved. C1 [Macaluso, Robin T.; Hong, Han-yul] Univ No Colorado, Dept Chem & Biochem, Greeley, CO 80639 USA. [Macaluso, Robin T.; Mitchell, John F.; Geiser, Urs; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Francisco, Melanie; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Young, David P.; Stadler, Shane] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Macaluso, RT (reprint author), Univ No Colorado, Dept Chem & Biochem, Ross Hall,Campus Box 98, Greeley, CO 80639 USA. EM robin.macaluso@unco.edu FU NSF [1056515, DMR-1005764, NSF-DMR-0545728]; Research Corporation Cottrell College; Department of Energy [DE-FG02-07ER46356]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX This work is supported by NSF CAREER Award 1056515 and Research Corporation Cottrell College Science Award. DPY acknowledges support of the NSF under Grant No. DMR-1005764, and SS acknowledges support of the NSF under Grant No. NSF-DMR-0545728. Financial support from the Department of Energy (DE-FG02-07ER46356) for MGK is gratefully acknowledged. Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under contract DE-AC02-06CH11357. We thank Ken Cochran and Chad Wangeline (UNC) for help with SEM. NR 35 TC 3 Z9 3 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD DEC PY 2011 VL 184 IS 12 BP 3185 EP 3189 DI 10.1016/j.jssc.2011.10.001 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 856SA UT WOS:000297662500008 ER PT J AU Bleier, GC Nyman, M Rohwer, LES Rodriguez, MA AF Bleier, Grant C. Nyman, May Rohwer, Lauren E. S. Rodriguez, Mark A. TI Seeking the optimal LaTaO4:Eu phosphor SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Orthotantalate; Rare-earth; Europium; Phosphor; Solid-state lighting ID LED CONVERSION PHOSPHORS; LUMINESCENCE PROPERTIES; CRYSTAL-GROWTH; PHOTOLUMINESCENCE PROPERTIES; STRUCTURAL-PROPERTIES; SM; GD; ND; LA; LN AB Lanthanum orthotantalate, LaTaO4, is an excellent host lattice for rare-earth luminescent ions such as Eu3+ for red emission. However, there are multiple RETaO4 (RE=rare earth) polymorphs, and the stability of these is controlled predominantly by the RE-radius. Thus it is difficult to obtain a pure phase of LaTaO4:Eu as Eu concentration and consequently the RE radius is varied. We recently reported a 'soft-chemical' route that allows crystallization of pure-phase LaTaO4:Eu at temperatures as low as 800 degrees C. in the current report, we investigate polymorph evolution and Eu emission as a function of Eu concentration and annealing temperature. We obtain a maximum quantum yield (QY) of 83% at the highest Eu substitution (25%) for which the low temperature orthorhombic (Pbca) polymorph is stable. Therefore, QY is not limited necessarily by concentration quenching; rather it is limited by polymorph stability as the RE-radius decreases with increasing Eu substitution. (C) 2011 Elsevier Inc. All rights reserved. C1 [Bleier, Grant C.; Nyman, May; Rohwer, Lauren E. S.; Rodriguez, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nyman, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mdnyman@sandia.gov FU Sandia's Solid-State-Lighting Science Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. We thank Gary L. Zender (SNL) for the SEM-EDS analyses. NR 29 TC 7 Z9 7 U1 3 U2 22 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD DEC PY 2011 VL 184 IS 12 BP 3221 EP 3227 DI 10.1016/j.jssc.2011.10.008 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 856SA UT WOS:000297662500014 ER PT J AU Apetrei, C Sumpter, B Souquiere, S Chahroudi, A Makuwa, M Reed, P Ribeiro, RM Pandrea, I Roques, P Silvestri, G AF Apetrei, Cristian Sumpter, Beth Souquiere, Sandrine Chahroudi, Ann Makuwa, Maria Reed, Patricia Ribeiro, Ruy M. Pandrea, Ivona Roques, Pierre Silvestri, Guido TI Immunovirological Analyses of Chronically Simian Immunodeficiency Virus SIVmnd-1-and SIVmnd-2-Infected Mandrills (Mandrillus sphinx) SO JOURNAL OF VIROLOGY LA English DT Article ID AFRICAN-GREEN MONKEYS; INFECTED SOOTY MANGABEYS; CD4(+) T-CELLS; NONHUMAN PRIMATE HOSTS; PRIMARY SIV INFECTION; IN-VIVO REPLICATION; NATURAL HOSTS; AIDS PATHOGENESIS; VIRAL REPLICATION; IMMUNE ACTIVATION AB Simian immunodeficiency virus (SIV) infection in African nonhuman primate (NHP) natural hosts is usually nonpathogenic, despite high levels of virus replication. We have previously shown that chronic SIV infection in sooty mangabeys (SMs) and African green monkeys (AGMs) is associated with low levels of immune activation and bystander T cell apoptosis. To compare these features with those observed in another natural host, the mandrill (MND), we conducted a cross-sectional survey of the 23 SIV-infected and 25 uninfected MNDs from the only semifree colony of mandrills available worldwide. Viral loads (VLs) were determined and phenotypic and functional analysis of peripheral blood-and lymph node-derived lymphocytes was performed. We found that mandrills chronically infected with SIVmnd-1 or SIVmnd-2 have similar levels of viral replication, and we observed a trend toward lower CD4(+) T cell counts in chronically SIVmnd-2-infected MNDs than SIVmnd-1-infected MNDs. No correlation between CD4(+) T cell counts and VLs in SIV-infected MNDs could be established. Of note, the levels of T cell activation, proliferation, and apoptosis were comparable between SIVmnd-1- and SIVmnd-2-infected MNDs and to those observed in uninfected animals, with the only exception being an increase in tumor necrosis factor alpha-producing CD8(+) T cells in SIVmnd-2-infected MNDs. Overall, these findings recapitulate previous observations in SIV-infected SMs and AGMs and lend further evidence to the hypothesis that low levels of immune activation protect natural SIV hosts from disease progression. C1 [Apetrei, Cristian; Pandrea, Ivona] Univ Pittsburgh, Ctr Vaccine Res, Pittsburgh, PA 15261 USA. [Apetrei, Cristian] Univ Pittsburgh, Dept Microbiol & Mol Genet, Sch Med, Pittsburgh, PA 15261 USA. [Pandrea, Ivona] Univ Pittsburgh, Dept Pathol, Sch Med, Pittsburgh, PA 15261 USA. [Sumpter, Beth; Silvestri, Guido] Emory Univ, Dept Pathol & Lab Med, Sch Med, Atlanta, GA 30329 USA. [Sumpter, Beth; Silvestri, Guido] Emory Univ, Emory Vaccine Ctr, Sch Med, Atlanta, GA 30329 USA. [Sumpter, Beth; Chahroudi, Ann; Silvestri, Guido] Yerkes Natl Primate Res Ctr, Atlanta, GA 30329 USA. [Souquiere, Sandrine; Makuwa, Maria; Reed, Patricia; Roques, Pierre] Int Ctr Med Res, Franceville, Gabon. [Ribeiro, Ruy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roques, Pierre] CEA, Inst Emerging Dis & Innovat Therapies, Fontenay Aux Roses, France. [Roques, Pierre] Univ Paris 11, Fontenay Aux Roses, France. RP Apetrei, C (reprint author), Univ Pittsburgh, Ctr Vaccine Res, 9044 Biol Sci Tower 3,3501 5th Ave, Pittsburgh, PA 15261 USA. EM apetreic@pitt.edu; gsilves@emory.edu RI Roques, Pierre/M-2212-2013; OI Roques, Pierre/0000-0003-1825-1054; Ribeiro, Ruy/0000-0002-3988-8241 FU Centre International de Recherches Medicales de Franceville (CIRMF), Gabon; government of Gabon, Total-Elf, Gabon; Ministere de la Cooperation Francaise; National Institutes of Health [RO1 AI065325, RO1 AI064066, RO1 AI066998] FX This work was funded in part by the Centre International de Recherches Medicales de Franceville (CIRMF), Gabon. CIRMF is supported by the government of Gabon, Total-Elf, Gabon, and the Ministere de la Cooperation Francaise. C. A., I. P., and G. S. are supported by grants RO1 AI065325 (C. A.), RO1 AI064066 (I. P.), and RO1 AI066998 (G. S.) from the National Institutes of Health. NR 71 TC 15 Z9 15 U1 0 U2 3 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD DEC PY 2011 VL 85 IS 24 BP 13077 EP 13087 DI 10.1128/JVI.05693-11 PG 11 WC Virology SC Virology GA 856LI UT WOS:000297642000025 PM 21957286 ER PT J AU Sedlmair, J Gleber, SC Mert, SO Bertilson, M von Hofsten, O Thieme, J Pfohl, T AF Sedlmair, Julia Gleber, Sophie-Charlotte Mert, Semra Ozturk Bertilson, Michael von Hofsten, Olov Thieme, Jurgen Pfohl, Thomas TI Imaging of Vascular Smooth Muscle Cells with Soft X-Ray Spectromicroscopy SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE X-ray microscopy; vascular smooth muscle cells; spectromicroscopy; NEXAFS; calcium; radiation damage ID OPTICAL RECONSTRUCTION MICROSCOPY; CELLULAR ULTRASTRUCTURE; ELECTRON-MICROSCOPY; BESSY-II; RESOLUTION; CALCIUM; SYSTEMS; SPECTROSCOPY; TOMOGRAPHY; BIOFILM AB Using X-ray microscopy and spectromicroscopy, vascular smooth muscle cells (VSMCs) were imaged, prepared without using additional embedding material or staining, but by applying simple, noncryo fixation techniques. The cells were imaged with a compact source transmission X-ray microscope and a scanning transmission X-ray microscope (STXM). With the STXM, spectromicroscopy was performed at the C K-edge and the Ca L-III,L-II-edges. VSMCs were chosen because of their high amount of actin stress fibers, so that the actin cytoskeleton should be visible. Other parts of the cell, such as the nucleus and organelles, were also identified from the micrographs. Both in the spectra and the images, the effects of the different preparation procedures were observable. Furthermore, Ca hotspots were detected and their density is determined. C1 [Sedlmair, Julia] Univ Gottingen, Inst Xray Phys, D-37077 Gottingen, Germany. [Gleber, Sophie-Charlotte] APS, Argonne Natl Lab, Argonne, IL 60439 USA. [Mert, Semra Ozturk; Pfohl, Thomas] Max Planck Inst Dynam & Self Org, D-37073 Gottingen, Germany. [Bertilson, Michael; von Hofsten, Olov] Royal Inst Technol, Dept Appl Phys, SE-10691 Stockholm, Sweden. [Thieme, Jurgen] NSLS II, Brookhaven Natl Lab, Upton, NY 11973 USA. [Pfohl, Thomas] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland. RP Sedlmair, J (reprint author), Univ Gottingen, Inst Xray Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. EM jsedlma@gwdg.de RI Thieme, Juergen/D-6814-2013; Pfohl, Thomas/D-7296-2016 OI Pfohl, Thomas/0000-0002-7879-5216 FU DFG (Deutsche Forschungsgesellschaft) [SFB 755] FX We wish to thank Prof. H. Hertz, head of the Biomedical and X-Ray Physics Group at the Royal Technical University (KTH) in Stockholm, for the valuable collaboration and the opportunity to work with the compact TXM. We also thank the staff at BESSY II, in particular P. Guttmann, for providing excellent experimenting conditions. This work was funded by the DFG (Deutsche Forschungsgesellschaft) within the collaborative research program "SFB 755 - Nanoscale Photonic Imaging." NR 56 TC 6 Z9 6 U1 1 U2 16 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD DEC PY 2011 VL 17 IS 6 BP 991 EP 1001 DI 10.1017/S1431927611012165 PG 11 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 858VW UT WOS:000297832300019 PM 22067812 ER PT J AU Lu, Y Song, J Huang, JY Lou, J AF Lu, Yang Song, Jun Huang, Jian Yu Lou, Jun TI Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires SO NANO RESEARCH LA English DT Article DE Nanowires; in situ transmission electron microscope (TEM); mechanical characterization; dislocation nucleation; plasticity ID IN-SITU ELECTRON; MECHANICAL-PROPERTIES; FCC METALS; PLASTICITY; MICROSCOPY; NANOTUBES; FORCE AB The plastic deformation and the ultrahigh strength of metals at the nanoscale have been predicted to be controlled by surface dislocation nucleation. In situ quantitative tensile tests on individual aOE (c) 111 > single crystalline ultrathin gold nanowires have been performed and significant load drops observed in stress-strain curves suggest the occurrence of such dislocation nucleation. High-resolution transmission electron microscopy (HRTEM) imaging and molecular dynamics simulations demonstrated that plastic deformation was indeed initiated and dominated by surface dislocation nucleation, mediating ultrahigh yield and fracture strength in sub-10-nm gold nanowires. C1 [Lu, Yang; Lou, Jun] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Song, Jun] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 2B2, Canada. [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Lou, J (reprint author), Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. EM jlou@rice.edu RI Huang, Jianyu/C-5183-2008; Lu, Yang/D-4972-2011 OI Lu, Yang/0000-0002-9280-2718 FU Air Force Office of Sponsored Research (AFOSR) [FA9550-09-1-0084]; Welch Foundation [C-1716]; National Science Foundation (NSF) [DMR-1128818]; Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge the financial support provided by the Air Force Office of Sponsored Research (AFOSR) YIP award FA9550-09-1-0084, by the Welch Foundation grant C-1716 and by the National Science Foundation (NSF) grant No. DMR-1128818. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors also thank Prof. Shouheng Sun from Brown University for providing ultrathin gold nanowire samples and Dr. Wenhua Guo at Rice University for discussions about the TEM analysis. NR 29 TC 20 Z9 21 U1 6 U2 56 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 J9 NANO RES JI Nano Res. PD DEC PY 2011 VL 4 IS 12 BP 1261 EP 1267 DI 10.1007/s12274-011-0177-y PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 859ZF UT WOS:000297913800010 ER PT J AU Thone, CC Postigo, AD Fryer, CL Page, KL Gorosabel, J Aloy, MA Perley, DA Kouveliotou, C Janka, HT Mimica, P Racusin, JL Krimm, H Cummings, J Oates, SR Holland, ST Siegel, MH De Pasquale, M Sonbas, E Im, M Park, WK Kann, DA Guziy, S Garcia, LH Llorente, A Bundy, K Choi, C Jeong, H Korhonen, H Kubanek, P Lim, J Moskvitin, A Munoz-Darias, T Pak, S Parrish, I AF Thoene, C. C. Postigo, A. de Ugarte Fryer, C. L. Page, K. L. Gorosabel, J. Aloy, M. A. Perley, D. A. Kouveliotou, C. Janka, H. T. Mimica, P. Racusin, J. L. Krimm, H. Cummings, J. Oates, S. R. Holland, S. T. Siegel, M. H. De Pasquale, M. Sonbas, E. Im, M. Park, W. -K. Kann, D. A. Guziy, S. Hernandez Garcia, L. Llorente, A. Bundy, K. Choi, C. Jeong, H. Korhonen, H. Kubanek, P. Lim, J. Moskvitin, A. Munoz-Darias, T. Pak, S. Parrish, I. TI The unusual gamma-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33 SO NATURE LA English DT Article ID SUPERNOVA; GRB-060218; GALAXY; SWIFT; HOLE AB Long gamma-ray bursts (GRBs) are the most dramatic examples of massive stellar deaths, often associated with supernovae(1). They release ultra-relativistic jets, which produce non-thermal emission through synchrotron radiation as they interact with the surrounding medium(2). Here we report observations of the unusual GRB 101225A. Its gamma-ray emission was exceptionally long-lived and was followed by a bright X-ray transient with a hot thermal component and an unusual optical counterpart. During the first 10 days, the optical emission evolved as an expanding, cooling black body, after which an additional component, consistent with a faint supernova, emerged. We estimate its redshift to be z = 0.33 by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a merger of a helium star with a neutron star that underwent a common envelope phase, expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which became thermalized by interacting with the dense, previously ejected material, thus creating the observed black body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star in the Galaxy(3). C1 [Thoene, C. C.; Gorosabel, J.; Guziy, S.; Hernandez Garcia, L.; Kubanek, P.] IAA CSIC, Granada 18008, Spain. [Thoene, C. C.] Niels Bohr Int Acad, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Postigo, A. de Ugarte] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Fryer, C. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Page, K. L.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Aloy, M. A.; Mimica, P.] Univ Valencia, Dept Astron & Astrofis, E-46100 Burjassot, Spain. [Perley, D. A.; Bundy, K.; Parrish, I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Sci & Technol Off, Huntsville, AL 35812 USA. [Janka, H. T.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Racusin, J. L.; Krimm, H.; Cummings, J.; Holland, S. T.; Sonbas, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H.; Holland, S. T.; Sonbas, E.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Krimm, H.; Holland, S. T.] CRESST, Columbia, MD 21044 USA. [Oates, S. R.; De Pasquale, M.] Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Siegel, M. H.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 104, University Pk, PA 16802 USA. [Sonbas, E.] Univ Adiyaman, Dept Phys, TR-02040 Adiyaman, Turkey. [Im, M.; Park, W. -K.; Choi, C.] Seoul Natl Univ, Dept Phys & Astron, Ctr Explorat Origin Universe, Seoul, South Korea. [Kann, D. A.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Guziy, S.] Nikolaev Natl Univ, UA-54030 Nikolayev, Ukraine. [Llorente, A.] ESAC, INSA, Herschel Sci Operat Ctr, Madrid 28080, Spain. [Jeong, H.; Pak, S.] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi Do, South Korea. [Korhonen, H.] Univ Turku, Finnish Ctr Astron ESO FINCA, Piikkio 21500, Finland. [Kubanek, P.] Inst Phys, Prague 18000 8, Czech Republic. [Lim, J.] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, Gyeonggi Do, South Korea. [Moskvitin, A.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Russia. [Munoz-Darias, T.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. RP Thone, CC (reprint author), IAA CSIC, Glorieta Astron S-N, Granada 18008, Spain. EM cthoene@iaa.es RI Racusin, Judith/D-2935-2012; Lujan Center, LANL/G-4896-2012; Im, Myungshin/B-3436-2013; Korhonen, Heidi/E-3065-2016; Pak, Soojong/E-2360-2013; Kubanek, Petr/G-7209-2014; Aloy, Miguel/K-9941-2014 OI Im, Myungshin/0000-0002-8537-6714; Korhonen, Heidi/0000-0003-0529-1161; Thone, Christina/0000-0002-7978-7648; Aloy, Miguel/0000-0002-5552-7681 FU DNRF; UK Space Agency; MICINN; ERC; DFG; CRI/NRF/MEST of Korea; Russian government FX This Letter is based on observations collected at CAHA/Calar Alto, GTC/La Palma, the Liverpool Telescope at ORM/La Palma, the McDonald Observatory at the University of Texas at Austin, and Gemini-North and Keck on Hawaii. We thank J. S. Bloom for helping with the Keck observations. The Dark Cosmology Centre is funded by the DNRF. K. L. P., S.R.O. and M.D.P. acknowledge the support of the UK Space Agency. J. G., S. G. and P. K. are partially supported by MICINN. M. A. A. and P. M. are supported by an ERC starting grant. H. T. J. acknowledges support by a DFG grant. M. I., W.-K.P., C. C., J. L. and S. P. acknowledge support from CRI/NRF/MEST of Korea. A. M. acknowledges support from the Russian government. NR 21 TC 53 Z9 53 U1 1 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD DEC 1 PY 2011 VL 480 IS 7375 BP 72 EP 74 DI 10.1038/nature10611 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 861PO UT WOS:000298031900035 PM 22129726 ER PT J AU Affolder, A Aleev, A Allport, PP Andricek, L Artuso, M Balbuena, JP Barabash, L Barber, T Barcz, A Bassignana, D Bates, R Battaglia, M Beimforde, M Bemardini, J Betancourt, C Bilei, GM Bisello, D Blue, A Bohm, J Bolla, G Borgia, A Borrello, L Bortoletto, D Boscardin, M Bosma, MJ Bowcock, TJV Breindl, M Broz, J Bruzzi, M Brzozowski, A Buhmann, P Buttar, C Campabadal, F Candelori, A Casse, G Charron, S Chren, D Cihangir, S Cindro, V Collins, P Gil, EC Costinoaia, CA Creanza, D Cristobal, C Dalla Betta, GF de Boer, W De Palma, M Demina, R Dierlamm, A Diez, S Dobos, D Doherty, F Kittelmann, ID Dolezal, Z Dolgolenko, A Dragoi, C Driewer, A Dutta, S Eckstein, D Eklund, L Eremin, I Eremin, V Erfle, J Fadeeva, N Fahrer, M Fiori, F Fleta, C Focardi, E Forshaw, D Fretwurst, E Frey, M Bates, AG Gallrapp, C Garcia, C Gaubas, E Genest, MH Giolo, K Glaser, M Goessling, C Golubev, A Gorelov, I Gregoire, G Gregori, P Grigoriev, E Grillo, AA Grinstein, S Groza, A Guskov, J Hansen, TE Harkonen, J Hartjes, FG Hartmann, F Hoeferkamp, M Horisberger, R Houdayer, A Hynds, D Ilyashenko, I Junkes, A Kadys, A Kaminski, P Karpenko, A Kaska, K Kazuchits, N Kazukauskas, V Kharchuk, A Khivrich, V Kierstead, J Klanner, R Klingenberg, R Kodys, P Koffeman, E Kohler, M Kohout, Z Korjenevski, S Korolkov, I Kozlowski, R Kozubal, M Kramberger, G Kuhn, S Kuleshov, S Kuznetsov, A Kwan, S La Rosa, A Lacasta, C Lange, J Lassila-Perini, K Lastovetsky, V Lazanu, I Lazanu, S Lebel, C Lefeuvre, G Lemaitre, V Leroy, C Li, Z Lindstrom, G Litovchenko, A Litovchenko, P Lozano, M Luczynski, Z Luukka, P Macchiolo, A Macraighne, A Maenpaa, T Makarenko, LF Mandic, I Maneuski, D Manna, N Marco, R Garcia, SII Marunko, S Masek, P Mathieson, K Matysek, M Mekki, J Messineo, A Metcalfe, J Mikestikova, M Mikuz, M Militaru, O Minano, M Miyamoto, J Moll, M Monokhov, E Mori, R Moser, HG Muenstermann, D Sanchez, FJM Naletko, A Nisius, R Oshea, V Pacifico, N Pantano, D Parkes, C Parzefall, U Passeri, D Pawlowski, M Pellegrini, G Pernegger, H Petasecca, M Piemonte, C Pignatel, GU Pintilie, I Pintilie, L Piotrzkowski, K Placekett, R Pohlsen, T Polivtsev, L Popule, J Pospisil, S Preiss, J Radicci, V Radu, R Raf, JM Rando, R Richter, R Roeder, R Roger, R Rogozhkin, S Rohe, T Ronchin, S Rott, C Roy, A Rummler, A Ruzin, A Sadrozinski, HFW Sakalauskas, S Samadashvili, N Scaringella, M Schumm, B Seidel, S Seiden, A Shipsey, I Sibille, J Sicho, P Slavicek, T Solar, M Soldevila-Serrano, U Son, S Sopko, V Sopko, B Spencer, N Spiegel, L Srivastava, A Steinbrueck, G Stewart, G Stolze, D Storasta, J Surma, B Svensson, BG Tan, P Tomasek, M Toms, K Tsiskaridze, S Tsvetkov, A Tuboltsev, Y Tuominen, E Tuovinen, E Tuuva, T Tylchin, M Uebersee, H Ullan, M Vaitkus, JV van Beuzekom, M Verbitskaya, E Alvarez, IV Visser, J Vossebeld, J Vrba, V Walz, M Weigell, P Wiik, L Wilhelm, I Wunstorf, R Zaluzhny, A Zavrtanik, M Zelazko, J Zen, M Zhukov, V Zontar, D Zorzi, N AF Affolder, A. Aleev, A. Allport, P. P. Andricek, L. Artuso, M. Balbuena, J. P. Barabash, L. Barber, T. Barcz, A. Bassignana, D. Bates, R. Battaglia, M. Beimforde, M. Bemardini, J. Betancourt, C. Bilei, G. M. Bisello, D. Blue, A. Bohm, J. Bolla, G. Borgia, A. Borrello, L. Bortoletto, D. Boscardin, M. Bosma, M. J. Bowcock, T. J. V. Breindl, M. Broz, J. Bruzzi, M. Brzozowski, A. Buhmann, P. Buttar, C. Campabadal, F. Candelori, A. Casse, G. Charron, S. Chren, D. Cihangir, S. Cindro, V. Collins, P. Gil, E. Cortina Costinoaia, C. A. Creanza, D. Cristobal, C. Dalla Betta, G. -F. de Boer, W. De Palma, M. Demina, R. Dierlamm, A. Diez, S. Dobos, D. Doherty, F. Kittelmann, I. Dolenc Dolezal, Z. Dolgolenko, A. Dragoi, C. Driewer, A. Dutta, S. Eckstein, D. Eklund, L. Eremin, I. Eremin, V. Erfle, J. Fadeeva, N. Fahrer, M. Fiori, F. Fleta, C. Focardi, E. Forshaw, D. Fretwurst, E. Frey, M. Bates, A. G. Gallrapp, C. Garcia, C. Gaubas, E. Genest, M. -H. Giolo, K. Glaser, M. Goessling, C. Golubev, A. Gorelov, I. Gregoire, G. Gregori, P. Grigoriev, E. Grillo, A. A. Grinstein, S. Groza, A. Guskov, J. Hansen, T. E. Harkonen, J. Hartjes, F. G. Hartmann, F. Hoeferkamp, M. Horisberger, R. Houdayer, A. Hynds, D. Ilyashenko, I. Junkes, A. Kadys, A. Kaminski, P. Karpenko, A. Kaska, K. Kazuchits, N. Kazukauskas, V. Kharchuk, A. Khivrich, V. Kierstead, J. Klanner, R. Klingenberg, R. Kodys, P. Koffeman, E. Koehler, M. Kohout, Z. Korjenevski, S. Korolkov, I. Kozlowski, R. Kozubal, M. Kramberger, G. Kuehn, S. Kuleshov, S. Kuznetsov, A. Kwan, S. La Rosa, A. Lacasta, C. Lange, J. Lassila-Perini, K. Lastovetsky, V. Lazanu, I. Lazanu, S. Lebel, C. Lefeuvre, G. Lemaitre, V. Leroy, C. Li, Z. Lindstroem, G. Litovchenko, A. Litovchenko, P. Lozano, M. Luczynski, Z. Luukka, P. Macchiolo, A. Macraighne, A. Maenpaa, T. Makarenko, L. F. Mandic, I. Maneuski, D. Manna, N. Marco, R. Marti i Garcia, S. Marunko, S. Masek, P. Mathieson, K. Matysek, M. Mekki, J. Messineo, A. Metcalfe, J. Mikestikova, M. Mikuz, M. Militaru, O. Minano, M. Miyamoto, J. Moll, M. Monokhov, E. Mori, R. Moser, H. -G. Muenstermann, D. Munoz Sanchez, F. J. Naletko, A. Nisius, R. OShea, V. Pacifico, N. Pantano, D. Parkes, C. Parzefall, U. Passeri, D. Pawlowski, M. Pellegrini, G. Pernegger, H. Petasecca, M. Piemonte, C. Pignatel, G. U. Pintilie, I. Pintilie, L. Piotrzkowski, K. Placekett, R. Poehlsen, Th Polivtsev, L. Popule, J. Pospisil, S. Preiss, J. Radicci, V. Radu, R. Raf, J. M. Rando, R. Richter, R. Roeder, R. Roger, R. Rogozhkin, S. Rohe, T. Ronchin, S. Rott, C. Roy, A. Rummler, A. Ruzin, A. Sadrozinski, H. F. W. Sakalauskas, S. Samadashvili, N. Scaringella, M. Schumm, B. Seidel, S. Seiden, A. Shipsey, I. Sibille, J. Sicho, P. Slavicek, T. Solar, M. Soldevila-Serrano, U. Son, S. Sopko, V. Sopko, B. Spencer, N. Spiegel, L. Srivastava, A. Steinbrueck, G. Stewart, G. Stolze, D. Storasta, J. Surma, B. Svensson, B. G. Tan, P. Tomasek, M. Toms, K. Tsiskaridze, S. Tsvetkov, A. Tuboltsev, Yu Tuominen, E. Tuovinen, E. Tuuva, T. Tylchin, M. Uebersee, H. Ullan, M. Vaitkus, J. V. van Beuzekom, M. Verbitskaya, E. Vila Alvarez, I. Visser, J. Vossebeld, J. Vrba, V. Walz, M. Weigell, P. Wiik, L. Wilhelm, I. Wunstorf, R. Zaluzhny, A. Zavrtanik, M. Zelazko, J. Zen, M. Zhukov, V. Zontar, D. Zorzi, N. TI Silicon detectors for the sLHC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD) CY OCT 12-15, 2010 CL Florence, ITALY DE Silicon particle detectors; Radiation damage; Irradiation; Charge collection efficiency ID CHARGE; LHC AB In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the R&D programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages. (C) 2011 Elsevier B.V. All rights reserved. C1 [Barber, T.; Breindl, M.; Driewer, A.; Koehler, M.; Kuehn, S.; Parzefall, U.; Preiss, J.; Walz, M.; Wiik, L.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Affolder, A.; Allport, P. P.; Bowcock, T. J. V.; Casse, G.; Forshaw, D.; Vossebeld, J.] Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. [Aleev, A.; Golubev, A.; Grigoriev, E.; Kharchuk, A.; Kuleshov, S.; Rogozhkin, S.; Zaluzhny, A.] State Sci Ctr Russian Federat, Inst Theoret & Expt Phys, Moscow, Russia. [Andricek, L.; Beimforde, M.; Macchiolo, A.; Moser, H. -G.; Nisius, R.; Richter, R.; Weigell, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Artuso, M.; Borgia, A.; Lefeuvre, G.] Syracuse Univ, Expt Particle Phys Grp, Syracuse, NY USA. [Balbuena, J. P.; Bassignana, D.; Campabadal, F.; Diez, S.; Fleta, C.; Lozano, M.; Pellegrini, G.; Raf, J. M.; Ullan, M.] CSIC, IMB CNM, Ctr Nacl Microelect, Barcelona, Spain. [Barabash, L.; Dolgolenko, A.; Groza, A.; Karpenko, A.; Khivrich, V.; Lastovetsky, V.; Litovchenko, P.; Polivtsev, L.] Ukrainian Acad Sci, Dept Radiat Phys, Inst Nucl Res, Kiev, Ukraine. [Barcz, A.] Inst Elect Technol, Warsaw, Poland. [Barcz, A.] Inst Phys PAS, Warsaw, Poland. [Bates, R.; Blue, A.; Buttar, C.; Doherty, F.; Eklund, L.; Bates, A. G.; Hynds, D.; Macraighne, A.; Maneuski, D.; Mathieson, K.; OShea, V.; Parkes, C.; Placekett, R.; Stewart, G.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Battaglia, M.; Betancourt, C.; Grillo, A. A.; Sadrozinski, H. F. W.; Schumm, B.; Seiden, A.; Spencer, N.] Santa Cruz Inst Particle Phys, Santa Cruz, CA USA. [Bemardini, J.; Borrello, L.; Dutta, S.; Fiori, F.; Messineo, A.] Univ Pisa, I-56100 Pisa, Italy. [Bemardini, J.; Borrello, L.; Dutta, S.; Fiori, F.; Messineo, A.] INFN Sez Pisa, Pisa, Italy. [Bilei, G. M.; Passeri, D.; Petasecca, M.; Pignatel, G. U.] Ist Nazl Fis Nucl, Milan, Italy. [Bilei, G. M.; Passeri, D.; Petasecca, M.; Pignatel, G. U.] Univ Perugia, I-06100 Perugia, Italy. [Bisello, D.; Candelori, A.; Litovchenko, A.; Pantano, D.; Rando, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Bisello, D.; Candelori, A.; Litovchenko, A.; Pantano, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bohm, J.; Mikestikova, M.; Popule, J.; Sicho, P.; Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Bolla, G.; Bortoletto, D.; Giolo, K.; Miyamoto, J.; Rott, C.; Roy, A.; Shipsey, I.; Son, S.] Purdue Univ, W Lafayette, IN 47907 USA. [Boscardin, M.; Dalla Betta, G. -F.; Gregori, P.; Piemonte, C.; Ronchin, S.; Zen, M.; Zorzi, N.] FBK, Povo, Trento, Italy. [Bosma, M. J.; Hartjes, F. G.; Koffeman, E.; van Beuzekom, M.; Visser, J.] Natl Inst Subatom Phys Nikhef, Amsterdam, Netherlands. [Broz, J.; Dolezal, Z.; Kodys, P.; Tsvetkov, A.; Wilhelm, I.] Charles Univ Prague, Prague, Czech Republic. [Bruzzi, M.; Focardi, E.; Mori, R.; Scaringella, M.] Univ Florence, Dept Energet, INFN Florence, I-50121 Florence, Italy. [Brzozowski, A.; Kaminski, P.; Kozlowski, R.; Kozubal, M.; Luczynski, Z.; Pawlowski, M.; Surma, B.; Zelazko, J.] Inst Elect Mat Technol, Warsaw, Poland. [Buhmann, P.; Eckstein, D.; Erfle, J.; Fretwurst, E.; Junkes, A.; Klanner, R.; Lange, J.; Lindstroem, G.; Matysek, M.; Poehlsen, Th; Srivastava, A.; Steinbrueck, G.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Charron, S.; Genest, M. -H.; Houdayer, A.; Lebel, C.; Leroy, C.] Univ Montreal, Grp Phys Particules, Montreal, PQ H3C 3J7, Canada. [Chren, D.; Kohout, Z.; Masek, P.; Pospisil, S.; Slavicek, T.; Solar, M.; Sopko, V.; Sopko, B.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Zavrtanik, M.; Zontar, D.] Univ Ljubljana, Jozef Stefan Inst, Ljubljana, Slovenia. [Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Zavrtanik, M.; Zontar, D.] Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. [Collins, P.; Dobos, D.; Kittelmann, I. Dolenc; Fahrer, M.; Gallrapp, C.; Glaser, M.; Kaska, K.; La Rosa, A.; Mekki, J.; Moll, M.; Pacifico, N.; Pernegger, H.] CERN, Geneva, Switzerland. [Gil, E. Cortina; Gregoire, G.; Lemaitre, V.; Militaru, O.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Costinoaia, C. A.; Dragoi, C.; Lazanu, S.; Pintilie, I.; Pintilie, L.; Radu, R.] Natl Inst Mat Phys, Bucharest, Romania. [Creanza, D.; De Palma, M.; Manna, N.] Dipartimento Interateneo Fis, Bari, Italy. [Creanza, D.; De Palma, M.; Manna, N.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Cristobal, C.; Grinstein, S.; Korolkov, I.; Roger, R.; Tsiskaridze, S.] IFAE, Bellaterra, Barcelona, Spain. [de Boer, W.; Dierlamm, A.; Frey, M.; Hartmann, F.; Zhukov, V.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Demina, R.; Korjenevski, S.] Univ Rochester, Rochester, NY 14627 USA. [Naletko, A.; Verbitskaya, E.] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 196140, Russia. [Garcia, C.; Lacasta, C.; Marco, R.; Marti i Garcia, S.; Minano, M.; Soldevila-Serrano, U.] CSIC, Joint Res Inst, IFIC, Valencia, Spain. [Garcia, C.; Lacasta, C.; Marco, R.; Marti i Garcia, S.; Minano, M.; Soldevila-Serrano, U.] Univ Valencia Estudi Gen, Valencia, Spain. [Gaubas, E.; Kadys, A.; Kazukauskas, V.; Sakalauskas, S.; Storasta, J.; Vaitkus, J. V.] Vilnius Univ, Inst Mat Sci & Appl Res, Vilnius, Lithuania. [Goessling, C.; Klingenberg, R.; Muenstermann, D.; Rummler, A.; Wunstorf, R.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Guskov, J.; Marunko, S.; Ruzin, A.; Tylchin, M.] Tel Aviv Univ, Tel Aviv, Israel. [Hansen, T. E.] SINTEF ICT, N-0314 Oslo, Norway. [Harkonen, J.; Lassila-Perini, K.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuovinen, E.] Helsinki Inst Phys, Helsinki, Finland. [Horisberger, R.; Radicci, V.; Rohe, T.; Sibille, J.] Paul Scherrer Inst, Lab Particle Phys, Villigen, Switzerland. [Kazuchits, N.; Makarenko, L. F.] Belarusian State Univ, Minsk, Byelarus. [Kierstead, J.; Li, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kuznetsov, A.; Monokhov, E.; Svensson, B. G.] Univ Oslo, Dept Phys, Oslo, Norway. [Lazanu, I.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Munoz Sanchez, F. J.; Vila Alvarez, I.] Inst Fis Cantabria, Santander, Spain. [Roeder, R.; Stolze, D.; Uebersee, H.] CiS Forschungsinst Mikrosensorik & Photovolta Gmb, Erfurt, Germany. [Samadashvili, N.; Tuuva, T.] Lappeenranta Univ Technol, Dept Elect Engn, Lappeenranta, Finland. RP Parzefall, U (reprint author), Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. EM Ulrich.Parzefall@physik.uni-freiburg.de RI Marti-Garcia, Salvador/F-3085-2011; Rando, Riccardo/M-7179-2013; Boscardin, Maurizio/A-4420-2014; O'Shea, Val/G-1279-2010; Verbitskaya, Elena/D-1521-2014; Fadeeva, Nadezda/D-1595-2014; Fleta, Celeste/D-7303-2014; Pellegrini, Giulio/F-4921-2011; Campabadal, Francesca/E-6651-2014; Radu, Roxana/A-9581-2014; Mikestikova, Marcela/H-1996-2014; Zorzi, Nicola/M-3141-2014; Marco Hernandez, Ricardo/H-3213-2015; Rafi, Joan Marc/D-5500-2012; Pintilie, Lucian/D-9475-2011; Bruzzi, Mara/K-1326-2015; Gorelov, Igor/J-9010-2015; Ullan, Miguel/P-7392-2015; Lozano, Manuel/C-3445-2011; Blue, Andrew/C-9882-2016; Ruzin, Arie/P-9445-2016; Makarenko, Leonid/Q-7662-2016; Tuominen, Eija/A-5288-2017; Grinstein, Sebastian/N-3988-2014; Pintilie, Ioana/C-4545-2011; La Rosa, Alessandro/I-1856-2013; Chirila, Cristina/A-2413-2012; Kuleshov, Sergey/D-9940-2013; Lazanu, Sorina/B-7819-2012; Eklund, Lars/C-7709-2012; Grigoriev, Eugene/K-6650-2013; Buttar, Craig/D-3706-2011; Mathieson, Keith/G-6308-2011; Focardi, Ettore/E-7376-2012; Dalla Betta, Gian-Franco/I-1783-2012; Weigell, Philipp/I-9356-2012; Bassignana, Daniela/J-7266-2012 OI O'Shea, Val/0000-0001-7183-1205; Fleta, Celeste/0000-0002-6591-6744; Pellegrini, Giulio/0000-0002-1606-3546; Campabadal, Francesca/0000-0001-7758-4567; Radu, Roxana/0000-0002-0959-3493; Mikestikova, Marcela/0000-0003-1277-2596; Zorzi, Nicola/0000-0002-6650-3925; Marco Hernandez, Ricardo/0000-0002-4885-5708; Rafi, Joan Marc/0000-0003-4581-9477; Pintilie, Lucian/0000-0002-4934-2912; Bruzzi, Mara/0000-0001-7344-8365; Gorelov, Igor/0000-0001-5570-0133; Lozano, Manuel/0000-0001-5826-5544; Blue, Andrew/0000-0002-7716-5626; Tuominen, Eija/0000-0002-7073-7767; Passeri, Daniele/0000-0001-5322-2414; Petasecca, Marco/0000-0001-5958-7457; Balbuena, Juan Pablo/0000-0002-5112-2257; Grinstein, Sebastian/0000-0002-6460-8694; Rando, Riccardo/0000-0001-6992-818X; Lacasta, Carlos/0000-0002-2623-6252; Luukka, Panja/0000-0003-2340-4641; La Rosa, Alessandro/0000-0001-6291-2142; Chirila, Cristina/0000-0002-3323-8336; Kuleshov, Sergey/0000-0002-3065-326X; Lazanu, Sorina/0000-0003-0390-0779; Grigoriev, Eugene/0000-0001-7235-9715; Mathieson, Keith/0000-0002-9517-8076; Focardi, Ettore/0000-0002-3763-5267; Dalla Betta, Gian-Franco/0000-0001-5516-9282; Bassignana, Daniela/0000-0001-7582-9161 FU Helmholtz Association [HA-101] FX The authors would like to thank the PS team for the PS proton irradiations carried out at CERN, the Ljubljana team for the TRIGA neutron irradiations and Karlsruhe Institute of Technology (KIT) for the cyclotron proton irradiations. The KIT irradiations were supported by the Initiative and Networking Fund of the Helmholtz Association, contract HA-101. NR 19 TC 17 Z9 17 U1 16 U2 87 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2011 VL 658 IS 1 BP 11 EP 16 DI 10.1016/j.nima.2011.04.045 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 858GG UT WOS:000297783300004 ER PT J AU Harkonen, J Eremin, V Luukka, P Maenpaa, T Tuovinen, E Tuominen, E Gotra, Y Spiegel, L Wiik, L Koehler, M AF Harkonen, J. Eremin, V. Luukka, P. Maenpaa, T. Tuovinen, E. Tuominen, E. Gotra, Y. Spiegel, L. Wiik, L. Koehler, M. TI Test beam results of Current Injected Detectors (CID) irradiated up to 5 x 10(15) 1 MeV n(eq)/cm(2) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD) CY OCT 12-15, 2010 CL Florence, ITALY DE Detector; Radiation hardness; Charge injection ID SILICON BEAM; TELESCOPE AB Two full size strip detectors were investigated in this study: one with p(+) strips (p(+)/n(-+)n(+)) and another with n(+) strips (n(+)/p(-)/p(+)). Both detectors, are made of magnetic Czochralski silicon (MCz-Si) and irradiated to S-LHC fluencies, were tested with 225 GeV muon beam in the CERN H2 area. The Current Injected Detector (CID) sensors were operated in a cooling box capable of providing a -53 degrees C temperature. Results indicate a relative charge collection efficiency (CCE) at 5 x 10(15) n(eq)/cm(2) above 30% in irradiated p(+)/n(-)/n(+) CID detector at 600 V bias voltage. The signal to noise ratio of this CID module was about eight and a forward current of 30 mu A was needed for detector biasing. In standard reverse bias, the same detector could not provide a sufficiently large signal for particle tracking purposes. A p-type (n(+)/p(-)/p(+)) sensor was irradiated to a fluence of 2 x 10(15) n(eq)/cm(2) and measured under the same test beam conditions. According to the theory of CIDs developed by the CERN RD39 Collaboration, this detector module could be biased up to only 230 V due to the low irradiation fluence. The CCE at 230 v was 35% in CID operation and 20% when reverse biased. (C) 2011 Elsevier B.V. All rights reserved. C1 [Harkonen, J.; Luukka, P.; Maenpaa, T.; Tuovinen, E.; Tuominen, E.] Univ Helsinki, Helsinki Inst Phys, Helsinki 00014, Finland. [Eremin, V.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Gotra, Y.; Spiegel, L.] Fermi Natl Lab, Batavia, IL USA. [Wiik, L.; Koehler, M.] Univ Freiburg, D-79106 Freiburg, Germany. RP Harkonen, J (reprint author), CERN PH, CH-1211 Geneva, Switzerland. EM jaakko.haerkoenen@cern.ch RI Tuominen, Eija/A-5288-2017; OI Tuominen, Eija/0000-0002-7073-7767; Luukka, Panja/0000-0003-2340-4641 FU Academy of Finland FX This work has been done in the framework of CERN RD39 Collaboration and CMS Tracker Upgrade Program. The work has partly been supported by Academy of Finland. NR 12 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2011 VL 658 IS 1 BP 51 EP 54 DI 10.1016/j.nima.2011.06.076 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 858GG UT WOS:000297783300012 ER PT J AU Li, Z AF Li, Zheng TI New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD) CY OCT 12-15, 2010 CL Florence, ITALY DE 3D electrode Si detectors; Radiation; Damage; Hardness; 3D-Trench electrode detectors; Independent Coaxial Detector Array (ICDA); 3D-Trench-CJ; 3D-Trench-ORJ ID SILICON DETECTORS; 3D DETECTORS; SIMULATIONS AB A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ("standard") 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name "Independent Coaxial Detector Array", or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment. Since the large electrode spacing (up to 500 mu m) can be realized in the 3D-Trench electrode detector due to their advantage of greatly reduced full depletion voltage, detectors with large pixel cells (therefore small dead volume) can be made for applications in photon science (e.g. X-ray). (C) 2011 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Li, Z (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zhengl@bnl.gov FU US Department of Energy [DE-AC02-98CH10886] FX The author would like to thank Dr. V. Radeka and Dr. D. Lynn of BNL, J. Harkonen of HIP, and V. Eremin of PTI for helpful discussions related to this work. This work was supported by the US Department of Energy, Contract no. DE-AC02-98CH10886. NR 22 TC 4 Z9 4 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2011 VL 658 IS 1 BP 90 EP 97 DI 10.1016/j.nima.2011.05.003 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 858GG UT WOS:000297783300020 ER PT J AU Eremin, V Verbitskaya, E Zabrodskii, A Li, Z Harkonen, J AF Eremin, V. Verbitskaya, E. Zabrodskii, A. Li, Z. Haerkoenen, J. TI Avalanche effect in Si heavily irradiated detectors: Physical model and perspectives for application SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD) CY OCT 12-15, 2010 CL Florence, ITALY DE Silicon detector; Electric field distribution; Charge collection; Radiation hardness ID ELECTRIC-FIELD DISTRIBUTION; SILICON-DETECTORS; RADIATION HARDNESS AB The model explaining an enhanced collected charge in detectors irradiated to 10(15)-10(16) n(eq)/cm(2) is developed. This effect was first revealed in heavily irradiated n-on-p detectors operated at high bias voltage ranging from 900 to 1700 V. The model is based on the fundamental effect of carrier avalanche multiplication in the space charge region and in our case is extended with a consideration of p-n junctions with a high concentration of the deep levels. It is shown that the efficient trapping of free carriers from the bulk generation current to the deep levels of radiation induced defects leads to the stabilization of the irradiated detector operation in avalanche multiplication mode due to the reduction of the electric field at the junction. The charge collection efficiency and the detector reverse current dependences on the applied bias have been numerically simulated in this study and they well correlate to the recent experimental results of CERN RD50 collaboration. The developed model of enhanced collected charge predicts a controllable operation of heavily irradiated detectors that is promising for the detector application in the upcoming experiments in a high luminosity collider. (C) 2011 Elsevier B.V. All rights reserved. C1 [Eremin, V.; Verbitskaya, E.; Zabrodskii, A.] Ioffe Phys Tech Inst RAS, St Petersburg, Russia. [Li, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Haerkoenen, J.] CERN PH, Helsinki Inst Phys, Geneva, Switzerland. RP Eremin, V (reprint author), Ioffe Phys Tech Inst RAS, St Petersburg, Russia. EM vladimir.eremin@cern.ch RI Zabrodskii, Andrei/C-1423-2011; Verbitskaya, Elena/D-1521-2014 FU RF [SS-3306.2010.2]; Russian Academy of Sciences; CERN; U.S. Department of Energy [DE-AC02-98CH10886] FX This work was performed within the framework of RD50 collaboration and supported in part by: RF President grant no. SS-3306.2010.2, Fundamental Program of Russian Academy of Sciences on collaboration with CERN, and the U.S. Department of Energy: Contract no. DE-AC02-98CH10886. NR 17 TC 13 Z9 13 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2011 VL 658 IS 1 BP 145 EP 151 DI 10.1016/j.nima.2011.05.002 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 858GG UT WOS:000297783300031 ER PT J AU Dusling, K Gelis, F Venugopalan, R AF Dusling, Kevin Gelis, Francois Venugopalan, Raju TI The initial spectrum of fluctuations in the little bang SO NUCLEAR PHYSICS A LA English DT Article DE Quark-gluon plasma; CGC; Color glass condensate; Thermalization; Quantum fluctuations ID COLOR GLASS CONDENSATE; HEAVY-ION COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; NUCLEUS-NUCLEUS COLLISIONS; STRONG EXTERNAL SOURCES; QUANTUM CHROMODYNAMICS; SMALL-X; RENORMALIZATION-GROUP; TRANSVERSE-MOMENTUM; THERMALIZATION AB High parton densities in ultra-relativistic nuclear collisions suggest a description of these collisions wherein the high energy nuclear wavefunctions and the initial stages of the nuclear collision are dominated by classical fields. This underlying paradigm can be significantly improved by including quantum fluctuations around the classical background fields. One class of these contributes to the energy evolution of multi-parton correlators in the nuclear wavefunctions. Another dominant class of unstable quantum fluctuations grow rapidly with proper time tau after the collision. These secular terms appear at each loop order; the leading contributions can be resummed to all loop orders to obtain expressions for final state observables. The all-order result can be expressed in terms of the spectrum of fluctuations on the initial proper time surface. We compute, in A(tau) = 0 gauge, the essential elements in this fluctuation spectrum-the small quantum fluctuation modes in the classical background field. With our derivation in QCD, we have all the ingredients to compute inclusive quantities in heavy ion collisions at early times including i) all-order leading logs in Bjorken x(1,2) of the two nuclei, ii) all strong multiple scattering contributions, and iii) all-order leading secular terms. In the simpler analogous formalism for a scalar phi(4) theory, numerical analysis of the behavior of the energy-momentum tensor is strongly suggestive of early hydrodynamic flow in the system (Dusting et al., 2011 [1]). In QCD, in addition to studying the possible early onset of hydrodynamic behavior, additional important applications of our results include a) the computation of sphaleron transitions off-equilibrium, and b) "jet quenching", or medium modification of parton spectra, in strong color fields at early times. Published by Elsevier B.V. C1 [Dusling, Kevin] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Gelis, Francois] CEA DSM Saclay, Inst Phys Theor, CNRS, URA 2306, F-91191 Gif Sur Yvette, France. [Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Dusling, K (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM kdusling@gmail.com OI Dusling, Kevin/0000-0001-9598-0416 FU US Department of Energy under DOE [DE-AC02-98CH10886, DE-FG02-03ER41260]; Nuclear Theory group at BNL FX We would like to thank Miklos Gyulassy for providing the encouragement to initiate this work. We would also like to thank T. Epelbaum, K. Fukushima, Y. Hatta, C. Jarzynski, T. Lappi, J. Liao, L. McLerran, A. Mueller, S. Srednyak, D. Teaney and G. Torrieri for useful discussions. R.V. is supported by the US Department of Energy under DOE Contract DE-AC02-98CH10886. K.D. is supported by the US Department of Energy under DOE Contracts DE-FG02-03ER41260 and DE-AC02-98CH10886. F.G. would like to thank the Nuclear Theory group at BNL for hospitality and support during the completion of this work. NR 89 TC 38 Z9 38 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2011 VL 872 IS 1 BP 161 EP 195 DI 10.1016/j.nuclphysa.2011.09.012 PG 35 WC Physics, Nuclear SC Physics GA 858GE UT WOS:000297783100007 ER PT J AU Glatz, A Chtchelkatchev, NM Beloborodov, IS Vinokur, V AF Glatz, A. Chtchelkatchev, N. M. Beloborodov, I. S. Vinokur, V. TI Giant quantum freezing of nanojunctions mediated by the environment SO PHYSICAL REVIEW B LA English DT Article ID NOISE AB We investigate the quantum heat exchange between a nanojunction and a many-body or electromagnetic environment far from equilibrium. It is shown that the two-temperature energy emission-absorption mechanism gives rise to a giant heat flow between the junction and the environment. We obtain analytical results for the heat flow in an idealized high-impedance environment, perform numerical calculations for the general case of interacting electrons, and discuss giant freezing and heating effects in the junction under typical experimental conditions. C1 [Glatz, A.; Vinokur, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Russia. [Chtchelkatchev, N. M.] Moscow Inst Phys & Technol, Dept Theoret Phys, Dolgoprudnyi 141700, Russia. [Beloborodov, I. S.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM n.chtchelkatchev@gmail.com RI Chtchelkatchev, Nikolay/L-1273-2013 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483 FU US Department of Energy Office of Science [DE-AC02-06CH11357]; Research Corporation for Science Advancement and the Materials Theory Institute at ANL FX We are grateful to J. Pekola and F. Hekking for useful discussions. This work was supported by the US Department of Energy Office of Science under Contract No. DE-AC02-06CH11357. I. B. was supported by an award from the Research Corporation for Science Advancement and the Materials Theory Institute at ANL. NR 14 TC 3 Z9 3 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC 1 PY 2011 VL 84 IS 23 AR 235101 DI 10.1103/PhysRevB.84.235101 PG 5 WC Physics, Condensed Matter SC Physics GA 855GJ UT WOS:000297551600003 ER PT J AU Li, HF Yan, JQ Kim, JW McCallum, RW Lograsso, TA Vaknin, D AF Li, H. -F. Yan, J. -Q. Kim, J. W. McCallum, R. W. Lograsso, T. A. Vaknin, D. TI Anisotropic magnetoelastic coupling in single-crystalline CeFeAsO as seen via high-resolution x-ray diffraction SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY AB Single-crystal synchrotron x-ray diffraction studies of CeFeAsO reveal strong anisotropy in the charge-correlation lengths along or perpendicular to the in-plane antiferromagnetic (AFM) wave vector at low temperatures, indicating an anisotropic two-dimensional magnetoelastic coupling. The high-resolution setup allows to distinctly monitor each of the twin domains by virtue of a finite misfit angle between them that follows the order parameter. In addition, we find that the in-plane correlations, above the orthorhombic (O)-to-tetragonal (T) transition, are shorter than those in each of the domains in the AFM phase, indicating a distribution of the in-plane lattice constants. This strongly suggests that the phase above the structural O-to-T transition is virtually T with strong O-T fluctuations that are probably induced by spin fluctuations. C1 [Li, H. -F.; Yan, J. -Q.; McCallum, R. W.; Lograsso, T. A.; Vaknin, D.] US DOE, Ames Lab, Ames, IA 50011 USA. [Li, H. -F.] Forschungszentrum Julich, JCNS, Outstn Inst Laue Langevin ILL, F-38042 Grenoble 9, France. [Yan, J. -Q.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Yan, J. -Q.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kim, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [McCallum, R. W.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Vaknin, D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Li, HF (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM h.li@fz-juelich.de RI Li, Haifeng/F-9743-2013; Vaknin, David/B-3302-2009 OI Vaknin, David/0000-0002-0899-9248 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Research at Ames Laboratory is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 4 Z9 4 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC 1 PY 2011 VL 84 IS 22 AR 220501 DI 10.1103/PhysRevB.84.220501 PG 5 WC Physics, Condensed Matter SC Physics GA 855FR UT WOS:000297549700002 ER PT J AU Ni, S Wang, YB Liao, XZ Li, HQ Figueiredo, RB Ringer, SP Langdon, TG Zhu, YT AF Ni, S. Wang, Y. B. Liao, X. Z. Li, H. Q. Figueiredo, R. B. Ringer, S. P. Langdon, T. G. Zhu, Y. T. TI Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; CENTERED-CUBIC METALS; DEFORMATION TWINS; ROOM-TEMPERATURE; FCC METALS; AL; DISLOCATION; GROWTH; COPPER; ALUMINUM AB Both twinning and detwinning have been reported to occur during the deformation of nanocrystalline (nc) face-centered-cubic metals. This raises the issue of how these two processes compete with each other. Here, we report that the twinning process dominates in a certain range of grain sizes, whereas, the detwinning process dominates outside of this range to annihilate all twins. These experimental observations establish a full spectrum of grain-size effects on deformation twinning and detwinning and are explained by the deformation physics. They also provide a fundamental basis for understanding and designing the mechanical behavior of nc metals and alloys. C1 [Ni, S.; Wang, Y. B.; Liao, X. Z.; Ringer, S. P.] Univ Sydney, Sydney, NSW 2006, Australia. [Li, H. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Figueiredo, R. B.] Univ Fed Minas Gerais, BR-31270901 Belo Horizonte, MG, Brazil. [Langdon, T. G.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Langdon, T. G.] Univ So Calif, Los Angeles, CA 90089 USA. [Zhu, Y. T.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Ni, S (reprint author), Univ Sydney, Sydney, NSW 2006, Australia. EM xiaozhou.liao@sydney.edu.au; ytzhu@ncsu.edu RI Liao, Xiaozhou/B-3168-2009; Figueiredo, Roberto/F-3451-2012; Zhu, Yuntian/B-3021-2008; Langdon, Terence/B-1487-2008; Wang, Yanbo/B-3175-2009; Ringer, Simon/E-3487-2012; Ni, Song/E-9484-2011 OI Liao, Xiaozhou/0000-0001-8565-1758; Zhu, Yuntian/0000-0002-5961-7422; Ringer, Simon/0000-0002-1559-330X; FU Australian Microscopy and Microanalysis Research Facility node at the University of Sydney; Australian Research Council [DP0772880]; US Army Research Laboratory [W911QX-08-C-0083]; National Science Foundation of the United States [DMR-0855009] FX The authors are grateful for the scientific and technical input and support from the Australian Microscopy and Microanalysis Research Facility node at the University of Sydney. N.S., Y.B.W., and X.Z.L were supported by the Australian Research Council (Grant No. DP0772880). Y.T.Z. was supported by US Army Research Laboratory (Grant No. W911QX-08-C-0083). T.G.L. was supported by the National Science Foundation of the United States (Grant No. DMR-0855009). NR 29 TC 28 Z9 29 U1 5 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 1 PY 2011 VL 84 IS 23 AR 235401 DI 10.1103/PhysRevB.84.235401 PG 4 WC Physics, Condensed Matter SC Physics GA 855GJ UT WOS:000297551600018 ER PT J AU Oppeneer, PM Elgazzar, S Rusz, J Feng, Q Durakiewicz, T Mydosh, JA AF Oppeneer, P. M. Elgazzar, S. Rusz, J. Feng, Q. Durakiewicz, T. Mydosh, J. A. TI Spin and orbital hybridization at specifically nested Fermi surfaces in URu2Si2 SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON SUPERCONDUCTOR URU2SI2; HIDDEN-ORDER TRANSITION; MAGNETIC EXCITATIONS; SYMMETRY-BREAKING; SYSTEM URU2SI2; LATTICE; STATE; PHASE; MODEL AB The Fermi-surface (FS) nesting properties of URu2Si2 are analyzed with particular focus on their implication for the mysterious hidden order phase. We show that there exist two Fermi surfaces that exhibit a strong nesting at the antiferromagnetic wave vector Q(0) = (0,0,1). The corresponding energy dispersions fulfill the relation epsilon(1)(k) = -epsilon(2)(k +/- Q(0)) at eight FS hot-spot lines. The spin-orbital characters of the involved 5f states are distinct (j(z) = +/-5/2 vs +/-3/2) and hence the degenerate Dirac crossings are symmetry protected in the nonmagnetic normal state. Dynamical symmetry breaking through an Ising-like spin and orbital excitation mode with Delta j(z) = +/-1 induces a hybridization of the two states, causing substantial FS gapping. Concomitant spin and orbital currents in the uranium planes give rise to a rotational symmetry breaking. C1 [Oppeneer, P. M.; Rusz, J.; Feng, Q.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Elgazzar, S.] Univ Johannisburg, Dept Phys, ZA-2006 Auckland Pk, South Africa. [Durakiewicz, T.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. [Mydosh, J. A.] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. RP Oppeneer, PM (reprint author), Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. RI Feng, Qingguo/E-7879-2011; Rusz, Jan/A-3324-2008; OI Feng, Qingguo/0000-0002-0242-8436; Rusz, Jan/0000-0002-0074-1349; Durakiewicz, Tomasz/0000-0002-1980-1874 FU Swedish Research Council (VR); Swedish National Infrastructure for Computing (SNIC); US DOE BES FX We thank S. Fujimoto for a helpful discussion. This work was supported by the Swedish Research Council (VR) and Swedish National Infrastructure for Computing (SNIC). S. E. acknowledges discussions with and support from A. M. Strydom. T. D. was supported by US DOE BES program. NR 40 TC 31 Z9 31 U1 4 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC 1 PY 2011 VL 84 IS 24 AR 241102 DI 10.1103/PhysRevB.84.241102 PG 5 WC Physics, Condensed Matter SC Physics GA 855GM UT WOS:000297551900002 ER PT J AU Wang, KF Graf, D Lei, HC Tozer, SW Petrovic, C AF Wang, Kefeng Graf, D. Lei, Hechang Tozer, S. W. Petrovic, C. TI Quantum transport of two-dimensional Dirac fermions in SrMnBi2 SO PHYSICAL REVIEW B LA English DT Article ID ANGLE-DEPENDENT MAGNETORESISTANCE; TOPOLOGICAL INSULATOR; GRAPHENE; SURFACE AB We report two-dimensional quantum transport in SrMnBi2 single crystals. The linear energy dispersion leads to unusual nonsaturated linear magnetoresistance since all Dirac fermions occupy the lowest Landau level in the quantum limit. The transverse magnetoresistance exhibits a crossover at a critical field B* from semiclassical weak-field B-2 dependence to the high-field linear-field dependence. With an increase in temperature, the critical field B* increases and the temperature dependence of B* satisfies the quadratic behavior which is attributed to the Landau-level splitting of the linear energy dispersion. The effective magnetoresistant mobility mu(MR) similar to 3400 cm(2)/Vs is derived. Angular-dependent magnetoresistance and quantum oscillations suggest dominant two-dimensional (2D) Fermi surfaces. Our results illustrate the dominant 2D Dirac fermion states in SrMnBi2 and imply that bulk crystals with Bi square nets can be used to study low-dimensional electronic transport commonly found in 2D materials such as graphene. C1 [Wang, Kefeng; Lei, Hechang; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Graf, D.; Tozer, S. W.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. RP Wang, KF (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Wang, Kefeng/E-7683-2011; Petrovic, Cedomir/A-8789-2009; LEI, Hechang/H-3278-2016 OI Wang, Kefeng/0000-0002-8449-9720; Petrovic, Cedomir/0000-0001-6063-1881; FU US DOE [DE-AC02-98CH10886]; DOE NNSA [DEFG52-10NA29659]; NSF [DMR-0654118]; state of Florida FX We than John Warren for help with SEM measurements. Work at Brookhaven is supported by the US DOE under Contract No. DE-AC02-98CH10886. Work at the National High Magnetic Field Laboratory is supported by the DOE NNSA DEFG52-10NA29659 (S. W. T and D. G.), by the NSF Cooperative Agreement No. DMR-0654118, and by the state of Florida. NR 30 TC 38 Z9 38 U1 5 U2 64 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC 1 PY 2011 VL 84 IS 22 AR 220401 DI 10.1103/PhysRevB.84.220401 PG 4 WC Physics, Condensed Matter SC Physics GA 855FR UT WOS:000297549700001 ER PT J AU Krolas, W Broda, R Fornal, B Janssens, RVF Gadea, A Lunardi, S Valiente-Dobon, JJ Mengoni, D Marginean, N Corradi, L Stefanini, AM Bazzacco, D Carpenter, MP De Angelis, G Farnea, E Fioretto, E Galtarossa, F Lauritsen, T Montagnoli, G Napoli, DR Orlandi, R Pawlat, T Pokrovskiy, I Pollarolo, G Sahin, E Scarlassara, F Seweryniak, D Szilner, S Szpak, B Ur, CA Wrzesinski, J Zhu, S AF Krolas, W. Broda, R. Fornal, B. Janssens, R. V. F. Gadea, A. Lunardi, S. Valiente-Dobon, J. J. Mengoni, D. Marginean, N. Corradi, L. Stefanini, A. M. Bazzacco, D. Carpenter, M. P. De Angelis, G. Farnea, E. Fioretto, E. Galtarossa, F. Lauritsen, T. Montagnoli, G. Napoli, D. R. Orlandi, R. Pawlat, T. Pokrovskiy, I. Pollarolo, G. Sahin, E. Scarlassara, F. Seweryniak, D. Szilner, S. Szpak, B. Ur, C. A. Wrzesinski, J. Zhu, S. TI Coupling of the proton-hole and neutron-particle states in the neutron-rich K-48 isotope SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION REACTIONS; NUCLEAR-DATA SHEETS; MAGNETIC SPECTROMETER; PRISMA; NI-68; DECAY AB Excited states in the Z = 19, N = 29 neutron-rich K-48 isotope have been studied using deep-inelastic transfer reactions with a thick target at Gammasphere and with a thin target at the PRISMA-CLARA spectrometer. The lowest excited states were located; they involve a proton hole in the s(1/2) or d(3/2) orbital coupled to a p(3/2) neutron. A new 7.1(5)-ns, 5(+) isomer, the analog of the 7/2 isomer in K-47, was identified. Based on the observed gamma-decay pattern of the isomer a revised spin-parity assignment of 1(-) is proposed for the ground state of K-48. C1 [Krolas, W.; Broda, R.; Fornal, B.; Pawlat, T.; Szpak, B.; Wrzesinski, J.] H Niewodniczanski Inst Nucl Phys PAN, PL-31342 Krakow, Poland. [Janssens, R. V. F.; Carpenter, M. P.; Lauritsen, T.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Gadea, A.; Valiente-Dobon, J. J.; Marginean, N.; Corradi, L.; Stefanini, A. M.; De Angelis, G.; Fioretto, E.; Napoli, D. R.; Orlandi, R.; Pokrovskiy, I.; Sahin, E.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Gadea, A.] Univ Valencia, CSIC, IFIC, E-46980 Paterna, Spain. [Lunardi, S.; Mengoni, D.; Bazzacco, D.; Farnea, E.; Galtarossa, F.; Montagnoli, G.; Scarlassara, F.; Ur, C. A.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Lunardi, S.; Mengoni, D.; Bazzacco, D.; Farnea, E.; Galtarossa, F.; Montagnoli, G.; Scarlassara, F.; Ur, C. A.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Marginean, N.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Pollarolo, G.] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy. [Szilner, S.] Rudjer Boskovic Inst, HR-10001 Zagreb, Croatia. RP Krolas, W (reprint author), H Niewodniczanski Inst Nucl Phys PAN, PL-31342 Krakow, Poland. RI Krolas, Wojciech/N-9391-2013; Gadea, Andres/L-8529-2014; Carpenter, Michael/E-4287-2015; Marginean, Nicolae Marius/C-4732-2011; Napoli, Daniel R./D-9863-2012; OI Gadea, Andres/0000-0002-4233-1970; Carpenter, Michael/0000-0002-3237-5734; Napoli, Daniel R./0000-0002-8154-6958; Scarlassara, Fernando/0000-0002-4663-8216 FU European Commission [RII3-CT2004-506065]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Polish Ministry of Science and Higher Education [1P03B05929, NN202103333]; MICINN, Spain; INFN, Italy [AIC10-D-000568]; MICINN; Generalitat Valenciana, Spain [FPA2008-06419, PROME-TEO/2010/101] FX This work was supported by the European Commission within the Sixth Framework Programme through I3-EURONS Contract No. RII3-CT2004-506065, by the US Department of Energy, Office of Nuclear Physics. under Contract No. DE-AC02-06CH11357, and by the Polish Ministry of Science and Higher Education Grants No. 1P03B05929 and No. NN202103333. A. Gadea and E. Farnea acknowledge the support of MICINN, Spain, and INFN, Italy, through the AIC10-D-000568 bilateral action. A. Gadea has been partially supported by the MICINN and Generalitat Valenciana, Spain, under Grants No. FPA2008-06419 and No. PROME-TEO/2010/101. NR 31 TC 6 Z9 6 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD DEC 1 PY 2011 VL 84 IS 6 AR 064301 DI 10.1103/PhysRevC.84.064301 PG 8 WC Physics, Nuclear SC Physics GA 855GQ UT WOS:000297552300001 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Other-worldly tales SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD DEC PY 2011 VL 24 IS 12 BP 18 EP 19 PG 2 WC Physics, Multidisciplinary SC Physics GA 862WP UT WOS:000298125100015 ER PT J AU Kamat, SS Holmes-Hampton, GP Bagaria, A Kumaran, D Tichy, SE Gheyi, T Zheng, XJ Bain, K Groshong, C Emtage, S Sauder, JM Burley, SK Swaminathan, S Lindahl, PA Raushel, FM AF Kamat, Siddhesh S. Holmes-Hampton, Gregory P. Bagaria, Ashima Kumaran, Desigan Tichy, Shane E. Gheyi, Tarun Zheng, Xiaojing Bain, Kevin Groshong, Chris Emtage, Spencer Sauder, J. Michael Burley, Stephen K. Swaminathan, Subramanyam Lindahl, Paul A. Raushel, Frank M. TI The catalase activity of diiron adenine deaminase SO PROTEIN SCIENCE LA English DT Article DE adenine deaminase; oxidative damage; amidohydrolase superfamily; catalase activity ID HYDROGEN-PEROXIDE; ESCHERICHIA-COLI; AMIDOHYDROLASE SUPERFAMILY; HYDROXYLASE COMPONENT; METHANE MONOOXYGENASE; HYPOCHLOROUS ACID; SUPEROXIDE; MOSSBAUER; MANGANESE; GENE AB Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn2+ before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo- enzyme was prepared and reconstituted with two equivalents of FeSO4. Inductively coupled plasma mass spectrometry and Mossbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe-II/Fe-II]-ADE catalyzed the conversion of H2O2 to O-2 and H2O. The values of k(cat) and k(cat)/K-m for the catalase activity are 200 s(-1) and 2.4 x 10(4) M-1 s(-1), respectively. [Fe-II/Fe-II]-ADE underwent more than 100 turnovers with H2O2 before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H2O2 by [Fe-II/Fe-II]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS. C1 [Kamat, Siddhesh S.; Holmes-Hampton, Gregory P.; Lindahl, Paul A.; Raushel, Frank M.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Bagaria, Ashima; Kumaran, Desigan; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Tichy, Shane E.] Agilent Technol, Santa Clara, CA 95051 USA. [Gheyi, Tarun; Bain, Kevin; Groshong, Chris; Emtage, Spencer; Sauder, J. Michael; Burley, Stephen K.] Lilly Biotechnol Ctr, San Diego, CA 92121 USA. [Zheng, Xiaojing] Case Western Reserve Univ, Case Ctr Prote, Cleveland, OH 44106 USA. RP Raushel, FM (reprint author), Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77843 USA. EM raushel@tamu.edu RI Lindahl, Paul/B-6137-2015; Raushel, Frank/B-7125-2015 OI Lindahl, Paul/0000-0001-8307-9647; Raushel, Frank/0000-0002-5918-3089 FU National Institutes of Health [GM 71790, GM 74945, GM 46441]; Robert A. Welch Foundation [A-840] FX Grant sponsor: National Institutes of Health; Grant numbers: GM 71790, GM 74945, GM 46441; Grant sponsor: Robert A. Welch Foundation; Grant number: A-840. NR 31 TC 1 Z9 1 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD DEC PY 2011 VL 20 IS 12 BP 2080 EP 2094 DI 10.1002/pro.748 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 853YU UT WOS:000297462400013 PM 21998098 ER PT J AU Zhang, HZ Burnum, KE Luna, ML Petritis, BO Kim, JS Qian, WJ Moore, RJ Heredia-Langner, A Webb-Robertson, BJM Thrall, BD Camp, DG Smith, RD Pounds, JG Liu, T AF Zhang, Haizhen Burnum, Kristin E. Luna, Maria L. Petritis, Brianne O. Kim, Jong-Seo Qian, Wei-Jun Moore, Ronald J. Heredia-Langner, Alejandro Webb-Robertson, Bobbie-Jo M. Thrall, Brian D. Camp, David G., II Smith, Richard D. Pounds, Joel G. Liu, Tao TI Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size SO PROTEOMICS LA English DT Article DE Corona; Human plasma; LC-MS; Nanoparticle; Nanoproteomics; Quantitative proteomics ID TANDEM MASS-SPECTROMETRY; TIME TAG APPROACH; ACCURATE MASS; COPOLYMER NANOPARTICLES; SOFTWARE PACKAGE; THROUGHPUT; ADSORPTION; PEPTIDE; CORONA; IDENTIFICATIONS AB Nanoparticle biological activity, biocompatibility and fate can be directly affected by layers of readily adsorbed host proteins in biofluids. Here, we report a study on the interactions between human blood plasma proteins and nanoparticles with a controlled systematic variation of properties using (18)O-labeling and LC-MS-based quantitative proteomics. We developed a novel protocol to both simplify isolation of nanoparticle bound proteins and improve reproducibility. LC-MS analysis identified and quantified 88 human plasma proteins associated with polystyrene nanoparticles consisting of three different surface chemistries and two sizes, as well as, for four different exposure times (for a total of 24 different samples). Quantitative comparison of relative protein abundances was achieved by spiking an (18)O-labeled "universal'' reference into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantification across the entire sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive patterns that classified the nanoparticles based on their surface properties and size. In addition, temporal data indicated that the formation of the stable protein corona was at equilibrium within 5 min. The comprehensive quantitative proteomics results obtained in this study provide rich data for computational modeling and have potential implications towards predicting nanoparticle biocompatibility. C1 [Zhang, Haizhen; Burnum, Kristin E.; Luna, Maria L.; Petritis, Brianne O.; Kim, Jong-Seo; Qian, Wei-Jun; Moore, Ronald J.; Heredia-Langner, Alejandro; Webb-Robertson, Bobbie-Jo M.; Thrall, Brian D.; Camp, David G., II; Smith, Richard D.; Pounds, Joel G.; Liu, Tao] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Liu, T (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM tao.liu@pnnl.gov RI Burnum, Kristin/B-1308-2011; Smith, Richard/J-3664-2012; Liu, Tao/A-9020-2013; OI Burnum, Kristin/0000-0002-2722-4149; Smith, Richard/0000-0002-2381-2349; Liu, Tao/0000-0001-9529-6550; Pounds, Joel/0000-0002-6616-1566 FU Pacific Northwest National Laboratory (PNNL); NIH [ES016212, ES019544]; NIH National Center for Research Resources for Integrative Biology [RR018522]; DOE [DE-AC05-76RL0 1830] FX Portions of this research were supported by the Pacific Northwest National Laboratory (PNNL) Directed Research Development program (to T. L.), NIH grants ES016212 (to B. D. T.) and ES019544 (to J.G.P.), and the NIH National Center for Research Resources for Integrative Biology RR018522 (to R. D. S.). The experimental work was performed in the Environmental Molecular Sciences Laboratory, a U. S. Department of Energy (DOE) Office of Biological and Environmental Research national scientific user facility on the PNNL campus. PNNL is multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RL0 1830. NR 32 TC 52 Z9 52 U1 1 U2 47 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1615-9853 J9 PROTEOMICS JI Proteomics PD DEC PY 2011 VL 11 IS 23 BP 4569 EP 4577 DI 10.1002/pmic.201100037 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 855RS UT WOS:000297582600012 PM 21956884 ER PT J AU Webb-Robertson, BJM Matzke, MM Jacobs, JM Pounds, JG Waters, KM AF Webb-Robertson, Bobbie-Jo M. Matzke, Melissa M. Jacobs, Jon M. Pounds, Joel G. Waters, Katrina M. TI A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors SO PROTEOMICS LA English DT Article DE Bias; Bioinformatics; Normalization; Peptide filtering; Shotgun proteomics; Statistical models ID MASS-SPECTROMETRY; MICROARRAY DATA; INTENSITIES AB Quantification of LC-MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run-to-run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across an LC-MS proteomics dataset is a fundamental step in pre-processing. However, the downstream analysis of LC-MS proteomics data can be dramatically affected by the normalization method selected. Current normalization procedures for LC-MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, possibly affecting downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, which includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between-group variance structure in order to identify the most appropriate normalization methods that improve the structure of the data without introducing bias into the normalized peak intensities. C1 [Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Jacobs, Jon M.; Pounds, Joel G.; Waters, Katrina M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Webb-Robertson, BJM (reprint author), POB 999,J4-33, Richland, WA 99352 USA. EM bj@pnl.gov OI Pounds, Joel/0000-0002-6616-1566 FU National Institutes of Health [1R011GM084892, U54-016015, U54-AI081680, HHSN 272200800060C]; Department of Energy; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the National Institutes of Health under grants 1R011GM084892 (B.J.W.R.), U54-016015 (J.G.P.), U54-AI081680 (K.M.W.) and contract HHSN 272200800060C (K.M.W.). Proteomics data was processed by the Instrument Development Laboratory at the Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility supported by the Department of Energy. Pacific Northwest National Laboratory is a multi-program laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 11 TC 25 Z9 26 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1615-9853 J9 PROTEOMICS JI Proteomics PD DEC PY 2011 VL 11 IS 24 BP 4736 EP 4741 DI 10.1002/pmic.201100078 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 855RV UT WOS:000297582900014 PM 22038874 ER PT J AU Yang, H Magpayo, N Rusek, A Chiang, IH Sivertz, M Held, KD AF Yang, H. Magpayo, N. Rusek, A. Chiang, I-H. Sivertz, M. Held, K. D. TI Effects of Very Low Fluences of High-Energy Protons or Iron Ions on Irradiated and Bystander Cells SO RADIATION RESEARCH LA English DT Article ID DOUBLE-STRAND BREAKS; MEDIATED INTERCELLULAR COMMUNICATION; HUMAN FIBROBLASTS; ALPHA-PARTICLES; IN-VIVO; RADIATION ONCOGENESIS; IONIZING-RADIATION; MICRONUCLEUS ASSAY; GAMMA-IRRADIATION; SPACE EXPLORATION AB Yang, H., Magpayo, N., Rusek, A., Chiang, I-H., Sivertz, M. and Held, K. D. Effects of Very Low Fluences of High-Energy Protons or Iron Ions on Irradiated and Bystander Cells. Radiat. Res. 176, 695-705 (2011). In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as similar to 0.47 mGy iron ions (similar to 0.02 iron ions/cell) or similar to 70 mu Gy protons (similar to 2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response. (C) 2011 by Radiation Research Society C1 [Yang, H.; Magpayo, N.; Held, K. D.] Harvard Univ, Dept Radiat Oncol, Massachusetts Gen Hosp, Sch Med,COX 302, Boston, MA 02114 USA. [Rusek, A.; Chiang, I-H.; Sivertz, M.] NASA, Space Radiat Biol Lab, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Held, KD (reprint author), Harvard Univ, Dept Radiat Oncol, Massachusetts Gen Hosp, Sch Med,COX 302, 55 Fruit St, Boston, MA 02114 USA. EM kheld@partners.org FU NASA [NNX07AE40G] FX The authors acknowledge the excellent assistance from the support personnel in the Medical and Biology Departments of Brookhaven National Laboratory. The authors thank Drs. Kevin M. Prise, Howard L. Liber and Robert W. Redmond for many helpful discussions. This research was supported by NASA grant no. NNX07AE40G. NR 56 TC 15 Z9 15 U1 1 U2 6 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD DEC PY 2011 VL 176 IS 6 BP 695 EP 705 DI 10.1667/RR2674.1 PG 11 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 859VN UT WOS:000297904000001 PM 21988573 ER PT J AU Wilson, DA Brigantic, A Morgan, WF AF Wilson, Dulaney A. Brigantic, Andrea Morgan, William F. TI The Association of Inbreeding with Lung Fibrosis Incidence in Beagle Dogs That Inhaled (PuO2)-Pu-238 or (PuO2)-Pu-239 SO RADIATION RESEARCH LA English DT Article ID PULMONARY FIBROSIS; EMITTING RADIONUCLIDES; RADIATION PNEUMONITIS; CANCER INCIDENCE; INHALATION; WORKERS; EXPOSURE; RETENTION; MORTALITY; TOXICITY AB Wilson, D. A., Brigantic, A. and Morgan, W. F. The Association of Inbreeding with Lung Fibrosis Incidence in Beagle Dogs That Inhaled (PuO2)-Pu-238 or (PuO2)-Pu-239. Radiat. Res. 176, 781-786 (2011). Studies of health effects in animals after exposure to internally deposited radionuclides were intended to supplement observational studies in humans. Both nuclear workers and Beagle dogs have exhibited plutonium-associated lung fibrosis; however, the dogs' smaller gene pool may limit the applicability or findings to humans. Data on Beagles that inhaled either plutonium-238 dioxide ((PuO2)-Pu-238) or plutonium-239 dioxide ((PuO2)-Pu-239) were analyzed. Wright's Coefficient of Inbreeding was used to measure genetic or familial susceptibility and was assessed as an explanatory variable when modeling the association between lung fibrosis incidence and plutonium exposure. Lung fibrosis was diagnosed in approximately 80% of the exposed dogs compared with 23.7% of the control dogs. The maximum degree of inbreeding was 9.4%. Regardless of isotope, the addition of inbreeding significantly improved the model in female dogs but not in males. In female dogs, an increased inbreeding coefficient predicted decreased hazard of a lung fibrosis diagnosis. Lung fibrosis was common in these dogs with inbreeding affecting models of lung fibrosis incidence in females but not in males. The apparent protective effect in females predicted by these models of lung fibrosis incidence is likely to be minimal given the small degree of inbreeding in these groups. (C) 2011 by Radiation Research Society C1 [Wilson, Dulaney A.; Brigantic, Andrea; Morgan, William F.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Morgan, WF (reprint author), Pacific NW Natl Lab, Div Biol Sci, 902 Battelle Blvd,POB 999,MSIN J4-02, Richland, WA 99352 USA. EM wfmorgan@pnl.gov OI Wilson, Dulaney/0000-0003-4726-7848 FU Pacific Northwest National Laboratory; Battelle Memorial Institute, Pacific Northwest Division [DE-AC05-76RL0 1830]; U.S. Dept. of Energy, Office of Biological and Environmental Research; Fred Hutchinson Cancer Research Center, National Institutes of Health, National Institute for Allergy and Infectious Disease [U19 AI 067770]; Center for Medical Countermeasures against Radiation FX This analysis was supported by a Laboratory Directed Research Development award from the Pacific Northwest National Laboratory, the Battelle Memorial Institute, Pacific Northwest Division, under Contract No. DE-AC05-76RL0 1830 with the U.S. Dept. of Energy, Office of Biological and Environmental Research Low Dose Science Program, and a pilot award from the Fred Hutchinson Cancer Research Center, National Institutes of Health, National Institute for Allergy and Infectious Disease grant U19 AI 067770, Center for Medical Countermeasures against Radiation. NR 31 TC 2 Z9 2 U1 2 U2 6 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD DEC PY 2011 VL 176 IS 6 BP 781 EP 786 DI 10.1667/RR2686.1 PG 6 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 859VN UT WOS:000297904000010 PM 21910583 ER PT J AU Perez-Bergquist, AG Cerreta, EK Trujillo, CP Cao, F Gray, GT AF Perez-Bergquist, A. G. Cerreta, E. K. Trujillo, C. P. Cao, F. Gray, G. T., III TI Orientation dependence of void formation and substructure deformation in a spalled copper bicrystal SO SCRIPTA MATERIALIA LA English DT Article DE Copper; Spallation; Deformation structure; Grain interfaces ID MONOCRYSTALLINE COPPER; SHOCK COMPRESSION; HIGH-STRAIN; GRAIN-SIZE; PRESSURE AB While numerous investigations have examined microstructural, substructural and damage evolution due to shock loading, few of these studies have directly linked substructural evolution as a function of crystallographic orientation with nucleation of damage during shock loading. In this work, quantitative characterization of damage and substructural evolution in bicrystal copper reveals that the density of dislocation cells based on activation of available slip systems due to Schmid factor analysis influences damage nucleation in copper. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Perez-Bergquist, A. G.; Cerreta, E. K.; Trujillo, C. P.; Gray, G. T., III] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Cao, F.] Exxon Mobil Res & Engn Co, Annandale, NJ 08801 USA. RP Perez-Bergquist, AG (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM alexpb@lanl.gov FU Joint Department of Defense/Department of Energy Munitions; Office of Basic Energy Sciences Energy Frontier Research Center for Materials at Irradiation and Mechanical Extremes (CMIME) FX Los Alamos National Laboratory is operated by LANS, LLC, for the National Nuclear Security Administration of the US Department of Energy. The Joint Department of Defense/Department of Energy Munitions Technology Development Program supported the materials synthesis and shock compression experiments performed by C.P.T. and F.C. The Office of Basic Energy Sciences Energy Frontier Research Center for Materials at Irradiation and Mechanical Extremes (CMIME) supported the materials characterization and analysis efforts by A.G.P.-B. and E.K.C. NR 22 TC 4 Z9 4 U1 3 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC PY 2011 VL 65 IS 12 BP 1069 EP 1072 DI 10.1016/j.scriptamat.2011.09.015 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 853TN UT WOS:000297448700010 ER PT J AU Sleiman, M Ban-Weiss, G Gilbert, HE Francois, D Berdahl, P Kirchstetter, TW Destaillats, H Levinson, R AF Sleiman, Mohamad Ban-Weiss, George Gilbert, Haley E. Francois, David Berdahl, Paul Kirchstetter, Thomas W. Destaillats, Hugo Levinson, Ronnen TI Soiling of building envelope surfaces and its effect on solar reflectance-Part I: Analysis of roofing product databases SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Cool roof; Solar reflectance; Soiling; Weathering; California Title 24; Cool Roof Rating Council (CRRC) ID CONTAINING POLYMER MATRICES AB The use of highly reflective "cool" roofing materials can decrease demand for air conditioning, mitigate the urban heat island effect, and potentially slow global warming. However, initially high roof solar reflectance can be degraded by natural soiling and weathering processes. We evaluated solar reflectance losses after three years of natural exposure reported in two separate databases: the Rated Products Directory of the US Cool Roof Rating Council (CRRC) and information reported by manufacturers to the US Environmental Protection Agency (EPA)'s ENERGY STAR (R) rating program. Many product ratings were culled because they were duplicative (within a database) or not measured. A second, site-resolved version of the CRRC dataset was created by transcribing from paper records the site-specific measurements of aged solar reflectance in Florida, Arizona and Ohio. Products with high initial solar reflectance tended to lose reflectance, while those with very low initial solar reflectance tended to become more reflective as they aged. Within the site-resolved CRRC database, absolute solar reflectance losses for samples of medium-to-high initial solar reflectance were 2-3 times greater in Florida (hot and humid) than in Arizona (hot and dry); losses in Ohio (temperate but polluted) were intermediate. Disaggregating results by product type factory-applied coating, field-applied coating, metal, modified bitumen, shingle, single-ply membrane and tile revealed that absolute solar reflectance losses were largest for field-applied coating, modified bitumen and single-ply membrane products, and smallest for factory-applied coating and metal products. The 2008 Title 24 provisional aged solar reflectance formula overpredicts the measured aged solar reflectance of 0-30% of each product type in the culled public CRRC database. The rate of overprediction was greatest for field-applied coating and single-ply membrane products and least for factory-applied coating, shingle, and metal products. New product-specific formulas of the form rho'(a)= 0.20+beta(rho(i)-0.20) can be used to estimate provisional aged solar reflectance rho'(a) from initial solar reflectance rho(i) pending measurement of aged solar reflectance. The appropriate value of soiling resistance beta varies by product type and is selected to attain some desired overprediction rate for the formula. The correlations for shingle products presented in this paper should not be used to predict aged solar reflectance or estimate provisional aged solar reflectance because the data set is too small and too limited in range of initial solar reflectance. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sleiman, Mohamad; Ban-Weiss, George; Gilbert, Haley E.; Francois, David; Berdahl, Paul; Kirchstetter, Thomas W.; Destaillats, Hugo; Levinson, Ronnen] Univ Calif Berkeley, Lawrence Berkeley Lab, Heat Isl Grp, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ USA. RP Levinson, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Heat Isl Grp, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM RML27@cornell.edu RI Destaillats, Hugo/B-7936-2013; OI Ban-Weiss, George/0000-0001-8211-2628 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Marc LaFrance of DOE for program management; Sherry Hao and Kendra Kallevig-Childers (CRRC) for providing data; Amandine Montalbano (LBNL) for technical assistance; Michael Holzheimer (ICF International) for information about the ENERGY STAR Roof Product List; and Hashem Akbari (Concordia University) for additional feedback. NR 17 TC 30 Z9 31 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2011 VL 95 IS 12 BP 3385 EP 3399 DI 10.1016/j.solmat.2011.08.002 PG 15 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 853TV UT WOS:000297449500034 ER PT J AU Ilton, ES Bagus, PS AF Ilton, Eugene S. Bagus, Paul S. TI XPS determination of uranium oxidation states SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE XPS; uranium; oxidation states ID RAY PHOTOELECTRON-SPECTROSCOPY; SHAKE-UP SATELLITES; TRANSITION-METAL COMPOUNDS; PHOTOEMISSION-SPECTROSCOPY; ELECTRONIC-STRUCTURE; BRANNERITE STRUCTURE; PENTAVALENT URANIUM; MULTIPLET STRUCTURE; HYDROGEN-PEROXIDE; BINDING-ENERGIES AB This contribution is both a review of different aspects of X-ray photoelectron spectroscopy that can help one determine U oxidation states and a personal perspective on how to effectively model the X-ray photoelectron spectroscopy of complicated mixed-valence U phases. After a discussion of the valence band, the focus lingers on the U4f region, where the use of binding energies, satellite structures, and peak shapes is discussed in some detail. Binding energies were shown to be very dependent on composition/structure and consequently unreliable guides to oxidation state, particularly where assignment of composition is difficult. Likewise, the spin orbit split 4f(7/2) and 4f(5/2) peak shapes do not carry significant information on oxidation states. In contrast, both satellite-primary peak binding energy separations, as well as intensities to a lesser extent, are relatively insensitive to composition/structure within the oxide-hydroxide-hydrate system and can be used to both identify and help quantify U oxidation states in mixed valence phases. An example of the usefulness of the satellite structure in constraining the interpretation of a complex multivalence U compound is given. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bagus, Paul S.] Univ N Texas, Denton, TX 76203 USA. RP Ilton, ES (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Eugene.Ilton@pnnl.gov RI Bagus, Paul/M-1273-2015 FU U.S. Department of Energy's (USDOE) Office of Basic Energy Sciences (BES) FX Funding for this project was provided by the U.S. Department of Energy's (USDOE) Office of Basic Energy Sciences (BES) Geosciences Research Program. Some of the results discussed in this contribution were derived from research carried out at the Environmental Molecular Sciences Laboratory at PNNL, a national user facility operated by Battelle on behalf of the U.S. Department of Energy's Office of Biological and Environmental Research. We thank Mark Engelhard (PNNL) for helpful discussions and C. Cahill (GWU) for the Na-U-molybdate. NR 62 TC 40 Z9 41 U1 10 U2 67 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD DEC PY 2011 VL 43 IS 13 BP 1549 EP 1560 DI 10.1002/sia.3836 PG 12 WC Chemistry, Physical SC Chemistry GA 855DR UT WOS:000297544400001 ER PT J AU Bondar, AN Knapp-Mohammady, M Suhai, S Fischer, S Smith, JC AF Bondar, Ana-Nicoleta Knapp-Mohammady, Michaela Suhai, Sandor Fischer, Stefan Smith, Jeremy C. TI Ground-state properties of the retinal molecule: from quantum mechanical to classical mechanical computations of retinal proteins SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article DE Retinal; Retinal proteins; Quantum mechanical; Force-field parameters ID II FORCE-FIELDS; DENSITY-FUNCTIONAL THEORY; PRIMARY PROTON-TRANSFER; BETA-IONONE RING; SCHIFF-BASE; DYNAMICS SIMULATIONS; WATER-MOLECULES; THERMOCHEMICAL KINETICS; CRYSTAL-STRUCTURE; SQUID RHODOPSIN AB Retinal proteins are excellent systems for understanding essential physiological processes such as signal transduction and ion pumping. Although the conjugated polyene system of the retinal chromophore is best described with quantum mechanics, simulations of the long-timescale dynamics of a retinal protein in its physiological, flexible, lipid-membrane environment can only be performed at the classical mechanical level. Torsional energy barriers are a critical ingredient of the classical force-field parameters. Here we review briefly current retinal force fields and discuss new quantum mechanical computations to assess how the retinal Schiff base model and the approach used to derive the force-field parameters may influence the torsional potentials. C1 [Smith, Jeremy C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bondar, Ana-Nicoleta] Univ Calif Irvine, Sch Med, Dept Physiol & Biophys, Irvine, CA 92697 USA. [Knapp-Mohammady, Michaela; Suhai, Sandor] German Canc Res Ctr, Dept Mol Biophys, D-69120 Heidelberg, Germany. [Knapp-Mohammady, Michaela] German Canc Res Ctr, Div Funct Genome Anal, D-69120 Heidelberg, Germany. [Fischer, Stefan] Univ Heidelberg, IWR, D-69115 Heidelberg, Germany. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Mol Biol, Knoxville, TN 37996 USA. RP Smith, JC (reprint author), Oak Ridge Natl Lab, POB 2008 MS6164, Oak Ridge, TN 37831 USA. EM smithjc@ornl.gov RI Knapp-Mohammady, Michaela/G-2507-2011; smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU Deutsche Krebsforschungszentrum; Deutsche Forschungsgemeinschaft [SM 63/7]; United States Department of Energy; National Institutes of General Medical Sciences (at UC Irvine) [GM74637, GM086685]; Freie Universitat Berlin [FP7-PEOPLE-2010-RG 276920]; Norddeutscher Verbund fur Hochund Hochstleistungsrechner (HLRN) FX This work has been supported in part by the Deutsche Krebsforschungszentrum and by the Deutsche Forschungsgemeinschaft (SM 63/7). J. C. S. was supported by a Laboratory-Directed Research and Development grant from the United States Department of Energy. A.-N. B. was supported in part by grants GM74637 and GM086685 from the National Institutes of General Medical Sciences (at UC Irvine) and by a Marie Curie International Reintegration Grant (FP7-PEOPLE-2010-RG 276920) at the Freie Universitat Berlin. We thank the Norddeutscher Verbund fur Hochund Hochstleistungsrechner (HLRN) for an Award of computing time (to A.-N. B). NR 107 TC 6 Z9 6 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD DEC PY 2011 VL 130 IS 4-6 BP 1169 EP 1183 DI 10.1007/s00214-011-1054-1 PG 15 WC Chemistry, Physical SC Chemistry GA 852QZ UT WOS:000297373800051 ER PT J AU Angelo, G Andrade, DA Angelo, E Carluccio, T Rossi, PCR Talamo, A AF Angelo, G. Andrade, D. A. Angelo, E. Carluccio, T. Rossi, P. C. R. Talamo, A. TI A three-dimensional thermal and fluid dynamics analysis of a gas cooled subcritical fast reactor driven by a D-T fusion neutron source SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Fusion reactor; Computational fluid dynamics; Gas cooled fast reactor; Turbulence modeling ID SPENT NUCLEAR-FUEL; COMPREHENSIVE APPROACH; CFD SIMULATIONS; TRANSMUTATION; VERIFICATION; VALIDATION; POWER AB The entire nuclear fuel cycle involves partitioning classification and transmutation recycling. The usage of a tokamak as neutron sources to burn spend fuel in a gas cooled subcritical fast reactor (GCSFR) reduces the amount of long-lived radionuclide, thus increasing the repository capacity. This paper presents numerical thermal and fluid dynamics analysis for a gas cooled subcritical fast reactor. The analysis aim to determine the operational flow condition for this reactor, and to compare three distinct turbulence models (Eddy Viscosity Transport Equation, standard k-epsilon and SSG Reynolds stress) for this application. The model results are presented and discussed. The methodology used in this paper was developed to predict the coolant mass flow rate. It can be applied to any other gas cooled reactor. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Angelo, G.; Andrade, D. A.; Angelo, E.; Carluccio, T.; Rossi, P. C. R.] IPEN CNEN SP, BR-05508000 Sao Paulo, Brazil. [Angelo, G.; Angelo, E.] Inst Presbiteriano Mackenzie, BR-01302907 Sao Paulo, Brazil. [Talamo, A.] Argonne Natl Lab, Dept Nucl Engn, Argonne, IL 60439 USA. RP Angelo, G (reprint author), IPEN CNEN SP, Ave Lineu Prestes 2242, BR-05508000 Sao Paulo, Brazil. EM gabriel.angelo@usp.br; delvonei@ipen.br; eangelo@mackenzie.br; carluccio@usp.br; pcrrossi@ipen.br; alby@anl.gov RI Andrade, Delvonei /K-1939-2012; Angelo, Edvaldo/I-4040-2013; Angelo, Edvaldo/I-7880-2015; OI Andrade, Delvonei /0000-0002-6689-3011; talamo, alberto/0000-0001-5685-0483 NR 22 TC 0 Z9 0 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD DEC PY 2011 VL 38 IS 12 BP 2734 EP 2741 DI 10.1016/j.anucene.2011.08.006 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 853OJ UT WOS:000297435300013 ER PT J AU Farha, AH Er, AO Ufuktepe, Y Myneni, G Elsayed-Ali, HE AF Farha, Ashraf Hassan Er, Ali Oguz Ufuktepe, Yuksel Myneni, Ganapati Elsayed-Ali, Hani E. TI Effects of substrate temperature on properties of NbNx films grown on Nb by pulsed laser deposition SO APPLIED SURFACE SCIENCE LA English DT Article DE NbNx; Pulsed laser deposition; Thin films; Surface morphology ID THIN-FILMS; MECHANICAL-PROPERTIES; COATINGS; NITRIDES AB NbNx films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 degrees C, on the preferred orientation, phase, and surface properties of NbNx films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbNx films. For a substrate temperature up to 450 degrees C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650-850 degrees C, mix of cubic delta-NbN and hexagonal phases (beta-Nb2N + delta'-NbN) were formed. Films with a mainly beta-Nb2N hexagonal phase were obtained at deposition temperature above 850 degrees C. The c/a ratio of beta-Nb2N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbNx films increased as the temperature was raised from 450 to 850 degrees C. (C) 2011 Elsevier B.V. All rights reserved. C1 [Farha, Ashraf Hassan; Elsayed-Ali, Hani E.] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Farha, Ashraf Hassan; Elsayed-Ali, Hani E.] Old Dominion Univ, Appl Res Ctr, Norfolk, VA 23529 USA. [Er, Ali Oguz] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Ufuktepe, Yuksel] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. [Myneni, Ganapati] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Elsayed-Ali, HE (reprint author), Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. EM helsayed@odu.edu FU U.S. DOE [DE-AC05-06OR23177, DE-FG02-97ER45625]; National Science Foundation [DMR-9988669, MRI-0821180] FX We would like to thank S. Herman for his great support during the EPMA measurements, Dr. G. Ciovati for providing the niobium samples, and Dr. R. Pike for giving us access to XRD. This work was partially supported by U.S. DOE Contract Nos. DE-AC05-06OR23177 and DE-FG02-97ER45625 and by the National Science Foundation Grant Nos. DMR-9988669 and MRI-0821180. NR 29 TC 7 Z9 7 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD DEC 1 PY 2011 VL 258 IS 4 BP 1613 EP 1618 DI 10.1016/j.apsusc.2011.10.011 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 851JS UT WOS:000297265200056 ER PT J AU Aliu, E Aune, T Beilicke, M Benbow, W Bottcher, M Bouvier, A Bradbury, SM Buckley, JH Bugaev, V Cannon, A Cesarini, A Ciupik, L Connolly, MP Cui, W Decerprit, G Dickherber, R Duke, C Errando, M Falcone, A Feng, Q Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Griffin, S Grube, J Gyuk, G Hanna, D Hivick, B Holder, J Huan, H Hughes, G Hui, CM Humensky, TB Kaaret, P Karlsson, N Kertzman, M Kieda, D Krawczynski, H Krennrich, F Maier, G Majumdar, P McArthur, S McCann, A Moriarty, P Mukherjee, R Nelson, T Ong, RA Orr, M Otte, AN Park, N Perkins, JS Pichel, A Pohl, M Prokoph, H Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Ruppel, J Saxon, DB Sembroski, GH Skole, C Smith, AW Staszak, D Tesic, G Theiling, M Thibadeau, S Tsurusaki, K Tyler, J Varlotta, A Vassiliev, VV Wakely, SP Weekes, TC Weinstein, A Williams, DA Zitzer, B Ciprini, S Fumagalli, M Kaplan, K Paneque, D Prochaska, JX AF Aliu, E. Aune, T. Beilicke, M. Benbow, W. Boettcher, M. Bouvier, A. Bradbury, S. M. Buckley, J. H. Bugaev, V. Cannon, A. Cesarini, A. Ciupik, L. Connolly, M. P. Cui, W. Decerprit, G. Dickherber, R. Duke, C. Errando, M. Falcone, A. Feng, Q. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Griffin, S. Grube, J. Gyuk, G. Hanna, D. Hivick, B. Holder, J. Huan, H. Hughes, G. Hui, C. M. Humensky, T. B. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Krawczynski, H. Krennrich, F. Maier, G. Majumdar, P. McArthur, S. McCann, A. Moriarty, P. Mukherjee, R. Nelson, T. Ong, R. A. Orr, M. Otte, A. N. Park, N. Perkins, J. S. Pichel, A. Pohl, M. Prokoph, H. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Ruppel, J. Saxon, D. B. Sembroski, G. H. Skole, C. Smith, A. W. Staszak, D. Tesic, G. Theiling, M. Thibadeau, S. Tsurusaki, K. Tyler, J. Varlotta, A. Vassiliev, V. V. Wakely, S. P. Weekes, T. C. Weinstein, A. Williams, D. A. Zitzer, B. Ciprini, S. Fumagalli, M. Kaplan, K. Paneque, D. Prochaska, J. X. CA VERITAS Collaboration TI MULTIWAVELENGTH OBSERVATIONS OF THE PREVIOUSLY UNIDENTIFIED BLAZAR RX J0648.7+1516 SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: individual (RX J0648.7+1516, 1FGL J0648.8+1516, VER J0648+152); gamma rays: galaxies ID LARGE-AREA TELESCOPE; BL-LACERTAE OBJECTS; ALL-SKY SURVEY; PARTICLE-ACCELERATION; SOURCE CATALOG; RAY; VERITAS; MISSION AB We report on the VERITAS discovery of very high energy (VHE) gamma-ray emission above 200 GeV from the high-frequency-peaked BL Lac (HBL) object RX J0648.7+1516 (GB J0648+1516), associated with 1FGL J0648.8+1516. The photon spectrum above 200 GeV is fitted by a power law dN/dE = F-0(E/E-0)(-Gamma) with a photon index Gamma of 4.4 +/- 0.8(stat) +/- 0.3(syst) and a flux normalization F-0 of (2.3 +/- 0.5(stat) +/- 1.2(sys)) x 10(-11) TeV-1 cm(-2) s(-1) with E-0 = 300 GeV. No VHE variability is detected during VERITAS observations of RX J0648.7+1516 between 2010 March 4 and April 15. Following the VHE discovery, the optical identification and spectroscopic redshift were obtained using the Shane 3 m Telescope at the Lick Observatory, showing the unidentified object to be a BL Lac type with a redshift of z = 0.179. Broadband multiwavelength observations contemporaneous with the VERITAS exposure period can be used to subclassify the blazar as an HBL object, including data from the MDM observatory, Swift-UVOT, and X-Ray Telescope, and continuous monitoring at photon energies above 1 GeV from the Fermi Large Area Telescope (LAT). We find that in the absence of undetected, high-energy rapid variability, the one-zone synchrotron self-Compton (SSC) model overproduces the high-energy gamma-ray emission measured by the Fermi-LAT over 2.3 years. The spectral energy distribution can be parameterized satisfactorily with an external-Compton or lepto-hadronic model, which have two and six additional free parameters, respectively, compared to the one-zone SSC model. C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Aune, T.; Bouvier, A.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Bouvier, A.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Galante, N.; Roache, E.; Theiling, M.; Weekes, T. C.; Kaplan, K.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Boettcher, M.; Hivick, B.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Cannon, A.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Connolly, M. P.; Gillanders, G. H.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Decerprit, G.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Ruppel, J.; Skole, C.] DESY, D-15738 Zeuthen, Germany. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Fortson, L.; Karlsson, N.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Gall, D.; Kaaret, P.; Tsurusaki, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Griffin, S.; Hanna, D.; McCann, A.; Ragan, K.; Staszak, D.; Tesic, G.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Holder, J.; Saxon, D. B.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Saxon, D. B.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Huan, H.; Humensky, T. B.; Park, N.; Reyes, L. C.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Krennrich, F.; Orr, M.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Majumdar, P.; Ong, R. A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Nelson, T.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Perkins, J. S.] NASA, CRESST, GSFC, Greenbelt, MD 20771 USA. [Perkins, J. S.] NASA, Astroparticle Phys Lab, GSFC, Greenbelt, MD 20771 USA. [Perkins, J. S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Pichel, A.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Pohl, M.; Ruppel, J.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Smith, A. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ciprini, S.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Fumagalli, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Prochaska, J. X.] Univ Calif Santa Cruz, UCO Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Aliu, E (reprint author), Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. EM afurniss@ucsc.edu; miki@ucolick.org; dpaneque@mppmu.mpg.de RI Fumagalli, Michele/K-9510-2015; OI Fumagalli, Michele/0000-0001-6676-3842; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794 FU US Department of Energy; NSERC in Canada; Science Foundation Ireland (SFI ) [10/RFP/AST2748]; STFC in the UK; NASA [NNX10AF89G]; Fermi [NNX09AU18G]; NSF [AST-0548180]; US National Science Foundation; Smithsonian Institution FX VERITAS is supported by the US Department of Energy, US National Science Foundation, and Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748), and STFC in the UK. We acknowledge the excellent work of the technical support staff at the FLWO and at the collaborating institutions. This work was also supported by NASA grants from the Swift (NNX10AF89G) and Fermi (NNX09AU18G) Guest Investigator programs.; J.X.P. acknowledges funding through an NSF CAREER grant (AST-0548180). NR 33 TC 22 Z9 23 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2011 VL 742 IS 2 AR 127 DI 10.1088/0004-637X/742/2/127 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 850QM UT WOS:000297211900067 ER PT J AU George, MR Leauthaud, A Bundy, K Finoguenov, A Tinker, J Lin, YT Mei, S Kneib, JP Aussel, H Behroozi, PS Busha, MT Capak, P Coccato, L Covone, G Faure, C Fiorenza, SL Ilbert, O Le Floc'h, E Koekemoer, AM Tanaka, M Wechsler, RH Wolk, M AF George, Matthew R. Leauthaud, Alexie Bundy, Kevin Finoguenov, Alexis Tinker, Jeremy Lin, Yen-Ting Mei, Simona Kneib, Jean-Paul Aussel, Herve Behroozi, Peter S. Busha, Michael T. Capak, Peter Coccato, Lodovico Covone, Giovanni Faure, Cecile Fiorenza, Stephanie L. Ilbert, Olivier Le Floc'h, Emeric Koekemoer, Anton M. Tanaka, Masayuki Wechsler, Risa H. Wolk, Melody TI GALAXIES IN X-RAY GROUPS. I. ROBUST MEMBERSHIP ASSIGNMENT AND THE IMPACT OF GROUP ENVIRONMENTS ON QUENCHING SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; galaxies: groups: general; galaxies: star formation ID MORPHOLOGY-DENSITY RELATION; SIMILAR-TO 1; ATACAMA COSMOLOGY TELESCOPE; SOUTH-POLE TELESCOPE; DIGITAL SKY SURVEY; DARK-MATTER HALOS; WIDE-FIELD SURVEY; BACKGROUND POWER SPECTRUM; COLOR-MAGNITUDE RELATION; STAR-FORMING GALAXIES AB Understanding the mechanisms that lead dense environments to host galaxies with redder colors, more spheroidal morphologies, and lower star formation rates than field populations remains an important problem. As most candidate processes ultimately depend on host halo mass, accurate characterizations of the local environment, ideally tied to halo mass estimates and spanning a range in halo mass and redshift, are needed. In this work, we present and test a rigorous, probabilistic method for assigning galaxies to groups based on precise photometric redshifts and X-ray-selected groups drawn from the COSMOS field. The groups have masses in the range 10(13) less than or similar to M-200c/M-circle dot less than or similar to 10(14) and span redshifts 0 < z < 1. We characterize our selection algorithm via tests on spectroscopic subsamples, including new data obtained at the Very Large Telescope, and by applying our method to detailed mock catalogs. We find that our group member galaxy sample has a purity of 84% and completeness of 92% within 0.5 R-200c. We measure the impact of uncertainties in redshifts and group centering on the quality of the member selection with simulations based on current data as well as future imaging and spectroscopic surveys. As a first application of our new group member catalog which will be made publicly available, we show that member galaxies exhibit a higher quenched fraction compared to the field at fixed stellar mass out to z similar to 1, indicating a significant relationship between star formation and environment at group scales. We also address the suggestion that dusty star-forming galaxies in such groups may impact the high-l power spectrum of the cosmic microwave background and find that such a population cannot explain the low power seen in recent Sunyaev-Zel'dovich measurements. C1 [George, Matthew R.; Bundy, Kevin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [George, Matthew R.; Leauthaud, Alexie] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Leauthaud, Alexie] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Finoguenov, Alexis] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Finoguenov, Alexis] Univ Maryland Baltimore Cty, Ctr Space Sci Technol, Baltimore, MD 21250 USA. [Tinker, Jeremy] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Lin, Yen-Ting; Tanaka, Masayuki] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Mei, Simona] Univ Paris Denis Diderot, Bur Galaxies Etoiles Phys Instrumentat GEPI, F-75205 Paris 13, France. [Mei, Simona] Observ Paris, GEPI, F-92195 Meudon, France. [Kneib, Jean-Paul; Ilbert, Olivier] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Aussel, Herve; Le Floc'h, Emeric] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Behroozi, Peter S.; Busha, Michael T.; Wechsler, Risa H.] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Behroozi, Peter S.; Busha, Michael T.; Wechsler, Risa H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Behroozi, Peter S.; Busha, Michael T.; Wechsler, Risa H.] SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Busha, Michael T.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Capak, Peter] 314 6 Caltech, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Coccato, Lodovico] European So Observ, D-85748 Garching, Germany. [Covone, Giovanni] Univ Naples Federico II, Dipartimento Sci Fis, I-80131 Naples, Italy. [Covone, Giovanni] INAF, Observ Astron Capodimonte, I-80131 Naples, Italy. [Faure, Cecile] Ecole Polytech Fed Lausanne, Astrophys Lab, Observ Sauverny, CH-1290 Versoix, Switzerland. [Fiorenza, Stephanie L.] CUNY Coll Staten Isl, Astrophys Observ, Staten Isl, NY 10314 USA. [Koekemoer, Anton M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wolk, Melody] Inst Astrophys, UMR 7095, F-75014 Paris, France. RP George, MR (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM mgeorge@astro.berkeley.edu RI Covone, Giovanni/J-6040-2012; OI Covone, Giovanni/0000-0002-2553-096X; Koekemoer, Anton/0000-0002-6610-2048 FU National Science Foundation; Paranal Observatory [084.B-0523]; NASA [NAS 5-26555]; ESA Member States; European Southern Observatory, Chile [175.A-0839]; Kitt Peak National Observatory; Cerro Tololo Inter-American Observatory; National Optical Astronomy Observatory; Canada-France-Hawaii Telescope; CFHT Corporation; CEA/DAPNIA; National Research Council of Canada; Canadian Astronomy Data Centre; Centre National de la Recherche Scientifique de France; TERAPIX; University of Hawaii FX We thank Joanne Cohn, Eliot Quataert, Eli Rykoff, David Schlegel, Uros Seljak, Erik Shirokoff, Andrew Wetzel, and Martin White for helpful conversations. We also thank Michael Cooper and Marc Davis for providing software and template spectra used in our spectroscopic analysis, as well as comments on the paper. M.R.G. is supported by a Graduate Research Fellowship from the National Science Foundation.; This work is partly based on observations made with ESO Telescopes at Paranal Observatory under program ID 084.B-0523. We gratefully acknowledge the contributions of the entire COSMOS collaboration consisting of more than 70 scientists. More information on the COSMOS survey is available at http://www.astro.caltech.edu/cosmos. This work is based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555; also based on data collected at: the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the National Research Council of Canada, the Canadian Astronomy Data Centre, the Centre National de la Recherche Scientifique de France, TERAPIX, and the University of Hawaii. NR 137 TC 69 Z9 70 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2011 VL 742 IS 2 AR 125 DI 10.1088/0004-637X/742/2/125 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 850QM UT WOS:000297211900065 ER PT J AU Murphy, JW Meakin, C AF Murphy, Jeremiah W. Meakin, Casey TI A GLOBAL TURBULENCE MODEL FOR NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; hydrodynamics; instabilities; methods: analytical; methods: numerical; shock waves; supernovae: general; turbulence ID ACCRETION-SHOCK INSTABILITY; CIRCLE-DOT STAR; REYNOLDS STRESS; EXPLOSIONS; SIMULATIONS; MECHANISM; TRANSPORT; ROTATION; REVIVAL; HYDRODYNAMICS AB Simulations of core-collapse supernovae (CCSNe) result in successful explosions once the neutrino luminosity exceeds a critical curve, and recent simulations indicate that turbulence further enables explosion by reducing this critical neutrino luminosity. We propose a theoretical framework to derive this result and take the first steps by deriving the governing mean-field equations. Using Reynolds decomposition, we decompose flow variables into background and turbulent flows and derive self-consistent averaged equations for their evolution. As basic requirements for the CCSN problem, these equations naturally incorporate steady-state accretion, neutrino heating and cooling, non-zero entropy gradients, and turbulence terms associated with buoyant driving, redistribution, and dissipation. Furthermore, analysis of two-dimensional (2D) CCSN simulations validate these Reynolds-averaged equations, and we show that the physics of turbulence entirely accounts for the differences between 1D and 2D CCSN simulations. As a prelude to deriving the reduction in the critical luminosity, we identify the turbulent terms that most influence the conditions for explosion. Generically, turbulence equations require closure models, but these closure models depend upon the macroscopic properties of the flow. To derive a closure model that is appropriate for CCSNe, we cull the literature for relevant closure models and compare each with 2D simulations. These models employ local closure approximations and fail to reproduce the global properties of neutrino-driven turbulence. Motivated by the generic failure of these local models, we propose an original model for turbulence which incorporates global properties of the flow. This global model accurately reproduces the turbulence profiles and evolution of 2D CCSN simulations. C1 [Murphy, Jeremiah W.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Meakin, Casey] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Meakin, Casey] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. EM jmurphy@astro.washington.edu FU NSF [AST-0802315]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory; [DE-AC52-06NA25396] FX We thank Jason Nordhaus and Ondrej Pejcha for their comments on this manuscript. J.W.M. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0802315. The work by Meakin was carried out in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by contract no. DE-AC52-06NA25396. NR 59 TC 44 Z9 44 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2011 VL 742 IS 2 AR 74 DI 10.1088/0004-637X/742/2/74 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 850QM UT WOS:000297211900014 ER PT J AU Stancliffe, RJ Dearborn, DSP Lattanzio, JC Heap, SA Campbell, SW AF Stancliffe, Richard J. Dearborn, David S. P. Lattanzio, John C. Heap, Stuart A. Campbell, Simon W. TI THREE-DIMENSIONAL HYDRODYNAMICAL SIMULATIONS OF A PROTON INGESTION EPISODE IN A LOW-METALLICITY ASYMPTOTIC GIANT BRANCH STAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; hydrodynamics; stars: AGB and post-AGB; stars: carbon; stars: evolution; stars: Population II ID INTERMEDIATE-MASS STARS; EXTREMELY METAL-POOR; CORE HELIUM FLASH; POPULATION-III STARS; SAKURAIS OBJECT; DREDGE-UP; EVOLUTION; NUCLEOSYNTHESIS; CONVECTION; CARBON AB We use the three-dimensional (3D) stellar structure code DJEHUTY to model the ingestion of protons into the intershell convection zone of a 1 M-circle dot asymptotic giant branch star of metallicity Z = 10(-4). We have run two simulations: a low-resolution one of around 300,000 zones and a high-resolution one consisting of 2,000,000 zones. Both simulations have been evolved for about 4 hr of stellar time. We observe the existence of fast, downward flowing plumes that are able to transport hydrogen into close proximity to the helium-burning shell before burning takes place. The intershell in the 3D model is richer in protons than the 1D model by several orders of magnitude and so we obtain substantially higher hydrogen-burning luminosities-over 10(8) L-circle dot in the high-resolution simulation-than are found in the 1D model. Convective velocities in these simulations are over ten times greater than the predictions of mixing length theory, though the 3D simulations have greater energy generation due to the enhanced hydrogen burning. We find no evidence of the convective zone splitting into two, though this could be as a result of insufficient spatial resolution or because the models have not been evolved for long enough. We suggest that the 1D mixing length theory and particularly the use of a diffusion algorithm for mixing do not give an accurate picture of these events. An advective mixing scheme may give a better representation of the transport processes seen in the 3D models. C1 [Stancliffe, Richard J.; Lattanzio, John C.; Heap, Stuart A.; Campbell, Simon W.] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Stancliffe, Richard J.] Mt Stromlo & Siding Spring Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Dearborn, David S. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Stancliffe, RJ (reprint author), Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. EM rjs@mso.anu.edu.au RI Campbell, Simon/C-4887-2013; OI Stancliffe, Richard/0000-0002-6972-9655; Lattanzio, John/0000-0003-2952-859X FU LLNL; US Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA2734]; Australian Research Council [DP0879472, DP0877317, DP1095368] FX We thank the referee, Casey Meakin, for his comments which have helped to improve this manuscript. We are very grateful to Lawrence Livermore National Laboratory for allowing us access to both DJEHUTY and the computers necessary to run it on. Without their support, this work would not have been possible. This work was partially supported by an LLNL Grand Challenge Grant for the study of convection in stars, under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA2734. R.J.S. is a Stromlo Fellow and acknowledges funding from the Australian Research Council Discovery Projects scheme (grant DP0879472) during his time at Monash. He is indebted to D. Arnett for illuminating discussions regarding turbulence and hydrodynamics in general. J.C.L. acknowledges funding from the Australian Research Council Discovery Projects scheme (grants DP0877317 and DP1095368). NR 38 TC 36 Z9 36 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2011 VL 742 IS 2 AR 121 DI 10.1088/0004-637X/742/2/121 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 850QM UT WOS:000297211900061 ER PT J AU Li, L Gawande, N Kowalsky, MB Steefel, CI Hubbard, SS AF Li, Li Gawande, Nitin Kowalsky, Michael B. Steefel, Carl I. Hubbard, Susan S. TI Physicochemical Heterogeneity Controls on Uranium Bioreduction Rates at the Field Scale SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GEOCHEMICAL REACTION-RATES; REACTIVE TRANSPORT; POROUS-MEDIA; HYDROTHERMAL SYSTEMS; CONTAMINATED AQUIFER; BIOREMEDIATION; FLOW; GROUNDWATER; DISSOLUTION; MODEL AB It has been demonstrated in laboratory systems that U(VI) can be reduced to immobile U(IV) by bacteria in natural environments. The ultimate efficacy of bioreduction at the field scale, however, is often challenging to quantify and depends on site characteristics. In this work, uranium bioreduction rates at the field scale are quantified, for the first time, using an integrated approach. The approach combines field data, inverse and forward hydrological and reactive transport modeling, and quantification of reduction rates at different spatial scales. The approach is used to explore the impact of local scale (tens of centimeters) parameters and processes on field scale (tens of meters) system responses to biostimulation treatments and the controls of physicochemical heterogeneity on bioreduction rates. Using the biostimulation experiments at the Department of Energy Old Rifle site, our results show that the spatial distribution of hydraulic conductivity and solid phase mineral (Fe(III)) play a critical role in determining the field-scale bioreduction rates. Due to the dependence on Fe-reducing bacteria, field-scale U(VI) bioreduction rates were found to be largely controlled by the abundance of Fe(III) minerals at the vicinity of the injection wells and by the presence of preferential flow paths connecting injection wells to down gradient Fe(III) abundant areas. C1 [Li, Li; Gawande, Nitin] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Li, Li] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Li, Li] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Kowalsky, Michael B.; Steefel, Carl I.; Hubbard, Susan S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Li, L (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. EM lili@eme.psu.edu RI Steefel, Carl/B-7758-2010; Hubbard, Susan/E-9508-2010; Li, Li/A-6077-2008; OI Li, Li/0000-0002-1641-3710; gawande, nitin/0000-0002-5761-1027 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH1123]; Penn State University FX Funding for this study was provided by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research to the LBNL Sustainable Systems Scientific Focus Area under Award Number DE-AC02-05CH1123 and through a subcontract to Penn State University. We acknowledge Kenneth Williams (LBNL), Phil Long (PNNL), and the Rifle IFRC research team for facilitating collaboration and access to Rifle data. We acknowledge the associate editor Jorge Gardea-Torresdey and four anonymous reviewers for their thorough, insightful, and constructive comments that have significantly improved the manuscript NR 49 TC 39 Z9 39 U1 5 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2011 VL 45 IS 23 BP 9959 EP 9966 DI 10.1021/es201111y PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 852UJ UT WOS:000297382700022 PM 21988116 ER PT J AU Xu, C Miller, EJ Zhang, SJ Li, HP Ho, YF Schwehr, KA Kaplan, DI Otosaka, S Roberts, KA Brinkmeyer, R Yeager, CM Santschi, PH AF Xu, Chen Miller, Eric J. Zhang, Saijin Li, Hsiu-Ping Ho, Yi-Fang Schwehr, Kathleen A. Kaplan, Daniel I. Otosaka, Shigeyoshi Roberts, Kimberly A. Brinkmeyer, Robin Yeager, Chris M. Santschi, Peter H. TI Sequestration and Remobilization of Radioiodine (I-129) by Soil Organic Matter and Possible Consequences of the Remedial Action at Savannah River Site SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HUMIC SUBSTANCES; MASS-SPECTROMETRY; FULVIC-ACIDS; IODINE; IODATE; TRANSPORT; SEDIMENTS; MOBILITY; LACTOPEROXIDASE; IODINATION AB In order to investigate the distributions and speciation of I-129 (and I-127) in a contaminated F-Area groundwater plume of the Savannah River Site that cannot be explained by simple transport models, soil resuspension experiments simulating surface runoff or stormflow and erosion events were conducted. Results showed that 72-77% of the newly introduced I- or IO3- were irreversibly sequestered into the organic-rich riparian soil, while the rest was transformed by the soil into colloidal and truly dissolved organo-iodine, resulting in I-129 remobilization from the soil greatly exceeding the 1 pCi/L drinking water permit. This contradicts the conventional view that only considers I- or IO3- as the mobile forms. Laboratory iodination experiments indicate that iodine likely covalently binds to aromatic structures of the soil organic matter (SOM). Under very acidic conditions, abiotic iodination of SOM was predominant, whereas under less acidic conditions (pH >= 5), microbial enzymatically assisted iodination of SOM was predominant. The organic-rich soil in the vadose zone of F-Area thus acts primarily as a "sink," but may also behave as a potentially important vector for mobile radioiodine in an on-off carrying mechanism. Generally the riparian zone provides as a natural attenuation zone that greatly reduces radioiodine release. C1 [Xu, Chen; Miller, Eric J.; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Schwehr, Kathleen A.; Brinkmeyer, Robin; Santschi, Peter H.] Texas A&M Univ, Lab Environm & Oceanog Res, Dept Marine Sci, Galveston, TX 77551 USA. [Kaplan, Daniel I.; Roberts, Kimberly A.; Yeager, Chris M.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Otosaka, Shigeyoshi] Japan Atom Energy Agcy, Res Grp Environm Sci, Tokai, Ibaraki 3191195, Japan. RP Xu, C (reprint author), Texas A&M Univ, Lab Environm & Oceanog Res, Dept Marine Sci, Bldg 3029, Galveston, TX 77551 USA. EM xuchen66@neo.tamu.edu RI Santschi, Peter/D-5712-2012; zhang, saijin/A-4986-2013; Ho, Yi-Fang/H-4198-2013; OI Otosaka, Shigeyoshi/0000-0003-2087-9676 FU Department of Energy within the Office of Science [DE-FG02-08ER64567]; Welch Grant [BD0046] FX This work was supported by the Department of Energy's Subsurface Biogeochemical Research Program within the Office of Science (DE-FG02-08ER64567) and Welch Grant BD0046. Special thanks are given to the associate editor and four reviewers for their constructive comments. NR 35 TC 25 Z9 25 U1 3 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2011 VL 45 IS 23 BP 9975 EP 9983 DI 10.1021/es201343d PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 852UJ UT WOS:000297382700024 PM 22035296 ER PT J AU Lorenzetti, DM Sohn, MD AF Lorenzetti, David M. Sohn, Michael D. TI Numerical Solution of the Polanyi-DR Isotherm in Linear Driving Force Models SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ACTIVATED CARBON; ADSORPTION-ISOTHERMS; ORGANIC-COMPOUNDS; SORPTION; PREDICTION; VAPORS; VOCS; EQUILIBRIUM; DESORPTION; DIFFUSION AB The Polanyi-Dubinin-Radushkevich isotherm has proven useful for modeling the adsorption of volatile organic compounds on microporous materials such as activated carbon. When embedded in a larger dynamic simulation e.g., of whole-building pollutant transport it is important to solve the sorption relations as quickly as possible. This work compares numerical methods for solving the Polanyi-DR model, in cases where transport to the surface is assumed linear in the bulk-to-surface concentration differences. We focus on developing numerically stable algorithms that converge across a wide range of inputs, including zero concentrations, where the isotherm is undefined. We identify several methods, including a modified Newton-Raphson search, that solve the system 3-4 times faster than simple bisection. Finally, we present a rule of thumb for identifying when boundary-layer diffusion limits the transport rate enough to justify reducing the model complexity. C1 [Lorenzetti, David M.; Sohn, Michael D.] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. RP Lorenzetti, DM (reprint author), Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. EM dmlorenzetti@lbl.gov OI Lorenzetti, David/0000-0002-9971-1165 FU U.S. Defense Threat Reduction Agency; U.S. Department of Energy [DE-AC03-76SF00098] FX This research was funded in part by the U.S. Defense Threat Reduction Agency, and was performed under U.S. Department of Energy contract no. DE-AC03-76SF00098. NR 25 TC 0 Z9 0 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2011 VL 45 IS 23 BP 10091 EP 10095 DI 10.1021/es202359j PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 852UJ UT WOS:000297382700039 PM 21958230 ER PT J AU Tsouris, C Mayes, R Kiggans, J Sharma, K Yiacoumi, S DePaoli, D Dai, S AF Tsouris, C. Mayes, R. Kiggans, J. Sharma, K. Yiacoumi, S. DePaoli, D. Dai, S. TI Mesoporous Carbon for Capacitive Deionization of Saline Water SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID COMPOSITE FILM ELECTRODES; ELECTROSORPTION CAPACITANCE; AEROGEL ELECTRODES; AQUEOUS-SOLUTIONS; DESALINATION; IONS; NANOTUBES; BEHAVIOR; NACL AB Self-assembled mesoporous carbon (MC) materials have been synthesized and tested for application in capacitive deionization (CDI) of saline water. MC was prepared by self-assembly of a triblock copolymer with hydrogen-bonded chains via a phenolic resin, such as resorcinol or phloroglucinol in acidic conditions, followed by carbonization and, in some cases, activation by KOH. Carbon synthesized in this way was ground into powder, from which activated MC sheets were produced. In a variation of this process, after the reaction of triblock copolymer with resorcinol or phloroglucinol, the gel that was formed was used to coat a graphite plate and then carbonized. The coated graphite plate in this case was not activated and was tested to serve as current collector during the CDI process. The performance of these MC materials was compared to that of carbon aerogel for salt concentrations ranging between 1000 ppm and 35,000 ppm. Resorcinol-based MC removed up to 15.2 mg salt per gram of carbon, while carbon aerogel removed 5.8 mg salt per gram of carbon. Phloroglucinol-based MC-coated graphite exhibited the highest ion removal capacity at 21 mg of salt per gram of carbon for 35,000 ppm salt concentration. C1 [Tsouris, C.; Mayes, R.; Kiggans, J.; DePaoli, D.; Dai, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sharma, K.; Yiacoumi, S.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Tsouris, C (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM tsourisc@ornl.gov RI Tsouris, Costas/C-2544-2016; Dai, Sheng/K-8411-2015; kiggans, james/E-1588-2017 OI Tsouris, Costas/0000-0002-0522-1027; Dai, Sheng/0000-0002-8046-3931; kiggans, james/0000-0001-5056-665X FU U.S. DOE Office of Energy Efficiency and Renewable Energy (EERE) [DE-AC05-0096-OR22725]; Oak Ridge National Laboratory; National Science Foundation [CBET-0651683] FX This research was conducted at the Oak Ridge National Laboratory and supported by the U.S. DOE Office of Energy Efficiency and Renewable Energy (EERE), under Contract DE-AC05-0096-OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. Partial support to S. Yiacoumi and K. Sharma was provided by the National Science Foundation, under Grant No. CBET-0651683. The authors are also thankful to Bob Campbell, Tom Dorow, Sunita Kaushik, Bill Bourcier, and Fred Seamon of Campbell Applied Physics, Inc., for frequent discussions on capacitive deionization. NR 38 TC 128 Z9 130 U1 42 U2 211 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 1 PY 2011 VL 45 IS 23 BP 10243 EP 10249 DI 10.1021/es201551e PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 852UJ UT WOS:000297382700059 PM 22032802 ER PT J AU Swaminathan, S AF Swaminathan, Subramanyam TI Molecular structures and functional relationships in clostridial neurotoxins SO FEBS JOURNAL LA English DT Review DE botulinum neurotoxin; botulism; catalytic activity; drug discovery; neuroexocytosis; structure-function; substrate-enzyme complex; tetanus; translocation; X-ray crystallography; zinc endopeptidase ID LIGHT-CHAIN PROTEASE; CARBOHYDRATE-BINDING SITES; H-CC-DOMAIN; BOTULINUM-NEUROTOXIN; TETANUS TOXIN; CRYSTAL-STRUCTURE; RECEPTOR-BINDING; SUBSTRATE RECOGNITION; HEAVY-CHAIN; GANGLIOSIDE BINDING AB The seven serotypes of Clostridium botulinum neurotoxins (AG) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structurefunction relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structurefunction relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU DTRA DOE [BO74208I, DEAC02-98CH10886]; Brookhaven National Laboratory FX The author thanks Drs S. Eswaramoorthy, D. Kumaran and R. Agarwal and other collaborators for their contribution in this research. Research was supported by award from DTRA BO74208I under DOE prime contract No. DEAC02-98CH10886 with Brookhaven National Laboratory. NR 108 TC 33 Z9 35 U1 2 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X J9 FEBS J JI FEBS J. PD DEC PY 2011 VL 278 IS 23 SI SI BP 4467 EP 4485 DI 10.1111/j.1742-4658.2011.08183.x PG 19 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 849WL UT WOS:000297155900003 PM 21592305 ER PT J AU Kalinowski, JA Makal, A Coppens, P AF Kalinowski, Jaroslaw A. Makal, Anna Coppens, Philip TI The LaueUtil toolkit for Laue photocrystallography. I. Rapid orientation matrix determination for intermediate-size-unit-cell Laue data SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID DIFFRACTION PATTERNS; CRYSTALLOGRAPHY; PHOTOGRAPHS; PROGRAM AB A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the experimental patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice with the corresponding pattern of a monochromatic data set on the same material. This technique is applied to the complete data set and thus eliminates problems often encountered when single frames with a limited number of peaks are to be used for orientation matrix determination. Application of the method to a series of Laue data sets on organometallic crystals is described. The corresponding program is available under a Mozilla Public License-like open-source license. C1 [Kalinowski, Jaroslaw A.; Makal, Anna; Coppens, Philip] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Kalinowski, Jaroslaw A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kalinowski, JA (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. EM jak@kalinowscy.eu RI Kalinowski, Jaroslaw/E-4144-2012 FU National Science Foundation [CHE0843922]; National Institutes of Health, National Center for Research Resources [RR007707]; US Department of Energy, Office of Basic Energy Sciences [W-31-109-ENG-38] FX Support of this work by the National Science Foundation (grant No. CHE0843922) is gratefully acknowledged. Use of the BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources, under grant No. RR007707. The Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract No. W-31-109-ENG-38. The cell parameters and structure factors from monochromatic experiments for three CuI bis(triphenylphosphine) phenanthroline salts were kindly supplied by Dr Jason B. Benedict. NR 22 TC 8 Z9 8 U1 2 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2011 VL 44 BP 1182 EP 1189 DI 10.1107/S0021889811038143 PN 6 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 851OG UT WOS:000297279800007 PM 22199400 ER PT J AU Kim, MH Doh, JM Han, SC Chae, KH Yu, BY Hong, KT Jackson, A Anovitz, LM AF Kim, Man-Ho Doh, Jeong-Mann Han, Seong Chul Chae, Keun Hwa Yu, Byung-Yong Hong, Kyung Tae Jackson, Andrew Anovitz, Lawrence M. TI The pore wall structure of porous semi-crystalline anatase TiO2 SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID ANGLE NEUTRON-SCATTERING; NANOTUBE ARRAYS; TITANIA NANOTUBES; ANODIC-OXIDATION; SOLAR-CELLS; FILMS; WATER; DENSITY; RUTILE; LAW AB The structure of porous TiO2 prepared by electrochemical anodization in a fluoride-containing ethylene glycol electrolyte solution was quantitatively studied using small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS). The cylindrical pores along the coaxial direction were somewhat irregular in shape, were widely distributed in diameter, and seemed to have a broadly pseudo-hexagonal arrangement. The scattering from the pore wall showed a negative deviation from Porod scattering, indicating that the interface between TiO2 and the pore was not sharp. A density gradient of around 40-60 A at the pore wall (i.e. the interface between the pore and the TiO2 matrix) was estimated using both constant and semi-sigmoidal interface models. This gradient may be due to the presence of fluorine and carbon partially absorbed by the pore wall from the fluoride-containing electrolyte or to sorbed water molecules on the wall. The neutron contrast-matching point between the TiO2 matrix and the pores filled with liquid H2O/D2O mixtures was 51/49%(v/v) H2O/D2O, yielding an estimated mass density of 3.32 g cm(-3). The specific surface area of the sample derived from the (U) SANS data was around 939-1003 m(2) cm(-3) (283-302 m(2) g(-1)). C1 [Kim, Man-Ho; Doh, Jeong-Mann; Han, Seong Chul; Chae, Keun Hwa; Yu, Byung-Yong; Hong, Kyung Tae] Korea Inst Sci & Technol, Seoul 136791, South Korea. [Jackson, Andrew] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jackson, Andrew] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Anovitz, Lawrence M.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kim, MH (reprint author), Korea Inst Sci & Technol, Hwarangno 14 Gil 5, Seoul 136791, South Korea. EM man-hokim@kist.kr RI Jackson, Andrew/B-9793-2008; Chae, Keun Hwa/H-2459-2016; Anovitz, Lawrence/P-3144-2016 OI Jackson, Andrew/0000-0002-6296-0336; Chae, Keun Hwa/0000-0003-3894-670X; Anovitz, Lawrence/0000-0002-2609-8750 FU MEST/KOSEF [M20701005285-08B0100-28510]; KIST [2V02082]; National Science Foundation [DMR-0454672]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by the MEST/KOSEF (Nuclear R&D Program, M20701005285-08B0100-28510) and KIST 2V02082. This work utilized facilities supported in part by the National Science Foundation under agreement No. DMR-0454672. Research by LMA was sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. NR 36 TC 1 Z9 1 U1 0 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2011 VL 44 BP 1238 EP 1245 DI 10.1107/S0021889811037447 PN 6 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 851OG UT WOS:000297279800015 ER PT J AU Gildea, RJ Bourhis, LJ Dolomanov, OV Grosse-Kunstleve, RW Puschmann, H Adams, PD Howard, JAK AF Gildea, Richard J. Bourhis, Luc J. Dolomanov, Oleg V. Grosse-Kunstleve, Ralf W. Puschmann, Horst Adams, Paul D. Howard, Judith A. K. TI iotbx.cif: a comprehensive CIF toolbox SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID CRYSTALLOGRAPHY; TOOLKIT; FILES AB iotbx.cif is a new software module for the development of applications that make use of the CIF format. Comprehensive tools are provided for input, output and validation of CIFs, as well as for interconversion with high-level cctbx [Grosse-Kunstleve, Sauter, Moriarty & Adams (2002). J. Appl. Cryst. 35, 126-136] crystallographic objects. The interface to the library is written in Python, whilst parsing is carried out using a compiled parser, combining the performance of a compiled language (C++) with the benefits of using an interpreted language. C1 [Gildea, Richard J.; Bourhis, Luc J.; Dolomanov, Oleg V.; Puschmann, Horst; Howard, Judith A. K.] Univ Durham, Dept Chem, Durham DH1 3LE, England. [Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Gildea, RJ (reprint author), Univ Durham, Dept Chem, South Rd, Durham DH1 3LE, England. EM rjgildea@lbl.gov RI Howard, Judith /H-7113-2012; Gildea, Richard/J-6862-2012; Adams, Paul/A-1977-2013 OI Gildea, Richard/0000-0001-5038-6958; Adams, Paul/0000-0001-9333-8219 FU EPSRC [EP/C 536274/1]; NIH [GM063210]; US Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank Saulius Grazulis for his efforts in maintaining the Crystallography Open Database, which was an invaluable resource during the development of iotbx.cif. We are grateful for financial support from the EPSRC (EP/C 536274/1), the NIH (grant No. GM063210) and the US Department of Energy under contract No. DE-AC02-05CH11231. NR 35 TC 17 Z9 17 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2011 VL 44 BP 1259 EP 1263 DI 10.1107/S0021889811041161 PN 6 PG 5 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 851OG UT WOS:000297279800018 PM 22199401 ER PT J AU Zhao, JK AF Zhao, Jinkui TI SAAF: small-angle neutron scattering data analysis using analytical functions SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID DIFFRACTOMETER; SNS AB SAAF is a tool for analyzing small-angle neutron scattering (SANS) data using analytical model functions. It is implemented in Perl and uses Gnuplot as its engine for curve fitting and data display. A set of standard models is provided with the program. New models are easy to implement at the user level. One of its features is the ability to perform de-smearing on data sets with variable and convoluted instrument resolutions. For SANS experiments, data de-smearing is often required, especially for data with small neutron scattering vector (Q) values or sharp scattering features. On time-of-flight instruments, the uncertainty in Q is a convolution of the contributions from neutrons with different wavelengths and beam intensities. SAAF is designed to take such Q resolution into account for data de-smearing. The program is part of the tool set offered at the EQ-SANS diffractometer at the Spallation Neutron Source. It is available in source form and is portable to multiple computer platforms. C1 Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Zhao, JK (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM zhaoj@ornl.gov RI Zhao, Jinkui/B-7872-2013 OI Zhao, Jinkui/0000-0002-7756-1952 FU US Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under contract No. DE-AC05-00OR22725 with the US Department of Energy. NR 9 TC 1 Z9 1 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2011 VL 44 BP 1277 EP 1280 PN 6 PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 851OG UT WOS:000297279800021 ER PT J AU Clarke, AJ Caballero, FG Hackenberg, RE AF Clarke, Amy J. Caballero, Francisca G. Hackenberg, Robert E. TI Foreword: Symposium on Austenite Formation and Decomposition IV SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Editorial Material C1 [Clarke, Amy J.; Hackenberg, Robert E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Caballero, Francisca G.] Natl Ctr Met Res CENIM CSIC, Madrid, Spain. RP Clarke, AJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI CABALLERO, FRANCISCA/A-4292-2008 NR 0 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2011 VL 42A IS 12 BP 3590 EP 3590 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 851FC UT WOS:000297252800011 ER PT J AU Caballero, FG Miller, MK Garcia-Mateo, C AF Caballero, F. G. Miller, M. K. Garcia-Mateo, C. TI Atom Probe Tomography Analysis of Precipitation during Tempering of a Nanostructured Bainitic Steel SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Austenite Formation and Decomposition IV CY OCT 17-21, 2010 CL Houston, TX ID FIELD-ION MICROSCOPY; NI-C MARTENSITES; CARBON MARTENSITE; REDISTRIBUTION; TRANSFORMATION; ELEMENTS AB Carbon distribution during tempering of a nanostructured bainitic steel was analyzed by atom probe tomography (APT). Three different types of particles are detected on samples tempered at 673 K (400 degrees C) for 30 minutes: lower bainite cementite with a carbon content of similar to 25 at. pct, e-carbides with a carbon content close to 30 at. pct, and carbon clusters, small features with a carbon content of similar to 14 at. pct indicative of a stage of tempering prior to precipitation of e-carbide. After tempering at 773 K (500 degrees C) for 30 minutes, the e-carbide-to-cementite transition was observed. Solute concentration profiles across carbide/ferrite interfaces showed the distribution of substitutional elements in e-carbide and cementite for all the tempering conditions. C1 [Caballero, F. G.; Garcia-Mateo, C.] Ctr Nacl Invest Met CENIM CSIC, E-28040 Madrid, Spain. [Miller, M. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Caballero, FG (reprint author), Ctr Nacl Invest Met CENIM CSIC, E-28040 Madrid, Spain. EM fgc@cenim.csic.es RI CABALLERO, FRANCISCA/A-4292-2008; Garcia-Mateo, Carlos/A-7752-2008; OI Garcia-Mateo, Carlos/0000-0002-4773-5077; Caballero, Francisca/0000-0002-5548-7659 FU Research Fund for Coal and Steel; Spanish Ministry of Science and Innovation [RFSR-CT-2008-00022, MAT2007-63873]; ORNL's Shared Research Equipment (SHaRE) User Facility; Office of Basic Energy Sciences, United States Department of Energy FX The authors gratefully acknowledge the support of the Research Fund for Coal and Steel and the Spanish Ministry of Science and Innovation for funding this research under Contract Nos. RFSR-CT-2008-00022 and MAT2007-63873, respectively. The research was supported by ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, United States Department of Energy. NR 25 TC 18 Z9 20 U1 1 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2011 VL 42A IS 12 BP 3660 EP 3668 DI 10.1007/s11661-011-0699-7 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 851FC UT WOS:000297252800019 ER PT J AU Gibbs, PJ De Moor, E Merwin, MJ Clausen, B Speer, JG Matlock, DK AF Gibbs, P. J. De Moor, E. Merwin, M. J. Clausen, B. Speer, J. G. Matlock, D. K. TI Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Austenite Formation and Decomposition IV CY OCT 17-21, 2010 CL Houston, TX ID INDUCED MARTENSITIC NUCLEATION; MECHANICAL-PROPERTIES; LOW-CARBON; HEAT-TREATMENT; TRIP STEELS; MICROSTRUCTURES; DEFORMATION; KINETICS; ENERGY; ALLOY AB Manganese enrichment of austenite during prolonged intercritical annealing was used to produce a family of transformation-induced plasticity (TRIP) steels with varying retained austenite contents. Cold-rolled 0.1C-7.1Mn steel was annealed at incremental temperatures between 848 K and 948 K (575 degrees C and 675 degrees C) for 1 week to enrich austenite in manganese. The resulting microstructures are comprised of varying fractions of intercritical ferrite, martensite, and retained austenite. Tensile behavior is dependent on annealing temperature and ranged from a low strain-hardening "flat" curve to high strength and ductility conditions that display positive strain hardening over a range of strain levels. The mechanical stability of austenite was measured using in-situ neutron diffraction and was shown to depend significantly on annealing temperature. Variations in austenite stability between annealing conditions help explain the observed strain hardening behaviors. C1 [Gibbs, P. J.; De Moor, E.; Speer, J. G.; Matlock, D. K.] Colorado Sch Mines, Adv Steel Proc & Prod Res Ctr, Golden, CO 80401 USA. [Merwin, M. J.] US Steel Corp, Res & Technol Ctr, Munhall, PA 15120 USA. [Clausen, B.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Gibbs, PJ (reprint author), Colorado Sch Mines, Adv Steel Proc & Prod Res Ctr, Golden, CO 80401 USA. EM pgibbs@mine-s.edu RI de moor, emmanuel/E-9373-2012; Clausen, Bjorn/B-3618-2015 OI de moor, emmanuel/0000-0001-6538-1121; Clausen, Bjorn/0000-0003-3906-846X FU National Science Foundation [CMMI-0729114]; Advanced Steel Processing and Products Research Center, an industry/university cooperative research center at the Colorado School of Mines; Office of Basic Energy Sciences (DOE); DOE [DE AC5206NA25396] FX The authors gratefully acknowledge the support of the National Science Foundation under Award No. CMMI-0729114 and the sponsors of the Advanced Steel Processing and Products Research Center, an industry/university cooperative research center at the Colorado School of Mines. This work also benefited from use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE AC5206NA25396. Additionally, the authors acknowledge U.S. Steel for providing the experimental material, D. W. Brown and T. A. Sisneros for their assistance with the neutron experiments, and the 2009 Neutron Scattering School at the Lujan Center for providing the opportunity for one author (Gibbs) to learn about the capabilities of neutron diffraction. NR 50 TC 79 Z9 87 U1 5 U2 41 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2011 VL 42A IS 12 BP 3691 EP 3702 DI 10.1007/s11661-011-0687-y PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 851FC UT WOS:000297252800022 ER PT J AU Williams, JJ Yazzie, KE Phillips, NC Chawla, N Xiao, XH De Carlo, F Iyyer, N Kittur, M AF Williams, Jason J. Yazzie, Kyle E. Phillips, N. Connor Chawla, Nikhilesh Xiao, Xinghui De Carlo, Francesco Iyyer, Nagaraja Kittur, Maddan TI On the Correlation Between Fatigue Striation Spacing and Crack Growth Rate: A Three-Dimensional (3-D) X-ray Synchrotron Tomography Study SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID ALLOY MATRIX COMPOSITES; FRACTOGRAPHY AB In situ three-dimensional (3-D) X-ray synchrotron tomography of fatigue crack growth was conducted in a 7075-T6 aluminum alloy. Local measurements of da/dN were possible with the 3-D data sets obtained from tomography. A comparison with fatigue striation spacings obtained from scanning electron microscopy of the fracture surfaces yielded excellent correlation with da/dN obtained from tomography. The X-ray tomography technique can be used to obtain a highly accurate and representative measurements of crack growth locally in the microstructure of the material. C1 [Williams, Jason J.; Yazzie, Kyle E.; Phillips, N. Connor; Chawla, Nikhilesh] Arizona State Univ, Sch Engn Matter Transport & Energy, Dept Mat Sci & Engn, Tempe, AZ 85287 USA. [Xiao, Xinghui; De Carlo, Francesco] Argonne Natl Lab, Dept Adv Photon Source, Argonne, IL 60439 USA. [Iyyer, Nagaraja] Tech Data & Anal, Falls Church, VA 22042 USA. [Kittur, Maddan] USN, Air Warface Surface Command, Patuxent River, MD 20670 USA. RP Chawla, N (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Dept Mat Sci & Engn, Tempe, AZ 85287 USA. EM nchawla@asu.edu RI Chawla, Nikhilesh/A-3433-2008 OI Chawla, Nikhilesh/0000-0002-4478-8552 FU Naval Air Warfare Command [N00421-10-P-0818]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors are grateful for financial support from the Naval Air Warfare Command through a subcontract through Technical Data and Analysis, under contract number N00421-10-P-0818 (to N.I., TDA, and M. K., NAVAIR, Program Managers). The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 15 TC 21 Z9 21 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2011 VL 42A IS 13 BP 3845 EP 3848 DI 10.1007/s11661-011-0963-x PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 851FF UT WOS:000297253100001 ER PT J AU Buchheit, T Friedman, LH Medyanik, S Spearot, D Webb, EB AF Buchheit, T. Friedman, L. H. Medyanik, S. Spearot, D. Webb, E. B., III TI Foreword: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Editorial Material C1 [Buchheit, T.; Webb, E. B., III] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Friedman, L. H.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Medyanik, S.] Washington State Univ, Pullman, WA 99164 USA. [Spearot, D.] Univ Arkansas, Fayetteville, AR USA. [Webb, E. B., III] Lehigh Univ, Bethlehem, PA 18015 USA. RP Buchheit, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Friedman, Lawrence/G-5650-2011 OI Friedman, Lawrence/0000-0003-2416-9903 NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2011 VL 42A IS 13 BP 3867 EP 3867 DI 10.1007/s11661-011-0885-7 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 851FF UT WOS:000297253100006 ER PT J AU Johnson, OK Gardner, CJ Seegmiller, DB Mara, NA Dattelbaum, AM Rae, PJ Kaschner, GC Mason, TA Fullwood, DT Hansen, G AF Johnson, Oliver K. Gardner, Calvin J. Seegmiller, Daniel B. Mara, Nathan A. Dattelbaum, Andrew M. Rae, Philip J. Kaschner, George C. Mason, Thomas A. Fullwood, David T. Hansen, George TI Multiscale Model for the Extreme Piezoresistivity in Silicone/Nickel Nanostrand Nanocomposites SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID POLYMER COMPOSITES; CONTINUUM PERCOLATION; CONDUCTIVITY; NICKEL; MEDIA; SIZE; AC AB Extreme piezoresistivity was discovered in a silicone/nickel nanostrand (silicone/NiNs) nanocomposite. A novel technique was developed to study the charge transport phenomena responsible for the piezoresistive mechanism in the silicone/NiNs system using conductive nanoindentation. A quantum mechanical tunneling (QMT)/percolation model was developed, which bridges the gap between quantum effects at the nanoscopic scale and bulk material response at the macroscopic scale. The predictions of this model are compared to experimental measurements. C1 [Johnson, Oliver K.; Gardner, Calvin J.; Seegmiller, Daniel B.; Fullwood, David T.] Brigham Young Univ, Provo, UT 84602 USA. [Gardner, Calvin J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Mara, Nathan A.; Dattelbaum, Andrew M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Rae, Philip J.] Los Alamos Natl Lab, Mat Sci & Technol Div, Struct Property Relat Grp, Los Alamos, NM 87545 USA. [Kaschner, George C.] Los Alamos Natl Lab, Mat Sci & Technol Div, Nucl Mat Grp, Los Alamos, NM 87545 USA. [Mason, Thomas A.] Los Alamos Natl Lab, Weapon Syst Engn Div, Detonator Technol Grp, Los Alamos, NM 87545 USA. [Hansen, George] Conduct Composites LLC, Heber City, UT 84032 USA. RP Johnson, OK (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM oliverj@byu.edu RI Kaschner, George/H-4445-2013; Mara, Nathan/J-4509-2014; OI Johnson, Oliver/0000-0001-7827-1271; Mara, Nathan/0000-0002-9135-4693 FU DoD/DOE; United States Department of Energy, Office of Basic Energy Sciences [DE-AC52-06NA25396, DE-AC04-94AL85000] FX We are grateful to the joint DoD/DOE Munitions Technology Development Program for support of this work. This work was performed, in part, at the Center for Integrated Nanotechnologies (CINT), a United States Department of Energy, Office of Basic Energy Sciences, user facility at Los Alamos National Laboratory (LANL) (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). We also thank LANL and CINT for the use of their Nanoindenter XP system. We further thank Dr. Brent Adams for his encouragement of this work and Marshall Maez for fabrication of the test fixture hardware. NR 30 TC 7 Z9 7 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2011 VL 42A IS 13 BP 3898 EP 3906 DI 10.1007/s11661-011-0814-9 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 851FF UT WOS:000297253100011 ER PT J AU Measham, TG Preston, BL Smith, TF Brooke, C Gorddard, R Withycombe, G Morrison, C AF Measham, Thomas G. Preston, Benjamin L. Smith, Timothy F. Brooke, Cassandra Gorddard, Russell Withycombe, Geoff Morrison, Craig TI Adapting to climate change through local municipal planning: barriers and challenges SO MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE LA English DT Article DE Community engagement; Institutional capacity; Local adaptation; Place-based planning; Sydney Australia ID ADAPTATION; VULNERABILITY; MANAGEMENT; SUSTAINABILITY; RESILIENCE; POLICY AB Municipal planning represents a key avenue for local adaptation, but is subject to recognised constraints. To date, these constraints have focused on simplistic factors such as limited resources and lack of information. In this paper we argue that this focus has obscured a wider set of constraints which need to be acknowledged and addressed if adaptation is likely to advance through municipal planning. Although these recognised constraints are relevant, we argue that what underpins these issues are more fundamental challenges affecting local, placed-based planning by drawing on the related field of community-based environmental planning (CBEP). In considering a wider set of constraints to practical attempts towards adaptation, the paper considers planning based on a case study of three municipalities in Sydney, Australia in 2008. The results demonstrate that climate adaptation was widely accepted as an important issue for planning conducted by local governments. However, it was yet to be embedded in planning practice which retained a strong mitigation bias in relation to climate change. In considering the case study, we draw attention to factors thus far under-acknowledged in the climate adaptation literature. These include leadership, institutional context and competing planning agendas. These factors can serve as constraints or enabling mechanisms for achieving climate adaptation depending upon how they are exploited in any given situation. The paper concludes that, through addressing these issues, local, place-based planning can play a greater role in achieving climate adaptation. C1 [Measham, Thomas G.; Gorddard, Russell] CSIRO Ecosyst Sci, Canberra, ACT 2601, Australia. [Preston, Benjamin L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Smith, Timothy F.] Univ Sunshine Coast, Maroochydore, Qld 4558, Australia. [Brooke, Cassandra] WWF Australia, Sydney, NSW 2001, Australia. [Withycombe, Geoff; Morrison, Craig] Sydney Coastal Council Grp, Sydney, NSW 2001, Australia. RP Measham, TG (reprint author), CSIRO Ecosyst Sci, GPO Box 284, Canberra, ACT 2601, Australia. EM Tom.Measham@csiro.au RI Gorddard, Russell/D-7828-2011; Preston, Benjamin/B-9001-2012; Brooks, Katya/J-4975-2014; Measham, Thomas/A-5210-2010 OI Preston, Benjamin/0000-0002-7966-2386; Measham, Thomas/0000-0003-4549-5361 FU CSIRO Climate Adaptation Flagship; Australian Government Department of Climate Change FX This research was funded by the CSIRO Climate Adaptation Flagship and the Australian Government Department of Climate Change. Thanks to the staff and Councillors of Leichhardt, Mosman and Sutherland Councils who participated in this research. NR 64 TC 143 Z9 144 U1 5 U2 53 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-2386 J9 MITIG ADAPT STRAT GL JI Mitig. Adapt. Strateg. Glob. Chang. PD DEC PY 2011 VL 16 IS 8 BP 889 EP 909 DI 10.1007/s11027-011-9301-2 PG 21 WC Environmental Sciences SC Environmental Sciences & Ecology GA 852OL UT WOS:000297367200004 ER PT J AU Sesar, B Stuart, JS Ivezic, Z Morgan, DP Becker, AC Wozniak, P AF Sesar, Branimir Stuart, J. Scott Ivezic, Zeljko Morgan, Dylan P. Becker, Andrew C. Wozniak, Przemyslaw TI EXPLORING THE VARIABLE SKY WITH LINEAR. I. PHOTOMETRIC RECALIBRATION WITH THE SLOAN DIGITAL SKY SURVEY SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; catalogs; stars: variables: general; stars: variables: RR Lyrae; surveys ID ASTROMETRIC CALIBRATION; ACCURATE MASSES; NORMAL STARS; DATA RELEASE; USNO-B; CATALOG; SDSS; VARIABILITY; IMAGES; RADII AB We describe photometric recalibration of data obtained by the asteroid survey LINEAR. Although LINEAR was designed for astrometric discovery of moving objects, the data set described here contains over 5 billion photometric measurements for about 25 million objects, mostly stars. We use Sloan Digital Sky Survey (SDSS) data from the overlapping similar to 10,000 deg(2) of sky to recalibrate LINEAR photometry and achieve errors of 0.03 mag for sources not limited by photon statistics with errors of 0.2 mag at r similar to 18. With its 200 observations per object on average, LINEAR data provide time domain information for the brightest four magnitudes of the SDSS survey. At the same time, LINEAR extends the deepest similar wide-area variability survey, the Northern Sky Variability Survey, by 3 mag. We briefly discuss the properties of about 7000 visually confirmed periodic variables, dominated by roughly equal fractions of RR Lyrae stars and eclipsing binary stars, and analyze their distribution in optical and infrared color-color diagrams. The LINEAR data set is publicly available from the SkyDOT Web site. C1 [Sesar, Branimir] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Sesar, Branimir; Ivezic, Zeljko; Morgan, Dylan P.; Becker, Andrew C.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Stuart, J. Scott] MIT, Lincoln Lab, Lexington, MA 02420 USA. [Morgan, Dylan P.] Boston Univ, Dept Astron, Boston, MA 02139 USA. [Wozniak, Przemyslaw] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sesar, B (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. OI Wozniak, Przemyslaw/0000-0002-9919-3310 FU NSF [AST-0908139, AST-1009987, AST-0707901, AST-1008784, AST-0551161]; Croatian National Science Foundation [O-1548-2009]; NASA [NNH09ZDA001N, 09-NEOO09-0010]; United States Air Force [FA8721-05-C-0002] FX B. Sesar thanks NSF grant AST-0908139 to J. G. Cohen and NSF grant AST-1009987 to S. R. Kulkarni for partial support.. Z.I. acknowledges support by NSF grants AST-0707901 and AST-1008784 to the University of Washington, by NSF grant AST-0551161 to LSST for design and development activity, and by the Croatian National Science Foundation grant O-1548-2009. Partial support for this work was provided by NASA through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The LINEAR program is sponsored by the National Aeronautics and Space Administration (NRA Nos. NNH09ZDA001N, 09-NEOO09-0010) and the United States Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government. This research made use of tools provided by Astrometry.net. NR 30 TC 34 Z9 34 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2011 VL 142 IS 6 AR 190 DI 10.1088/0004-6256/142/6/190 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 851FT UT WOS:000297254500012 ER PT J AU Szkody, P Anderson, SF Brooks, K Gansicke, BT Kronberg, M Riecken, T Ross, NP Schmidt, GD Schneider, DP Agueros, MA Gomez-Moran, AN Knapp, GR Schreiber, MR Schwope, AD AF Szkody, Paula Anderson, Scott F. Brooks, Keira Gaensicke, Boris T. Kronberg, Martin Riecken, Thomas Ross, Nicholas P. Schmidt, Gary D. Schneider, Donald P. Agueeros, Marcel A. Gomez-Moran, Ada N. Knapp, Gillian R. Schreiber, Matthias R. Schwope, Axel D. TI CATACLYSMIC VARIABLES FROM THE SLOAN DIGITAL SKY SURVEY. VIII. THE FINAL YEAR (2007-2008) SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: close; binaries: spectroscopic; catalogs; novae, cataclysmic variables; stars: dwarf novae ID DATA RELEASE; SDSS; CATALOG; PHOTOMETRY; BINARY; CALIBRATION; TELESCOPE; MONITOR; OBJECTS; SYSTEM AB This paper completes the series of cataclysmic variables (CVs) identified from the Sloan Digital Sky Survey (SDSS) I/II. The coordinates, magnitudes, and spectra of 33 CVs are presented. Among the 33 are eight systems known prior to SDSS (CT Ser, DO Leo, HK Leo, IR Com, V849 Her, V405 Peg, PG1230+226, and HS0943+1404), as well as nine objects recently found through various photometric surveys. Among the systems identified since the SDSS are two polar candidates, two intermediate polar candidates, and one candidate for containing a pulsating white dwarf. Our follow-up data have confirmed a polar candidate from Paper VII and determined tentative periods for three of the newly identified CVs. A complete summary table of the 285 CVs with spectra from SDSS I/II is presented as well as a link to an online table of all known CVs from both photometry and spectroscopy that will continue to be updated as future data appear. C1 [Szkody, Paula; Anderson, Scott F.; Brooks, Keira; Kronberg, Martin; Riecken, Thomas] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Gaensicke, Boris T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 92420 USA. [Schmidt, Gary D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Agueeros, Marcel A.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Gomez-Moran, Ada N.; Schwope, Axel D.] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. [Gomez-Moran, Ada N.] CNRS, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Knapp, Gillian R.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Schreiber, Matthias R.] Univ Valparaiso, Dept Fis & Astron, Valparaiso, Chile. RP Szkody, P (reprint author), Univ Washington, Dept Astron, Seattle, WA 98195 USA. EM szkody@astro.washington.edu RI Gaensicke, Boris/A-9421-2012; Agueros, Marcel/K-7998-2014 OI Gaensicke, Boris/0000-0002-2761-3005; Agueros, Marcel/0000-0001-7077-3664 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; NSF [AST 0607840, AST 1008734] FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; P.S. acknowledges support from NSF grants AST 0607840 and AST 1008734. NR 49 TC 35 Z9 36 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2011 VL 142 IS 6 AR 181 DI 10.1088/0004-6256/142/6/181 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 851FT UT WOS:000297254500003 ER PT J AU Pawley, AR Chinnery, NJ Clark, SM Walter, MJ AF Pawley, Alison R. Chinnery, Nicholas J. Clark, Simon M. Walter, Michael J. TI Experimental study of the dehydration of 10-phase, with implications for its H2O content and stability in subducted lithosphere SO CONTRIBUTIONS TO MINERALOGY AND PETROLOGY LA English DT Article DE 10-angstrom phase; High pressure; High temperature; Dehydration; Subduction zones; 3.65-angstrom phase ID 10 ANGSTROM PHASE; HIGH-PRESSURE STABILITY; SYSTEM MGO-SIO2-H2O; 10-ANGSTROM PHASE; THERMODYNAMIC PROPERTIES; CRYSTAL-STRUCTURE; TEMPERATURES; ZONES; MANTLE; BEHAVIOR AB The 10- phase (TAP) is a hydrous magnesium silicate that forms from the reaction of talc with H2O at high pressures. Its high-pressure, low-temperature stability means that it could be a storage site for H2O in subduction zones. We have determined the position of the TAP dehydration reaction, TAP = enstatite + coesite + H2O, in phase-equilibrium experiments from 5.0 to 7.1 GPa. Because previous studies had suggested that the composition of TAP is a function of synthesis duration, we used a TAP sample that was synthesised for 392 h. Over the pressure interval of our experiments, the dehydration reaction is isothermal, occurring at a temperature of similar to 690A degrees C. It is coincident, within experimental uncertainty, with the position of the dehydration reaction of TAP synthesised in short experiments (up to 46 h). Above 7.5 GPa, TAP breaks down to enstatite + stishovite + H2O. This reaction has a negative dP/dT and terminates at an invariant point involving the 3.65- phase at similar to 9.5 GPa, 500A degrees C. The zero volume change implied by the isothermal reaction TAP = enstatite + coesite + H2O was used to calculate the interlayer H2O content of TAP along the reaction. A best-fit H2O content of 1 H2O pfu was obtained. This H2O content is independent of TAP synthesis conditions, suggesting that variations in previously measured H2O contents of TAP occur during quenching and decompression of the samples. The stability of TAP in the Earth is probably limited to cold subduction zones, but in these, it could persist to 300 km depth. C1 [Pawley, Alison R.; Chinnery, Nicholas J.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Clark, Simon M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Walter, Michael J.] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England. RP Pawley, AR (reprint author), Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. EM alison.pawley@manchester.ac.uk FU NERC [NE/D007194/1]; EPSRC, Daresbury Laboratory FX ARP acknowledges support from NERC grant NE/D007194/1 and funding from the NERC Envirosync project. NJC acknowledges support from a NERC studentship. SMC would like to acknowledge the support of EPSRC, Daresbury Laboratory. We thank John Waters and John Charnock for help with SEM and EMPA. NR 38 TC 8 Z9 9 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0010-7999 J9 CONTRIB MINERAL PETR JI Contrib. Mineral. Petrol. PD DEC PY 2011 VL 162 IS 6 BP 1279 EP 1289 DI 10.1007/s00410-011-0653-0 PG 11 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 844FT UT WOS:000296733800010 ER PT J AU Petersen, B Ghandhi, J AF Petersen, Ben Ghandhi, Jaal TI High-resolution turbulent scalar field measurements in an optically accessible internal combustion engine SO EXPERIMENTS IN FLUIDS LA English DT Article ID NONPREMIXED JET FLAMES; DISSIPATIVE STRUCTURES; SPATIAL-RESOLUTION; PASSIVE SCALAR; SHEAR FLOWS; SYSTEM; FLUID AB High-resolution planar laser-induced fluorescence (PLIF) measurements were performed in an optically accessible internal combustion engine to investigate the evolution of the turbulent mixing process during the intake and compression strokes. The PLIF measurements were used to analyze the important turbulent length scales, scalar energy and dissipation spectra, and mean scalar gradients. The fluorescence images had sufficient spatial resolution and integrity to resolve all of the fine-scale features of the flow, allowing for direct determination of the Batchelor length scale. The integral and Taylor scales were also determined from two-point spatial correlations of the fluctuating scalar field using an appropriately defined mean scalar value. The general morphology of the scalar field and the measured integral, Taylor and Batchelor length scales were found to be largely independent of engine speed and intake pressure, but increased as the engine cycle progressed through the intake and compression strokes. The measured Batchelor scales ranged from 22 to 54 mu m; the integral scales ranged from 1.8 to 3.5 mm; and the Taylor microscales ranged from 0.6 to 1.2 mm. The Taylor and integral scale values were comparable to values reported in the literature from in-cylinder velocity measurements. The mean scalar gradient, a measure of the fine-scale mixing rate, monotonically decreased as the engine cycle advanced. High-resolution measurements of this type are important in the development and validation of future engine combustion models used in computer simulations. C1 [Petersen, Ben] Sandia Natl Labs, Livermore, CA 94551 USA. [Ghandhi, Jaal] Univ Wisconsin, Madison, WI 53706 USA. RP Petersen, B (reprint author), Sandia Natl Labs, 7011 E Ave,MS 9053, Livermore, CA 94551 USA. EM brpete@sandia.gov NR 41 TC 7 Z9 7 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 J9 EXP FLUIDS JI Exp. Fluids PD DEC PY 2011 VL 51 IS 6 BP 1695 EP 1708 DI 10.1007/s00348-011-1178-z PG 14 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 850AS UT WOS:000297167400016 ER PT J AU Balakrishnan, K Menon, S AF Balakrishnan, Kaushik Menon, Suresh TI Characterization of the Mixing Layer Resulting from the Detonation of Heterogeneous Explosive Charges SO FLOW TURBULENCE AND COMBUSTION LA English DT Article DE Heterogeneous explosive; Instability; Mixing layer; Discrete Equations Method (DEM); Dense flow ID LARGE-EDDY SIMULATION; ALUMINUM PARTICLE CLOUDS; COMBUSTION; FLOWS; INSTABILITY; TRANSITION; EQUATIONS; WAVES AB A dense, two-phase numerical methodology is used to study the mixing layer developing behind the detonation of a heterogeneous explosive charge, i.e., a charge comprising of a high explosive with metal particles. The filtered Navier-Stokes equations are solved in addition to a sub-grid kinetic energy equation, along with a recently developed Eulerian-Lagrangian formulation to handle dense flow-fields. The mixing layer resulting from the post-detonation phase of the explosion of a nitromethane charge consisting of inert steel particles is of interest in this study. Significant mixing and turbulence effects are observed in the mixing layer, and the rms of the radial velocity component is found to be about 25% higher than that of the azimuthal and zenith velocity components due to the flow being primarily radial. The mean concentration profiles are self-similar in shape at different times, based on a scaling procedure used in the past for a homogeneous explosive charge. The peak rms of concentration profiles are 23-30% in intensity and decrease in magnitude with time. The behavior of concentration gradients in the mixing layer is investigated, and stretching along the radial direction is observed to decrease the concentration gradients along the azimuth and zenith directions faster than the radial direction. The mixing and turbulence effects in the mixing layer subsequent to the detonation of the heterogeneous explosive charge are superior to that of a homogeneous explosive charge containing the same amount of the high explosive, exemplifying the role played by the particles in perturbing the flow-field. The non-linear growth of the mixing layer width starts early for the heterogeneous explosive charge, and the rate is reduced during the implosion phase in comparison with the homogeneous charge. The turbulence intensities in the mixing layer for the heterogeneous explosive charge are found to be nearly independent of the particle size for two different sizes considered in the initial charge. Overall, this study has provided some useful insights on the mixing layer characteristics subsequent to the detonation of heterogeneous explosives, and has also demonstrated the efficacy of the dense, multiphase formulation for such applications. C1 [Balakrishnan, Kaushik] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Menon, Suresh] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA. RP Balakrishnan, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kaushikb@lbl.gov FU Office of Naval Research; Munitions Directorate of the Eglin Air Force Base, FL FX This work is supported by the Office of Naval Research (Dr. Cliff Bedford, Program Manager) and the Munitions Directorate of the Eglin Air Force Base, FL (Dr. Douglas V. Nance, Program Manager). The computations were performed at the U.S. Army Research Laboratory DoD Supercomputing Resource Center, MD. NR 44 TC 8 Z9 8 U1 2 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1386-6184 J9 FLOW TURBUL COMBUST JI Flow Turbul. Combust. PD DEC PY 2011 VL 87 IS 4 BP 639 EP 671 DI 10.1007/s10494-011-9349-9 PG 33 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 849NG UT WOS:000297131700006 ER PT J AU Mason, HE Montagna, P Kubista, L Taviani, M McCulloch, M Phillips, BL AF Mason, Harris E. Montagna, Paolo Kubista, Laura Taviani, Marco McCulloch, Malcolm Phillips, Brian L. TI Phosphate defects and apatite inclusions in coral skeletal aragonite revealed by solid-state NMR spectroscopy SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; DEEP-SEA CORAL; H-1 MAS NMR; CALCIUM PHOSPHATES; P-31 NMR; ORGANIC PHOSPHORUS; CROSS-POLARIZATION; SEAWATER; COPRECIPITATION; PRECIPITATION AB Recent development of paleo-nutrient proxies based on the phosphorus/calcium (P/Ca) ratio in tropical-and deep-water corals (also known as cold-water corals) require an understanding of the processes by which P is incorporated into the coral skeletal aragonite. Here, we apply single-and double-resonance solid-state nuclear magnetic resonance (NMR) spectroscopy to determine the speciation of P in coral aragonite. The results show that the majority of P occurs as phosphate defects in the aragonite structure, but in many samples a significant fraction of the P occurs also in crystalline hydroxylapatite inclusions. Quantification of the amount of hydroxylapatite indicates that its presence is not related simply to external environmental factors and that it can occur at varying abundances in different parts of the same corallite. Since there is currently no model available to describe the relationship between dissolved inorganic phosphate and its incorporation as apatite inclusions into carbonates, careful screening of samples which contain only phosphate in the aragonite structure or selective microsampling could improve proxy development. Published by Elsevier Ltd. C1 [Mason, Harris E.; Kubista, Laura; Phillips, Brian L.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Montagna, Paolo; Taviani, Marco] CNR, Ist Sci Marine ISMAR, I-40122 Bologna, Italy. [Montagna, Paolo] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Taviani, Marco] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [McCulloch, Malcolm] Univ Western Australia M004, Sch Earth & Environm, Crawley, WA 6009, Australia. RP Mason, HE (reprint author), Lawrence Livermore Natl Lab, Phys Life Sci Directorate, Livermore, CA 94550 USA. EM mason42@llnl.gov RI Mason, Harris/F-7194-2011; CNR, Ismar/P-1247-2014; Montagna, Paolo/H-9632-2015; OI Mason, Harris/0000-0002-1840-0550; CNR, Ismar/0000-0001-5351-1486; Montagna, Paolo/0000-0001-5598-2214; taviani, marco/0000-0003-0414-4274 FU U.S. NSF [EAR-0819838]; NSF [CHE-03-21001]; Marie Curie International Outgoing Fellowship; CNR; ESF Moundforce; EU HERMES; HERMIONE [226354]; Bruno Briano (Savona, Italy); U.S. Dept. of Education [P200A060248] FX We like to thank the associate editor Alfonso Mucci, and three anonymous reviewers whose insightful comments led to significant improvements in this manuscript. This research was supported by the U.S. NSF (EAR-0819838), and instrumentation provided by NSF CHE-03-21001. P. Montagna acknowledges financial support from the Marie Curie International Outgoing Fellowship. Coral collection was funded by CNR grants, ESF Moundforce and EU HERMES and HERMIONE (grant agreement n. 226354) projects; Bruno Briano (Savona, Italy) and Gunter Forsterra kindly supplied corals from offshore Madagascar and the Chilean fjords, respectively. Ship time on RV Urania was provided by CNR and is gratefully acknowledged. This is ISMAR-Bologna scientific contribution n. 1688. H.M. was supported through a U.S. Dept. of Education sponsored GAANN fellowship (P200A060248). NR 54 TC 15 Z9 15 U1 2 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD DEC 1 PY 2011 VL 75 IS 23 BP 7446 EP 7457 DI 10.1016/j.gca.2011.10.002 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 850RE UT WOS:000297214400004 ER PT J AU Schaef, HT Windisch, CF McGrail, BP Martin, PF Rosso, KM AF Schaef, H. T. Windisch, C. F., Jr. McGrail, B. P. Martin, P. F. Rosso, K. M. TI Brucite [Mg(OH2)] carbonation in wet supercritical CO2: An in situ high pressure X-ray diffraction study SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MINERAL CARBONATION; OXYGEN EXCHANGE; LOW-TEMPERATURE; DIOXIDE; SEQUESTRATION; WATER; KINETICS; FRACTIONATION; LIQUID; SYSTEM AB Understanding mechanisms and kinetics of mineral carbonation reactions relevant to sequestering carbon dioxide as a supercritical fluid (scCO(2)) in geologic formations is crucial to accurately predicting long-term storage risks. Most attention so far has been focused on reactions occurring between silicate minerals and rocks in the aqueous dominated CO2-bearing fluid. However, water-bearing scCO(2) also comprises a reactive fluid, and in this situation mineral carbonation mechanisms are poorly understood. Using in situ high-pressure X-ray diffraction, the carbonation of brucite [Mg(OH)(2)] in wet scCO(2) was examined at pressure (82 bar) as a function of water concentration and temperature (50 and 75 degrees C). Exposing brucite to anhydrous scCO(2) at either temperature resulted in little or no detectable reaction over three days. However, addition of trace amounts of water resulted in partial carbonation of brucite into nesquehonite [MgCO3 center dot 3H(2)O] within a few hours at 50 degrees C. By increasing water content to well above the saturation level of the scCO(2), complete conversion of brucite into nesquehonite was observed. Tests conducted at 75 degrees C resulted in the conversion of brucite into magnesite [MgCO3] instead, apparently through an intermediate nesquehonite step. Raman spectroscopy applied to brucite reacted with O-18-labeled water in scCO(2) show it was incorporated into carbonate at a relatively high concentration. This supports a carbonation mechanism with at least one step involving a direct reaction between the mineral and water molecules without mediation by a condensed aqueous layer. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Schaef, H. T.; Windisch, C. F., Jr.; McGrail, B. P.; Martin, P. F.; Rosso, K. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Schaef, HT (reprint author), Pacific NW Natl Lab, POB 999,MS K6-81, Richland, WA 99352 USA. EM todd.schaef@pnl.gov NR 47 TC 47 Z9 48 U1 0 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD DEC 1 PY 2011 VL 75 IS 23 BP 7458 EP 7471 DI 10.1016/j.gca.2011.09.029 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 850RE UT WOS:000297214400005 ER PT J AU Navarre-Sitchler, A Steefel, CI Sak, PB Brantley, SL AF Navarre-Sitchler, Alexis Steefel, Carl I. Sak, Peter B. Brantley, Susan L. TI A reactive-transport model for weathering rind formation on basalt SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID DISSOLUTION RATES; COSTA-RICA; RIVER GEOCHEMISTRY; MARINE-SEDIMENTS; DENUDATION RATES; PACIFIC COAST; ORGANIC-ACIDS; DECCAN TRAPS; NEW-ZEALAND; PH AB Saprolite formation rates influence many important geological and environmental issues ranging from agricultural productivity to landscape evolution. Here we investigate the chemical and physical transformations that occur during weathering by studying small-scale "saprolites" in the form of weathering rinds, which form on rock in soil or saprolite and grow in thickness without physical disturbance with time. We compare detailed observations of weathered basalt clasts from a chronosequence of alluvial terraces in Costa Rica to diffusion-reaction simulations of rind formation using the fully coupled reactive transport model CrunchFlow. The four characteristic features of the weathered basalts which were specifically used as criteria for model comparisons include (1) the mineralogy of weathering products, (2) weathering rind thickness, (3) the coincidence of plagioclase and augite reaction fronts, and (4) the thickness of the zones of mineral reaction, i.e. reaction fronts. Four model scenarios were completed with varying levels of complexity and degrees of success in matching the observations. To fit the model to all four criteria, however, it was necessary to (1) treat diffusivity using a threshold in which it increased once porosity exceeded a critical value of 9%, and (2) treat mineral surface area as a fitting factor. This latter approach was presumably necessary because the mineral-water surface area of the connected (accessible) porosity in the Costa Rica samples is much less than the total porosity (Navarre-Sitchler et al., 2009). The model-fit surface area, here termed reacting surface area, was much smaller than the BET-measured surface area determined for powdered basaltic material. In the parent basalt, reacting surface area and diffusivity are low due to low pore connectivity, and early weathering is therefore transport controlled. However, as pore connectivity increases as a result of weathering, the reacting surface area and diffusivity also increase and weathering becomes controlled by mineral reaction kinetics. The transition point between transport and kinetic control appears to be related to a critical porosity (9%) at which pore connectivity is high enough to allow rapid transport. Based on these simulations, we argue that the rate of weathering front advance is controlled by the rate at which porosity is created in the weathering interface, and that this porosity increases because of mineral dissolution following a rate that is largely surface-reaction controlled. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Navarre-Sitchler, Alexis] Colorado Sch Mines, Environm Sci & Engn Div, Golden, CO 80401 USA. [Steefel, Carl I.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Sak, Peter B.] Dickinson Coll, Dept Earth Sci, Carlisle, PA 17013 USA. [Brantley, Susan L.] Penn State, Ctr Environm Kinet Anal, University Pk, PA USA. [Navarre-Sitchler, Alexis] Penn State, Dept Geosci, University Pk, PA USA. RP Navarre-Sitchler, A (reprint author), Colorado Sch Mines, Environm Sci & Engn Div, Golden, CO 80401 USA. EM aksitchler@gmail.com RI Steefel, Carl/B-7758-2010; Navarre-Sitchler, Alexis/J-3389-2014 FU National Science Foundation (Biogeochemical Research Initiative for Education, BRIE) [DGE-9972759]; Center for Environmental Kinetics Analysis, CEKA [CHE-041328]; Department of Energy (Office of Basic Energy Science) [DE-AC02-05CH11231, DE-FG02-05ER15675]; S. Department of Energy NSF [DE-AC02-05CH11231]; DOE for CEKA FX We acknowledge Don Fisher (Penn State) and Thomas Gardner (Trinity University) for introducing us to the Costa Rica terraces and for use of the unpublished OSL date for terrace Qt3. We thank P. Lichtner, R. Fletcher, A. F. White, and M. Lebedeva for many conversations. Material presented in this paper is based upon work supported by the National Science Foundation under grants DGE-9972759 (Biogeochemical Research Initiative for Education, BRIE) and CHE-041328 (Center for Environmental Kinetics Analysis, CEKA) to SLB. Additional support was derived from the Department of Energy (Office of Basic Energy Science) grants DE-AC02-05CH11231 and DE-FG02-05ER15675 to SLB. Support for the participation of CIS was provided in part by the Director, Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 as part of joint funding from NSF and DOE for CEKA. NR 106 TC 36 Z9 36 U1 2 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD DEC 1 PY 2011 VL 75 IS 23 BP 7644 EP 7667 DI 10.1016/j.gca.2011.09.033 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 850RE UT WOS:000297214400018 ER PT J AU Kim, H Bartsch, MS Renzi, RF He, J Van de Vreugde, JL Claudnic, MR Patel, KD AF Kim, Hanyoup Bartsch, Michael S. Renzi, Ronald F. He, Jim Van de Vreugde, James L. Claudnic, Mark R. Patel, Kamlesh D. TI Automated Digital Microfluidic Sample Preparation for Next-Generation DNA Sequencing SO JALA LA English DT Article DE electrowetting on dielectric; digital microfluidic; sub; manipulation; capillary interface; fraction collection ID PATHOGEN DETECTION; SEPARATION AB Next-generation sequencing (NGS) technology is a promising tool for identifying and characterizing unknown pathogens, but its usefulness in time-critical biodefense and public health applications is currently limited by the lack of fast, efficient, and reliable automated DNA sample preparation methods. To address this limitation, we are developing a digital microfluidic (DMF) platform to function as a fluid distribution hub, enabling the integration of multiple subsystem modules into an automated NGS library sample preparation system. A novel capillary interface enables highly repeatable transfer of liquid between the DMF device and the external fluidic modules, allowing both continuous-flow and droplet-based sample manipulations to be performed in one integrated system. Here, we highlight the utility of the DMF hub platform and capillary interface for automating two key operations in the NGS sample preparation workflow. Using an in-line contactless conductivity detector in conjunction with the capillary interface, we demonstrate closed-loop automated fraction collection of target analytes from a continuous-flow sample stream into droplets on the DMF device. Buffer exchange and sample cleanup, the most repeated steps in NGS library preparation, are also demonstrated on the DM F platform using a magnetic bead assay and achieving an average DNA recovery efficiency of 80% +/- 4.8%. ( JALA 2011;16:405-14) C1 [Patel, Kamlesh D.] Sandia Natl Labs, Dept Biotechnol & Bioengn, Livermore, CA 94550 USA. RP Patel, KD (reprint author), Sandia Natl Labs, Dept Biotechnol & Bioengn, 7011 East Ave,MS 9292, Livermore, CA 94550 USA. EM kdpatel@sandia.gov RI Robertson, Simon/D-1549-2012 FU Sandia Laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AI85000] FX We would like to thank Genevieve Pezzola, Marielle Remillard, and Eric Kittlaus for their contributions to the initial fabrication, characterization, and testing of our earliest DMF devices. Furthermore, we would like to acknowledge Jerry Inman and Dan Throckmorton for their engineering support and Stanley Langevin, Zachary Bent, and Steve Branch for their help with assay implementation. We would also like to thank Steve Shih and Prof. Aaron Wheeler, whose advice and assistance proved invaluable in the initial stages of our DMF development efforts. This work was funded through a Sandia Laboratory Directed Research and Development (LDRD) grant. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AI85000. NR 25 TC 28 Z9 30 U1 6 U2 43 PU ELSEVIER INC PI SAN DIEGO PA 525 B STREET, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1535-5535 J9 JALA-J LAB AUTOM JI JALA PD DEC PY 2011 VL 16 IS 6 SI SI BP 405 EP 414 DI 10.1016/j.jala.2011.07.001 PG 10 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 850JB UT WOS:000297189800002 PM 22093297 ER PT J AU Hu, JZ Kwak, JH Wang, Y Hu, MY Turcu, RV Peden, CHF AF Hu, Jian Zhi Kwak, Ja Hun Wang, Yong Hu, Mary Y. Turcu, Romulus V. Peden, Charles H. F. TI Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid-State NMR and Quantum Chemistry Calculations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL-SHIFT-ANISOTROPY; TENSOR PRINCIPAL VALUES; ANGLE TURNING EXPERIMENT; MAGIC-ANGLE; N-15 NMR; SKELETAL ISOMERIZATION; SPINNING NMR; ACTIVATED CARBON; POWDER PATTERNS; GAMMA-ALUMINA AB The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast- and slow-MAS N-15 NMR, static H-2 NMR, and quantum chemistry calculations. It is found that the bridging acidic -OH groups in surface-adsorbed tungsten dimers or multimers (i.e., W-OH-W) are the Bronsted acid sites. The unusually strong acidity of these Bronsted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the Bronsted and terminal W-OH sites for dispersed tungsten oxide species are strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, that is, a reorientation mainly about the molecular C-2 symmetry axis. The restricted reorientation results in efficient H-1-N-15 cross-polarization, making it possible to estimate the relative ratio of the Bronsted to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS H-1-N-15 CP PASS method. C1 [Hu, Jian Zhi; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus V.; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Hu, JZ (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MS K8-98, Richland, WA 99352 USA. EM Jianzhi.Hu@pnl.gov; Chuck.Peden@pnl.gov RI Hu, Jian Zhi/F-7126-2012; Wang, Yong/C-2344-2013; Kwak, Ja Hun/J-4894-2014; Turcu, Flaviu/B-3555-2015; OI Turcu, Flaviu/0000-0002-0857-9868; Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences; DOE's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL); DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This research was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. All of the NMR experiments were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. The anonymous reviewer is acknowledged for his/her constructive critiques and suggestions. NR 58 TC 6 Z9 7 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 1 PY 2011 VL 115 IS 47 BP 23354 EP 23362 DI 10.1021/jp203813f PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 850LD UT WOS:000297195200015 ER PT J AU Wagner, M Surnev, S Ramsey, MG Barcaro, G Sementa, L Negreiros, FR Fortunelli, A Dohnalek, Z Netzer, FP AF Wagner, M. Surnev, S. Ramsey, M. G. Barcaro, G. Sementa, L. Negreiros, F. R. Fortunelli, A. Dohnalek, Z. Netzer, F. P. TI Structure and Bonding of Tungsten Oxide Clusters on Nanostructured Cu-O Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID (WO3)(3) CLUSTERS; TIO2(110); GROWTH AB (WO3)(3) gas-phase clusters generated via vacuum sublimation are deposited under UHV and low temperature (< 15 K) conditions on a Cu(110) stripe phase consisting of alternating Cu-O (2 x 1) and clean Cu regions. STM imaging shows that the clusters adsorb as intact units on both substrates, and the suggested adsorption geometries are confirmed by density-functional (DF) simulations. On the clean surface, the overall distortion is minor, and we are able to image the nodal structure of an individual molecular orbital in the STM at low bias, whereas on the Cu-O surface both the clusters and the substrate are significantly distorted due to the strong oxygen affinity of W atoms. On both surfaces, cluster and Cu electronic states are appreciably mixed, and the electron charge is donated by the surface to the cluster. The experimentally STS-determined DOS signature of the adsorption complex consists of two peaks across the Fermi energy and is well reproduced by the DF calculations. C1 [Barcaro, G.; Sementa, L.; Negreiros, F. R.; Fortunelli, A.] CNR, CNR IPCF, Ist Proc Chim Fis, I-56124 Pisa, Italy. [Wagner, M.; Surnev, S.; Ramsey, M. G.; Netzer, F. P.] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria. [Dohnalek, Z.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Fortunelli, A (reprint author), CNR, CNR IPCF, Ist Proc Chim Fis, I-56124 Pisa, Italy. EM alessandro.fortunelli@cnr.it; falko.netzer@uni-graz.at RI Barcaro, Giovanni/M-2614-2013; Wagner, Margareta/F-3835-2015; OI Barcaro, Giovanni/0000-0002-5520-5914; Dohnalek, Zdenek/0000-0002-5999-7867 FU ERC; U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences FX This work has been supported by the ERC Advanced Grant SEPON. CPU time at the CINECA supercomputing center via the ISCRA UT-Ox project is gratefully acknowledged. A part of this work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences. NR 21 TC 18 Z9 19 U1 2 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 1 PY 2011 VL 115 IS 47 BP 23480 EP 23487 DI 10.1021/jp208207e PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 850LD UT WOS:000297195200028 ER PT J AU Roskop, L Evans, JW Gordon, MS AF Roskop, Luke Evans, James W. Gordon, Mark S. TI Adsorption and Diffusion of Gallium Adatoms on the Si(100)-2 x 1 Reconstructed Surface: A Multiconfiguration Self-Consistent Field Study Utilizing Molecular Surface Clusters SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MM3 FORCE-FIELD; SCANNING-TUNNELING-MICROSCOPY; LOW-COVERAGE PHASES; ENERGY MINIMIZATION; MECHANICS; AL; HYDROCARBONS; ALGORITHMS; BEHAVIOR; SI(001) AB Ab initio electronic structure theory was used to model systems that depict Ga and Ga(2) adsorbed on the Si(100)-2 x 1 reconstructed surface. The prototypical Si(15)H(16) molecular cluster based on quantum mechanics (QM) was used to model the Si(100)-2 x 1 reconstructed surface. A larger Si(199)H(92) molecular cluster based on a hybrid quantum mechanics molecular mechanics (QM/MM) methodology was used to incorporate bulk substrate effects on the adsorbed species. Since the Si(100)-2 x 1 reconstructed surface is comprised of Si dimers that exhibit significant diradical character, multiconfiguration self-consistent field (MCSCF) methodology was used to treat the relevant potential energy surfaces. Hessian calculations were used to characterize all structures, while intrinsic reaction coordinate (minimum energy path) computations were performed to validate the potential energy surface. Dynamic correlation effects were computed at MCSCF optimized structures by multireference second-order perturbation theory. Results from the two cluster models were compared to assess the need to include bulk effects in the surface model. C1 [Roskop, Luke; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Roskop, L (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. FU Air Force Office of Scientific Research; Basic Energy Sciences, Division of Chemical Sciences of the Department of Energy [DE-AC02-07CH11358] FX This work was supported by grants from the Air Force Office of Scientific Research (LR) and from the Basic Energy Sciences, Division of Chemical Sciences of the Department of Energy (MSG, JWE) to the Ames Laboratory, administered by Iowa State University under Contract No. DE-AC02-07CH11358. Enlightening discussions with Dr. Deborah Zorn and Professor Yingbin Ge are gratefully acknowledged. NR 34 TC 3 Z9 3 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 1 PY 2011 VL 115 IS 47 BP 23488 EP 23500 DI 10.1021/jp208410t PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 850LD UT WOS:000297195200029 ER PT J AU Henderson, MA AF Henderson, Michael A. TI Surface Chemistry of Trimethyl Phosphate on alpha-Fe2O3 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TREATED MAGNESIUM-OXIDE; DIMETHYL METHYLPHOSPHONATE; AB-INITIO; INFRARED-SPECTROSCOPY; GROWTH-MECHANISM; METAL-OXIDES; IRON-OXIDE; ADSORBED ORGANOPHOSPHONATES; ORGANIC-PHOSPHATES; FE2O3 POWDERS AB The chemistry of trimethyl phosphate (TMP) was examined on the (012) crystallographic face of hematite (alpha-Fe2O3) using temperature-programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), static secondary ion mass spectrometry (SSIMS), and Auger electron spectroscopy (AES). TMP adsorbed at Fe3+ sites on the clean alpha-Fe2O3(012) surface through lone pair electrons on the P=O oxygen atom. A small portion of adsorbed TMP desorbed without decomposition; however, the majority of adsorbed TMP decomposed on the clean surface in a two-step process. The first step, occurring at or below room temperature, involved displacement of one methoxy group of TMP to form a surface methoxy and adsorbed dimethyl phosphate (DMP). In the second step, adsorbed DMP decomposed above 500 K to a 1:1 ratio of gaseous methanol and formaldehyde leaving phosphate on the surface. The phosphate was stable on the alpha-Fe2O3(012) surface to 950 K. Identification of these steps was assisted by using the chemistry of methanol on the clean surface. Coadsorption of TMP and water led to a small degree of hydrolysis between these two molecules in the multilayer but no significant changes in the chemistry of TMP molecules adsorbed on the surface. C1 Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnnl.gov FU U.S. Department of Energy's (DOE) Office of Basic Energy Sciences; Pacific Northwest National Laboratory (PNNL) FX This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program and the Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research and Development fund and was performed in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE national scientific user facility located at PNNL. PNNL is operated by Battelle for DOE. NR 60 TC 6 Z9 6 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 1 PY 2011 VL 115 IS 47 BP 23527 EP 23534 DI 10.1021/jp208978d PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 850LD UT WOS:000297195200033 ER PT J AU Lau, KC Curtiss, LA Greeley, J AF Lau, Kah Chun Curtiss, Larry A. Greeley, Jeffrey TI Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AUGMENTED-WAVE METHOD; PHASE-TRANSITIONS; BATTERIES; PEROXIDE; LI2O2; LI; CHALLENGES; ELECTRODE; CATALYST; CATHODE AB Density functional theory is used together with classical statistical mechanical analyses to investigate the thermodynamic stability of bulk crystalline LiO2, Li2O, and Li2O2 as a function of the oxygen environment. The results indicate that lithium peroxide (Li2O2(s) and superoxide (LiO2(s)) are likely to be stable only under O-2-rich conditions with high oxygen partial pressures (P-O2), whereas Li2O is the most stable at ambient conditions. Additionally, the trends in the density functional calculated equilibrium potential for an ideal reversible Li-O-2 couple can be described by an analytical equation as a function of pressure and temperature. As part of this work, we have also calculated the structure and thermodynamics for lithium superoxide. It is found to be stable with respect to lattice vibrations, with an O-O stretching vibration mode very similar to that of the isolated LiO2 molecule and to the O-2(-) ion radical. C1 [Lau, Kah Chun; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Greeley, Jeffrey] Argonne Natl Lab, Ctr Nanoscale Mat Div, Argonne, IL 60439 USA. RP Lau, KC (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kclau@anl.gov; curtiss@anl.gov RI Lau, Kah Chun/A-9348-2013 OI Lau, Kah Chun/0000-0002-4925-3397 FU U.S. Department of Energy [DEAC0206CH11357]; Tailored Interfaces for Energy Storage, an Energy Frontier Research Center; Early Career Award; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences FX This work was supported by the U.S. Department of Energy under Contract DEAC0206CH11357. This material is based upon work supported as part of the Tailored Interfaces for Energy Storage, an Energy Frontier Research Center, and an Early Career Award (J.G.), both funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. We gratefully acknowledge grants of computer time from EMSL, a national, scientific user facility located at Pacific Northwest National Laboratory, the ANL Laboratory Computing Resource Center (LCRC), and the ANL Center of Nanoscale Materials. NR 53 TC 41 Z9 42 U1 5 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 1 PY 2011 VL 115 IS 47 BP 23625 EP 23633 DI 10.1021/jp206796h PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 850LD UT WOS:000297195200046 ER PT J AU Shen, MM Liu, DJ Jenks, CJ Thiel, PA AF Shen, Mingmin Liu, Da-Jiang Jenks, Cynthia J. Thiel, Patricia A. TI Comment on "Sulfur-Induced Reconstruction of Ag(111) Surfaces Studied by DFT" SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Editorial Material ID MOLECULAR SULFUR C1 [Liu, Da-Jiang] Iowa State Univ, Dept Chem & Mat Sci & Engn, Ames, IA 50011 USA. Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Liu, DJ (reprint author), Iowa State Univ, Dept Chem & Mat Sci & Engn, Ames, IA 50011 USA. EM dajiang@fi.ameslab.gov RI Shen, Mingmin/A-9293-2012 NR 4 TC 1 Z9 1 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 1 PY 2011 VL 115 IS 47 BP 23651 EP 23651 DI 10.1021/jp205888y PG 1 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 850LD UT WOS:000297195200049 ER PT J AU Sasakawa, Y Kiikuni, K Kikuchi, S Niwa, O Yamashita, S Heymann, DL Mettler, FA Akashi, M Boice, JD Bouville, A Bromet, EJ Chumak, V Clement, CH Coleman, CN Cooper, JR Davis, S van Deventer, TE Gonzalez, AJ Gusev, I Homma, T Ivanov, V Kai, M Kamiya, K Kodama, K Lee, J Lochard, J Mabuchi, K Maekawa, K Menzel, HG Napier, B Okubo, T Sakai, K Schneider, AB Shima, A Takenoshita, S Thomas, GA Tronko, MD Wakeford, R Walker, T Weiss, W Wondergem, J Yonekura, Y Zeeb, H AF Sasakawa, Yohei Kiikuni, Kenzo Kikuchi, Shinichi Niwa, Ohtsura Yamashita, Shunichi Heymann, David L. Mettler, Fred A., Jr. Akashi, Makoto Boice, John D., Jr. Bouville, Andre Bromet, Evelyn J. Chumak, Vadim Clement, Christopher H. Coleman, C. Norman Cooper, John R. Davis, Scott van Deventer, T. Emilie Gonzalez, Abel Julio Gusev, Igor Homma, Toshimitsu Ivanov, Victor Kai, Michiaki Kamiya, Kenji Kodama, Kazunori Lee, Jaiki Lochard, Jacques Mabuchi, Kiyohiko Maekawa, Kazuhiko Menzel, Hans-Georg Napier, Bruce Okubo, Toshiteru Sakai, Kazuo Schneider, Arthur B. Shima, Akihiro Takenoshita, Seiichi Thomas, Geraldine A. Tronko, Mycola (Nikolai) D. Wakeford, Richard Walker, Timothy Weiss, Wolfgang Wondergem, Jan Yonekura, Yoshiharu Zeeb, Hajo CA Int Expert Symposium Fukushima TI Conclusions and recommendations of the International Expert Symposium in Fukushima: Radiation and Health Risks SO JOURNAL OF RADIOLOGICAL PROTECTION LA English DT Editorial Material C1 [Kikuchi, Shinichi; Yamashita, Shunichi; Kamiya, Kenji; Takenoshita, Seiichi] Fukushima Med Univ, Fukushima, Japan. [Niwa, Ohtsura] Kyoto Univ, Kyoto 6068501, Japan. [Yamashita, Shunichi] Nagasaki Univ, Nagasaki, Japan. [Heymann, David L.] Chatham House Ctr Global Hlth Secur, Chatham, Kent, England. [Boice, John D., Jr.] Vanderbilt Univ, Nashville, TN USA. [Coleman, C. Norman] NCI, Radiat Res Program, Bethesda, MD 20892 USA. [Bromet, Evelyn J.] SUNY Stony Brook, Stony Brook, NY USA. [Davis, Scott] Univ Washington, Sch Publ Hlth & Community Med, Seattle, WA 98195 USA. [Homma, Toshimitsu] Japan Atom Energy Agcy, Nucl Safety & Res Ctr, Tokyo, Japan. [Kai, Michiaki] Oita Univ Nursing & Hlth Sci, Dept Hlth Sci, Oita, Japan. [Kamiya, Kenji] Hiroshima Univ, Res Inst Radiat Biol & Med, Hiroshima 730, Japan. [Lee, Jaiki] Hanyang Univ, Fac Nucl Engn, Seoul, South Korea. [Mabuchi, Kiyohiko] NCI, Radiat Epidemiol Branch, Bethesda, MD 20892 USA. [Maekawa, Kazuhiko] Univ Tokyo, Tokyo 1138654, Japan. [Menzel, Hans-Georg] CERN, Geneva, Switzerland. [Napier, Bruce] Pacific NW Natl Lab, Richland, WA 99352 USA. [Schneider, Arthur B.] Univ Illinois, Chicago, IL USA. [Thomas, Geraldine A.] Imperial Coll London, London, England. [Tronko, Mycola (Nikolai) D.] Natl Acad Med Sci Ukraine, Res Inst Endocrinol & Metab, Kiev, Ukraine. [Wakeford, Richard] Univ Manchester, Dalton Nucl Inst, Manchester M13 9PL, Lancs, England. [Zeeb, Hajo] Univ Bremen, D-2800 Bremen 33, Germany. NR 0 TC 5 Z9 5 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0952-4746 EI 1361-6498 J9 J RADIOL PROT JI J. Radiol. Prot. PD DEC PY 2011 VL 31 IS 4 BP 381 EP 384 DI 10.1088/0952-4746/31/4/E02 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 851FQ UT WOS:000297254200001 ER PT J AU Connor, DM Zhong, Z Foda, HD Wiebe, S Parham, CA Dilmanian, FA Cole, EB Pisano, ED AF Connor, Dean M. Zhong, Zhong Foda, Hussein D. Wiebe, Sheldon Parham, Christopher A. Dilmanian, F. Avraham Cole, Elodia B. Pisano, Etta D. TI Diffraction Enhanced Imaging of a Rat Model of Gastric Acid Aspiration Pneumonitis SO ACADEMIC RADIOLOGY LA English DT Article DE Diffraction-enhanced imaging; phase contrast imaging; aspiration pneumonitis ID ARTICULAR-CARTILAGE; BREAST-CANCER; COMPUTED-TOMOGRAPHY; CONTRAST; BONE; RADIOGRAPHY; REFRACTION; TISSUE; LUNG; SPECIMENS AB Rationale and Objectives: Diffraction-enhanced imaging (DEI) is a type of phase contrast x-ray imaging that has improved image contrast at a lower dose than conventional radiography for many imaging applications, but no studies have been done to determine if DEI might be useful for diagnosing lung injury. The goals of this study were to determine if DEI could differentiate between healthy and injured lungs for a rat model of gastric aspiration and to compare diffraction-enhanced images with chest radiographs. Materials and Methods: Radiographs and diffraction-enhanced chest images of adult Sprague Dawley rats were obtained before and 4 hours after the aspiration of 0.4 mL/kg of 0.1 mol/L hydrochloric acid. Lung damage was confirmed with histopathology. Results: The radiographs and diffraction-enhanced peak images revealed regions of atelectasis in the injured rat lung. The diffraction-enhanced peak images revealed the full extent of the lung with improved clarity relative to the chest radiographs, especially in the portion of the lower lobe that extended behind the diaphragm on the anteroposterior projection. Conclusions: For a rat model of gastric acid aspiration, DEI is capable of distinguishing between a healthy and an injured lung and more clearly than radiography reveals the full extent of the lung and the lung damage. C1 [Connor, Dean M.; Cole, Elodia B.; Pisano, Etta D.] Med Univ S Carolina, Dept Radiol & Radiol Sci, Charleston, SC 29425 USA. [Dilmanian, F. Avraham] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Foda, Hussein D.] Vet Affairs Med Ctr, Dept Med & Res, Northport, NY USA. [Foda, Hussein D.] SUNY Stony Brook, Dept Med, Stony Brook, NY 11794 USA. [Dilmanian, F. Avraham] SUNY Stony Brook, Dept Radiat Oncol, Stony Brook, NY 11794 USA. [Dilmanian, F. Avraham] SUNY Stony Brook, Dept Neurol, Stony Brook, NY 11794 USA. [Wiebe, Sheldon] Univ Saskatchewan, Dept Med Imaging, Saskatoon, SK, Canada. [Parham, Christopher A.] Univ N Carolina, Dept Radiol, Chapel Hill, NC USA. [Parham, Christopher A.] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC USA. RP Connor, DM (reprint author), Med Univ S Carolina, Dept Radiol & Radiol Sci, Charleston, SC 29425 USA. EM connord@musc.edu OI Cole, Elodia/0000-0002-2301-7468 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences (Washington, DC) [DE-AC02-98CH10886] FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (Washington, DC), under contract DE-AC02-98CH10886. Address correspondence to: D.M.C. e-mail: connord@musc.edu NR 35 TC 7 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1076-6332 J9 ACAD RADIOL JI Acad. Radiol. PD DEC PY 2011 VL 18 IS 12 BP 1515 EP 1521 DI 10.1016/j.acra.2011.08.005 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 848WL UT WOS:000297085700008 PM 21958600 ER PT J AU Sherman, MY Meng, L Stampfer, M Gabai, VL Yaglom, JA AF Sherman, Michael Y. Meng, Le Stampfer, Martha Gabai, Vladimir L. Yaglom, Julia A. TI Oncogenes induce senescence with incomplete growth arrest and suppress the DNA damage response in immortalized cells SO AGING CELL LA English DT Article DE DNA damage response; Her2; oncogenes; senescence AB Activation of the Her2 (ErbB2) oncogene is implicated in the development of breast, ovary and other cancers. Here, we show that expression of NeuT, a mutant-activated rodent isoform of Her2, in immortalized breast epithelial cells, while promoting senescence-associated morphological changes, up-regulation of senescence-associated beta-galactosidase activity, and accumulation of the cyclin-dependent kinase inhibitor p21, failed to trigger the major senescence end-point, i.e. permanent growth arrest. Similar senescence-associated phenotype with incomplete growth arrest, which we dubbed senescence with incomplete growth arrest (SWING), could also be triggered by the expression of the Ras oncogene. SWING phenotype was stable, and persisted in tumor xenografts established from NeuT-transduced cells. Furthermore, a significant population of cells in SWING state was found in tumors in the MMTV/NeuT transgenic mouse model. SWING cells showed downregulation of histone H2AX, critical for repair of double-stranded DNA breaks, and impaired activation of Chk1 kinase. Overall, SWING cells were characterized by increased DNA instability and hypersensitivity to genotoxic stresses. We propose that the SWING state could be a stage in the process of cancer development. C1 [Sherman, Michael Y.; Meng, Le; Gabai, Vladimir L.; Yaglom, Julia A.] Boston Univ, Sch Med, Dept Biochem, Boston, MA 02118 USA. [Stampfer, Martha] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Yaglom, JA (reprint author), Boston Univ, Sch Med, Dept Biochem, 72 E Concord St,K-323, Boston, MA 02118 USA. EM yaglom@bu.edu RI Gabai, Vladimir/I-1650-2013 FU NCI NIH HHS [R01 CA081244] NR 0 TC 15 Z9 15 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1474-9718 J9 AGING CELL JI Aging Cell PD DEC PY 2011 VL 10 IS 6 BP 949 EP 961 DI 10.1111/j.1474-9726.2011.00736.x PG 13 WC Cell Biology; Geriatrics & Gerontology SC Cell Biology; Geriatrics & Gerontology GA 847WS UT WOS:000297003800004 PM 21824272 ER PT J AU Pinchuk, GE Geydebrekht, OV Hill, EA Reed, JL Konopka, AE Beliaev, AS Fredrickson, JK AF Pinchuk, Grigoriy E. Geydebrekht, Oleg V. Hill, Eric A. Reed, Jennifer L. Konopka, Allan E. Beliaev, Alexander S. Fredrickson, Jim K. TI Pyruvate and Lactate Metabolism by Shewanella oneidensis MR-1 under Fermentation, Oxygen Limitation, and Fumarate Respiration Conditions SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ESCHERICHIA-COLI; ALTEROMONAS-PUTREFACIENS; DISSIMILATORY REDUCTION; ENERGY-CONSERVATION; HYDROGEN; FORMATE; ACID; PHOSPHORYLATION; OXIDATION; MANGANESE AB Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P) H-independent D-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force. C1 [Pinchuk, Grigoriy E.; Geydebrekht, Oleg V.; Hill, Eric A.; Konopka, Allan E.; Beliaev, Alexander S.; Fredrickson, Jim K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Reed, Jennifer L.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI USA. RP Pinchuk, GE (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MS P7-50, Richland, WA 99352 USA. EM grigoriy.pinchuk@pnl.gov RI Reed, Jennifer/E-5137-2011; Beliaev, Alexander/E-8798-2016 OI Beliaev, Alexander/0000-0002-6766-4632 FU U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) FX This research was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) as part of the BER Genomic Science Program (GSP). This contribution originates from the GSP Foundational and Biofuels Scientific Focus Areas at the Pacific Northwest National Laboratory (PNNL). NR 30 TC 30 Z9 31 U1 5 U2 53 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD DEC PY 2011 VL 77 IS 23 BP 8234 EP 8240 DI 10.1128/AEM.05382-11 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 849ZL UT WOS:000297164100005 PM 21965410 ER PT J AU Arcavi, I Gal-Yam, A Yaron, O Sternberg, A Rabinak, I Waxman, E Kasliwal, MM Quimby, RM Ofek, EO Horesh, A Kulkarni, SR Filippenko, AV Silverman, JM Cenko, SB Li, WD Bloom, JS Sullivan, M Nugent, PE Poznanski, D Gorbikov, E Fulton, BJ Howell, DA Bersier, D Riou, A Lamotte-Bailey, S Griga, T Cohen, JG Hachinger, S Polishook, D Xu, D Ben-Ami, S Manulis, I Walker, ES Maguire, K Pan, YC Matheson, T Mazzali, PA Pian, E Fox, DB Gehrels, N Law, N James, P Marchant, JM Smith, RJ Mottram, CJ Barnsley, RM Kandrashoff, MT Clubb, KI AF Arcavi, Iair Gal-Yam, Avishay Yaron, Ofer Sternberg, Assaf Rabinak, Itay Waxman, Eli Kasliwal, Mansi M. Quimby, Robert M. Ofek, Eran O. Horesh, Assaf Kulkarni, Shrinivas R. Filippenko, Alexei V. Silverman, Jeffrey M. Cenko, S. Bradley Li, Weidong Bloom, Joshua S. Sullivan, Mark Nugent, Peter E. Poznanski, Dovi Gorbikov, Evgeny Fulton, Benjamin J. Howell, D. Andrew Bersier, David Riou, Amedee Lamotte-Bailey, Stephane Griga, Thomas Cohen, Judith G. Hachinger, Stephan Polishook, David Xu, Dong Ben-Ami, Sagi Manulis, Ilan Walker, Emma S. Maguire, Kate Pan, Yen-Chen Matheson, Thomas Mazzali, Paolo A. Pian, Elena Fox, Derek B. Gehrels, Neil Law, Nicholas James, Philip Marchant, Jonathan M. Smith, Robert J. Mottram, Chris J. Barnsley, Robert M. Kandrashoff, Michael T. Clubb, Kelsey I. TI SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE supernovae: individual (PTF11eon/SN2011dh) ID CORE-COLLAPSE SUPERNOVAE; SHOCK BREAKOUT; SUPERGIANT PROGENITOR; SPECTRAL EVOLUTION; LIGHT-CURVE; EMISSION; SN-1993J; M81; CALIBRATION; PHOTOMETRY AB On 2011 May 31 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras and also detected it with the Palomar Transient Factory survey, rapidly confirming it to be a Type II SN. Here, we present multi-color ultraviolet through infrared photometry which is used to calculate the bolometric luminosity and a series of spectra. Our early-time observations indicate that SN 2011dh resulted from the explosion of a relatively compact progenitor star. Rapid shock-breakout cooling leads to relatively low temperatures in early-time spectra, compared to explosions of red supergiant stars, as well as a rapid early light curve decline. Optical spectra of SN 2011dh are dominated by H lines out to day 10 after explosion, after which He I lines develop. This SN is likely a member of the eIIb (compact IIb) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (similar to 10(13) cm) would be highly inconsistent with constraints from our post-explosion spectra. C1 [Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer; Sternberg, Assaf; Rabinak, Itay; Waxman, Eli; Polishook, David; Xu, Dong; Ben-Ami, Sagi; Manulis, Ilan] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Kasliwal, Mansi M.; Quimby, Robert M.; Ofek, Eran O.; Horesh, Assaf; Kulkarni, Shrinivas R.; Cohen, Judith G.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Filippenko, Alexei V.; Silverman, Jeffrey M.; Cenko, S. Bradley; Li, Weidong; Bloom, Joshua S.; Nugent, Peter E.; Poznanski, Dovi; Kandrashoff, Michael T.; Clubb, Kelsey I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Sullivan, Mark; Maguire, Kate; Pan, Yen-Chen] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Nugent, Peter E.; Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Gorbikov, Evgeny] Tel Aviv Univ, Fac Exact Sci, Wise Observ, IL-69978 Tel Aviv, Israel. [Gorbikov, Evgeny] Tel Aviv Univ, Fac Exact Sci, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Fulton, Benjamin J.; Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bersier, David; James, Philip; Marchant, Jonathan M.; Smith, Robert J.; Mottram, Chris J.; Barnsley, Robert M.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Hachinger, Stephan; Mazzali, Paolo A.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Pian, Elena] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Matheson, Thomas] Natl Opt Astron Observ, Syst Sci Ctr, Tucson, AZ 85719 USA. [Mazzali, Paolo A.] INAF, Osservatorio Astron Padova, Padua, Italy. [Pian, Elena] INAF, Astron Observ Trieste, I-34143 Trieste, Italy. [Fox, Derek B.] Penn State Univ, Eberly Coll Sci, University Pk, PA 16802 USA. [Gehrels, Neil] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Law, Nicholas] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Arcavi, I (reprint author), Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. EM iair.arcavi@weizmann.ac.il RI Gehrels, Neil/D-2971-2012; WAXMAN, ELI/K-1557-2012; Horesh, Assaf/O-9873-2016; OI Horesh, Assaf/0000-0002-5936-1156; Sullivan, Mark/0000-0001-9053-4820; James, Philip/0000-0003-4131-5183; Pian, Elena/0000-0001-8646-4858; Gal-Yam, Avishay/0000-0002-3653-5598 FU Israeli Science Foundation; US-Israel Binational Science Foundation; EU; Minerva; US Department of Energy Scientific Discovery [DE-FG02-06ER06-04]; Royal Society; Weizmann-UK; Richard and Rhoda Goldman Fund; US National Science Foundation [AST-0908886]; TABASGO Foundation; NSF-CDI [0941742]; NSF/AAG [NSF/AST-100991]; INAF; Israel Space Agency (ISA); Max Planck Institute for Astronomy (MPA) in Heidelberg, Germany; German Israeli Science Foundation for Research and Development; Israel Science Foundation; W.M. Keck Foundation; Harvard University; University of Virginia; SAO, UC Berkeley; NASA [NNX09AQ66Q, NNX10A128G]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The Weizmann Institute PTF partnership is supported by the Israeli Science Foundation via grants to A. G. Collaborative work between A. G. and S. R. K. is supported by the US-Israel Binational Science Foundation. A. G. further acknowledges support from the EU FP7 Marie Curie program via an IRG fellowship and a Minerva grant. P.E.N. is supported by the US Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04. M. S. acknowledges support from the Royal Society; M. S. and A. G. are also grateful for a Weizmann-UK Making Connections grant. A.V.F.'s supernova group at U. C. Berkeley acknowledges generous support from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, US National Science Foundation grant AST-0908886, and the TABASGO Foundation. J.S.B. acknowledges support of an NSF-CDI grant 0941742 and NSF/AAG grant NSF/AST-100991. P. M., E. P., and E. S. W. acknowledge financial support from INAF through PRIN INAF 2009.; Instrumentation at Wise Observatory was funded in part by the Israel Space Agency (ISA), the Max Planck Institute for Astronomy (MPA) in Heidelberg, Germany, the German Israeli Science Foundation for Research and Development, and the Israel Science Foundation. The WHT is operated by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The Byrne Observatory at Sedgwick (BOS) is operated by the Las Cumbres Observatory Global Telescope Network. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; it was made possible by the generous financial support of the W.M. Keck Foundation. PAIRITEL is operated by the Smithsonian Astrophysical Observatory (SAO) and supported by the Harvard University Milton Fund, the University of Virginia, SAO, UC Berkeley, and NASA via Swift Guest Investigator programs NNX09AQ66Q and NNX10A128G. We are grateful to the dedicated staffs at all of the observatories where we obtained data.; The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project. NR 49 TC 75 Z9 75 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 1 PY 2011 VL 742 IS 2 AR L18 DI 10.1088/2041-8205/742/2/L18 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 846SY UT WOS:000296924700002 ER PT J AU Murphy, BL Chan, WR AF Murphy, Brian L. Chan, Wanyu R. TI A multi-compartment mass transfer model applied to building vapor intrusion SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Johnson and Ettinger model; Air-flow; Advection; Diffusion; Groundwater contamination; Transport ID INDOOR AIR; EXPOSURE AB We develop a systematic approach to model steady-state advective and diffusive fluxes, as well as phase changes, between multi-media environmental compartments. The approach results in four simple rules for constructing mass transfer coefficients. Results are analogous to electrical circuit theory with resistors, including variable resistors or potentiometers, in parallel and series. This general approach lends itself particularly well to vapor intrusion calculations where there are multi-media compartments involving groundwater, soil, and air. In addition to showing that the model reduces to the well-known Johnson & Ettinger model in limiting cases, we illustrate its simplicity and ease of use with several examples: (1) an example of how multiple partition coefficients collapse into a single partition coefficient illustrated by a three-phase problem involving tar, water, and air, (2) determination of when the presence of a basement significantly lowers first floor exposures, and (3) addition of diffusion in the saturated zone to the model to investigate whether the resistance associated with this compartment can be neglected. We conclude that if the water table is truly steady, this resistance would be very significant. Therefore, a vapor intrusion model that neglects both water table fluctuations and diffusion in groundwater is ignoring important physical phenomena. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Murphy, Brian L.] Exponent, Sarasota, FL 34236 USA. [Chan, Wanyu R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. RP Murphy, BL (reprint author), Exponent, 1255 N Gulfstream Ave, Sarasota, FL 34236 USA. EM bmurphy@exponent.com; wrchan@lbl.gov NR 14 TC 5 Z9 5 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2011 VL 45 IS 37 BP 6650 EP 6657 DI 10.1016/j.atmosenv.2011.09.009 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 846WV UT WOS:000296934800005 ER PT J AU Lupoi, JS Smith, EA AF Lupoi, Jason S. Smith, Emily A. TI Evaluation of Nanoparticle-Immobilized Cellulase for Improved Ethanol Yield in Simultaneous Saccharification and Fermentation Reactions SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE enzyme immobilization; biofuels; enzymatic hydrolysis; cellulase; cellulose; simultaneous saccharification and fermentation ID THERMOMONOSPORA-FUSCA E-5; REESEI CBHI CELLULASE; ENZYMATIC-HYDROLYSIS; SILANIZED SILICA; BETA-GLUCOSIDASE; ADSORPTION; ENDOGLUCANASE; POLYSTYRENE; STABILITY; BIOMASS AB Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35 degrees C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification products and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35 degrees C. There was no significant accumulation (<250 mu g) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35 degrees C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF. Biotechnol. Bioeng. 2011; 108: 2835-2843. (C) 2011 Wiley Periodicals, Inc. C1 [Lupoi, Jason S.; Smith, Emily A.] US DOE, Ames Lab, Ames, IA 50011 USA. [Lupoi, Jason S.; Smith, Emily A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Smith, EA (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM esmith1@iastate.edu OI Smith, Emily/0000-0001-7438-7808 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Assistance in the GC/MS measurement of fermentation samples was provided by Steve Veysey (Iowa State University, Department of Chemistry, Chemical Instrumentation Facility). The authors thank Professor Nicola Pohl (Iowa State University) for the use of HPLC instrumentation. NR 43 TC 29 Z9 30 U1 0 U2 34 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD DEC PY 2011 VL 108 IS 12 BP 2835 EP 2843 DI 10.1002/bit.23246 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 843VO UT WOS:000296703300006 PM 21702028 ER PT J AU Gaballa, O Cook, B Russell, A AF Gaballa, Osama Cook, Bruce Russell, Alan TI Formation, densification, and selected mechanical properties of hot pressed Al4SiC4, Al4SiC4 with 30 vol.% WC, and Al4SiC4 with 30 vol.% TiC SO CERAMICS INTERNATIONAL LA English DT Article DE Hot pressing; Carbides; Aluminum silicon carbide; Densification ID ALUMINUM-SILICON-CARBIDE; CARBOTHERMAL REDUCTION; TUNGSTEN CARBIDE; RESISTANCE; OXIDATION; POWDERS; TIB2; MICROSTRUCTURE; ALPHA-AL4SIC4; CERAMICS AB Powders of Al4C3 and SiC were combined by high-energy milling to produce Al4SiC4, Al4SiC4 + 30 vol.% TiC, and Al4SiC4 + 30 vol.% WC. Five different temperatures were used to hot press the constituents. XRD, SEM, relative density, and hardness measurements showed that formation of single-phase Al4SiC4 occurred at 1450 degrees C and full densification (99%) was achieved at 1500 degrees C. Both of these temperatures are lower than previously reported. Adding TiC and WC increases hardness, while WC improves densification (99.5%). Published by Elsevier Ltd and Techna Group S.r.l C1 [Gaballa, Osama; Russell, Alan] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Gaballa, Osama; Cook, Bruce; Russell, Alan] Iowa State Univ, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Gaballa, Osama] Cent Met Res & Dev Inst, Cairo, Egypt. RP Gaballa, O (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM ogaballa@iastate.edu RI gaballa, osama/B-9408-2014; OI Gaballa, Osama/0000-0003-4474-6501; Russell, Alan/0000-0001-5264-0104 FU U.S. Department of Energy, Division of Materials Science Engineering [DE-AC02-07CH11358]; Egyptian Ministry of Higher Education and Scientific Research FX Work at the Ames Laboratory was supported by the U.S. Department of Energy, Division of Materials Science & Engineering under contract DE-AC02-07CH11358. One of the authors (OG) wishes to acknowledge support from the Egyptian Ministry of Higher Education and Scientific Research. NR 33 TC 7 Z9 7 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 J9 CERAM INT JI Ceram. Int. PD DEC PY 2011 VL 37 IS 8 BP 3117 EP 3121 DI 10.1016/j.ceramint.2011.05.050 PG 5 WC Materials Science, Ceramics SC Materials Science GA 839VK UT WOS:000296397400022 ER PT J AU Neergat, M Weisbrod, KR AF Neergat, M. Weisbrod, K. R. TI Electrodissolution of 304 stainless steel in neutral electrolytes for surface decontamination applications SO CORROSION SCIENCE LA English DT Article DE Stainless steel; XPS; Anodic dissolution; Anodic films; Selective oxidation; Segregation ID HIGH-CURRENT DENSITIES; HIGH-RATE DISSOLUTION; 316L STAINLESS-STEEL; CLOSED-CELL SYSTEM; ANODIC-DISSOLUTION; MASS-TRANSPORT; SULFURIC-ACID; TRANSPASSIVE DISSOLUTION; CORROSION-RESISTANCE; FUNDAMENTAL-ASPECTS AB Brightening of 304 stainless steel in concentrated electrolytes of Na(2)SO(4), Li(2)SO(4), NaNO(3), LiNO(3), NH(4)NO(3), and Ca(NO(3))(2) was studied. It is observed that the current efficiency and quality of the surface depend on the electrolyte concentration, ions present in the electrolyte and the operating current density. While sulfate electrolytes etch the electrodes, oxidizing electrolytes generally yield brightened surfaces. Surface brightening is achieved at the lowest current density in LiNO(3)/Na(2)Cr(2)O(7) composite electrolyte at a pH of 5.2. The results are explained on the basis of salt film formation near the specimen surface. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Neergat, M.; Weisbrod, K. R.] Los Alamos Natl Lab, Appl Engn Technol Div, Los Alamos, NM 87545 USA. RP Neergat, M (reprint author), Indian Inst Technol, Dept Energy Sci & Engn, Bombay 400076, Maharashtra, India. EM nmanoj@iitb.ac.in NR 53 TC 4 Z9 5 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD DEC PY 2011 VL 53 IS 12 BP 3983 EP 3990 DI 10.1016/j.corsci.2011.08.001 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 837ED UT WOS:000296173000011 ER PT J AU Zangar, RC Bollinger, N Weber, TJ Tan, RMM Markillie, LM Karin, NJ AF Zangar, Richard C. Bollinger, Nikki Weber, Thomas J. Tan, Ruimin M. Markillie, L. Meng Karin, Norman J. TI Reactive oxygen species alter autocrine and paracrine signaling SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE CYP3A4; HepG2; ROS; Paracrine; Autocrine; Secretion; Free radicals ID MAMMARY EPITHELIAL-CELLS; GROWTH-FACTOR RECEPTOR; NF-KAPPA-B; OXIDATIVE STRESS; IN-VITRO; CYTOCHROME-P450; MITOCHONDRIA; MECHANISMS; EXPRESSION; PATHWAY AB Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endoplasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A custom ELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-kappa B pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling. (C) 2011 Elsevier Inc. All rights reserved. C1 [Zangar, Richard C.; Bollinger, Nikki; Weber, Thomas J.; Tan, Ruimin M.; Markillie, L. Meng; Karin, Norman J.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Zangar, RC (reprint author), 902 Battelle Blvd,P7-56, Richland, WA 99354 USA. EM richard.zangar@pnl.gov FU NIH [CA117378, EB006177] FX This work was supported by NIH Grants CA117378 and EB006177. NR 52 TC 7 Z9 8 U1 1 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0891-5849 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD DEC 1 PY 2011 VL 51 IS 11 BP 2041 EP 2047 DI 10.1016/j.freeradbiomed.2011.09.001 PG 7 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA 848FR UT WOS:000297036500010 PM 21963990 ER PT J AU Cimini, D Campos, E Ware, R Albers, S Giuliani, G Oreamuno, J Joe, P Koch, SE Cober, S Westwater, E AF Cimini, Domenico Campos, Edwin Ware, Randolph (Stick) Albers, Steve Giuliani, Graziano Oreamuno, Jeos Joe, Paul Koch, Steve E. Cober, Stewart Westwater, Ed TI Thermodynamic Atmospheric Profiling During the 2010 Winter Olympics Using Ground-Based Microwave Radiometry SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Atmospheric measurements; Bayesian variational methods; radiometry ID WATER-VAPOR PROFILES; TEMPERATURE; PRECIPITATION; RETRIEVAL; SYSTEM AB Ground-based microwave radiometer profilers in the 20-60-GHz range operate continuously at numerous sites in different climate regions. Recent work suggests that a 1-D variational (1-DVAR) technique, coupling radiometric observations with outputs from a numerical weather prediction model, may outperform traditional retrieval methods for temperature and humidity profiling. The 1-DVAR technique is applied here to observations from a commercially available microwave radiometer deployed at Whistler, British Columbia, which was operated by Environment Canada to support nowcasting and short-term weather forecasting during the Vancouver 2010 Winter Olympic and Paralympic Winter Games. The analysis period included rain, sleet, and snow events (similar to 235-mm total accumulation and rates up to 18 mm/h). The 1-DVAR method is applied "quasi-operationally," i.e., as it could have been applied in real time, as no data were culled. The 1-DVAR-achieved accuracy has been evaluated by using simultaneous radiosonde and ceilometer observations as reference. For atmospheric profiling from the surface to 10 km, we obtain retrieval errors within 1.5 K for temperature and 0.5 g/m(3) for water vapor density. The retrieval accuracy for column-integrated water vapor is 0.8 kg/m(2), with small bias (-0.1 kg/m(2)) and excellent correlation (0.96). The retrieval of cloud properties shows a high probability of detection of cloud/no cloud (0.8/0.9, respectively), low false-alarm ratio (0.1), and cloud-base height estimate error within similar to 0.60 km. C1 [Cimini, Domenico] Italian Natl Res Council CNR, Inst Methodol Environm Anal IMAA, I-85050 Tito, Italy. [Cimini, Domenico; Giuliani, Graziano] Univ Aquila, Ctr Excellence Severe Weather Forecast CETEMPS, I-67100 Laquila, Italy. [Campos, Edwin] Argonne Natl Lab, Comp Environm & Life Sci Directorate, Atmospher Radiat Measurement ARM Climate Res Faci, Argonne, IL 60439 USA. [Ware, Randolph (Stick); Oreamuno, Jeos] Radiometr Corp, Boulder, CO 80301 USA. [Ware, Randolph (Stick)] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Ware, Randolph (Stick); Westwater, Ed] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Albers, Steve] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Boulder, CO 80305 USA. [Albers, Steve] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Joe, Paul; Cober, Stewart] Environm Canada, Meteorol Res Div, Sci & Technol Branch, Cloud Phys & Severe Weather Res Sect ARMP, Toronto, ON M3H 5T4, Canada. [Koch, Steve E.] Natl Ocean & Atmospher Adm, Natl Severe Storms Lab, Norman, OK 73072 USA. RP Cimini, D (reprint author), Italian Natl Res Council CNR, Inst Methodol Environm Anal IMAA, I-85050 Tito, Italy. EM cimini@imaa.cnr.it; ecam-pos@anl.gov; ware@radiometrics.com; Steve.Albers@noaa.gov; ggiulian@ictp.it; jeos@radiometrics.com; paul.joe@ec.gc.ca; Steven.Koch@noaa.gov; stewart.cober@ec.gc.ca; ed.r.westwater@colorado.edu RI Campos, Edwin/A-5601-2008; Cimini, Domenico/M-8707-2013 OI Campos, Edwin/0000-0003-3766-7485; Cimini, Domenico/0000-0002-5962-223X FU Environment Canada; project Science of Nowcasting Olympic Weather for Vancouver [SNOW-V10]; U.S. Department of Energy [DE-AC02-06CH11357]; Institute of Methodologies for Environmental Analysis (IMAA), Italian National Research Council (CNR) FX Manuscript received October 4, 2010; revised March 2, 2011; accepted April 23, 2011. Date of publication June 29, 2011; date of current version November 23, 2011. This work was supported in part by Environment Canada, the project Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) and in part by the U.S. Department of Energy under Contract DE-AC02-06CH11357. The work of D. Cimini was supported by the Institute of Methodologies for Environmental Analysis (IMAA), Italian National Research Council (CNR). NR 29 TC 33 Z9 34 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2011 VL 49 IS 12 BP 4959 EP 4969 DI 10.1109/TGRS.2011.2154337 PN 2 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 851PC UT WOS:000297282300001 ER PT J AU Powell, JE Alcazar, D Hopkins, M Olendorf, R McMahon, TM Wu, A Collins, L AF Powell, James E. Alcazar, Daniel Hopkins, Matthew Olendorf, Robert McMahon, Tamara M. Wu, Amber Collins, Linn TI Graphs in Libraries: A Primer SO INFORMATION TECHNOLOGY AND LIBRARIES LA English DT Article ID COMPLEX NETWORKS; SMALL WORLD AB Whenever librarians use Semantic Web services and standards for representing data, they also generate graphs, whether they intend to or not. Graphs are a new data model for libraries and librarians, and they present new opportunities for library services. In this paper we introduce graph theory and explore its real and potential applications in the context of digital libraries. Part 1 describes basic concepts in graph theory and how graph theory has been applied by information retrieval systems such as Google. Part 2 discusses practical applications of graph theory in digital library environments. Some of the applications have been prototyped at the Los Alamos National Laboratory Research Library, others have been described in peer-reviewed journals, and still others are speculative in nature. The paper is intended to serve as a high-level tutorial to graphs in libraries. C1 [Powell, James E.; Alcazar, Daniel; Hopkins, Matthew; McMahon, Tamara M.; Wu, Amber; Collins, Linn] Los Alamos Natl Lab, Los Alamos, NM USA. [Olendorf, Robert] Univ New Mexico Lib, Albuquerque, NM USA. RP Powell, JE (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM jepowell@lanl.gov; dalcazar@lanl.gov; mfhop@lanl.gov; olendorf@unm.edu; tmcmahon@lanl.gov; amber.ponichtera@gmail.com; linn@lanl.gov RI Powell, James/A-6118-2012 OI Powell, James/0000-0002-3517-7485 NR 45 TC 1 Z9 1 U1 0 U2 14 PU AMER LIBRARY ASSOC PI CHICAGO PA 50 E HURON ST, CHICAGO, IL 60611 USA SN 0730-9295 J9 INFORM TECHNOL LIBR JI Inf. Technol. Libr. PD DEC PY 2011 VL 30 IS 4 BP 157 EP 169 PG 13 WC Computer Science, Information Systems; Information Science & Library Science SC Computer Science; Information Science & Library Science GA 849RO UT WOS:000297143000005 ER PT J AU Naterer, GF Suppiah, S Stolberg, L Lewis, M Ferrandon, M Wang, Z Dincer, I Gabriel, K Rosen, MA Secnik, E Easton, EB Trevani, L Pioro, I Tremaine, P Lvov, S Jiang, J Rizvi, G Ikeda, BM Lu, L Kaye, M Smith, WR Mostaghimi, J Spekkens, P Fowler, M Avsec, J AF Naterer, G. F. Suppiah, S. Stolberg, L. Lewis, M. Ferrandon, M. Wang, Z. Dincer, I. Gabriel, K. Rosen, M. A. Secnik, E. Easton, E. B. Trevani, L. Pioro, I. Tremaine, P. Lvov, S. Jiang, J. Rizvi, G. Ikeda, B. M. Lu, L. Kaye, M. Smith, W. R. Mostaghimi, J. Spekkens, P. Fowler, M. Avsec, J. TI Clean hydrogen production with the Cu-Cl cycle - Progress of international consortium, I: Experimental unit operations SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen production; Thermochemical copper-chlorine cycle; Electrolysis; Spray drying; Hydrolysis; Decomposition AB Advancement of the thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production is reviewed and discussed in this paper. Individual unit operations and their linkage into an integrated cycle are being developed by a Canadian consortium, as part of the Generation IV International Forum (GIF) for hydrogen production with the next generation of nuclear reactors. This paper focuses on the consortium's latest advances on the Cu-Cl cycle, particularly with respect to hydrogen production with Canada's Generation IV reactor, called SCWR (Super-Critical Water Reactor). Other heat sources may also be utilized for the Cu-Cl cycle, such as solar energy or industrial waste heat. In this first of two companion papers, recent developments in Canada's nuclear hydrogen program are reported, specifically unit operation experiments of the Cu-Cl cycle and system integration. The following second companion paper will present system modeling with Aspen Plus, corrosion resistant materials, thermochemistry, safety, and reliability aspects of the Cu-Cl cycle. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Naterer, G. F.; Wang, Z.; Dincer, I.; Gabriel, K.; Rosen, M. A.; Secnik, E.; Rizvi, G.] Univ Ontario Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada. [Suppiah, S.; Stolberg, L.] Atom Energy Canada Ltd, Hydrogen Isotopes Technol Branch, Chalk River, ON K0J 1J0, Canada. [Lewis, M.] Cemeglas Inc, The Villages, FL 32162 USA. [Ferrandon, M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Easton, E. B.; Trevani, L.; Smith, W. R.] Univ Ontario Inst Technol, Fac Sci, Oshawa, ON L1H 7K4, Canada. [Pioro, I.; Ikeda, B. M.; Lu, L.; Kaye, M.] Univ Ontario Inst Technol, Fac Energy Syst & Nucl Sci, Oshawa, ON L1H 7K4, Canada. [Tremaine, P.] Univ Guelph, Dept Chem, Guelph, ON N1G 2W1, Canada. [Lvov, S.] Penn State Univ, Dept Mat Sci & Engn, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Jiang, J.] Univ Western Ontario, Dept Elect & Comp Engn, London, ON N6A 5B9, Canada. [Mostaghimi, J.] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3E5, Canada. [Spekkens, P.] Ontario Power Generat, Pickering, ON L1V 2R5, Canada. [Fowler, M.] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. [Avsec, J.] Univ Maribor, Fac Energy Technol, Krshko 8270, Slovenia. RP Naterer, GF (reprint author), Univ Ontario Inst Technol, Fac Engn & Appl Sci, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada. EM greg.naterer@uoit.ca RI Dincer, Ibrahim/A-5379-2012; Smith, William/G-4404-2010; OI Smith, William/0000-0002-1982-2050; Easton, E. Bradley/0000-0003-1493-0500 FU Atomic Energy of Canada Limited; Ontario Research Excellence Fund; Natural Sciences and Engineering Research Council of Canada; University Network of Excellence in Nuclear Engineering (UNENE); Canada Research Chairs program FX Support of this research from Atomic Energy of Canada Limited, Ontario Research Excellence Fund, Natural Sciences and Engineering Research Council of Canada, University Network of Excellence in Nuclear Engineering (UNENE) and the Canada Research Chairs program is gratefully acknowledged. NR 21 TC 29 Z9 30 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC PY 2011 VL 36 IS 24 BP 15472 EP 15485 DI 10.1016/j.ijhydene.2011.08.012 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 848XZ UT WOS:000297089700001 ER PT J AU Naterer, GF Suppiah, S Stolberg, L Lewis, M Ferrandon, M Wang, Z Dincer, I Gabriel, K Rosen, MA Secnik, E Easton, EB Trevani, L Pioro, I Tremaine, P Lvov, S Jiang, J Rizvi, G Ikeda, BM Lu, L Kaye, M Smith, WR Mostaghimi, J Spekkens, P Fowler, M Avsec, J AF Naterer, G. F. Suppiah, S. Stolberg, L. Lewis, M. Ferrandon, M. Wang, Z. Dincer, I. Gabriel, K. Rosen, M. A. Secnik, E. Easton, E. B. Trevani, L. Pioro, I. Tremaine, P. Lvov, S. Jiang, J. Rizvi, G. Ikeda, B. M. Lu, L. Kaye, M. Smith, W. R. Mostaghimi, J. Spekkens, P. Fowler, M. Avsec, J. TI Clean hydrogen production with the Cu-Cl cycle - Progress of international consortium, II: Simulations, thermochemical data and materials SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen production; Thermochemical copper-chlorine cycle; Simulation; Materials; Safety; Reliability ID WATER-SPLITTING CYCLE; NUCLEAR-ENERGY; RAIL TRANSPORTATION; VS. ELECTRIFICATION; PRODUCTION PLANT; CONTROL-SYSTEMS; CANADA; ONTARIO; ELECTROLYSIS; PERFORMANCE AB This second of two companion papers presents the latest advances of an international team on the thermochemical copper-chlorine (Cu-Cl) cycle of hydrogen production. It specifically focuses on simulations, thermochemical data, advanced materials, safety, reliability and economics of the Cu-Cl cycle. Aspen Plus simulations of various system configurations are performed to improve the cycle efficiency. In addition, simulations based on exergo-economic and exergy-cost-energy-mass (EXCEM) methods for system design are presented. Modeling of the linkage between nuclear and hydrogen plants demonstrates how the Cu-Cl cycle would be integrated with an SCWR (Super Critical Water Reactor; Canada's Generation IV reactor). Chemical potentials, solubilities, formation of Cu(I) and Cu(II) complexes and properties of Cu(2)OCl(2), Cu(I) and Cu(II) chloride species are reported. In addition, the development of new advanced materials with improved corrosion resistance is presented. In particular, the performance of new anode electrode structures and thermal spray coatings is presented. This companion set of two papers presents new advances in a range of key enabling technologies for the thermo-chemical copper chlorine cycle. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Naterer, G. F.; Wang, Z.; Dincer, I.; Gabriel, K.; Rosen, M. A.; Secnik, E.; Rizvi, G.] Univ Ontario Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada. [Suppiah, S.; Stolberg, L.] Atom Energy Canada Ltd, Hydrogen Isotopes Technol Branch, Chalk River, ON K0J 1J0, Canada. [Lewis, M.] Cemeglas Inc, The Villages, FL 32162 USA. [Ferrandon, M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Easton, E. B.; Trevani, L.; Smith, W. R.] Univ Ontario Inst Technol, Fac Sci, Oshawa, ON L1H 7K4, Canada. [Pioro, I.; Ikeda, B. M.; Lu, L.; Kaye, M.] Univ Ontario Inst Technol, Fac Energy Syst & Nucl Sci, Oshawa, ON L1H 7K4, Canada. [Tremaine, P.] Univ Guelph, Dept Chem, Guelph, ON N1G 2W1, Canada. [Lvov, S.] Penn State Univ, Dept Mat Sci & Engn, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Jiang, J.] Univ Western Ontario, Dept Elect & Comp Engn, London, ON N6A 5B9, Canada. [Mostaghimi, J.] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M55 3E5, Canada. [Spekkens, P.] Ontario Power Generat, Pickering, ON L1V 2R5, Canada. [Fowler, M.] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. [Avsec, J.] Univ Maribor, Fac Energy Technol, Krshko 8270, Slovenia. RP Naterer, GF (reprint author), Univ Ontario Inst Technol, Fac Engn & Appl Sci, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada. EM greg.naterer@uoit.ca RI Dincer, Ibrahim/A-5379-2012; Smith, William/G-4404-2010; OI Smith, William/0000-0002-1982-2050; Easton, E. Bradley/0000-0003-1493-0500 FU Atomic Energy of Canada Limited; Ontario Research Excellence Fund; Natural Sciences and Engineering Research Council of Canada (NSERC); University Network of Excellence in Nuclear Engineering (UNENE); Canada Research Chairs (CRC) program FX Support of this research and assistance from Atomic Energy of Canada Limited, Ontario Research Excellence Fund, Natural Sciences and Engineering Research Council of Canada (NSERC), University Network of Excellence in Nuclear Engineering (UNENE) and the Canada Research Chairs (CRC) program are gratefully acknowledged. NR 52 TC 23 Z9 24 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC PY 2011 VL 36 IS 24 BP 15486 EP 15501 DI 10.1016/j.ijhydene.2011.08.013 PG 16 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 848XZ UT WOS:000297089700002 ER PT J AU Ahluwalia, RK Peng, JK Hua, TQ AF Ahluwalia, R. K. Peng, J. K. Hua, T. Q. TI Hydrogen release from ammonia borane dissolved in an ionic liquid SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE On-board hydrogen storage; Ammonia borane; Ionic liquid; Fuel cell vehicles ID THERMAL-DECOMPOSITION; STORAGE AB Hydrogen release from ammonia borane (AB) dissolved in an ionic liquid (IL) is analyzed using batch, isothermal reaction data. It is found that an Avrami-Erofeyev type model, normally used in solid-gas systems, can be modified for this two-step reaction to describe the measured kinetics of hydrogen release and the observed double peaks in release rates. The kinetic model indicates that temperatures in excess of 200 degrees C are needed for complete conversion (release of 2.35 H(2)-equivalents) in a reasonably compact flow reactor with <20 s AB/IL residence time. A non-isothermal, plug flow reactor model indicates that heat transfer to ethylene glycol at 80 degrees C alone is not sufficient to control the peak temperature to <250 degrees C in the exothermic decomposition reaction. The peak temperature, however, can be controlled by partial recycling of the spent AB/IL mixture. The reactor can also be operated adiabatically to obtain complete conversion while limiting the peak temperature through recycle. In a flow reactor where the feed stream is heated by mixing with the recycle stream there is a minimum recycle ratio for complete conversion. This minimum recycle ratio is a function of the reactor outlet temperature, which is determined by heat transfer. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Ahluwalia, R. K.; Peng, J. K.; Hua, T. Q.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ahluwalia, RK (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM walia@anl.gov FU U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy; UChicago Argonne, LLC [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Grace Ordaz of the Office of Fuel Cell Technologies was the Technology Development Manager for this study. The authors thank Dr. Kevin Ott of Los Alamos National Laboratory and Dr. Larry Sneddon of the University of Pennsylvania for supplying the batch reaction data used to develop the reaction kinetic model. Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. NR 17 TC 23 Z9 23 U1 1 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC PY 2011 VL 36 IS 24 BP 15689 EP 15697 DI 10.1016/j.ijhydene.2011.09.016 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 848XZ UT WOS:000297089700023 ER PT J AU Timofeeva, EV Moravek, MR Singh, D AF Timofeeva, Elena V. Moravek, Michael R. Singh, Dileep TI Improving the heat transfer efficiency of synthetic oil with silica nanoparticles SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Heat transfer fluid; Synthetic oil; Therminol; Nanofluid; Silica; Silicon oxide; Nanoparticles; Surfactant; Thermal conductivity; Viscosity; Total heat; Heat transfer efficiency; Cationic surfactant; Benzalkonium chloride ID THERMAL-CONDUCTIVITY; NANOFLUIDS; TEMPERATURE; VISCOSITY; STABILITY; AGGREGATION; ENHANCEMENT AB The heat transfer properties of synthetic oil (Therminol 66) used for high temperature applications was improved by introducing 15 nm silicon dioxide nanoparticles. Stable suspensions of inorganic nanoparticles in the non-polar fluid were prepared using a cationic surfactant (benzalkonium chloride). The effects of nanoparticle and surfactant concentrations on thermo-physical properties (viscosity, thermal conductivity and total heat absorption) of these nanofluids were investigated in a wide temperature range. The surfactant-to-nanoparticle (SN) ratio was optimized for higher thermal conductivity and lower viscosity, which are both critical for the efficiency of heat transfer. The theological behavior of SiO(2)/TH66 nanofluids was correlated to average agglomerate sizes, which were shown to vary with SN ratio and temperature. The conditions of ultrasonic treatment were studied and the temporary decrease of agglomerate size from an equilibrium size (characteristic to SN ratio) was demonstrated. The heat transfer efficiencies were estimated for the formulated nanofluids for both turbulent and laminar flow regimes and were compared to the performance of the base fluid. (C) 2011 Elsevier Inc. All rights reserved. C1 [Timofeeva, Elena V.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Moravek, Michael R.; Singh, Dileep] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Timofeeva, EV (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM etimofeeva@anl.gov RI Timofeeva, Elena/E-6391-2010; OI Timofeeva, Elena V./0000-0001-7839-2727 FU US Department of Energy; DOE; US Department of Energy Office of Science Laboratory by UChicago Argonne, LLC [DE-AC02-06CH11357] FX This work was supported by US Department of Energy EERE Solar Energy Technology Program - American Recovery and Reinvestment Act (ARRA) funding, Mr. Moravek was partially supported by DOE's Science Undergraduate Laboratory Internship program. The scanning electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a US Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 42 TC 29 Z9 30 U1 3 U2 27 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD DEC 1 PY 2011 VL 364 IS 1 BP 71 EP 79 DI 10.1016/j.jcis.2011.08.004 PG 9 WC Chemistry, Physical SC Chemistry GA 835LT UT WOS:000296038600010 PM 21889163 ER PT J AU Hac-Wydro, K Flasinski, M Broniatowski, M Dynarowicz-Latka, P Majewski, J AF Hac-Wydro, Katarzyna Flasinski, Michal Broniatowski, Marcin Dynarowicz-Latka, Patrycja Majewski, Jaroslaw TI Properties of beta-sitostanol/DPPC monolayers studied with Grazing Incidence X-ray Diffraction (GIXD) and Brewster Angle Microscopy SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Langmuir monolayer; Plant sterols; Grazing Incidence X-ray Diffraction (GIXD); Brewster Angle Microscopy ID DIFFERENTIAL SCANNING CALORIMETRY; AIR-WATER-INTERFACE; PHOSPHOLIPID MONOLAYERS; LANGMUIR MONOLAYER; STEROL STRUCTURE; PLANT STEROLS; CHOLESTEROL; MEMBRANES; DIPALMITOYLPHOSPHATIDYLCHOLINE; PHOSPHATIDYLCHOLINE AB Although the influence of structurally modified sterols on artificial membranes has been intensively investigated, studies on the properties of stanols, which are saturated analogs of sterols, are very rare. Therefore, we have performed Grazing Incidence X-ray Diffraction (GIXD) experiments aimed at studying in-plane organization of a plant stanol-beta-sitostanol monolayer and its mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine - DPPC at the air/water interface. The collected GIXD data, resulting in-plane parameters and BAM images provide information on molecular organization and in-plane ordering of the investigated films. It was found that the lateral organization of beta-sitostanol/DPPC monolayers depends on their composition. The oblique structure of the in-plane lattice of tilted hydrophobic region of molecules, found for DPPC film, is maintained at 10 mol% of stanol in the system. However, at 30 and 90 mol% of stanol in the mixture, the arrangement of molecules is hexagonal and they are oriented perpendicularly to the interface. With the addition of stand the extend of the in-plane order of the monolayers decreases. Moreover, in mixtures the ordered domains consist of both monolayer's components. Additionally, p-sitostanol film is of similar in-plane organization as the corresponding sterol monolayer (beta-sitosterol) and stanol induces condensing effect on DPPC. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hac-Wydro, Katarzyna; Flasinski, Michal; Broniatowski, Marcin; Dynarowicz-Latka, Patrycja] Jagiellonian Univ, Fac Chem, PL-30060 Krakow, Poland. [Majewski, Jaroslaw] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Hac-Wydro, K (reprint author), Jagiellonian Univ, Fac Chem, Ingardena 3, PL-30060 Krakow, Poland. EM hac@chemia.uj.edu.pl RI Lujan Center, LANL/G-4896-2012; Dynarowicz-Latka, Patrycja/Q-1067-2015 OI Dynarowicz-Latka, Patrycja/0000-0002-9778-6091 FU European Regional Development Fund of the Polish Innovation Economy Operational Program [POIG.02.01.00-12-023/08]; DOE Office of Basic Energy Sciences; Los Alamos National Laboratory under DOE [DE-AC52-06NA25396.C] FX The research was carried out with the equipment (ultraBAM) purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08).; Lujan Neutron Scattering Center at LANSCE is funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396.C. NR 38 TC 7 Z9 7 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD DEC 1 PY 2011 VL 364 IS 1 BP 133 EP 139 DI 10.1016/j.jcis.2011.08.030 PG 7 WC Chemistry, Physical SC Chemistry GA 835LT UT WOS:000296038600019 PM 21903220 ER PT J AU Meldrum, T Bajaj, VS Wemmer, DE Pines, A AF Meldrum, Tyler Bajaj, Vikram S. Wemmer, David E. Pines, Alexander TI Band-selective chemical exchange saturation transfer imaging with hyperpolarized xenon-based molecular sensors SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE MRI; Contrast agent; Chemical exchange saturation transfer; Xenon; Hyperpolarization ID NMR-BASED BIOSENSORS; PULSE DESIGN; CRYPTOPHANES; EXCITATION; COMPLEXES; ALGORITHM; SYSTEM; XE-129 AB Molecular imaging based on saturation transfer in exchanging systems is a tool for amplified and chemically specific magnetic resonance imaging. Xenon-based molecular sensors are a promising category of molecular imaging agents in which chemical exchange of dissolved xenon between its bulk and agent-bound phases has been use to achieve sub-picomolar detection sensitivity. Control over the saturation transfer dynamics, particularly when multiple exchanging resonances are present in the spectra, requires saturation fields of limited bandwidth and is generally accomplished by continuous wave irradiation. We demonstrate instead how band-selective saturation sequences based on multiple pulse inversion elements can yield saturation bandwidth tuneable over a wide range, while depositing less RF power in the sample. We show how these sequences can be used in imaging experiments that require spatial-spectral and multispectral saturation. The results should be applicable to all CEST experiments and, in particular, will provide the spectroscopic control required for applications of arrays of xenon chemical sensors in microfluidic chemical analysis devices. (C) 2011 Elsevier Inc. All rights reserved. C1 [Meldrum, Tyler; Bajaj, Vikram S.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wemmer, David E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Meldrum, Tyler; Bajaj, Vikram S.; Wemmer, David E.; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bajaj, VS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM vikbajaj@gmail.com RI Meldrum, Tyler/P-7420-2015 OI Meldrum, Tyler/0000-0002-5954-0795 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231]; Agilent Foundation; Chevron Energy; Schlumberger-Doll Research FX This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-05CH11231. We acknowledge the generous and unrestricted support of the Agilent Foundation, Chevron Energy, and Schlumberger-Doll Research. NR 29 TC 15 Z9 15 U1 2 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 J9 J MAGN RESON JI J. Magn. Reson. PD DEC PY 2011 VL 213 IS 1 BP 14 EP 21 DI 10.1016/j.jmr.2011.06.027 PG 8 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 847UK UT WOS:000296997800002 PM 21974996 ER PT J AU Chen, Z Baker, NA Wei, GW AF Chen, Zhan Baker, Nathan A. Wei, G. W. TI Differential geometry based solvation model II: Lagrangian formulation SO JOURNAL OF MATHEMATICAL BIOLOGY LA English DT Article DE Differential geometry based multiscale model; Poisson-Boltzmann equation; Potential driving geometric flows; Solvation free energy; Implicit solvent model; Laplace-Beltrami operator; Protein-protein interaction ID POISSON-BOLTZMANN EQUATION; POLARIZABLE CONTINUUM MODEL; MOLECULAR-DYNAMICS SIMULATIONS; IMPLICIT SOLVENT MODELS; GENERALIZED-BORN MODEL; SCALED-PARTICLE THEORY; BOUNDARY MIB METHOD; LEVEL SET METHODS; PROTEIN-PROTEIN INTERACTIONS; STATE SMOLUCHOWSKI EQUATION AB Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of computation, thanks to the equivalence of the Laplace-Beltrami operator in the two representations. The coupled partial differential equations (PDEs) are solved with an iterative procedure to reach a steady state, which delivers desired solvent-solute interface and electrostatic potential for problems of interest. These quantities are utilized to evaluate the solvation free energies and protein-protein binding affinities. A number of computational methods and algorithms are described for the interconversion of Lagrangian and Eulerian representations, and for the solution of the coupled PDE system. The proposed approaches have been extensively validated. We also verify that the mean curvature flow indeed gives rise to the minimal molecular surface and the proposed variational procedure indeed offers minimal total free energy. Solvation analysis and applications are considered for a set of 17 small compounds and a set of 23 proteins. The salt effect on protein-protein binding affinity is investigated with two protein complexes by using the present model. Numerical results are compared to the experimental measurements and to those obtained by using other theoretical methods in the literature. C1 [Chen, Zhan; Wei, G. W.] Michigan State Univ, Dept Math, Lansing, MI 48824 USA. [Baker, Nathan A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wei, G. W.] Michigan State Univ, Dept Elect & Comp Engn, Lansing, MI 48824 USA. RP Wei, GW (reprint author), Michigan State Univ, Dept Math, Lansing, MI 48824 USA. EM wei@math.msu.edu RI Wei, Guowei /E-1852-2011; Baker, Nathan/A-8605-2010 OI Baker, Nathan/0000-0002-5892-6506 FU NSF [DMS-0616704, CCF-0936830]; NIH [CA127189, GM090208, GM069702] FX The authors thank Weitao Yang for useful discussions of solvation modeling. This work was supported in part by NSF grants DMS-0616704 and CCF-0936830, and NIH grants CA127189, GM090208, and GM069702. NR 248 TC 39 Z9 39 U1 0 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0303-6812 J9 J MATH BIOL JI J. Math. Biol. PD DEC PY 2011 VL 63 IS 6 BP 1139 EP 1200 DI 10.1007/s00285-011-0402-z PG 62 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 849SQ UT WOS:000297145800005 PM 21279359 ER PT J AU Stephanopoulos, N Francis, MB AF Stephanopoulos, Nicholas Francis, Matthew B. TI Choosing an effective protein bioconjugation strategy SO NATURE CHEMICAL BIOLOGY LA English DT Review ID BIOMIMETIC TRANSAMINATION REACTION; COPPER(I)-CATALYZED AZIDE-ALKYNE; UNNATURAL AMINO-ACIDS; VIRUS-LIKE PARTICLES; COWPEA MOSAIC-VIRUS; IN-VIVO; GENETIC-CODE; RECOMBINANT PROTEINS; ESCHERICHIA-COLI; LIVING CELLS AB The collection of chemical techniques that can be used to attach synthetic groups to proteins has expanded substantially in recent years. Each of these approaches allows new protein targets to be addressed, leading to advances in biological understanding, new protein-drug conjugates, targeted medical imaging agents and hybrid materials with complex functions. The protein modification reactions in current use vary widely in their inherent site selectivity, overall yields and functional group compatibility. Some are more amenable to large-scale bioconjugate production, and a number of techniques can be used to label a single protein in a complex biological mixture. This review examines the way in which experimental circumstances influence one's selection of an appropriate protein modification strategy. It also provides a simple decision tree that can narrow down the possibilities in many instances. The review concludes with example studies that examine how this decision process has been applied in different contexts. C1 [Stephanopoulos, Nicholas; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Stephanopoulos, Nicholas; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM francis@cchem.berkeley.edu FU Office of Science, Materials Sciences and Engineering Division, US Department of Energy [DE-AC02-05CH11231] FX Our efforts to develop new bioconjugation strategies, capsid-based delivery agents, and protein-polymer hybrid materials have been generously supported by the US National Institutes of Health (GM072700), the Department of Defense Breast Cancer Research Program (BC061995) and the US National Science Foundation (0449772). While writing this manuscript, N. S. was supported by the Director of the Office of Science, Materials Sciences and Engineering Division, US Department of Energy under contract no. DE-AC02-05CH11231. NR 102 TC 170 Z9 170 U1 24 U2 238 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1552-4450 EI 1552-4469 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD DEC PY 2011 VL 7 IS 12 BP 876 EP 884 DI 10.1038/NCHEMBIO.720 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 850AG UT WOS:000297166200008 PM 22086289 ER PT J AU Hartman, RJ Rasmussen, SA Botto, LD Riehle-Colarusso, T Martin, CL Cragan, JD Shin, M Correa, A AF Hartman, Robert J. Rasmussen, Sonja A. Botto, Lorenzo D. Riehle-Colarusso, Tiffany Martin, Christa L. Cragan, Janet D. Shin, Mikyong Correa, Adolfo TI The Contribution of Chromosomal Abnormalities to Congenital Heart Defects: A Population-Based Study SO PEDIATRIC CARDIOLOGY LA English DT Article DE Chromosomal abnormality; Congenital heart defect; Congenital heart disease; Prevalence; Epidemiology ID BIRTH-DEFECTS; CARDIOVASCULAR MALFORMATIONS; METROPOLITAN ATLANTA; GENOMIC IMBALANCES; CARDIAC DEFECTS; UNITED-STATES; DISEASE; EPIDEMIOLOGY; MICROARRAY; ANOMALIES AB We aimed to assess the frequency of chromosomal abnormalities among infants with congenital heart defects (CHDs) in an analysis of population-based surveillance data. We reviewed data from the Metropolitan Atlanta Congenital Defects Program, a population-based birth-defects surveillance system, to assess the frequency of chromosomal abnormalities among live-born infants and fetal deaths with CHDs delivered from January 1, 1994, to December 31, 2005. Among 4430 infants with CHDs, 547 (12.3%) had a chromosomal abnormality. CHDs most likely to be associated with a chromosomal abnormality were interrupted aortic arch (type B and not otherwise specified; 69.2%), atrioventricular septal defect (67.2%), and double-outlet right ventricle (33.3%). The most common chromosomal abnormalities observed were trisomy 21 (52.8%), trisomy 18 (12.8%), 22q11.2 deletion (12.2%), and trisomy 13 (5.7%). In conclusion, in our study, approximately 1 in 8 infants with a CHD had a chromosomal abnormality. Clinicians should have a low threshold at which to obtain testing for chromosomal abnormalities in infants with CHDs, especially those with certain types of CHDs. Use of new technologies that have become recently available (e.g., chromosomal microarray) may increase the identified contribution of chromosomal abnormalities even further. C1 [Hartman, Robert J.; Rasmussen, Sonja A.; Riehle-Colarusso, Tiffany; Cragan, Janet D.; Shin, Mikyong; Correa, Adolfo] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Hartman, Robert J.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Botto, Lorenzo D.] Univ Utah, Sch Med, Dept Pediat, Salt Lake City, UT USA. [Martin, Christa L.] Emory Univ, Dept Human Genet, Atlanta, GA 30322 USA. [Shin, Mikyong] RTI Int, Triangle Res Pk, NC USA. RP Rasmussen, SA (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 1600 Clifton Rd,MS E-86, Atlanta, GA 30333 USA. EM skr9@cdc.gov RI Dykens, Elisabeth/A-9055-2012 FU CDC FX We thank Cheryl Broussard, Suzanne Gilboa, Assia Miller, and Sarah Tinker for their assistance with the statistical analyses. The authors acknowledge the dedication and contributions of the abstractors, staff, and scientists who contribute to the MACDP. This research was supported in part by an appointment to the Research Participation Program at the CDC administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the United States Department of Energy and the CDC. NR 37 TC 42 Z9 49 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0172-0643 J9 PEDIATR CARDIOL JI Pediatr. Cardiol. PD DEC PY 2011 VL 32 IS 8 BP 1147 EP 1157 DI 10.1007/s00246-011-0034-5 PG 11 WC Cardiac & Cardiovascular Systems; Pediatrics SC Cardiovascular System & Cardiology; Pediatrics GA 844FM UT WOS:000296733100011 PM 21728077 ER PT J AU TenCate, JA AF TenCate, James A. TI Slow Dynamics of Earth Materials: An Experimental Overview SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE Slow dynamics; emergent creep; creep; stress relaxation; creep recovery ID STRONG GROUND MOTION; FONTAINEBLEAU SANDSTONE; TEMPORAL-CHANGES; DAMAGE; ROCKS; SCATTERING; RESONANCE; RHEOLOGY; FRICTION; SOLIDS AB In 1996 Johnson et al. were the first to identify peculiar rate effects in resonant bar experiments on various earth materials. The effects were evident on time scales of minutes to hours. They were also seen in both sedimentary and crystalline rocks, and have since been seen in geomaterials like concrete. Although these effects resemble some aspects of creep and creep recovery, they can be induced by a sinusoidal acoustic drive at strains three orders of magnitude below typical creep experiments. These strains are only a few tenths of a microstrain. Moreover, unlike most creep behavior, the effects have been shown to be macroscopically reversible and repeatable, over hundreds of experiments spanning nearly a year. The unique excitation and character of these rate effects cause them to be called slow dynamics. A review and discussion of slow dynamics is presented, pointing out similarities and differences with ordinary creep and focusing on laboratory experiments. A brief description of some possible mechanisms is included, and a new experiment on a sample of Berea sandstone in ultra high vacuum is shown to point out new research that hopes to help ascertain the role of water as a potential mechanism. C1 Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87544 USA. RP TenCate, JA (reprint author), Los Alamos Natl Lab, Geophys Grp, MS D443, Los Alamos, NM 87544 USA. EM tencate@lanl.gov FU US Department of Energy through the LANL/LDRD FX The author would like to thank and acknowledge the very helpful comments by the editor and reviewers. In addition, thanks to colleagues P. A. Johnson, T.J. Shankland, and R. A. Guyer for long, often provocative, and always helpful discussions over the past years. Special thanks go to H. A. Kim, D. Pasqualini, and S. Habib for numerous recent discussions. D. E. Smith was influential in the early stages of the research, and T. W. Darling is acknowledged for his current interest and involvement. Finally, the author wishes to gratefully acknowledge the support of the US Department of Energy through the LANL/LDRD Program for this work. NR 38 TC 16 Z9 16 U1 0 U2 3 PU BIRKHAUSER VERLAG AG PI BASEL PA VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND SN 0033-4553 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD DEC PY 2011 VL 168 IS 12 BP 2211 EP 2219 DI 10.1007/s00024-011-0268-4 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 846HO UT WOS:000296888000006 ER PT J AU You, FQ Leyffer, S AF You, Fengqi Leyffer, Sven TI Mixed-Integer Dynamic Optimization for Oil-Spill Response Planning with Integration of a Dynamic Oil Weathering Model SO AICHE JOURNAL LA English DT Editorial Material DE MIDO; oil-spill response planning; transport; multiobjective optimization; MINLP ID DESIGN C1 [You, Fengqi] Northwestern Univ, Evanston, IL 60208 USA. [Leyffer, Sven] Argonne Natl Lab, Argonne, IL 60439 USA. RP You, FQ (reprint author), Northwestern Univ, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM you@northwestern.edu RI You, Fengqi/B-5040-2011 OI You, Fengqi/0000-0001-9609-4299 NR 28 TC 12 Z9 12 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 J9 AICHE J JI AICHE J. PD DEC PY 2011 VL 57 IS 12 BP 3555 EP 3564 DI 10.1002/aic.12536 PG 10 WC Engineering, Chemical SC Engineering GA 850EE UT WOS:000297177100027 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Bucher, M Burigana, C Butler, RC Cabella, P Cantalupo, CM Cappellini, B Cardoso, JF Carvalho, P Catalano, A Cayon, L Challinor, A Chamballu, A Chary, RR Chen, X Chiang, LY Chiang, C Christensen, PR Clements, DL Colombi, S Couchot, F Coulais, A Crill, BP Cuttaia, F Danese, L Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Forni, O Fosalba, P Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Haissinski, J Hansen, FK Harrison, D Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Hoyland, RJ Huffenberger, KM Huynh, M Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knox, L Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Laureijs, RJ Lawrence, CR Leach, S Leahy, JP Leonardi, R Leon-Tavares, J Leroy, C Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacTavish, CJ Maffei, B Maggio, G Maino, D Mandolesi, N Mann, R Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P McGehee, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Osborne, S Pajot, F Paladini, R Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Piffaretti, R Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Poutanen, T Pratt, GW Prezeau, G Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sajina, A Sandri, M Santos, D Savini, G Schaefer, BM Scott, D Seiffert, MD Shellard, P Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sunyaev, R Sygnet, JF Tauber, JA Tavagnacco, D Terenzi, L Toffolatti, L Tomasi, M Torre, JP Tristram, M Tuovinen, J Turler, M Umana, G Valenziano, L Valiviita, J Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD White, SDM Wilkinson, A Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Bucher, M. Burigana, C. Butler, R. C. Cabella, P. Cantalupo, C. M. Cappellini, B. Cardoso, J. -F. Carvalho, P. Catalano, A. Cayon, L. Challinor, A. Chamballu, A. Chary, R. -R. Chen, X. Chiang, L. -Y. Chiang, C. Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Haissinski, J. Hansen, F. K. Harrison, D. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Hoyland, R. J. Huffenberger, K. M. Huynh, M. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knox, L. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Laureijs, R. J. Lawrence, C. R. Leach, S. Leahy, J. P. Leonardi, R. Leon-Tavares, J. Leroy, C. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maggio, G. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. McGehee, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Osborne, S. Pajot, F. Paladini, R. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Piffaretti, R. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Poutanen, T. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sajina, A. Sandri, M. Santos, D. Savini, G. Schaefer, B. M. Scott, D. Seiffert, M. D. Shellard, P. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sygnet, J. -F. Tauber, J. A. Tavagnacco, D. Terenzi, L. Toffolatti, L. Tomasi, M. Torre, J. -P. Tristram, M. Tuovinen, J. Tuerler, M. Umana, G. Valenziano, L. Valiviita, J. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. White, S. D. M. Wilkinson, A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck early results. VII. The Early Release Compact Source Catalogue SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; surveys; catalogs; radio continuum: general; submillimeter: general ID PRE-LAUNCH STATUS; DISCRETE OBJECT DETECTION; PROBE WMAP OBSERVATIONS; ASTRONOMICAL DATA SETS; SOURCE EXTRACTION; BAYESIAN-APPROACH; RADIO-SOURCES; GALAXIES; PERFORMANCE; CLUSTERS AB A brief description of the methodology of construction, contents and usage of the Planck Early Release Compact Source Catalogue ( ERCSC), including the Early Cold Cores (ECC) and the Early Sunyaev-Zeldovich (ESZ) cluster catalogue is provided. The catalogue is based on data that consist of mapping the entire sky once and 60% of the sky a second time by Planck, thereby comprising the first high sensitivity radio/submillimetre observations of the entire sky. Four source detection algorithms were run as part of the ERCSC pipeline. A Monte-Carlo algorithm based on the injection and extraction of artificial sources into the Planck maps was implemented to select reliable sources among all extracted candidates such that the cumulative reliability of the catalogue is >= 90%. There is no requirement on completeness for the ERCSC. As a result of the Monte-Carlo assessment of reliability of sources from the different techniques, an implementation of the PowellSnakes source extraction technique was used at the five frequencies between 30 and 143 GHz while the SExtractor technique was used between 217 and 857GHz. The 10 sigma photometric flux density limit of the catalogue at vertical bar b vertical bar > 30 degrees is 0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of the nine frequencies between 30 and 857 GHz. Sources which are up to a factor of similar to 2 fainter than this limit, and which are present in "clean" regions of the Galaxy where the sky background due to emission from the interstellar medium is low, are included in the ERCSC if they meet the high reliability criterion. The Planck ERCSC sources have known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. A significant fraction of unclassified sources are also present in the catalogs. In addition, two early release catalogs that contain 915 cold molecular cloud core candidates and 189 SZ cluster candidates that have been generated using multifrequency algorithms are presented. The entire source list, with more than 15 000 unique sources, is ripe for follow-up characterisation with Herschel, ATCA, VLA, SOFIA, ALMA and other ground-based observing facilities. C1 [Chary, R. -R.; Chen, X.; Ganga, K.; Huynh, M.; McGehee, P.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Lahteenmaki, A.; Leon-Tavares, J.; Poutanen, T.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Catalano, A.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris 07, CNRS, UMR7164, Paris, France. [Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bonavera, L.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Challinor, A.; Shellard, P.] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England. [Melin, J. -B.; Piffaretti, R.; Starck, J. -L.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Marleau, F.; Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Sajina, A.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Cabella, P.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] Planck Sci Off, ESAC, European Space Agcy, Madrid, Spain. [Laureijs, R. J.; Leonardi, R.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll Astron Dept, Haverford, PA USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Mennella, A.; Pasian, F.; Tavagnacco, D.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Donzelli, S.; Maino, D.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Stivoli, F.] Univ Paris 11, Rech Informat Lab, INRIA, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, IPAG, CNRS INSU, UMR 5274, F-38041 Grenoble, France. [Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Lagache, G.; Leroy, C.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Torre, J. -P.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, Paris, France. [Fosalba, P.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D.; Munshi, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Donzelli, S.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Valiviita, J.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Platania, P.] EURATOM, ENEA, CNR, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Keskitalo, R.; Lawrence, C. R.; Mitra, S.; O'Dwyer, I. J.; Prezeau, G.; Rocha, G.; Seiffert, M. D.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Davis, R. J.; Dickinson, C.; Leahy, J. P.; Maffei, B.; Wilkinson, A.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C. J.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU Serv Astrophys, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hildebrandt, S. R.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS IN2P3, F-91405 Orsay, France. [Borrill, J.; Cantalupo, C. M.; Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banday, A. J.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Bonavera, L.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Stratospher Observ Infrared Astron, Univ Space Res Assoc, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, Warsaw, Poland. RP Chary, RR (reprint author), CALTECH, Ctr Infrared Proc & Anal, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM rchary@caltech.edu RI Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Valiviita, Jussi/A-9058-2016; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Martinez-Gonzalez, Enrique/E-9534-2015; Lilje, Per/A-2699-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Butler, Reginald/N-4647-2015; OI Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Barreiro, Rita Belen/0000-0002-6139-4272; Savini, Giorgio/0000-0003-4449-9416; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115 FU NASA; ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX The production of the Planck Early Release Compact Source Catalogue was funded by NASA and carried out at the US Planck Data Center at the Infrared Processing and Analysis Center (IPAC), California Institute of Technology, on behalf of and in collaboration with the LFI and HFI Data Processing Centers and with many contributions by members of the Planck Collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A description of the Planck Collaboration and a list of its members with the technical or scientific activities they have been involved into, can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on NR 64 TC 177 Z9 177 U1 0 U2 18 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2011 VL 536 AR A7 DI 10.1051/0004-6361/201116474 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 867WI UT WOS:000298485100008 ER PT J AU Smith, MF Hall, AC Fleetwood, JD Meyer, P AF Smith, Mark F. Hall, Aaron C. Fleetwood, James D. Meyer, Philip TI Very Low Pressure Plasma Spray-A Review of an Emerging Technology in the Thermal Spray Community SO COATINGS LA English DT Review DE Very Low Pressure Plasma Spray (VLPPS); Plasma Spray-Thin Film (PS-TF); Vacuum Plasma Spray (VPS); Plasma Spray-Physical Vapor Deposition (PS-PVD); Plasma Spray-Chemical Vapor Deposition (PS-CVD); Low Pressure Plasma Spray Thin Film (LPPS-TF (R)); Low Pressure Plasma Spray (LPPS) AB A fundamentally new family of thermal spray processes has emerged. These new processes, collectively known as very low pressure plasma spray or VLPPS, differ from traditional thermal spray processes in that coatings are deposited at unusually low chamber pressures, typically less than similar to 800 Pa (6 Torr). Depending upon the specific process, deposition may be in the form of very fine molten droplets, vapor phase deposition, or a mixture of vapor and droplet deposition. Resulting coatings are similar in quality to coatings produced by alternative coating technologies, such as physical vapor deposition (PVD) or chemical vapor deposition (CVD), but deposition rates can be roughly an order of magnitude higher with VLPPS. With these new process technologies modified low pressure plasma spray (LPPS) systems can now be used to produce dense, high quality coatings in the 1 to 100 micron thickness range with lamellar or columnar microstructures. A history of pioneering work in VLPPS technology is presented, deposition mechanisms are discussed, potential new applications are reviewed, and challenges for the future are outlined. C1 [Smith, Mark F.; Hall, Aaron C.] Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87123 USA. [Fleetwood, James D.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Meyer, Philip] Sulzer Metco, Westbury, NY 11590 USA. RP Smith, MF (reprint author), Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87123 USA. EM mfsmith@sandia.gov; achall@sandia.gov; jdf@purdue.edu; Phil.Meyer@sulzer.com FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 37 TC 5 Z9 5 U1 3 U2 11 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2079-6412 J9 COATINGS JI Coatings PD DEC PY 2011 VL 1 IS 2 BP 117 EP 132 DI 10.3390/coatings1020117 PG 16 WC Materials Science, Coatings & Films SC Materials Science GA V44EP UT WOS:000209732600003 ER PT J AU Souza, L Weston, DJ Sanders, NJ Karve, A Crutsinger, GM Classen, AT AF Souza, Lara Weston, Dave J. Sanders, Nathan J. Karve, Abhijit Crutsinger, Gregory M. Classen, Aimee T. TI Intraspecific variation in response to warming across levels of organization: a test with Solidago altissima SO ECOSPHERE LA English DT Article DE carbon gain; cell level; leaf level; northern genotypes; plant level; population; Solidago altissima; southern genotypes; temperature; warming AB Plant species, and the traits associated with them, can help buffer ecosystems to environmental perturbations. Few studies have examined whether within species variation, both among and within populations, can similarly buffer ecosystems to environmental perturbations, such as climatic warming, across levels of organization. Using a dominant plant species in the eastern US, Solidago altissima, we examined whether genotypes of the same species from both southern and northern latitude populations exhibited differential short-term responses to temperature at the cell, leaf, and plant level. At the cell level we quantified the production of reactive oxygen species (by-product of temperature stress) and total oxygen radical antioxidant capacity (which ameliorates temperature stress by-products). At the leaf and plant levels, we measured CO2 assimilation. Increasing temperatures had strong negative impacts on plant-level carbon gain, but weak impacts on cell-level antioxidant capacity. Southern latitude genotypes had greater total antioxidant capacity, but lower leaf-level carbon gain, than did northern genotypes under elevated temperature. At the plant level, northern and southern genotypes exhibited similar declines in carbon gain under elevated temperature, likely because total plant leaf area was higher for southern genotypes than northern genotypes, which compensated for their lower per unit area leaf-level carbon gain. Overall, short-term temperature-induced declines in carbon gain at the plant level may scale to reduce within species variation, both across and within populations, potentially altering ecosystem carbon cycling. C1 [Souza, Lara; Sanders, Nathan J.; Crutsinger, Gregory M.; Classen, Aimee T.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Weston, Dave J.; Karve, Abhijit] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Crutsinger, Gregory M.] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada. RP Souza, L (reprint author), Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. EM lsouza@utk.edu RI Classen, Aimee/C-4035-2008; Sanders, Nathan/A-6945-2009 OI Classen, Aimee/0000-0002-6741-3470; Sanders, Nathan/0000-0001-6220-6731 FU U.S. Department of Energy [DE-AC05-000R22725]; AAUW FX Thanks to L. Breza, M. Cregger, O. Schmitz and H. Smith for assisting with plant collections and to S. Allen, L. Gunter and H. Tran for assisting with growth chamber experiments. UT Science Alliance Program (Joint Directed Research and Development) and the Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-000R22725 sponsored the research. LS was supported by an American Fellowship from AAUW. NR 45 TC 1 Z9 1 U1 4 U2 15 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 2150-8925 J9 ECOSPHERE JI Ecosphere PD DEC PY 2011 VL 2 IS 12 AR UNSP 132 DI 10.1890/ES11-00283.1 PG 14 WC Ecology SC Environmental Sciences & Ecology GA V30JC UT WOS:000208811300004 ER PT J AU Zhu, JY Wei, SH AF Zhu, Junyi Wei, Su-Huai TI Overcoming doping bottleneck by using surfactant and strain SO FRONTIERS OF MATERIALS SCIENCE LA English DT Review DE semiconductor; surfactant; strain; doping; band gap AB Overcoming the doping bottleneck in semiconductors, especially in wide band gap semiconductors, has been a challenge in semiconductor physics for many years. In this paper, we review some recent progresses in enhancing doping by surfactant and strain. We show that surfactant and strain are two effective approaches to enhance dopant solubility in epitaxial growth. The surfactant can introduce an energy level deep inside the band gap, making the host compound less stable, thus lower the formation energy of the intentional dopant. The strain enhanced doping is based on the observation that dopant induces volume change in the host. If the external strain is in the same direction as the dopant induced volume change, the formation energy of the dopant is reduced. This effect can be used to tune doping sites, thus doping type, in a host. A hybrid method to both include strain and surfactant is proposed, which can be a promising general method to further enhance doping. C1 [Zhu, Junyi; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhu, JY (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM junyi.zhu@nrel.gov FU DOE/BES [DE-AC36-08GO28308] FX We would like to thank F. Liu, G. B. Stringfellow, L. Zhang, and Y. Yan for their contribution in this work. The work done at NREL was supported by DOE/BES under Grant No. DE-AC36-08GO28308. NR 35 TC 5 Z9 5 U1 2 U2 13 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 2095-025X EI 2095-0268 J9 FRONT MATER SCI JI Front. Mater. Sci. PD DEC PY 2011 VL 5 IS 4 BP 335 EP 341 DI 10.1007/s11706-011-0148-y PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA V32EY UT WOS:000208935700001 ER PT J AU Pan, LH Oldenburg, CM Pruess, K Wu, YS AF Pan, Lehua Oldenburg, Curtis M. Pruess, Karsten Wu, Yu-Shu TI Transient CO2 leakage and injection in wellbore-reservoir systems for geologic carbon sequestration SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE CO2 injection; CO2 leakage; numerical modeling; wellbore reservoir AB At its most basic level, the injection of CO2 into deep reservoirs for geologic carbon sequestration (GCS) involves a system comprising the wellbore and the target reservoir, the wellbore being the only conduit available to emplace the CO2. Wellbores in general have also been identified as the most likely conduit for CO2 and brine leakage from GCS sites, especially those in sedimentary basins with historical hydrocarbon production. We have developed a coupled wellbore and reservoir model for simulating the dynamics of CO2 injection and leakage through wellbores, and we have applied the model to situations relevant to geologic CO2 storage involving upward flow (e. g. leakage) and downward flow (injection). The new simulator integrates a wellbore-reservoir system by assigning the wellbore and reservoir to two different sub-domains in which flow is controlled by appropriate laws of physics. In the reservoir, we model flow using a standard multiphase Darcy flow approach. In the wellbores, we use the drift-flux model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO2-water mixtures. Applications to leakage test problems reveal transient flows that develop into quasi-steady states within a day if the reservoir can maintain constant conditions at the wellbore. Otherwise, the leakage dynamics could be much more complicated than the simple quasi-steady-state flow, especially when one of the phases flowing in from the reservoir is near its residual saturation. A test problem of injection into a depleted (low-pressure) gas reservoir shows transient behavior out to several hundred days with sub-critical conditions in the well disappearing after 240 days. (C) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Pan, Lehua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wu, Yu-Shu] Colorado Sch Mines, Golden, CO 80401 USA. RP Pan, LH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM lpan@lbl.gov RI Oldenburg, Curtis/L-6219-2013; Wu, Yu-Shu/A-5800-2011; Pan, Lehua/G-2439-2015 OI Oldenburg, Curtis/0000-0002-0132-6016; FU CO2 Capture Project (CCP) of the Joint Industry Program (JIP); Office of Sequestration, Hydrogen, and Clean Coal Fuels, through the National Energy Technology Laboratory; Lawrence Berkeley National Laboratory under US Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Christine A. Doughty at LBNL for a review and many helpful suggestions and Stephen W. Webb (Sandia National Laboratories) for fruitful discussions about the drift-flux model that has been implemented in T2Well code. This work was supported, in part, by the CO2 Capture Project (CCP) of the Joint Industry Program (JIP), by the National Risk Assessment Partnership (NRAP) through the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, through the National Energy Technology Laboratory, and by Lawrence Berkeley National Laboratory under US Department of Energy Contract No. DE-AC02-05CH11231. NR 29 TC 29 Z9 29 U1 2 U2 21 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD DEC PY 2011 VL 1 IS 4 BP 335 EP 350 DI 10.1002/ghg.41 PG 16 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA V27LT UT WOS:000208615400008 ER PT J AU Zhou, Z Zhao, F Wang, JH AF Zhou, Zhi Zhao, Fei Wang, Jianhui TI Agent-Based Electricity Market Simulation With Demand Response From Commercial Buildings SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Agent-based modeling and simulation; building stock modeling; demand response; electricity market; smart grid AB With the development of power system deregulation and smart metering technologies, price-based demand response (DR) becomes an alternative solution to improving power system reliability and efficiency by adjusting the load profile. In this paper, we simulate an electricity market with DR from different types of commercial buildings by using agent-based modeling and simulation (ABMS) techniques. We focus on the consumption behavior of commercial buildings with different levels of DR penetration in different market structures. The results indicate that there is a noticeable impact from commercial buildings with price-responsive demand on the electricity market, and this impact differs with different scales of DR participation under different levels of market competitions. C1 [Zhou, Zhi] Argonne Natl Lab, Decis Informat Sci Div, CEEESA, Argonne, IL 60439 USA. [Zhao, Fei] Georgia Inst Technol, Coll Architecture, Atlanta, GA 30332 USA. [Wang, Jianhui] Argonne Natl Lab, Decis Informat Sci Div, Argonne, IL 60439 USA. RP Zhou, Z (reprint author), Argonne Natl Lab, Decis Informat Sci Div, CEEESA, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zzhou@anl.gov; feizhao@gatech.edu; jianhui.wang@anl.gov FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 39 TC 49 Z9 52 U1 1 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD DEC PY 2011 VL 2 IS 4 BP 580 EP 588 DI 10.1109/TSG.2011.2168244 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA V30AA UT WOS:000208787700002 ER PT J AU Yang, ZY Yu, SC Lou, WJ Liu, C AF Yang, Zhenyu Yu, Shucheng Lou, Wenjing Liu, Cong TI P-2 : Privacy-Preserving Communication and Precise Reward Architecture for V2G Networks in Smart Grid SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Secure communication; smart grid; V2G networks AB Vehicle-to-grid (V2G) networks are important components of the smart grid (SG) for their capability of providing better ancillary services and facilitating the adoption of renewable resources. The operation of the V2G networks is based on continuously monitoring the status of individual battery vehicle (BV) as well as a carefully designed incentive scheme to attract sufficient participating BVs. However, the close monitoring tends to raise privacy concerns from the BV owners about identity and location information leakage, which have not been considered in previous works. In this paper, we make the first attempt to identify the privacy-preserving issues and propose a precise reward scheme in V2G networks, both of which are important towards bringing the concept of V2G network into practice. In V2G networks, it is the service providers (individual BVs) who need privacy protection rather than the service consumer (power grid). This unique characteristic renders privacy protection solutions proposed for conventional network systems not directly applicable. To protect privacy of BVs in V2G networks, we present P-2, a secure communication architecture which achieves privacy-preserving for both BVs' monitoring and rewarding processes. Extensive performance analysis shows that P-2 only incurs moderate communication and computational overheads. C1 [Yang, Zhenyu; Lou, Wenjing] Worcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA. [Yu, Shucheng] Univ Arkansas, Dept Comp Sci, Little Rock, AR 72204 USA. [Liu, Cong] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Yang, ZY (reprint author), Worcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA. EM zyyang@wpi.edu; sxyu1@ualr.edu; wjlou@wpi.edu; liuc@anl.gov FU U.S. National Science Foundation [CNS-0746977, CNS-0831628] FX This work was supported in part by the U.S. National Science Foundation under Grants CNS-0746977 and CNS-0831628. Paper no. TSG-00176-2010. NR 36 TC 30 Z9 30 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD DEC PY 2011 VL 2 IS 4 BP 697 EP 706 DI 10.1109/TSG.2011.2140343 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA V30AA UT WOS:000208787700015 ER PT J AU Wei, D Lu, Y Jafari, M Skare, PM Rohde, K AF Wei, Dong Lu, Yan Jafari, Mohsen Skare, Paul M. Rohde, Kenneth TI Protecting Smart Grid Automation Systems Against Cyberattacks SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Smart grid; cyberattacks; network security; vulnerability; Quality-of-Service (QoS) AB The smart grid moves new power grid automation systems from being proprietary and closed to the current state of information technology (IT) which is highly interconnected and open. But open and interconnected automation platforms bring about major security challenges. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were originally designed without much consideration of cybersecurity. This paper first introduces scope and functionalities of power grid, its automation and control system, and communications. Potential cyberattacks and their adverse impacts on power grid operation are discussed, a general SCADA cyberattack process is presented. This paper discusses the major challenges and strategies to protect smart grid against cyberattacks and finally proposes a conceptual layered framework for protecting power grid automation systems against cyberattacks without compromising timely availability of control and signal data. The proposed "bump-in-the-wire" approach also provides security protection for legacy systems which do not have enough computational power or memory space to perform security functionalities. The on-site system test of the developed prototype security system is briefly presented as well. C1 [Wei, Dong; Lu, Yan] Siemens Corp, Corp Res, Princeton, NJ 08540 USA. [Jafari, Mohsen] Rutgers State Univ, New Brunswick, NJ 08854 USA. [Skare, Paul M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Rohde, Kenneth] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wei, D (reprint author), Siemens Corp, Corp Res, Princeton, NJ 08540 USA. EM dong.w@siemens.com; yanlu@siemens.com; jafari@rci.rutgers.edu; paul.skare@pnl.gov; kenneth.rohde@inl.gov FU project "Protecting Intelligent Distributed Power Grids Against Cyber Attacks" [DE-FC26-07NT43313] FX This work was supported by the project "Protecting Intelligent Distributed Power Grids Against Cyber Attacks," which was conducted for the Department of Energy Office of Electricity Delivery and Energy Reliability under Contract DE-FC26-07NT43313. Paper no. TSG-00158-2010. NR 37 TC 35 Z9 35 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD DEC PY 2011 VL 2 IS 4 BP 782 EP 795 DI 10.1109/TSG.2011.2159999 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA V30AA UT WOS:000208787700023 ER PT J AU Cheng, XL Xu, ZL AF Cheng, Xiaolin Xu, Zhenli TI Special Issue on Ionic Fluids and Its Biological Application SO INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES LA English DT Editorial Material C1 [Cheng, Xiaolin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Xu, Zhenli] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China. RP Cheng, XL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM chengx@ornl.gov; xuzl@sjtu.edu.cn NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1913-2751 J9 INTERDISCIP SCI JI Interdiscip. Sci. PD DEC PY 2011 VL 3 IS 4 BP 241 EP 242 DI 10.1007/s12539-011-0112-7 PG 2 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA V28WA UT WOS:000208709700001 PM 22179757 ER PT J AU Mostofian, B Smith, JC Cheng, XL AF Mostofian, Barmak Smith, Jeremy C. Cheng, Xiaolin TI The Solvation Structures of Cellulose Microfibrils in Ionic Liquids SO INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES LA English DT Article DE cellulose; ionic liquids; molecular dynamics AB The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber's core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl. C1 [Mostofian, Barmak; Smith, Jeremy C.; Cheng, Xiaolin] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA. [Mostofian, Barmak; Smith, Jeremy C.; Cheng, Xiaolin] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Cheng, XL (reprint author), Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, POB 2008, Oak Ridge, TN 37831 USA. EM chengx@ornl.gov OI Smith, Jeremy/0000-0002-2978-3227 FU U. S. Department of Energy, Scientific Discovery through Advanced Computing (SciDAC) program; Office of Biological and Environmental Research (OBER) [FWP ERKJE84]; National Science Foundation [TG-MCA08X032] FX This work was funded by the U. S. Department of Energy, Scientific Discovery through Advanced Computing (SciDAC) program, and Office of Biological and Environmental Research (OBER) under FWP ERKJE84. The research was also supported in part by the National Science Foundation through XSEDE resources provided by the National Institute of Computational Sciences under grant number TG-MCA08X032. NR 59 TC 11 Z9 11 U1 1 U2 32 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1913-2751 J9 INTERDISCIP SCI JI Interdiscip. Sci. PD DEC PY 2011 VL 3 IS 4 BP 308 EP 320 DI 10.1007/s12539-011-0111-8 PG 13 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA V28WA UT WOS:000208709700008 PM 22179764 ER PT J AU Riley, BJ Hrma, PR Vienna, JD Schweiger, MJ Rodriguez, CP Crum, JV Lang, JB Marra, JC Johnson, FC Peeler, DK Leonelli, C Ferrari, AM Lancellotti, I Dussossoy, JL Hand, RJ Schofield, JM Connelly, AJ Short, R Harrison, MT AF Riley, Brian J. Hrma, Pavel R. Vienna, John D. Schweiger, Michael J. Rodriguez, Carmen P. Crum, Jarrod V. Lang, Jesse B. Marra, James C. Johnson, Fabienne C. Peeler, David K. Leonelli, Cristina Ferrari, Anna Maria Lancellotti, Isabella Dussossoy, Jean-Luc Hand, Russell J. Schofield, James M. Connelly, Andrew J. Short, Rick Harrison, Mike T. TI The Liquidus Temperature of Nuclear Waste Glasses: An International Round-Robin Study SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID QUANTITATIVE PHASE-ANALYSIS; QUASI-CHEMICAL MODEL; RIETVELD METHOD AB Eight institutions from four countries participated in a round-robin study to determine the precision and bias of a liquidus temperature (T-L) procedure for waste glasses being adopted by ASTM International as ASTM C 1720-11. The participants of the round-robin study were asked to measure three different glasses with one or a combination of the following T-L measurement methods: a gradient temperature (GT) method, a uniform temperature (UT) method, and/or a crystal fraction extrapolation (CF) method. The T-L values reported by different institutions are generally consistent. The precision of T-L measurements with each method was evaluated and is presented herein. The round-robin glasses were all previously studied at Pacific Northwest National Laboratory and included ARG-1 (Glass A), Zr-9 (Glass B), and AmCm2-19 (Glass C), with measured T-L values spanning the temperature range of 960-1240 degrees C. A precision (i.e., standard deviation) for T-L has been obtained from the data, even though the data were not acquired for all three glasses using all three methods from each participating organization. Also, the article provides a brief overview and the importance of the T-L measurement. C1 [Riley, Brian J.; Hrma, Pavel R.; Vienna, John D.; Schweiger, Michael J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Lang, Jesse B.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Marra, James C.; Johnson, Fabienne C.; Peeler, David K.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Leonelli, Cristina; Ferrari, Anna Maria; Lancellotti, Isabella] Univ Modena & Reggio Emilia, I-41125 Modena, Italy. [Dussossoy, Jean-Luc] Ctr Marcoule, Commissariat Energie Atom, F-91191 Gif Sur Yvette, France. [Hand, Russell J.; Schofield, James M.; Connelly, Andrew J.] Univ Sheffield, Dept Mat Sci & Engn, Immobilisat Sci Lab, Sheffield S1 3JD, S Yorkshire, England. [Short, Rick; Harrison, Mike T.] Cent Lab, Natl Nucl Lab, Seascale CA20 1PG, Cumbria, England. RP Riley, BJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM brian.riley@pnl.gov RI Leonelli, Cristina/O-2324-2015; Lancellotti, Isabella/M-3058-2015; OI Leonelli, Cristina/0000-0001-8524-8715; Lancellotti, Isabella/0000-0003-3218-9111; FERRARI, ANNA MARIA/0000-0002-6265-4419; Riley, Brian/0000-0002-7745-6730 FU U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. The authors thank Bradley Scholes at Idaho National Laboratory and Monarch Laboratories, Inc. for providing data during the initial cycle of round-robin testing in 1999-2000, T. Schott for her help in shipping and tracking the various shipments, as well as G. L. Smith and D. S. Kim for assistance with the manuscript and for their helpful discussions. NR 41 TC 2 Z9 2 U1 2 U2 9 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD DEC PY 2011 VL 2 IS 4 SI SI BP 321 EP 333 DI 10.1111/j.2041-1294.2011.00063.x PG 13 WC Materials Science, Ceramics SC Materials Science GA 034CU UT WOS:000310848500008 ER PT J AU Kim, T Assary, RS Curtiss, LA Marshall, CL Stair, PC AF Kim, Taejin Assary, Rajeev S. Curtiss, Larry A. Marshall, Christopher L. Stair, Peter C. TI Vibrational properties of levulinic acid and furan derivatives: Raman spectroscopy and theoretical calculations SO JOURNAL OF RAMAN SPECTROSCOPY LA English DT Article DE furan; furan derivatives; levulinic acid; Raman spectra; combination and prediction spectrum method ID FURFURYL ALCOHOL POLYMERIZATION; TRANSPORTATION FUELS; SURFACE-ACIDITY; SCALE FACTORS; CONVERSION; CATALYSTS; BIOMASS; FREQUENCIES; CHEMISTRY; MECHANISM AB In this work, the Raman spectra of furan, furfuryl alcohol (FA), furfural, hydroxymethylfurfural (HMF), and levulinic acid were obtained in the 500 to 4000 cm-1 spectral region at room temperature. Vibrational wavenumbers were calculated for these compounds with the B3LYP method using the 6-31 + G(2df,p) basis set. The experimentally determined C?C and C?C wavenumbers for furan and furan derivatives were in good agreement with the calculated wavenumbers without scaling factor, while the calculated C-O and C?H wavenumbers at similar to 1660 and 3000 cm-1, respectively, showed larger deviations from the measured ones. The Raman spectra for furan and furan derivatives showed intense C-C bands, whereas the levulinic acid spectrum showed intense C?H vibrations with broad doublet C?O bands. We also found that an empirical method based on the chemical structure similarities is able to predict the HMF Raman spectrum from the combined furfural and FA spectra. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Stair, Peter C.] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Assary, Rajeev S.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM pstair@northwestern.edu RI KIM, TAE JIN/M-7994-2014; Surendran Assary, Rajeev/E-6833-2012; Marshall, Christopher/D-1493-2015 OI KIM, TAE JIN/0000-0002-0096-303X; Surendran Assary, Rajeev/0000-0002-9571-3307; Marshall, Christopher/0000-0002-1285-7648 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Argonne; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded project by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under contract DE-AC02-06CH11357. NR 48 TC 24 Z9 24 U1 2 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0377-0486 J9 J RAMAN SPECTROSC JI J. Raman Spectrosc. PD DEC PY 2011 VL 42 IS 12 BP 2069 EP 2076 DI 10.1002/jrs.2951 PG 8 WC Spectroscopy SC Spectroscopy GA 869FD UT WOS:000298581500002 ER PT J AU Ahn, BY Walker, SB Slimmer, SC Russo, A Gupta, A Kranz, S Duoss, EB Malkowski, TF Lewis, JA AF Ahn, Bok Yeop Walker, Steven B. Slimmer, Scott C. Russo, Analisa Gupta, Ashley Kranz, Steve Duoss, Eric B. Malkowski, Thomas F. Lewis, Jennifer A. TI Planar and Three-Dimensional Printing of Conductive Inks SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Bioengineering; Issue 58; Direct-write assembly; silver ink; 3D printing; planar; three-dimensional; microelectrodes; flexible electronics; printed electronics AB Printed electronics rely on low-cost, large-area fabrication routes to create flexible or multidimensional electronic, optoelectronic, and biomedical devices(1-3). In this paper, we focus on one-(1D), two-(2D), and three-dimensional (3D) printing of conductive metallic inks in the form of flexible, stretchable, and spanning microelectrodes. Direct-write assembly(4,5) is a 1-to-3D printing technique that enables the fabrication of features ranging from simple lines to complex structures by the deposition of concentrated inks through fine nozzles (similar to 0.1 - 250 mu m). This printing method consists of a computer-controlled 3-axis translation stage, an ink reservoir and nozzle, and 10x telescopic lens for visualization. Unlike inkjet printing, a droplet-based process, directwrite assembly involves the extrusion of ink filaments either in-or out-of-plane. The printed filaments typically conform to the nozzle size. Hence, microscale features (< 1 mu m) can be patterned and assembled into larger arrays and multidimensional architectures. In this paper, we first synthesize a highly concentrated silver nanoparticle ink for planar and 3D printing via direct-write assembly. Next, a standard protocol for printing microelectrodes in multidimensional motifs is demonstrated. Finally, applications of printed microelectrodes for electrically small antennas, solar cells, and light-emitting diodes are highlighted. C1 [Ahn, Bok Yeop; Walker, Steven B.; Slimmer, Scott C.; Russo, Analisa; Gupta, Ashley; Kranz, Steve; Duoss, Eric B.; Malkowski, Thomas F.; Lewis, Jennifer A.] Univ Illinois, Dept Mat Sci & Engn, Champaign, IL 61820 USA. [Duoss, Eric B.] Lawrence Livermore Natl Lab, Ctr Micro & Nanotechnol, Berkeley, CA USA. RP Ahn, BY (reprint author), Univ Illinois, Dept Mat Sci & Engn, Champaign, IL 61820 USA. FU U.S. Department of Energy, Materials Sciences and Engineering Division [DEFG-02-07ER46471]; DOE Energy Research Center on Light-Materials Interactions in Energy Conversion [DE-SC0001293] FX This material is based on work supported by the U.S. Department of Energy, Materials Sciences and Engineering Division (Award No. DEFG-02-07ER46471) and the DOE Energy Research Center on Light-Materials Interactions in Energy Conversion (Award No. DE-SC0001293), and benefitted from access to the Center for Microanalysis of Materials within the Frederick Seitz Materials Research Laboratory (FSMRL). NR 30 TC 0 Z9 0 U1 7 U2 42 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD DEC PY 2011 IS 58 AR UNSP e3189 DI 10.3791/3189 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V36PA UT WOS:000209222300008 ER PT J AU Kim, JS Fillmore, TL Liu, T Robinson, E Hossain, M Champion, BL Moore, RJ Camp, DG Smith, IRD Qian, WJ AF Kim, Jong-Seo Fillmore, Thomas L. Liu, Tao Robinson, Errol Hossain, Mahmud Champion, Boyd L. Moore, Ronald J. Camp, David G., II Smith, Richard D. Qian, Wei-Jun TI O-18-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID QUANTITATIVE PROTEOMICS; PLASMA-CONCENTRATION; MOUSE-BRAIN; PROTEINS; ASSAYS; IDENTIFICATION; SENSITIVITY; DISCOVERY; PEPTIDES; CLEAVAGE AB Selected reaction monitoring (SRM)-MS is an emerging technology for high throughput targeted protein quantification and verification in biomarker discovery studies; however, the cost associated with the application of stable isotope-labeled synthetic peptides as internal standards can be prohibitive for screening a large number of candidate proteins as often required in the preverification phase of discovery studies. Herein we present a proof of concept study using an O-18-labeled proteome reference as global internal standards (GIS) for SRM-based relative quantification. The O-18-labeled proteome reference (or GIS) can be readily prepared and contains a heavy isotope (O-18)-labeled internal standard for every possible tryptic peptide. Our results showed that the percentage of heavy isotope (O-18) incorporation applying an improved protocol was > 99.5% for most peptides investigated. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into the labeled mouse plasma reference. Reliable quantification was observed with high reproducibility (i. e. coefficient of variance < 10%) for analyte concentrations that were set at 100-fold higher or lower than those of the GIS based on the light (O-16)/heavy (O-18) peak area ratios. The utility of O-18-labeled GIS was further illustrated by accurate relative quantification of 45 major human plasma proteins. Moreover, quantification of the concentrations of C-reactive protein and prostatespecific antigen was illustrated by coupling the GIS with standard additions of purified protein standards. Collectively, our results demonstrated that the use of O-18-labeled proteome reference as GIS provides a convenient, low cost, and effective strategy for relative quantification of a large number of candidate proteins in biological or clinical samples using SRM. Molecular & Cellular Proteomics 10: 10.1074/mcp.M110.007302, 1-13, 2011. C1 [Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM weijun.qian@pnnl.gov RI Smith, Richard/J-3664-2012; Robinson, Errol/I-3148-2012 OI Smith, Richard/0000-0002-2381-2349; Robinson, Errol/0000-0003-0696-6239 FU National Institutes of Health [1-DP2OD006668-01]; National Institutes of Health National Center for Research Resources [RR18522]; Korea Research Foundation [KRF-2008-357-C00093]; Department of Energy Contract [DE-AC05-76RLO-1830] FX This work was supported in part by the National Institutes of Health Director's New Innovator Award Program 1-DP2OD006668-01 (to W.-J. Q.), the National Institutes of Health National Center for Research Resources RR18522 (to R. D. S.), Korea Research Foundation Grant KRF-2008-357-C00093 (to J-.S. K.), and Department of Energy Contract DE-AC05-76RLO-1830 (to Pacific Northwest National Laboratory). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. Section 1734 solely to indicate this fact. NR 33 TC 1 Z9 1 U1 0 U2 0 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD DEC PY 2011 VL 10 IS 12 AR M110.007302-1 DI 10.1074/mcp.M110.007302-1 PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 865DF UT WOS:000298290300005 PM 21988777 ER PT J AU Kinsinger, CR Apffel, J Baker, M Bian, XP Borchers, CH Bradshaw, R Brusniak, MY Chan, DW Deutsch, EW Domon, B Gorman, J Grimm, R Hancock, W Hermjakob, H Horn, D Hunter, C Kolar, P Kraus, HJ Langen, H Linding, R Moritz, RL Omenn, GS Orlando, R Pandey, A Ping, PP Rahbar, A Rivers, R Seymour, SL Simpson, RJ Slotta, D Smith, RD Stein, SE Tabb, DL Tagle, D Yates, JR Rodriguez, H AF Kinsinger, Christopher R. Apffel, James Baker, Mark Bian, Xiaopeng Borchers, Christoph H. Bradshaw, Ralph Brusniak, Mi-Youn Chan, Daniel W. Deutsch, Eric W. Domon, Bruno Gorman, Jeff Grimm, Rudolf Hancock, William Hermjakob, Henning Horn, David Hunter, Christie Kolar, Patrik Kraus, Hans-Joachim Langen, Hanno Linding, Rune Moritz, Robert L. Omenn, Gilbert S. Orlando, Ron Pandey, Akhilesh Ping, Peipei Rahbar, Amir Rivers, Robert Seymour, Sean L. Simpson, Richard J. Slotta, Douglas Smith, Richard D. Stein, Stephen E. Tabb, David L. Tagle, Danilo Yates, John R., III Rodriguez, Henry TI Recommendations for Mass Spectrometry Data Quality Metrics for Open Access Data (Corollary to the Amsterdam Principles) SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Editorial Material ID PROTEIN IDENTIFICATION DATA; SHOTGUN PROTEOMICS; PEPTIDE IDENTIFICATION; CLINICAL PROTEOMICS; MINIMUM INFORMATION; STATISTICAL-MODEL; GUIDELINES; RESOURCE; SPECTRA; REPRODUCIBILITY AB Policies supporting the rapid and open sharing of proteomic data are being implemented by the leading journals in the field. The proteomics community is taking steps to ensure that data are made publicly accessible and are of high quality, a challenging task that requires the development and deployment of methods for measuring and documenting data quality metrics. On September 18, 2010, the United States National Cancer Institute convened the "International Workshop on Proteomic Data Quality Metrics" in Sydney, Australia, to identify and address issues facing the development and use of such methods for open access proteomics data. The stakeholders at the workshop enumerated the key principles underlying a framework for data quality assessment in mass spectrometry data that will meet the needs of the research community, journals, funding agencies, and data repositories. Attendees discussed and agreed up on two primary needs for the wide use of quality metrics: 1) an evolving list of comprehensive quality metrics and 2) standards accompanied by software analytics. Attendees stressed the importance of increased education and training programs to promote reliable protocols in proteomics. This workshop report explores the historic precedents, key discussions, and necessary next steps to enhance the quality of open access data. By agreement, this article is published simultaneously in the Journal of Proteome Research, Molecular and Cellular Proteomics, Proteomics, and Proteomics Clinical Applications as a public service to the research community. The peer review process was a coordinated effort conducted by a panel of referees selected by the journals. Molecular & Cellular Proteomics 10: 10.1074/mcp.O111.015446, 1-9, 2011. C1 [Kinsinger, Christopher R.] NCI, Off Canc Clin Prote Res, NIH, Bethesda, MD 20892 USA. Agilent Res Labs, Santa Clara, CA 95051 USA. Macquarie Univ, Dept Chem & Biomol Sci, Sydney, NSW 2109, Australia. NCI, Ctr Bioinformat & Informat Technol, NIH, Bethesda, MD 20892 USA. Univ Victoria, Genome BC Prote Ctr, Victoria, BC V8Z 7X8, Canada. Univ Calif San Francisco, Mass Spectrometry Facil, San Francisco, CA 94143 USA. Inst Syst Biol, Cellular & Mol Log Unit, Seattle, WA 98103 USA. Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD 21231 USA. CRP Sante, Luxembourg Clin Prote Ctr, L-1445 Strassen, Luxembourg. Inst Syst Biol, Seattle, WA 98109 USA. Queensland Inst Med Res, Prot Discovery Ctr, Herston, Qld 4029, Australia. Agilent Technol, Santa Clara, CA 95051 USA. Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA. European Bioinformat Inst, Prote Serv, Cambridge CB10 1SD, England. Thermo Fisher Sci, Prote Software Strateg Mkt, San Jose, CA 95134 USA. AB SCIEX, Foster City, CA 94404 USA. Commiss European Communities, Directorate Gen Res, B-1049 Brussels, Belgium. Hoffmann La Roche AG, Exploratory Biomarkers, CH-4070 Basel, Switzerland. Wiley VCH, D-69469 Weinheim, Germany. Tech Univ Denmark, Cellular Signal Integrat Grp, Dept Syst Biol, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark. Univ Michigan, Ctr Computat Med & Bioinformat, Ann Arbor, MI 48109 USA. Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. La Trobe Univ, McKusick Nathans Inst Genet Med, Bundoora, Vic 3086, Australia. NIH, Natl Ctr Biotechnol Informat, Bethesda, MD 20892 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Natl Inst Stand & Technol, Chem Reference Data Grp, Gaithersburg, MD 20899 USA. Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA. Natl Inst Neurol Disorders & Stroke, NIH, Bethesda, MD 20892 USA. Scripps Res Inst, La Jolla, CA 92037 USA. RP Kinsinger, CR (reprint author), NCI, Off Canc Clin Prote Res, NIH, 31 Ctr Dr,MSC 2580, Bethesda, MD 20892 USA. EM kinsingc@mail.nih.gov RI Smith, Richard/J-3664-2012; Simpson, Richard/A-6947-2012 OI Smith, Richard/0000-0002-2381-2349; FU NHGRI NIH HHS [RC2 HG005805]; NIGMS NIH HHS [P50 GM076547] NR 51 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD DEC PY 2011 VL 10 IS 12 AR O111.015446-1 DI 10.1074/mcp.O111.015446-1 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 865DF UT WOS:000298290300002 PM 22052993 ER PT J AU Wisniewski-Dye, F Borziak, K Khalsa-Moyers, G Alexandre, G Sukharnikov, LO Wuichet, K Hurst, GB McDonald, WH Robertson, JS Barbe, V Calteau, A Rouy, Z Mangenot, S Prigent-Combaret, C Normand, P Boyer, M Siguier, P Dessaux, Y Elmerich, C Condemine, G Krishnen, G Kennedy, I Paterson, AH Gonzalez, V Mavingui, P Zhulin, IB AF Wisniewski-Dye, Florence Borziak, Kirill Khalsa-Moyers, Gurusahai Alexandre, Gladys Sukharnikov, Leonid O. Wuichet, Kristin Hurst, Gregory B. McDonald, W. Hayes Robertson, Jon S. Barbe, Valerie Calteau, Alexandra Rouy, Zoe Mangenot, Sophie Prigent-Combaret, Claire Normand, Philippe Boyer, Mickael Siguier, Patricia Dessaux, Yves Elmerich, Claudine Condemine, Guy Krishnen, Ganisan Kennedy, Ivan Paterson, Andrew H. Gonzalez, Victor Mavingui, Patrick Zhulin, Igor B. TI Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments SO PLOS GENETICS LA English DT Article ID PROTEIN IDENTIFICATION TECHNOLOGY; SIGNAL-TRANSDUCTION CASCADE; HORIZONTAL GENE-TRANSFER; RHODOSPIRILLUM-CENTENUM; SHOTGUN PROTEOMICS; EARLY EVOLUTION; YEAST PROTEOME; PLANT-MICROBE; DATABASE; CHEMOTAXIS AB Fossil records indicate that life appeared in marine environments, similar to 3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that "hydrobacteria" and "terrabacteria" might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro-and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land. C1 [Wisniewski-Dye, Florence; Prigent-Combaret, Claire; Normand, Philippe; Boyer, Mickael; Mavingui, Patrick] Univ Lyon, CNRS, UMR 5557, Villeurbanne, France. [Borziak, Kirill; Sukharnikov, Leonid O.; Wuichet, Kristin; Zhulin, Igor B.] Univ Tennessee, Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. [Borziak, Kirill; Khalsa-Moyers, Gurusahai; Zhulin, Igor B.] Univ Tennessee, Oak Ridge Natl Lab, Genome Sci & Technol Program, Oak Ridge, TN USA. [Alexandre, Gladys] Univ Tennessee, Dept Biochem Cell & Mol Biol, Knoxville, TN USA. [Sukharnikov, Leonid O.; Wuichet, Kristin; Zhulin, Igor B.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Hurst, Gregory B.; McDonald, W. Hayes] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Robertson, Jon S.; Paterson, Andrew H.] Univ Georgia, Plant Genome Mapping Lab, Athens, GA 30602 USA. [Barbe, Valerie; Mangenot, Sophie] CEA, Inst Genom, Evry, France. [Calteau, Alexandra; Rouy, Zoe] CEA, Lab Anal Bioinformat Genom & Metab, CNRS, UMR8030, Evry, France. [Siguier, Patricia] Univ Toulouse 3, Lab Microbiol & Genet Mol, CNRS, UMR5100, F-31062 Toulouse, France. [Dessaux, Yves] CNRS, Inst Sci Vegetal, UPR 2355, Gif Sur Yvette, France. [Elmerich, Claudine] Inst Pasteur, BMGE, Dept Microbiol, Paris, France. [Condemine, Guy] Univ Lyon, CNRS, UMR5240, Villeurbanne, France. [Krishnen, Ganisan; Kennedy, Ivan] Univ Sydney, Fac Agr Food & Nat Resources, Sydney, NSW 2006, Australia. [Gonzalez, Victor] Univ Nacl Autonoma Mexico, Ctr Ciencias Genom, Cuernavaca 62191, Morelos, Mexico. [Zhulin, Igor B.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Wisniewski-Dye, F (reprint author), Univ Lyon, CNRS, UMR 5557, Villeurbanne, France. EM joulineib@ornl.gov RI Normand, Philippe/A-1142-2012; Kennedy, Ivan/D-1064-2013; Zhulin, Igor/A-2308-2012; Boyer, Mickael/F-6608-2013; McDonald, W. Hayes/B-4109-2016; OI CALTEAU, Alexandra/0000-0002-5871-9347; Prigent-Combaret, Claire/0000-0001-8968-0660; Zhulin, Igor/0000-0002-6708-5323; Boyer, Mickael/0000-0001-5384-1151; McDonald, W. Hayes/0000-0002-3510-426X; Normand, Philippe/0000-0002-2139-2141; Hurst, Gregory/0000-0002-7650-8009; Alexandre, Gladys/0000-0002-9238-4640 FU National Science Foundation [EF-0412186, EF-0728827, MCB-0622277]; DOE BioEnergy Science Center; Genomic Science Program; Office of Biological and Environmental Research in the DOE Office of Science; ANR [ANR-08-BLAN-0098]; CNRS Institut Ecology et Environnement (France); Australian Research Council [DP0771664] FX This work was supported in part by grants EF-0412186, EF-0728827 (IBZ and AHP), and MCB-0622277 (GA) from the National Science Foundation and by funds from the DOE BioEnergy Science Center (IBZ) and the Genomic Science Program (GBH and WHM), which are supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was also supported by the ANR project AZORIZ (ANR-08-BLAN-0098), by the CNRS Institut Ecology et Environnement (France), and by Australian Research Council grant DP0771664 (IK and IBZ). The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 66 TC 59 Z9 61 U1 4 U2 32 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD DEC PY 2011 VL 7 IS 12 AR e1002430 DI 10.1371/journal.pgen.1002430 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 877HI UT WOS:000299167900044 PM 22216014 ER PT J AU Kessides, IN Wade, DC AF Kessides, Ioannis N. Wade, David C. TI Deriving an Improved Dynamic EROI to Provide Better Information for Energy Planners SO SUSTAINABILITY LA English DT Article DE doubling time; dynamic EROI; sustainability; net energy AB The two most frequently quantified metrics of net energy analysis-the energy return on (energy) investment and the energy payback period-do not capture the growth rate potential of an energy supply infrastructure. This is because the analysis underlying these metrics is essentially static-all energy inputs and outputs are treated the same, regardless of where they occur in the life cycle of the infrastructure. We develop a dynamic energy analysis framework to model the growth potential of alternative electricity supply infrastructures. An additional figure of merit, the infrastructure doubling time, is introduced. This metric highlights the critical importance of the time phasing of the initial energy investment for emplacing a given infrastructure, as opposed to the ongoing O&M energy expenditures, for the infrastructure's growth potential. The doubling time metric also captures the influence of capacity factor, licensing and construction time lags. C1 [Kessides, Ioannis N.] World Bank, Washington, DC 20433 USA. [Wade, David C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kessides, IN (reprint author), World Bank, 1818 H St NW, Washington, DC 20433 USA. EM ikessides@worldbank.org NR 32 TC 3 Z9 3 U1 0 U2 2 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD DEC PY 2011 VL 3 IS 12 BP 2339 EP 2357 DI 10.3390/su3122339 PG 19 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences; Environmental Studies SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA V29QW UT WOS:000208763900002 ER PT J AU Wu, WT Shen, J Gai, Z Hong, KL Banerjee, P Zhou, SQ AF Wu, Weitai Shen, Jing Gai, Zheng Hong, Kunlun Banerjee, Probal Zhou, Shuiqin TI Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery SO BIOMATERIALS LA English DT Article DE Hybrid nanogels; Ni-Ag bimetallic nanoparticle; pH-responsive; Magnetic manipulation; Biosensor; Drug delivery ID NANOPARTICLES; MICROGELS; NANOCRYSTALS; KINETICS; PROBES; TUMORS AB Remotely optical sensing and drug delivery using an environmentally-guided magnetically-driven hybrid nanogel particle could allow for medical diagnostics and treatment. Such multifunctional hybrid nanogels (<200 nm) were prepared through the first synthesis of magnetic Ni NPs, followed by a moderate growth of fluorescent metallic Ag on the surface of Ni NPs, and then a coverage of a pH-responsive copolymer gel shell of poly(ethylene glycol-co-methacrylic acid) [p(EG-MAA)] onto the Ni-Ag bimetallic NP cores (18 +/- 5 nm). The introduction of the pH-responsive p(EG-MAA) gel shell onto the magnetic and fluorescent Ni-Ag NPs makes the polymer-bound Ni-Ag NPs responsive to pH over the physiologically important range 5.0-7.4. The hybrid nanogels can adapt to surrounding pH and regulate the sensitivity in response to external magnetic field (such as a small magnet of 0.1 T), resulting in the accumulation of the hybrid nanogels within the duration from hours to a few seconds as the pH value decreases from 7.4 to 5.0. The pH-dependent magnetic response characteristic of the hybrid nanogels were further integrated with the pH change to fluorescent signal transduction and pH-regulated anticancer drug (a model drug 5-fluorouracil) delivery functions. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The multiple responsive hybrid nanogel that can be manipulated in tandem endogenous and exogenous activation should enhance our ability to address the complexity of biological systems. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Wu, Weitai; Shen, Jing; Banerjee, Probal; Zhou, Shuiqin] CUNY, Dept Chem, Coll Staten Isl, Staten Isl, NY 10314 USA. [Wu, Weitai; Shen, Jing; Banerjee, Probal; Zhou, Shuiqin] CUNY, Grad Ctr, Staten Isl, NY 10314 USA. [Wu, Weitai] Xiamen Univ, Dept Chem, Xiamen 361005, Fujian, Peoples R China. [Wu, Weitai] Xiamen Univ, Key Lab Chem Biol Fujian Prov, Coll Chem & Chem Engn, Xiamen 361005, Fujian, Peoples R China. [Gai, Zheng; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gai, Zheng; Hong, Kunlun] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Banerjee, Probal] CUNY Coll Staten Isl, CSI IBR Ctr Dev Neurosci, Staten Isl, NY 10314 USA. RP Wu, WT (reprint author), CUNY, Dept Chem, Coll Staten Isl, Staten Isl, NY 10314 USA. EM wuwtxmu@xmu.edu.cn; shuiqin.zhou@csi.cuny.edu RI Wu, Weitai/F-6116-2011; Gai, Zheng/B-5327-2012; Hong, Kunlun/E-9787-2015 OI Gai, Zheng/0000-0002-6099-4559; Hong, Kunlun/0000-0002-2852-5111 FU US Agency for International Development [PGA-P280422]; Xiamen University; Scientific User Facilities Division, Department of Energy of the US FX We gratefully acknowledge the financial support from the US Agency for International Development under the US-Pakistan Science and Technology Cooperative Program (PGA-P280422). The research carried out in China was supported by the Xiamen University Start-Up Fund (985 Project). The research carried out at the CNMS, ORNL was sponsored by the Scientific User Facilities Division, Department of Energy of the US. NR 50 TC 53 Z9 55 U1 9 U2 105 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 J9 BIOMATERIALS JI Biomaterials PD DEC PY 2011 VL 32 IS 36 BP 9876 EP 9887 DI 10.1016/j.biomaterials.2011.08.082 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 845KO UT WOS:000296821800034 PM 21944827 ER PT J AU Yun, G Cao, PH Zimmerman, JA Delph, TJ Park, HS AF Yun, Geng Cao, Penghui Zimmerman, Jonathan A. Delph, Terry J. Park, Harold S. TI Nonlocal instability analysis of FCC bulk and (100) surfaces under uniaxial stretching SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Nonlocal instability criteria; Surface instability; Defect participation volume ID DISLOCATION NUCLEATION; DEFORMATION; NANOWIRES; SOLIDS; STABILITY; CRYSTALS; NANOINDENTATION; CRITERION; DEFECTS AB The objective of this paper is to examine the instability characteristics of both a bulk FCC crystal and a (1 0 0) surface of an FCC crystal under uniaxial stretching along a < 1 0 0 > direction using an atomistic-based nonlocal instability criterion. By comparison to benchmark atomistic simulations, we demonstrate that for both the FCC bulk and (1 0 0) surface, about 5000-10,000 atoms are required in order to obtain an accurate converged value for the instability strain and a converged instability mode. The instability modes are fundamentally different at the surface as compared to the bulk, but in both cases a strong dependence of the instability mode on the number of atoms that are allowed to participate in the instability process is observed. In addition, the nonlocal instability criterion enables us to determine the total number of atoms, and thus the total volume occupied by these atoms, that participate in the defect nucleation process for both cases. We find that this defect participation volume converges as the number of atoms increases for both the bulk and surface, and that the defect participation volume of the surface is smaller than that of the bulk. Overall, the present results demonstrate both the necessity and utility of nonlocal instability criteria in predicting instability and subsequent failure of both bulk and surface-dominated nanomaterials. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Cao, Penghui; Park, Harold S.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. [Yun, Geng] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Delph, Terry J.] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA. [Zimmerman, Jonathan A.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. RP Park, HS (reprint author), Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. EM parkhs@bu.edu RI Zimmerman, Jonathan/A-8019-2012; Park, Harold/B-1525-2008 OI Park, Harold/0000-0001-5365-7776 FU University of Colorado; Boston University; NSF [CMMI 0750395]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX GY acknowledges support from the University of Colorado, while PC acknowledges the support of a Deans Fellowship from Boston University. HSP also acknowledges NSF grant CMMI 0750395 in support of this research. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 3 Z9 3 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 EI 1879-2146 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD DEC 1 PY 2011 VL 48 IS 24 BP 3406 EP 3416 DI 10.1016/j.ijsolstr.2011.08.009 PG 11 WC Mechanics SC Mechanics GA 843FH UT WOS:000296657200012 ER PT J AU Gagliardi, MA Sencer, BH Hunt, AW Maloy, SA Gray, GT AF Gagliardi, Marcus A. Sencer, Bulent H. Hunt, A. W. Maloy, Stuart A. Gray, George T., III TI Relative Defect Density Measurements of Laser Shock Peened 316L Stainless Steel Using Positron Annihilation Spectroscopy SO JOURNAL OF NONDESTRUCTIVE EVALUATION LA English DT Article DE Positron annihilation; Fatigue effects of materials treatment; Materials testing and analysis; Laser impact phenomena on surfaces; Plastics materials treatment effects on ID L AUSTENITIC STAINLESS; STRUCTURE/PROPERTY BEHAVIOR; THIN-FILMS; SURFACES; ALLOYS; SOLIDS AB The surface of an annealed 316L stainless steel coupon was laser shock peened and Vickers hardness measurements were subsequently taken of its surface. This Vickers hardness data was compared with measurements taken using the technique of positron annihilation Doppler broadening spectroscopy. When compared, a correlation was found between the Vickers hardness data measurements and those made using Doppler broadening spectroscopy. Although materials with a high defect density can cause the S-parameter measurements to saturate, variations in the S-parameter measurements suggest that through further research the Doppler broadening technique could be used as a viable alternative to measuring a material's hardness. In turn, this technique, could be useful in industrial settings where surface hardness and surface defects are used to predict lifetime of components. C1 [Gagliardi, Marcus A.; Hunt, A. W.] Idaho State Univ, Dept Phys, Pocatello, ID 83209 USA. [Gagliardi, Marcus A.; Hunt, A. W.] Idaho State Univ, Idaho Accelerator Ctr, Pocatello, ID 83209 USA. [Sencer, Bulent H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Maloy, Stuart A.; Gray, George T., III] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gagliardi, MA (reprint author), Idaho State Univ, Dept Phys, Pocatello, ID 83209 USA. EM marcus@iac.isu.edu; bulent.sencer@inl.gov; alwhunt@iac.isu.edu; maloy@lanl.gov; rusty@lanl.gov RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 FU AFCI DOE [DE-FC07-06ID14780] FX This material is based upon work supported by the AFCI DOE Contract DE-FC07-06ID14780. NR 19 TC 1 Z9 1 U1 1 U2 13 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0195-9298 EI 1573-4862 J9 J NONDESTRUCT EVAL JI J. Nondestruct. Eval. PD DEC PY 2011 VL 30 IS 4 BP 221 EP 224 DI 10.1007/s10921-011-0110-z PG 4 WC Materials Science, Characterization & Testing SC Materials Science GA 843AB UT WOS:000296643100001 ER PT J AU Lee, SY Hensel, SJ De Bock, C AF Lee, Si Y. Hensel, Steve J. De Bock, Chris TI Thermal Performance Analysis of Geologic High-Level Radioactive Waste Packages SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE containers; convection; cooling; design engineering; emissivity; radioactive waste repositories; thermal analysis; thermal conductivity; vitrification AB The engineering design of disposal of the high level waste (HLW) packages in a geologic repository requires a thermal analysis to forecast the temperature history of the packages. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal gallery system and as input to assess the transient thermal characteristics of the vitrified HLW Package. The objective of the work was to evaluate the thermal performance of the supercontainer containing the vitrified HLW in a nonbackfilled and unventilated underground disposal gallery. In order to achieve the objective, transient computational models for a geologic vitrified HLW package were developed by using a computational fluid dynamics method, and calculations for the HLW disposal gallery of the current Belgian geological repository reference design were performed. An initial simplified two-dimensional model was used to conduct some parametric sensitivity studies to better understand the geologic system's thermal response. The effect of heat decay, number of codisposed supercontainers, domain size, humidity, thermal conductivity, and thermal emissivity were studied. A more accurate three-dimensional model was also developed by considering the conduction-convection cooling mechanism coupled with radiation, and the effect of the number of supercontainers was studied in more detail, as well as a bounding case with zero heat flux at both ends. The modeling methodology and results of the sensitivity studies will be presented. [DOI: 10.1115/1.4003823] C1 [Lee, Si Y.; Hensel, Steve J.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Lee, SY (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM si.lee@srnl.doe.gov; steve.hensel@srnl.doe.gov; c.debock@nirond.be NR 13 TC 0 Z9 0 U1 0 U2 3 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD DEC PY 2011 VL 133 IS 6 AR 061601 DI 10.1115/1.4003823 PG 13 WC Engineering, Mechanical SC Engineering GA 843FD UT WOS:000296656800015 ER PT J AU Hoang, TL Arsenlis, A Lee-Voigt, HJ Chrzan, DC Wirth, BD AF Hoang, T. L. Arsenlis, A. Lee-Voigt, H. J. Chrzan, D. C. Wirth, B. D. TI Atomistic study of Eshelby's inclusion and inhomogeneity problems in a model bcc crystal SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article AB Finnis-Sinclair N-body potentials for alloy systems comprised of W and generic materials having various degrees of lattice misfit or modulus misfit to W are developed for subsequent studies of the influence of these precipitate-matrix property misfits on the interaction between precipitates and lattice defects or dislocations. In this work, molecular statics simulations employing the constructed potentials are carried out to investigate elastic states of the isotropic media containing the coherent misfit spherical precipitates. The results obtained are juxtaposed with equivalent Eshelby's inclusion and inhomogeneity solutions derived from elasticity theory to evaluate agreements between the two methods and the performance of the potentials. The results show that atomistic simulations yield good agreement with continuum models. For the case of precipitate with lattice misfit, agreement between the two approaches can be improved by taking into account the precipitate-matrix interface effect. Deviation between the two methods is also observed when the elastic modulus misfit precipitate becomes small in size. C1 [Hoang, T. L.; Lee-Voigt, H. J.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Hoang, T. L.; Arsenlis, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chrzan, D. C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wirth, B. D.] Univ Tennessee Knoxville, Dept Nucl Engn, Knoxville, TN 37996 USA. RP Hoang, TL (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM hoangt@berkeley.edu RI Wirth, Brian/O-4878-2015 OI Wirth, Brian/0000-0002-0395-0285 FU University of California, Berkeley; US Nuclear Regulatory Commission; Lawrence Livermore National Laboratory FX The authors acknowledge valuable discussions with V V Bulatov, K Hammond, P Hosemann, J Marian, S Queyreau and D Xu. T L Hoang acknowledges the Chancellor's Fellowship from the University of California, Berkeley, the NRC Fellowship from US Nuclear Regulatory Commission and the Lawrence Scholar Fellowship from the Lawrence Livermore National Laboratory. NR 15 TC 1 Z9 1 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD DEC PY 2011 VL 19 IS 8 AR 085001 DI 10.1088/0965-0393/19/8/085001 PG 15 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 844RJ UT WOS:000296764700002 ER PT J AU Prietzel, J Kogel-Knabner, I Thieme, J Paterson, D McNulty, I AF Prietzel, Joerg Koegel-Knabner, Ingrid Thieme, Juergen Paterson, David McNulty, Ian TI Microheterogeneity of element distribution and sulfur speciation in an organic surface horizon of a forested Histosol as revealed by synchrotron-based X-ray spectromicroscopy SO ORGANIC GEOCHEMISTRY LA English DT Article ID BIOGEOCHEMICAL PROCESSES; IRON SPECIATION; SOIL; SPECTROSCOPY; XANES; RHIZOSPHERE; MICROSITES; REDUCTION; PEAT; PH AB In recent years, the relevance of physico-chemical heterogeneity patterns in soils at the micron and sub-micron scale for the regulation of biogeochemical processes has become increasingly evident. For an organic surface soil horizon from a forested Histosol in Germany, microspatial patterns of element distribution (sulfur, phosphorus, aluminium, silicon) and S speciation were investigated by synchrotron-based X-ray spectromicroscopy. Microspatial patterns of S, P, Al and Si contents in the organic topsoil were assessed for a sample region of 50 mu m x 30 mu m by spatially resolving mu-XRF. Sulfur speciation at four microsites was investigated by focused X-ray absorption near edge structure (mu-XANES) spectroscopy at the S K-edge. The results show a heterogeneous distribution of the investigated elements on the (sub)micron scale, allowing the identification of diatoms, aluminosilicate mineral particles and sulfide minerals in the organic soil matrix. Evaluation of the S K-edge mu-XANES spectra acquired at four different microsites by linear combination fitting revealed a substantial microspatial heterogeneity of S speciation, characterized by the presence of distinct enrichment zones of inorganic sulfide and zones with dominant organic disulfide S within a few micrometers distance, and coexistence of different S species (e.g. reduced inorganic and organic S compounds) at a spatial scale below the resolution of the instrument (60 nm x 60 nm; X-ray penetration depth: 30 mu m). (C) 2011 Elsevier Ltd. All rights reserved. C1 [Prietzel, Joerg; Koegel-Knabner, Ingrid] Tech Univ Munich, Lehrstuhl Bodenkunde, D-85354 Freising Weihenstephan, Germany. [Thieme, Juergen] Brookhaven Natl Lab, Upton, NY 11973 USA. [Paterson, David] Australian Synchrotron, Clayton, Vic 3168, Australia. [McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Prietzel, J (reprint author), Tech Univ Munich, Lehrstuhl Bodenkunde, Emil Ramann Str 2, D-85354 Freising Weihenstephan, Germany. EM prietzel@wzw.tum.de RI Thieme, Juergen/D-6814-2013; Kogel-Knabner, Ingrid/A-7905-2008 OI Kogel-Knabner, Ingrid/0000-0002-7216-8326 FU Deutsche Forschungsgemeinschaft (DFG) [Pr 534/4]; US Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-Eng-38] FX We want to thank Ms. B. Angres for her assistance during anoxic sample preparation and two anonymous reviewers for valuable comments on an earlier version of the manuscript. The study was funded by the Deutsche Forschungsgemeinschaft (DFG); Grant Pr 534/4. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under Contract No W-31-109-Eng-38. NR 35 TC 7 Z9 7 U1 1 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0146-6380 J9 ORG GEOCHEM JI Org. Geochem. PD DEC PY 2011 VL 42 IS 11 BP 1308 EP 1314 DI 10.1016/j.orggeochem.2011.09.006 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 846AB UT WOS:000296868500003 ER PT J AU Stewart, CN Liu, GS AF Stewart, C. Neal, Jr. Liu, Gong-She TI Bioenergy Plants in the United States and China SO PLANT SCIENCE LA English DT Editorial Material C1 [Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. [Liu, Gong-She] Chinese Acad Sci, Inst Bot, R&D Lab Plant Resources, Beijing, Peoples R China. RP Stewart, CN (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. EM nealstewart@utk.edu NR 11 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0168-9452 J9 PLANT SCI JI Plant Sci. PD DEC PY 2011 VL 181 IS 6 SI SI BP 621 EP 622 DI 10.1016/j.plantsci.2011.09.001 PG 2 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 846XX UT WOS:000296937600001 PM 21958702 ER PT J AU Yang, XH Ye, CY Bisaria, A Tuskan, GA Kalluri, UC AF Yang, Xiaohan Ye, Chu-Yu Bisaria, Anjali Tuskan, Gerald A. Kalluri, Udaya C. TI Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics SO PLANT SCIENCE LA English DT Article DE Gene expression; Cell wall; Biomass; Bioinformatics; Arabidopsis; Populus ID CELLULOSE SYNTHASE COMPLEX; CINNAMYL-ALCOHOL-DEHYDROGENASE; NAC TRANSCRIPTION FACTORS; RHAMNOGALACTURONAN-II; ACTIN ORGANIZATION; XYLOGLUCAN GALACTOSYLTRANSFERASE; GLUCURONOXYLAN BIOSYNTHESIS; ORIENTED DEPOSITION; ANTHER DEHISCENCE; VASCULAR TISSUE AB Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of biofuels from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidence supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database, and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional characterization in relation to cell wall biosynthesis. (C) 2011 Elsevier Ireland Ltd. All rights reserved. C1 [Yang, Xiaohan; Ye, Chu-Yu; Tuskan, Gerald A.; Kalluri, Udaya C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Yang, Xiaohan; Ye, Chu-Yu; Tuskan, Gerald A.; Kalluri, Udaya C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Bisaria, Anjali] Princeton Univ, Princeton, NJ 08544 USA. RP Yang, XH (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008,MS6422, Oak Ridge, TN 37831 USA. EM yangx@ornl.gov; kalluriudayc@ornl.gov RI Tuskan, Gerald/A-6225-2011; Yang, Xiaohan/A-6975-2011; OI Tuskan, Gerald/0000-0003-0106-1289; Yang, Xiaohan/0000-0001-5207-4210; KALLURI, UDAYA/0000-0002-5963-8370 FU U.S. DOE BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-AC05-00OR22725] FX We would like to thank T.J. Tschaplinski and T. Li for thoughtful and insightful comments on the manuscript. This research was supported by the U.S. DOE BioEnergy Science Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract Number DE-AC05-00OR22725. NR 124 TC 7 Z9 7 U1 3 U2 27 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0168-9452 J9 PLANT SCI JI Plant Sci. PD DEC PY 2011 VL 181 IS 6 SI SI BP 675 EP 687 DI 10.1016/j.plantsci.2011.01.020 PG 13 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 846XX UT WOS:000296937600009 PM 21958710 ER PT J AU Ye, CY Li, T Tuskan, GA Tschaplinski, TJ Yang, XH AF Ye, Chu-Yu Li, Ting Tuskan, Gerald A. Tschaplinski, Timothy J. Yang, Xiaohan TI Comparative analysis of GT14/GT14-like gene family in Arabidopsis, Oryza, Populus, Sorghum and Vitis SO PLANT SCIENCE LA English DT Article DE Glycosyltransferase; GT14 family; Branch domain; DUF266; Cell wall; Poplar ID CELL-WALL BIOSYNTHESIS; PROTEIN-STRUCTURE; PLANT GLYCOSYLTRANSFERASES; IDENTIFICATION; EXPRESSION; DATABASE; POPLAR; EVOLUTION; ENZYMES; PROFILE AB Glycosyltransferase family14 (GT14) belongs to the glycosyltransferase (GT) superfamily that plays important roles in the biosynthesis of cell walls, the most abundant source of cellulosic biomass for bioethanol production. It has been hypothesized that DUF266 proteins are a new class of GTs related to GT14. In this study, we identified 62 GT14 and 106 DUF266 genes (named GT14-like herein) in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Our phylogenetic analysis separated GT14 and GT14-like genes into two distinct clades, which were further divided into eight and five groups, respectively. Similarities in protein domain, 3D structure and gene expression were uncovered between the two phylogenetic clades, supporting the hypothesis that GT14 and GT14-like genes belong to one family. Therefore, we proposed a new family name, GT14/GT14-like family that combines both subfamilies. Variation in gene expression and protein subcellular localization within the GT14-like subfamily were greater than those within the GT14 subfamily. One-half Of the Arabidopsis and Populus GT14/GT14-like genes were found to be preferentially expressed in stem/xylem, indicating that they are likely involved in cell wall biosynthesis. This study provided new insights into the evolution and functional diversification of the GT14/GT14-like family genes. (C) 2011 Elsevier Ireland Ltd. All rights reserved. C1 [Yang, Xiaohan] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Yang, XH (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008,MS 6422, Oak Ridge, TN 37831 USA. EM yangx@ornl.gov RI Tuskan, Gerald/A-6225-2011; Yang, Xiaohan/A-6975-2011; OI Tuskan, Gerald/0000-0003-0106-1289; Yang, Xiaohan/0000-0001-5207-4210; Tschaplinski, Timothy/0000-0002-9540-6622 FU U.S. DOE BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank S.D. Wullschleger and J. Chen for insightful comments on the manuscript. This research was supported by the U.S. DOE BioEnergy Science Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract Number DE-AC05-00OR22725. NR 38 TC 9 Z9 9 U1 3 U2 13 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0168-9452 J9 PLANT SCI JI Plant Sci. PD DEC PY 2011 VL 181 IS 6 SI SI BP 688 EP 695 DI 10.1016/j.plantsci.2011.01.021 PG 8 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 846XX UT WOS:000296937600010 PM 21958711 ER PT J AU Mazarei, M Al-Ahmad, H Rudis, MR Joyce, BL Stewart, CN AF Mazarei, Mitra Al-Ahmad, Hani Rudis, Mary R. Joyce, Blake L. Stewart, C. Neal, Jr. TI Switchgrass (Panicum virgatum L.) cell suspension cultures: Establishment, characterization, and application SO PLANT SCIENCE LA English DT Article DE Switchgrass; Cell suspension cultures; Scanning electron microscopy; Protoplasts; Cell wall ID TRANSIENT GENE-EXPRESSION; MATRIX SURFACE NETWORK; SOMATIC EMBRYOGENESIS; REGENERATION; BIOFUELS; TRANSFORMATION; PROTEINS; SYSTEM AB Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that has received considerable attention as a potential dedicated biofuel and bioproduct feedstock. Genetic improvement of switchgrass is needed for better cellulosic ethanol production, especially to improve cellulose-to-lignin ratios. Cell suspension cultures offer an in vitro system for mutant selection, mass propagation, gene transfer, and cell biology. Toward this end, switchgrass cell suspension cultures were initiated from embryogenic callus obtained from genotype Alamo 2. They have been established and characterized with different cell type morphologies: sandy, fine milky, and ultrafine cultures. Characterization includes histological analysis using scanning electron microscopy, and utility using protoplast isolation. A high protoplast isolation rate of up to 10(6) protoplasts/1.0g of cells was achieved for the fine milky culture, whereas only a few protoplasts were isolated for the sandy and ultrafine cultures. These results indicate that switchgrass cell suspension type sizably impacts the efficiency of protoplast isolation, suggesting its significance in other applications. The establishment of different switchgrass suspension culture cell types provides the opportunity to gain insights into the versatility of the system that would further augment switchgrass biology research. (C) 2011 Elsevier Ireland Ltd. All rights reserved. C1 [Mazarei, Mitra; Al-Ahmad, Hani; Rudis, Mary R.; Joyce, Blake L.; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Mazarei, Mitra; Rudis, Mary R.; Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, BESC, Oak Ridge, TN 37831 USA. RP Mazarei, M (reprint author), Univ Tennessee, Dept Plant Sci, 252 Ellington Plant Sci,2431 Joe Johnson Dr, Knoxville, TN 37996 USA. EM mmazarei@utk.edu FU BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science FX We gratefully acknowledge funding by BioEnergy Science Center (BESC). BESC is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 29 TC 10 Z9 10 U1 1 U2 20 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0168-9452 J9 PLANT SCI JI Plant Sci. PD DEC PY 2011 VL 181 IS 6 SI SI BP 712 EP 715 DI 10.1016/j.plantsci.2010.12.010 PG 4 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 846XX UT WOS:000296937600013 PM 21958714 ER PT J AU Hodge, AM Furnish, TA Navid, AA Barbee, TW AF Hodge, A. M. Furnish, T. A. Navid, A. A. Barbee, T. W., Jr. TI Shear band formation and ductility in nanotwinned Cu SO SCRIPTA MATERIALIA LA English DT Article DE Nanotwinned copper; Sputtering; Shear bands; Copper ID STRAIN-RATE SENSITIVITY; GRAIN-SIZE DEPENDENCE; NANO-TWINNED COPPER; PLASTIC-DEFORMATION; ULTRAHIGH-STRENGTH; NANOSCALE TWINS; NANOCRYSTALLINE; FLOW; CONDUCTIVITY; TEMPERATURES AB The ductility and plastic flow behavior of highly aligned nanotwinned copper produced by interrupted magnetron sputtering is investigated. Tensile tests were performed at various strain rates at both room and liquid nitrogen (77 K) temperatures. Higher ductility and strength are reported for all samples tested at 77 K. The observed inhomogeneous deformation and shear band propagation are discussed as functions of the testing temperature, decreasing heat capacity at 77 K and low initial dislocation density, which leads to a yield peak. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Hodge, A. M.; Furnish, T. A.; Navid, A. A.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Barbee, T. W., Jr.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hodge, AM (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM ahodge@usc.edu FU US Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; USC under NSF [NSF-DMR-0955338]; Alexander von Humboldt Fellowship FX Parts of his work were performed under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and at USC under NSF Grant No. NSF-DMR-0955338. A.M.H. acknowledges the support of an Alexander von Humboldt Fellowship. The authors also thank Profs. M. Meyers at UCSD and J.R. Weertman at Northwestern University for helpful discussions. NR 31 TC 10 Z9 10 U1 3 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC PY 2011 VL 65 IS 11 BP 1006 EP 1009 DI 10.1016/j.scriptamat.2011.09.002 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 846ZA UT WOS:000296940500018 ER PT J AU Zhang, RF Wang, J Beyerlein, IJ Germann, TC AF Zhang, R. F. Wang, J. Beyerlein, I. J. Germann, T. C. TI Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces SO SCRIPTA MATERIALIA LA English DT Article DE Interface; Dislocation; Nucleation; Atomistic simulation ID NANOCRYSTALLINE METALS; DEFORMATION MECHANISMS; NANOSTRUCTURED METALS; ATOMISTIC SIMULATIONS; BICRYSTAL INTERFACES; COMPOSITES; STRENGTH; MULTILAYERS; TWIN; CU AB Using atomistic simulations, we study the nucleation and emission of dislocations from face-centered cubic/body-centered cubic (fcc/bcc) incoherent interfaces in which interface dislocations only have in-plane Burgers vectors. We show that nucleation sites and preferred slip systems are associated with interface regions with intense localized shear and are not solely determined by Schmid factors. Activation barriers for nucleation from the interface are lower than those for homogeneous nucleation, indicating that flat fcc/bcc incoherent interfaces can act as viable sources of lattice dislocations. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Zhang, R. F.; Wang, J.; Beyerlein, I. J.; Germann, T. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, MST-8,MS G755, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012; OI Wang, Jian/0000-0001-5130-300X; Germann, Timothy/0000-0002-6813-238X FU LANL; Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; [LDRD-DR20110029]; [LDRD-ER20110573] FX R.F.Z. would like to acknowledge support by a LANL Director's Postdoctoral Fellowship. J.W., I.J.B. and T.C.G. were supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. J.W. and I.J.B. are also grateful for the support provided by the projects LDRD-DR20110029 and LDRD-ER20110573. NR 33 TC 56 Z9 56 U1 5 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC PY 2011 VL 65 IS 11 BP 1022 EP 1025 DI 10.1016/j.scriptamat.2011.09.008 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 846ZA UT WOS:000296940500022 ER PT J AU Dai, WQ Ferrando, V Pogrebnyakov, AV Wilke, RHT Chen, K Weng, XJ Redwing, J Bark, CW Eom, CB Zhu, Y Voyles, PM Rickel, D Betts, JB Mielke, CH Gurevich, A Larbalestier, DC Li, Q Xi, XX AF Dai, Wenqing Ferrando, V. Pogrebnyakov, A. V. Wilke, R. H. T. Chen, Ke Weng, Xiaojun Redwing, Joan Bark, Chung Wung Eom, Chang-Beom Zhu, Y. Voyles, P. M. Rickel, Dwight Betts, J. B. Mielke, C. H. Gurevich, A. Larbalestier, D. C. Li, Qi Xi, X. X. TI High-field properties of carbon-doped MgB2 thin films by hybrid physical-chemical vapor deposition using different carbon sources SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID SUPERCONDUCTING MGB2; MAGNESIUM DIBORIDE; CRITICAL CURRENTS; SUBSTITUTED MGB2; RESISTIVITY AB We have studied the high-field properties of carbon-doped MgB2 thin films prepared by hybrid physical-chemical vapor deposition (HPCVD). Carbon doping was accomplished by adding carbon-containing gas, such as bis(methylcyclopentadienyl) magnesium and trimethylboron, into the hydrogen carrier gas during the deposition. In both cases, T-c drops slowly and residual resistivity increases considerably with carbon doping. Both the a and c lattice constants increase with carbon content in the films, a behavior different from that of bulk carbon-doped MgB2 samples. The films heavily doped with trimethylboron show very high parallel H-c2 over 70 T at low temperatures and a large temperature derivative -dH(c2)(parallel to)/dT near T-c. These behaviors are found to depend on the unique microstructure of the films, which consists of MgB2 layers a few-nanometers thick separated by non-superconducting MgB2C2 layers. This leads to an increase in the parallel H-c2 by the geometrical effect, which is in addition to the significant enhancement of H-c2 due to changes in the scattering rates within and between the two bands present in films doped using both carbon sources. The high H-c2 and high-field J(c)(H) values observed in this work are very promising for the application of MgB2 in high magnetic fields. C1 [Dai, Wenqing; Ferrando, V.; Pogrebnyakov, A. V.; Wilke, R. H. T.; Chen, Ke; Li, Qi; Xi, X. X.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Wilke, R. H. T.; Weng, Xiaojun; Redwing, Joan; Xi, X. X.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Weng, Xiaojun; Redwing, Joan; Xi, X. X.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Bark, Chung Wung; Eom, Chang-Beom; Zhu, Y.; Voyles, P. M.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Rickel, Dwight; Betts, J. B.; Mielke, C. H.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Gurevich, A.; Larbalestier, D. C.] Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. RP Dai, WQ (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. RI Zhu, Ye/A-1844-2011; weng, xiaojun/D-5096-2011; Gurevich, Alex/A-4327-2008; Bark, Chung Wung/B-9534-2014; Eom, Chang-Beom/I-5567-2014; Larbalestier, David/B-2277-2008; OI Zhu, Ye/0000-0002-5217-493X; Gurevich, Alex/0000-0003-0759-8941; Bark, Chung Wung/0000-0002-9394-4240; Larbalestier, David/0000-0001-7098-7208; Voyles, Paul/0000-0001-9438-4284 FU DOE [DE-FG02-08ER46531]; ONR [N00014-07-1-0079]; DOE Office of Basic Energy Sciences [DE-FG02-06ER46327] FX We acknowledge the support by the DOE under grant no. DE-FG02-08ER46531 (QL) and by ONR under grant no. N00014-07-1-0079 (XXX). Work at the University of Wisconsin was supported by funding from the DOE Office of Basic Energy Sciences under award number DE-FG02-06ER46327 (CBE). NR 42 TC 4 Z9 5 U1 1 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD DEC PY 2011 VL 24 IS 12 AR 125014 DI 10.1088/0953-2048/24/12/125014 PG 12 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 847OL UT WOS:000296982200014 ER PT J AU Rao, GR AF Rao, Govind R. TI 2011 WILLIAM A. McADAMS OUTSTANDING SERVICE AWARD Presented to JERRY W. HIATT at the 56th Annual Meeting of the Health Physics Society, West Palm Beach, Florida 26-30 June 2011 SO HEALTH PHYSICS LA English DT Biographical-Item C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Rao, GR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD DEC PY 2011 VL 101 IS 6 BP 658 EP 659 DI 10.1097/HP.0b013e318234006e PG 2 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 843ZT UT WOS:000296717500004 PM 22048484 ER PT J AU Todri, A Marek-Sadowska, M AF Todri, Aida Marek-Sadowska, Malgorzata TI Power Delivery for Multicore Systems SO IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS LA English DT Article DE Ground bounce; multicore system; power supply noise ID SUPPLY NOISE AB As the industry moves from single-to multicore processors, the challenges of how to reliably design and analyze power delivery for such systems arise. We study various workload assignments to cores and their effect on the global power supply noise and ground bounce. We provide a detailed analysis of single and multiple cores and develop analytical formulas to capture the power supply noise and ground bounce of the system. We introduce metrics to estimate the amount of noise propagated from core to core and propose a supply noise aware workload assignment method. In our experiments, we show that timing constraints can be significantly affected if workload assignments are not properly made. C1 [Todri, Aida] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Marek-Sadowska, Malgorzata] Univ Calif Santa Barbara, Elect & Comp Engn Dept, Santa Barbara, CA 93106 USA. RP Todri, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM atodri@fnal.gov; mms@ece.ucsb.edu RI Todri-Sanial, Aida/M-5156-2013 OI Todri-Sanial, Aida/0000-0001-8573-2910 FU SRC [1421]; Apache Design Systems; California MICRO; Intel FX This work was supported by SRC under Grant 1421, by Apache Design Systems, and by the California MICRO Program.; The authors gratefully acknowledge the equipment grant from Intel. We also thank the anonymous reviewers for their feedback and suggestions to strengthen this paper. NR 24 TC 3 Z9 3 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-8210 EI 1557-9999 J9 IEEE T VLSI SYST JI IEEE Trans. Very Large Scale Integr. (VLSI) Syst. PD DEC PY 2011 VL 19 IS 12 BP 2243 EP 2255 DI 10.1109/TVLSI.2010.2080694 PG 13 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 840RT UT WOS:000296459300010 ER PT J AU Chen, YP Zimmerman, J Krivtsov, A McDowell, DL AF Chen, Youping Zimmerman, Jonathan Krivtsov, Anton McDowell, David L. TI Assessment of atomistic coarse-graining methods SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE LA English DT Article DE Atomistic model; Coarse-graining; Statistical mechanics; Lattice dynamics ID DISSIPATIVE PARTICLE DYNAMICS; CONNECTING MOLECULAR-DYNAMICS; BALANCE LAWS; STATISTICAL-MECHANICS; MICROMORPHIC THEORY; FIELD-THEORY; SIMULATION; HYDRODYNAMICS; VIEWPOINT; VARIABLES AB This paper reviews classical theories of coarse-graining and gives a short introduction to representative coarse-grained atomistic models that were developed based on structure reduction, an assumption of homogenous deformation, and field representation. The applicability and limitations of these coarse-grained models are analyzed on the basis of their theoretical frameworks as well as the coarse-graining methods they employ. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Chen, Youping] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. [Zimmerman, Jonathan] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94551 USA. [Krivtsov, Anton] St Petersburg State Polytech Univ, Dept Theoret Mech, St Petersburg 199178, Russia. [McDowell, David L.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [McDowell, David L.] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. RP Chen, YP (reprint author), Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. EM ypchen2@ufl.edu; jzimmer@sandia.gov; akrivtsov@bk.ru; david.mcdowell@me.gatech.edu RI Zimmerman, Jonathan/A-8019-2012; Chen, Youping /G-2931-2010 OI Chen, Youping /0000-0002-9626-9009 FU National Science Foundation [CMMI-0758265, CMMI-0824688, CMMI-0855795]; DARPA [N66001-10-1-4018]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This paper is dedicated to the memory of Professor Eringen. The material is based upon the work supported by the National Science Foundation under Award Numbers CMMI-0758265 (McDowell), CMMI-0824688 and CMMI-0855795, and DARPA under Award Number N66001-10-1-4018 (Chen). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 66 TC 21 Z9 21 U1 5 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7225 J9 INT J ENG SCI JI Int. J. Eng. Sci. PD DEC PY 2011 VL 49 IS 12 BP 1337 EP 1349 DI 10.1016/j.ijengsci.2011.03.018 PG 13 WC Engineering, Multidisciplinary SC Engineering GA 843OH UT WOS:000296681100006 ER PT J AU Tucker, GJ Zimmerman, JA McDowell, DL AF Tucker, Garritt J. Zimmerman, Jonathan A. McDowell, David L. TI Continuum metrics for deformation and microrotation from atomistic simulations: Application to grain boundaries SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE LA English DT Article DE Grain boundary deformation; Atomistic simulations; Microrotation; Continuum metrics ID TENSION-COMPRESSION ASYMMETRY; MOLECULAR-DYNAMICS SIMULATION; STACKING-FAULT ENERGIES; NANOCRYSTALLINE METALS; MECHANICAL-BEHAVIOR; PLASTIC-DEFORMATION; SHEAR DEFORMATION; COPPER; AL; STRENGTH AB Motivated by a desire to incorporate micro- and nanoscale deformation mechanisms into continuum mechanical models of material behavior, we apply recently developed volume-averaged metrics to the results of atomistic simulations to investigate deformation and microrotation in the vicinity of grain boundaries. Three-dimensional bicrystalline structures are employed to study the inelastic deformation behavior under uniaxial tension and simple shear at a temperature of 10 K. Each bicrystal is constructed by molecular statics followed by thermal equilibration under NPT using an embedded atom method potential for copper. Strain is imposed in each simulation cell at a constant 10(9) s(-1) rate applied perpendicular and parallel to the grain boundary plane for tension and shear, respectively. A variety of grain boundary deformation mechanisms arise and the resulting deformation and microrotation fields are examined. We also include an analysis showing how microrotation varies as a function of distance from the grain boundary with increasing strain for different grain boundary deformation mechanisms. This work demonstrates that critical interface behavior can be extracted from atomistic simulations using volume-averaged metrics, offering a potential avenue for translating fundamental information to continuum theories of grain boundary deformation in polycrystalline materials. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zimmerman, Jonathan A.] Sandia Natl Labs, Livermore, CA 94550 USA. [Tucker, Garritt J.; McDowell, David L.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [McDowell, David L.] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. RP Zimmerman, JA (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM jzimmer@sandia.gov RI Zimmerman, Jonathan/A-8019-2012; Tucker, Garritt/A-1954-2016 OI Tucker, Garritt/0000-0002-4011-450X FU US National Science Foundation; NSF [CMMI-0758265]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX G.J. Tucker and D.L. McDowell are grateful for the support of the US National Science Foundation, NSF Grant CMMI-0758265 on Multiresolution, Coarse-Grained Modeling of 3D Dislocation Nucleation and Migration. This research was supported in part by the National Science Foundation through TeraGrid resources provided by the TeraGrid Science Gateways program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 46 TC 13 Z9 13 U1 0 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7225 J9 INT J ENG SCI JI Int. J. Eng. Sci. PD DEC PY 2011 VL 49 IS 12 BP 1424 EP 1434 DI 10.1016/j.ijengsci.2011.03.019 PG 11 WC Engineering, Multidisciplinary SC Engineering GA 843OH UT WOS:000296681100015 ER PT J AU Moore, SW Barnett, T Reichardt, TA Farrow, RL AF Moore, S. W. Barnett, T. Reichardt, T. A. Farrow, R. L. TI Optical properties of Yb+3-doped fibers and fiber lasers at high temperature SO OPTICS COMMUNICATIONS LA English DT Article DE Spectroscopy; Lasers; Emission ID EMISSION CROSS-SECTION; FLUORESCENCE; DEPENDENCE; ABSORPTION; LIFETIME; GLASSES AB Recent advances in power scaling of Yb+3-doped fiber lasers to the kilowatt level suggest a need to examine the performance of Yb+3-doped silica at temperatures well above ambient. We report experimental results for the absorption coefficient, emission cross-section, fluorescence lifetime, and slope efficiency of a Yb3+-doped large mode area (LMA) silica fiber for temperatures spanning 23 degrees C-977 degrees C. To the best of our knowledge these are the highest temperatures to date for which these optical properties have been measured. We find a sharp reduction in the energy storing capability and lasing performance of Yb+3:SiO2 above 500 degrees C that coincides with the onset of non-radiative transitions in the excited state manifold (thermal quenching). As the temperature increases from room temperature to 977 degrees C, absorption in the 1020-1120 nm operating band increases monotonically, concurrent with a reduction in absorption at the 920-nm and 977-nm pumping bands. Conversely, the spectral weight of the emission cross-section shifts from transitions above 1010 nm to those below, with the exception of the 977-nm emission band. (C) 2011 Elsevier B.V. All rights reserved. C1 [Moore, S. W.; Barnett, T.; Reichardt, T. A.] Sandia Natl Labs, Livermore, CA 94551 USA. [Farrow, R. L.] JDSU, Milpitas, CA 95035 USA. RP Moore, SW (reprint author), Sandia Natl Labs, POB 969,MS 9056, Livermore, CA 94551 USA. EM seamoor@sandia.gov FU Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company [DE-AC04-94AL85000]; Defense Advanced Research Project Agency (DARPA) [DOE-NNSA] FX Sandia is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funding for this work was provided by the Defense Advanced Research Project Agency (DARPA) under grant DOE-NNSA. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U. S. Government. NR 14 TC 7 Z9 7 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD DEC 1 PY 2011 VL 284 IS 24 BP 5774 EP 5780 DI 10.1016/j.optcom.2011.08.064 PG 7 WC Optics SC Optics GA 843QK UT WOS:000296687100045 ER PT J AU Eranki, PL Dale, BE AF Eranki, Pragnya L. Dale, Bruce E. TI Comparative life cycle assessment of centralized and distributed biomass processing systems combined with mixed feedstock landscapes SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE AFEX pretreatment; bioethanol; biomass densification; life cycle assessment (LCA); mixed feedstock landscapes; Regional Biomass Processing Depots (RBPD) ID SWITCHGRASS PANICUM-VIRGATUM; CORN STOVER; MATURE TECHNOLOGY; ETHANOL; CARBON; BIOFUELS; ENERGY; COPRODUCTION; AGRICULTURE; CONVERSION AB Lignocellulosic biofuels can help fulfill escalating demands for liquid fuels and mitigate the environmental impacts of petroleum-derived fuels. Two key factors in the successful large-scale production of lignocellulosic biofuels are pretreatment (in biological conversion processes) and a consistent supply of feedstock. Cellulosic biomass tends to be bulky and difficult to handle, thereby exacerbating feedstock supply challenges. Currently, large biorefineries face many logistical problems because they are fully integrated, centralized facilities in which all units of the conversion process are present in a single location. The drawbacks of fully integrated biorefineries can potentially be dealt by a network of distributed processing facilities called 'Regional Biomass Processing Depots' (RBPDs) which procure, preprocess/pretreat, densify and deliver feedstock to the biorefinery and return by-products such as animal feed to end users. The primary objective of this study is to perform a comparative life cycle assessment (LCA) of distributed and centralized biomass processing systems. Additionally, we assess the effect that apportioning land area to different feedstocks within a landscape has on the energy yields and environmental impacts of the overall systems. To accomplish these objectives, we conducted comparative LCAs of distributed and centralized processing systems combined with farm-scale landscapes of varying acreages allocated to a 'corn-system' consisting of corn grain, stover and rye (grown as a winter double crop) and two perennial grasses, switchgrass and miscanthus. The distributed processing system yields practically the same total energy and generates 3.7% lower greenhouse gas emissions than the centralized system. Sensitivity analyses identified perennial grass yields, biomass densification and its corresponding energy requirements, transport energy requirements and carbon sequestration credits for conversion from annual to perennial crops as key parameters that significantly affect the overall results. C1 [Eranki, Pragnya L.; Dale, Bruce E.] Michigan State Univ, Biomass Convers Res Lab, Great Lakes Bioenergy Res Ctr, Dept Chem Engn & Mat Sci, Lansing, MI 48910 USA. RP Eranki, PL (reprint author), Michigan State Univ, Biomass Convers Res Lab, Great Lakes Bioenergy Res Ctr, Dept Chem Engn & Mat Sci, 3815 Technol Blvd, Lansing, MI 48910 USA. EM erankipr@egr.msu.edu RI Zhang, Jingjing/G-7676-2011 FU DOE Great Lakes Bioenergy Research Center; US Department of Energy, Office of Science, Office of Biological and Environmental Research [DEFC02-07ER64494] FX This work was funded by DOE Great Lakes Bioenergy Research Center (http://www.greatlakesbioenergy.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DEFC02-07ER64494. We also thank Dr Seungdo Kim and Dr Bryan Bals for their assistance. NR 44 TC 26 Z9 26 U1 4 U2 57 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1757-1693 J9 GCB BIOENERGY JI GCB Bioenergy PD DEC PY 2011 VL 3 IS 6 BP 427 EP 438 DI 10.1111/j.1757-1707.2011.01096.x PG 12 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 840VB UT WOS:000296468300001 ER PT J AU Bennett, JC Krishnamoorthy, V Liu, SS Grout, RW Hawkes, ER Chen, JH Shepherd, J Pascucci, V Bremer, PT AF Bennett, Janine C. Krishnamoorthy, Vaidyanathan Liu, Shusen Grout, Ray W. Hawkes, Evatt R. Chen, Jacqueline H. Shepherd, Jason Pascucci, Valerio Bremer, Peer-Timo TI Feature-Based Statistical Analysis of Combustion Simulation Data SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article; Proceedings Paper CT IEEE Visualization Conference (Vis)/IEEE Information Visualization Conference (InfoVis) CY OCT 23-28, 2011 CL Providence, RI SP IEEE DE Topology; Statistics; Data analysis; Data exploration; Visualization in Physical Sciences and Engineering; Multi-variate Data ID JET FLAMES AB We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing and reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains. C1 [Bennett, Janine C.; Chen, Jacqueline H.; Shepherd, Jason] Sandia Natl Labs, Livermore, CA 94550 USA. [Krishnamoorthy, Vaidyanathan; Liu, Shusen; Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Hawkes, Evatt R.] Univ New S Wales, Sydney, NSW 2052, Australia. [Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bennett, JC (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM jcbenne@sandia.gov; vaidy@sci.utah.edu; shusenl@sci.utah.edu; ray.grout@nrel.gov; evatt.hawkes@unsw.edu.au; jhchen@sandia.gov; jfsheph@sandia.gov; pascucci@sci.utah.edu; bremer5@llnl.gov RI Hawkes, Evatt/C-5307-2012 OI Hawkes, Evatt/0000-0003-0539-7951 NR 42 TC 14 Z9 14 U1 0 U2 9 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD DEC PY 2011 VL 17 IS 12 BP 1822 EP 1831 PG 10 WC Computer Science, Software Engineering SC Computer Science GA 837XD UT WOS:000296241900011 PM 22034299 ER PT J AU Correa, CD Lindstrom, P Bremer, PT AF Correa, Carlos D. Lindstrom, Peter Bremer, Peer-Timo TI Topological Spines: A Structure-Preserving Visual Representation of Scalar Fields SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article; Proceedings Paper CT IEEE Visualization Conference (Vis)/IEEE Information Visualization Conference (InfoVis) CY OCT 23-28, 2011 CL Providence, RI SP IEEE DE Scalar field topology; topological spine; extremum graph; Morse-Smale complex ID CONTOUR TREES; COMPUTATION; EXTRACTION AB We present topological spines-a new visual representation that preserves the topological and geometric structure of a scalar field. This representation encodes the spatial relationships of the extrema of a scalar field together with the local volume and nesting structure of the surrounding contours. Unlike other topological representations, such as contour trees, our approach preserves the local geometric structure of the scalar field, including structural cycles that are useful for exposing symmetries in the data. To obtain this representation, we describe a novel mechanism based on the extraction of extremum graphs-sparse subsets of the Morse-Smale complex that retain the important structural information without the clutter and occlusion problems that arise from visualizing the entire complex directly. Extremum graphs form a natural multiresolution structure that allows the user to suppress noise and enhance topological features via the specification of a persistence range. Applications of our approach include the visualization of 3D scalar fields without occlusion artifacts, and the exploratory analysis of high-dimensional functions. C1 [Correa, Carlos D.; Lindstrom, Peter; Bremer, Peer-Timo] Lawrence Livermore Natl Lab, CASC, Livermore, CA 94550 USA. RP Correa, CD (reprint author), Lawrence Livermore Natl Lab, CASC, Livermore, CA 94550 USA. EM correac@llnl.gov; pl@llnl.gov; bremer5@llnl.gov OI Lindstrom, Peter/0000-0003-3817-4199 NR 36 TC 19 Z9 20 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD DEC PY 2011 VL 17 IS 12 BP 1842 EP 1851 PG 10 WC Computer Science, Software Engineering SC Computer Science GA 837XD UT WOS:000296241900013 PM 22034301 ER PT J AU Correa, CD Lindstrom, P AF Correa, Carlos D. Lindstrom, Peter TI Towards Robust Topology of Sparsely Sampled Data SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article; Proceedings Paper CT IEEE Visualization Conference (Vis)/IEEE Information Visualization Conference (InfoVis) CY OCT 23-28, 2011 CL Providence, RI SP IEEE DE Neighborhood graphs; topology; sparsely sampled data ID GRAPHS; POINTS; VARIABLES AB Sparse, irregular sampling is becoming a necessity for reconstructing large and high-dimensional signals. However, the analysis of this type of data remains a challenge. One issue is the robust selection of neighborhoods - a crucial part of analytic tools such as topological decomposition, clustering and gradient estimation. When extracting the topology of sparsely sampled data, common neighborhood strategies such as k-nearest neighbors may lead to inaccurate results, either due to missing neighborhood connections, which introduce false extrema, or due to spurious connections, which conceal true extrema. Other neighborhoods, such as the Delaunay triangulation, are costly to compute and store even in relatively low dimensions. In this paper, we address these issues. We present two new types of neighborhood graphs: a variation on and a generalization of empty region graphs, which considerably improve the robustness of neighborhood-based analysis tools, such as topological decomposition. Our findings suggest that these neighborhood graphs lead to more accurate topological representations of low- and high- dimensional data sets at relatively low cost, both in terms of storage and computation time. We describe the implications of our work in the analysis and visualization of scalar functions, and provide general strategies for computing and applying our neighborhood graphs towards robust data analysis. C1 [Correa, Carlos D.; Lindstrom, Peter] Lawrence Livermore Natl Lab, CASC, Livermore, CA 94550 USA. RP Correa, CD (reprint author), Lawrence Livermore Natl Lab, CASC, Livermore, CA 94550 USA. EM correac@llnl.gov; pl@llnl.gov OI Lindstrom, Peter/0000-0003-3817-4199 NR 54 TC 11 Z9 11 U1 2 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD DEC PY 2011 VL 17 IS 12 BP 1852 EP 1861 PG 10 WC Computer Science, Software Engineering SC Computer Science GA 837XD UT WOS:000296241900014 PM 22034302 ER PT J AU Williams, S Petersen, M Bremer, PT Hecht, M Pascucci, V Ahrens, J Hlawitschka, M Hamann, B AF Williams, Sean Petersen, Mark Bremer, Peer-Timo Hecht, Matthew Pascucci, Valerio Ahrens, James Hlawitschka, Mario Hamann, Bernd TI Adaptive Extraction and Quantification of Geophysical Vortices SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article; Proceedings Paper CT IEEE Visualization Conference (Vis)/IEEE Information Visualization Conference (InfoVis) CY OCT 23-28, 2011 CL Providence, RI SP IEEE DE Vortex extraction; feature extraction; statistical data analysis ID NORTH-ATLANTIC; VORTEX; TRACKING; FLOW AB We consider the problem of extracting discrete two-dimensional vortices from a turbulent flow. In our approach we use a reference model describing the expected physics and geometry of an idealized vortex. The model allows us to derive a novel correlation between the size of the vortex and its strength, measured as the square of its strain minus the square of its vorticity. For vortex detection in real models we use the strength parameter to locate potential vortex cores, then measure the similarity of our ideal analytical vortex and the real vortex core for different strength thresholds. This approach provides a metric for how well a vortex core is modeled by an ideal vortex. Moreover, this provides insight into the problem of choosing the thresholds that identify a vortex. By selecting a target coefficient of determination (i.e., statistical confidence), we determine on a per-vortex basis what threshold of the strength parameter would be required to extract that vortex at the chosen confidence. We validate our approach on real data from a global ocean simulation and derive from it a map of expected vortex strengths over the global ocean. C1 [Williams, Sean; Hamann, Bernd] Univ Calif Davis, Inst Data Anal & Visualizat, Davis, CA 95616 USA. [Williams, Sean; Petersen, Mark; Hecht, Matthew; Ahrens, James] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Hlawitschka, Mario] Univ Leipzig, Leipzig, Germany. RP Williams, S (reprint author), Univ Calif Davis, Inst Data Anal & Visualizat, Davis, CA 95616 USA. EM sjwill@ucdavis.edu; mpetersen@lanl.gov; bremer5@llnl.gov; mhecht@lanl.gov; pascucci@sci.utah.edu; ahrens@lanl.gov; hlawitschka@informatik.uni-leipzig.de; hamann@cs.ucdavis.edu OI Hecht, Matthew/0000-0003-0946-4007; Petersen, Mark/0000-0001-7170-7511 NR 19 TC 9 Z9 10 U1 1 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD DEC PY 2011 VL 17 IS 12 BP 2088 EP 2095 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 837XD UT WOS:000296241900039 PM 22034327 ER PT J AU Qiu, YJ Yu, J Shi, TN Zhou, XS Bai, XD Huang, JY AF Qiu, Yejun Yu, Jie Shi, Tongnan Zhou, Xiaosong Bai, Xuedong Huang, Jian Yu TI Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: Large-scale production, unique structure, and application as electrocatalysts for oxygen reduction SO JOURNAL OF POWER SOURCES LA English DT Article DE Carbon nanofibers; Electrospinning; Nitrogen-doped carbon; NH(3); Electrocatalysts; Oxygen reduction ID FUEL-CELLS; CATALYSTS; RAMAN; GRAPHITE; FIBERS; SUPERCAPACITORS; ARRAYS AB Ultrathin nitrogen-doped carbon nanofibers (NCNFs) with unique structure are prepared by electrospinning. The ultrathin NCNFs are produced in the form of large-area membranes by carbonizing electrospun polyacrylonitrile (PAN) nanofibers in NH(3). The diameter of the NCNFs can be effectively reduced due to the etching reactivity of NH(3) with carbon and the average diameter down to 20 nm is obtained. The NCNFs carbonized in NH(3) possess unique structure that many graphitic layers protrude from the fiber surface with their edges exposed. The nitrogen doped in the NCNFs is mainly from that contained in the PAN molecules and partially from ambient NH(3). The membranes of the ultrathin NCNFs exhibit high electrocatalytic activity, long-term operation stability, and excellent tolerance to crossover effect during oxygen reduction reaction in fuel cells. The high electrocatalytic activity of the ultrathin NCNFs may be mainly ascribed to their small diameter and exposed graphitic layer edges apart from N doping. Due to the simplicity in production, low cost, absence of metal residue, and the material form of freestanding membrane with large area the ultrathin NCNFs derived from electrospinning hold high promise for the practical application of fuel cells. (C) 2011 Elsevier B.V. All rights reserved. C1 [Qiu, Yejun; Yu, Jie; Shi, Tongnan] Harbin Inst Technol, Dept Mat Sci & Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China. [Bai, Xuedong] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Qiu, YJ (reprint author), Harbin Inst Technol, Dept Mat Sci & Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China. EM jyu@hitsz.edu.cn RI Huang, Jianyu/C-5183-2008 FU NSFC [50972033, 50572019]; New Century Excellent Talents in University [NCET060343]; Shenzhen government; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the NSFC (Grant Nos. 50972033 and 50572019), New Century Excellent Talents in University (NCET060343), and S&T Program of Shenzhen government. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 30 TC 61 Z9 62 U1 12 U2 119 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 9862 EP 9867 DI 10.1016/j.jpowsour.2011.08.013 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600003 ER PT J AU Zhang, S Shao, YY Gao, YZ Chen, GY Lin, YH Yin, GP AF Zhang, Sheng Shao, Yuyan Gao, Yunzhi Chen, Guangyu Lin, Yuehe Yin, Geping TI In situ ion exchange preparation of Pt/carbon nanotubes electrode: Effect of two-step oxidation of carbon nanotubes SO JOURNAL OF POWER SOURCES LA English DT Article DE Fuel cells; Carbon nanotubes; In situ ion exchange; Oxygen reduction reaction; Electrochemical surface area ID OXYGEN REDUCTION REACTION; METHANOL FUEL-CELLS; HIGH DISPERSION; PLATINUM; ELECTROCATALYSTS; NANOPARTICLES; CATALYSTS; DEPOSITION; NANOCATALYSTS; ARRAYS AB The in situ ion exchange method has been employed to prepare carbon nanotubes (CNT) supported Pt electrode, in which CNT is functionalized with two-step oxidation, namely electrochemical oxidation and chemical oxidation. X-ray photoelectron spectroscopy (XPS) confirms that two-step oxidation produces more carboxylic acid groups. Transmission electron microscopy (TEM) shows that Pt nanoparticles are highly dispersed on the CNT surface. Electrochemical measurements show that the resultant Pt/CNT electrode treated by two-step oxidation exhibits the largest electrochemical surface area and the highest activity for oxygen reduction reaction (ORR) among the investigated electrodes. This can be attributed to the fact that the two-step oxidation treatment produces more carboxylic acid groups which is the determining factor for Pt loading and dispersion via ion-exchange. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zhang, Sheng; Gao, Yunzhi; Chen, Guangyu; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. [Shao, Yuyan; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, S (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, 92 W Da Zhi St, Harbin 150001, Peoples R China. EM zhangsheng1982@hit.edu.cn; yingphit@hit.edu.cn RI Zhang, Sheng/H-2452-2011; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011 OI Zhang, Sheng/0000-0001-7532-1923; Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587 FU National Natural Science Foundation of China [50872027, 21106024, 21173062]; Ministry of Science and Technology of China [2009AA05Z111]; Natural Scientific Research Innovation Foundation in Harbin Institute of Technology [XWQQ5750012411]; Fundamental Research Funds for the Central Universities [HIT.ICRST.2010006] FX This work is financially supported by National Natural Science Foundation of China (Grant Nos. 50872027, 21106024 and 21173062), Ministry of Science and Technology of China (863 program Grant No. 2009AA05Z111), Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (XWQQ5750012411), and Fundamental Research Funds for the Central Universities (HIT.ICRST.2010006). NR 35 TC 8 Z9 8 U1 1 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 9955 EP 9960 DI 10.1016/j.jpowsour.2011.08.087 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600015 ER PT J AU Tucker, MC Cheng, L AF Tucker, Michael C. Cheng, Lei TI Integrated thermal management strategy and materials for solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE Thermal management; Hotspot; SOFC; Temperature distribution; PTC ID THERMOELECTRIC PROPERTIES; SOFC AB The application of positive temperature coefficient (PTC) thermistors to thermal management of solid oxide fuel cells (SOFCs) is considered. A strategy is proposed for eliminating hotspots and reducing temperature gradients in SOFCs via inclusion of a material that exhibits a dramatic change in resistance near the desired maximum cell temperature. Three PTC thermistor materials with transition temperatures near the maximum desirable SOFC operating temperature are identified and screened for compatibility with common SOFC materials. All are found to be unsuitable because of reaction with the SOFC materials or unacceptably small PTC effect. (C) 2011 Elsevier B.V. All rights reserved. C1 [Tucker, Michael C.; Cheng, Lei] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Tucker, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mctucker@lbl.gov RI Cheng, Lei/C-5143-2014; Cheng, Lei/F-9170-2014 OI Cheng, Lei/0000-0001-5498-9246; Cheng, Lei/0000-0001-5498-9246 FU U.S. Department of Energy, National Energy Technology Laboratorty; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, National Energy Technology Laboratorty and in part by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Program Manager Joseph Stoffa, and Jeffry Stevensonand Ryan Scott at Pacific Northwest National Laboratory for MCO deposition. NR 13 TC 2 Z9 2 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 10074 EP 10078 DI 10.1016/j.jpowsour.2011.08.100 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600031 ER PT J AU Liu, ZC Zhen, HH Kim, Y Liang, CD AF Liu, Zengcai Zhen, Honghe Kim, Yoongu Liang, Chengdu TI Synthesis of LiNiO(2) cathode materials with homogeneous Al doping at the atomic level SO JOURNAL OF POWER SOURCES LA English DT Article DE Raney nickel; Homogeneous doping; LiNiO(2); Lithium-ion batteries ID ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; LITHIUM CELLS; RANEY-NICKEL; R(3)OVER-BAR-M; LI-1-XNI1+XO2; STABILIZATION; SUBSTITUTION; CHEMISTRY; BATTERIES AB Aluminum doped LiNiO(2) cathode materials are synthesized by using Raney nickel as the starting material. The structure and composition are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with elemental mapping. The lithium deficiency is analyzed by Rieveld refinement. The initial capacity and retention of capacity are correlated to the lithium deficiency of the resulting cathode material. Using strong oxidant of Li(2)O(2) in the synthesis results in materials with improved electrochemical cyclability. The improvement is related to the diminishing of lithium deficiency in strong oxidizing synthesis conditions. Published by Elsevier B.V. C1 [Liu, Zengcai; Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhen, Honghe] Soochow Univ, Sch Energy, Suzhou 215000, Peoples R China. [Kim, Yoongu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Liu, ZC (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM liuz@ornl.gov; liangcn@ornl.gov RI Liang, Chengdu/G-5685-2013 FU Division of Materials Science and Engineering, Office of Basic Energy Sciences U.S. Department of Energy (DOE); Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. DOE FX This work was sponsored by the Division of Materials Science and Engineering, Office of Basic Energy Sciences U.S. Department of Energy (DOE). The synthesis and characterization was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. DOE. The authors thank Dr Hongbin Bei for the discussion on the properties of Al-Ni alloys. NR 20 TC 18 Z9 20 U1 5 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 10201 EP 10206 DI 10.1016/j.jpowsour.2011.08.059 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600048 ER PT J AU Belt, J Utgikar, V Bloom, I AF Belt, J. Utgikar, V. Bloom, I. TI Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes SO JOURNAL OF POWER SOURCES LA English DT Article DE PHEV battery testing; Performance degradation; Curve-fitting; Calendar life; Charge-sustaining cycling; Charge-depleting cycling ID HIGH-POWER; IMPEDANCE RISE; BATTERIES; PERFORMANCE; LIMN2O4 AB One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed with test type, from linear-with-time to about t(2). Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature. (C) 2011 Elsevier B.V. All rights reserved. C1 [Bloom, I.] Argonne Natl Lab, Argonne, IL 60439 USA. [Belt, J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Utgikar, V.] Univ Idaho, Dept Chem Engn, Idaho Falls, ID 83402 USA. RP Bloom, I (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ira.bloom@anl.gov FU U.S. Department of Energy, Office of Vehicle Technologies, Hybrid and Electric Systems [DE-AC02-06CH11357 (ANL), DE-AC07-99ID13727 (INL)] FX The authors acknowledge many fruitful conversations with Dr. Edward V. Thomas (Sandia National Laboratories). This work was performed under the auspices of the U.S. Department of Energy, Office of Vehicle Technologies, Hybrid and Electric Systems, under Contract Nos. DE-AC02-06CH11357 (ANL) and DE-AC07-99ID13727 (INL). NR 30 TC 57 Z9 58 U1 3 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 10213 EP 10221 DI 10.1016/j.jpowsour.2011.08.067 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600050 ER PT J AU Dubarry, M Truchot, C Cugnet, M Liaw, BY Gering, K Sazhin, S Jamison, D Michelbacher, C AF Dubarry, Matthieu Truchot, Cyril Cugnet, Mikael Liaw, Bor Yann Gering, Kevin Sazhin, Sergiy Jamison, David Michelbacher, Christopher TI Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion battery; Composite electrode; PHEV; Cell-to-cell variations; Incremental capacity ID X-RAY-DIFFRACTION; ELECTROCHEMICAL EVALUATION; CATHODE MATERIALS; FADING MECHANISM; CYCLE-LIFE; BATTERIES; CAPACITY; LINI0.8CO0.2O2; CHARGE AB Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising {LiMn1/3Ni1/3Co1/3O2 + LiMn2O4} is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study. (C) 2011 Elsevier B.V. All rights reserved. C1 [Dubarry, Matthieu; Truchot, Cyril; Cugnet, Mikael; Liaw, Bor Yann] Univ Hawaii Manoa, Hawaii Nat Energy Inst, SOEST, Honolulu, HI 96822 USA. [Gering, Kevin; Sazhin, Sergiy; Jamison, David; Michelbacher, Christopher] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Liaw, BY (reprint author), Univ Hawaii Manoa, Hawaii Nat Energy Inst, SOEST, 1680 East West Rd,POST 10, Honolulu, HI 96822 USA. EM bliaw@hawaii.edu RI Dubarry, Matthieu/B-4333-2012 OI Dubarry, Matthieu/0000-0002-3228-1834 FU Office of Energy Efficiency and Renewable Energy of the United States Department of Energy [DE-AC07-05ID14517] FX The authors gratefully acknowledge funding provided by the Office of Energy Efficiency and Renewable Energy of the United States Department of Energy (Contract No. DE-AC07-05ID14517). NR 36 TC 56 Z9 61 U1 6 U2 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 10328 EP 10335 DI 10.1016/j.jpowsour.2011.08.077 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600067 ER PT J AU Dubarry, M Truchot, C Liaw, BV Gering, K Sazhin, S Jamison, D Michelbacher, C AF Dubarry, Matthieu Truchot, Cyril Liaw, Bor Vann Gering, Kevin Sazhin, Sergiy Jamison, David Michelbacher, Christopher TI Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2 C cycle aging SO JOURNAL OF POWER SOURCES LA English DT Article DE Composite cathode; PHEV; Cycle aging; Degradation mechanisms; Loss of lithium inventory; Incremental capacity ID FADING MECHANISM; ELECTROCHEMICAL EVALUATION; CATHODE MATERIALS; SECONDARY CELLS; LIFE EVALUATION; BATTERIES; CAPACITY; LINI0.8CO0.2O2; PERFORMANCE; GRAPHITE AB Degradation phenomena and inference of their underlying mechanisms during 2 C cycle aging in a cell design comprising {LiMn1/3Ni1/3Co1/3O2 + LiMn2O4} composite positive electrode are studied and reported in this work. We describe how aging phenomena in the cells were studied and incremental capacity analysis applied to infer cell degradation mechanisms in the cycle aging process. Two stages of degradation were observed in the life cycle under this aging regime. In the first stage, we conclude that loss of lithium inventory was the cause of capacity fade. As a result of such parasitic loss, the cell further suffered from loss of active materials in the second stage, in which the positive electrode kinetics was hampered and the capacity loss accelerated. (C) 2011 Elsevier B.V. All rights reserved. C1 [Dubarry, Matthieu; Truchot, Cyril; Liaw, Bor Vann] Univ Hawaii Manoa, Hawaii Nat Energy Inst, SOEST, Honolulu, HI 96822 USA. [Gering, Kevin; Sazhin, Sergiy; Jamison, David; Michelbacher, Christopher] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Liaw, BV (reprint author), Univ Hawaii Manoa, Hawaii Nat Energy Inst, SOEST, 1680 East West Rd,POST 109, Honolulu, HI 96822 USA. EM bliaw@hawaii.edu RI Dubarry, Matthieu/B-4333-2012 OI Dubarry, Matthieu/0000-0002-3228-1834 FU Office of Energy Efficiency and Renewable Energy of the United States Department of Energy [DE-AC07-05ID14517] FX The authors gratefully acknowledge funding provided by the Office of Energy Efficiency and Renewable Energy of the United States Department of Energy (Contract No. DE-AC07-05ID14517). NR 30 TC 56 Z9 62 U1 6 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 10336 EP 10343 DI 10.1016/j.jpowsour.2011.08.078 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600068 ER PT J AU Belharouak, I Koenig, GM Amine, K AF Belharouak, Ilias Koenig, Gary M., Jr. Amine, K. TI Electrochemistry and safety of Li(4)Ti(5)O(12) and graphite anodes paired with LiMn(2)O(4) for hybrid electric vehicle Li-ion battery applications SO JOURNAL OF POWER SOURCES LA English DT Article DE HEV; PHEV; Lithium battery; Lithium Titanate; Spinel; Safety ID LITHIUM CELLS; SPINEL; INSERTION; OXIDES; CATHODE; SYSTEM AB A promising anode material for hybrid electric vehicles (HEVs) is Li(4)Ti(5)O(12) (LTO). LTO intercalates lithium at a voltage of similar to 1.5V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn(2)O(4) cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn(2)O(4) cathode materials. (C) 2011 Elsevier B.V. All rights reserved. C1 [Belharouak, Ilias; Koenig, Gary M., Jr.; Amine, K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Belharouak, I (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM belharouak@anl.gov RI Amine, Khalil/K-9344-2013; OI Belharouak, Ilias/0000-0002-3985-0278 FU U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office; U.S. Department of Energy by UChicago Argonne, LLC [DE-AC0Z-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; This research was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC0Z-06CH11357. NR 26 TC 56 Z9 57 U1 8 U2 84 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 10344 EP 10350 DI 10.1016/j.jpowsour.2011.08.079 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600069 ER PT J AU Neubauer, J Pesaran, A AF Neubauer, Jeremy Pesaran, Ahmad TI The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium ion; Battery; Second use; Energy storage; Plug-in hybrid vehicle; Electric vehicle AB The high cost of lithium ion batteries is a major impediment to the increased market share of plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). The reuse of PHEV/EV propulsion batteries in second use applications following the end of their automotive service life may have the potential to offset the high initial cost of these batteries today. Accurately assessing the value of such a strategy is exceedingly complex and entails many uncertainties. This paper takes a first step toward such an assessment by estimating the impact of battery second use on the initial cost of PHEV/EV batteries to automotive consumers and exploring the potential for grid-based energy storage applications to serve as a market for used PHEV/EV batteries. It is found that although battery second use is not expected to significantly affect today's PHEV/EV prices, it has the potential to become a common component of future automotive battery life cycles and potentially to transform markets in need of cost-effective energy storage. Based on these findings, the authors advise further investigation focused on forecasting long-term battery degradation and analyzing second-use applications in more detail. (C) 2011 Elsevier B.V. All rights reserved. C1 [Neubauer, Jeremy; Pesaran, Ahmad] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Neubauer, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jeremy.neubauer@nrel.gov; ahmad.pesaran@nrel.gov FU Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy FX This study was supported Dave Howell and Brian Cunningham of the Energy Storage, Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. NR 18 TC 59 Z9 62 U1 7 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 10351 EP 10358 DI 10.1016/j.jpowsour.2011.06.053 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600070 ER PT J AU Kim, N Rousseau, A Lee, D AF Kim, Namwook Rousseau, Aymeric Lee, Daeheung TI A jump condition of PMP-based control for PHEVs SO JOURNAL OF POWER SOURCES LA English DT Article DE Hybrid Electric Vehicles; Optimal control; Sufficient condition; Pontryagin's Minimum Principle; State inequality constraint; Jump condition ID HYBRID ELECTRIC VEHICLES; CONTROL STRATEGIES AB An optimal control strategy based on Pontryagin's Minimum Principle (PMP) is a promising solution because it provides a simple solution for controlling Hybrid Electric Vehicles (HEVs) and guarantees the best performance under reasonable conditions [1,2]. However, it needs to be very careful when applying the control strategy if inequality state constraints are active because handling the state constraints is one of the difficult issues in optimal control problems. In contrast to HEVs, Plug-in Hybrid Electric Vehicles (PHEVs) possibly consume all of the available electric energy, and so the activation of the state constraint on minimum State of Charge (SOC) is, unfortunately, a very common control problem for PHEVs. This paper describes mathematical derivations for an additional condition necessary for the inequality state constraints and solves the problem with several control options. Whereas PMP-based control allows a unique solution for HEVs [2], this paper shows that the control idea based on PMP produces a number of alternative solutions for PHEVs. However, battery efficiencies can be considered to evaluate the optimality of each solution, and simulation results from several control options show that maximizing a blended-mode control is the best solution to saving fuel for PHEVs. In terms of performance, the results of applying blended-mode control are very close to those obtained by applying a global optimal solution obtained from Dynamic Programming (DP). Published by Elsevier B.V. C1 [Kim, Namwook; Rousseau, Aymeric; Lee, Daeheung] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, N (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nwkim21@gmail.com NR 18 TC 16 Z9 18 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2011 VL 196 IS 23 BP 10380 EP 10386 DI 10.1016/j.jpowsour.2011.07.003 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 837PV UT WOS:000296216600073 ER PT J AU Guba, O Lorenz, J AF Guba, Oksana Lorenz, Jens TI Continuous spectra and numerical eigenvalues SO MATHEMATICAL AND COMPUTER MODELLING LA English DT Article DE Eigenvalue problems; Continuous spectrum; QR Algorithm ID TOEPLITZ MATRICES; FINITE INTERVALS; STABILITY; WAVES AB Some spectral problems for differential operators are naturally posed on the whole real line, often leading to eigenvalues plus continuous spectrum. Then the numerical approximation typically involves three processes: (a) reduction to a finite interval; (b) discretization; (c) application of a numerical eigenvalue solver such as the QR-algorithm. Reduction to a finite interval and discretization typically eliminate the continuous spectrum. However, through round-off error, the continuous spectrum may show up again when the eigenvalue solver is applied. (In some sense, three wrongs make a right.) Interestingly, not all parts of the continuous spectrum show up in the same way, however. We illustrate this observation by numerical examples. A perturbation argument, though non-rigorous, explains the observation. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Guba, Oksana] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lorenz, Jens] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. RP Guba, O (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM onguba@sandia.gov; lorenz@math.unm.edu FU Lockheed Martin Corporation; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 11 TC 2 Z9 2 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0895-7177 J9 MATH COMPUT MODEL JI Math. Comput. Model. PD DEC PY 2011 VL 54 IS 11-12 BP 2616 EP 2622 DI 10.1016/j.mcm.2011.06.037 PG 7 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 831GJ UT WOS:000295716700009 ER PT J AU De Chant, LJ AF De Chant, Lawrence J. TI A simple model to estimate turbulent density fluctuation and associated optical distortion over hydro-dynamically rough surfaces SO MATHEMATICAL AND COMPUTER MODELLING LA English DT Article DE Aero-optical; Turbulent density fluctuation; Hydro-dynamically rough; Boundary layer ID BOUNDARY-LAYERS AB Here we develop an analysis to estimate root-mean-square (RMS) turbulent density fluctuation over hydro-dynamically rough plates and cones for compressible flows. This information is then used to estimate standard aero-optical quantities such as the mean square random phase error and the Strehl ratio. To compute the density fluctuation, a closed-form analytical model has been developed using classical (inner-law) boundary layer results. The model estimates local compressible (adiabatic) skin friction, equivalent (Van Driest) log-law velocity profiles and boundary layer thickness and, via the Crocco-Busemann energy integral (assuming for simplicity adiabatic conditions) temperature fluctuations. Finally, using state and appropriate closures for the turbulent pressure fluctuation and Reynolds stresses, we arrive at an RMS turbulent density fluctuation result. This result is compared to experimental and semi-empirical models and shows reasonable agreement. The density fluctuation is of particular interest since it can be directly related to estimate the local refractive index associated with the flow through the Gladstone-Dale constant. The refractive index field provides the basis for aero-optical modeling of a particular system, with a particular focus on beam path bending, the mean square random phase error and the related Strehl ratio. (C) 2011 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Aeromech & Compressible Fluid Mech Dept, Albuquerque, NM 87185 USA. RP De Chant, LJ (reprint author), Sandia Natl Labs, Aeromech & Compressible Fluid Mech Dept, POB 5800, Albuquerque, NM 87185 USA. EM ljdecha@sandia.gov FU Sandia National Laboratories (SNL), Laser Applications Group for preliminary research in this area; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author would like to acknowledge the support provided by T. S. Luk and A. R. Marrujo of Sandia National Laboratories (SNL), Laser Applications Group for preliminary research in this area. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 12 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0895-7177 J9 MATH COMPUT MODEL JI Math. Comput. Model. PD DEC PY 2011 VL 54 IS 11-12 BP 2778 EP 2784 DI 10.1016/j.mcm.2011.06.066 PG 7 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 831GJ UT WOS:000295716700023 ER PT J AU Levinson, R Pan, H Ban-Weiss, G Rosado, P Paolini, R Akbari, H AF Levinson, Ronnen Pan, Heng Ban-Weiss, George Rosado, Pablo Paolini, Riccardo Akbari, Hashem TI Potential benefits of solar reflective car shells: Cooler cabins, fuel savings and emission reductions SO APPLIED ENERGY LA English DT Article DE Cool colored car; Solar reflective shell; Vehicle air conditioning; Vehicle fuel economy; Vehicle emission reduction; ADVISOR ID IMPROVING THERMAL COMFORT; PASSENGER COMPARTMENT; TEMPERATURE-FIELDS; AIR-FLOW AB Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the "soak" temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle's ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (rho) of the car's shell by about 0.5 lowered the soak temperature of breath-level air by about 5-6 degrees C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25 degrees C within 30 min is 13% less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (rho = 0.35) for a black shell (rho = 0.05) would reduce fuel consumption by 0.12 L per 100 km (1.1%), increasing fuel economy by 0.10 km L(-1) [0.24 mpg] (1.1%). It would also decrease carbon dioxide (CO(2)) emissions by 2.7 g km(-1) (1.1%), nitrogen oxide (NO(x)) emissions by 5.4 mg km(-1) (0.44%), carbon monoxide (CO) emissions by 17 mg km(-1) (0.43%), and hydrocarbon (HC) emissions by 4.1 mg km(-1) (0.37%). Selecting a typical white or silver shell (rho = 0.60) instead of a black shell would lower fuel consumption by 0.21 L per 100 km (1.9%), raising fuel economy by 0.19 km L(-1) [0.44 mpg] (2.0%). It would also decrease CO(2) emissions by 4.9 g km(-1) (1.9%), NO(x) emissions by 9.9 mg km(-1) (0.80%), CO emissions by 31 mg km(-1) (0.79%), and HC emissions by 7.4 mg km(-1) (0.67%). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are typically lower than those in real-world driving. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Heat Isl Grp, Berkeley, CA 94720 USA. RP Levinson, R (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Heat Isl Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM RML27@cornell.edu RI Paolini, Riccardo/I-6937-2015 OI Ban-Weiss, George/0000-0001-8211-2628; Paolini, Riccardo/0000-0001-8365-6811 FU California Energy Commission; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the California Energy Commission through its Public Interest Energy Research Program. It was also supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the US Department of Energy under Contract No. DE-AC02-05CH11231. We wish to thank the California Department of General Services for use of their vehicles and facility, with special appreciation to Kimberly Harbison for her assistance; John Rugh of the National Renewable Energy Laboratory, for technical advice; former California Energy Commissioner Arthur Rosenfeld, for his support; and Philip Misemer of the California Energy Commission, for guiding our project. NR 33 TC 22 Z9 23 U1 4 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD DEC PY 2011 VL 88 IS 12 BP 4343 EP 4357 DI 10.1016/j.apenergy.2011.05.006 PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 826WV UT WOS:000295387200010 ER PT J AU Tan, ZF Li, L Wang, JJ Wang, JH AF Tan, Zhongfu Li, Li Wang, Jianjun Wang, Jianhui TI Examining the driving forces for improving China's CO2 emission intensity using the decomposing method SO APPLIED ENERGY LA English DT Article DE Decomposition; CO2 emission intensity; LMDI; Electric power industry; China ID ENERGY-USE; STRUCTURAL DECOMPOSITION; COUNTRIES; TRENDS AB This paper examines the driving forces for reducing China's CO2 emission intensity between 1998 and 2008, utilizing the logarithmic mean divisia index (LMDI) technique. By first grouping the CO2 emissions into two categories, those arising from activities related to the electric power industry and those from other sources, emission intensity is further broken down into the effects of the CO2 emission coefficient, energy intensity of power generation, power generation and consumption ratio, electricity intensity of the gross domestic product (GDP), provincial structural change, and the energy intensity of the GDP for other activities. The decomposition results show that improvements in the energy intensity of power generation, electricity intensity of GDP, and energy intensity of GDP for other activities were mainly responsible for the success in reducing China's CO2 emission intensity and that activities related to the electric power industry played a key role. It is also revealed that performance varied significantly at the individual province level. The provinces with higher emission levels contributed the most to China's improvements in CO2 emission intensity. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Li, Li] Beijing Informat Sci & Technol, Sch Econ & Business Adm, Beijing 100085, Peoples R China. [Tan, Zhongfu; Wang, Jianjun] N China Elect Power Univ, Sch Econ & Business Adm, Beijing 102206, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Li, L (reprint author), Beijing Informat Sci & Technol, Sch Econ & Business Adm, Beijing 100085, Peoples R China. EM lilinw2001@126.com RI Wang, Jianjun/C-3361-2017 OI Wang, Jianjun/0000-0002-5424-1497 FU Chinese Fundamental Research Funds for the Central Universities [09QX68, 10QX44]; National Natural Science Foundation of China [71071053] FX This study is supported by Chinese Fundamental Research Funds for the Central Universities (09QX68) and (10QX44), the National Natural Science Foundation of China (71071053). NR 28 TC 48 Z9 52 U1 4 U2 44 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD DEC PY 2011 VL 88 IS 12 BP 4496 EP 4504 DI 10.1016/j.apenergy.2011.05.042 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 826WV UT WOS:000295387200025 ER PT J AU Greene, AC Washburn, CM Bachand, GD James, CD AF Greene, Adrienne C. Washburn, Cody M. Bachand, George D. James, Conrad D. TI Combined chemical and topographical guidance cues for directing cytoarchitectural polarization in primary neurons SO BIOMATERIALS LA English DT Article DE Neural cell; Cell polarity; Micropatterning; Neural network ID PLANAR MICROELECTRODE ARRAYS; HIPPOCAMPAL-NEURONS; MICROPATTERNED SURFACES; NEURITE OUTGROWTH; AXON GUIDANCE; GROWTH; POLARITY; CULTURE; NETWORKS; LAMININ AB Chemical and topographical cues can be used to guide dissociated neurons into user-defined network geometries on artificial substrates, yet control of neuron polarity (differentiation into axons and dendrites) remains an elusive goal. We developed a dual guidance cue strategy for directing morphological maturity in neurons in vitro using combined chemical and topographical guidance cues on glass substrates. The surface chemistry provides chemical attraction and repulsion for controlling neuron placement and outgrowth, while the topography provides additional surface area for neuron attachment. Poly-L-lysine (PLL) was adsorbed into etched trenches in glass substrates, and an acetone liftoff process was used to produce bifunctional surfaces with a hydrophobic hexamethyldisilazane (HMDS) background and trench patterns of PLL We examined the cytoarchitectural polarization of dissociated hippocampal pyramidal neurons on guidance cues designed to promote rapid outgrowth of neurites onto continuous line features and delayed neurite outgrowth onto interrupted line features. An optimum distance of approximately 5 mu m between the cell body attachment node and the first interrupted line guidance cue led to specific cytoarchitectural polarization of >= 60% of neurons by 3 days of culture in vitro. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Greene, Adrienne C.; Washburn, Cody M.; Bachand, George D.; James, Conrad D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Greene, Adrienne C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP James, CD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM cdjame@sandia.gov OI Bachand, George/0000-0002-3169-9980 FU Sandia's Laboratory Directed Research and Development program; United States Department of Energy [DE-AC04-94AL85000] FX We thank the Microelectronics Development Laboratory staff and management at Sandia National Laboratories for device fabrication. We also extend our gratitude to Craig Nakakura for AFM imaging. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, and Office of Basic Energy Sciences user facility and at the Microsystems Engineering and Science Applications facility. This work was funded by Sandia's Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 43 TC 17 Z9 17 U1 0 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 J9 BIOMATERIALS JI Biomaterials PD DEC PY 2011 VL 32 IS 34 BP 8860 EP 8869 DI 10.1016/j.biomaterials.2011.08.003 PG 10 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 836LP UT WOS:000296113500011 PM 21885117 ER PT J AU Barth, HD Zimmermann, EA Schaible, E Tang, SY Alliston, T Ritchie, RO AF Barth, Holly D. Zimmermann, Elizabeth A. Schaible, Eric Tang, Simon Y. Alliston, Tamara Ritchie, Robert O. TI Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone SO BIOMATERIALS LA English DT Article DE Human cortical bone; Deformation; Toughness; X-ray diffraction; Tomography; Collagen ID COLLAGEN CROSS-LINKS; FATIGUE-CRACK-PROPAGATION; HUMAN CANCELLOUS BONE; GAMMA-IRRADIATION; BIOMECHANICAL PROPERTIES; BIOLOGICAL-MATERIALS; ALLOGRAFT BONE; IONIZING-RADIATION; LAMELLAR BONE; FRACTURE AB Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-scale, fracture properties, evaluated using insitu scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with insitu tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by similar to 40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-scales, loss of plasticity from suppressed fibrillar sliding at sub-micron scales, and the loss and damage of collagen at the nano-scales, the latter being assessed using Raman and Fourier Transform Infrared spectroscopy and a fluorometric assay. Published by Elsevier Ltd. C1 [Barth, Holly D.; Zimmermann, Elizabeth A.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Barth, Holly D.; Zimmermann, Elizabeth A.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Barth, Holly D.; Schaible, Eric] Univ Calif Berkeley, Lawrence Berkeley Lab, Expt Syst Grp, Berkeley, CA 94720 USA. [Tang, Simon Y.; Alliston, Tamara] Univ Calif San Francisco, Dept Orthopaed Surg, San Francisco, CA USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM RORitchie@lbl.gov RI Ritchie, Robert/A-8066-2008; Zimmermann, Elizabeth/A-4010-2015; OI Ritchie, Robert/0000-0002-0501-6998; Tang, Simon/0000-0002-5570-3921; Zimmermann, Elizabeth/0000-0001-9927-3372; Alliston, Tamara/0000-0001-9992-2897 FU National Institute of Health (NIH/NIDCR) [5R01 DE015633]; Lawrence Berkeley National Laboratory (LBNL); NIH [R01DE019284, F32AR059497]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institute of Health (NIH/NIDCR) under grant no. 5R01 DE015633 to the Lawrence Berkeley National Laboratory (LBNL); support for S.Y.T. and T.A. was additionally provided by NIH grants no. R01DE019284 and F32AR059497. We acknowledge the use of the two x-ray synchrotron beam lines 7.3.3 (SAXS/WAXD) and 8.3.2 (micro-tomography) at the Advanced Light Source at the Lawrence Berkeley National Laboratory (LBNL), which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The authors wish to thank Drs. Tony Tomsia, Maximilien Launey, Joel Ager, Hans Bechtel, Alex Hexemer, Andrew Tauschera, and Alastair MacDowell at LBNL for their considerable help, and Professor Tony Keaveny and Mike Jekir, of the Mechanical Engineering Department at the University of California, Berkeley, for graciously allowing us to use their facilities to machine samples for this project. NR 69 TC 66 Z9 66 U1 10 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 J9 BIOMATERIALS JI Biomaterials PD DEC PY 2011 VL 32 IS 34 BP 8892 EP 8904 DI 10.1016/j.biomaterials.2011.08.013 PG 13 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 836LP UT WOS:000296113500014 PM 21885114 ER PT J AU Li, TW Dietiker, JF Zhang, YM Shahnam, M AF Li, Tingwen Dietiker, Jean-Francois Zhang, Yongmin Shahnam, Mehrdad TI Cartesian grid simulations of bubbling fluidized beds with a horizontal tube bundle SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE CFD; Tube bundle; Fluidized beds; Gas-solids flow; Hydrodynamics; Erosion ID HEAT-TRANSFER; IMMERSED TUBES; BANK GEOMETRY; EXPERIMENTAL VALIDATION; NUMERICAL-SIMULATION; HYDRODYNAMICS; EROSION; PRESSURE; PARTICLE; VELOCITY AB In this paper, the flow hydrodynamics in a bubbling fluidized bed with submerged horizontal tube bundle was numerically investigated with an open-source code: Multiphase Flow with Interphase exchange (MFIX). A newly implemented cut-cell technique was employed to deal with the curved surface of submerged tubes. A series of 2D simulations were conducted to study the effects of gas velocity and tube arrangement on the flow pattern. Hydrodynamic heterogeneities on voidage, particle velocity, bubble fraction, and frequency near the tube circumferential surface were successfully predicted by this numerical method, which agrees qualitatively with previous experimental findings and contributes to a sounder understanding of the non-uniform heat transfer and erosion around a horizontal tube. A 3D simulation was also conducted. Significant differences between 2D and 3D simulations were observed with respect to bed expansion, bubble distribution, voidage, and solids velocity profiles. Hence, the 3D simulation is needed for quantitative prediction of flow hydrodynamics. On the other hand, the flow characteristics and bubble behavior at the tube surface are similar under both 2D and 3D simulations as far as the bubble frequency and bubble phase fraction are concerned. Comparison with experimental data showed that qualitative agreement was obtained in both 2D and 3D simulations for the bubble characteristics at the tube surface. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Li, Tingwen; Dietiker, Jean-Francois; Shahnam, Mehrdad] Dept Energy, Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Li, Tingwen] URS Corp, Morgantown, WV 26505 USA. [Dietiker, Jean-Francois] W Virginia Univ, Corp Res, Morgantown, WV 26506 USA. [Zhang, Yongmin] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. RP Li, TW (reprint author), Dept Energy, Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM tingwen.li@ur.netl.doe.gov RI Li, Tingwen/D-2173-2012 OI Li, Tingwen/0000-0002-1900-308X FU National Energy Technology Laboratory [DE-FE0004000]; U.S. Department of Energy; National Natural Science Foundation of China [20906101] FX This technical report was produced in support of the National Energy Technology Laboratory's ongoing research in advanced numerical simulation of multiphase flow under the RES contract DE-FE0004000. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administrated by the Oak Ridge Institute for Science and Education. YZ acknowledges the financial supports from the National Natural Science Foundation of China (Grant no. 20906101). NR 52 TC 19 Z9 20 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD DEC 1 PY 2011 VL 66 IS 23 BP 6220 EP 6231 DI 10.1016/j.ces.2011.08.056 PG 12 WC Engineering, Chemical SC Engineering GA 836FY UT WOS:000296097200043 ER PT J AU Zhao, S Su, D Che, J Jiang, BY Orlov, A AF Zhao, Shen Su, Dong Che, Justin Jiang, Bingyin Orlov, Alexander TI Photocatalytic properties of TiO2 supported on SBA-15 mesoporous materials with large pores and short channels SO MATERIALS LETTERS LA English DT Article DE TiO2; Photocatalytic; Gold nanoparticles; Phenol degradation; Mesoporous; SBA-15 ID SILICA; GOLD; WATER; NANOPARTICLES; PARTICLES; CATALYSTS AB In this study, the new class of SBA-15 mesoporous materials with large pore diameter and short pore channels has been utilized as template for TiO2 based photocatalysts. The samples were characterized by TEM, SAXS, and BET and tested for photocatalytic activity in liquid phase oxidation of phenol. This is the first ever application of this type of SBA-15 supported catalyst in photocatalytic area. This work also included the novel use of sub-1 nm Au nanoparticles for catalysts modification which doubles the phenol oxidation rate. (C) 2011 Elsevier BM. All rights reserved. C1 [Zhao, Shen; Orlov, Alexander] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Che, Justin; Jiang, Bingyin] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Orlov, A (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM aorlov@notes.cc.sunysb.edu RI Su, Dong/A-8233-2013; OI Su, Dong/0000-0002-1921-6683; Jiang, Bingyin/0000-0002-9526-5727 FU U.S. Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886] FX The authors would like to acknowledge assistance of Prof. Michal Kruk and Liang Cao in SBA-15 mesoporous silica sample preparation. In addition, we appreciate a significant help of Prof. Martin Schoonen in BET testing. The work of Dr. Dong Su was supported by the U.S. Department of Energy, Office of Basic Energy Science, under the contract number DE-AC02-98CH10886. NR 26 TC 9 Z9 9 U1 3 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD DEC PY 2011 VL 65 IS 23-24 BP 3354 EP 3357 DI 10.1016/j.matlet.2011.07.053 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 835ZN UT WOS:000296075900002 ER PT J AU Brooks, K Devarakonda, M Rassat, S Holladay, J AF Brooks, Kriston Devarakonda, Maruthi Rassat, Scot Holladay, Jamie TI Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications SO JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY LA English DT Article DE fixed bed reactor; hydrogen storage; ammonia borane; PEM fuel cell; systems modeling and simulation ID AMMONIA BORANE; PHASE-CHANGE; KINETICS AB A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia borane was selected by DOE's Hydrogen Storage Engineering Center of Excellence as the initial chemical hydride of study because of its high hydrogen storage capacity (up to similar to 16% by weight for the release of similar to 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with eight thermally isolated sections in which H(2) flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target. [DOI: 10.1115/1.4004477] C1 [Brooks, Kriston; Devarakonda, Maruthi; Rassat, Scot; Holladay, Jamie] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Devarakonda, M (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM maruthi.devarakonda@pnnl.gov FU US Department of Energy (DOE) [DE-AC05-76RLO1830] FX This work was done at PNNL, as a part of the Hydrogen Storage Engineering Center of Excellence (HSECoE) project, sponsored by the US Department of Energy. Special thanks to Ned Stetson (DOE), Darrell Herling, and Kevin Simmons at PNNL for valuable suggestions and discussions. PNNL is operated by Battelle for the US DOE under contract DE-AC05-76RLO1830. NR 17 TC 1 Z9 1 U1 1 U2 6 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1550-624X J9 J FUEL CELL SCI TECH JI J. Fuel Cell Sci. Technol. PD DEC PY 2011 VL 8 IS 6 AR 061021 DI 10.1115/1.4004477 PG 6 GA 829YQ UT WOS:000295623400021 ER PT J AU Tsai, A Tucker, D Clippinger, D AF Tsai, Alex Tucker, David Clippinger, David TI Simultaneous Turbine Speed Regulation and Fuel Cell Airflow Tracking of a SOFC/GT Hybrid Plant With the Use of Airflow Bypass Valves SO JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY LA English DT Article ID DESIGN AB This paper studies a novel control methodology aimed at regulating and tracking turbo machinery synchronous speed and fuel cell mass flow rate of a SOFC/GT hardware simulation facility with the sole use of airflow bypass valves. The hybrid facility under consideration consists of a 120 kW auxiliary power unit gas turbine coupled to a 300 kW SOFC hardware simulator. The hybrid simulator allows testing of a wide variety of fuel cell models under a hardware-in-the-loop configuration. Small changes in fuel cell cathode airflow have shown to have a large impact on system performance. Without simultaneous control of turbine speed via load or auxiliary fuel, fuel cell airflow tracking requires an alternate actuator methodology. The use of bypass valves to control mass flow rate and decouple turbine speed allows for a greater flexibility and feasibility of implementation at the larger scale, where synchronous speeds are required. This work utilizes empirically derived transfer functions (TF) as the system model and applies a fuzzy logic (FL) control algorithm that can be easily incorporated to nonlinear models of direct fired recuperated hybrid plants having similar configurations. This methodology is tested on a SIMULINK/matlab platform for various perturbations of turbine load and fuel cell heat exhaust. [DOI: 10.1115/1.4004643] C1 [Tsai, Alex; Clippinger, David] US Coast Guard Acad, Dept Engn, New London, CT 06320 USA. [Tucker, David] Natl Energy Technol Lab, Dept Energy, Morgantown, WV 26505 USA. RP Tsai, A (reprint author), US Coast Guard Acad, Dept Engn, McAllister Hall,27 Mohegan Ave, New London, CT 06320 USA. EM alex.tsai@uscga.edu; david.tucker@netl.doe.gov; david.c.clippinger@uscga.edu NR 22 TC 0 Z9 0 U1 1 U2 5 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1550-624X J9 J FUEL CELL SCI TECH JI J. Fuel Cell Sci. Technol. PD DEC PY 2011 VL 8 IS 6 AR 061018 DI 10.1115/1.4004643 PG 10 GA 829YQ UT WOS:000295623400018 ER PT J AU Bansal, P Vineyard, E Abdelaziz, O AF Bansal, Pradeep Vineyard, Edward Abdelaziz, Omar TI Advances in household appliances - A review SO APPLIED THERMAL ENGINEERING LA English DT Article DE Energy efficiency; Refrigerator-freezers; Washing machines; Clothes dryers; Dishwashers; Ovens; Waste heat recovery ID HOT-WALL CONDENSERS; DOMESTIC REFRIGERATORS; ENERGY EFFICIENCY; MAGNETIC REFRIGERATION; MARKET TRANSFORMATION; RESIDENTIAL APPLIANCE; VAPOR COMPRESSION; STANDARDS; PERFORMANCE; WATER AB An overview of options and potential barriers and risks for reducing the energy consumption, peak demand, and emissions for seven key energy consuming residential products (refrigerator-freezers, dishwashers, clothes washers, clothes dryers, electric ovens, gas ovens and microwave ovens) is presented. The paper primarily concentrates on the potential energy savings from the use of advanced technologies in appliances for the U.S. market. The significance and usefulness of each technology was evaluated in order to prioritize the R&D needs to improve energy efficiency of appliances in view of energy savings, cost, and complexity. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Although significant energy savings may be achieved, one of the major barriers in most cases is high first cost. One way of addressing this issue and promoting the introduction of new technologies is to "level" the playing field for all manufacturers by establishing Minimum Energy Performance Standards (MEPS) which are not cost prohibitive and promoting energy efficient products through incentives to both manufacturers and consumers. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Bansal, Pradeep] Univ Auckland, Dept Mech Engn, Auckland 1, New Zealand. [Bansal, Pradeep; Vineyard, Edward; Abdelaziz, Omar] Oak Ridge Natl Lab, Bldg Equipment Grp, Oak Ridge, TN 37831 USA. RP Bansal, P (reprint author), Univ Auckland, Dept Mech Engn, Auckland 1, New Zealand. EM p.bansal@auckland.ac.nz RI Abdelaziz, Omar/O-9542-2015; OI Abdelaziz, Omar/0000-0002-4418-0125; Vineyard, Edward/0000-0003-4695-7441 NR 95 TC 46 Z9 49 U1 6 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-4311 J9 APPL THERM ENG JI Appl. Therm. Eng. PD DEC PY 2011 VL 31 IS 17-18 SI SI BP 3748 EP 3760 DI 10.1016/j.applthermaleng.2011.07.023 PG 13 WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics SC Thermodynamics; Energy & Fuels; Engineering; Mechanics GA 830JP UT WOS:000295653600019 ER PT J AU Moon, JW Cho, KS Moberly, JG Roh, Y Phelps, TJ AF Moon, Ji-Won Cho, Kyu-Seong Moberly, James G. Roh, Yul Phelps, Tommy J. TI Simultaneous leaching and carbon sequestration in constrained aqueous solutions SO ENVIRONMENTAL GEOCHEMISTRY AND HEALTH LA English DT Article DE Ash leaching; Carbon sequestration; Metal immobilization ID COAL FLY-ASH; BOTTOM ASH; TRACE-METALS; WASTE-WATER; SOLUBILITY; CO2; ETTRINGITE; MINERALOGY; BIOSOLIDS; CHEMISTRY AB The behavior of metal ions' leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals. C1 [Moon, Ji-Won; Moberly, James G.; Phelps, Tommy J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Cho, Kyu-Seong] Chonbuk Natl Univ, Div Sci Educ, Jeonju 561756, South Korea. [Roh, Yul] Chonnam Natl Univ, Fac Earth Syst & Environm Sci, Kwangju 500757, South Korea. RP Phelps, TJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM phelpstj@ornl.gov RI Moon, Ji-Won/A-9186-2011; OI Moon, Ji-Won/0000-0001-7776-6889; Moberly, James/0000-0003-0950-0952 FU U.S. Department of Energy (DOE) through National Energy Technology Laboratory (NETL); DOE-FE; CBNU; U.S. DOE [DE-AC05-00OR22725] FX We gratefully acknowledge support from the U.S. Department of Energy (DOE), Fossil Energy program through the National Energy Technology Laboratory (NETL). This project was supported under the DOE-FE Coal Utilization Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. We thank Ms. Meghan McNeilly for editing and Mr. Kenneth Lowe for ICP-MS analysis. Cho, K.-S. was partially supported by the CBNU funds for overseas research, 2003. NR 48 TC 0 Z9 0 U1 1 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0269-4042 J9 ENVIRON GEOCHEM HLTH JI Environ. Geochem. Health PD DEC PY 2011 VL 33 IS 6 BP 543 EP 557 DI 10.1007/s10653-010-9370-2 PG 15 WC Engineering, Environmental; Environmental Sciences; Public, Environmental & Occupational Health; Water Resources SC Engineering; Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Water Resources GA 824AI UT WOS:000295170600003 PM 21246259 ER PT J AU Derr, K Manic, M AF Derr, Kurt Manic, Milos TI Extended Virtual Spring Mesh (EVSM): The Distributed Self-Organizing Mobile Ad Hoc Network for Area Exploration SO IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS LA English DT Article; Proceedings Paper CT IEEE International Conference on Mechatronics (ICM 2009) CY APR 14-17, 2009 CL Malaga, SPAIN SP IEEE DE Mobile ad hoc network (MANET); robot; self-adaptive; self-organizing; swarm; unmanned autonomous vehicles (UAVs); VSM network; wireless sensor networks (WSNs) ID SENSOR NETWORKS AB Mobile Ad hoc NETworks (MANETs) are distributed self-organizing networks that can change locations and configure themselves on the fly. This paper focuses on an algorithmic approach for the deployment of a MANET within an enclosed area, such as a building in a disaster scenario, which can provide a robust communication infrastructure for search and rescue operations. While a virtual spring mesh (VSM) algorithm provides scalable, self-organizing, and fault-tolerant capabilities required by a MANET, the VSM lacks the MANET's capabilities of deployment mechanisms for blanket coverage of an area and does not provide an obstacle avoidance mechanism. This paper presents a new technique, an extended VSM (EVSM) algorithm that provides the following novelties: 1) new control laws for exploration and expansion to provide blanket coverage, 2) virtual adaptive springs enabling the mesh to expand as necessary, 3) adapts to communications disturbances by varying the density and movement of mobile nodes, and 4) new metrics to assess the performance of the EVSM algorithm. Simulation results show that EVSM provides up to 16% more coverage and is 3.5 times faster than VSM in environments with eight obstacles. C1 [Derr, Kurt] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Manic, Milos] Univ Idaho, Idaho Falls, ID 83402 USA. RP Derr, K (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM kurt.derr@inl.gov; kdiddm@yahoo.com NR 32 TC 13 Z9 13 U1 2 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0278-0046 EI 1557-9948 J9 IEEE T IND ELECTRON JI IEEE Trans. Ind. Electron. PD DEC PY 2011 VL 58 IS 12 BP 5424 EP 5437 DI 10.1109/TIE.2011.2130492 PG 14 WC Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation SC Automation & Control Systems; Engineering; Instruments & Instrumentation GA 823CX UT WOS:000295100900018 ER PT J AU Peffer, T Pritoni, M Meier, A Aragon, C Perry, D AF Peffer, Therese Pritoni, Marco Meier, Alan Aragon, Cecilia Perry, Daniel TI How people use thermostats in homes: A review SO BUILDING AND ENVIRONMENT LA English DT Review DE Residential; Thermostat; Usability; Energy consumption; Control; User interface ID ENERGY-USE; HEATING-SYSTEMS; THERMAL COMFORT; BEHAVIOR; ENVIRONMENT; IMPROVEMENTS; BUILDINGS; OFFICES AB Residential thermostats control a substantial portion of both fuel and electrical energy-9% of the total energy consumption in the U.S. Consumers install programmable thermostats to save energy, yet numerous recent studies found that homes with programmable thermostats can use more energy than those controlled manually depending on how-or if-they are used. At the same time, thermostats are undergoing a dramatic increase in capability and features, including control of ventilation, responding to electricity price signals, and interacting with a home area network. These issues warrant a review of the current state of thermostats, evaluating their effectiveness in providing thermal comfort and energy savings, and identifying areas for further improvement or research. This review covers the evolution in technologies of residential thermostats; we found few standards and many features. We discuss studies of how people currently use thermostats, finding that nearly half do not use the programming features. The review covers the complications associated with using a thermostat. Finally, we suggest research needed to design and especially test with users thermostats that can provide more comfortable and economical indoor environments. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Peffer, Therese] Calif Inst Energy & Environm, Berkeley, CA 94708 USA. [Pritoni, Marco] UC Davis, Davis, CA 95616 USA. [Meier, Alan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Aragon, Cecilia; Perry, Daniel] Univ Washington, Dept Human Centered Design & Engn, Seattle, WA 98195 USA. RP Peffer, T (reprint author), Calif Inst Energy & Environm, 2087 Addison St,2nd Floor, Berkeley, CA 94708 USA. EM therese.peffer@uc-ciee.org FU Office of Energy Efficiency and Renewable Energy, Building Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge the support of the Office of Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 112 TC 54 Z9 54 U1 3 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD DEC PY 2011 VL 46 IS 12 BP 2529 EP 2541 DI 10.1016/j.buildenv.2011.06.002 PG 13 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 809CT UT WOS:000294030100013 ER PT J AU Yeary, LW Moon, JW Rawn, CJ Love, LJ Rondinone, AJ Thompson, JR Chakoumakos, BC Phelps, TJ AF Yeary, Lucas W. Moon, Ji-Won Rawn, Claudia J. Love, Lonnie J. Rondinone, Adam J. Thompson, James R. Chakoumakos, Bryan C. Phelps, Tommy J. TI Magnetic properties of bio-synthesized zinc ferrite nanoparticles SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Microbial synthesis; Zn-ferrite; Lattice parameter; Magnetism ID MICROFLUIDIC APPLICATIONS; SUBSTITUTED MAGNETITE; ZNFE2O4 PARTICLES; DEEP SUBSURFACE; SPINEL; BIOMINERALIZATION; ENVIRONMENTS; TRANSITION; BACTERIUM; BEHAVIOR AB The magnetic properties of zinc ferrite (Zn-substituted magnetite, Zn(y)Fe(1-y)Fe(2)O(4)) formed by a microbial process compared favorably with chemically synthesized materials. A metal reducing bacterium, Thermoanaerobacter, strain TOR-39 was incubated with Zn(x)Fe(1-x)OOH (x=0.01, 0.1, and 0.15) precursors and produced nanoparticulate zinc ferrites. Composition and crystalline structure of the resulting zinc ferrites were verified using X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and neutron diffraction. The average composition from triplicates gave a value for y of 0.02, 0.23, and 0.30 with the greatest standard deviation of 0.02. Average crystallite sizes were determined to be 67, 49, and 25 nm, respectively. While crystallite size decreased with more Zn substitution, the lattice parameter and the unit cell volume showed a gradual increase in agreement with previous literature values. The magnetic properties were characterized using a superconducting quantum interference device magnetometer and were compared with values for the saturation magnetization (M(s)) reported in the literature. The averaged M(s) values for the triplicates with the largest amount of zinc (y=0.30) gave values of 100.1, 96.5, and 69.7 emu/g at temperatures of 5, 80, and 300 K, respectively indicating increased magnetic properties of the bacterially synthesized zinc ferrites. (C) 2011 Elsevier B.V. All rights reserved. C1 [Moon, Ji-Won; Phelps, Tommy J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Yeary, Lucas W.] Corning Inc, Inorgan & Integrat Technol, Corning, NY 14831 USA. [Rawn, Claudia J.; Thompson, James R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Rawn, Claudia J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37966 USA. [Love, Lonnie J.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. [Rondinone, Adam J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Thompson, James R.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Chakoumakos, Bryan C.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Phelps, TJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM phelpstj@ornl.gov RI Moon, Ji-Won/A-9186-2011; Rondinone, Adam/F-6489-2013; Chakoumakos, Bryan/A-5601-2016; Love, Lonnie/P-3010-2015 OI Moon, Ji-Won/0000-0001-7776-6889; Rondinone, Adam/0000-0003-0020-4612; Chakoumakos, Bryan/0000-0002-7870-6543; Love, Lonnie/0000-0002-5934-7135 FU US Department of Energy [DE-AC05-00OR22725]; Defense Advanced Research Projects Agency (DARPA) [1868-HH43-X1]; Division of Materials Sciences and Engineering, Office of Basic Energy Science, US Department of Energy FX Notice: This manuscript has been authored by UT-Battelle, LLC, under contract no. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; This work was supported by the Defense Advanced Research Projects Agency (DARPA) Biomagnetics Program under contract 1868-HH43-X1. J.-W. Moon was partly supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. J.R. Thompson was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Science, US Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. NR 47 TC 16 Z9 16 U1 4 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD DEC PY 2011 VL 323 IS 23 BP 3043 EP 3048 DI 10.1016/j.jmmm.2011.06.049 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 805MN UT WOS:000293731100022 ER PT J AU Koonin, SE Gopstein, AM AF Koonin, Steven E. Gopstein, Avi M. TI Accelerating the Pace of Energy Change The government's key role in catalyzing a transformation of the energy system is to mitigate risk for the private sector. SO ISSUES IN SCIENCE AND TECHNOLOGY LA English DT Article C1 [Koonin, Steven E.; Gopstein, Avi M.] US DOE, Washington, DC 20585 USA. RP Koonin, SE (reprint author), US DOE, Washington, DC 20585 USA. EM Avi.Gopstein@science.doe.gov NR 0 TC 1 Z9 1 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0748-5492 J9 ISSUES SCI TECHNOL JI Issues Sci. Technol. PD WIN PY 2011 VL 27 IS 2 BP 45 EP 50 PG 6 WC Engineering, Multidisciplinary; Engineering, Industrial; Multidisciplinary Sciences; Social Issues SC Engineering; Science & Technology - Other Topics; Social Issues GA 703DZ UT WOS:000285955600015 ER PT J AU Picker, RC AF Picker, Randal C. TI The Razors-and-Blades Myth(s) SO UNIVERSITY OF CHICAGO LAW REVIEW LA English DT Article AB The razors-and-blades story offers a foundational understanding of a key area of economics and strategy: invest in an installed base by selling the razor handles at low prices or even giving them away, then sell the razor blades at high prices to justify the prior investment. Large chunks of modern technological life-from VCRs and DVD players to video game systems like the Xbox and now e-book readers-seem to operate subject to the same dynamics of razors-and-blades. The actual history of razors-and-blades is much richer than the standard story suggests. At the point that Gillette could most readily have played the strategy-from 1904 to 1921, during the period of the initial patents-it did not do so. The firm understood to have invented razors-and-blades as a business strategy did not play that strategy at the point that it was best situated to do so. It was only after the expiration of the patents that Gillette switched to something akin to razors-and-blades, and it did that only to match the market. With the expiration of the patents, Gillette seemingly no longer had a way to tie the blades to the handles and thus, at least on paper, seemed to have no good way to play razors-and-blades. Yet with the sale of razor sets to the US government during World War I and the jump in handle sales with the introduction of the low-price, old-style handle, Gillette's installed base jumped rapidly and the profits followed. C1 [Picker, Randal C.] Univ Chicago, Sch Law, Chicago, IL 60637 USA. [Picker, Randal C.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Picker, Randal C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Picker, RC (reprint author), Univ Chicago, Sch Law, Chicago, IL 60637 USA. NR 32 TC 7 Z9 7 U1 0 U2 7 PU UNIV CHICAGO LAW SCH PI CHICAGO PA 1111 E 60TH ST, CHICAGO, IL 60637 USA SN 0041-9494 J9 U CHICAGO LAW REV JI Univ. Chic. Law Rev. PD WIN PY 2011 VL 78 IS 1 BP 225 EP 255 PG 31 WC Law SC Government & Law GA 768GD UT WOS:000290920900012 ER PT J AU Beck, JC Feng, TK Watson, JP AF Beck, J. Christopher Feng, T. K. Watson, Jean-Paul TI Combining Constraint Programming and Local Search for Job-Shop Scheduling SO INFORMS JOURNAL ON COMPUTING LA English DT Article DE scheduling; tabu search; constraint programming; hybrid algorithms ID ALGORITHM AB Since their introduction, local search algorithms have consistently represented the state of the art in solution techniques for the classical job-shop scheduling problem. This dominance is despite the availability of powerful search and inference techniques for scheduling problems developed by the constraint programming community. In this paper, we introduce a simple hybrid algorithm for job-shop scheduling that leverages both the fast, broad search capabilities of modern tabu search algorithms and the scheduling-specific inference capabilities of constraint programming. The hybrid algorithm significantly improves the performance of a state-of-the-art tabu search algorithm for the job-shop problem and represents the first instance in which a constraint programming algorithm obtains performance competitive with the best local search algorithms. Furthermore, the variability in solution quality obtained by the hybrid is significantly lower than that of pure local search algorithms. Beyond performance demonstration, we perform a series of experiments that provide insights into the roles of the two component algorithms in the overall performance of the hybrid. C1 [Beck, J. Christopher; Feng, T. K.] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada. [Watson, Jean-Paul] Sandia Natl Labs, Discrete Math & Complex Syst Dept, Albuquerque, NM 87185 USA. RP Beck, JC (reprint author), Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada. EM jcb@mie.utoronto.ca; tkfeng@mie.utoronto.ca; jwatson@sandia.gov FU Natural Sciences and Engineering Research Council of Canada; Canadian Foundation for Innovation; Ontario Research Fund; Microway Inc.; ILOG S.A.; United States Department of Energy [DE-AC04-94AL85000] FX This research was supported in part by the Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Innovation, the Ontario Research Fund, Microway Inc., and ILOG S.A. Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 35 TC 21 Z9 21 U1 0 U2 13 PU INFORMS PI HANOVER PA 7240 PARKWAY DR, STE 310, HANOVER, MD 21076-1344 USA SN 1091-9856 J9 INFORMS J COMPUT JI INFORMS J. Comput. PD WIN PY 2011 VL 23 IS 1 BP 1 EP 14 DI 10.1287/ijoc.1100.0388 PG 14 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA 727ZI UT WOS:000287841500001 ER PT J AU Truex, MJ Vermeul, VR Mendoza, DP Fritz, BG Mackley, RD Oostrom, M Wietsma, TW Macbeth, TW AF Truex, M. J. Vermeul, V. R. Mendoza, D. P. Fritz, B. G. Mackley, R. D. Oostrom, M. Wietsma, T. W. Macbeth, T. W. TI Injection of Zero-Valent Iron into an Unconfined Aquifer Using Shear-Thinning Fluids SO GROUND WATER MONITORING AND REMEDIATION LA English DT Article ID GRANULAR IRON; REDUCTIVE DECHLORINATION; CHLORINATED ETHYLENES; ZEROVALENT IRON; DEGRADATION; SYSTEMS; BATCH; TRICHLOROETHYLENE; GROUNDWATER; PERFORMANCE AB Approximately 190 kg of 2 mu m-diameter zero-valent iron (ZVI) particles were injected into a test zone in the top 2 m of an unconfined aquifer within a trichloroethene (TCE) source area. A shear-thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to 4 m from a single injection well. The ZVI particles were mixed in-line with the injection water, shear-thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 d after injection. These results suggest that ZVI can be directly injected into an aquifer with shear-thinning fluids to induce dechlorination and extends the applicability of ZVI to situations where other emplacement methods may not be viable. C1 [Truex, M. J.; Vermeul, V. R.; Mendoza, D. P.; Fritz, B. G.; Mackley, R. D.; Oostrom, M.; Wietsma, T. W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Macbeth, T. W.] CDM Inc, Helena, MT 59601 USA. RP Truex, MJ (reprint author), Pacific NW Natl Lab, POB 999,MS K6-96, Richland, WA 99352 USA. EM mj.truex@pnl.gov FU Department of Defense [ER-0719]; DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX This work was funded by the Department of Defense Environmental Security Technology Certification Program, project ER-0719. The supporting laboratory experiments were conducted in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We thank North Wind Inc. for the use of their solids injection system. NR 29 TC 24 Z9 25 U1 0 U2 14 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1069-3629 J9 GROUND WATER MONIT R JI Ground Water Monit. Remediat. PD WIN PY 2011 VL 31 IS 1 BP 50 EP 58 DI 10.1111/j.1745-6592.2010.01319.x PG 9 WC Water Resources SC Water Resources GA 723DR UT WOS:000287487000004 ER PT J AU Keys, AS Hedges, LO Garrahan, JP Glotzer, SC Chandler, D AF Keys, Aaron S. Hedges, Lester O. Garrahan, Juan P. Glotzer, Sharon C. Chandler, David TI Excitations Are Localized and Relaxation Is Hierarchical in Glass-Forming Liquids SO PHYSICAL REVIEW X LA English DT Article ID SPATIALLY HETEROGENEOUS DYNAMICS; LENNARD-JONES LIQUID; KINETIC ISING-MODEL; SUPERCOOLED LIQUID; CORRESPONDING STATES; TRANSITION; MOTION; FORMERS; TIME AB For several atomistic models of glass formers, at conditions below their glassy-dynamics-onset temperatures, T-o, we use importance sampling of trajectory space to study the structure, statistics, and dynamics of excitations responsible for structural relaxation. Excitations are detected in terms of persistent particle displacements of length a. At supercooled conditions, for a of the order of or smaller than a particle diameter, we find that excitations are associated with correlated particle motions that are sparse and localized, occupying a volume with an average radius that is temperature-independent and no larger than a few particle diameters. We show that the statistics and dynamics of these excitations are facilitated and hierarchical. Excitation-energy scales grow logarithmically with a. Excitations at one point in space facilitate the birth and death of excitations at neighboring locations, and space-time excitation structures are microcosms of heterogeneous dynamics at larger scales. This nature of dynamics becomes increasingly dominant as temperature T is lowered. We show that slowing of dynamics upon decreasing temperature below T-o is the result of a decreasing concentration of excitations and concomitantly growing length scales for dynamical correlations that develop in a hierarchical manner, and further that the structural-relaxation time tau follows the parabolic law, log(tau/tau(o)) = J(2)(1/T - 1/T-o)(2), for T < T-o, where J, tau(o) and T-o can be predicted quantitatively from dynamics at short time scales. Particle motion is facilitated and directional, and we show that this becomes more apparent with decreasing T. We show that stringlike motion is a natural consequence of facilitated, hierarchical dynamics. C1 [Keys, Aaron S.; Hedges, Lester O.; Chandler, David] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Keys, Aaron S.; Hedges, Lester O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Keys, Aaron S.; Glotzer, Sharon C.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Garrahan, Juan P.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Glotzer, Sharon C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Chandler, D (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM chandler@berkeley.edu RI Keys, Aaron/A-2572-2012; OI Garrahan, Juan/0000-0002-0185-3924 FU National Science Foundation [CHE-0624807]; DOE [DE-AC0205CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC0205CH11231] FX Authors A. S. Keys and L. O. Hedges contributed equally to this work. The National Science Foundation supported A. S. K., L. O. H., S. C. G. and D. C. in the development of computational tools implementing transition-path sampling methods under Grant No. CHE-0624807. D. C. and A. S. K. were supported in the final stages by DOE Contract No. DE-AC0205CH11231. L. O. H. performed portions of this work as a User project at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. We thank T. Speck, U. R. Pedersen, and Y. S. Elmatad for helpful discussions. We thank D. T. Limmer and P. Varilly for helpful comments regarding the manuscript. NR 55 TC 98 Z9 98 U1 4 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD NOV 30 PY 2011 VL 1 IS 2 AR 021013 DI 10.1103/PhysRevX.1.021013 PG 15 WC Physics, Multidisciplinary SC Physics GA 029PF UT WOS:000310507100001 ER PT J AU Marini, NJ Hoffmann, TJ Lammer, EJ Hardin, J Lazaruk, K Stein, JB Gilbert, DA Wright, C Lipzen, A Pennacchio, LA Carmichael, SL Witte, JS Shaw, GM Rine, J AF Marini, Nicholas J. Hoffmann, Thomas J. Lammer, Edward J. Hardin, Jill Lazaruk, Katherine Stein, Jason B. Gilbert, Dennis A. Wright, Crystal Lipzen, Anna Pennacchio, Len A. Carmichael, Suzan L. Witte, John S. Shaw, Gary M. Rine, Jasper TI A Genetic Signature of Spina Bifida Risk from Pathway-Informed Comprehensive Gene-Variant Analysis SO PLOS ONE LA English DT Article ID NEURAL-TUBE DEFECTS; ONE-CARBON METABOLISM; ISOLATED CLEFT-LIP; FOLIC-ACID; FOLATE METABOLISM; METHYLENETETRAHYDROFOLATE REDUCTASE; MATHEMATICAL-MODEL; DNA METHYLATION; DIETARY-FOLATE; MOUSE MUTANTS AB Despite compelling epidemiological evidence that folic acid supplements reduce the frequency of neural tube defects (NTDs) in newborns, common variant association studies with folate metabolism genes have failed to explain the majority of NTD risk. The contribution of rare alleles as well as genetic interactions within the folate pathway have not been extensively studied in the context of NTDs. Thus, we sequenced the exons in 31 folate-related genes in a 480-member NTD case-control population to identify the full spectrum of allelic variation and determine whether rare alleles or obvious genetic interactions within this pathway affect NTD risk. We constructed a pathway model, predetermined independent of the data, which grouped genes into coherent sets reflecting the distinct metabolic compartments in the folate/one-carbon pathway (purine synthesis, pyrimidine synthesis, and homocysteine recycling to methionine). By integrating multiple variants based on these groupings, we uncovered two provocative, complex genetic risk signatures. Interestingly, these signatures differed by race/ethnicity: a Hispanic risk profile pointed to alterations in purine biosynthesis, whereas that in non-Hispanic whites implicated homocysteine metabolism. In contrast, parallel analyses that focused on individual alleles, or individual genes, as the units by which to assign risk revealed no compelling associations. These results suggest that the ability to layer pathway relationships onto clinical variant data can be uniquely informative for identifying genetic risk as well as for generating mechanistic hypotheses. Furthermore, the identification of ethnic-specific risk signatures for spina bifida resonated with epidemiological data suggesting that the underlying pathogenesis may differ between Hispanic and non-Hispanic groups. C1 [Marini, Nicholas J.; Rine, Jasper] Univ Calif Berkeley, Dept Mol & Cellular Biol, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Hoffmann, Thomas J.; Witte, John S.] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA. [Hoffmann, Thomas J.; Witte, John S.] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA. [Lammer, Edward J.] Childrens Hosp, Oakland Res Inst, Oakland, CA 94609 USA. [Hardin, Jill; Lazaruk, Katherine; Stein, Jason B.; Gilbert, Dennis A.] VitaPath Genet Inc, Foster City, CA USA. [Wright, Crystal; Lipzen, Anna; Pennacchio, Len A.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Carmichael, Suzan L.; Shaw, Gary M.] Stanford Univ, Dept Pediat, Sch Med, Stanford, CA 94305 USA. RP Marini, NJ (reprint author), Univ Calif Berkeley, Dept Mol & Cellular Biol, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. EM nmarini@berkeley.edu; jrine@berkeley.edu FU National Institutes of Health [R01 GM072859, RC1 DE020640, R25 CA112355]; Department of Energy, University of California [DE-AC02-05CH11231]; [R01 NS05249] FX This work was supported by grants R01 GM072859 and RC1 DE020640 from the National Institutes of Health (NJM, SLC, EJL, GMS, JR). Partial support for SLC, EJL, and GMS was also provided by R01 NS05249. TJH was supported by National Institutes of Health Training Grant (R25 CA112355). Research was conducted at the E.O. Lawrence Berkeley National Laboratory and performed under Department of Energy contract DE-AC02-05CH11231, University of California. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 62 TC 12 Z9 13 U1 0 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 30 PY 2011 VL 6 IS 11 AR e28408 DI 10.1371/journal.pone.0028408 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 863MI UT WOS:000298168100069 PM 22140583 ER PT J AU Daniel, A Hicks, K Brooks, WK Hakobyan, H Adhikari, KP Adikaram, D Aghasyan, M Amarian, M Anghinolfi, M Avakian, H Baghdasaryan, H Battaglieri, M Batourine, V Bedlinskiy, I Bennett, RP Biselli, AS Bookwalter, C Briscoe, WJ Burkert, VD Carman, DS Casey, L Celentano, A Chandavar, S Cole, PL Contalbrigo, M Crede, V D'Angelo, A Dashyan, N De Vita, R De Sanctis, E Deur, A Dey, B Dickson, R Djalali, C Dodge, GE Doughty, D Egiyan, H El Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Fegan, S Gabrielyan, MY Gevorgyan, N Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Golovatch, E Gothe, RW Griffioen, KA Guidal, M Guo, L Hanretty, C Heddle, D Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Jawalkar, SS Jo, HS Joo, K Kalantarians, N Keller, D Khandaker, M Khetarpal, P Kim, A Kim, W Klein, A Klein, FJ Kubarovsky, V Kuleshov, SV Kuznetsov, V Lu, NY MacGregor, IJD Mao, Y Markov, N Mayer, M McAndrew, J McKinnon, B Meyer, CA Mineeva, T Mirazita, M Mokeev, V Moutarde, H Munevar, E Nadel-Turonski, P Ni, A Niccolai, S Niculescu, G Niculescu, I Osipenko, M Ostrovidov, AI Paolone, M Pappalardo, L Paremuzyan, R Park, K Park, S Pasyuk, E Pereira, SA Phelps, E Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Protopopescu, D Raue, BA Ricco, G Rimal, D Ripani, M Rosner, G Rossi, P Sabatie, F Saini, MS Salgado, C Schott, D Schumacher, RA Seraydaryan, H Sharabian, YG Smith, GD Sober, DI Sokhan, D Stepanyan, SS Stepanyan, S Strauch, S Taiuti, M Tang, W Taylor, CE Tkachenko, S Ungaro, M Vernarsky, B Vineyard, MF Voskanyan, H Voutier, E Watts, DP Weinstein, LB Weygand, DP Wood, MH Zana, L Zachariou, N Zhao, B Zhao, ZW AF Daniel, A. Hicks, K. Brooks, W. K. Hakobyan, H. Adhikari, K. P. Adikaram, D. Aghasyan, M. Amarian, M. Anghinolfi, M. Avakian, H. Baghdasaryan, H. Battaglieri, M. Batourine, V. Bedlinskiy, I. Bennett, R. P. Biselli, A. S. Bookwalter, C. Briscoe, W. J. Burkert, V. D. Carman, D. S. Casey, L. Celentano, A. Chandavar, S. Cole, P. L. Contalbrigo, M. Crede, V. D'Angelo, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Egiyan, H. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Fegan, S. Gabrielyan, M. Y. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Golovatch, E. Gothe, R. W. Griffioen, K. A. Guidal, M. Guo, L. Hanretty, C. Heddle, D. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Jawalkar, S. S. Jo, H. S. Joo, K. Kalantarians, N. Keller, D. Khandaker, M. Khetarpal, P. Kim, A. Kim, W. Klein, A. Klein, F. J. Kubarovsky, V. Kuleshov, S. V. Kuznetsov, V. Lu, N. Y. MacGregor, I. J. D. Mao, Y. Markov, N. Mayer, M. McAndrew, J. McKinnon, B. Meyer, C. A. Mineeva, T. Mirazita, M. Mokeev, V. Moutarde, H. Munevar, E. Nadel-Turonski, P. Ni, A. Niccolai, S. Niculescu, G. Niculescu, I. Osipenko, M. Ostrovidov, A. I. Paolone, M. Pappalardo, L. Paremuzyan, R. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Phelps, E. Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Protopopescu, D. Raue, B. A. Ricco, G. Rimal, D. Ripani, M. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salgado, C. Schott, D. Schumacher, R. A. Seraydaryan, H. Sharabian, Y. G. Smith, G. D. Sober, D. I. Sokhan, D. Stepanyan, S. S. Stepanyan, S. Strauch, S. Taiuti, M. Tang, W. Taylor, C. E. Tkachenko, S. Ungaro, M. Vernarsky, B. Vineyard, M. F. Voskanyan, H. Voutier, E. Watts, D. P. Weinstein, L. B. Weygand, D. P. Wood, M. H. Zana, L. Zachariou, N. Zhao, B. Zhao, Z. W. TI Measurement of the nuclear multiplicity ratio for K-s(0) hadronization at CLAS SO PHYSICS LETTERS B LA English DT Article DE Hadronization; Hadron production; Deep inelastic scattering; Nuclei; Quarks ID DEEP-INELASTIC SCATTERING; TRANSVERSE-MOMENTUM; HADRONS; TARGETS; FRAGMENTATION; ENVIRONMENT; DEUTERIUM AB The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the K-s(0) multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy z transferred to the K-s(0) and the transverse momentum squared p(T)(2). of the K-s(0). We find that the multiplicity ratios for K-s(0) are reduced in the nuclear medium at high z and low p(T)(2), with a trend for the K-s(0) momentum to be broadened in the nucleus for large p(T)(2). (C) 2011 Elsevier B.V. All rights reserved. C1 [Daniel, A.; Hicks, K.; Chandavar, S.; Keller, D.; Tang, W.] Ohio Univ, Athens, OH 45701 USA. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Guidal, M.; Jo, H. S.; Niccolai, S.; Sokhan, D.] Inst Phys Nucl Orsay, Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Batourine, V.; Kim, A.; Kim, W.; Kuznetsov, V.; Ni, A.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Voutier, E.] Univ Grenoble 1, CNRS, IN2P3, LPSC, Grenoble, France. [Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Pasyuk, E.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Adhikari, K. P.; Adikaram, D.; Amarian, M.; Baghdasaryan, H.; Bennett, R. P.; Dodge, G. E.; Hyde, C. E.; Klein, A.; Mayer, M.; Seraydaryan, H.; Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23529 USA. [Kubarovsky, V.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.; Pisano, S.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Djalali, C.; Fedotov, G.; Gothe, R. W.; Ilieva, Y.; Mao, Y.; Paolone, M.; Phelps, E.; Strauch, S.; Tkachenko, S.; Wood, M. H.] Univ S Carolina, Columbia, SC 29208 USA. [Brooks, W. K.; Avakian, H.; Batourine, V.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Doughty, D.; Egiyan, H.; Elouadrhiri, L.; Girod, F. X.; Guo, L.; Heddle, D.; Kubarovsky, V.; Mokeev, V.; Nadel-Turonski, P.; Park, K.; Pasyuk, E.; Raue, B. A.; Sharabian, Y. G.; Stepanyan, S.; Weygand, D. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Fegan, S.; Ireland, D. G.; MacGregor, I. J. D.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Smith, G. D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Baghdasaryan, H.; Hanretty, C.; Kalantarians, N.; Zhao, Z. W.] Univ Virginia, Charlottesville, VA 22901 USA. [Griffioen, K. A.; Jawalkar, S. S.; Zhao, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Hakobyan, H.; Dashyan, N.; Gevorgyan, N.; Paremuzyan, R.; Voskanyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [El Fassi, L.] Argonne Natl Lab, Argonne, IL 60441 USA. [Pasyuk, E.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Biselli, A. S.; Dey, B.; Dickson, R.; Lu, N. Y.; Meyer, C. A.; Schumacher, R. A.; Vernarsky, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Casey, L.; Cole, P. L.; Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Markov, N.; Mineeva, T.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [McAndrew, J.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Gabrielyan, M. Y.; Khetarpal, P.; Raue, B. A.; Rimal, D.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Bookwalter, C.; Crede, V.; Eugenio, P.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Ricco, G.; Taiuti, M.] Univ Genoa, I-16146 Genoa, Italy. [Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Strauch, S.; Zachariou, N.] George Washington Univ, Washington, DC 20052 USA. [Cole, P. L.; Taylor, C. E.] Idaho State Univ, Pocatello, ID 83209 USA. [Contalbrigo, M.; Pappalardo, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Aghasyan, M.; De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Pisano, S.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; Celentano, A.; De Vita, R.; Osipenko, M.; Ripani, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. RP Daniel, A (reprint author), Ohio Univ, Athens, OH 45701 USA. EM adaniel@jlab.org RI Lu, Haiyun/B-4083-2012; MacGregor, Ian/D-4072-2011; Protopopescu, Dan/D-5645-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Ireland, David/E-8618-2010; D'Angelo, Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Adikaram, Dasuni/D-1539-2016; Adikaram, D/H-7128-2016; Celentano, Andrea/J-6190-2012 OI Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Ireland, David/0000-0001-7713-7011; D'Angelo, Annalisa/0000-0003-3050-4907; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Celentano, Andrea/0000-0002-7104-2983 FU Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; U.S. Department of Energy; National Science Foundation; UK Science and Technology Facilities Council (STFC); Scottish Universities Physics Alliance (SUPA); National Research Foundation of Korea; United States Department of Energy [DE-AC05-84ER40150] FX We thank the staff of the Accelerator and Physics Divisions a:. Jefferson Lab for their support. This work was supported in part by the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a l'Energie Atomique, the U.S. Department of Energy, the National Science Foundation, the UK Science and Technology Facilities Council (STFC), the Scottish Universities Physics Alliance (SUPA), and the National Research Foundation of Korea. The Jefferson Science Assosciates USA) and Southeastern Universities Research Association (SURA) which operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-84ER40150. NR 20 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 30 PY 2011 VL 706 IS 1 BP 26 EP 31 DI 10.1016/j.physletb.2011.10.071 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 862YC UT WOS:000298129000005 ER PT J AU Love, AH Bailey, CG Hanna, ML Hok, S Vu, AK Reutter, DJ Raber, E AF Love, Adam H. Bailey, Christopher G. Hanna, M. Leslie Hok, Saphon Vu, Alex K. Reutter, Dennis J. Raber, Ellen TI Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Chemical warfare agent; Decontamination; Sarin; Soman; Sulfur mustard; VX AB Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24 h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF (TM)), U.S. military Decon Green (TM), and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green (TM) performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies. (C) 2011 Elsevier B.V. All rights reserved. C1 [Bailey, Christopher G.; Hanna, M. Leslie; Hok, Saphon; Vu, Alex K.; Reutter, Dennis J.; Raber, Ellen] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Love, Adam H.] Johnson Wright Inc, Lafayette, CA 94549 USA. RP Bailey, CG (reprint author), Lawrence Livermore Natl Lab, L-091, Livermore, CA 94550 USA. EM adam.love@johnsonwright.net; bailey38@llnl.gov; carman1@llnl.gov; hok2@llnl.gov; vu4@llnl.gov; reutter1@llnl.gov; raber1@llnl.gov FU U.S. Department of Homeland Security Science & Technology Directorate, Chemical and Biological Research & Development Branch; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was funded by the U.S. Department of Homeland Security Science & Technology Directorate, Chemical and Biological Research & Development Branch, as part of a larger Facility Restoration Operational Technology Demonstration Project. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Thanks to Brian Viani for developing the methodology to make and artificially age concrete coupons. We also acknowledge the questions and valuable feedback from other project team members at Sandia National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory. NR 12 TC 14 Z9 15 U1 4 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD NOV 30 PY 2011 VL 196 BP 115 EP 122 DI 10.1016/j.jhazmat.2011.09.005 PG 8 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 859MS UT WOS:000297881100016 PM 21944706 ER PT J AU Zhou, WP Li, M Koenigsmann, C Ma, C Wong, SS Adzic, RR AF Zhou, Wei-Ping Li, Meng Koenigsmann, Christopher Ma, Chao Wong, Stanislaus S. Adzic, Radoslav R. TI Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles SO ELECTROCHIMICA ACTA LA English DT Article DE Fuel cell; Heterogeneous catalysis; Platinum; Nanowires; Ethanol oxidation ID ENHANCED ELECTROCATALYTIC PERFORMANCE; CO MONOLAYER OXIDATION; PLATINUM NANOCRYSTALS; PARTICLE-SIZE; FORMIC-ACID; FTIR SPECTROSCOPY; OXYGEN REDUCTION; ACETIC-ACID; ELECTROOXIDATION; METHANOL AB The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO(2)-to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhou, Wei-Ping; Li, Meng; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Koenigsmann, Christopher; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Ma, Chao; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Zhou, WP (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM wpzhou@bnl.gov RI zhou, weiping/C-6832-2012; Li, Meng/L-8507-2013; Ma, Chao/J-4569-2015 OI zhou, weiping/0000-0002-8058-7280; FU U.S. Department of Energy, Divisions of Chemical and Material Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Brookhaven National Laboratory FX This work was supported in part by U.S. Department of Energy, Divisions of Chemical and Material Sciences, under the Contract No. DE-AC02-98CH10886. Synthesis and characterization work (CK and SSW) on nanowires was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. WPZ thanks for the financial support from the LDRD program at Brookhaven National Laboratory. NR 49 TC 27 Z9 27 U1 2 U2 58 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 30 PY 2011 VL 56 IS 27 BP 9824 EP 9830 DI 10.1016/j.electacta.2011.08.055 PG 7 WC Electrochemistry SC Electrochemistry GA 853AR UT WOS:000297399100019 ER PT J AU Lee, S Miller, N Staruch, M Gerdes, K Jain, M Manivannan, A AF Lee, Shiwoo Miller, Nicholas Staruch, Margo Gerdes, Kirk Jain, Menka Manivannan, Ayyakkannu TI Pr0.6Sr0.4CoO3-delta electrocatalyst for solid oxide fuel cell cathode introduced via infiltration SO ELECTROCHIMICA ACTA LA English DT Article DE SOFC; Cathode; Electrocatalyst; Oxygen reduction reaction; PSC; Infiltration; Multi-cell array ID PERFORMANCE; ELECTRODES; IMPEDANCE; REDUCTION AB Effects of infiltrated Pr0.6Sr0.4CoO3-delta (PSCo)electrocatalyst on SOFC cathode performance have been studied. Nano-sized particulate catalysts, deposited on surfaces of a composite cathode of Sm2O3 doped CeO2 (SDC) and La1-xSrxCo1-yFeyO3-delta (LSCF), are assumed to effectively widen active sites, or triple phase boundaries, for the oxygen reduction reaction. Area specific resistance of commercially available cells has been decreased by 36-40% with the addition of 23 wt% PSCo electrocatalyst on cathode. Analysis of the impedance spectra demonstrates that PSCo electrocatalyst plays a significant role in dissociation of oxygen molecules and adsorption of oxygen atoms into the cathode. A total of 200 h operation of the cells demonstrated that catalytic activity of PSCo has not been significantly degraded. Simultaneous operations of multiple cells using a parallel-cell testing system have made it possible to compare the performance of several cells with high reliability. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lee, Shiwoo; Miller, Nicholas; Gerdes, Kirk; Manivannan, Ayyakkannu] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Miller, Nicholas] URS, Morgantown, WV 26507 USA. [Staruch, Margo; Jain, Menka] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. RP Lee, S (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM leesn@netl.doe.gov RI Manivannan, Ayyakkannu/A-2227-2012; Staruch, Margo/M-9260-2015 OI Manivannan, Ayyakkannu/0000-0003-0676-7918; Staruch, Margo/0000-0003-3088-2553 FU US DOE FX The authors wish to thank Dr. Gregory Hackett for completion of the experiments and statistical analysis establishing the baseline performance of the parallel cell test system. US DOE's Mickey Leland Energy Fellowship Program has also been acknowledged for supporting Ms. Margo Staruch to perform this research. NR 23 TC 11 Z9 11 U1 4 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 30 PY 2011 VL 56 IS 27 BP 9904 EP 9909 DI 10.1016/j.electacta.2011.08.060 PG 6 WC Electrochemistry SC Electrochemistry GA 853AR UT WOS:000297399100030 ER PT J AU Ross, KA Yaraskavitch, LR Laver, M Gardner, JS Quilliam, JA Meng, S Kycia, JB Singh, DK Proffen, T Dabkowska, HA Gaulin, BD AF Ross, K. A. Yaraskavitch, L. R. Laver, M. Gardner, J. S. Quilliam, J. A. Meng, S. Kycia, J. B. Singh, D. K. Proffen, Th Dabkowska, H. A. Gaulin, B. D. TI Dimensional evolution of spin correlations in the magnetic pyrochlore Yb2Ti2O7 SO PHYSICAL REVIEW B LA English DT Article ID ANTIFERROMAGNET; TRANSITIONS; GD2TI2O7; TB2TI2O7; OXIDES AB The pyrochlore material Yb2Ti2O7 displays unexpected quasi-two-dimensional (2D) magnetic correlations within a cubic lattice environment at low temperatures, before entering an exotic disordered ground state below T = 265 mK. We report neutron scattering measurements of the thermal evolution of the 2D spin correlations in space and time. Short-range three-dimensional (3D) spin correlations develop below 400 mK, accompanied by a suppression in the quasielastic (QE) scattering below similar to 0.2 meV. These show a slowly fluctuating ground state with spins correlated over short distances within a kagome-triangular-kagome (KTK) stack along [111], which evolves to isolated kagome spin stars at higher temperatures. Furthermore, low-temperature specific heat results indicate a sample dependence to the putative transition temperature that is bounded by 265 mK, which we discuss in the context of recent mean field theoretical analysis. C1 [Ross, K. A.; Gaulin, B. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Yaraskavitch, L. R.; Quilliam, J. A.; Meng, S.; Kycia, J. B.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Yaraskavitch, L. R.; Quilliam, J. A.; Meng, S.; Kycia, J. B.] Univ Waterloo, Guelph Waterloo Phys Inst, Waterloo, ON N2L 3G1, Canada. [Yaraskavitch, L. R.; Quilliam, J. A.; Meng, S.; Kycia, J. B.] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. [Laver, M.] Tech Univ Denmark, Riso DTU, Mat Res Div, DK-4000 Roskilde, Denmark. [Laver, M.] Univ Copenhagen, Niels Bohr Inst, Nanosci Ctr, DK-2100 Copenhagen, Denmark. [Laver, M.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Gardner, J. S.] Indiana Univ, Bloomington, IN 47408 USA. [Gardner, J. S.; Singh, D. K.] NIST, Gaithersburg, MD 20899 USA. [Singh, D. K.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Proffen, Th] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Proffen, Th] Oak Ridge Natl Lab, Expt Facil Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Dabkowska, H. A.; Gaulin, B. D.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Gaulin, B. D.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Ross, KA (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI Lujan Center, LANL/G-4896-2012; Gardner, Jason/A-1532-2013; Proffen, Thomas/B-3585-2009; OI Proffen, Thomas/0000-0002-1408-6031; Ross, Kate/0000-0002-7385-7449 FU US DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]; National Science Foundation [DMR-0944772]; NSERC of Canada FX The authors acknowledge many useful discussions with M. J. P. Gingras, J. D. Thompson, and P. A. McClarty, and are grateful for technical assistance from Y. Qiu. This work has benefited from the use of the NPDF beamline at the Lujan Center at Los Alamos Neutron Science Center, funded by the US DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE contract No. DE-AC52-06NA25396. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772, and was supported by NSERC of Canada. NR 33 TC 41 Z9 41 U1 1 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 30 PY 2011 VL 84 IS 17 AR 174442 DI 10.1103/PhysRevB.84.174442 PG 6 WC Physics, Condensed Matter SC Physics GA 854MX UT WOS:000297499900004 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clarke, C Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Limosani, A Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mattson, ME Mazzanti, P McFarland, S McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Riddick, T Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stancari, M Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clarke, C. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mattson, M. E. Mazzanti, P. McFarland, S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Riddick, T. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stancari, M. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Measurements of branching fraction ratios and CP-asymmetries in suppressed B- -> D(-> K+ pi(-))K- and B- -> D(-> K+ pi(-))pi(-) decays SO PHYSICAL REVIEW D LA English DT Article ID VIOLATION; GAMMA AB We report the first reconstruction in hadron collisions of the suppressed decays B- -> D(-> K+ pi(-))K- and B- -> D(-> K+ pi(-))pi(-), sensitive to the Cabibbo-Kobayashi-Maskawa phase gamma, using data from 7 fb(-1) of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B- -> D(-> K+ pi(-))K- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 +/- 8.6(stat) +/- 2.6(syst)] x 10(-3), R+ (K) = [42.6 +/- 13.7(stat)] +/- 2.8(syst)] x 10(-3), R- (K) = [3.8 +/- 10.3(stat) +/- 2.7(syst)] x 10(-3) as well as the direct CP-violating asymmetry A(K) = -0.82 +/- 0,44(stat) +/- 0.09(syst) of this mode. Corresponding quantities for B- -> D(-> K+ pi(-))pi(-) decay are also reported. C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, ICREA, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Kasmi, A.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Orava, R.; Papadimitriou, V.; Patrick, J.; Poprocki, S.; Pronko, A.; Ristori, L.; Roser, R.; Rubbo, F.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Stancari, M.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Budd, S.; Carls, B.; Cavaliere, V.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Nurse, E.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Lucchesi, D.; Griso, S. Pagan; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Latino, G.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Ruffini, F.; Scribano, A.] Univ Siena, I-53100 Siena, Italy. [Ferrazza, C.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Robson, Aidan/G-1087-2011; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013 OI iori, maurizio/0000-0002-6349-0380; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643 NR 25 TC 17 Z9 17 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 30 PY 2011 VL 84 IS 9 AR 091504 DI 10.1103/PhysRevD.84.091504 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 854NI UT WOS:000297501100001 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buescher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Debbe, R Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duehrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dueren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tian, F Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H Von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Debbe, R. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Juranek, V. Jussel, P. Juste Rozas, A. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph Schwanenberger, C. Schwartzman, A. Schwemling, Ph Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. Von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for the Higgs Boson in the H -> WW -> l nu jj Decay Channel in pp Collisions at root s=7 TeV with the ATLAS Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID MODEL; SYMMETRIES AB A search for a Higgs boson has been performed in the H -> WW -> l nu jj channel in 1.04 fb(-1) of pp collision data at root s = 7 TeV recorded with the ATLAS detector at the Large Hadron Collider. No significant excess of events is observed over the expected background and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range 240 GeV < m(H) < 600 GeV. The best sensitivity is reached for m(H) = 400 GeV, where the 95% confidence level upper bound on the cross section for H -> WW production is 3.1 pb, or 2.7 times the standard model prediction. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Alam, M. S.; Ernst, J.; McPherson, R. A.; Robertson, S. H.; Rojo, V.; Teuscher, R. J.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Griso, S. Pagan; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Florence, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Love, J.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; Von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Rembser, C.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Koffas, T.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Kollar, D.; Kotamaeki, M. J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Liu, D.; Meng, Z.; Miao, J.; Sawyer, L.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Martin, V. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.; Tripiana, M. F.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, London, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Fiedler, F.; Ji, W.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Koenig, A. C.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Koenig, A. C.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Guler, H.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Korn, A.; Kundu, N.; Larner, A.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Rumiantsev, V.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA, CEA Saclay, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tipton, P.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Li, S.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; Sobie, R.] Inst Particle Phys, Toronto, ON, Canada. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Freiburg, Germany. RI Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Battistoni, Giuseppe/B-5264-2012; Gavrilenko, Igor/M-8260-2015; Yang, Haijun/O-1055-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Ancu, Lucian Stefan/F-1812-2010; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Takai, Helio/C-3301-2012; St.Denis, Richard/C-8997-2012; Li, Xuefei/C-3861-2012; Vanyashin, Aleksandr/H-7796-2013; Amorim, Antonio/C-8460-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; messina, andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; M, Saleem/B-9137-2013; Robson, Aidan/G-1087-2011; Britton, David/F-2602-2010; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Buttar, Craig/D-3706-2011; Gutierrez, Phillip/C-1161-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; Smirnov, Sergei/F-1014-2011; Stoicea, Gabriel/B-6717-2011; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Rotaru, Marina/A-3097-2011; Doyle, Anthony/C-5889-2009; valente, paolo/A-6640-2010 OI Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Battistoni, Giuseppe/0000-0003-3484-1724; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Ancu, Lucian Stefan/0000-0001-5068-6723; Villa, Mauro/0000-0002-9181-8048; Takai, Helio/0000-0001-9253-8307; Vanyashin, Aleksandr/0000-0002-0367-5666; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Britton, David/0000-0001-9998-4342; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; Smirnov, Sergei/0000-0002-6778-073X; Stoicea, Gabriel/0000-0002-7511-4614; McKee, Shawn/0000-0002-4551-4502; Rotaru, Marina/0000-0003-3303-5683; Doyle, Anthony/0000-0001-6322-6195; valente, paolo/0000-0002-5413-0068 NR 43 TC 21 Z9 21 U1 5 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 30 PY 2011 VL 107 IS 23 AR 231801 DI 10.1103/PhysRevLett.107.231801 PG 18 WC Physics, Multidisciplinary SC Physics GA 854NQ UT WOS:000297501900005 PM 22182080 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clarke, C Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Limosani, A Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Riddick, T Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stancari, M Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clarke, C. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Riddick, T. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stancari, M. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Top-Quark Mass Measurement Using Events with Missing Transverse Energy and Jets at CDF SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTON DISTRIBUTIONS; QCD; PHYSICS; DECAYS AB We present a measurement of the top-quark mass using a sample of t (t) over bar events in 5.7 fb(-1) of integrated luminosity from p (p) over bar collisions at the Fermilab Tevatron with root s = 1.96 TeV and collected by the CDF II Detector. We select events having large missing transverse energy, and four, five, or six jets with at least one jet tagged as coming from a b quark, and reject events with identified charged leptons. This analysis considers events from the semileptonic t (t) over bar decay channel, including events that contain tau leptons. The measurement is based on a multidimensional template method. We fit the data to signal templates of varying top-quark masses and background templates, and measure a top-quark mass of M(top) = 172.32 +/- 2.4(stat) +/- 1.0(syst) GeV/c(2). C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Carrillo, S.; Chen, Y. C.; Hou, S.; Mitra, A.; Mondragon, M. N.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, ICREA, E-08193 Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Kasmi, A.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Poprocki, S.; Pronko, A.; Ristori, L.; Roser, R.; Rubbo, F.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Stancari, M.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Budd, S.; Carls, B.; Cavaliere, V.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Nurse, E.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Lucchesi, D.; Griso, S. Pagan; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Latino, G.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Ruffini, F.; Scribano, A.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; vilar, rocio/P-8480-2014; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Robson, Aidan/G-1087-2011; manca, giulia/I-9264-2012; Punzi, Giovanni/J-4947-2012; Ruiz, Alberto/E-4473-2011; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Amerio, Silvia/J-4605-2012 OI Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Dorigo, Mirco/0000-0002-0681-6946; Gallinaro, Michele/0000-0003-1261-2277; Brucken, Jens Erik/0000-0001-6066-8756; Torre, Stefano/0000-0002-7565-0118; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Vidal Marono, Miguel/0000-0002-2590-5987; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Punzi, Giovanni/0000-0002-8346-9052; Ruiz, Alberto/0000-0002-3639-0368; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council and the Royal Society, U.K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC) FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). NR 30 TC 7 Z9 7 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 30 PY 2011 VL 107 IS 23 AR 232002 DI 10.1103/PhysRevLett.107.232002 PG 8 WC Physics, Multidisciplinary SC Physics GA 854NQ UT WOS:000297501900006 PM 22182082 ER PT J AU Kanter, EP Krassig, B Li, Y March, AM Ho, P Rohringer, N Santra, R Southworth, SH DiMauro, LF Doumy, G Roedig, CA Berrah, N Fang, L Hoener, M Bucksbaum, PH Ghimire, S Reis, DA Bozek, JD Bostedt, C Messerschmidt, M Young, L AF Kanter, E. P. Kraessig, B. Li, Y. March, A. M. Ho, P. Rohringer, N. Santra, R. Southworth, S. H. DiMauro, L. F. Doumy, G. Roedig, C. A. Berrah, N. Fang, L. Hoener, M. Bucksbaum, P. H. Ghimire, S. Reis, D. A. Bozek, J. D. Bostedt, C. Messerschmidt, M. Young, L. TI Unveiling and Driving Hidden Resonances with High-Fluence, High-Intensity X-Ray Pulses SO PHYSICAL REVIEW LETTERS LA English DT Article ID LASER; SATURATION; FIELDS AB We show that high fluence, high-intensity x-ray pulses from the world's first hard x-ray free-electron laser produce nonlinear phenomena that differ dramatically from the linear x-ray-matter interaction processes that are encountered at synchrotron x-ray sources. We use intense x-ray pulses of sub-10-fs duration to first reveal and subsequently drive the 1s <-> 2p resonance in singly ionized neon. This photon-driven cycling of an inner-shell electron modifies the Auger decay process, as evidenced by line shape modification. Our work demonstrates the propensity of high-fluence, femtosecond x-ray pulses to alter the target within a single pulse, i.e., to unveil hidden resonances, by cracking open inner shells energetically inaccessible via single-photon absorption, and to consequently trigger damaging electron cascades at unexpectedly low photon energies. C1 [Kanter, E. P.; Kraessig, B.; Li, Y.; March, A. M.; Ho, P.; Santra, R.; Southworth, S. H.; Young, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Rohringer, N.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Rohringer, N.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [Rohringer, N.] DESY, Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Rohringer, N.; Santra, R.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Santra, R.] Univ Hamburg, Dept Phys, D-20355 Hamburg, Germany. [DiMauro, L. F.; Doumy, G.; Roedig, C. A.] Ohio State Univ, Columbus, OH 43210 USA. [Berrah, N.; Fang, L.; Hoener, M.] Western Michigan Univ, Kalamazoo, MI 49008 USA. [Bucksbaum, P. H.; Ghimire, S.; Reis, D. A.] SLAC, PULSE Ctr, Menlo Pk, CA 94025 USA. [Bozek, J. D.; Bostedt, C.; Messerschmidt, M.] SLAC, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. RP Kanter, EP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kanter@anl.gov; young@anl.gov RI Rohringer, Nina/B-8030-2012; Messerschmidt, Marc/F-3796-2010; Bozek, John/E-9260-2010; Santra, Robin/E-8332-2014; Rohringer, Nina/N-3238-2014; OI Messerschmidt, Marc/0000-0002-8641-3302; Bozek, John/0000-0001-7486-7238; Santra, Robin/0000-0002-1442-9815; Rohringer, Nina/0000-0001-7905-3567; Li, Yuelin/0000-0002-6229-7490 FU Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-04ER15614, DE-FG02-92ER14299]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [NSF PHY05-51164]; Alexander von Humboldt Foundation; PULSE Institute; Department of Energy, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division and Division of Materials Science and Engineering; U.S. Department of Energy's Office of Basic Energy Sciences FX This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DE-AC02-06CH11357, DE-FG02-04ER15614, DE-FG02-92ER14299). N. R. was supported by the U.S. Department of Energy by Lawrence Livermore National Laboratory (DE-AC52-07NA27344). N. R. and R. S. were supported in part by the National Science Foundation under Grant No. NSF PHY05-51164. M. H. thanks the Alexander von Humboldt Foundation for a Feodor Lynen fellowship. P. H. B., S. G., and D. A. R. were supported through the PULSE Institute, which is jointly funded by the Department of Energy, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division and Division of Materials Science and Engineering. LCLS is funded by the U.S. Department of Energy's Office of Basic Energy Sciences. NR 31 TC 70 Z9 70 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 30 PY 2011 VL 107 IS 23 AR 233001 DI 10.1103/PhysRevLett.107.233001 PG 5 WC Physics, Multidisciplinary SC Physics GA 854NQ UT WOS:000297501900007 PM 22182083 ER PT J AU Sabbatini, J Zurek, WH Davis, MJ AF Sabbatini, Jacopo Zurek, Wojciech H. Davis, Matthew J. TI Phase Separation and Pattern Formation in a Binary Bose-Einstein Condensate SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSMOLOGICAL EXPERIMENTS; SUPERFLUID HE-3; COSMIC STRINGS; DYNAMICS; TRANSITION; VORTICES; GENERATION; ANALOG AB The miscibility-immiscibility phase transition in binary Bose-Einstein condensates (BECs) can be controlled by a coupling between the two components. Here we propose a new scheme that uses coupling-induced pattern formation to test the Kibble-Zurek mechanism (KZM) of topological-defect formation in a quantum phase transition. For a binary BEC in a ring trap we find that the number of domains forming the pattern scales as a function of the coupling quench rate with an exponent as predicted by the KZM. For a binary BEC in an elongated harmonic trap we find a different scaling law due to the transition being spatially inhomogeneous. We perform a "quantum simulation" of the harmonically trapped system in a ring trap to verify the scaling exponent. C1 [Sabbatini, Jacopo; Davis, Matthew J.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Zurek, Wojciech H.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Sabbatini, J (reprint author), Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. EM sabbatini@physics.uq.edu.au RI Davis, Matthew/A-1464-2008; Sabbatini, Jacopo/D-8859-2013 OI Davis, Matthew/0000-0001-8337-0784; FU Australian Research Council through the ARC center of Excellence for Quantum-Atom Optics; U.S. Department of Energy; [DP1094025] FX The authors thank Bogdan Damski and Markus Oberthaler for useful discussions, and Adolfo del Campo, Tod Wright, and Arnab Das for carefully reading the manuscript. This research was supported by the Australian Research Council through the ARC center of Excellence for Quantum-Atom Optics, and Discovery Project No. DP1094025. We acknowledge the support of U.S. Department of Energy through the LANL/LDRD program. NR 50 TC 44 Z9 44 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 30 PY 2011 VL 107 IS 23 AR 230402 DI 10.1103/PhysRevLett.107.230402 PG 5 WC Physics, Multidisciplinary SC Physics GA 854NQ UT WOS:000297501900001 PM 22182069 ER PT J AU Schleife, A Rodl, C Fuchs, F Hannewald, K Bechstedt, F AF Schleife, Andre Roedl, Claudia Fuchs, Frank Hannewald, Karsten Bechstedt, Friedhelm TI Optical Absorption in Degenerately Doped Semiconductors: Mott Transition or Mahan Excitons? SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; BOUND-STATES; SPECTRA AB Electron doping turns semiconductors conductive even when they have wide fundamental band gaps. The degenerate electron gas in the lowest conduction-band states, e. g., of a transparent conducting oxide, drastically modifies the Coulomb interaction between the electrons and, hence, the optical properties close to the absorption edge. We describe these effects by developing an ab initio technique which captures also the Pauli blocking and the Fermi-edge singularity at the optical-absorption onset, that occur in addition to quasiparticle and excitonic effects. We answer the question whether free carriers induce an excitonic Mott transition or trigger the evolution of Wannier-Mott excitons into Mahan excitons. The prototypical n-type zinc oxide is studied as an example. C1 [Schleife, Andre; Roedl, Claudia; Fuchs, Frank; Hannewald, Karsten; Bechstedt, Friedhelm] Univ Jena, Inst Festkorpertheorie & Opt, D-07743 Jena, Germany. [Schleife, Andre] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. RP Schleife, A (reprint author), Univ Jena, Inst Festkorpertheorie & Opt, Max Wien Pl 1, D-07743 Jena, Germany. EM a.schleife@llnl.gov RI Hannewald, Karsten/C-3802-2009 FU European Community [211956]; Deutsche Forschungsgemeinschaft [Be 1346/20-1]; Carl-Zeiss-Stiftung; Heptagon; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07A27344] FX We acknowledge discussions with P. Rinke, R. Goldhahn, A. Janotti, and C. G. Van de Walle. Financial support by the European Community within the e-I3 project ETSF (GA No. 211956) and the Deutsche Forschungsgemeinschaft (Project No. Be 1346/20-1) is acknowledged. A. S. thanks the Carl-Zeiss-Stiftung and Heptagon for support. Part of this work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07A27344. NR 33 TC 28 Z9 28 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 30 PY 2011 VL 107 IS 23 AR 236405 DI 10.1103/PhysRevLett.107.236405 PG 5 WC Physics, Multidisciplinary SC Physics GA 854NQ UT WOS:000297501900023 PM 22182110 ER PT J AU Mun, ED Bud'ko, SL Canfield, PC AF Mun, E. D. Bud'ko, S. L. Canfield, P. C. TI Thermoelectric power of RAgSb2 (R = Y, La, Ce, and Dy) in zero and applied magnetic fields SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID THERMAL TRANSPORT-PROPERTIES; QUANTUM OSCILLATIONS; HEAT-CAPACITY; THERMOPOWER; ND; SM; BEHAVIOR; SYSTEMS; GD; RESISTIVITY AB We report the experimental results of measurements of the thermoelectric power on the ternary intermetallic compounds RAgSb2 (R = Y, La, Ce, and Dy) over the temperature range from 2 to 300 K and in magnetic fields up to 140 kOe. In this work, we present the thermoelectric transport properties of four materials from the same family with different ground states: a non-moment bearing paramagnetic metallic system (YAgSb2), a non-moment bearing charge density wave system (LaAgSb2), a local moment bearing compound with XY-like antiferromagnetic order in the tetragonal basal plane as well as readily accessible metamagnetism (DyAgSb2), and a Kondo lattice system with ferromagnetic order below T-C = 9.7 K (CeAgSb2). The thermoelectric power data from these materials exhibit complex temperature and magnetic field dependences, which are associated with modification of the electronic density of states and changes in magnetic scattering. At low temperatures, quantum oscillations in the thermoelectric power are also observed. These oscillations are associated with the Landau quantization of electronic energy in an applied magnetic field. C1 [Mun, E. D.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Mun, ED (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM edmun@lanl.gov RI Canfield, Paul/H-2698-2014 FU Basic Energy Sciences, US Department of Energy [DE-AC02-07CH11358] FX We would like to acknowledge K D Myers, J C Frederick, and S A Law for old sample growths and Moon-Bae Joo for useful discussions. Work at Ames Laboratory was supported by the Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-07CH11358. NR 46 TC 8 Z9 8 U1 3 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 30 PY 2011 VL 23 IS 47 AR 476001 DI 10.1088/0953-8984/23/47/476001 PG 9 WC Physics, Condensed Matter SC Physics GA 850QO UT WOS:000297212100012 PM 22057021 ER PT J AU Parson, WB Schneider, BB Kertesz, V Corr, JJ Covey, TR Van Berkel, GJ AF Parson, Whitney B. Schneider, Bradley B. Kertesz, Vilmos Corr, Jay J. Covey, Thomas R. Van Berkel, Gary J. TI Rapid analysis of isomeric exogenous metabolites by differential mobility spectrometry - mass spectrometry SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID THIN TISSUE-SECTIONS; IONIZATION; SEPARATION; SYSTEM; DRUGS; GAS; PROPRANOLOL; DISCOVERY; PRESSURE; BEHAVIOR AB The direct separation of isomeric glucuronide metabolites from propranolol dosed tissue extracts by differential mobility spectrometry - mass spectrometry (DMS-MS) with the use of the polar gas-phase chemical modifier acetonitrile was demonstrated. The DMS gas-phase separation was able to resolve the isomeric metabolites with separation times on the order of milliseconds instead of minutes which is typically required when using pre-ionization chromatographic separation methods. Direct separation of isomeric metabolites from the complex tissue extract was confirmed by implementing a high-performance liquid chromatography (HPLC) separation prior to the DMS-MS analysis to pre-separate the species of interest. The ability to separate isomeric exogenous metabolites directly from a complex tissue extract is expected to facilitate the drug development process by increasing analytical throughput without the requirement for pre-ionization cleanup or separation strategies. Published in 2011 by John Wiley & Sons, Ltd. C1 [Parson, Whitney B.; Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. [Schneider, Bradley B.; Corr, Jay J.; Covey, Thomas R.] AB SCIEX, Concord, ON L4K 4V8, Canada. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM bradley.schneider@absciex.com; vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy; AB SCIEX [CRADA NFE-10-02966]; U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Government [DE-AC05-00OR22725] FX Dr. Marissa Vavrek (Merck Research Laboratories, West Point, PA) is thanked for providing the propranolol-dosed mouse tissue sections. W. B. P., V. K., and G.J.V.B. acknowledge support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy for the fundamental DMS aspects of this work. Funding for the particular application demonstrated was provided by a Cooperative Research and Development Agreement with AB SCIEX (CRADA NFE-10-02966). ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. This manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes. NR 32 TC 21 Z9 21 U1 0 U2 23 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD NOV 30 PY 2011 VL 25 IS 22 BP 3382 EP 3386 DI 10.1002/rcm.5238 PG 5 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 847ZL UT WOS:000297015300002 PM 22002690 ER EF